Skip to Main content Skip to Navigation

Advances in spatially encoded single-scan magnetic resonance imaging

Abstract : Although Nuclear Magnetic Resonance (NMR) has been discovered more than seventy years ago, it is still thriving and alive, covering a broad spectrum of applications in science, technology and industry. One of the most ubiquitous applications of Nuclear Magnetic Resonance is an imaging technique dubbed Magnetic Resonance Imaging (MRI), which has found many applications in science, technology, and particularly in medicine. Fourier or k-encoding techniques are MRI methods based on acquiring a magnetic resonance signal as a function of the parameter “k”, a subsequent Fourier transform then will convert the signal to an image. Although nowadays Fourier techniques are prominent in MRI, there are other alternatives, among which spatial encoding, the main subject of this dissertation, should be mentioned. In spatial encoding (also known as time- or spatiotemporal-encoding), signal acquisition is performed in such a way that the signal intensity itself resembles the object. Consequently, in spatial encoding there is no need for a Fourier transform for image reconstruction.Single-scan hybrid imaging techniques that use traditional k-encoding in one direction, and spatial (time-)encoding in the other have been shown to be superior to traditional full k-encoding methods (that use k-encoding in both directions) in suppressing the effects of frequency variations (caused by inhomogeneous magnetic fields, the presence of more than one chemical shift, or any other frequency variation) and lead to images that are much less distorted than traditional single-scan imaging methods. In this dissertation the main idea behind spatial encoding magnetic resonance imaging will be introduced. Image formation and image properties in different spatial encoding sequences will also be briefly investigated.Then, the effects of diffusion on an established hybrid sequence called “Rapid Acquisition by Sequential Excitation and Refocusing, RASER” are investigated. It will be shown that in spatial encoding sequences, the attenuation of the signal due to diffusion is often not uniform across the entire object, leading to misleading contrast in the image. In order to eliminate this misleading contrast, a double-chirp RASER (DC-RASER) pulse sequence is proposed in this work. The experimental results are in accordance with our theoretical investigations about the effects of diffusion in these sequences. They also confirm that the signal attenuation due to diffusion is uniform, as expected theoretically for DC-RASER.In order to develop applications of single-scan spatial encoding MRI we show how one can enhance the contrast in the original RASER sequence. By changing the timing of the pulse sequence, we achieved a variant of RASER called Echo-Shifted RASER (ES-RASER), which provides a tunable contrast level.Finally, we show how one can improve a few aspects of the available time-encoding sequences. By rearranging positive and negative gradients we show how one can reduce the switching rate of the gradients. This is important because fast gradient switching is not always technically feasible; in addition, it may unwittingly stimulate the patient’s nervous system. By using an additional gradient we can change the detection order in the original time-encoding sequence. This leads to an identical echo-time for all echoes, and hence a uniform signal attenuation due to relaxation. Furthermore, we show how one can implement time-encoding sequences in an interleaved fashion in order to reduce signal attenuation due to diffusion.
Document type :
Complete list of metadatas

Cited literature [98 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Monday, May 14, 2018 - 5:19:05 PM
Last modification on : Thursday, October 29, 2020 - 3:01:48 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01791613, version 1


Sina Marhabaie. Advances in spatially encoded single-scan magnetic resonance imaging. Theoretical and/or physical chemistry. Université Paris sciences et lettres, 2017. English. ⟨NNT : 2017PSLEE028⟩. ⟨tel-01791613⟩



Record views


Files downloads