A. Nedoluzhko and T. Douglas, Biomimetic Materials Synthesis, Physics and Chemistry Basis of Biotechnology, pp.9-45, 2001.
DOI : 10.1007/0-306-46891-3_1

C. Sanchez, M. M. Arribart, and G. Guille, Biomimetism and bioinspiration as tools for the design of innovative materials and systems, Nature Materials, vol.31, issue.4, 2005.
DOI : 10.1021/ma961550d

URL : https://hal.archives-ouvertes.fr/hal-00077362

M. Sarikaya, C. Tamerler, A. K. Jen, K. Schulten, and F. Baneyx, Molecular biomimetics: nanotechnology through biology, Nature Materials, vol.3, issue.9, p.964, 2003.
DOI : 10.1002/pmic.200390007

Q. Chen and N. M. Pugno, Bio-mimetic mechanisms of natural hierarchical materials: A review, Journal of the Mechanical Behavior of Biomedical Materials, vol.19, pp.3-33, 2013.
DOI : 10.1016/j.jmbbm.2012.10.012

C. Tamerler and M. Sarikaya, Molecular biomimetics: Utilizing nature???s molecular ways in practical engineering???, Acta Biomaterialia, vol.3, issue.3, pp.289-299, 2007.
DOI : 10.1016/j.actbio.2006.10.009

U. G. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, Bioinspired structural materials, Nature Materials, vol.469, issue.1, pp.23-36, 2015.
DOI : 10.1098/rspa.2013.0022

F. Barthelat, H. Tang, P. D. Zavattieri, C. Li, and H. D. Espinosa, On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure, Journal of the Mechanics and Physics of Solids, vol.55, issue.2, pp.306-337, 2007.
DOI : 10.1016/j.jmps.2006.07.007

A. R. Studart, Turning brittleness into toughness, Nature Materials, vol.13, issue.5, pp.433-435, 2014.
DOI : 10.1016/j.jmbbm.2007.03.001

F. Bouville, E. Maire, S. Meille, B. Van-de-moortèle, A. J. Stevenson et al., Strong, tough and stiff bioinspired ceramics from brittle constituents, Nature Materials, vol.28, issue.5, pp.508-514, 2014.
DOI : 10.1080/14786430410001680935

URL : https://hal.archives-ouvertes.fr/hal-01761560

L. J. Huang, L. Geng, and H. Peng, Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal?, Progress in Materials Science, vol.71, pp.93-168, 2015.
DOI : 10.1016/j.pmatsci.2015.01.002

M. E. Launey, E. Munch, D. H. Alsem, E. Saiz, A. P. Tomsia et al., A novel biomimetic approach to the design of high-performance ceramic-metal composites, Journal of The Royal Society Interface, vol.69, issue.6, pp.741-753, 2010.
DOI : 10.1038/nmat906

W. J. Clegg, K. Kendall, N. M. Alford, T. W. Button, and J. D. Birchall, A simple way to make tough ceramics, Nature, vol.347, issue.6292, p.455, 1990.
DOI : 10.1038/347455a0

C. Wang, Y. Huang, Z. Qingfeng, L. Zou, and S. Cai, Control of Composition and Structure in Laminated Silicon Nitride/Boron Nitride Composites, Journal of the American Ceramic Society, vol.84, issue.1, pp.2457-2461, 2005.
DOI : 10.1023/A:1006525704867

L. J. Bonderer, A. R. Studart, and L. J. Gauckler, Bioinspired Design and Assembly of Platelet Reinforced Polymer Films, Science, vol.10, issue.6, pp.1069-1073, 2008.
DOI : 10.1126/science.1143176

A. Sellinger, Continuous self-assembly of organic???inorganic nanocomposite coatings that mimic nacre, Nature, vol.381, issue.6690, pp.256-260, 1998.
DOI : 10.1038/381589a0

A. Walther, Large-Area, Lightweight and Thick Biomimetic Composites with Superior Material Properties via Fast, Economic, and Green Pathways, Nano Letters, vol.10, issue.8, pp.2742-2748, 2010.
DOI : 10.1021/nl1003224

S. Deville, E. Saiz, and A. Tomsia, Ice-templated porous alumina structures, Acta Materialia, vol.55, issue.6, pp.1965-1974, 2007.
DOI : 10.1016/j.actamat.2006.11.003

URL : https://hal.archives-ouvertes.fr/hal-01785728

S. Deville, E. Saiz, R. Nalla, and A. Tomsia, Freezing as a Path to Build Complex Composites, Science, vol.311, issue.5760, pp.515-523, 2006.
DOI : 10.1126/science.1120937

URL : https://hal.archives-ouvertes.fr/hal-01785714

D. R. Lesuer, C. K. Syn, O. D. Sherby, J. Wadsworth, J. J. Lewandowski et al., Mechanical behaviour of laminated metal composites, International Materials Reviews, vol.52, issue.7, pp.169-197, 1996.
DOI : 10.1016/0036-9748(84)90262-X

A. Cohades, A. Çetin, and A. Mortensen, Designing laminated metal composites for tensile ductility, Materials & Design, vol.66, pp.412-420, 2015.
DOI : 10.1016/j.matdes.2014.08.061

URL : https://infoscience.epfl.ch/record/205299/files/FinalManuscript.pdf

G. Heness, R. Wuhrer, and W. Y. Yeung, Interfacial strength development of roll-bonded aluminium/copper metal laminates, Materials Science and Engineering: A, vol.483, issue.484, pp.740-742, 2008.
DOI : 10.1016/j.msea.2006.09.184

M. Eizadjou, A. Talachi, H. Danesh-manesh, H. Shakur, K. Shahabi et al., Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process, Composites Science and Technology, vol.68, issue.9, pp.2003-2009, 2008.
DOI : 10.1016/j.compscitech.2008.02.029

A. B. Pandey, B. S. Majumdar, and D. B. Miracle, Effects of thickness and precracking on the fracture toughness of particle-reinforced al-alloy composites, Metallurgical and Materials Transactions A, vol.29, issue.4, pp.1237-1243, 1998.
DOI : 10.1007/BF02816050

D. L. Mcdanels, Analysis of stress-strain, fracture, and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement, Metallurgical Transactions A, vol.33, issue.no. 8, pp.1105-1115, 1985.
DOI : 10.1007/BF02811679

D. B. Miracle, A. B. Pandey, and B. S. Majumdar, Laminated particulate-reinforced aluminum composites with improved toughness, Acta Materialia, vol.49, issue.3, pp.405-417, 2001.
DOI : 10.1016/S1359-6454(00)00332-3

Y. Guo, G. Qiao, W. Jian, and X. Zhi, Microstructure and tensile behavior of Cu???Al multi-layered composites prepared by plasma activated sintering, Materials Science and Engineering: A, vol.527, issue.20, pp.5234-5240, 2010.
DOI : 10.1016/j.msea.2010.04.080

L. M. Peng, H. Li, and J. H. Wang, Processing and mechanical behavior of laminated titanium???titanium tri-aluminide (Ti???Al3Ti) composites, Materials Science and Engineering: A, vol.406, issue.1-2, pp.309-318, 2005.
DOI : 10.1016/j.msea.2005.06.067

H. Wu, G. Fan, B. C. Jin, L. Geng, X. Cui et al., Fabrication and mechanical properties of TiB w /Ti-Ti(Al) laminated composites, Materials & Design, vol.89, pp.697-702, 2016.
DOI : 10.1016/j.matdes.2015.10.025

X. Cui, G. Fan, L. Geng, Y. Wang, H. Zhang et al., Fabrication of fully dense TiAl-based composite sheets with a novel microlaminated microstructure, Scripta Materialia, vol.66, issue.5, pp.276-279, 2012.
DOI : 10.1016/j.scriptamat.2011.11.009

D. J. Smith, Y. Q. Zuo, P. G. Partridge, and A. Wisbey, Bend stiffness and strength of laminates composed of titanium alloy and titanium metal matrix composite, Materials Science and Technology, vol.13, issue.1, pp.35-40, 1997.
DOI : 10.1179/mst.1994.10.6.443

B. X. Liu, L. J. Huang, L. Geng, B. Wang, C. Liu et al., Fabrication and superior ductility of laminated Ti???TiBw/Ti composites by diffusion welding, Journal of Alloys and Compounds, vol.602, pp.187-192, 2014.
DOI : 10.1016/j.jallcom.2014.02.140

Y. Zhang, X. Cheng, and H. Cai, Fabrication, characterization and tensile property of a novel Ti 2 Ni/TiNi micro-laminated composite, Materials & Design, vol.92, pp.486-493, 2016.
DOI : 10.1016/j.matdes.2015.12.014

H. Duan, Y. Han, W. Lu, L. Wang, J. Mao et al., Configuration design and fabrication of laminated titanium matrix composites, Materials & Design, vol.99, pp.219-224, 2016.
DOI : 10.1016/j.matdes.2016.03.061

X. P. Cui, G. Fan, L. Geng, Y. Wang, L. J. Huang et al., Growth kinetics of TiAl3 layer in multi-laminated Ti???(TiB2/Al) composite sheets during annealing treatment, Materials Science and Engineering: A, vol.539, pp.337-343, 2012.
DOI : 10.1016/j.msea.2012.01.107

G. Fan, R. Xu, Z. Tan, D. Zhang, and Z. Li, Development of Flake Powder Metallurgy in Fabricating Metal Matrix Composites: A Review, Acta Metallurgica Sinica (English Letters), vol.27, issue.5, pp.806-815, 2014.
DOI : 10.1002/crat.2170270626

X. Yang, Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility, Journal of Alloys and Compounds, vol.563, pp.216-220, 2013.
DOI : 10.1016/j.jallcom.2013.02.066

L. Jiang, An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder, Carbon, vol.49, issue.6, pp.1965-1971, 2011.
DOI : 10.1016/j.carbon.2011.01.021

J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen et al., Reinforcement with graphene nanosheets in aluminum matrix composites, Scripta Materialia, vol.66, issue.8, pp.594-597, 2012.
DOI : 10.1016/j.scriptamat.2012.01.012

URL : http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1069&context=eispapers

L. Jiang, Z. Li, G. Fan, L. Cao, and D. Zhang, Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes, Scripta Materialia, vol.66, issue.6, pp.331-334, 2012.
DOI : 10.1016/j.scriptamat.2011.11.023

H. Wei, Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design, Scripta Materialia, vol.75, pp.30-33, 2014.
DOI : 10.1016/j.scriptamat.2013.11.014

X. Z. Kai, Enhanced strength and ductility in particulate-reinforced aluminum matrix composites fabricated by flake powder metallurgy, Materials Science and Engineering: A, vol.587, pp.46-53, 2013.
DOI : 10.1016/j.msea.2013.08.042

W. Zhang, Flake thickness effect of Al2O3/Al biomimetic nanolaminated composites fabricated by flake powder metallurgy, Materials Science and Engineering: A, vol.594, pp.324-329, 2014.
DOI : 10.1016/j.msea.2013.11.086

M. Peters, J. Hemptenmacher, J. Kumpfert, and C. Leyens, Structure and Properties of Titanium and Titanium Alloys, Titanium and Titanium Alloys, C. Leyens and nfred Peters, pp.1-36, 2003.
DOI : 10.1002/3527602119.ch1

V. A. Joshi, Titanium Alloys: An Atlas of Structures and Fracture Features, 2006.

C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, 2003.
DOI : 10.1002/3527602119

C. Veiga, J. Davim, and A. Loureiro, Properties and applications of titanium alloys: A brief review, Rev. Adv. Mater. Sci, vol.32, pp.133-148, 2012.

S. Pouzet, Fabrication additive de composites à matrice titane par fusion laser de poudre projetée, 2015.

P. Castany, F. Pettinari-sturmel, J. Crestou, J. Douin, and A. Coujou, Experimental study of dislocation mobility in a Ti???6Al???4V alloy, Acta Materialia, vol.55, issue.18, pp.6284-6291, 2007.
DOI : 10.1016/j.actamat.2007.07.032

Y. Robert, Simulation numérique du soudage du TA6V par laser YAG impulsionnel : caractérisation expérimentale et modélisation des aspects thermomécaniques associés à ce procédé, 2007.

G. R. Yantio-njankeu and . Sabeya, Comportement tribologique d'un alliage de titane traité et/ou revetu en fretting à débattement libre, 2007.

V. Viswanathan, T. Laha, K. Balani, A. Agarwal, and S. Seal, Challenges and advances in nanocomposite processing techniques, Materials Science and Engineering: R: Reports, vol.54, issue.5-6, pp.121-285, 2006.
DOI : 10.1016/j.mser.2006.11.002

W. Soboyejo, R. J. Lederich, and S. Sastry, Mechanical behavior of damage tolerant TiB whisker-reinforced in situ titanium matrix composites, Acta Metallurgica et Materialia, vol.42, issue.8, pp.2579-2591, 1994.
DOI : 10.1016/0956-7151(94)90199-6

M. Bardet, Elaboration de matériaux composites à matric Titane et à nano-renforts TiC et TiB par différents procédés de métallurgie des poudres : frittage par hydruration/dehydruration et déformation plastique sévère (Equal Channel Angular Pressing (ECAP)), 2014.

S. Gorsse and Y. L. Petitcorps, A new approach in the understanding of the SiC/Ti reaction zone composition and morphology, Composites Part A: Applied Science and Manufacturing, vol.29, issue.9-10, pp.1221-1227, 1998.
DOI : 10.1016/S1359-835X(98)00079-7

M. Garcia-de-cortazar, Etude de la faisabilité et du transfert de technologie pour l'alliage Ti-6Al-4V renforcé par du monoborure de titaneDevelopment of a new reinforced titanium alloy : basic research and technological transfer for the Ti-6Al-4V/TiB material, 2006.

S. C. Tjong and Y. Mai, Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites, Composites Science and Technology, vol.68, issue.3-4, pp.3-4, 2008.
DOI : 10.1016/j.compscitech.2007.07.016

K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, and B. Fugetsu, Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes, Composites Science and Technology, vol.69, issue.7-8, pp.1077-1081, 2009.
DOI : 10.1016/j.compscitech.2009.01.026

S. C. Tjong and Z. Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Materials Science and Engineering: R: Reports, vol.29, issue.3-4, pp.49-113, 2000.
DOI : 10.1016/S0927-796X(00)00024-3

C. Y. Tang, In situ formation of Ti alloy/TiC porous composites by rapid microwave sintering of Ti6Al4V/MWCNTs powder, Journal of Alloys and Compounds, vol.557, pp.67-72, 2013.
DOI : 10.1016/j.jallcom.2012.12.147

K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, and B. Fugetsu, CNTs/TiC Reinforced Titanium Matrix Nanocomposites via Powder Metallurgy and Its Microstructural and Mechanical Properties, Journal of Nanomaterials, vol.39, issue.5, pp.761-76, 2008.
DOI : 10.1016/S0921-5093(97)00799-5

URL : http://doi.org/10.1155/2008/127538

K. Kondoh, T. Threrujirapapong, J. Umeda, and B. Fugetsu, High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion, Composites Science and Technology, vol.72, issue.11, pp.1291-1297, 2012.
DOI : 10.1016/j.compscitech.2012.05.002

D. Gu, W. Meiners, Y. Hagedorn, K. Wissenbach, and R. Poprawe, /Ti nanocomposites with controlled nanostructure prepared by a new method: selective laser melting, Journal of Physics D: Applied Physics, vol.43, issue.29, p.295402, 2010.
DOI : 10.1088/0022-3727/43/29/295402

S. D. Luo, Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties, Scripta Materialia, vol.69, issue.1, pp.29-32, 2013.
DOI : 10.1016/j.scriptamat.2013.03.017

J. S. Benjamin and T. E. Volin, The mechanism of mechanical alloying, Metallurgical Transactions, vol.30, issue.8, pp.1929-1934, 1974.
DOI : 10.1007/BF02644161

P. Lee, J. Yang, and H. Lin, Amorphization behaviour in mechanically alloyed Ni?Ta powders, Journal of Materials Science, vol.33, issue.1, pp.235-239, 1998.
DOI : 10.1023/A:1004334805505

V. Provenzano, R. Valiev, D. G. Rickerby, and G. Valdre, Mechanical properties of nanostructured chromium, Nanostructured Materials, vol.12, issue.5-8, pp.1103-1108, 1999.
DOI : 10.1016/S0965-9773(99)00307-4

J. Eckert, J. C. Holzer, C. E. Krill, and W. L. Johnson, Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition, Journal of Materials Research, vol.1, issue.07, pp.1751-1761, 1992.
DOI : 10.1016/0079-6425(86)90005-8

E. Bonetti, L. Del-bianco, L. Pasquini, and E. Sampaolesi, Anelastic and structural behavior of ball milled nanostructured iron, Nanostructured Materials, vol.10, issue.5, pp.741-753, 1998.
DOI : 10.1016/S0965-9773(98)00112-3

Y. Kimura and S. Takaki, Microstructural Changes during Annealing of Work-Hardened Mechanically Milled Metallic Powders (<I>Overview</I>), Materials Transactions, JIM, vol.36, issue.2, pp.289-296, 1995.
DOI : 10.2320/matertrans1989.36.289

G. L. Caër, T. Ziller, P. Delcroix, and C. Bellouard, Mixing of iron with various metals by high-energy ball milling of elemental powder mixtures, Hyperfine Interact, vol.130, pp.1-4, 2000.

J. Eckert, J. C. Holzer, C. E. Krill, and W. L. Johnson, Mechanically driven alloying and grain size changes in nanocrystalline Fe???Cu powders, Journal of Applied Physics, vol.15, issue.6, pp.2794-2802, 1993.
DOI : 10.1016/0022-3093(84)90210-2

URL : https://authors.library.caltech.edu/3447/1/ECKjap93.pdf

N. T. Rochman, K. Kawamoto, H. Sueyoshi, Y. Nakamura, and T. Nishida, Effect of milling temperature and additive elements on an Fe???C system alloy prepared by mechanical alloying, Journal of Materials Processing Technology, vol.89, issue.90, pp.367-372, 1999.
DOI : 10.1016/S0924-0136(99)00021-7

I. Manna, P. P. Chattopadhyay, P. Nandi, F. Banhart, and H. Fecht, Formation of face-centered-cubic titanium by mechanical attrition, Journal of Applied Physics, vol.30, issue.3, pp.1520-1524, 2003.
DOI : 10.1016/S0167-577X(97)00095-5

M. J. Phasha, A. S. Bolokang, and P. E. Ngoepe, Solid-state transformation in nanocrystalline Ti induced by ball milling, Materials Letters, vol.64, issue.10, pp.1215-1218, 2010.
DOI : 10.1016/j.matlet.2010.02.054

U. M. Seelam, G. Barkhordarian, and C. Suryanarayana, Is there a hexagonal-close-packed (hcp) ??? face-centered-cubic (fcc) allotropic transformation in mechanically milled Group IVB elements?, Journal of Materials Research, vol.304306, issue.11, pp.3454-3461, 2009.
DOI : 10.1016/0966-9795(95)92680-X

T. S. Suzuki and M. Nagumo, Metastable intermediate phase formation at reaction milling of titanium and n-heptane, Scripta Metallurgica et Materialia, vol.32, issue.8, pp.1215-1220, 1995.
DOI : 10.1016/0956-716X(95)00128-I

D. Bernache-assollant and J. Bonnet, Frittage : aspects physico-chimiques - Partie 1 : frittage en phase solide Ref : TIP153WEB - " Travail des matériaux - Assemblage Available: https://www.techniquesingenieur.fr/base-documentaire/mecanique-th7/fabrication-additive-impression-3d- 42633210/frittage-aspects-physico-chimiques-af6620, 2005.

N. Roussel, Optimisation du dopage d'alumines nanométriques et frittage par SPS : application aux céramiques transparentes

R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Materials Science and Engineering: R: Reports, vol.63, issue.4-6, pp.127-287, 2009.
DOI : 10.1016/j.mser.2008.09.003

H. Abderrazak, F. Schoenstein, M. Abdellaoui, and N. Jouini, Spark plasma sintering consolidation of nanostructured TiC prepared by mechanical alloying, International Journal of Refractory Metals and Hard Materials, vol.29, issue.2, pp.170-176, 2011.
DOI : 10.1016/j.ijrmhm.2010.10.003

X. Song, X. Liu, and J. Zhang, Neck Formation and Self-Adjusting Mechanism of Neck Growth of Conducting Powders in Spark Plasma Sintering, Journal of the American Ceramic Society, vol.87, issue.2, pp.494-500, 2006.
DOI : 10.1016/j.actamat.2005.05.042

U. Anselmi-tamburini, S. Gennari, J. E. Garay, and Z. A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process, Materials Science and Engineering: A, vol.394, issue.1-2, pp.139-148, 2005.
DOI : 10.1016/j.msea.2004.11.019

N. S. Weston, F. Derguti, A. Tudball, and M. Jackson, Spark plasma sintering of commercial and development titanium alloy powders, Journal of Materials Science, vol.41, issue.387, pp.4860-4878, 2015.
DOI : 10.1007/s10853-006-6555-2

Z. A. Munir, U. Anselmi-tamburini, and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, Journal of Materials Science, vol.19, issue.452, pp.763-777, 2006.
DOI : 10.1016/j.msea.2004.11.019

J. R. Groza and A. Zavaliangos, Sintering activation by external electrical field, Materials Science and Engineering: A, vol.287, issue.2, pp.171-177, 2000.
DOI : 10.1016/S0921-5093(00)00771-1

URL : http://mpac.engr.ucdavis.edu/publications/sintering1.PDF

M. Omori, Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS), Materials Science and Engineering: A, vol.287, issue.2, pp.183-188, 2000.
DOI : 10.1016/S0921-5093(00)00773-5

A. Cincotti, A. M. Locci, R. Orrù, and G. Cao, Modeling of SPS apparatus: Temperature, current and strain distribution with no powders, AIChE Journal, vol.6, issue.3, pp.703-719, 2007.
DOI : 10.1007/978-1-4612-3978-9

R. F. Egerton, An Introduction to Microscopy, Physical Principles of Electron Microscopy, pp.1-26

E. Schumann, The effects of ball milling and the addition of blended elemental aluminium on the densification of TiH2 power, Materials Chemistry and Physics, vol.173, pp.106-116, 2016.
DOI : 10.1016/j.matchemphys.2016.01.045

URL : https://hal.archives-ouvertes.fr/hal-01286000

O. M. Ivasishin, A. N. Demidik, and D. G. Savvakin, Use of titanium hydride for the synthesis of titanium aluminides from powder materials, Powder Metallurgy and Metal Ceramics, vol.84, issue.No. 5, pp.9-10, 1999.
DOI : 10.1007/BF03221103

L. Cao, J. Jiang, Z. Wang, Y. Gong, C. Liu et al., Electromagnetic properties of flake-shaped Fe???Si alloy particles prepared by ball milling, Journal of Magnetism and Magnetic Materials, vol.368, pp.295-299, 2014.
DOI : 10.1016/j.jmmm.2014.05.032

A. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, and A. K. Mukherjee, Advanced mechanical properties of pure titanium with ultrafine grained structure, Scripta Materialia, vol.45, issue.7, pp.747-752, 2001.
DOI : 10.1016/S1359-6462(01)01089-2

Z. Z. Fang, P. Sun, and H. Wang, Hydrogen Sintering of Titanium to Produce High Density Fine Grain Titanium Alloys, Advanced Engineering Materials, vol.29, issue.6, pp.383-387, 2012.
DOI : 10.1016/S0254-0584(98)00137-0

T. B. Britton, H. Liang, F. P. Dunne, and A. J. Wilkinson, The effect of crystal orientation on the indentation response of commercially pure titanium: experiments and simulations, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.474, issue.2115, pp.695-719, 2010.
DOI : 10.1016/j.msea.2007.06.005

F. K. Mante, G. R. Baran, and B. Lucas, Nanoindentation studies of titanium single crystals, Biomaterials, vol.20, issue.11, pp.1051-1055, 1999.
DOI : 10.1016/S0142-9612(98)00257-9

P. Gravereau, Introduction à la pratique de la diffraction des rayons X par les poudres, lecture, Sciences Chimiques, 2011.
URL : https://hal.archives-ouvertes.fr/cel-00671294

M. Yan, M. Qian, C. Kong, and M. S. Dargusch, Impacts of trace carbon on the microstructure of as-sintered biomedical Ti???15Mo alloy and reassessment of the maximum carbon limit, Acta Biomaterialia, vol.10, issue.2, pp.1014-1023, 2014.
DOI : 10.1016/j.actbio.2013.10.034

A. S. Bolokang, D. E. Motaung, C. J. Arendse, and T. F. Muller, Formation of the metastable FCC phase by ball milling and annealing of titanium???stearic acid powder, Advanced Powder Technology, vol.26, issue.2, pp.632-639, 2015.
DOI : 10.1016/j.apt.2015.01.013

O. Senkov and F. H. Froes, Thermohydrogen processing of titanium alloys, International Journal of Hydrogen Energy, vol.24, issue.6, pp.565-576, 1999.
DOI : 10.1016/S0360-3199(98)00112-8

E. A. Evard, I. E. Gabis, and A. P. Voyt, Study of the kinetics of hydrogen sorption and desorption from titanium, Journal of Alloys and Compounds, vol.404, issue.406, pp.335-338, 2005.
DOI : 10.1016/j.jallcom.2005.05.001

A. R. Kennedy and V. H. Lopez, The decomposition behavior of as-received and oxidized TiH2 foaming-agent powder, Materials Science and Engineering: A, vol.357, issue.1-2, pp.258-263, 2003.
DOI : 10.1016/S0921-5093(03)00211-9

C. Wang, Y. Zhang, S. Xiao, and Y. Chen, Sintering densification of titanium hydride powders, Materials and Manufacturing Processes, vol.46, issue.5, pp.517-522, 2017.
DOI : 10.1016/j.promfg.2015.07.095