A. =. , A. Gras, ?. Aglc-=-acide-gras-À-chaîne-longue, =. -gluc, . ?-glucocérébrosidase et al., En rouge, les enzymes impliquées dans cette voie de synthèse, Figure 5. Schéma simplifié de la voie de synthèse des céramides épidermiques CerS = Céramide Synthase, chaîne C = chaîne carbonée de l'Acide SM = Sphingomyéline

C. Pincelli and A. Marconi, Keratinocyte stem cells: Friends and foes, Journal of Cellular Physiology, vol.26, issue.2, pp.310-315, 2010.
DOI : 10.1038/sj.jid.5700917

Z. Nemes and P. Steinert, Bricks and mortar of the epidermal barrier, Experimental & Molecular Medicine, vol.31, issue.1, pp.5-19, 1999.
DOI : 10.1038/emm.1999.2

K. Nishifuji and J. Yoon, The Stratum Corneum: The Rampart of the Mammalian Body, Vet Dermatol. 2013 Feb, vol.6, issue.8055, pp.60-72
DOI : 10.1016/S0923-1811(02)00143-3

P. Wertz, Current Understanding of Skin Biology Pertinent to Skin Penetration: Skin Biochemistry, Skin Pharmacology and Physiology, vol.26, issue.4-6, pp.4-6217, 2013.
DOI : 10.1159/000351949

G. Menon, G. Cleary, and M. Lane, The structure and function of the stratum corneum, International Journal of Pharmaceutics, vol.435, issue.1, pp.3-9, 2012.
DOI : 10.1016/j.ijpharm.2012.06.005

A. Michaels, S. Chandrasekaran, and J. Shaw, Drug permeation through human skin: Theory andinvitro experimental measurement, AIChE Journal, vol.21, issue.5, pp.985-96, 1975.
DOI : 10.1002/aic.690210522

F. Sahle, T. Gebre-mariam, B. Dobner, J. Wohlrab, and R. Neubert, Skin Diseases Associated with the Depletion of Stratum Corneum Lipids and Stratum Corneum Lipid Substitution Therapy, Skin Pharmacology and Physiology, vol.28, issue.1, pp.42-55, 2015.
DOI : 10.1159/000360009

K. Feingold and P. Elias, Role of lipids in the formation and maintenance of the cutaneous permeability barrier, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1841, issue.3, pp.280-94, 1841.
DOI : 10.1016/j.bbalip.2013.11.007

P. Elias, M. Williams, E. Choi, and K. Feingold, Role of cholesterol sulfate in epidermal structure and function: Lessons from X-linked ichthyosis, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1841, issue.3, pp.353-61, 1841.
DOI : 10.1016/j.bbalip.2013.11.009

A. Baroni, E. Buommino, D. Gregorio, V. Ruocco, E. Ruocco et al., Structure and function of the epidermis related to barrier properties, Clinics in Dermatology, vol.30, issue.3, pp.257-62
DOI : 10.1016/j.clindermatol.2011.08.007

P. Wertz and D. Downing, Ceramides of pig epidermis: structure determination, J Lipid Res, 1983.

B. Breiden and K. Sandhoff, The role of sphingolipid metabolism in cutaneous permeability barrier formation, Biochim Biophys Acta, issue.3, pp.441-52, 1841.

R. Kindt, J. L. Dumont, E. Couturon, P. David, F. Sandra et al., Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry, Anal Chem, vol.84, issue.1, pp.403-414, 2012.

S. Motta, M. Monti, S. Sesana, R. Caputo, S. Carelli et al., Ceramide composition of the psoriatic scale, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1182, issue.2, pp.147-51, 1993.
DOI : 10.1016/0925-4439(93)90135-N

M. Ponec, A. Weerheim, P. Lankhorst, and P. Wertz, New Acylceramide in Native and Reconstructed Epidermis, Journal of Investigative Dermatology, vol.120, issue.4, pp.581-589, 2003.
DOI : 10.1046/j.1523-1747.2003.12103.x

J. Hill, D. Paslin, and P. Wertz, A new covalently bound ceramide from human stratum corneum -omega-hydroxyacylphytosphingosine, International Journal of Cosmetic Science, vol.1616, issue.3, pp.225-255, 2006.
DOI : 10.1007/s00403-005-0567-7

H. Farwanah, J. Wohlrab, R. Neubert, and K. Raith, Profiling of human stratum corneum ceramides by means of normal phase LC/APCI???MS, Analytical and Bioanalytical Chemistry, vol.117, issue.4, pp.632-639, 2005.
DOI : 10.1016/0925-4439(93)90135-N

H. Farwanah, B. Pierstorff, C. Schmelzer, K. Raith, R. Neubert et al., Separation and mass spectrometric characterization of covalently bound skin ceramides using LC/APCI-MS and Nano-ESI-MS/MS, Journal of Chromatography B, vol.852, issue.1-2, pp.562-70, 2007.
DOI : 10.1016/j.jchromb.2007.02.030

M. Rabionet, A. Bayerle, C. Marsching, R. Jennemann, H. Gröne et al., 1-O-acylceramides are natural components of human and mouse epidermis, Journal of Lipid Research, vol.36, issue.12, pp.3312-3333, 2013.
DOI : 10.1016/j.febslet.2006.08.039

J. Van-smeden, M. Janssens, G. Gooris, and J. Bouwstra, The important role of stratum corneum lipids for the cutaneous barrier function, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1841, issue.3, pp.295-313, 1841.
DOI : 10.1016/j.bbalip.2013.11.006

J. Van-smeden, M. Janssens, W. Boiten, V. Van-drongelen, L. Furio et al., Intercellular Skin Barrier Lipid Composition and Organization in Netherton Syndrome Patients, Journal of Investigative Dermatology, vol.134, issue.5, pp.1238-1283, 2014.
DOI : 10.1038/jid.2013.517

A. Kihara, Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides, Progress in Lipid Research, vol.63, 2016.
DOI : 10.1016/j.plipres.2016.04.001

Y. Uchida and W. Holleran, Omega-O-acylceramide, a lipid essential for mammalian survival, Journal of Dermatological Science, vol.51, issue.2, pp.77-87, 2008.
DOI : 10.1016/j.jdermsci.2008.01.002

M. Rabionet, K. Gorgas, and R. Sandhoff, Ceramide synthesis in the epidermis, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1841, issue.3, pp.422-456, 2014.
DOI : 10.1016/j.bbalip.2013.08.011

P. Krieg and G. Fürstenberger, The role of lipoxygenases in epidermis, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1841, issue.3, pp.390-400, 2014.
DOI : 10.1016/j.bbalip.2013.08.005

P. Elias, R. Gruber, D. Crumrine, G. Menon, M. Williams et al., Formation and functions of the corneocyte lipid envelope (CLE), Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1841, issue.3, pp.314-322, 1841.
DOI : 10.1016/j.bbalip.2013.09.011

U. Rassner, K. Feingold, D. Crumrine, and P. Elias, Coordinate assembly of lipids and enzyme proteins into epidermal lamellar bodies. Tissue Cell, pp.489-98, 1999.

K. Wasano and Y. Hirakawa, Lamellar bodies of rat alveolar type 2 cells have late endosomal marker proteins on their limiting membranes, Histochemistry, vol.262, issue.5, pp.329-364, 1994.
DOI : 10.1177/34.9.2426341

M. Reynier, S. Allart, E. Gaspard, A. Moga, D. Goudounèche et al., Rab11a Is Essential for Lamellar Body Biogenesis in the Human Epidermis, Journal of Investigative Dermatology, vol.136, issue.6, pp.1199-209
DOI : 10.1016/j.jid.2016.02.001

Y. Zhen and H. Stenmark, Cellular functions of Rab GTPases at a glance, Journal of Cell Science, vol.128, issue.17, pp.3171-3177, 2015.
DOI : 10.1242/jcs.166074

L. Wu, D. Xu, L. Zhou, B. Xie, L. Yu et al., Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. Dev Cell, pp.378-93, 2014.

K. Feingold, Lamellar Bodies: The Key to Cutaneous Barrier Function, Journal of Investigative Dermatology, vol.132, issue.8, 2012.
DOI : 10.1038/jid.2012.177

Y. Uchida, M. Hara, H. Nishio, E. Sidransky, S. Inoue et al., Epidermal sphingomyelins are precursors for selected stratum corneum ceramides, J Lipid Res, vol.41, issue.12, pp.2071-82, 2000.

P. Elias and J. Wakefield, Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in patients with atopic dermatitis, Journal of Allergy and Clinical Immunology, vol.134, issue.4, pp.781-791, 2014.
DOI : 10.1016/j.jaci.2014.05.048

M. Haftek, Epidermal barrier disorders and corneodesmosome defects, Cell and Tissue Research, vol.27, issue.Suppl 2, 2015.
DOI : 10.1016/j.biomaterials.2006.08.008

URL : https://link.springer.com/content/pdf/10.1007%2Fs00441-014-2019-1.pdf

Z. Nemes, L. Marekov, L. Fésüs, and P. Steinert, A novel function for transglutaminase 1: Attachment of long-chain ??-hydroxyceramides to involucrin by ester bond formation, Proceedings of the National Academy of Sciences, vol.12, issue.6, pp.8402-8409, 1999.
DOI : 10.1073/pnas.95.3.1044

P. Elias, M. Schmuth, Y. Uchida, R. Rice, M. Behne et al., Basis for the permeability barrier abnormality in lamellar ichthyosis, Experimental Dermatology, vol.115, issue.3, pp.248-56, 2002.
DOI : 10.1046/j.0022-202x.2001.01471.x

T. Takeichi and M. Akiyama, Inherited ichthyosis: Non-syndromic forms, The Journal of Dermatology, vol.95, issue.3, pp.242-51
DOI : 10.2340/00015555-1955

Y. Zuo, D. Zhuang, R. Han, G. Isaac, J. Tobin et al., ABCA12 Maintains the Epidermal Lipid Permeability Barrier by Facilitating Formation of Ceramide Linoleic Esters, Journal of Biological Chemistry, vol.91, issue.52, 2008.
DOI : 10.1194/jlr.R800002-JLR200

S. Mitsutake, C. Suzuki, M. Akiyama, K. Tsuji, T. Yanagi et al., ABCA12 dysfunction causes a disorder in glucosylceramide accumulation during keratinocyte differentiation, Journal of Dermatological Science, vol.60, issue.2, pp.128-137, 2010.
DOI : 10.1016/j.jdermsci.2010.08.012

H. Li, E. Loriè, J. Fischer, A. Vahlquist, and H. Törmä, The Expression of Epidermal Lipoxygenases and Transglutaminase-1 Is Perturbed by NIPAL4 Mutations: Indications of a Common Metabolic Pathway Essential for Skin Barrier Homeostasis, Journal of Investigative Dermatology, vol.132, issue.10, pp.2368-75, 2012.
DOI : 10.1038/jid.2012.160

B. Melnik, W. Küster, J. Hollmann, G. Plewig, and H. Traupe, Autosomal dominant lamellar ichthyosis exhibits an abnormal scale lipid pattern, Clinical Genetics, vol.121, issue.2, pp.152-158, 1989.
DOI : 10.1111/j.1399-0004.1986.tb00580.x

D. Paige, N. Morse-fisher, and J. Harper, Quantification of stratum corneum ceramides and lipid envelope ceramides in the hereditary ichthyoses, British Journal of Dermatology, vol.13, issue.1, pp.23-30, 1994.
DOI : 10.1111/1523-1747.ep12514294

A. Lavrijsen, J. Bouwstra, G. Gooris, A. Weerheim, H. Boddé et al., Reduced Skin Barrier Function Parallels Abnormal Stratum Corneum Lipid Organization in Patients with Lamellar Ichthyosis, Journal of Investigative Dermatology, vol.105, issue.4, pp.619-643, 1995.
DOI : 10.1111/1523-1747.ep12323752

N. Epp, G. Fürstenberger, K. Müller, S. De-juanes, M. Leitges et al., 12R-lipoxygenase deficiency disrupts epidermal barrier function, The Journal of Cell Biology, vol.1686, issue.1, pp.173-82, 2007.
DOI : 10.1016/j.abb.2006.09.002

P. Krieg, S. Rosenberger, S. De-juanes, S. Latzko, J. Hou et al., Aloxe3 Knockout Mice Reveal a Function of Epidermal Lipoxygenase-3 as Hepoxilin Synthase and Its Pivotal Role in Barrier Formation, Journal of Investigative Dermatology, vol.133, issue.1, pp.172-80, 2013.
DOI : 10.1038/jid.2012.250

K. Yoneda, Inherited ichthyosis: Syndromic forms, The Journal of Dermatology, vol.146, issue.3, pp.252-63
DOI : 10.1046/j.1365-2133.2002.04893.x

M. Fartasch, M. Williams, and P. Elias, Altered Lamellar Body Secretion and Stratum Corneum Membrane Structure in Netherton Syndrome, Archives of Dermatology, vol.135, issue.7, pp.823-855, 1999.
DOI : 10.1001/archderm.135.7.823

K. Nakajima, S. Sano, Y. Uchida, M. Akiyama, Y. Morita et al., Altered lipid profiles in the stratum corneum of Sj??gren-Larsson syndrome, Journal of Dermatological Science, vol.63, issue.1, pp.64-70, 2011.
DOI : 10.1016/j.jdermsci.2011.03.009

F. Bosen, A. Celli, D. Crumrine, K. Vom-dorp, P. Ebel et al., Altered epidermal lipid processing and calcium distribution in the KID syndrome mouse model Cx26S17F, FEBS Letters, vol.21, issue.15, pp.1904-1914, 2015.
DOI : 10.1111/j.1600-0625.2012.01521.x

G. Weeda, E. Eveno, I. Donker, W. Vermeulen, O. Chevallier-lagente et al., A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy, Am J Hum Genet. Feb, vol.60, issue.2, pp.320-329, 1997.

S. Hadj-rabia, L. Baala, P. Vabres, D. Hamel-teillac, E. Jacquemin et al., Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: A tight junction disease, Gastroenterology, vol.127, issue.5, pp.1386-90, 2004.
DOI : 10.1053/j.gastro.2004.07.022

L. Feldmeyer, M. Huber, F. Fellmann, J. S. Beckmann, E. Frenk et al., Confirmation of the origin of NISCH syndrome. Hum Mutat, pp.408-418, 2006.

L. Baala, S. Hadj-rabia, D. Hamel-teillac, M. Hadchouel, C. Prost et al., Homozygosity Mapping of a Locus for a Novel Syndromic Ichthyosis to Chromosome 3q27???q28, Journal of Investigative Dermatology, vol.119, issue.1, pp.70-76, 2002.
DOI : 10.1046/j.1523-1747.2002.01809.x

A. Chan, W. Holleran, T. Ferguson, D. Crumrine, O. Goker-alpan et al., Skin ultrastructural findings in type 2 Gaucher disease: Diagnostic implications, Skin ultrastructural findings in type 2 Gaucher disease: diagnostic implications, pp.631-637, 2011.
DOI : 10.1016/j.ymgme.2011.09.008

C. Bourassa, S. Raskin, S. Serafini, H. Teive, P. Dion et al., Mutation in a Case of Spinocerebellar Ataxia With Erythrokeratodermia, JAMA Neurology, vol.72, issue.8, pp.942-945, 2015.
DOI : 10.1001/jamaneurol.2015.0888

M. Cadieux-dion, M. Turcotte-gauthier, A. Noreau, C. Martin, C. Meloche et al., Expanding the clinical phenotype associated with ELOVL4 mutation: study of a large French- Canadian family with autosomal dominant spinocerebellar ataxia and erythrokeratodermia

H. Mir, S. Raza, M. Touseef, M. Memon, M. Khan et al., A novel recessive mutation in the gene ELOVL4 causes a neuro-ichthyotic disorder with variable expressivity, BMC Medical Genetics, vol.45, issue.1, p.25, 2014.
DOI : 10.1167/iovs.04-0078

J. Fischer, C. Lefèvre, E. Morava, J. Mussini, P. Laforêt et al., The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy, Nature Genetics, vol.312, issue.1, pp.28-30, 2007.
DOI : 10.1126/science.1123965

URL : https://hal.archives-ouvertes.fr/inserm-00409618

M. Akiyama, D. Sawamura, Y. Nomura, M. Sugawara, and H. Shimizu, Truncation of CGI-58 Protein Causes Malformation of Lamellar Granules Resulting in Ichthyosis in Dorfman-Chanarin Syndrome, Journal of Investigative Dermatology, vol.121, issue.5, pp.1029-1063, 2003.
DOI : 10.1046/j.1523-1747.2003.12520.x

M. Demerjian, D. Crumrine, L. Milstone, M. Williams, and P. Elias, Barrier Dysfunction and Pathogenesis of Neutral Lipid Storage Disease with Ichthyosis (Chanarin???Dorfman Syndrome), Journal of Investigative Dermatology, vol.126, issue.9, pp.2032-2040, 2006.
DOI : 10.1038/sj.jid.5700332

P. Elias and M. Williams, Neutral Lipid Storage Disease With Ichthyosis, Archives of Dermatology, vol.121, issue.8, pp.1000-1008, 1985.
DOI : 10.1001/archderm.1985.01660080054014

Y. Uchida, Y. Cho, S. Moradian, J. Kim, K. Nakajima et al., Neutral Lipid Storage Leads to Acylceramide Deficiency, Likely Contributing to the Pathogenesis of Dorfman???Chanarin Syndrome, Journal of Investigative Dermatology, vol.130, issue.10, pp.2497-2506, 2010.
DOI : 10.1038/jid.2010.145

N. Goto-inoue, T. Hayasaka, N. Zaima, K. Nakajima, W. Holleran et al., Imaging Mass Spectrometry Visualizes Ceramides and the Pathogenesis of Dorfman-Chanarin Syndrome Due to Ceramide Metabolic Abnormality in the Skin, PLoS ONE, vol.126, issue.11, p.49519, 2012.
DOI : 10.1371/journal.pone.0049519.s004

S. Missaglia, E. Valadares, L. Moro, E. Faguntes, Q. Roque et al., Early onset of Chanarin-Dorfman syndrome with severe liver involvement in a patient with a complex rearrangement of ABHD5 promoter, BMC Medical Genetics, vol.53, issue.1, p.32, 2014.
DOI : 10.4103/0377-4929.72098

C. Lefèvre, F. Jobard, F. Caux, B. Bouadjar, A. Karaduman et al., Mutations in CGI-58, the Gene Encoding a New Protein of the Esterase/Lipase/Thioesterase Subfamily, in Chanarin-Dorfman Syndrome, The American Journal of Human Genetics, vol.69, issue.5, pp.1002-1014, 2001.
DOI : 10.1086/324121

C. Redaelli, R. Coleman, L. Moro, C. Dacou-voutetakis, S. Elsayed et al., Clinical and genetic characterization of Chanarin-Dorfman Syndrome patients: first report of large deletions in the ABHD5 gene, Orphanet Journal of Rare Diseases, vol.5, issue.1, 2010.
DOI : 10.1186/1750-1172-5-33

M. Cakir, C. Bruno, A. Cansu, U. Cobanoglu, and E. Erduran, Liver cirrhosis in an infant with Chanarin-Dorfman syndrome caused by a novel splice-site mutation in ABHD5, Acta Paediatrica, vol.312, issue.10, pp.1592-1594, 2010.
DOI : 10.1016/j.bbalip.2008.10.012

A. Ronchetti, D. Prati, M. Pezzotta, D. Tavian, R. Colombo et al., Severe steatohepatitis in a patient with a rare neutral lipid storage disorder due to ABHD5 mutation, J Hepatol, 2008.

M. Huigen, M. Van-der-graaf, E. Morava, A. Dassel, M. Van-steensel et al., Cerebral lipid accumulation in Chanarin???Dorfman Syndrome, Molecular Genetics and Metabolism, vol.114, issue.1, 2015.
DOI : 10.1016/j.ymgme.2014.10.016

C. Bruno, E. Bertini, D. Rocco, M. Cassandrini, D. Ruffa et al., Clinical and genetic characterization of Chanarin???Dorfman syndrome, Biochemical and Biophysical Research Communications, vol.369, issue.4, pp.1125-1133, 2008.
DOI : 10.1016/j.bbrc.2008.03.010

M. Ujihara, K. Nakajima, M. Yamamoto, M. Teraishi, Y. Uchida et al., Epidermal triglyceride levels are correlated with severity of ichthyosis in Dorfman???Chanarin syndrome, Journal of Dermatological Science, vol.57, issue.2, pp.2010-102
DOI : 10.1016/j.jdermsci.2009.10.016

N. Schleinitz, J. Fischer, A. Sanchez, V. Veit, J. Harle et al., Two New Mutations of the ABHD5 Gene in a New Adult Case of Chanarin Dorfman Syndrome: An Uncommon Lipid Storage Disease, Archives of Dermatology, vol.141, issue.6, pp.798-800, 2005.
DOI : 10.1001/archderm.141.6.798

N. Gupta, S. Gothwal, A. Satpathy, S. Missaglia, D. Tavian et al., Chanarin Dorfman syndrome: a case report with novel nonsense mutation, Gene, vol.575, issue.2, pp.359-62, 2016.
DOI : 10.1016/j.gene.2015.09.004

B. Selma, Z. Yilmaz, S. Schischmanoff, P. Blom, A. Ozogul et al., A Novel S115G Mutation of CGI-58 in a Turkish Patient with Dorfman???Chanarin Syndrome, Journal of Investigative Dermatology, vol.127, issue.9, pp.2273-2279, 2007.
DOI : 10.1038/sj.jid.5700860

A. Lass, R. Zimmermann, G. Haemmerle, M. Riederer, G. Schoiswohl et al., Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome, Cell Metabolism, vol.3, issue.5, pp.309-328, 2006.
DOI : 10.1016/j.cmet.2006.03.005

A. Ünlüsoy-aksu, S. Sar?, Ö. E?rita?-gürkan, and B. Dalg?ç, Chanarin-Dorfman syndrome: a novel mutation in a Turkish girl. The Turkish Journal of Pediatrics, pp.300-303, 2015.

R. Srinivasaraghavan, S. Krishnamurthy, R. Chandar, D. Cassandrini, S. Mahadevan et al., 8 Gene, Pediatric Dermatology, vol.271, issue.5, pp.612-616, 2014.
DOI : 10.1074/jbc.271.28.16644

M. Gaeta, F. Minutoli, A. Toscano, A. Celona, O. Musumeci et al., Opposed-phase MR imaging of lipid storage myopathy in a case of Chanarin???Dorfman disease, Skeletal Radiology, vol.46, issue.11, 2008.
DOI : 10.2214/ajr.169.5.9353477

L. Samuelov, D. Fuchs-telem, O. Sarig, and E. Sprecher, An exceptional mutational event leading to Chanarin-Dorfman syndrome in a large consanguineous family, British Journal of Dermatology, vol.8, issue.6, pp.1390-1392, 2011.
DOI : 10.1038/sj.ejhg.5200523

K. Takeda, K. Tanaka, T. Kumamoto, D. Morioka, I. Endo et al., Living Donor Liver Transplantation for Dorfman-Chanarin Syndrome With 1 Year Follow-up: Case Report, Transplantation Proceedings, vol.42, issue.9, pp.3858-61, 2010.
DOI : 10.1016/j.transproceed.2010.07.105

E. Cakmak, H. Alagozlu, O. Yonem, H. Ataseven, S. Citli et al., Steatohepatitis and liver cirrhosis in Chanarin-Dorfman syndrome with a new ABDH5 mutation, Clinics and Research in Hepatology and Gastroenterology, vol.36, issue.2, pp.34-37
DOI : 10.1016/j.clinre.2011.12.007

E. Gomez-moyano, D. Godoy-diaz, L. Ponce-verdugo, A. Sanz-trelles, A. Vera-casaño et al., Chanarin-Dorfman syndrome in three siblings in a non-consanguineous family, Journal of the European Academy of Dermatology and Venereology, vol.30, issue.1, pp.157-166, 2016.
DOI : 10.1111/jdv.12651

A. Çamlar, S. Gençp?nar, P. Makay, B. Yüzba??o?lu, A. Arslan et al., Chanarin-Dorfman Syndrome with Multi-System Involvement in Two Siblings, Turkish Journal of Hematology, vol.30, issue.1, pp.72-77, 2013.
DOI : 10.4274/tjh.93798

B. Nur, P. Gencpinar, A. Yuzbas?oglu, S. Emre, and E. Mihci, Chanarin-Dorfman syndrome: Genotype-Phenotype Correlation, European Journal of Medical Genetics, vol.58, issue.4, pp.238-280
DOI : 10.1016/j.ejmg.2015.01.011

R. M. Pujol, M. Gilaberte, A. Toll, L. Florensa, J. Lloreta et al., Erythrokeratoderma variabilis-like ichthyosis in Chanarin-Dorfman syndrome, British Journal of Dermatology, vol.125, issue.4, pp.838-841, 2005.
DOI : 10.1001/archderm.125.2.241

G. Pike, S. Jones, S. Coassin, F. Kronenberg, and A. Will, Jordan???s anomaly in a case of Chanarin-Dorfman syndrome, British Journal of Haematology, vol.155, issue.4, 2011.
DOI : 10.1111/j.1365-2141.2011.08780.x

T. Takeichi, K. Sugiura, S. Tso, M. Simpson, J. Mcgrath et al., Bi-allelic nonsense mutations inABHD5 underlie a mild phenotype of Dorfman-Chanarin syndrome, Journal of Dermatological Science, vol.81, issue.2, pp.134-140, 2016.
DOI : 10.1016/j.jdermsci.2015.10.015

R. Srinivasan, N. Had?id, J. Fischer, and A. Knisely, Steatohepatitis and unsuspected micronodular cirrhosis in Dorfman-Chanarin syndrome with documented ABHD5 mutation, The Journal of Pediatrics, vol.144, issue.5, pp.662-667, 2004.
DOI : 10.1016/j.jpeds.2004.01.036

N. Bouzaiene, P. Schischmanoff, Z. B. Selma, A. Blom, L. Laroche et al., Nonsensemediated mRNA decay is involved in the degradation of CGI-58 transcript in patients with Dorfman-Chanarin syndrome and 773-1G>A mutation, J Invest Dermatol, 2009.

K. Sugiura, Y. Suga, and M. Akiyama, Dorfman-Chanarin syndrome without mental retardation caused by a homozygous ABHD5 splice site mutation that skips exon 6, Journal of Dermatological Science, vol.75, issue.3, 2014.
DOI : 10.1016/j.jdermsci.2014.05.009

P. Tamhankar, S. Iyer, S. Sanghavi, and U. Khopkar, Chanarin-Dorfman syndrome: Clinical report and novel mutation in ABHD5 gene, Journal of Postgraduate Medicine, vol.60, issue.3, pp.332-336, 2014.
DOI : 10.4103/0022-3859.138826

S. Elitzur, J. Yacobovich, O. Dgany, T. Krasnov, Y. Rosenbach et al., From Blood Smear to Lipid Disorder, Journal of Pediatric Hematology/Oncology, vol.35, issue.8, 2012.
DOI : 10.1097/MPH.0b013e318271c915

S. Israeli, Y. Pessach, O. Sarig, I. Goldberg, and E. Sprecher, Beneficial effect of acitretin in Chanarin-Dorfman syndrome, Clinical and Experimental Dermatology, vol.29, issue.1, 2012.
DOI : 10.1128/MCB.01742-08

S. Badeloe, M. Van-geel, I. Nagtzaam, M. E. Rubio-gozalbo, R. L. Oei et al., Chanarin???Dorfman syndrome caused by a novel splice site mutation in ABHD5, British Journal of Dermatology, vol.8, issue.6, pp.1378-1380, 2008.
DOI : 10.1038/ng1951

S. Aggarwal, J. Singh-maras, S. Alam, R. Khanna, S. Kumar-gupta et al., Novel nonsense mutation of ABHD5 in Dorfman???Chanarin syndrome with unusual findings: A challenge for genotype???phenotype correlation, European Journal of Medical Genetics, vol.55, issue.3, pp.173-180
DOI : 10.1016/j.ejmg.2012.01.013

C. Lai, C. Chou, L. Ch-'ang, C. Liu, and W. Lin, Identification of Novel Human Genes Evolutionarily Conserved in Caenorhabditis elegans by Comparative Proteomics, Genome Research, vol.10, issue.5, pp.703-716, 2000.
DOI : 10.1101/gr.10.5.703

P. Bickel, J. Tansey, and M. Welte, PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1791, issue.6, pp.419-459, 2009.
DOI : 10.1016/j.bbalip.2009.04.002

V. Subramanian, A. Rothenberg, C. Gomez, A. Cohen, A. Garcia et al., Perilipin A Mediates the Reversible Binding of CGI-58 to Lipid Droplets in 3T3-L1 Adipocytes, Journal of Biological Chemistry, vol.279, issue.40, pp.42062-71, 2004.
DOI : 10.1074/jbc.M407462200

X. Yang, X. Lu, and J. Liu, Identification of a novel splicing isoform of murine CGI-58, FEBS Letters, vol.122, issue.5, pp.903-913, 2010.
DOI : 10.1242/jcs.045849

X. Li, Y. Suh, E. Kim, S. Moeller, and K. Lee, Alternative splicing and developmental and hormonal regulation of porcine comparative gene identification-58 (CGI-58) mRNA, J Anim Sci, 2012.

M. Schweiger, A. Lass, R. Zimmermann, T. Eichmann, and R. Zechner, Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase

A. Ghosh, G. Ramakrishnan, C. Chandramohan, and R. Rajasekharan, CGI-58, the Causative Gene for Chanarin-Dorfman Syndrome, Mediates Acylation of Lysophosphatidic Acid, Journal of Biological Chemistry, vol.180, issue.36, 2008.
DOI : 10.1074/jbc.M706752200

A. Sahu-osen, G. Montero-moran, M. Schittmayer, K. Fritz, A. Dinh et al., CGI-58/ABHD5 is phosphorylated on Ser239 by protein kinase A: control of subcellular localization, Journal of Lipid Research, vol.266, issue.1, pp.109-130
DOI : 10.1016/j.cmet.2010.02.003

I. Cornaciu, A. Boeszoermenyi, H. Lindermuth, H. Nagy, I. Cerk et al., The Minimal Domain of Adipose Triglyceride Lipase (ATGL) Ranges until Leucine 254 and Can Be Activated and Inhibited by CGI-58 and G0S2, Respectively, PLoS ONE, vol.6, issue.10, 2011.
DOI : 10.1371/journal.pone.0026349.s001

F. Radner, I. Streith, G. Schoiswohl, M. Schweiger, M. Kumari et al., Growth Retardation, Impaired Triacylglycerol Catabolism, Hepatic Steatosis, and Lethal Skin Barrier Defect in Mice Lacking Comparative Gene Identification-58 (CGI-58), Journal of Biological Chemistry, vol.1791, issue.10, pp.7300-7311, 2010.
DOI : 10.1074/jbc.M311000200

R. Macpherson, S. Ramos, R. Vandenboom, B. Roy, and S. Peters, Skeletal muscle PLIN proteins, ATGL and CGI-58, interactions at rest and following stimulated contraction, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.266, issue.8, pp.644-650, 2013.
DOI : 10.1194/jlr.R800031-JLR200

S. Gandotra, K. Lim, A. Girousse, V. Saudek, O. Rahilly et al., Human Frame Shift Mutations Affecting the Carboxyl Terminus of Perilipin Increase Lipolysis by Failing to Sequester the Adipose Triglyceride Lipase (ATGL) Coactivator AB-hydrolase-containing 5 (ABHD5), Journal of Biological Chemistry, vol.25, issue.40, pp.34998-5006, 2011.
DOI : 10.1194/jlr.M000976

G. Montero-moran, J. Caviglia, D. Mcmahon, A. Rothenberg, V. Subramanian et al., CGI-58/ABHD5 is a coenzyme A-dependent lysophosphatidic acid acyltransferase, Journal of Lipid Research, vol.180, issue.4, pp.709-728, 2009.
DOI : 10.1074/jbc.M109.008631

D. Mcmahon, A. Dinh, D. Kurz, D. Shah, G. Han et al., Comparative gene identification 58/??/?? hydrolase domain 5 lacks lysophosphatidic acid acyltransferase activity, Journal of Lipid Research, vol.95, issue.8, pp.1750-61, 2014.
DOI : 10.1074/jbc.M207712200

J. Zhang, D. Xu, J. Nie, R. Han, Y. Zhai et al., Comparative Gene Identification-58 (CGI-58) Promotes Autophagy as a Putative Lysophosphatidylglycerol Acyltransferase, Journal of Biological Chemistry, vol.1801, issue.47, pp.33044-53, 2014.
DOI : 10.1083/jcb.200412022

URL : http://www.jbc.org/content/289/47/33044.full.pdf

J. Brown, S. Chung, A. Das, G. Shelness, L. Rudel et al., CGI-58 facilitates the mobilization of cytoplasmic triglyceride for lipoprotein secretion in hepatoma cells, Journal of Lipid Research, vol.31, issue.10, pp.2295-305, 2007.
DOI : 10.1074/jbc.M908971199

J. Caviglia, J. Sparks, N. Toraskar, A. Brinker, T. Yin et al., ABHD5/CGI-58 facilitates the assembly and secretion of apolipoprotein B lipoproteins by McA RH7777 rat hepatoma cells, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1791, issue.3, pp.198-205, 1791.
DOI : 10.1016/j.bbalip.2008.12.018

R. Zimmermann, J. Strauss, G. Haemmerle, G. Schoiswohl, R. Birner-gruenberger et al., Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science, pp.1383-1389, 2004.

J. Villena, S. Roy, E. Sarkadi-nagy, K. Kim, and H. Sul, Desnutrin, an Adipocyte Gene Encoding a Novel Patatin Domain-containing Protein, Is Induced by Fasting and Glucocorticoids, Journal of Biological Chemistry, vol.13, issue.45, pp.47066-75, 2004.
DOI : 10.1083/jcb.200210169

C. Jenkins, D. Mancuso, Y. W. Sims, H. Gibson, B. Gross et al., Family Members Possessing Triacylglycerol Lipase and Acylglycerol Transacylase Activities, Journal of Biological Chemistry, vol.83, issue.47, pp.48968-75, 2004.
DOI : 10.1093/nar/16.22.10881

URL : http://www.jbc.org/content/279/47/48968.full.pdf

T. Yamaguchi, Crucial Role of CGI-58/??/?? Hydrolase Domain-Containing Protein 5 in Lipid Metabolism, Biological & Pharmaceutical Bulletin, vol.33, issue.3, pp.342-347, 2010.
DOI : 10.1248/bpb.33.342

R. Zimmermann, A. Lass, G. Haemmerle, and R. Zechner, Fate of fat: The role of adipose triglyceride lipase in lipolysis, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1791, issue.6, pp.494-500, 2009.
DOI : 10.1016/j.bbalip.2008.10.005

L. Listenberger, A. Ostermeyer-fay, E. Goldberg, W. Brown, and D. Brown, Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover, Journal of Lipid Research, vol.24, issue.12, pp.2751-61, 2007.
DOI : 10.1242/jcs.02401

A. Warner and J. Mittag, Breaking BAT: can browning create a better white?, Journal of Endocrinology, 2016.
DOI : 10.1530/JOE-15-0408

P. Morigny, M. Houssier, E. Mouisel, and D. Langin, Adipocyte lipolysis and insulin resistance, Biochimie, vol.125, 2015.
DOI : 10.1016/j.biochi.2015.10.024

T. Eichmann, M. Kumari, J. Haas, R. Farese, . Jr et al., -acyltransferases, Journal of Biological Chemistry, vol.50, issue.49, pp.41446-57, 2012.
DOI : 10.1016/j.cmet.2012.03.004

X. Yang, X. Lu, M. Lombès, G. Rha, Y. Chi et al., The G0/G1 Switch Gene 2 Regulates Adipose Lipolysis through Association with Adipose Triglyceride Lipase. Cell Metabolism, pp.194-205, 2010.

A. Gruber, I. Cornaciu, A. Lass, M. Schweiger, M. Poeschl et al., The N-terminal Region of Comparative Gene Identification-58 (CGI-58) Is Important for Lipid Droplet Binding and Activation of Adipose Triglyceride Lipase, Journal of Biological Chemistry, vol.1469, issue.16, pp.12289-98, 2010.
DOI : 10.1074/jbc.M311945200

C. Laurens, P. Badin, K. Louche, A. Mairal, G. Tavernier et al., G1 Switch Gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle. Mol Metab, pp.527-564, 2016.

P. Turnbull, S. Ramos, R. Macpherson, B. Roy, and S. Peters, G(1) Switch Gene-2 Protein (G0S2) Expression in Male Sprague-Dawley Rat Skeletal Muscle Compared to Relative Content of Adipose Triglyceride Lipase (ATGL) and Comparitive Gene Identification-58 (CGI-58) PLoS One, Characterization of Lipolytic Inhibitor G, vol.10, issue.03, 2015.

X. Lu, X. Yang, and J. Liu, Differential control of ATGL-mediated lipid droplet degradation by CGI-58 and G0S2. Cell Cycle, pp.2719-2744, 2010.

C. Sztalryd and A. Kimmel, Perilipins: Lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection, Biochimie, vol.96, pp.96-101, 2014.
DOI : 10.1016/j.biochi.2013.08.026

Y. Guo, K. Cordes, R. Farese, and T. Walther, Lipid droplets at a glance, Journal of Cell Science, vol.122, issue.6, pp.749-52, 2009.
DOI : 10.1242/jcs.037630

URL : http://jcs.biologists.org/content/joces/122/6/749.full.pdf

T. Walther and R. Farese, Lipid Droplets and Cellular Lipid Metabolism, Annual Review of Biochemistry, vol.81, issue.1, pp.687-714, 2012.
DOI : 10.1146/annurev-biochem-061009-102430

J. Granneman, H. Moore, R. Krishnamoorthy, and M. Rathod, Perilipin Controls Lipolysis by Regulating the Interactions of AB-hydrolase Containing 5 (Abhd5) and Adipose Triglyceride Lipase (Atgl), Journal of Biological Chemistry, vol.16, issue.50, pp.34538-34582, 2009.
DOI : 10.1074/jbc.M608048200

V. Khor, W. Shen, and F. Kraemer, Lipid droplet metabolism. Curr Opin Clin Nutr Metab Care, pp.632-639, 2013.

T. Yamaguchi, N. Omatsu, S. Matsushita, and T. Osumi, CGI-58 Interacts with Perilipin and Is Localized to Lipid Droplets -Possible involvement of CGI-58 mislocalization in Chanarin-Dorfman syndrome, J Biol Chem. Jul, vol.16, pp.30490-30497, 2004.

K. Ruggles, A. Turkish, and S. Sturley, Making, Baking, and Breaking: the Synthesis, Storage, and Hydrolysis of Neutral Lipids, Annual Review of Nutrition, vol.33, issue.1, pp.413-51, 2013.
DOI : 10.1146/annurev-nutr-071812-161254

P. Bickel, J. Tansey, and M. Welte, PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1791, issue.6, pp.419-459, 1791.
DOI : 10.1016/j.bbalip.2009.04.002

T. Yamaguchi, N. Omatsu, A. Omukae, and T. Osumi, Analysis of interaction partners for perilipin and ADRP on lipid droplets???, Molecular and Cellular Biochemistry, vol.76, issue.1-2, pp.167-73, 2006.
DOI : 10.1093/oxfordjournals.jbchem.a003301

E. Díaz and S. Pfeffer, TIP47: A Cargo Selection Device for Mannose 6-Phosphate Receptor Trafficking, Cell, vol.93, issue.3, pp.433-476, 1998.
DOI : 10.1016/S0092-8674(00)81171-X

M. Liu, L. Qi, Y. Zeng, Y. Yang, Y. Bi et al., Transient Scrotal Hyperthermia Induces Lipid Droplet Accumulation and Reveals a Different ADFP Expression Pattern between the Testes and Liver in Mice, PLoS ONE, vol.7, issue.10, 2012.
DOI : 10.1371/journal.pone.0045694.s004

N. Wolins, B. Rubin, and D. Brasaemle, TIP47 Associates with Lipid Droplets, Journal of Biological Chemistry, vol.95, issue.7, pp.5101-5109, 2001.
DOI : 10.1074/jbc.M007322200

J. Skinner, T. Shew, D. Schwartz, A. Tzekov, C. Lepus et al., Diacylglycerol Enrichment of Endoplasmic Reticulum or Lipid Droplets Recruits Perilipin 3/TIP47 during Lipid Storage and Mobilization, Journal of Biological Chemistry, vol.36, issue.45, pp.30941-30949, 2009.
DOI : 10.1093/jb/mvj104

D. Ploen, M. Hafirassou, K. Himmelsbach, S. Schille, M. Biniossek et al., TIP47 is associated with the Hepatitis C virus and its interaction with Rab9 is required for release of viral particles, European Journal of Cell Biology, vol.92, issue.12, pp.374-82, 2013.
DOI : 10.1016/j.ejcb.2013.12.003

G. Vieyres, K. Welsch, G. Gerold, J. Gentzsch, S. Kahl et al., ABHD5/CGI-58, the Chanarin-Dorfman Syndrome Protein, Mobilises Lipid Stores for Hepatitis C Virus Production, PLOS Pathogens, vol.25, issue.4, p.1005568
DOI : 10.1371/journal.ppat.1005568.s015

J. Granneman, H. Moore, E. Mottillo, and Z. Zhu, Functional Interactions between Mldp (LSDP5) and Abhd5 in the Control of Intracellular Lipid Accumulation, Journal of Biological Chemistry, vol.129, issue.5, pp.3049-57, 2008.
DOI : 10.1074/jbc.M007322200

J. Granneman, H. Moore, E. Mottillo, Z. Zhu, and L. Zhou, Interactions of Perilipin-5 (Plin5) with Adipose Triglyceride Lipase, Journal of Biological Chemistry, vol.12, issue.7, pp.5126-5161, 2011.
DOI : 10.2337/db07-1383

H. Wang, M. Bell, U. Sreenevasan, H. Hu, J. Liu et al., Unique Regulation of Adipose Triglyceride Lipase (ATGL) by Perilipin 5, a Lipid Droplet-associated Protein, J Biol Chem, 2011.

R. Zechner, R. Zimmermann, T. Eichmann, S. Kohlwein, G. Haemmerle et al., FAT SIGNALS--lipases and lipolysis in lipid metabolism and signaling. Cell Metab, pp.279-91, 2012.

G. Hotamisligil and D. Bernlohr, Metabolic functions of FABPs???mechanisms and therapeutic implications, Nature Reviews Endocrinology, vol.4, issue.10, pp.592-605
DOI : 10.1016/j.cmet.2013.04.012

R. Smathers and D. Petersen, The human fatty acid-binding protein family: Evolutionary divergences and functions, Human Genomics, vol.5, issue.3, pp.170-91, 2011.
DOI : 10.1093/bioinformatics/btp033

P. Hofer, A. Boeszoermenyi, D. Jaeger, U. Feiler, H. Arthanari et al., Fatty Acid-binding Proteins Interact with Comparative Gene Identification-58 Linking Lipolysis with Lipid Ligand Shuttling, Journal of Biological Chemistry, vol.40, issue.30, pp.18438-53, 2015.
DOI : 10.2337/db13-0436

Y. Lin, C. Chou, M. Giovarelli, P. Briata, R. Gherzi et al., KSRP and MicroRNA 145 Are Negative Regulators of Lipolysis in White Adipose Tissue, Molecular and Cellular Biology, vol.34, issue.12, pp.2339-2388
DOI : 10.1128/MCB.00042-14

S. Das, E. Stadelmeyer, S. Schauer, A. Schwarz, H. Strohmaier et al., Micro RNA-124a Regulates Lipolysis via Adipose Triglyceride Lipase and Comparative Gene Identification 58, International Journal of Molecular Sciences, vol.2, issue.3, pp.8555-68, 2015.
DOI : 10.2174/157339911796397866

URL : http://www.mdpi.com/1422-0067/16/4/8555/pdf

A. Ghosh, N. Chauhan, S. Rajakumari, G. Daum, and R. Rajasekharan, At4g24160, a soluble acylcoenzyme A-dependent lysophosphatidic acid acyltransferase, Plant Physiol, 2009.

C. James, P. Horn, C. Case, S. Gidda, D. Zhang et al., CGI-58 homologue produces Chanarin???Dorfman-like lipid droplet accumulation in plants, Proceedings of the National Academy of Sciences, vol.37, issue.2, pp.17833-17841, 2010.
DOI : 10.1152/ajpendo.00099.2009

M. Hooks, J. Turner, E. Murphy, K. Johnston, S. Burr et al., ALDP protein homologue COMATOSE is instrumental in peroxisomal acetate metabolism, Biochemical Journal, vol.406, issue.3, pp.399-406, 2007.
DOI : 10.1042/BJ20070258

URL : https://hal.archives-ouvertes.fr/hal-00478762

S. Park, J. Keereetaweep, C. James, S. Gidda, K. Chapman et al., CGI-58, a key regulator of lipid homeostasis and signaling in plants, also regulates polyamine metabolism, Plant Signaling & Behavior, vol.9, issue.2, 2014.
DOI : 10.1104/pp.84.1.148

H. Miao, J. Ou, Y. Peng, X. Zhang, Y. Chen et al., Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM, Nature Communications, vol.8, 2016.
DOI : 10.1194/jlr.M400253-JLR200

D. Cooper, A. Bacolla, C. Férec, K. Vasquez, H. Kehrer-sawatzki et al., On the sequence-directed nature of human gene mutation: The role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease, Human Mutation, vol.75, issue.Database issue, pp.1075-99, 2011.
DOI : 10.1111/j.1399-0004.2009.01187.x

R. Suminaga, Y. Takeshima, K. Yasuda, N. Shiga, H. Nakamura et al., Non-homologous recombination between Alu and LINE-1 repeats caused a 430-kb deletion in the dystrophin gene: a novel source of genomic instability, Journal of Human Genetics, vol.45, issue.6, pp.331-337, 2000.
DOI : 10.1007/s100380070003

C. Chi, C. Tsai, L. Chen, H. Lee, B. Mak et al., Maple syrup urine disease in the Austronesian aboriginal tribe Paiwan of Taiwan: a novel DBT (E2) gene 4.7???kb founder deletion caused by a nonhomologous recombination between LINE-1 and Alu and the carrier-frequency determination, European Journal of Human Genetics, vol.63, issue.Suppl, pp.931-937, 2003.
DOI : 10.1086/302131

K. Nakajima, M. Terao, M. Takaishi, S. Kataoka, N. Goto-inoue et al., Barrier Abnormality Due to Ceramide Deficiency Leads to Psoriasiform Inflammation in a Mouse Model, Journal of Investigative Dermatology, vol.133, issue.11, pp.2555-65, 2013.
DOI : 10.1038/jid.2013.199

W. Schroeder, S. Thacher, S. Stewart-galetka, M. Annarella, D. Chema et al., Type I Keratinocyte Transglutaminase: Expression in Human Skin and Psoriasis, Journal of Investigative Dermatology, vol.99, issue.1, 1992.
DOI : 10.1111/1523-1747.ep12611394

F. Alessandrini, S. Pfister, E. Kremmer, J. Gerber, J. Ring et al., Alterations of Glucosylceramide-??-Glucosidase Levels in the Skin of Patients with Psoriasis Vulgaris, Journal of Investigative Dermatology, vol.123, issue.6, pp.1030-1036, 2004.
DOI : 10.1111/j.0022-202X.2004.23469.x

Y. Park, W. Jang, J. Seo, M. Park, T. Lee et al., Decrease of Ceramides with Very Long???Chain Fatty Acids and Downregulation of Elongases in a Murine Atopic Dermatitis Model, Journal of Investigative Dermatology, vol.132, issue.2, pp.476-485, 2012.
DOI : 10.1038/jid.2011.333

A. Raymond, A. Gonzalez-de-peredo, A. Stella, A. Ishida-yamamoto, D. Bouyssie et al., Lamellar Bodies of Human Epidermis, Molecular & Cellular Proteomics, vol.18, issue.11, pp.2151-75, 2008.
DOI : 10.1111/j.0022-202X.2004.23583.x

K. Carroll, J. Hanna, I. Simon, J. Krise, P. Barbero et al., Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science, pp.1373-1379, 2001.

I. Ganley, K. Carroll, L. Bittova, and S. Pfeffer, Rab9 GTPase Regulates Late Endosome Size and Requires Effector Interaction for Its Stability, Molecular Biology of the Cell, vol.15, issue.12, pp.5420-5450, 2004.
DOI : 10.1038/35052055

URL : http://www.molbiolcell.org/content/15/12/5420.full.pdf

H. Bauby, S. Lopez-vergès, G. Hoeffel, D. Delcroix-genête, K. Janvier et al., TIP47 is required for the production of infectious HIV-1 particles from primary macrophages, Traffic. 2010, vol.11, issue.4, pp.455-67
URL : https://hal.archives-ouvertes.fr/inserm-00663611

M. Akiyama, K. Sakai, C. Takayama, T. Yanagi, Y. Yamanaka et al., CGI-58 Is an ??/??-Hydrolase within Lipid Transporting Lamellar Granules of Differentiated Keratinocytes, The American Journal of Pathology, vol.173, issue.5, pp.1349-60, 2008.
DOI : 10.2353/ajpath.2008.080005

A. Kucera, M. Borg-distefano, A. Berg-larsen, F. Skjeldal, U. Repnik et al., Spatiotemporal Resolution of Rab9 and CI-MPR Dynamics in the Endocytic Pathway, Traffic, vol.8, issue.Pt 14, 2016.
DOI : 10.1371/journal.pone.0073538

A. Choudhury, M. Dominguez, V. Puri, D. Sharma, K. Narita et al., Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells, Journal of Clinical Investigation, vol.109, issue.12, pp.1541-50, 2002.
DOI : 10.1172/JCI0215420

K. Narita, A. Choudhury, K. Dobrenis, D. Sharma, E. Holicky et al., Protein transduction of Rab9 in Niemann-Pick C cells reduces cholesterol storage, The FASEB Journal, vol.19, issue.11, pp.1558-60, 2005.
DOI : 10.1096/fj.04-2714fje

B. Brooks, D. Larson, C. Chan, S. Kjellstrom, R. Smith et al., Mice, Investigative Opthalmology & Visual Science, vol.48, issue.9, pp.3905-3918, 2007.
DOI : 10.1167/iovs.06-1464

URL : https://hal.archives-ouvertes.fr/hal-00951301

L. Zhang, K. Yu, K. Robert, K. Debolt, N. Hong et al., Rab38 targets to lamellar bodies and normalizes their sizes in lung alveolar type II epithelial cells, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.275, issue.4, pp.461-477, 2011.
DOI : 10.1016/j.bbamem.2008.03.021

D. Kloer, R. Rojas, V. Ivan, K. Moriyama, T. Van-vlijmen et al., Assembly of the Biogenesis of Lysosome-related Organelles Complex-3 (BLOC-3) and Its Interaction with Rab9, Journal of Biological Chemistry, vol.127, issue.10, pp.7794-804, 2010.
DOI : 10.1083/jcb.152.4.809

A. Paller, M. Suarez-farinas, Y. Renert-yuval, M. Oliva, T. Huynh et al., 395 Disease severity and cutaneous inflammation in ichthyosis are linked to Th17 pathway activation, Journal of Investigative Dermatology, vol.136, issue.5, p.70, 2016.
DOI : 10.1016/j.jid.2016.02.429

P. Liu, Y. Ying, Y. Zhao, D. Mundy, M. Zhu et al., Chinese Hamster Ovary K2 Cell Lipid Droplets Appear to Be Metabolic Organelles Involved in Membrane Traffic, Journal of Biological Chemistry, vol.39, issue.5, pp.3787-92, 2004.
DOI : 10.1083/jcb.116.1.135

D. Brasaemle, G. Dolios, L. Shapiro, and R. Wang, Proteomic Analysis of Proteins Associated with Lipid Droplets of Basal and Lipolytically Stimulated 3T3-L1 Adipocytes, Journal of Biological Chemistry, vol.109, issue.45, pp.46835-46877, 2004.
DOI : 10.1074/jbc.M407462200