P. Longuet, Prise en charge des infections sur cathéters à chambre implantable, pp.12-214, 2003.

C. Dupont, Guide pratique des chambres à cathéter implantables, 2012.

M. R. Mallaret, F. Olive, J. Fauconnier, A. Bosseray, J. P. Brion et al., Totally implanted venous access: Method and results of infection surveillance, Med Maladies Infect, pp.26-752, 1996.

U. K. Teichgräber, R. Pfitzmann, and H. A. Hofmann, Central Venous Port Systems as an Integral Part of Chemotherapy, Deutsches Aerzteblatt Online, vol.108, pp.147-154, 2011.
DOI : 10.3238/arztebl.2011.0147

E. Herrera-may and . Soto, Biocompatibility and surface properties of TiO2 thin films deposited by DC magnetron sputtering, pp.4105-4117, 2014.

K. A. Whitehead, J. Colligon, and J. Verran, Retention of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions, Colloids and Surfaces B: Biointerfaces, vol.41, issue.2-3, pp.41-129, 2005.
DOI : 10.1016/j.colsurfb.2004.11.010

A. Zaghal, M. Khalife, D. Mukherji, N. Majzoub, A. Shamseddine et al., Update on totally implantable venous access devices, Update on totally implantable venous access devices, pp.207-215, 2012.
DOI : 10.1016/j.suronc.2012.02.003

J. S. Groeger, A. B. Lucas, H. T. Thaler, H. Friedlanderklar, A. E. Brown et al., Infectious Morbidity Associated with Long-Term Use of Venous Access Devices in Patients with Cancer, Annals of Internal Medicine, vol.119, issue.12, pp.119-1168, 1993.
DOI : 10.7326/0003-4819-119-12-199312150-00003

D. Lebeaux, B. Larroque, J. Gellen-dautremer, V. Leflon-guibout, C. Dreyer et al., Clinical outcome after a totally implantable venous access port-related infection in cancer patients a prospective study and review of the literature, Medicine, pp.91-309, 2012.

D. Lebeaux, N. Fernandez-hidalgo, A. Chauhan, S. Lee, J. M. Ghigo et al., Management of infections related to totally implantable venous-access ports: challenges and perspectives, The Lancet Infectious Diseases, vol.14, issue.2, pp.14-146, 2014.
DOI : 10.1016/S1473-3099(13)70266-4

URL : https://hal.archives-ouvertes.fr/pasteur-01381818

N. Barbetakis, C. Asteriou, A. Kleontas, and C. Tsilikas, Totally implantable central venous access ports. Analysis of 700 cases, Journal of Surgical Oncology, vol.20, issue.6, pp.654-656, 2011.
DOI : 10.1086/501609

O. Seddiki, C. Harnagea, L. Levesque, D. Mantovani, and F. Rosei, Evidence of antibacterial activity on titanium surfaces through nanotextures, Applied Surface Science, vol.308, pp.275-284, 2014.
DOI : 10.1016/j.apsusc.2014.04.155

E. Bouza, R. San-juan, P. Munoz, J. Pascau, A. Voss et al., A European perspective on intravascular catheter-related infections: report on the microbiology workload, aetiology and antimicrobial susceptibility Clinical microbiology and infection, pp.10-838, 2004.
DOI : 10.1111/j.1469-0691.2004.00936.x

URL : https://doi.org/10.1111/j.1469-0691.2004.00936.x

L. A. Masur, M. L. Mermel, I. I. Pearson, A. G. Raad, M. E. Randolph et al., Guidelines for the prevention of intravascular catheter-related infections, Clin Infect Dis, pp.52-162, 2011.

L. A. Mermel, B. M. Farr, R. J. Sherertz, I. I. Raad, N. O. Grady et al., Guidelines for the management of intravascular catheter-related infections, Clin Infect Dis, pp.32-1249, 2001.
DOI : 10.1086/320001

URL : https://academic.oup.com/cid/article-pdf/32/9/1249/13132851/32-9-1249.pdf

. Pahissa, Antibiotic-lock therapy for long-term intravascular catheter-related bacteraemia: results of an open, non-comparative study, J Antimicrob Chemoth, vol.57, pp.1172-1180, 2006.

I. D. Maya, D. Carlton, E. Estrada, and M. Allon, Treatment of Dialysis Catheter???Related Staphylococcus aureus Bacteremia With an Antibiotic Lock: A Quality Improvement Report, American Journal of Kidney Diseases, vol.50, issue.2, pp.50-289, 2007.
DOI : 10.1053/j.ajkd.2007.04.014

C. Desrousseaux, V. Sautou, S. Descamps, and O. Traore, Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation, Journal of Hospital Infection, vol.85, issue.2, pp.85-87, 2013.
DOI : 10.1016/j.jhin.2013.06.015

M. N. Bellonfontaine, J. Rault, and C. J. Vanoss, Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells, Colloids and Surfaces B: Biointerfaces, vol.7, issue.1-2, pp.47-53, 1996.
DOI : 10.1016/0927-7765(96)01272-6

P. E. Sudbery, Growth of Candida albicans hyphae, Nature Reviews Microbiology, vol.5, issue.10, pp.737-748, 2011.
DOI : 10.1038/nmeth.1220

D. Williams and M. Lewis, Pathogenesis and treatment of oral candidosis, Journal of Oral Microbiology, vol.86, issue.1, 2011.
DOI : 10.1177/154405910708600204

URL : https://doi.org/10.3402/jom.v3i0.5771

A. Almaguer-flores, L. A. Ximenez-fyvie, and S. E. , Oral bacterial adhesion on amorphous carbon and titanium films: Effect of surface roughness and culture media, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.17, issue.1, pp.92-196, 2009.
DOI : 10.1177/00220345870660021901

T. Bjarnsholt, N. Hoiby, G. Donelli, C. Imbert, and A. Forsberg, Understanding biofilms -are we there yet?, FEMS Immunology and medical microbiology, pp.65-125, 2012.
DOI : 10.1111/j.1574-695x.2012.00984.x

URL : https://academic.oup.com/femspd/article-pdf/65/2/125/19281044/65-2-125.pdf

M. Katsikogianni and Y. F. Missirlis, Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions, European Cells and Materials, vol.8, pp.37-57, 2004.
DOI : 10.22203/eCM.v008a05

H. J. Busscher, H. C. Van, and . Mei, How Do Bacteria Know They Are on a Surface and Regulate Their Response to an Adhering State?, PLoS Pathogens, vol.15, issue.1, 2012.
DOI : 10.1371/journal.ppat.1002440.g001

URL : https://doi.org/10.1371/journal.ppat.1002440

C. R. Arciola, D. Campoccia, P. Speziale, L. Montanaro, and J. W. Costerton, Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilmresistant materials, Biomaterials, pp.33-5967, 2012.

K. Hori and S. Matsumoto, Bacterial adhesion: From mechanism to control, Biochemical Engineering Journal, vol.48, issue.3, pp.424-434, 2010.
DOI : 10.1016/j.bej.2009.11.014

M. A. Daeschel and J. Mcguire, Interrelationships between protein surface adsoprtion and bacteria adhesion, Biotechnology and Genetic engeneering review, pp.413-438, 1998.
DOI : 10.1080/02648725.1998.10647964

URL : http://www.tandfonline.com/doi/pdf/10.1080/02648725.1998.10647964?needAccess=true

Y. H. An and R. J. Friedman, Concise review of mechanisms of bacterial adhesion to biomaterial surfaces, Journal of Biomedical Materials Research, vol.156, issue.3, pp.43-338, 1998.
DOI : 10.1002/jbm.820241005

D. Siegismund, A. Undisz, S. Germerodt, S. Schuster, and M. Rettenmayr, Quantification of the interaction between biomaterial surfaces and bacteria by 3-D modeling, Acta Biomaterialia, vol.10, issue.1, pp.10-267, 2014.
DOI : 10.1016/j.actbio.2013.09.016

M. G. Katsikogianni and Y. F. Missirlis, Interactions of bacteria with specific biomaterial surface chemistries under flow conditions, Acta Biomaterialia, vol.6, issue.3, pp.1107-1118, 2010.
DOI : 10.1016/j.actbio.2009.08.006

E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier et al., Selfassembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells, pp.17-6336, 2001.

A. L. Hook, C. Y. Chang, J. Yang, J. Luckett, A. Cockayne et al., Combinatorial discovery of polymers resistant to bacterial attachment, Nature Biotechnology, vol.41, issue.9, pp.30-868, 2012.
DOI : 10.1128/AAC.47.9.2740-2748.2003

URL : http://dspace.mit.edu/bitstream/1721.1/91141/1/Anderson_Combinatorial%20discovery.pdf

P. Kaali, E. Strömberg, and S. Karlsson, Prevention of Biofilm Associated Infections and Degradation of Polymeric Materials Used in Biomedical Applications, Tech, 2011.
DOI : 10.5772/12983

L. Rizzello, R. Cingolani, and P. P. Pompa, Nanotechnology tools for antibacterial materials, Nanotechnology tools for antibacterial materials, pp.807-821, 2013.
DOI : 10.1016/S0141-8130(99)00057-4

T. R. Garrett, M. Bhakoo, and Z. B. Zhang, Bacterial adhesion and biofilms on surfaces, Progress in Natural Science, vol.18, issue.9, pp.1049-1056, 2008.
DOI : 10.1016/j.pnsc.2008.04.001

URL : https://doi.org/10.1016/j.pnsc.2008.04.001

. Ogawa, Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts, Dent Mater, vol.26, pp.275-287, 2010.

J. Strauss, Y. Liu, and T. Camesano, Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study, JOM, vol.29, issue.9, pp.61-71, 2009.
DOI : 10.1007/s11837-009-0138-z

C. Scotchford, C. Gilmore, E. Cooper, G. Leggett, and S. Downes, Protein adsorption and human osteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers, Journal of Biomedical Materials Research, vol.33, issue.1, pp.59-84, 2002.
DOI : 10.1002/(SICI)1097-0029(19960201)33:2<141::AID-JEMT5>3.0.CO;2-W

C. Nune, W. Xu, and R. D. Misra, The impact of grafted modification of silicone surfaces with quantum-sized materials on protein adsorption and bacterial adhesion, Journal of Biomedical Materials Research Part A, vol.254, issue.12, pp.100-3197, 2012.
DOI : 10.1038/254695a0

A. Alcheikh, G. Pavon-djavid, G. Helary, H. Petite, V. Migonney et al., PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion, Journal of Materials Science: Materials in Medicine, vol.69, issue.3, pp.24-1745, 2013.
DOI : 10.1002/jbm.a.30017

S. Schuster, W. Yu, M. Nega, Y. Chu, S. Zorn et al., The role of serum proteins in Staphylococcus aureus adhesion to ethylene glycol coated surfaces, International Journal of Medical Microbiology, vol.304, issue.8, pp.304-949, 2014.
DOI : 10.1016/j.ijmm.2014.05.012

W. F. Peters, A, Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material, Journal of Infectious Diseases, vol.158, pp.693-701, 1988.

A. Fleer, C. Timmerman, J. Besnier, A. Pascual, and J. Verhoef, Surface Proteins of Coagulase-Negative Staphylococci: Their Role in Adherence to Biomaterials and in Opsonization, Journal of Biomaterials Applications, vol.33, issue.2, pp.5-154, 1990.
DOI : 10.1007/BF01963070

V. A. Tegoulia and S. L. Cooper, Staphylococcus aureus adhesion to self-assembled monolayers: effect of surface chemistry and fibrinogen presence, Colloids and Surfaces B: Biointerfaces, vol.24, issue.3-4, pp.217-228, 2002.
DOI : 10.1016/S0927-7765(01)00240-5

G. Tronchin, J. P. Bouchara, V. Annaix, R. Robert, and J. M. Senet, Fungal cell adhesion molecules in Candida albicans, European Journal of Epidemiology, vol.7, issue.1, pp.23-33, 1991.
DOI : 10.1007/BF00221338

K. K. Skjorland, A. Henstenpettersen, D. Orstavik, and K. J. Soderholm, Tooth colored dental restorative materials -porosities and surface-topography in relation to bacterial adhesion, Acta Odontol. Scand, pp.40-113, 1982.

D. Campoccia, L. Montanaro, and C. R. Arciola, A review of the biomaterials technologies for infection-resistant surfaces, Biomaterials, vol.34, issue.34, pp.34-8533, 2013.
DOI : 10.1016/j.biomaterials.2013.07.089

J. Hasan, R. J. Crawford, and E. P. Lvanova, Antibacterial surfaces: the quest for a new generation of biomaterials, Trends in Biotechnology, vol.31, issue.5, pp.31-31, 2013.
DOI : 10.1016/j.tibtech.2013.01.017

K. G. Neoh and E. T. Kang, Combating Bacterial Colonization on Metals via Polymer Coatings: Relevance to Marine and Medical Applications, ACS Applied Materials & Interfaces, vol.3, issue.8, pp.2808-2819, 2011.
DOI : 10.1021/am200646t

L. Caillier, E. T. De-givenchy, R. Levy, Y. Vandenberghe, S. Geribaldi et al., Synthesis and antimicrobial properties of polymerizable quaternary ammoniums, European Journal of Medicinal Chemistry, vol.44, issue.8, pp.44-3201, 2009.
DOI : 10.1016/j.ejmech.2009.03.031

S. Ghamrawi, J. Bouchara, O. Tarasyuk, S. Rogalsky, L. Lyoshina et al., Promising silicones modified with cationic biocides for the development of antimicrobial medical devices, Materials Science and Engineering: C, vol.75, pp.75-969, 2017.
DOI : 10.1016/j.msec.2017.03.013

S. R. Palumbi, Evolution -Humans as the world's greatest evolutionary force, Science, pp.293-1786, 2001.
DOI : 10.1126/science.293.5536.1786

J. Thirunarayan, S. Turton, M. Upadhyay, W. Warner, D. M. Welfare et al., Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study, Lancet Infect. Dis, vol.10, pp.597-602, 2010.

E. P. Ivanova, V. K. Truong, J. Y. Wang, C. C. Berndt, R. T. Jones et al., Impact of Nanoscale Roughness of Titanium Thin Film Surfaces on Bacterial Retention, Langmuir, vol.26, issue.3, pp.26-1973, 2010.
DOI : 10.1021/la902623c

T. Shida, H. Koseki, I. Yoda, H. Horiuchi, H. Sakoda et al., A dherence ability of Staphylococcus epidermidis on prosthetic biomaterials: an in vitro study, Int. J. Nanomed, vol.8, pp.3955-3961, 2013.

P. Thomas, L. R. Braathen, M. Dorig, J. Aubock, F. Nestle et al., Increased metal allergy in patients with failed metal-on-metal hip arthroplasty and peri-implant T-lymphocytic inflammation, Allergy, vol.148, issue.8 Suppl. 3, pp.64-1157, 2009.
DOI : 10.2106/00004623-200103000-00017

Y. Niki, H. Matsumoto, T. Otani, T. Yatabe, M. Kondo et al., Screening for symptomatic metal sensitivity: a prospective study of 92 patients undergoing total knee arthroplasty, Biomaterials, pp.26-1019, 2005.

L. G. Harris and R. G. Richards, Staphylococcus aureus adhesion to different treated titanium surfaces, Journal of Materials Science: Materials in Medicine, vol.15, issue.4, pp.311-314, 2004.
DOI : 10.1023/B:JMSM.0000021093.84680.bb

K. Anselme, P. Davidson, A. M. Popa, M. Giazzon, M. Liley et al., The interaction of cells and bacteria with surfaces structured at the nanometre scale, Acta Biomaterialia, vol.6, issue.10, pp.3824-3846, 2010.
DOI : 10.1016/j.actbio.2010.04.001

C. Giordano, E. Sainob, L. Rimondinif, M. Pedeferria, L. Visaib et al., Electrochemically induced anatase inhibits bacterial colonization on Titanium Grade 2 and Ti6Al4V alloy for dental and orthopedic devices, Colloids and Surfaces B: Biointerfaces, vol.88, issue.2, pp.88-648, 2011.
DOI : 10.1016/j.colsurfb.2011.07.054

C. Ludecke, M. Roth, W. Yu, U. Horn, J. Bossert et al., Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points, Colloids and Surfaces B: Biointerfaces, vol.145, pp.145-617, 2016.
DOI : 10.1016/j.colsurfb.2016.05.049

A. F. Han, X. L. Li, B. X. Huang, J. K. Tsoi, J. P. Matinlinna et al., The effect of titanium implant surface modification on the dynamic process of initial microbial adhesion and biofilm formation, International Journal of Adhesion and Adhesives, vol.69, pp.69-125, 2016.
DOI : 10.1016/j.ijadhadh.2016.03.018

I. Yoda, H. Koseki, M. Tomita, T. Shida, H. Horiuchi et al., Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion, BMC Microbiology, vol.38, issue.3, p.14, 2014.
DOI : 10.1016/S0167-7012(99)00100-1

URL : https://bmcmicrobiol.biomedcentral.com/track/pdf/10.1186/s12866-014-0234-2?site=bmcmicrobiol.biomedcentral.com

M. Lorenzetti, I. Dogsa, T. Stosicki, D. Stopar, M. Kalin et al., The Influence of Surface Modification on Bacterial Adhesion to Titanium-Based Substrates, ACS Applied Materials & Interfaces, vol.7, issue.3, pp.1644-1651, 2015.
DOI : 10.1021/am507148n

URL : http://doi.org/10.1021/am507148n

L. Jin, W. Guo, P. H. Xue, H. N. Gao, M. Zhao et al., Quantitative assay for the colonization ability of heterogeneous bacteria on controlled nanopillar structures, Nanotechnology, vol.26, issue.5, p.26, 2015.
DOI : 10.1088/0957-4484/26/5/055702

E. Fadeeva, V. K. Truong, M. Stiesch, B. N. Chichkov, R. J. Crawford et al., Bacterial Retention on Superhydrophobic Titanium Surfaces Fabricated by Femtosecond Laser Ablation, Langmuir, vol.27, issue.6, pp.27-3012, 2011.
DOI : 10.1021/la104607g

T. Kumeria, H. Mon, M. S. Aw, K. Gulati, A. Santos et al., Advanced biopolymercoated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties, Colloids and Surfaces B Biointerfaces, pp.130-255, 2015.
DOI : 10.1016/j.colsurfb.2015.04.021

URL : https://digital.library.adelaide.edu.au/dspace/bitstream/2440/90952/2/hdl_90952.pdf

J. Gomez-barrena and . Esteban, In vitro assessment of Staphylococcus epidermidis and Staphylococcus aureus adhesion on TiO 2 nanotubes on Ti-6Al-4V alloy, J Biomed Mater Res A, pp.100-1696, 2012.

F. R. Marciano, L. F. Bonetti, J. F. Mangolin, N. S. Da-silva, E. J. Corat et al., Investigation into the antibacterial property and bacterial adhesion of diamond-like carbon films, Vacuum, vol.85, issue.6, pp.85-662, 2011.
DOI : 10.1016/j.vacuum.2010.07.017

A. L. Alexander and . Hook, Bacterial attachment to polymeric materials correlates with molecular flexibility and hydrophilicity, Adv. Healthc. Mater, vol.4, pp.695-701, 2015.

H. J. Nejadnik and . Busscher, In vitro and in vivo comparisons of staphylococcal biofilm formation on a cross-linked poly(ethylene glycol)-based polymer coating, Acta Biomater, vol.6, pp.1119-1124, 2010.

Y. B. Ma, M. Chen, J. E. Jones, A. C. Ritts, Q. S. Yu et al., ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.56, issue.11, pp.56-5923, 2012.
DOI : 10.1128/AAC.01739-12

URL : https://hal.archives-ouvertes.fr/hal-01153717

Z. L. Shi, K. G. Neoh, E. T. Kang, C. Poh, and W. Wang, Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide, Journal of Biomedical Materials Research Part A, vol.78, issue.4, pp.86-865, 2008.
DOI : 10.1002/jbm.a.30789

Y. Pu, A. B. Liu, Y. Q. Zheng, and B. Ye, In vitro damage of Candida albicans biofilms by chitosan, Experimental and Therapeutic Medicine, vol.8, issue.3, pp.929-934, 2014.
DOI : 10.3892/etm.2014.1839

L. D. Renner and D. B. , Physicochemical regulation of biofilm formation, MRS Bulletin, vol.8, issue.05, pp.347-355, 2011.
DOI : 10.1038/nrmicro821

URL : http://europepmc.org/articles/pmc3224470?pdf=render

D. Cunliffe, C. Smart, C. Alexander, and E. N. Vulfson, Bacterial adhesion at synthetic surfaces, Applied and environmental microbiology, pp.65-4995, 1999.

O. V. Rybalchenko, V. M. Bondarenko, O. G. Orlova, A. G. Markov, and S. Amasheh, Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation, Archives of Microbiology, vol.79, issue.8, pp.1027-1032, 2015.
DOI : 10.1111/1750-3841.12314

C. Y. Yang, G. J. Song, Q. Zhu, S. J. Liu, and C. H. Xia, The influence of bacterial quorum-sensing inhibitors against the formation of the diatom-biofilm, Chemistry and Ecology, vol.43, issue.2, pp.32-169, 2016.
DOI : 10.1093/jac/dkh223

Y. F. Missirlis and A. D. Spiliotis, Assessment of techniques used in calculating cell???material interactions, Biomolecular Engineering, vol.19, issue.2-6, pp.287-294, 2002.
DOI : 10.1016/S1389-0344(02)00033-3

H. J. Busscher, H. C. Van, and . Mei, Microbial Adhesion in Flow Displacement Systems, Clinical Microbiology Reviews, vol.19, issue.1, pp.127-141, 2006.
DOI : 10.1128/CMR.19.1.127-141.2006

URL : http://cmr.asm.org/content/19/1/127.full.pdf

R. B. Dickinson, J. A. Nagel, R. A. Proctor, and S. L. Cooper, Quantitative comparison of sheardependent Staphylococcus aureus adhesion to three polyurethane ionomer analogs with distinct surface properties, J Biomed Mater Res, pp.36-152, 1997.
DOI : 10.1002/(sici)1097-4636(199708)36:2<152::aid-jbm3>3.0.co;2-j

K. M. Kruszewski, L. Nistico, M. J. Longwell, M. J. , M. J. Hynes et al., Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers, Materials Science and Engineering: C, vol.33, issue.4, pp.33-2059, 2013.
DOI : 10.1016/j.msec.2013.01.023

URL : http://europepmc.org/articles/pmc3609649?pdf=render

L. Boulos, M. Prevost, B. Barbeau, J. Coallier, R. Desjardins et al., BacLight (TM): application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water, J. Microbiol. Methods, pp.37-77, 1999.

M. Zaborowska, K. Welch, R. Branemark, P. Khalilpour, H. Engqvist et al., Bacteria-material surface interactions: methodological development for the assessment of implant surface induced antibacterial effects, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.59, issue.Pt 1, pp.179-187, 2015.
DOI : 10.1099/jmm.0.015420-0

V. K. Truong, R. Lapovok, Y. S. Estrin, S. Rundell, J. Y. Wang et al., The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium, Biomaterials, vol.31, issue.13, pp.31-3674, 2010.
DOI : 10.1016/j.biomaterials.2010.01.071

. Mutin, In vitro and in vivo characterization of antibacterial activity and biocompatibility: A study on silver-containing phosphonate monolayers on titanium, Acta Biomater, vol.15, pp.266-277, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01122929

E. M. Swanton, W. A. Curby, and H. E. Lind, Experiences with the Coulter counter in bacteriology, Applied microbiology, vol.10, pp.480-485, 1962.

K. C. Neuman and A. Nagy, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy, Nature Methods, vol.75, issue.6, pp.491-505, 2008.
DOI : 10.1111/j.1365-2818.1988.tb01452.x

URL : http://europepmc.org/articles/pmc3397402?pdf=render

R. M. Hochmuth, Micropipette aspiration of living cells, Journal of Biomechanics, vol.33, issue.1, pp.15-22, 2000.
DOI : 10.1016/S0021-9290(99)00175-X

X. H. Sun, W. D. Weinlandt, H. Patel, M. M. Wu, and C. J. Hernandez, A microfluidic platform for profiling biomechanical properties of bacteria, Lab Chip, vol.107, issue.14, pp.14-2491, 2014.
DOI : 10.1073/pnas.0911517107

URL : http://europepmc.org/articles/pmc4104068?pdf=render

A. F. Engelsman, H. C. Van-der-mei, K. P. Francis, H. J. Busscher, R. J. Ploeg et al., Real time noninvasive monitoring of contaminating bacteria in a soft tissue implant infection model, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.238, issue.1, pp.88-123, 2009.
DOI : 10.1002/jbm.b.31158

N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson et al., Real-Time Monitoring of Bacterial Infection In Vivo: Development of Bioluminescent Staphylococcal Foreign-Body and Deep-Thigh-Wound Mouse Infection Models, Antimicrobial Agents and Chemotherapy, vol.47, issue.9, pp.47-2740, 2003.
DOI : 10.1128/AAC.47.9.2740-2748.2003

R. Chen, M. Willcox, K. Ho, D. Smyth, and N. Kumar, Antimicrobial peptide melimine coating for titanium and its in??vivo antibacterial activity in rodent subcutaneous infection models, Biomaterials, vol.85, pp.85-142, 2016.
DOI : 10.1016/j.biomaterials.2016.01.063

W. Zhou and X. Zhong, The effect of surface roughness and wettability of nanostructured TiO 2 film on TCA-8113 epithelial-like cells, Surf Coat Tech, pp.201-505, 2006.

E. Mccafferty and J. Wightman, An X-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium, Applied Surface Science, vol.143, issue.1-4, pp.92-100, 1999.
DOI : 10.1016/S0169-4332(98)00927-1

F. Tian, Y. P. Zhang, J. Zhang, and C. X. Pan, Exposed (001) Facets, The Journal of Physical Chemistry C, vol.116, issue.13, pp.116-7515, 2012.
DOI : 10.1021/jp301256h

M. J. Henderson, A. Gibaud, J. F. Bardeau, and J. W. White, An X-ray reflectivity study of evaporationinduced self-assembled titania-based films, J Mater Chem, pp.16-2478, 2006.
DOI : 10.1039/b601677d

U. Balachandran and N. G. Eror, Raman spectra of titanium dioxide, Journal of Solid State Chemistry, vol.42, issue.3, pp.276-282, 1982.
DOI : 10.1016/0022-4596(82)90006-8

E. Palik, H. Gray, and P. Klein, A Raman Study of Etching Silicon in Aqueous KOH, Journal of The Electrochemical Society, vol.130, issue.4, pp.956-959, 1983.
DOI : 10.1149/1.2119866

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, Anisotropic etching of crystalline silicon in alkaline solutions I . Orientation dependence and behavior of passivation layers, J. Electrochem. Soc, pp.137-3612, 1990.
DOI : 10.1149/1.2086278

S. A. Campbell, K. Cooper, L. Dixon, R. Earwaker, S. N. Port et al., Inhibition of pyramid formation in the etching of Si p(100) in aqueous potassium hydroxide-isopropanol, Journal of Micromechanics and Microengineering, vol.5, issue.3, pp.209-218, 1995.
DOI : 10.1088/0960-1317/5/3/002

O. A. Tabata, H. Funabashi, . Shimaoka, and S. Sugryama, Anisotropic etching of silicon in TMAH solutions, Sensors and Actuators A: Physical, vol.34, issue.1, pp.51-57, 1992.
DOI : 10.1016/0924-4247(92)80139-T

M. A. Gosalvez and R. M. Nieminen, Surface morphology during anisotropic wet chemical etching of crystalline silicon, New J Phys, vol.5, 2003.

I. Zubel, K. Rola, and M. Kramkowska, The effect of isopropyl alcohol concentration on the etching process of Si-substrates in KOH solutions, Sensor Actuat a-Phys, pp.171-436, 2011.

J. Chen, L. T. Liu, Z. J. Li, Z. M. Tan, Q. S. Jiang et al., Study of anisotropic etching of (100) Si with ultrasonic agitation, Sensor Actuat a-Phys, pp.96-152, 2002.

T. Baum, J. Satherley, and D. J. Schiffrin, Contact Angle, Gas Bubble Detachment, and Surface Roughness in the Anisotropic Dissolution of Si(100) in Aqueous KOH, Langmuir, vol.14, issue.10, pp.14-2925, 1998.
DOI : 10.1021/la9711950

M. Elwenspoek, On the Mechanism of Anisotropic Etching of Silicon, Journal of The Electrochemical Society, vol.140, issue.7, pp.2075-2080, 1993.
DOI : 10.1149/1.2220767

G. Kuchler and R. Brendel, Reconstruction of the surface topography of randomly textured silicon, Progress in Photovoltaics: Research and Applications, vol.11, issue.2, pp.89-95, 2003.
DOI : 10.1007/978-1-4899-3216-7

H. Park, E. Bae, J. J. Lee, J. Park, and W. Choi, Effect of the anchoring group in Ru-bipyridyl sensitizers on the photoelectrochemical behavior of dye-sensitized TiO 2 electrodes: Carboxylate versus phosphonate linkages, J Phys Chem B, pp.110-8740, 2006.

R. Luschtinetz, A. F. Oliveira, J. Frenzel, J. O. Joswig, G. Seifert et al., Adsorption of phosphonic and ethylphosphonic acid on aluminum oxide surfaces, Surface Science, vol.602, issue.7, pp.602-1347, 2008.
DOI : 10.1016/j.susc.2008.01.035

R. Boissezon, J. Muller, V. Beaugeard, S. Monge, and J. J. Robin, Organophosphonates as anchoring agents onto metal oxide-based materials: synthesis and applications, RSC Advances, vol.23, issue.2, pp.35690-35707, 2014.
DOI : 10.1002/pat.3030

G. Zorn, I. Gotman, E. Y. Gutmanas, R. Adadi, G. Salitra et al., Surface Modification of Ti45Nb Alloy with an Alkylphosphonic Acid Self-Assembled Monolayer, Chemistry of Materials, vol.17, issue.16, pp.17-4218, 2005.
DOI : 10.1021/cm050477f

J. Amalric, P. H. Mutin, G. Guerrero, A. Ponche, A. Sotto et al., Phosphonate monolayers functionalized by silver thiolate species as antibacterial nanocoatings on titanium and stainless steel, J. Mater. Chem., vol.6, issue.1, pp.19-141, 2009.
DOI : 10.1111/j.1462-2920.2004.00656.x

URL : https://hal.archives-ouvertes.fr/hal-00332902

G. Lecollinet, N. Delorme, M. Edely, A. Gibaud, J. F. Bardeau et al., Selfassembled monolayers of bisphosphonates: influence of side chain steric hindrance, Langmuir, pp.25-7828, 2009.
DOI : 10.1021/la8039576

G. Busch, E. Jaehne, X. D. Cai, S. Oberoi, and H. J. Adler, Ultrathin layers for adhesion promotion, Synthetic Met, pp.137-871, 2003.
DOI : 10.1016/s0379-6779(02)01097-4

E. L. Hanson, J. Schwartz, B. Nickel, N. Koch, and M. F. Danisman, Bonding Self-Assembled, Compact Organophosphonate Monolayers to the Native Oxide Surface of Silicon, Journal of the American Chemical Society, vol.125, issue.51, pp.125-16074, 2003.
DOI : 10.1021/ja035956z

A. Vitale, A. Pollicino, E. Bernardi, and R. Bongiovanni, Ultrathin perfluoropolyether coatings for silicon wafers: a XPS study, Progress in Organic Coatings, vol.78, pp.78-480, 2015.
DOI : 10.1016/j.porgcoat.2014.06.014

A. Szwajca, M. Krzywiecki, and H. Koroniak, Self-assembled monolayers of partially fluorinated alcohols on Si(001): XPS and UV-photoemission study, Journal of Fluorine Chemistry, vol.180, pp.180-248, 2015.
DOI : 10.1016/j.jfluchem.2015.10.009

S. P. Pujari, E. Spruijt, M. A. Stuart, C. J. Van-rijn, J. M. Paulusse et al., Ultralow Adhesion and Friction of Fluoro-Hydro Alkyne-Derived Self-Assembled Monolayers on H-Terminated Si(111), Langmuir, vol.28, issue.51, pp.28-17690, 2012.
DOI : 10.1021/la303893u

S. Ray and A. Shard, Quantitative Analysis of Adsorbed Proteins by X-ray Photoelectron Spectroscopy, Analytical Chemistry, vol.83, issue.22, pp.8659-8666, 2011.
DOI : 10.1021/ac202110x

M. E. Napier and P. C. Stair, Decomposition of fluorinated diethers on the clean iron surface, Surface Science, vol.298, issue.1, pp.298-201, 1993.
DOI : 10.1016/0039-6028(93)90096-3

W. Mori and . Mordes, Degradation and crosslinking of perfluoroalkyl polyethers under X-ray irradiation in ultrahigh vacuum, NASA technical paper 2910, 1989.

S. Sharma, R. W. Johnson, and T. A. Desai, XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors, Biosensors and Bioelectronics, vol.20, issue.2, pp.227-239, 2004.
DOI : 10.1016/j.bios.2004.01.034

E. Bouza, R. San-juan, P. Munoz, J. Pascau, A. Voss et al., A European perspective on intravascular catheter-related infections: report on the microbiology workload, aetiology and antimicrobial susceptibility Clinical microbiology and infection, pp.10-838, 2004.
DOI : 10.1111/j.1469-0691.2004.00936.x

URL : https://doi.org/10.1111/j.1469-0691.2004.00936.x

Y. H. An and R. J. Friedman, Laboratory methods for studies of bacterial adhesion, Journal of Microbiological Methods, vol.30, issue.2, pp.30-141, 1997.
DOI : 10.1016/S0167-7012(97)00058-4

L. Jin, W. Guo, P. H. Xue, H. N. Gao, M. Zhao et al., Quantitative assay for the colonization ability of heterogeneous bacteria on controlled nanopillar structures, Nanotechnology, vol.26, issue.5, p.26, 2015.
DOI : 10.1088/0957-4484/26/5/055702

M. Lorenzetti, I. Dogsa, T. Stosicki, D. Stopar, M. Kalin et al., The Influence of Surface Modification on Bacterial Adhesion to Titanium-Based Substrates, ACS Applied Materials & Interfaces, vol.7, issue.3, pp.1644-1651, 2015.
DOI : 10.1021/am507148n

URL : http://doi.org/10.1021/am507148n

J. Verran and C. J. Maryan, Retention of Candida albicans on acrylic resin and silicone of different surface topography, The Journal of Prosthetic Dentistry, vol.77, issue.5, pp.535-539, 1997.
DOI : 10.1016/S0022-3913(97)70148-3

K. A. Whitehead, J. Colligon, and J. Verran, Retention of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions, Colloids and Surfaces B: Biointerfaces, vol.41, issue.2-3, pp.41-129, 2005.
DOI : 10.1016/j.colsurfb.2004.11.010

C. Ludecke, M. Roth, W. Yu, U. Horn, J. Bossert et al., Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points, Colloids and Surfaces B: Biointerfaces, vol.145, pp.145-617, 2016.
DOI : 10.1016/j.colsurfb.2016.05.049

M. G. Katsikogianni and Y. F. Missirlis, Interactions of bacteria with specific biomaterial surface chemistries under flow conditions, Acta Biomaterialia, vol.6, issue.3, pp.1107-1118, 2010.
DOI : 10.1016/j.actbio.2009.08.006

V. A. Tegoulia and S. L. Cooper, Staphylococcus aureus adhesion to self-assembled monolayers: effect of surface chemistry and fibrinogen presence, Colloids and Surfaces B: Biointerfaces, vol.24, issue.3-4, pp.217-228, 2002.
DOI : 10.1016/S0927-7765(01)00240-5

D. Cunliffe, C. Smart, C. Alexander, and E. N. Vulfson, Bacterial adhesion at synthetic surfaces, Applied and environmental microbiology, pp.65-4995, 1999.

W. F. Peters, A, Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material, Journal of Infectious Diseases, vol.158, pp.693-701, 1988.

J. Strauss, Y. Liu, and T. Camesano, Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study, JOM, vol.29, issue.9, pp.61-71, 2009.
DOI : 10.1007/s11837-009-0138-z

S. Schuster, W. Yu, M. Nega, Y. Chu, S. Zorn et al., The role of serum proteins in Staphylococcus aureus adhesion to ethylene glycol coated surfaces, International Journal of Medical Microbiology, vol.304, issue.8, pp.304-949, 2014.
DOI : 10.1016/j.ijmm.2014.05.012

L. Poulouin, O. Gallet, and J. Imhoff, La fibronectine : propriétés et fonctions de la molécule native et de ses fragments, médecine/sciences, pp.13-657, 1997.
DOI : 10.4267/10608/433

C. Scotchford, C. Gilmore, E. Cooper, G. Leggett, and S. Downes, Protein adsorption and human osteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers, Journal of Biomedical Materials Research, vol.33, issue.1, pp.59-84, 2002.
DOI : 10.1002/(SICI)1097-0029(19960201)33:2<141::AID-JEMT5>3.0.CO;2-W

C. Nune, W. Xu, and R. D. Misra, The impact of grafted modification of silicone surfaces with quantum-sized materials on protein adsorption and bacterial adhesion, Journal of Biomedical Materials Research Part A, vol.254, issue.12, pp.100-3197, 2012.
DOI : 10.1038/254695a0

A. Alcheikh, G. Pavon-djavid, G. Helary, H. Petite, V. Migonney et al., PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion, Journal of Materials Science: Materials in Medicine, vol.69, issue.3, pp.24-1745, 2013.
DOI : 10.1002/jbm.a.30017

A. Fleer, C. Timmerman, J. Besnier, A. Pascual, and J. Verhoef, Surface Proteins of Coagulase-Negative Staphylococci: Their Role in Adherence to Biomaterials and in Opsonization, Journal of Biomaterials Applications, vol.33, issue.2, pp.5-154, 1990.
DOI : 10.1007/BF01963070

V. Silin, H. Weetall, and D. Vanderah, SPR Studies of the Nonspecific Adsorption Kinetics of Human IgG and BSA on Gold Surfaces Modified by Self-Assembled Monolayers (SAMs), Journal of Colloid and Interface Science, vol.185, issue.1, pp.185-94, 1997.
DOI : 10.1006/jcis.1996.4586

L. Pandey, S. Pattanayek, and D. Delabouglise, Properties of Adsorbed Bovine Serum Albumin and Fibrinogen on Self-Assembled Monolayers, The Journal of Physical Chemistry C, vol.117, issue.12, pp.6151-6160, 2013.
DOI : 10.1021/jp309483p

URL : https://hal.archives-ouvertes.fr/hal-01067526

N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, and T. Groth, Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies, Biomaterials, vol.25, issue.14, pp.25-2721, 2004.
DOI : 10.1016/j.biomaterials.2003.09.069

K. Anselme, L. Ploux, and A. Ponche, Cell/Material Interfaces, Cell J. Adhes. Sci. Technol, vol.24, pp.831-852, 2010.
DOI : 10.1201/b12179-6

I. Reviakine, D. Johannsmann, and R. P. Richter, Hearing What You Cannot See and Visualizing What You Hear: Interpreting Quartz Crystal Microbalance Data from Solvated Interfaces, Analytical Chemistry, vol.83, issue.23, pp.83-8838, 2011.
DOI : 10.1021/ac201778h

S. Ray and A. Shard, Quantitative Analysis of Adsorbed Proteins by X-ray Photoelectron Spectroscopy, Analytical Chemistry, vol.83, issue.22, pp.8659-8666, 2011.
DOI : 10.1021/ac202110x

D. Macdonald, B. Markovic, A. Boskey, and P. Somasundaran, Physico-chemical properties of human plasma fibronectin binding to well characterized titanium dioxide, Colloids and Surfaces B: Biointerfaces, vol.11, issue.3, pp.131-139, 1998.
DOI : 10.1016/S0927-7765(98)00030-7

A. G. Hemmersam, K. Rechendorff, M. Foss, D. S. Sutherland, and F. Besenbacher, Fibronectin adsorption on gold, Ti-, and Ta-oxide investigated by QCM-D and RSA modelling, Journal of Colloid and Interface Science, vol.320, issue.1, pp.320-110, 2008.
DOI : 10.1016/j.jcis.2007.11.047

M. Pegueroles, C. Tonda-turo, J. Planell, F. Gil, and C. Aparicio, Adsorption of fibronectin, fibrinogen, and albumin on TiO 2 time-resolved kinetics, structural changes, and competition study, Biointerphases, p.7, 2012.
DOI : 10.1007/s13758-012-0048-4

URL : http://avs.scitation.org/doi/pdf/10.1007/s13758-012-0048-4

P. Roach, D. Farrar, and C. Perry, Interpretation of Protein Adsorption:?? Surface-Induced Conformational Changes, Journal of the American Chemical Society, vol.127, issue.22, pp.8168-8173, 2005.
DOI : 10.1021/ja042898o

M. A. Daeschel and J. Mcguire, Interrelationships between protein surface adsoprtion and bacteria adhesion, Biotechnology and Genetic engeneering review, pp.413-438, 1998.
DOI : 10.1080/02648725.1998.10647964

URL : http://www.tandfonline.com/doi/pdf/10.1080/02648725.1998.10647964?needAccess=true

F. Kirschhofer, A. Rieder, C. Prechtl, B. Kuhl, K. Sabljo et al., Quartz crystal microbalance with dissipation coupled to on-chip MALDI-ToF mass spectrometry as a tool for characterising proteinaceous conditioning films on functionalised surfaces, Analytica Chimica Acta, vol.802, pp.802-95, 2013.
DOI : 10.1016/j.aca.2013.10.007

K. G. Neoh and E. T. Kang, Combating Bacterial Colonization on Metals via Polymer Coatings: Relevance to Marine and Medical Applications, ACS Applied Materials & Interfaces, vol.3, issue.8, pp.2808-2819, 2011.
DOI : 10.1021/am200646t

E. A. Vogler, Structure and reactivity of water at biomaterial surfaces, Advances in Colloid and Interface Science, vol.74, issue.1-3, pp.69-117, 1998.
DOI : 10.1016/S0001-8686(97)00040-7

H. Larsericsdotter, S. Oscarsson, and J. Buijs, Structure, stability, and orientation of BSA adsorbed to silica, Journal of Colloid and Interface Science, vol.289, issue.1, pp.26-35, 2005.
DOI : 10.1016/j.jcis.2005.03.064

S. Cannistraro and F. Sacchetti, Rotational and translational dynamics of human albumin, Physical Review A, vol.49, issue.1, pp.745-746, 1986.
DOI : 10.1103/PhysRevLett.49.85

Y. L. Jeyachandran, E. Mielezarski, B. Rai, and J. A. Mielczarski, Quantitative and Qualitative Evaluation of Adsorption/Desorption of Bovine Serum Albumin on Hydrophilic and Hydrophobic Surfaces, Langmuir, vol.25, issue.19, pp.25-11614, 2009.
DOI : 10.1021/la901453a

URL : https://hal.archives-ouvertes.fr/hal-00414377

H. Lefaix, A. Galtayries, F. Prima, and P. Marcus, Nano-size protein at the surface of a Ti-Zr-Ni quasicrystalline alloy: Fibronectin adsorption on metallic nano-composites, pp.439-207, 2013.

A. Ithurbide, I. Frateur, A. Galtayries, and P. Marcus, XPS and flow-cell EQCM study of albumin adsorption on passivated chromium surfaces: Influence of potential and pH, Electrochimica Acta, vol.53, issue.3, pp.53-1336, 2007.
DOI : 10.1016/j.electacta.2007.04.109

V. Payet, T. Dini, S. Brunner, A. Galtayries, I. Frateur et al., Pre-treatment of titanium suufaaes fioeti: i situ adsorption and effect of concentration, Surface and interface analysis

J. Rodriguez-sanchez, A. M. Gallardo-moreno, J. M. Bruque, and M. L. Gonzalez-martin, Adsorption of human fibrinogen and albumin onto hydrophobic and hydrophilic Ti6Al4V powder, Applied Surface Science, vol.376, pp.376-269, 2016.
DOI : 10.1016/j.apsusc.2016.03.014

D. E. Macdonald, B. Markovic, M. Allen, P. Somasundaran, and A. L. Boskey, Surface analysis of human plasma fibronectin adsorbed to commercially pure titanium materials, Journal of Biomedical Materials Research, vol.614, issue.44, pp.41-120, 1998.
DOI : 10.1021/bk-1995-0602.ch036

K. J. Johnson, H. Sage, G. Briscoe, and H. P. Erickson, The Compact Conformation of Fibronectin Is Determined by Intramolecular Ionic Interactions, Journal of Biological Chemistry, vol.269, issue.22, pp.274-15473, 1999.
DOI : 10.1002/art.1780391011

URL : http://www.jbc.org/content/274/22/15473.full.pdf

R. Emch, F. Zenhausern, M. Jobin, M. Taborelli, and P. Descouts, Morphological difference between fibronectin spayed on mica and PMMA, Ultramicroscopy, pp.42-1155, 1992.
DOI : 10.1016/0304-3991(92)90417-i

Y. Tamada and Y. Ikada, Effect of Preadsorbed Proteins on Cell Adhesion to Polymer Surfaces, Journal of Colloid and Interface Science, vol.155, issue.2, pp.334-339, 1993.
DOI : 10.1006/jcis.1993.1044

P. Roach, N. J. Shirtcliffe, D. Farrar, and C. C. Perry, Quantification of Surface-Bound Proteins by Fluorometric Assay: Comparison with Quartz Crystal Microbalance and Amido Black Assay, The Journal of Physical Chemistry B, vol.110, issue.41, pp.110-20572, 2006.
DOI : 10.1021/jp0621575

R. G. Flemming, R. A. Proctor, and S. L. Cooper, Bacterial adhesion to functionalized polyurethanes, Journal of Biomaterials Science, Polymer Edition, vol.24, issue.6, pp.679-697, 1999.
DOI : 10.1002/jbm.820240805

D. Mcdevitt, T. Nanavaty, K. Housepompeo, E. Bell, N. Turner et al., Characterization of the Interaction Between the Staphylococcus Aureus Clumping Factor (ClfA) and Fibrinogen, European Journal of Biochemistry, vol.28, issue.1, pp.247-416, 1997.
DOI : 10.1006/meth.1994.1016

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1432-1033.1997.00416.x/pdf

G. Tronchin, R. Robert, A. Bouali, and J. M. Senet, Immunocytochemical localization of in vitro binding of human fibrinogen to Candida albicans germ tube and mycelium, Annales de l'Institut Pasteur / Microbiologie, vol.138, issue.2, pp.138-177, 1987.
DOI : 10.1016/0769-2609(87)90194-3

G. Smulevich, A. R. Mantini, and M. P. Marzocchi, Surface-enhance Raman-scattering excitation profiles of anthracyclines adsorbed onto silver particles, J. Phys. Chem, pp.94-2540, 1990.
DOI : 10.1021/j100369a059

D. Lebeaux, N. Fernandez-hidalgo, A. Chauhan, S. Lee, J. M. Ghigo et al., Management of infections related to totally implantable venous-access ports: challenges and perspectives, The Lancet Infectious Diseases, vol.14, issue.2, pp.14-146, 2014.
DOI : 10.1016/S1473-3099(13)70266-4

URL : https://hal.archives-ouvertes.fr/pasteur-01381818

L. Images-ont-Été-réalisées-avec-un and M. Effet-de-champ, en électrons secondaires. La tension d'aaaélératio a été fixée à 2 ou keV. La pressio de l'eeeite était comprise entre 5 x 10 -6 mbar et 9 x 10 -7 mbar, Les observations ont été réalisées sur l'u de es deux MEB à effet de champ : un modèle JEOL JSM-6301F à Angers ou un modèle Zeiss Ultra Plus