J. N. Chapman, P. E. Batson, E. Waddell, and R. Ferrier, The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy Ultramicroscopy, pp.203-217, 1978.
DOI : 10.1016/s0304-3991(78)80027-8

E. M. Waddell and J. Chapman, Linear imaging of strong phase objects using asymmetrical detectors in STEM Optik (Stuttg), pp.83-96, 1979.

J. Chapman, The investigation of magnetic domain structures in thin foils by electron microscopy, Journal of Physics D: Applied Physics, vol.17, issue.4, pp.623-670, 1984.
DOI : 10.1088/0022-3727/17/4/003

J. N. Chapman, I. R. Mcfadyen, and S. Mcvitie, Modified differential phase contrast Lorentz microscopy for improved imaging of magnetic structures, IEEE Transactions on Magnetics, vol.26, issue.5, pp.1506-1517, 1990.
DOI : 10.1109/20.104427

D. Gabor, Microscopy by Reconstructed Wave-Fronts, Microscopy by Reconstructed Wave-Fronts Proc. R. Soc. A Math, pp.454-87, 1949.
DOI : 10.1098/rspa.1949.0075

E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung Arch. für Mikroskopische Anat, pp.413-421
DOI : 10.1007/bf02956173

URL : http://publikationen.ub.uni-frankfurt.de/files/11525/E001743295.pdf

E. Abbe, Köhler H 1981 On Abbe's Theory of Image Formation in the Microscope Opt, Acta Int. J. Opt, vol.8722, issue.28, pp.141-141, 1911.

B. Fultz, Diffraction Contrast in TEM images Transmission Electron Microscopy and Diffractometry of, Materials, pp.339-422, 2008.

R. E. Dunin-borkowski, M. Feuerbacher, M. Heggen, L. Houben, A. Kovács et al., Advanced Transmission Electron Microscopy Techniques and Applications Lecture Notes of the 43rd IFF Spring School " Scattering Methods for Condensed Matter Research: Towards Novel Applications at Future Souces, Quantitative in situ magnetization reversal studies in Lorentz microscopy and electron holography Budruk A and De Graef M 2010 Aberration-Corrected Lorentz Microscopy Microsc. Microanal, pp.144-54, 2012.

D. Graef and M. , Lorentz microscopy: Theoretical basis and image simulations Magnetic Imaging and Its Applications to Materials, Experimental Methods in the Physical Sciences vol Differential Phase contrast in STEM Optik, vol.3638, pp.27-67, 1974.

N. Shibata, S. D. Findlay, Y. Kohno, and H. Sawada, Differential phase-contrast microscopy at atomic resolution, Nature Physics, vol.41, issue.8, pp.611-616
DOI : 10.1046/j.1365-2818.1998.3070861.x

D. Dyck and . Van, High-speed computation techniques for the simulation of high resolution electron micrographs J. Microsc Van Dyck D and Coene W 1987 A new procedure for wave function restoration in high resolution electron microscopy Optik (Stuttg), pp.31-42, 1983.

V. Dyck, D. , O. De-beek, and M. , A new approach to object wavefunction reconstruction in electron microscopy Optik (Stuttg), pp.103-110, 1993.

M. Beleggia, M. A. Schofield, V. Volkov, and Y. Zhu, On the transport of intensity technique for phase retrieval, Ultramicroscopy, vol.102, issue.1, pp.37-49, 2004.
DOI : 10.1016/j.ultramic.2004.08.004

J. Cairney and P. Munroe, Preparation of transmission electron microscope specimens from FeAl and WC powders using focused-ion beam milling, Materials Characterization, vol.46, issue.4, pp.297-304, 2001.
DOI : 10.1016/S1044-5803(00)00107-8

M. Jaafar, L. Serrano-ramón, O. Iglesias-freire, A. Fernández-pacheco, M. R. Ibarra et al., Hysteresis loops of individual Co nanostripes measured by magnetic force microscopy, Co nanowires via Ga+ irradiation Eur, pp.407-97, 2011.
DOI : 10.1063/1.2836681

URL : https://nanoscalereslett.springeropen.com/track/pdf/10.1186/1556-276X-6-407?site=nanoscalereslett.springeropen.com

A. Fernández-pacheco, D. Teresa, J. M. Córdoba, R. Ibarra, M. Córdoba et al., Magnetotransport properties of high-quality cobalt nanowires grown by focusedelectron-beam-induced deposition High-purity cobalt nanostructures grown by focused-electron-beam-induced deposition at low current Microelectron, J. Phys. D. Appl. Phys, vol.2829, issue.87, pp.55005-1550, 2009.

L. Serrano-ramón, R. Córdoba, L. A. Rodríguez, C. Magén, E. Snoeck et al., Ultrasmall Functional Ferromagnetic Nanostructures Grown by Focused Electron-Beam-Induced Deposition, ACS Nano, vol.5, issue.10, pp.7781-7788, 2011.
DOI : 10.1021/nn201517r

Z. Turgut, J. H. Scott, M. Q. Huang, S. A. Majetich, and M. Mchenry, Magnetic properties and ordering in C-coated FexCo1???x alloy nanocrystals, Journal of Applied Physics, vol.5, issue.11, p.6468, 1998.
DOI : 10.1007/BF01697123

R. H. Yu, L. Ren, S. Basu, K. M. Unruh, . Parvizi-majidi-a et al., Novel soft magnetic composites fabricated by electrodeposition Fabrication and characterization of Co1?xFex alloy nanowires, Dumpich G 2005 Resistance behavior and magnetization reversal analysis of individual Co nanowires Phys. Rev. B 71, pp.5840-8186, 2000.
DOI : 10.1063/1.372540

G. Dumpich, T. P. Krome, and B. Hausmanns, Magnetoresistance of single Co nanowires, Journal of Magnetism and Magnetic Materials, vol.248, issue.2, pp.241-248, 2002.
DOI : 10.1016/S0304-8853(02)00347-5

B. Hausmanns, T. P. Krome, and G. Dumpich, Magnetoresistance and magnetization reversal process of Co nanowires covered with Pt E and Argitis P 2001 Electron beam lithography simulation for high resolution and high-density patterns, J. Appl. Phys. Vacuum, vol.9338, issue.62, pp.8095-263, 2003.
DOI : 10.1063/1.1540054

H. Elsner and H. Meyer, Nanometer and high aspect ratio patterning by electron beam lithography using a simple DUV negative tone resist Microelectron. Eng, pp.57-58, 2001.
DOI : 10.1016/s0167-9317(01)00498-1

H. Bartolf, K. Inderbitzin, L. B. Gómez, A. Engel, and . Schilling, Nanoscale fabrication by intrinsic suppression of proximity-electron exposures and general considerations for easy and effective top???down fabrication, Journal of Micromechanics and Microengineering, vol.20, issue.12, p.125015, 2010.
DOI : 10.1088/0960-1317/20/12/125015

R. D. Mcmichael and M. Donahue, Head to head domain wall structures in thin magnetic strips, IEEE Transactions on Magnetics, vol.33, issue.5, pp.4167-4176, 1997.
DOI : 10.1109/20.619698

Y. Nakatani, A. Thiaville, and J. Miltat, Head-to-head domain walls in soft nanostrips: a refined phase diagram, J. Magn. Magn. Mater, pp.290-291, 2005.
DOI : 10.1016/j.jmmm.2004.11.355

J. Akerman, M. Muñoz, M. Maicas, and J. Prieto, Stochastic nature of the domain wall depinning in permalloy magnetic nanowires Phys Wuth C, Lendecke P and Meier G 2012 Temperature-dependent dynamics of stochastic domain-wall depinning in nanowires, Rev. B J. Phys. Condens. Matter, vol.8244, issue.24, pp.64426-024207, 2010.

I. Utke, S. Moshkalev, and R. P. , Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications, 2012.

A. O. Adeyeye, J. Bland, C. Daboo, F. García-sánchez, E. Paz et al., Coercivity mechanisms in lithographed antidot arrays EPL Europhysics Lett, Micromagnetic tailoring of periodic antidot permalloy arrays for high density storage Appl Geometric coercivity scaling in magnetic thin film antidot arrays J. Magn. Magn. Mater, pp.3164-67002, 1997.

A. Jalil, S. Phoa, S. Tan, and A. Adeyeye, Magnetic properties of lateral "antidot" arrays, IEEE Transactions on Magnetics, vol.38, issue.5, pp.2556-2564, 2002.
DOI : 10.1109/TMAG.2002.801946

M. Jalil, Bit isolation in periodic antidot arrays using transverse applied fields, Journal of Applied Physics, vol.93, issue.10, p.7053, 2003.
DOI : 10.1063/1.370223

L. Heyderman, F. Nolting, D. Backes, S. Czekaj, L. Lopez-diaz et al., Ordered magnetic nanohole and antidot arrays prepared through replication from anodic alumina templates and De Zutter D 2012 A micromagnetic study of the reversal mechanism in permalloy antidot arrays, Vavassori P and García L M 2012 Fabrication and Magnetic Characterization of Cobalt Antidot Arrays: Effect of the Surrounding Continuous Film J. Nanosci. Nanotechnol, pp.214429-1978, 2006.

E. Paz, F. Cebollada, F. J. Palomares, J. M. Gonza?lez, M. Im et al., Scaling of the coercivity with the geometrical parameters in epitaxial Fe antidot arrays, Magnetic antidot to dot crossover in Co and Py nanopatterned thin films Phys. Rev, pp.73908-144405, 2012.
DOI : 10.1016/j.jmmm.2004.11.169

C. Wang, A. Adeyeye, C. Lin, F. J. Castan?o, K. Nielsch et al., Magnetic properties of lithographically defined rectangular antidot permalloy arrays, Journal of Magnetism and Magnetic Materials, vol.272, issue.276, pp.272-276, 2004.
DOI : 10.1016/j.jmmm.2003.12.1343

C. C. Wang, A. Adeyeye, N. Singh, P. Tiberto, L. Boarino et al., Magnetic antidot nanostructures: effect of lattice geometry Vinai F and Allia P 2010 Magnetic and magnetotransport properties of arrays of nanostructured antidots obtained by self-assembling polystyrene nanosphere lithography, Nanotechnology J. Appl. Phys, vol.1720, issue.107, pp.1629-1665, 2006.

X. K. Hu, S. Sievers, A. Müller, V. Janke, and H. Schumacher, Classification of super domains and super domain walls in permalloy antidot lattices, Physical Review B, vol.84, issue.2, p.24404, 2011.
DOI : 10.1103/PhysRevB.43.3395

URL : http://arxiv.org/pdf/1103.0395

X. K. Hu, S. Sievers, A. Mu?ller, H. Schumacher, L. Torres et al., The influence of individual lattice defects on the domain structure in magnetic antidot lattices J. Appl. Phys. 113 103907 [24] Torres L, Lo?pez-Dí az L, Alejos O and In?iguez J 1999 Remanent states in periodic antidot permalloy arrays, Micromagnetic study of lithographically defined non-magnetic periodic nanostructures in magnetic thin films Phys. B Condens. Matter, pp.6208-59, 2000.

V. V. Kruglyak, S. Demokritov, and D. Grundler, Magnonics, Journal of Physics D: Applied Physics, vol.43, issue.26, p.264001, 2010.
DOI : 10.1088/0022-3727/43/26/264001

URL : https://hal.archives-ouvertes.fr/hal-00569635

B. Lenk, H. Ulrichs, F. Garbs, and M. Münzenberg, The building blocks of magnonics, Physics Reports, vol.507, issue.4-5, pp.107-143, 2011.
DOI : 10.1016/j.physrep.2011.06.003

J. W. K?os, D. Kumar, J. Romero-vivas, H. Fangohr, and M. Franchin, Krawczyk M and Barman A 2012 Effect of magnetization pinning on the spectrum of spin waves in magnonic antidot waveguides Phys, J and Münzenberg M 2012 Spin-wave modes and band structure of rectangular CoFeB antidot lattices 4, p.184433

T. Schwarze and D. Grundler, Magnonic crystal wave guide with large spin-wave propagation velocity in CoFeB Appl, Phys. Lett, vol.10232, p.222412, 2013.
DOI : 10.1063/1.4809757

J. W. K?os, D. Kumar, M. Krawczyk, A. Barman, R. P. Cowburn et al., Influence of structural changes in a periodic antidot waveguide on the spin-wave spectra Phys Magnetic domain formation in lithographically defined antidot Permalloy arrays Micromagnetic analysis of recording processes in periodic antidot arrays: Interaction between adjacent bits, Rev. B Appl. Phys. Lett. J. Appl. Phys, vol.89333435, issue.87, pp.14406-2309, 1997.

N. Owen and A. Petford-long, Patterning magnetic antidot-type arrays by Ga/sup +/ implantation, IEEE Transactions on Magnetics, vol.38, issue.5, pp.2553-2558, 2002.
DOI : 10.1109/TMAG.2002.801945

L. J. Heyderman, F. Nolting, C. Quitmann, L. Qing-fang, J. Chang-jun et al., X-ray photoemission electron microscopy investigation of magnetic thin film antidot arrays, Magnetic antidot arrays from self, pp.7322-1797, 2003.
DOI : 10.1063/1.370223

O. Martyanov, V. Yudanov, R. Lee, S. Nepijko, H. Elmers et al., Ferromagnetic resonance study of thin film antidot arrays: Experiment and micromagnetic simulations, Physical Review B, vol.272, issue.276, p.174429, 2007.
DOI : 10.1109/20.728305

URL : http://juser.fz-juelich.de/record/57380/files/FZJ-57380.pdf

M. Yu, L. Malkinski, L. Spinu, W. Zhou, S. Whittenburg et al., Size dependence of static and dynamic magnetic properties in nanoscale square Permalloy antidot arrays Enhancement of exchange bias and ferromagnetic resonance frequency by using multilayer antidot arrays, J. Appl. J. Appl. Phys, vol.10444, p.93708, 2007.

D. Tse, S. Steinmuller, T. Trypiniotis, D. Anderson, G. Jones et al., Static and dynamic magnetic properties of Ni80Fe20 square antidot arrays, Phys. Rev. B, vol.7945, p.54426, 2009.
DOI : 10.1103/physrevb.79.054426

M. T. Rahman, N. N. Shams, C. H. Lai, J. Fidler, and . Suess, Co/Pt perpendicular antidot arrays with engineered feature size and magnetic properties fabricated on anodic aluminum oxide templates, Physical Review B, vol.11, issue.1, p.14418, 2010.
DOI : 10.1016/j.jmmm.2004.11.525

C. Ho, T. Hsieh, H. Kung, W. Juan, K. Lin et al., Reduced saturation magnetization in cobalt antidot thin films prepared by polyethylene oxideassisted self-assembly of polystyrene nanospheres Im M and Fischer P 2012 Studies of the Magnetization Reversal Processes in Co Dot and Antidot Arrays on a Microscopic Scale Open Surf Lorentz transmission electron microscopy of focused ion beam patterned magnetic antidot arrays, Magnetic domain structure in ultrathin cobalt films J. Magn. Magn. Mater. 86 L137?L142 [51] Berger A and Oepen H P 1993 Magnetic domain walls in ultrathin fcc-cobalt films J. Magn. Magn. Mater, pp.122504-65, 1949.

S. Li, A. Samad, W. Lew, Y. Xu, and J. Bland, Magnetic domain reversal in ultrathin Co(001) films probed by giant magnetoresistance measurements, Physical Review B, vol.74, issue.158, pp.6871-6876, 2000.
DOI : 10.1063/1.354926

S. Mcvitie and M. Cushley, Quantitative Fresnel Lorentz microscopy and the transport of intensity equation García-Cervera C J 2004 One-dimensional magnetic domain walls Eur, Ultramicroscopy J. Appl. Math, vol.10655, issue.15, pp.423-454, 2006.

L. Gorkov and K. , Mixed-valence manganites: fundamentals and main properties, Physics Reports, vol.400, issue.3, pp.149-208, 2004.
DOI : 10.1016/j.physrep.2004.08.003

W. Prellier, P. Lecoeur, and B. Mercey, Haghiri-Gosnet A-M and Renard J 2003 CMR manganites: physics, thin films and devices, Colossal-magnetoresistive manganite thin films J. Phys. Condens. Matter J. Phys. D. Appl. Phys, vol.135, pp.915-944, 2001.

. Chatterji, Netherlands) [7] Van den Brink J, Khaliullin G and Khomskii D 1999 Charge and Orbital Order in Half- Doped Manganites, Colossal Magnetoresistive Manganites Phys. Rev. Lett, vol.83, pp.5118-5139, 2004.

K. Yamauchi, S. Picozzi, D. V. Efremov, J. Brink, . Van-den et al., Mechanism of Ferroelectricity in Half-Doped Manganites with Pseudocubic and Bilayer Structure, Charge order versus Zener polarons: ferroelectricity in manganites arXiv, p.1137030306651, 2003.
DOI : 10.7566/JPSJ.82.113703

T. Goto, T. Kimura, G. Lawes, A. Ramirez, and Y. Tokura, Dörr K 2006 Ferromagnetic manganites: spin-polarized conduction versus competing interactions, Arenholz E and Suzuki Y 2009 Orientation and thickness dependence of magnetization at the interfaces of highly spin-polarized manganite thin films Phys. Rev, pp.257201-1003, 2004.

J. Cibert, J. Bobo, and L. , Development of new materials for spintronics Comptes Rendus Phys Spintronics: manganite-based magnetic tunnel structures Physics- Uspekhi, pp.977-96, 2005.

Z. Shu, J. Dong, and D. Xing, Phase diagram of half-doped manganites, Physical Review B, vol.47, issue.22, p.224409, 2001.
DOI : 10.1080/000187398243573

S. Dunaevskii, Magnetic phase diagrams of manganites in the electron doping region Phys, Solid State, vol.46, pp.193-212, 2004.
DOI : 10.1134/1.1649411

M. Mochizuki, N. Furukawa, P. K. Siwach, H. K. Singh, O. Srivastava et al., Low field magnetotransport in manganites, Transport properties of (Sm0.7A0.3MnO3), pp.134416-273201, 1997.

F. Tsui, M. C. Smoak, T. Nath, and C. Eom, Strain-dependent magnetic phase diagram of epitaxial La0.67Sr0.33MnO3 thin films, Applied Physics Letters, vol.76, issue.17, p.2421, 2000.
DOI : 10.1103/PhysRevB.51.16491

Y. Lu, J. Klein, F. Herbstritt, J. Philipp, A. Marx et al., Effect of strain and tetragonal lattice distortions in doped perovskite manganites, Physical Review B, vol.33, issue.18, p.184406, 2006.
DOI : 10.1103/PhysRevLett.76.295

C. Adamo, X. Ke, H. Q. Wang, H. L. Xin, T. Heeg et al., Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films, Applied Physics Letters, vol.95, issue.11, p.112504, 2009.
DOI : 10.1103/PhysRevB.63.184419

S. Helali, K. Daoudi, A. Fouzri, and M. Oumezzine, Oueslati M and Tsuchiya T 2012 Effects of substrate-induced-strain on the structural and transport properties of La0, pp.379-84

Y. Suzuki, H. Y. Hwang, S. Cheong, and R. Van-dover, The role of strain in magnetic anisotropy of manganite thin films, Applied Physics Letters, vol.32, issue.1, p.140, 1997.
DOI : 10.1063/1.115168

H. L. Ju, K. M. Krishnan, and D. Lederman, Evolution of strain-dependent transport properties in ultrathin La0.67Sr0.33MnO3 films, Journal of Applied Physics, vol.83, issue.11, p.7073, 1998.
DOI : 10.1006/jssc.1995.1024

M. Paranjape, A. Raychaudhuri, N. Mathur, and M. Blamire, Effect of strain on the electrical conduction in epitaxial films of La0, p.214415, 2003.

N. M. Souzaneto, R. A. Tolentino, H. Favrenicolin, E. Ranno, L. Souza-neto et al., Strain effect on the tilt angle in manganite thin films Nucl. Instruments Methods Phys Dhakal T, Tosado J and Biswas A 2007 Effect of strain and electric field on the electronic soft matter in manganite thin films Phys L and Calderón M J 2011 Effect of strain on the orbital and magnetic ordering of manganite thin films and their interface with an insulator Phys, A M and Nikitov S A 2011 Magnetic anisotropy of strained epitaxial manganite films J. Exp. Theor. Phys, pp.589-259, 2005.

L. Ranno, A. Llobet, R. Tiron, and E. Favre-nicolin, Strain-induced magnetic anisotropy in epitaxial manganite films, Applied Surface Science, vol.188, issue.1-2, pp.170-175, 2002.
DOI : 10.1016/S0169-4332(01)00730-9

S. Mori, Observation of magnetic domain structure in phase-separated manganites by Lorentz electron microscopy, Journal of Electron Microscopy, vol.51, issue.4, pp.225-234, 2002.
DOI : 10.1093/jmicro/51.4.225

Y. Murakami, J. H. Yoo, D. Shindo, T. Atou, and M. Kikuchi, Magnetization distribution in the mixed-phase state of hole-doped manganites, Nature, vol.50, issue.6943, pp.965-973, 2003.
DOI : 10.1107/S0108767393013200

J. Loudon, N. Mathur, and P. Midgley, Direct evidence of phase coexistence in La0.5Ca0, J. Magn. Magn. Mater, pp.272-276, 2004.
DOI : 10.1016/j.jmmm.2003.11.024

J. He, T. Asaka, V. Volkov, S. Chaudhuri, R. Budhani et al., Ferromagnetic Domains and Phase Separation in La5/8-yPryCa3/8MnO3 Manganites: Observations by Lorentz Electron Microscopy, Microscopy and Microanalysis, vol.13, issue.S02, pp.2002-2005, 2007.
DOI : 10.1017/S1431927607072741

S. Mori, Y. Horibe, T. Asaka, Y. Matsui, C. Chen et al., Nanoscale ferromagnetism in phase-separated manganites, Journal of Magnetism and Magnetic Materials, vol.310, issue.2, pp.870-872, 2007.
DOI : 10.1016/j.jmmm.2006.10.1076

T. Asaka, S. Mori, Y. Horibe, K. Takenaka, K. Ishizuka et al., Observation of magnetic domain structures in, Journal of Magnetism and Magnetic Materials, vol.310, issue.2, pp.782-786, 2007.
DOI : 10.1016/j.jmmm.2006.10.174

J. Q. He, V. V. Volkov, T. Asaka, S. Chaudhuri, R. C. Budhani et al., Lorentz electron microscopy, Physical Review B, vol.73, issue.22, p.224404, 2010.
DOI : 10.1103/PhysRevB.77.134411

J. Q. He, V. V. Volkov, M. Beleggia, T. Asaka, J. Tao et al., Zhu Y 2010 Ferromagnetic domain structures and spin configurations measured in doped manganite Phys, Rev. B, vol.8145, p.94427
DOI : 10.1103/physrevb.81.094427

URL : http://orbit.dtu.dk/files/4873011/Tao.pdf

Y. Horibe, S. Mori, T. Asaka, Y. Matsui, P. A. Sharma et al., Preformed nanoscale ferromagnetism in manganites EPL Europhysics Lett. 100 67007 [48] Hÿtch M J 1997 Geometric phase analysis of high resolution electron microscope images Scanning Microsc Quantitative measurement of displacement and strain fields from HREM micrographs, D and Luitz J 2013 WIEN2k: An Aufmented Plane Wave Plus Local Orbtails Program for Calculating Crystal Properties, pp.53-66, 1998.
DOI : 10.1209/0295-5075/100/67007

V. I. Anisimov, I. Solovyev, and M. A. Korotin, Density-functional theory and NiO photoemission spectra Phys. Rev. B 48 16929?34 [53] Liechtenstein A I and Zaanen J 1995 Density-functional theory and strong interactions: Orbital ordering in Mott, 1993.
DOI : 10.1103/physrevb.48.16929

M. I. Aroyo, A. Kirov, C. Capillas, and J. Perez-mato, Representations of crystallographic point groups and space groups, Bilbao Crystallographic Server. II. Acta Crystallogr. A, vol.62, pp.115-143, 2006.

G. Colizzi, A. Filippetti, F. Cossu, and F. , Interplay of strain and magnetism in La1?xSrxMnO3 from first principles Phys, Rev. B, vol.7856, p.235122, 2008.
DOI : 10.1103/physrevb.78.235122

W. H. Bragg and L. Bragg, The Crystalline State. Volume I: A General Survey, 1933.

A. Lubk, E. Javon, N. Cherkashin, S. Reboh, C. Gatel et al., Dynamic scattering theory for dark-field electron holography of 3D strain fields, Ultramicroscopy, vol.136, pp.42-51, 2014.
DOI : 10.1016/j.ultramic.2013.07.007

URL : https://hal.archives-ouvertes.fr/hal-01721153

E. Javon, A. Lubk, R. Cours, S. Reboh, N. Cherkashin et al., Dynamical effects in strain measurements by dark-field electron holography, Ultramicroscopy, vol.147, pp.70-85, 2014.
DOI : 10.1016/j.ultramic.2014.06.005

URL : https://hal.archives-ouvertes.fr/hal-01721158

G. N. Greaves, A. L. Greer, R. Lakes, and T. Rouxel, Poisson's ratio and modern materials, Nature Materials, vol.267, issue.11, pp.823-860, 2011.
DOI : 10.1126/science.267.5206.1947

C. J. Lu, Z. L. Wang, C. Kwon, Q. Jia, A. S. Moskvin et al., Microstructure of epitaxial La0.7Ca0.3MnO3 thin films grown on LaAlO3 and SrTiO3 phase separation in La0.7Ca0.3MnO3 films: evidence for texture-driven optical anisotropy, nez B and Fontcuberta J 2003 Thickness dependence of the magnetic anisotropy in La2/3Ca1/3MnO3 thin films grown on LaAlO3 substrates, pp.4032-2635, 2000.

X. Chang-min, S. Ji-rong, W. Deng-jing, L. Guan-juan, Z. Hong-wei et al., Cationic diffusion in La2?3Ca1?3MnO3 thin films grown on LaAlO3 (001) substrates, Dependence of the coercivity of La0.67Ca0.33MnO3 films on substrate and thickness Chinese Phys, pp.252503-604, 2005.

C. M. Xiong, J. R. Sun, and B. Shen, Dependence of magnetic anisotropy of the La0.67Ca0.33MnO3 films on substrate and film thickness Solid State Commun, pp.465-474, 2005.

S. Valencia, G. A. Gudat, W. Abad, L. Balcells, L. Cavallaro et al., Mn valence instability in La2?3Ca1?3MnO3 thin films Phys, Magnetic and electric " dead " layers in (La0.7Sr0.3)MnO3 thin films J. Appl. Phys, pp.104402-3868, 2001.
DOI : 10.1103/physrevb.73.104402

URL : http://arxiv.org/pdf/0909.3037

C. Perroni, V. Cataudella, D. Filippis, G. Iadonisi, and G. , Modeling of strain effects in manganite films, Physical Review B, vol.191, issue.22, p.224424
DOI : 10.1016/S0304-8853(98)00375-8

URL : http://arxiv.org/pdf/cond-mat/0310758

J. W. Freeland, J. J. Kavich, K. E. Gray, L. Ozyuzer, H. Zheng et al., Suppressed magnetization at the surfaces and interfaces of ferromagnetic metallic manganites Electric and magnetic modulation of fully strained dead layers in La0.67Sr0.33MnO3 films Phys, Critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films Phys. Rev. B 78 094413 [73] Sun Y Thermodynamic Stability of Epitaxial Oxide Thin Films Adv. Mater, pp.315210-024412, 2007.

. Estrade?sestrade?s, J. M. Rebled, J. Arbiol, . Peiro?fpeiro?f, I. C. Infante et al., Effects of thickness on the cation segregation in epitaxial (001) and (110) La2/3Ca1/3MnO3 thin films, Microscopic origins for stabilizing room-temperature ferromagnetism in ultrathin manganite layers. Proc. Natl. Acad. Sci. U. S. A, pp.72507-11682, 2009.

D. Pesquera, G. Herranz, A. Barla, E. Pellegrin, F. Bondino et al., Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films, Ambaye H and Lauter V 2013 Inducing exchange bias in La0.67Sr0.33MnO3??/SrTiO3 thin films by strain and oxygen deficiency Phys. Rev, pp.1189-144427, 2012.
DOI : 10.1103/PhysRevB.66.134416

URL : http://www.nature.com/articles/ncomms2189.pdf

Q. Y. Xie, X. S. Wu, J. Li, B. Lv, J. Gao et al., Probing the dead layer thickness and its effect on the structure and magnetic properties in La2/3Ca1/3MnO3 thin films Thin Solid Films Intrinsic antiferromagnetic/insulating phase at manganite surfaces and interfaces, Atomic-resolution imaging of oxidation states in manganites Phys. Rev. B 79 085117 [82] Tokura Y and Nagaosa N 2000 Orbital Physics in Transition-Metal Oxides Science, pp.89-93, 2009.
DOI : 10.1016/j.tsf.2013.07.036

M. Calderón, L. Brey, and F. Guinea, Surface electronic structure and magnetic properties of doped manganites, Physical Review B, vol.38, issue.9, pp.6698-704, 1999.
DOI : 10.1103/PhysRevB.38.316

F. Cossu, U. Schwingenschlögl, G. Colizzi, A. Filippetti, V. Fiorentini et al., Surface antiferromagnetism and incipient metal-insulator transition in strained manganite films Phys, Rev. B Exchange bias J. Magn. Magn. Mater, vol.8786, issue.192, pp.214420-203, 1999.
DOI : 10.1103/physrevb.87.214420

URL : http://repository.kaust.edu.sa/kaust/bitstream/10754/315800/1/Surface%20antiferromagnetism%20and%20incipient%20metal-insulator%20transition%20in%20strained%20manganite%20films.pdf

M. Kiwi, Exchange bias theory, Journal of Magnetism and Magnetic Materials, vol.234, issue.3, pp.584-95, 2001.
DOI : 10.1016/S0304-8853(01)00421-8

J. He, A. Borisevich, S. V. Kalinin, S. J. Pennycook, and S. Pantelides, Control of Octahedral Tilts and Magnetic Properties of Perovskite Oxide Heterostructures by Substrate Symmetry Phys, Rev. Lett, vol.10589, p.227203, 2010.
DOI : 10.1103/physrevlett.105.227203

B. Cui, C. Song, G. Y. Wang, and H. Mao, Zeng F and Pan F 2013 Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film, Sci. Rep, vol.390, p.2542
DOI : 10.1038/srep02542

URL : http://www.nature.com/articles/srep02542.pdf

H. Chen and S. Ismail-beigi, manganites: A first-principles study, Physical Review B, vol.9, issue.2, p.24433, 2012.
DOI : 10.1103/PhysRevB.83.235112

R. Fernández-pacheco, A. , D. Teresa, J. M. Szkudlarek, A. Córdoba et al., Magnetization reversal in individual cobalt micro-and nanowires grown by focused-electron-beaminduced-deposition, Nanotechnology Nanotechnology, vol.12, issue.24, pp.475704-345703, 2009.

S. Valencia, L. Peña, Z. Konstantinovic, L. Balcells, R. Galceran et al., Intrinsic antiferromagnetic/insulating phase at manganite surfaces and interfaces, Journal of Physics: Condensed Matter, vol.26, issue.16, p.166001, 2014.
DOI : 10.1088/0953-8984/26/16/166001

URL : https://hal.archives-ouvertes.fr/hal-01766007