A. Spivak, A. Belenky, and O. Yadid-pecht, Very Sensitive Low-Noise Active-Reset CMOS Image Sensor With In-Pixel ADC, IEEE Transactions on Circuits and Systems II: Express Briefs, vol.63, issue.10, pp.939-943, 2016.
DOI : 10.1109/TCSII.2016.2539058

D. Ho, G. Gulak, and R. Genov, CMOS 3-T digital pixel sensor with in-pixel shared comparator, 2012 IEEE International Symposium on Circuits and Systems, pp.930-933, 2012.
DOI : 10.1109/ISCAS.2012.6272197

H. Zhu and T. Shibata, A real-time motion-feature-extraction vlsi employing digital-pixel-sensor-based parallel architecture, IEEE Transactions on Circuits and Systems for Video Technology, pp.1787-1799, 2014.

J. Crooks, . Bohndiek, . Cd-arvanitis, . Speller, . Xingliang et al., A CMOS Image Sensor With In-Pixel ADC, Timestamp, and Sparse Readout, IEEE Sensors Journal, vol.9, issue.1, pp.20-28, 2009.
DOI : 10.1109/JSEN.2008.2008407

C. Hwang, . Iw-kwon, H. Lee, and . Lee, CMOS readout integrated circuit involving pixel-level ADC for microbolometer FPAs, Infrared Technology and Applications XXXIV, pp.694029-694029, 2008.
DOI : 10.1117/12.780466

C. Reckleben, K. Hansen, P. Kalavakuru, J. Szyma´nskiszyma´nski, F. Erdinger et al., A 64-by-64 pixel-ADC matrix, 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pp.2015-2016, 2015.
DOI : 10.1109/NSSMIC.2015.7581817

C. Reckleben, P. Hansen, I. Kalavakuru, and . Diehl, 8-bit 5-MS/s per-pixel ADC in an 8-by-8 Matrix, 2011 IEEE Nuclear Science Symposium Conference Record, pp.2011-668, 2011.
DOI : 10.1109/NSSMIC.2011.6153987

A. Joseph, M. Schmitz, S. Kabeer-gharzai, . Balk?r, W. Michael et al., A programmable vision chip with pixel-neighborhood level parallel processing, 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp.2125-2128, 2015.

W. Jendernalik, On analog comparators for CMOS digital pixel applications. A comparative study, Bulletin of the Polish Academy of Sciences Technical Sciences, vol.64, issue.2, pp.271-278, 2016.
DOI : 10.1515/bpasts-2016-0030

URL : http://www.degruyter.com/downloadpdf/j/bpasts.2016.64.issue-2/bpasts-2016-0030/bpasts-2016-0030.xml

A. Joseph, . Schmitz, K. Mahir, S. Gharzai, . Balk?r et al., A 1000 frames/s vision chip using scalable pixel-neighborhoodlevel parallel processing, IEEE Journal of Solid-State Circuits, 2016.

Y. Joo, J. Park, K. S. Thomas, . Chung, A. Martin et al., Smart CMOS focal plane arrays: a Si CMOS detector array and sigma-delta analog-to-digital converter imaging system, IEEE Journal of Selected Topics in Quantum Electronics, vol.5, issue.2, pp.296-305, 1999.
DOI : 10.1109/2944.778309

URL : http://www.ece.gatech.edu/research/labs/pica/pdf/Joo99-JQE.pdf

G. Lisa and . Mcilrath, A low-power low-noise ultrawide-dynamic-range cmos imager with pixelparallel a/d conversion, IEEE Journal of Solid-State Circuits, vol.36, issue.5, pp.846-853, 2001.

Z. Ignjatovic, D. Maricic, F. Mark, and . Bocko, Low Power, High Dynamic Range CMOS Image Sensor Employing Pixel-Level Oversampling $\Sigma\Delta$ Analog-to-Digital Conversion, IEEE Sensors Journal, vol.12, issue.4, pp.737-746, 2012.
DOI : 10.1109/JSEN.2011.2158818

A. Ortiz-conde, J. Francisco, J. García-sánchez, A. T. Muci, . Barrios et al., Revisiting MOSFET threshold voltage extraction methods, Microelectronics Reliability, vol.53, issue.1, pp.90-104, 2013.
DOI : 10.1016/j.microrel.2012.09.015

D. Flandre, V. Kilchytska, and T. Rudenko, $g_{m}/I_{\rm d}$ Method for Threshold Voltage Extraction Applicable in Advanced MOSFETs With Nonlinear Behavior Above Threshold, IEEE Electron Device Letters, vol.31, issue.9, pp.31930-932, 2010.
DOI : 10.1109/LED.2010.2055829

J. Bing, . Sheu, L. Donald, P. Scharfetter, M. Ko et al., Bsim : Berkeley shortchannel igfet model for mos transistors, IEEE Journal of Solid-State Circuits, vol.22, issue.4, pp.558-566, 1987.

C. Christian, F. Enz, E. A. Krummenacher, and . Vittoz, An analytical mos transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications, Low-Voltage Low-Power Analog Integrated Circuits, pp.83-114, 1995.

R. Baker, Introduction to cmos design CMOS : Circuit Design, Layout, and Simulation, pp.1-30, 2010.

R. Baker, Per column one-bit adc for image sensors, US Patent, vol.7, p.456885, 2008.

M. Bigas, E. Cabruja, J. Forest, and J. Salvi, Review of CMOS image sensors, Microelectronics Journal, vol.37, issue.5, pp.433-451, 2006.
DOI : 10.1016/j.mejo.2005.07.002

S. Godara, N. Goyal, and M. Pattar, Efficient digital decimation filter designs for improved frequency response in high frequency applications, Proceedings of National Conference on Advances in Engineering and Technology, pp.38-42, 2014.

R. Laajimi, R. Khemiri, A. Ajmi, and M. Machhout, VLSI Design of a High Performance Decimation Filter Used for Digital Filtering, International Journal of Advanced Computer Science and Applications, vol.7, issue.1, p.2016
DOI : 10.14569/IJACSA.2016.070177

Z. Nasir-nabi-hurrah, A. Jan, S. A. Bhardwaj, A. Parah, and . Pandit, Oversampled sigma delta adc decimation filter : Design techniques, challenges, tradeoffs and optimization, Recent Advances in Engineering & Computational Sciences (RAECS), 2015 2nd International Conference on, pp.1-6, 2015.

H. Aboushady, Y. Dumonteix, M. Louerat, and H. Mehrez, Efficient polyphase decomposition of comb decimation filters in/spl sigma//spl delta/analogto-digital converters, Circuits and Systems Proceedings of the 43rd IEEE Midwest Symposium on, pp.432-435, 2000.

J. Robert, C. Gabor, V. Temes, R. Valencic, P. Dessoulavy et al., A 16-bit low-voltage CMOS A/D converter, IEEE Journal of Solid-State Circuits, vol.22, issue.2, pp.157-163, 1987.
DOI : 10.1109/JSSC.1987.1052697

J. Márkus, J. Silva, C. Gabor, and . Temes, Theory and applications of incremental, IEEE Transactions on Circuits and Systems I : Regular Papers, pp.678-690, 2004.

K. Murari, R. Etienne-cummings, N. Thakor, and G. Cauwenberghs, Which Photodiode to Use: A Comparison of CMOS-Compatible Structures, IEEE Sensors Journal, vol.9, issue.7, pp.752-760, 2009.
DOI : 10.1109/JSEN.2009.2021805

J. Hyung-bae, . Cho, . Kim, G. Lee, and . Cho, Performance comparison of cmosbased photodiodes for high-resolution and high-sensitivity digital mammography, Journal of Instrumentation, vol.6, issue.12, p.12046, 2011.

V. Goiffon, P. Cervantes, C. Virmontois, P. Franckcorbì-ere, M. Magnan et al., Generic Radiation Hardened Photodiode Layouts for Deep Submicron CMOS Image Sensor Processes, IEEE Transactions on Nuclear Science, vol.58, issue.6, pp.3076-3084, 2011.
DOI : 10.1109/TNS.2011.2171502

H. Tian, B. Fowler, E. Abbas, and . Gamal, Analysis of temporal noise in CMOS photodiode active pixel sensor, IEEE Journal of Solid-State Circuits, vol.36, issue.1, pp.92-101, 2001.
DOI : 10.1109/4.896233

R. Turchetta, . Berst, . Casadei, . Claus, . Colledani et al., A monolithic active pixel sensor for charged particle tracking and imaging using standard vlsi cmos technology. Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, pp.458677-689, 2001.
DOI : 10.1016/s0168-9002(00)00893-7

URL : https://hal.archives-ouvertes.fr/in2p3-00012191

Y. Degerli, F. Lavernhe, P. Magnan, A. Jean, and . Farré, Analysis and reduction of signal readout circuitry temporal noise in CMOS image sensors for low-light levels, IEEE Transactions on Electron Devices, vol.47, issue.5, pp.949-962, 2000.
DOI : 10.1109/16.841226

I. Brouk, A. Nemirovsky, K. Alameh, and Y. Nemirovsky, Analysis of noise in CMOS image sensor based on a unified time-dependent approach, Solid-State Electronics, vol.54, issue.1, pp.28-36, 2010.
DOI : 10.1016/j.sse.2009.09.003

H. Jeon and Y. Kim, A novel low-power, low-offset, and high-speed CMOS dynamic latched comparator, Analog Integrated Circuits and Signal Processing, vol.39, issue.9, pp.337-346, 2012.
DOI : 10.1109/JSSC.2004.829399

R. Figueras, R. Martínez, L. Terés, and F. Serra-graells, Experimental characterization of a 10µw 55µm-pitch fpn-compensated cmos digital pixel sensor for x-ray imagers. Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, pp.19-27, 2014.

D. Woo, H. Kim, and . Lee, Current Input Extended Counting ADC With Wide Dynamic Range for LWIR FPAs, IEEE Sensors Journal, vol.9, issue.4, pp.441-448, 2009.
DOI : 10.1109/JSEN.2008.2012198

C. Shoushun, F. Boussaid, A. Bermak, J. Crooks, . Bohndiek et al., Robust intermediate read-out for deep submicron technology cmos image sensors A cmos image sensor with in-pixel adc, timestamp, and sparse readout, IEEE Sensors Journal IEEE Sensors Journal, vol.826, issue.91, pp.286-29420, 2008.

A. Joseph, . Schmitz, K. Mahir, S. Gharzai, . Balk?r et al., A 1000 frames/s vision chip using scalable pixel-neighborhood-level parallel processing, IEEE Journal of Solid-State Circuits, vol.52, issue.2, pp.556-568, 2017.

C. Posch, D. Matolin, and R. Wohlgenannt, A QVGA 143dB dynamic range asynchronous address-event PWM dynamic image sensor with lossless pixel-level video compression, 2010 IEEE International Solid-State Circuits Conference, (ISSCC), pp.400-401, 2010.
DOI : 10.1109/ISSCC.2010.5433973

K. Hassanli, R. Sayed-masoud-sayedi, A. Dehghani, J. Jalili, and . Wikner, A highly sensitive, low-power, and wide dynamic range CMOS digital pixel sensor, Sensors and Actuators A: Physical, vol.236, pp.82-91, 2015.
DOI : 10.1016/j.sna.2015.10.032

H. Zhu and T. Shibata, A real-time motion-feature-extraction vlsi employing digital-pixel-sensor-based parallel architecture, IEEE Transactions on Circuits and Systems for Video Technology, pp.1787-1799, 2014.

S. Hanson, Z. Foo, D. Blaauw, and D. Sylvester, A 0.5 V Sub-Microwatt CMOS Image Sensor With Pulse-Width Modulation Read-Out, IEEE Journal of Solid-State Circuits, vol.45, issue.4, pp.759-767, 2010.
DOI : 10.1109/JSSC.2010.2040231

URL : https://hal.archives-ouvertes.fr/hal-01645700

K. Cho, S. Lee, O. Kavehei, and K. Eshraghian, High Fill Factor Low-Voltage CMOS Image Sensor Based on Time-to-Threshold PWM VLSI Architecture, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp.1548-1556, 2014.
DOI : 10.1109/TVLSI.2013.2275161

Z. Ignjatovic, D. Maricic, F. Mark, and . Bocko, Low Power, High Dynamic Range CMOS Image Sensor Employing Pixel-Level Oversampling $\Sigma\Delta$ Analog-to-Digital Conversion, IEEE Sensors Journal, vol.12, issue.4, pp.737-746, 2012.
DOI : 10.1109/JSEN.2011.2158818

D. Ho, G. Gulak, and R. Genov, CMOS 3-T digital pixel sensor with in-pixel shared comparator, 2012 IEEE International Symposium on Circuits and Systems, pp.930-933, 2012.
DOI : 10.1109/ISCAS.2012.6272197

K. Hassanli, . Sayed-masoud, J. Sayedi, and . Wikner, A compact, low-power, and fast pulse-width modulation based digital pixel sensor with no bias circuit, Sensors and Actuators A: Physical, vol.244, pp.243-251, 2016.
DOI : 10.1016/j.sna.2016.04.049

X. Zhang, S. Leomant, K. L. Lau, and A. Bermak, A Compact Digital Pixel Sensor (DPS) Using 2T-DRAM, Journal of Low Power Electronics and Applications, vol.33, issue.1, pp.77-96, 2011.
DOI : 10.1109/4.705359

URL : http://www.mdpi.com/2079-9268/1/1/77/pdf

G. Vergara, . Linares-herrero, . Gutiérrez´alvarez, . Montojo, . Gomez et al., 80??80 VPD PbSe: the first uncooled MWIR FPA monolithically integrated with a Si-CMOS ROIC, Infrared Technology and Applications XXXIX, pp.87041-87042, 2013.
DOI : 10.1117/12.2015290

H. Sugo, S. Wakashima, R. Kuroda, Y. Yamashita, H. Sumi et al., A dead-time free global shutter CMOS image sensor with in-pixel LOFIC and ADC using pixel-wis e connections, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), pp.1-2, 2016.
DOI : 10.1109/VLSIC.2016.7573544

V. Suntharalingam, R. Berger, S. Clark, J. Knecht, A. Messier et al., A 4-Side Tileable Back-Illuminated 3D-Integrated Mpixel CMOS Image Sensor, 2009 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp.38-39, 2009.
DOI : 10.1109/ISSCC.2009.4977296/mm1

C. Chih-min, . Liu, M. Manoj, C. Mhala, H. Chang et al., 8 a 1.5 v 33mpixel 3d-stacked cmos image sensor with negative substrate bias, Solid-State Circuits Conference (ISSCC), 2016 IEEE International, pp.124-125, 2016.

K. Shiraishi, Y. Shinozuka, T. Yamashita, K. Sugiura, N. Watanabe et al., Masanori Furuta, and Tetsuro Itakura. 6.7 a 1.2 e-temporal noise 3d-stacked cmos image sensor with comparator-based multiplesampling pga, Solid-State Circuits Conference (ISSCC), 2016 IEEE International, pp.122-123, 2016.

K. Shang-fu-yeh, H. Chou, C. Tu, . Yi-ping, F. Chao et al., A 0.66 e-rms temporal-readout-noise 3d-stacked cmos image sensor with conditional correlated multiple sampling (ccms) technique, VLSI Circuits (VLSI Circuits), 2015 Symposium on, pp.84-85, 2015.

F. Raymundo, P. Martin-gonthier, R. Molina, S. Rolando, and P. Magnan, Exploring the 3D integration technology for CMOS image sensors, 2013 IEEE 11th International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics, pp.1-5, 2013.
DOI : 10.1109/ECMSM.2013.6648935

M. Goto, K. Hagiwara, Y. Honda, M. Nanba, H. Ohtake et al., 128 × 96 Pixel-parallel three-dimensional integrated CMOS image sensors with 16-bit A/D converters: By direct bonding with embedded Au electrodes, 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), pp.2015-2016, 2015.
DOI : 10.1109/S3S.2015.7333539

M. Suarez, M. Victor, C. D. Brea, R. Matas, G. Carmona et al., In-pixel ADC for a vision architecture on CMOS-3D technology, 2010 IEEE International 3D Systems Integration Conference (3DIC), pp.1-7, 2010.
DOI : 10.1109/3DIC.2010.5751464

M. Suarez, M. Víctor, J. Brea, R. Fernandez-berni, G. Carmona-galan et al., CMOS-3D Smart Imager Architectures for Feature Detection, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol.2, issue.4, pp.723-736, 2012.
DOI : 10.1109/JETCAS.2012.2223552

URL : https://digital.csic.es/bitstream/10261/83543/4/cmos3d.pdf

S. Bisottoa, L. Borniola, and . Mollard, A 25µm pitch lwir staring focal plane array with pixel-level 15-bit adc roic achieving 2mk netd, Proc. of SPIE, pp.78340-78341, 2010.

D. Lee, . Kang, . Park, . Cho, . Lim et al., A second-order sigma-delta pixel sensor for x-ray applications, Consumer Electronics (ICCE), 2015 IEEE International Conference on, pp.259-260, 2015.

S. Kleinfelder, A 10,000 frames/s 0.18 um cmos digital pixel sensor with pixel-level memory, ISSCC Dig. Tech. Papers, 2001.

J. Maria-margarit, G. Vergara, V. Villamayor, R. Gutierrez-alvarez, and C. Fernandez-montojo, Lluís Terés, and Francisco Serra-Graells. A 2 kfps sub-µw/pix uncooled-pbse digital imager with 10 bit dr adjustment and fpn correction for high-speed and low-cost mwir applications, IEEE Journal of Solid-State Circuits, issue.10, pp.502394-2405, 2015.

S. Vargas-sierra, G. Liñán-cembrano, and . Vázquez, A 151 dB High Dynamic Range CMOS Image Sensor Chip Architecture With Tone Mapping Compression Embedded In-Pixel, IEEE Sensors Journal, vol.15, issue.1, pp.180-195, 2015.
DOI : 10.1109/JSEN.2014.2340875

D. Ho, . Omair-noor, J. Ulrich, G. Krull, R. Gulak et al., Cmos tunablecolor image sensor with dual-adc shot-noise-aware dynamic range extension, IEEE Transactions on Circuits and Systems I : Regular papers, issue.8, pp.602116-2129, 2013.
DOI : 10.1109/tcsi.2013.2239115

E. Charbon, . Scandini, M. Mata-pavia, and . Wolf, A dual backside-illuminated 800-cell multi-channel digital SiPM with 100 TDCs in 130nm 3D IC technology, 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pp.2014-2015, 2014.
DOI : 10.1109/NSSMIC.2014.7431246

K. Kiyoyama, Y. Sato, H. Hashimoto, K. Lee, T. Fukushima et al., A block-parallel ADC with digital noise cancelling for 3-D stacked CMOS image sensor, 2013 IEEE International 3D Systems Integration Conference (3DIC), pp.1-4, 2013.
DOI : 10.1109/3DIC.2013.6702363

J. Mata-pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, A 1× 400 backside-illuminated spad sensor with 49.7 ps resolution, 30 pj/sample tdcs fabricated in 3d cmos technology for near-infrared optical tomography, IEEE Journal of Solid-State Circuits, issue.10, pp.502406-2418, 2015.

Z. Wang, A. C. Bovik, R. Hamid, . Sheikh, P. Eero et al., Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004.
DOI : 10.1109/TIP.2003.819861

URL : http://www.cns.nyu.edu/~zwang/files/papers/ssim.pdf

A. Hore and D. Ziou, Image Quality Metrics: PSNR vs. SSIM, 2010 20th International Conference on Pattern Recognition, pp.2366-2369, 2010.
DOI : 10.1109/ICPR.2010.579

A. Rashid and M. K. Rahim, Classification, Analysis and Comparison of Non-Blind Image Quality Measure, International Journal of Signal Processing, Image Processing and Pattern Recognition, vol.9, issue.4, pp.347-360, 2016.
DOI : 10.14257/ijsip.2016.9.4.31

J. Lu, K. Rose, and S. Vitkavage, 3D Integration, pp.25-26, 2007.
DOI : 10.1109/ECTC.2007.373811

B. Vandevelde, C. Okoro, M. Gonzalez, B. Swinnen, and E. Beyne, Thermo-mechanics of 3D-wafer level and 3D stacked IC packaging technologies, EuroSimE 2008, International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, pp.1-7, 2008.
DOI : 10.1109/ESIME.2008.4525106

P. Garrou, C. Bower, and P. Ramm, Handbook of 3d integration : volume 1-technology and applications of 3D integrated circuits, 2011.

P. Garrou, P. Koyanagi, and . Ramm, Handbook of 3d integration : 3d process technology, 2014.

J. Steven and . Koester, 3D integration for VLSI systems, 2011.

R. Beica, 3D integration: Applications and market trends, 2015 International 3D Systems Integration Conference (3DIC), pp.5-6, 2015.
DOI : 10.1109/3DIC.2015.7334567

D. Zhang, J. James, and . Lu, 3D Integration Technologies: An Overview, Materials for Advanced Packaging, pp.1-26, 2017.
DOI : 10.1147/JRD.2008.5388563

R. Chanchani, 3D Integration Technologies ??? An Overview, Materials for Advanced Packaging, pp.1-50, 2009.
DOI : 10.1007/978-0-387-78219-5_1

X. David, B. Yang, and . Fowler, A nyquist-rate pixel-level adc for cmos image sensors, IEEE Journal of Solid-State Circuits, vol.34, issue.3, pp.348-356, 1999.

M. Zhang and A. Bermak, CMOS Image Sensor with On-Chip Image Compression: A Review and Performance Analysis, Journal of Sensors, vol.44, issue.10, 2010.
DOI : 10.1109/JSSC.2007.916618

URL : http://doi.org/10.1155/2010/920693

Y. Oike, CMOS Image Sensor With Per-Column ???? ADC and Programmable Compressed Sensing, IEEE Journal of Solid-State Circuits, vol.48, issue.1, pp.318-328, 2013.
DOI : 10.1109/JSSC.2012.2214851

S. Chen, A. Bermak, and Y. Wang, A CMOS Image Sensor With On-Chip Image Compression Based on Predictive Boundary Adaptation and Memoryless QTD Algorithm, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.19, issue.4, pp.538-547, 2011.
DOI : 10.1109/TVLSI.2009.2038388

M. Dadkhah, S. Jamal-deen, and . Shirani, Block-based compressive sensing in a cmos image sensor, IEEE Sensors Journal, vol.12, issue.99, pp.1-1, 2012.

J. Choi, S. Park, J. Cho, and E. Yoon, A 3.4-$\mu$W Object-Adaptive CMOS Image Sensor With Embedded Feature Extraction Algorithm for Motion-Triggered Object-of-Interest Imaging, IEEE Journal of Solid-State Circuits, vol.49, issue.1, pp.289-300, 2014.
DOI : 10.1109/JSSC.2013.2284350

URL : https://hal.archives-ouvertes.fr/in2p3-00021589

D. Pellion, N. Jradi, . Brochard, D. Prêle, and . Ginhac, Single-photon avalanche diodes (spad) in cmos 0.35 µm technology. Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, pp.380-385, 2015.
DOI : 10.1016/j.nima.2015.01.100

URL : https://hal.archives-ouvertes.fr/hal-01196570

N. Brochard and D. Ginhac, In-pixel ADC in 3D technology, 2017 15th IEEE International New Circuits and Systems Conference (NEWCAS), pp.53-56, 2017.
DOI : 10.1109/NEWCAS.2017.8010103

N. Brochard, J. Nebhen, and D. Ginhac, 3D-IC, Proceedings of the 10th International Conference on Distributed Smart Camera, ICDSC '16, pp.92-97, 2016.
DOI : 10.1109/TED.2006.885642

URL : https://hal.archives-ouvertes.fr/hal-01473921

N. Brochard, J. Nebhen, J. Dubois, and D. Ginhac, Design of a 3d- ic multi-resolution digital pixel sensor, Real-Time Image and Video Processing, p.989707, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01473921

D. Pellion, . Jradi, . Brochard, D. Prêle, and . Ginhac, Dark count rate measurement in geiger mode and simulation of a photodiode array, 2 with cmos 0.35 technology and 3 transistorquenching. 4, 7th international conference on New Developments in Photodetection, 2014.

D. Le-capteur, image CMOS dans les différents domaines d'activité selon YOLE (2013-2014)

V. En-haut,-variation-de-i-d-en-fonction-de and V. Gs, En bas, logarithme de I D en fonction de V GS pour V DS = 1, 5 V (NMOS avec W = 150 nm et L = 130 nm), p.75

. En-haut and .. De-gauchè-a-droite, le gain en fonction de la tension d'entrée et la caractéristique entrée-sortie. En bas, de gauchè a droite : le courant généré par le transistor N 2 en fonction de la tension d'entrée et le bruit ramené en entrée en fonction de la fréquence, p.89

. En-haut and .. De-gauchè-a-droite, variation de la capacité de la diode en fonction de la tension aux bornes de celle-ci et variation du KTC noise en fonction de la tension aux bornes de la diode. En bas, variation du KTC noise en fonction de la température, p.96

=. Ref and ?. , Sign ) simulé pour N = 1023 et une précision du comparateur de 6 mV, p.130

=. Ref and ?. , Sign ) simulé (en bleu) pour N = 1023 et une précision du comparateur de 2, 5 mV et sa courbe de tendance (en rouge), p.135

=. Ref and ?. , Sign ) simulé (en bleu) pour N = 1023 et une précision du comparateur de 1, 4 mV et sa courbe de tendance (en rouge), p.136

=. Ref and ?. , Sign ) simulé (en bleu) et sa courbe de tendance (en rouge) pour N = 1023, p.138

.. Les-quatre-solutions-possibles-de-positionnement, 172 TABLE DES FIGURES 5.9 1 ` ere possibilité d'intégration, p.174

V. En-haut,-variation-de-i-d-en-fonction-de and V. Gs, En bas, logarithme de I D en fonction de V GS pour V DS = 1, 5 V (NMOS avec W = 10 µm et L = 130 nm), p.209

V. En-haut,-variation-de-i-d-en-fonction-de and V. Gs, En bas, logarithme de I D en fonction de V SG pour V SD = 1, 5 V (PMOS avec W = 150 nm et L = 130 nm), p.210

V. De-i-d-en-fonction-de and V. Sg, En bas, logarithme de I D en fonction de V SG pour V SD = 1, 5 V (PMOS avec W = 10 µm et L = 130 nm), p.211

V. Quelques-paramètres-physiques-de-la-technologie-avec, la tension de seuil, ? 0 : la permittivité diélectrique du vide, ? OX : la constante diélectrique du dioxyde de silicium, ? sat : la vitesse de saturation des porteurs, t ox : l'´ epaisseur de l'oxyde, C ox : la capacité surfacique de l'oxyde, I ON : le courantàcourantà l'´ etat passant et I OF F : le courantàcourantà l'´ etat bloqué, p.79