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Abstract

Interpolation problems have been widely studied in Computer Aided Geometric Design

(CAGD). They consist in the construction of curves and surfaces that pass exactly

through a given data set, such as point clouds, tangents, curvatures, lines/planes, etc.

In general, these curves and surfaces are represented in a parametrized form. This

representation is independent of the coordinate system, it adapts itself well to geometric

transformations and the differential geometric properties of curves and surfaces are

invariant under reparametrization. In this context, the main goal of this thesis is to

present 2D and 3D data interpolation schemes by means of Algebraic-Trigonometric

Pythagorean-Hodograph (ATPH) curves. The latter are parametric curves defined

in a mixed algebraic-trigonometric space, whose hodograph satisfies a pythagorean

condition. This representation allows to analytically calculate the curve’s arc-length

as well as the rational-trigonometric parametrization of the offsets curves. These

properties are usable for the design of geometric models in many applications including

manufacturing, architectural design, shipbuilding, computer graphics, and many more.

In particular, we are interested in the geometric modeling of odontological objects. To

this end, we use the spatial ATPH curves for the construction of developable patches

within 3D odontological volumes. This may be a useful tool for extracting information

of interest along dental structures.

We give an overview of how some similar interpolating problems have been addressed by

the scientific community. Then in chapter 2, we consider the construction of planar C2

ATPH spline curves that interpolate an ordered sequence of points. This problem has

many solutions, its number depends on the number of interpolating points. Therefore,

we employ two methods to find them. Firstly, we calculate all solutions by a homotopy

method. However, it is empirically observed that only one solution does not have any

self-intersections. Hence, the Newton-Raphson iteration method is used to directly

compute this “good” solution. Note that C2 ATPH spline curves depend on several

free parameters, which allow to obtain a diversity of interpolants. Thanks to these

shape parameters, the ATPH curves prove to be more flexible and versatile than their

polynomial counterpart, the well known Pythagorean-Hodograph (PH) quintic curves

and polynomial curves in general. These parameters are optimally chosen through a

minimization process of fairness measures. We design ATPH curves that closely agree

with well-known trigonometric curves by adjusting the shape parameters.

We extend the planar ATPH curves to the case of spatial ATPH curves in chapter 3.

This characterization is given in terms of quaternions, because this allows to properly

analyze their properties and simplify the calculations. We employ the spatial ATPH

curves to solve the first-order Hermite interpolation problem. The obtained ATPH

interpolants depend on three free angular values. As in the planar case, we optimally



choose these parameters by the minimization of integral shape measures. This process

is also used to calculate the C1 interpolating ATPH curves that closely approximate

well-known 3D parametric curves. To illustrate this performance, we present the

process for some kind of helices. In chapter 4 we then use these C1 ATPH splines for

guiding developable surface patches, which are deployed within odontological computed

tomography (CT) volumes, in order to visualize information of interest for the medical

professional. Particularly, we construct piecewise conical surfaces along smooth ATPH

curves to display information related to the anatomical structure of human jawbones.

This information may be useful in clinical assessment, diagnosis and/or treatment plan.

Finally, the obtained results are analyzed and conclusions are drawn in chapter 5.

Key words: Algebraic-Trigonometric Pythagorean-Hodograph curve, Pythagorean-

Hodograph quintic curve, cubic B-spline curve, developable surface, computed tomog-

raphy.



Résumé

Les problèmes d’interpolation ont été largement étudiés dans la Conception Géométrique

Assistée par Ordinateur (CGAO). Ces problèmes consistent en la construction de courbes

et de surfaces qui passent exactement par un ensemble de données, tel que, des nuages

de points, des tangentes, des courbures, des lignes/plans, etc. En général, ces courbes

et surfaces sont représentées sous une forme paramétrique. Cette représentation est

indépendante du système de coordonnées, elle s’adapte bien aux transformations

géométriques et les propriétés géométriques différentielles des courbes et des surfaces

sont invariantes sous réparametrization. Dans ce cadre, l’objectif principal de cette

thèse est de présenter des méthodes d’interpolation de données 2D et 3D au moyen de

courbes Algébriques Trigonométriques à Hodographe Pythagorien (abréviation: courbes

ATPH). Celles-ci sont des courbes paramétriques définies dans un espace algébrique-

trigonométrique mixte, dont l’hodographe satisfait une condition pythagorienne. Cette

représentation permet de calculer analytiquement l’abscisse curviligne aussi bien que

la paramétrisation rationnelle-trigonométrique des courbes offset. Ces propriétés

sont utilisables pour la conception de modèles géométriques dans de nombreuses

applications. En particulier, nous nous intéressons à la modélisation géométrique

d’objets odontologiques. À cette fin, nous utilisons les courbes spatiales ATPH pour la

construction de surfaces développables dans des volumes 3D odontologiques.

Dans l’introduction nous donnons un survol sur comment des problèmes d’interpolation

similaires ont été abordés par la communauté scientifique. Ensuite, dans le chapitre

2 nous considérons la construction de courbes planes ATPH avec continuité C2 qui

interpolent une séquence ordonnée de points. Nous employons deux méthodes pour

résoudre ce problème. Nous calculons d’abord toutes les solutions avec une méthode

d’homotopie. Empiriquement, il a été observé qu’il n’y a qu’une seule “bonne” solution.

Par conséquent, la méthode d’itération de Newton-Raphson a été utilisée pour calculer

directement cette “bonne” solution. Notez que les courbes C2 ATPH dépendent de

plusieurs paramétres libres, qui permettent d’obtenir une diversité d’interpolants.

Grâce à ces paramètres de forme, les courbes ATPH se révèlent plus flexibles et plus

polyvalentes que leur homologue polynomial, les courbes quintiques à Hodographe

Pythagorien (courbes PH) et les courbes polynomiales en général. Ces paramétres sont

choisis de maniére optimale grâce à un processus de minimisation de fonctionnelles de

forme. Nous réussissons de bien approximer des courbes trigonométriques connues par

des courbes ATPH en ajustant les paramètres de forme.

Nous étendons les courbes ATPH planes à l’espace tri-dimensionnel, dans le chapitre

3. Cette caractérisation 3D est donnée en termes de quaternions, car cela permet

d’analyser de manière appropriée leurs propriétés et de simplifier les calculs. Ensuite,

nous utilisons les courbes spatiales ATPH pour résoudre le problème d’interpolation



Hermite de premier ordre. Les interpolants ATPH obtenues dependent de trois valeurs

angulaires libres. Comme dans le cas plan, nous identifions de maniére optimale

ces paramètres en minimisant des fonctionnelles de forme. Ce processus est utilisé

pour calculer les courbes ATPH interpolantes qui approchent étroitement des courbes

paramétriques 3D bien connues. Pour illustrer cette performance, nous présentons le

processus pour une sorte de hélices. Dans le chapitre 4, nous utilisons ces splines ATPH

spatiales C1 continues pour guider des facettes développables, qui sont déployées à

l’intérieur de volumes tomodensitométriques (CT) odontologiques, afin de visualiser

des informations d’intérêt pour le professionnel de santé. En particulier, nous con-

struisons des surfaces coniques par morceaux au long de courbes ATPH pour afficher

des informations relatives à la structure anatomique des os de la mâchoire humaine.

Cette information peut être utile dans l’évaluation clinique, diagnostic et/ou plan de

traitement.

Enfin, nous présentons les conclusions et les analyses dans le chapitre 5.

Mots clés: Courbe Algébrique Trigonométrique à Hodographe Pythagorien, courbe

quintique à Hodographe Pythagorien, courbe B-spline cubique, facette développable,

volume odontologique
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Chapter 1

Introduction

Free-form curves and surfaces have been widely studied in Computer Aided Geometric

Design (CAGD) [1, 2]. Among the schemes used in this area to construct curves and

surfaces is the concept of interpolation, which consists in designing curves and surfaces

that satisfy prescribed geometrical constraints, such as exact points, tangents, curva-

tures, contact elements (lines/planes), etc. The most commonly used curve types in

CAGD for interpolating 2D and 3D point sets are parametric curves such as polynomial

splines, Bézier curves and B-spline curves.

Polynomial splines consist of piecewise polynomials that interpolate a set of data points

and minimize certain energy functionals. Various continuity conditions can be specified

in the data points to impose different degrees of smoothness of the resulting curve. The

most popular spline for interpolating a sequence of points is the cubic spline consisting

of piecewise cubic polynomials and joining with C2 continuity in the data points. These

curves were developed in the shipbuilding context since they simulate the behavior of

wooden splines used for constructing ships, see, e.g., [3]. Subsequently, they were exten-

sively studied and employed in many applications in CAGD, see, e.g., [3–9].

In the mid 1950’s a new class of parametric curves called Bézier curves were introduced

by the engineers Pierre Bézier and Paul de Casteljau in the French automobile industry,

see [10]. These curves are defined in terms of the Bernstein polynomials and they are

controlled by a sequence of points called control points. By moving these points we can

modify the shape of the curve. P. de Casteljau designed a recursive method to evaluate

Bézier curves called De Casteljau’s algorithm. This algorithm has become an important

computational tool for the design of Bézier curves. In addition to this feature, Bézier

curves possess significant properties such as affine invariance, end point interpolation,

convex hull property, variation diminishing property, etc., which make them desirable

for modeling smooth curves and surfaces in CAGD and related fields, see, e.g., [11–13].

Furthermore, we can define a Bézier spline curve as a sequence of Bézier segments joined

1
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at common end points with a certain continuity depending on the application. These

splines have been used to solve planar and spatial interpolation problems see, e.g., [14–

18]. The Bézier curves were extended to well-known B-spline curves, which are piecewise

polynomials defined by a sequence of control points and a knot vector. B-spline curves

have similar properties as Bézier curves and B-splines provide more flexibility than the

latter. These curves are a powerful tool to represent free-form shapes and they have

been used extensively to solve 2D and 3D interpolation problems in CAGD, see, e.g.,

[19–22].

Additionally, within the family of parametric curves suitable to solve interpolating prob-

lems, are also the well-known Pythagorean Hodograph (PH) curves, which are polyno-

mial parametric curves whose hodograph or derivative satisfies a pythagorean condition.

These curves have been extensively studied, see, e.g., [23–33]. The PH curves possess

significant computational advantages over polynomial curves in general. Among its most

important properties are: its arc length can be computed exactly, they have rational off-

sets and they exhibit smoother curvature profiles than the polynomial curves in the case

of interpolation of given points and tangents. A polynomial PH curve is usually obtained

by the integration of its hodograph, which is represented by a complex polynomial for

a planar PH curve or a quaternion polynomial for a spatial PH curve (see, e.g., [34]).

In the case of higher dimensional curves Clifford algebras are involved ([35, 36]). The

lowest degree PH curves with sufficient shape flexibility for interpolation and approxi-

mation problems are cubic and quintic curves. Interpolation schemes using planar cubic

PH curves can be found in [37–40] and spatial cubics PH curves are considered in [41–

44]. Lately, cubic PH curves have been extended to cycloidal curves, which were called

Pythagorean Hodograph Cycloidal curves (shortly PHC curves), these curves were used

to solve the C1 Hermite interpolation problem, see [45]. For planar quintic PH curves,

the C1 Hermite interpolation problem was studied in [46], C2 splines that interpolate a

set of data points were constructed in [24–26] and the G1 Hermite interpolation prob-

lem is examined in [47]. In the case of spatial PH quintics, the problem of C1 Hermite

interpolation is done in [31, 32], the construction of C2 splines that interpolate given

point data with prescribed end conditions is discussed in [33, 48, 49] and spatial G2

continuous curves composed of pairs of PH quintic spiral segments is considered in [50].

Recently, the PH curves have been extended to trigonometric Pythagorean Hodograph

curves defined over a mixed algebraic-trigonometric space by Romani et al, in [51]. This

new class of PH curves was called Algebraic-Trigonometric Pythagorean Hodograph

(ATPH) curves and they have an analogous property for its hodograph as in the case

of PH curves. Besides, these curves enjoy the same computational advantages as their

polynomial counterpart. Romani et al. solved the C1 Hermite interpolation problem

and the problem of joining G2 continuously line segments and circles by ATPH curves

of monotone curvature, see [51]. Thanks to the shape parameter of these curves, the
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ATPH solutions of the aforementioned problems prove to be more flexible and versatile

than the PH quintic solutions.

On the other hand, there are many methods that allow to solve the interpolation prob-

lems of spatial data sets by surfaces. In the case of interpolating scattered point clouds,

parametric and non-parametric methods have been studied, such as, B-splines or NURBS

[52–55], radial basis functions [56], kernel smoothing techniques [57] and triangular

meshes [58, 59]. In the case of interpolating lines and planes, methods to solve it by

ruled surfaces have been proposed in several publications, see, e.g., [60–62]. A surface is

called ruled surface if it is generated by a one-parameter family of lines. Ruled surfaces

are among the simplest surfaces used in design and modeling. A special case of ruled

surfaces are developable surfaces, which can be unfolded into a plane without distortion.

We can find several publications on interpolation and approximation with this kind of

surfaces, see, e.g., [63–65]. Developable surfaces have been used in engineering, design

and manufacture, computer graphics and more recently in the medical field.

In the above interpolation contexts, the main objectives of this thesis are to solve prac-

tical interpolation problems related to 2D and 3D data with ATPH curves, as well as

the interpolation of lines/plane pairs by developable surfaces. The latter surface in-

terpolation aims at visualizing odontological information contained in 3D tomographic

volumes. In particular, we solve the following three interpolation problems:

(1) Interpolating a planar sequence of points q0 , . . . ,qN together with prescribed end

conditions by a planar C2 ATPH spline curve.

(2) Constructing a spatial interpolating ATPH curve for any set of spatial C1 Hermite

data, i.e., two points pi,pf with associated first derivatives di,df .

(3) Interpolating pairs of consecutive lines/planes of a given sequence {(e
k
, τ

k
)}k=1,...,n

by developable patches with G1 continuity along spatial ATPH curves.

Initially, we study the construction of planar C2 ATPH splines that interpolate a given

sequence of points, which is described in Chapter 2. This construction involves the

solution of a quadratic system in complex unknowns. In order to determine it, we

extend the methods used to solve a similar problem by PH quintic curves (see [24–26])

to our case of ATPH solutions. In particular, we first consider a homotopy method that

allows to find all possible ATPH spline curves that interpolate a given set of points.

We observe that only one solution of this family is free of loops. Therefore, we use the

Newton-Raphson method to directly construct this best interpolant. The resulting C2

ATPH spline depends on a sequence of free parameters, which can be used to adjust its

shape according to the application. Hence, we apply an optimization method to minimize

various fairness functionals that allow to optimally find these parameters. Moreover,



Introduction 4

we observe that by adjusting the shape parameters, the planar interpolating C2 ATPH

splines approximate very well, well-known trigonometric curves, such as circles, limaçons,

cardiods, deltoids, etc.

As a natural extension of the planar ATPH curves, we study the construction of spatial

ATPH curves in Chapter 3. The spatial ATPH curves are defined with respect to four

functions in a trigonometric space. We observe that this definition is not very appropriate

to attempt solving classical interpolation problems. Therefore, we use a representation

in terms of quaternions that facilitates the formulation and analysis of such interpolants,

as was done in the case of spatial PH quintic curves in [31, 32]. In particular, we solve the

problem of Hermite interpolation by spatial ATPH curves and we analyze the obtained

solutions. The use of the quaternion representation of ATPH curves allows to reduce

the aforementioned problem to the solution of a system of three equations in three

unknowns. The solution of this system accepts a closed-form and it can be expressed as

a three-parameter family, which contains all ATPH interpolants to given spatial Hermite

data. In order to fix these three parameters, we consider the minimization of integral

shape measures and we compare the resulting ATPH interpolants with their polynomial

counterpart, the PH quintic Hermite interpolants. As in the planar case, we observe

that calculating the free parameters by minimizing a suitable functional, the ATPH curve

interpolating given end points and end tangents from known 3D parametric curves closely

agrees with the corresponding parametric curve. Thus, the ATPH Hermite interpolation

scheme has immediate application in the smooth interpolation of ordered sequences of

points and tangents by piecewise ATPH curves. Therefore, we study the possibility

of using these curves for constructing piecewise conical surfaces that allow to visualize

information of interest in the odontological area in Chapter 4. For this purpose we

revisit various publications that solve analogous problems. A first approach in that

direction was presented in the Visible Human Project [66], which is a portal that offers

a computational tool for extracting information of organs along planar oblique slices. A

more interesting problem is the information extraction along developable curved slices,

because of the possibility of unfolding these surfaces into the plane without distortion,

which might be useful in surgical planning. Particularly, surface flattening in medical

imaging has been extensively studied in recent years, because it can help to detect

anatomic abnormalities. For instance, in [67–69] several algorithms have been proposed

for unfolding surfaces obtained from 3D colon computed tomography (CT), which might

be useful for detecting the presence of colon polyps and other pathologies. Angenent

et al. proposed in [70] a technique for flattening the brain surface in order to study

its geometry. Another application was proposed in [71–73] for extracting information

of organs along developable curved slices, which might become a useful tool for the

medical professional to make more accurate diagnoses. For instance, the extraction of

information about 3D volumes contained in cylinders built on plane curves was proposed
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by Figuereido and Hersch in [72]. This has been generalized to developable surfaces by

Paluszny in [73]. But the disadvantages of these methods are that the resulting surfaces

are not easy to adjust to a prescribed area and the unfolding of these surfaces requires a

numerical method. Initially, to overcome these difficulties, we use the method presented

by Leopoldseder and Pottmann in [74] for constructing conical surfaces that model

curved slices containing odontological information. The development of these surfaces

can be explicitly calculated without numerical integration. However, this method still

has some limitations, such as the possible presence of cone vertices within the curved

slice or the appearance of the cone segments are not faithful to the anatomical structure

of the teeth. Therefore, we study the design of cone segments along spatial C1 ATPH

curves. The cone splines are constructed by joining segments of cones with tangent

continuity along given generators. We apply the construction of cone splines from C1

ATPH curves for modeling a curved slice containing information about all dental pieces

of a lower maxilla. This method allows to freely choose the vertex of each cone segment

and the conical patches permit to visualize each dental piece of the jaw bone. In this

way, the difficulties presented for the above methods are overcome and their advantages

are kept. Moreover, the spatial C1 ATPH interpolants exhibit smoother curvature and

torsion profiles compared with those of spatial C1 PH quintic curves.

Finally, in chapter 5 we summarize and analyze the results obtained in this thesis, and

give an overview on future work.



Chapter 2

Design of planar C2 Algebraic

Trigonometric Pythagorean

Hodograph splines with shape

parameters

2.1 Introduction

The Algebraic-Trigonometric Pythagorean Hodograph (ATPH) curves, introduced in

[51], are a new class of Pythagorean Hodograph (PH) curves defined over a mixed

algebraic-trigonometric space. The well-known polynomial PH curves are characterized

by having a closed form representation of their arc length and rational offset curves.

They have been used to solve various Hermite interpolation problems, see, e.g. [24–30].

Analogously, the ATPH curves allow a closed form representation of their arc length

and have rational algebraic-trigonometric offset curves. Romani et al. [51] solved the C1

Hermite interpolation problem by ATPH curves and constructed G2 continuous ATPH

transition curves of monotone curvature between basic elements such as line segments

and circles.

In this chapter, we are concerned with the construction of a planar C2 ATPH spline

curve that interpolates a sequence of points q0 , . . . ,qN . Different methods to solve a

similar problem by PH quintic curves have been discussed in [24–26].

In particular, the articles [25, 26] employed the iterative Newton-Raphson method based

on initial values estimated by comparing derivatives of the PH quintic spline and the

cubic B-spline. We extend this method to the context of ATPH spline curves. The

resulting C2 ATPH spline curve depends on N free shape parameters for the given point

6
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sequence, we thus obtain a variety of interpolating splines. For an optimal choice of the

values of these parameters we employ minimization techniques involving various fairness

functionals.

The remainder of the chapter is organized as follows. In Section 2.2 we review the defini-

tion and the properties of ATPH curves. Section 2.3 is dedicated to develop the system

of equations required for the construction of the C2 ATPH interpolating splines which

depend on several free shape parameters. In Section 2.4 we first formulate a homotopy

method that yields all solutions of this system. We empirically notice that there is a

“good” solution not exhibiting undesired loops. We thus use the Newton-Raphson iter-

ation method to find this “good” solution in accordance with the shape of the data and

illustrate it for representative examples. We then theoretically and numerically analyze

the convergence behaviour of the iteration method by means of the Kantorovich theo-

rem. Various fairness measures to design ATPH curves by automatically adjusting the

free shape parameters are presented in Section 2.5. In Section 2.6 we describe how the

ATPH curves can be chosen to closely agree with well-known trigonometric curves by

adjusting the shape parameters. The investigation presented in this chapter has been

published in [75].

2.2 Algebraic Trigonometric Pythagorean Hodograph

curves

Romani et al. ([51]) extended the well-known definition of polynomial PH curves to the

algebraic trigonometric case, replacing the spaces of quadratic and quintic polynomials

by (algebraic) trigonometric spaces with the normalized B-bases introduced by [76]. The

B-bases have properties analogous to those of the Bernstein basis, yielding parametric

curves that are defined by a control polygon as in the case of Bézier curves, see, e.g.

[76, 77]. For t ∈ [0, α] and 0 < α < π, we first consider the trigonometric spaces

U2 = 〈1, sin(t), cos(t)〉 and U4 = 〈1, sin(t), cos(t), sin(2t), cos(2t)〉

with their normalized B-bases, which are denoted by
{
B2

i

}
i=0,1,2

and
{
B4

i

}
i=0,...,4

re-

spectively. The explicit expressions of these B-bases are ([51]):

B2
0
(t) =

cos(α− t)− 1

cos(α)− 1
,

B2
1
(t) =

cos(α)− cos(t)− cos(α− t) + 1

cos(α)− 1
, (2.1)

B2
2
(t) =

cos(t)− 1

cos(α)− 1
,
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Figure 2.1: B-basis functions
{
B2

i
(t)
}
i=0,1,2

,
{
B4

i
(t)
}
i=0,...,4

and
{
B5

i
(t)
}
i=0,...,5

for

t ∈ [0, α] and α = π/3.

and

B4
0
(t) =

(cos(α− t)− 1)2

(cos(α)− 1)2
,

B4
1
(t) =

2(cos(α− t)− 1)(cos(α)− cos(t)− cos(α− t) + 1)

(cos(α)− 1)2
,

B4
2
(t) =

2(cos(α− t)− 1)(cos(t)− 1) + (cos(α)− cos(t)− cos(α− t) + 1)2

(cos(α)− 1)2
, (2.2)

B4
3
(t) =

2(cos(t)− 1)(cos(α)− cos(t)− cos(α− t) + 1)

(cos(α)− 1)2
,

B4
4
(t) =

(cos(t)− 1)2

(cos(α)− 1)2
.

For t ∈ [0, α] and 0 < α < 2π we consider the mixed linear-trigonometric function vector

space U5 = 〈1, t, sin(t), cos(t), sin(2t), cos(2t)〉. The normalized B-basis of U5 , denoted

by
{
B5

i

}
i=0,...,5

has the form ([51]):

B5
0
(t) =

2

n0

(
3(α− t) + sin(α− t)(cos(α− t)− 4)

)
,

B5
1
(t) =

4s1
n0n1

(
n0 sin4

(
α−t
2

)
− 2s41

(
3(α− t) + sin(α− t)(cos(α− t)− 4)

))
,
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B5
2
(t) =

2s1
3n2

(
8 sin3

(
α−t
2

)
sin
(
t
2

)
− n0
n1

sin4
(
α−t
2

)
+

2s41
n0

(
3(α− t) + sin(α− t)(cos(α− t)− 4)

))
, (2.3)

B5
3
(t) =

2s1
3n2

(
8 sin3

(
t
2

)
sin
(
α−t
2

)
− n0
n1

sin4
(
t
2

)
+

2s41
n1

(
3t+ sin(t)(cos(t)− 4)

))
,

B5
4
(t) =

4s1
n0n2

(
n0 sin4

(
t
2

)
− 2s41

(
3t+ sin(t)(cos(t)− 4)

))
,

B5
5
(t) =

2

n0

(
3t+ sin(t)(cos(t)− 4)

)
.

where we use the notation

c1 = cos(α/2), s1 = sin(α/2), c2 = cos(α), s2 = sin(α), (2.4)

and the abbreviations

a0 = 6α+ 2s2(c2 − 4), a1 = c1(s2 − 3α) + 4s1, a2 = (2 + c2)α− 3s2. (2.5)

Moreover, as noted in [76], the normalized B-bases
{
B2

i
(t)
}
i=0,1,2

,
{
B4

i
(t)
}
i=0,...,4

and
{
B5

i
(t)
}
i=0,...,5

tend to the ordinary Bernstein polynomials of degree 2, 4

and 5 respectively, whenever α → 0. Figure 2.1 shows these B-bases for

α = π/3. Note that the parameter α presents a tension-like effect when

α is increased in its interval of definition. Moreover, when α tends to π

(2π in the case of U5), the normalized B-bases
{
B2

i

}
i=0,1,2

,
{
B4

i

}
i=0,...,4

and{
B5

i

}
i=0,...,5

vanish, except the first and the last functions (see Figure 2.2).

In [51], a new class of PH curves has been defined, so-called Algebraic Trigonometric

Pythagorean-Hodograph curves. They are defined over the parameter interval t ∈ [0, α]

with 0 < α < π, using the fact that if f ∈ U2 then f2 ∈ U4 and
∫
f2 ∈ U5 .

Definition 2.1. Let u(t) and v(t) be nonzero functions from the space U2 , relatively

prime and both non-constant. A parametric curve r(t) = (x(t), y(t)) whose hodograph

is of the form

x′(t) = u2(t)− v2(t), y′(t) = 2u(t)v(t) (2.6)

is called Algebraic-Trigonometric Pythagorean-Hodograph curve (ATPH), see [51].

In the complex representation [78] an ATPH curve r(t) = x(t) + iy(t) is obtained by

squaring the complex function w(t) = u(t) + iv(t) yielding

r′(t) = x′(t) + iy′(t) = u2(t)− v2(t) + i2u(t)v(t) = w2(t).
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Figure 2.2: B-basis functions
{
B2

i
(t)
}
i=0,1,2

,
{
B4

i
(t)
}
i=0,...,4

and
{
B5

i
(t)
}
i=0,...,5

for

t ∈ [0, α] and α→ π, 2π.

Since w is a complex function in the space U2 , it can be written as

w(t) = w0B
2
0
(t) + w1B

2
1
(t) + w2B

2
2
(t)

with B2
k
(t) defined in (2.1) and the coefficients w

k
∈ C, k = 0, 1, 2. By integrating

r′(t) = w2(t) according to [51], we obtain an ATPH curve in the space U5,

r(t) =
5∑

k=0

p
k
B5

k
(t), (2.7)

whose complex control points p
k

= x
k

+ iy
k

can be expressed as

p1 = p0 +
n0

16s41
w2

0
,

p2 = p1 +
n0 − 6n2

8s41
w0w1 ,

p3 = p2 +
n2
4s41

((1 + c2)w
2
1

+ w0w2), (2.8)

p4 = p3 +
n0 − 6n2

8s41
w1w2 ,

p5 = p4 +
n0

16s41
w2

2
,

for an arbitrary constant of integration p0 and the abbreviations s1, c2, n0, n1 defined
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in (2.4) and (2.5).

As in the case of polynomial PH curves the ATPH curves [51] possess important prop-

erties that are due to the Pythagorean condition (2.6):

• since the curve’s parametric speed is given by σ(t) :=
√

(x′(t))2 + (y′(t))2 =∣∣w2(t)
∣∣, the curve’s arc-length can be computed explicitly without numerical

quadrature as:∫
σ(t)dt = 1

2(−λ12 + (2λ00 + λ11 + λ22)t+ 4λ02 sin(t)− 4λ01 cos(t)+

1
2(λ22 − λ11) sin(2t)− λ12 cos(2t))

where

λij = Re(ui
uj

) |uj |2 , i, j ∈ {0, 1, 2} , and

u0 =
(1 + c2)w1 −w0 −w2

c2 − 1
, u1 =

s2(w0 −w1)

c2 − 1
, u2 =

c2(w0 −w1) + w2 −w1

c2 − 1
.

• For a planar curve r(t), the (signed) curvature has the expression

κ(t) =
Im(r̄′(t)r′′(t))

|r′(t)|3
.

Thus we have

κ(t) = 2
Im(w̄(t)w′(t))

|w(t)|4
= 2

u(t)v′(t)− u′(t)v(t)

[u2(t) + v2(t)]2
.

• The offset curve of an ATPH curve at each (signed) distance d, can be represented

exactly by

r
d

= r(t) + dn(t), t ∈ [0, α],

where the unit normal vector n(t) to r(t), admits a precise rational parametrization

given by

n(t) =
−iw2(t)

w(t)w̄(t)
,

where

w2(t) = w2
0B

4
0(t) + w0w1B

4
1(t) +

w0w2 + (1 + cos(α))w2
1

2 + cos(α)
B4
2(t) + w1w2B

4
3(t) + w2

2B
4
4(t)

and

w(t)w̄(t) = w0w̄0B
4
0(t) + 1

2
(w0w̄1 + w1w0)B4

1(t) +
w0w̄2 + 2(1 + cos(α))w1w̄1 + w2w̄0

2(2 + cos(α))
B4

2(t)

+
1

2
(w1w̄2 + w2w̄1)B4

3(t) + w2w̄2B
4
4(t).
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2.3 C2 ATPH spline equations

In this section we will extend the construction of C2 PH quintic splines from [24] to the

case of ATPH splines.

Given an arbitrary sequence of parameters {α
k
}k=1,...,N , with 0 < α

k
< π, and a se-

quence of N + 1 complex points {q
k
}k=0,...,N , we wish to construct a C2 ATPH spline

that interpolates this set of points. This spline will be composed by N segments for

k = 1, . . . , N . The segment r
k
(t) is defined as in (2.7) and its control points p

k,i
,

i = 0, 1, . . . , 5 are expressed as in (2.8).

This construction of C2 ATPH splines involves the solution of a quadratic system in

complex variables. Before deriving these equations, we introduce the following notation

and abbreviations for k = 1, . . . , N :

c
1,k

= cos(α
k
/2), s

1,k
= sin(α

k
/2),

c
2,k

= cos(α
k
), s

2,k
= sin(α

k
),

n
0,k

= 6α
k

+ 2s
2,k

(c
2,k
− 4), n

1,k
= c

1,k
(s

2,k
− 3α

k
) + 4s

1,k
,

n
2,k

= (2 + c
2,k

)α
k
− 3s

2,k
, (2.9)

l
1,k

= s
2,k

(c
2,k+1

− 1), m
1,k

= s
2,k

(c
2,k−1

− 1),

x
1,k

= l
1,k

+m
1,k+1

, y
1,k

=
l
1,k

l
1,k

+m
1,k+1

,

where to avoid reference to undefined parameters α0 , αN+1
, we set α0 := α1 and α

N+1
:=

α
N

. Therefore

y1,N =
l1,N

l1,N +m1,N+1

=
1

2
(2.10)

and additionally we consider

y1,0 =
l1,0

l1,0 +m1,1

=
1

2
. (2.11)

By using the above notation and abbreviations, the ATPH segment r
k
(t), for k =

1, . . . , N and its control points can be written as

r
k
(t) =

5∑
i=0

p
k,i
B5

i
(t),
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where

p
k,1

= p
k,0

+
n

0,k

16s4
1,k

w2
k,0
,

p
k,2

= p
k,1

+
n

0,k
− 6n2,0

8s4
1,k

w
k,0

w
k,1
,

p
k,3

= p
k,2

+
n

2,k

4s4
1,k

((1 + c
2,k

)w2
k,1

+ w
k,0

w
k,2

),

p
k,4

= p
k,3

+
n

0,k
− 6n

2,k

8s4
1,k

w
k,1

w
k,2
,

p
k,5

= p
k,4

+
n

0,k

16s4
1,k

w2
2,k
.

(2.12)

2.3.1 C2 continuity conditions

We now consider C2 continuity conditions between two consecutive segments r
k

and

r
k+1

at their common point q
k

= r
k
(α

k
) = r

k+1
(0).

Obviously, we can achieve C0 continuity taking p
k,0

= q
k−1

and p
k,5

= q
k
. Writing the

hodograph of the segments r
k
(t) from q

k−1
to q

k
in the form

r′
k
(t) =

[
w

k,0
B2

0
(t) + w

k,1
B2

1
(t) + w

k,2
B2

2
(t)
]2
, (2.13)

we can ensure C1 continuity requiring that w
k+1,0

= w
k,2

.

By differentiating (2.13) and imposing C2 continuity at the common point of r
k
(t) and

r
k+1

(t), we obtain the condition

w
k,2

=y
1,k

w
k,1

+
(
1− y

1,k

)
w

k+1,1
, (2.14)

where y
1,k

is given in (2.9). Therefore

w
k,0

=y
1,k−1

w
k−1,1

+
(
1− y

1,k−1

)
w

k,1
. (2.15)

By setting b
k

:= w
k,1

, the hodograph of the ATPH segment r
k
(t) can be rewritten in

the complex form as

r′
k
(t) =

[(
y1,k−1bk−1 + (1− y1,k−1)bk

)
B2

0
(t) + bkB

2
1
(t) +

(
y1,kbk + (1− y1,k )bk+1

)
B2

2
(t)

]2
. (2.16)

This ensures that segments k and k + 1 exhibit continuity of first and second order

derivatives at their common point q
k

= r
k
(α

k
) = r

k+1
(0).

Integrating this hodograph r′k(t) subject to the interpolation condition∫ α
k

0
r′
k
(t)dt = ∆q

k
, with ∆q

k
= q

k
− q

k−1
, (2.17)



Chapter 2. Planar C2 Algebraic Trigonometric Pythagorean Hodograph splines 14

yields the following system of N quadratic equations

fk (bk−1 ,bk ,bk+1) = δkb
2
k−1

+ψkb
2
k
+θkb

2
k+1

+φkbk−1bk+γkbkbk+1+λkbk−1bk+1−εk∆qk = 0, (2.18)

for k = 1, . . . , N , where we introduce the quantities

δk = n
0,k
l2
1,k−1

x2
1,k
,

ψk = n
0,k
m

1,k
x2

1,k

[
m

1,k
+ 2x

1,k−1

]
+ n

0,k
l
1,k
x2

1,k−1

[
l
1,k

+ 2x
1,k

]
+ 4n

2,k
x

1,k
x

1,k−1[
m

1,k
l
1,k

+ x
1,k
x

1,k−1
(c

2,k
+ 1)

]
− 12n

2,k
x

1,k
x

1,k−1

[
m

1,k
x

1,k
+ l

1,k
x

1,k−1

]
,

θk = n
0,k
m2

1,k+1
x2

1,k−1
,

φk = 2n
0,k
l
1,k−1

x2
1,k

[
m

1,k
+ x

1,k−1

]
+ 4n

2,k
l
1,k−1

x
1,k
x

1,k−1

[
l
1,k
− 3x

1,k

]
,

γk = 2n
0,k
m

1,k+1
x2

1,k−1

[
l
1,k

+ x
1,k

]
+ 4n

2,k
m

1,k+1
x

1,k
x

1,k−1

[
m

1,k
− 3x

1,k−1

]
,

λk = 4n
2,k
l
1,k−1

m
1,k+1

x
1,k
x

1,k−1
,

εk = 16x2
1,k
x2

1,k−1
s4
1,k
.

(2.19)

We remark that every equation of the system (2.18) relates three unknowns b
k−1

, b
k
,

b
k+1

to the known quantity ∆q
k
. Thus we have a total ofN equations forN+2 unknowns

b0 , . . . ,bN+1 . In order to close the system, as in the case of “ordinary” splines, we need

to provide end conditions. The following two possible forms are considered:

(i) complex values d0 and dN for the end derivatives at the points q0 and qN are

specified,

(ii) periodic end conditions are used when a closed C2 curve is to be created.

In the following subsection we will discuss these conditions in detail.

2.3.2 End conditions

(i) For open curves, the derivatives r′
1
(0) = d0 and r′

N
(αN ) = dN at the end points

q0 and qN are specified. We thus obtain two further equations

f0(b0 ,b1) =
[
y1,0b0 + (1− y1,0)b1

]2 − d0 = 0,

fN+1(bN ,bN+1) =
[
y1,N bN + (1− y1,N )bN+1

]2 − dN = 0.
(2.20)

The above equations together with (2.18) for k = 1, . . . , N comprise a system of

N + 2 quadratic equations for N + 2 unknowns b0 ,b1 , . . . ,bN ,bN+1 .

(ii) For closed curves, the initial and final interpolating point must be coincident:

qN = q0 . At this common point qN = q0 of the first and last span, the continuity
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conditions r′
N

(α
N

) = r′
1
(0), r′′

N
(α

N
) = r′′

1
(0), together with the fact that the complex

variables b1 , . . . ,bN are considered as a cyclic list, yield the equations

r′
1
(t) =

[(±l1,NbN +m1,1b1

l1,N +m1,1

)
B2

0
(t) + b1B

2
1
(t) +

(
y1,1b1 + (1− y1,1)b2

)
B2

2
(t)

]2
,

r′
N

(t) =

[(
y1,N−1bN−1 + (1− y1,N−1)bN

)
B2

0
(t) + bNB

2
1
(t) +

(±m1,1b1 + l1,NbN

l1,N +m1,1

)
B

2

2
(t)

]2
.

The ”good” solution may occur for either choice of ± and we will explain how

to choose it in Section 2.4.3. By substituting the latter expressions in (2.17) we

obtain f1(bN ,b1 ,b2) = 0 and fN (bN−1 ,bN ,b1) = 0, where

f1(bN ,b1 ,b2) = δ1b
2
N

+ ψ1b
2
1

+ θ1b
2
2
± φ1bNb1 + γ1b1b2 ± λ1bNb2 − ε1∆q1 , (2.21)

fN (bN−1 ,bN ,b1) = δNb2
N−1

+ ψNb2
N

+ θNb2
1

+ φNbN−1bN ± γNbNb1 ± λNbN−1b1 − εN ∆qN .

The above equations, together with (2.18) for k = 2, . . . , N−1, amount to a system

of N quadratic equations for the unknowns b1 , . . . ,bN .

2.4 Solution of the C2 ATPH spline equations

Given the sequences of real parameters {α
k
}
k=1,...,N

and of interpolating points

{q
k
}
k=0,...,N

, as in [24–26] the total number of distinct C2 ATPH splines results to

be 2N+1 for the system (2.18), (2.20) and 2N for the system (2.18), (2.21).

Albrecht and Farouki in [24] employed the homotopy method to compute all solutions

in the case of PH quintic splines. They observed empirically that all but one of these

interpolants exhibit undesirable “looping” behavior. In contexts where a high degree

of interactivity is required, and where N is large, the need to examine all solutions in

order to select the sole interpolant without self-intersections may seem intolerable. So,

Farouki et al. in [25, 26] used the Newton-Raphson iteration as a suitable possibility

to directly find this solution. We extend this strategy to the context of ATPH spline

curves.

The choice of the appropriate initial values for the Newton-Raphson iteration is impor-

tant for the convergence to the “good” solution. One possible approach is to compare

derivative data from the ATPH spline and the cubic B-spline, both interpolating the

same set of points, (as in the context of PH quintic splines, [25, 26]). Therefore, we

choose the following moderate constraints on the points q
k

to be interpolated by the C2

cubic B-spline

∆qk ·∆qk+1 > 0 and
1

2
≤
∣∣∆qk+1

∣∣
|∆qk |

≤ 2 (2.22)



Chapter 2. Planar C2 Algebraic Trigonometric Pythagorean Hodograph splines 16

for k = 1, . . . , N−1 for an open curve or k = 1, . . . , N for a closed curve, where qN = q0

and k is reduced modulo N .

On the other hand, Romani et al. in [51], observed that for increasing values of

α
k
∈ (0, π), the arc length of the k − th segment increases, which eventually may

cause undesirable loops that do not agree with the intuitive shape of the data. To

avoid this, we require a “feasible” sequence of parameters α
k
. Hence the choice of α

k

is restricted to the interval (0, 2π/3). This choice is supported by the fact that the

algebraic-trigonometric space U5 is an extended Chebyshev space in this interval.

These conditions do not constitute a limitation for most practical applications.

The use of a homotopy method and the Newton-Raphson iterative method to construct

the solution ATPH spline, considering the above observations, are described in the next

sections.

2.4.1 Homotopy method

In order to examine all solutions to the C2 ATPH interpolation problem, we have used a

homotopy method. This numerical procedure determines all solutions to a given system

of polynomial equations. In particular, we need to find the solutions to the system

(2.18), (2.20) of N + 2 quadratic equations in N + 2 complex variables b0 , . . . ,bN+1 .

We have adapted a predictor-corrector path-following program from an acknowledged

code [79] to solve this system. It employs complex arithmetic and linear prediction steps

in the homotopy parameter.

We shall use the linear homotopy defined by

h(b, t) = (1− t)g(b) + tf(b),where b = (b0 , . . . ,bN+1). (2.23)

In our case, f is the system (2.18), (2.20) and the system g is obtained from f by omitting

some terms from each of the equations fk(b0 , . . . ,bN+1) = 0 for k = 0, . . . , N + 1.

Specifically,

g0(b0 , . . . ,bN+1) = y2
0
b2

0
− d0 = 0,

g
k
(b0 , . . . ,bN+1) = ψ

k
b2

k
− ε

k
∆q

k
= 0, for k = 1, . . . , N,

gN+1(b0 , . . . ,bN+1) = (1− yN )2b2
N+1
− dN = 0.

(2.24)

This initial system g has the closed-form solution,

b0 = ±
√

d0/|y0 |,

b
k

= ±
√
ε
k
∆q

k
/ψ

k
, for k = 1, . . . , N,

bN+1 = ±
√

dN /|(1− yN )|.

(2.25)
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ATPH Rabs E ATPH Rabs E

1 0.72 4.17 17 2.29 6.9006e+04

2 1.76 1.9693e+05 18 3.28 1.9283e+05

3 2.22 3.7405e+04 19 3.63 5.9582e+04

4 1.28 484.4508 20 2.71 5.9943e+04

5 2.27 641.1224 21 3.57 1.9610e+05

6 3.20 7.7292e+03 22 4.53 2.0988e+05

7 2.65 3.3977e+03 23 3.92 3.4127e+05

8 1.77 2.3760e+04 24 3.03 2.7312e+05

9 2.11 83.7087 25 2.61 5.8867e+05

10 3.00 1.2474e+03 26 3.55 8.6556e+03

11 3.62 1.4679e+04 27 4.00 8.0871e+03

12 2.66 1.1363e+03 28 3.07 1.8469e+03

13 1.83 104.6499 29 2.17 3.5761e+03

14 2.75 5.2181e+03 30 3.10 5.5340e+04

15 2.38 9.6137e+04 31 2.62 2.1464e+05

16 1.40 71.8020 32 1.59 2.5241e+03

Table 2.1: The absolute rotation index (Rabs) and the bending energy (E) for the
family of C2 ATPH splines in Figure 2.3.

In general, we obtain 2N+1 different sets of starting values for the variables b0 , . . . ,bN+1

by combining the signs in the above expressions.

So, beginning from a known solution of h(b, 0) with t = 0, the homotopy method deforms

it continuously to obtain a solution of the objective system h(b, 1) ≡ f(b) = 0 at t = 1,

employing a predictor-corrector method.

2.4.1.1 Empirical results

The homotopy method allows to construct the family of C2 ATPH splines that interpo-

late the sequence of points q0 , . . . ,qN . We have observed through numerous examples

that there is only one ATPH interpolant that does not exhibit loops and that preserves

the shape of the data. To identify the “good” ATPH interpolant, we have employed two

measures: the absolute rotation index and the bending energy

Rabs =
1

2π

∫
|κ|ds E =

∫
κ2ds (2.26)

where κ and s are the curvature and the arc length, respectively.
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Example

We interpolate the points q0 = 1 + i2, q1 = 3 + i5, q2 = 6 + i4, q3 = 7 + i3, q4 = 9 + i4

by the family of C2 ATPH spline curves. There are 32 distinct ATPH solutions that

interpolate these five points (see Figure 2.3). Note that the “good” solution to the C2

interpolation problem, which is traced in red in Figure 2.3, can be identified as the one

with the minimum Rabs and E (see Table 2.1). Specifically, Rabs = 0.72 and E = 4.17.

Once the values b0 , . . . ,bN+1 have been calculated by the homotopy method, we make

the assignments (2.15), (2.14) and compute the control points for each ATPH quintic

span k = 1, . . . , N using equations (2.12). However, since the homotopy method becomes

expensive for big N , we extend in the next section the strategy described in [25, 26] to

directly compute the “good” solution in the context of ATPH splines.

Figure 2.3: Family of C2 ATPH splines interpolating five points. The “good” ATPH
spline is displayed in red.

2.4.2 Multivariable Newton-Raphson iteration

The Newton-Raphson iteration procedure starts with b(0) and is given by

b(k) = b(k−1) − J−1(b(k−1))f(b(k−1)), (2.27)

for k ≥ 1, J is the Jacobian matrix for the given system f in (2.18) and b(k) denotes

b(k) = (b(k)
0
, . . . ,b(k)

N+1
) for open curves or b(k) = (b(k)

1
, . . . ,b(k)

N
) for closed curves.

The Jacobian matrix J for system (2.18) has the non-zero elements:

J
k,k−1

= 2δ
k
b

k−1
+ φ

k
b

k
+ λ

k
b

k+1
,

J
k,k

= φ
k
b

k−1
+ 2ψ

k
b

k
+ γ

k
b

k+1
,

J
k,k+1

= λ
k
b

k−1
+ γ

k
b

k
+ 2θ

k
b

k+1
.

(2.28)
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In the case of specified end derivatives, the non-zero elements in the rows k = 0 and

k = N + 1 are

J0,0 = 2l1,0
(
l1,0b0 +m1,1b1

)
/(l1,0 +m1,1)2,

J0,1 = 2m1,1

(
l1,0b0 +m1,1b1

)
/(l1,0 +m1,1)2,

JN+1,N = 2l1,N
(
l1,N bN +m1,N+1bN+1

)
/(l1,N +m1,N+1)2,

JN+1,N+1 = 2m1,N+1

(
l1,N bN +m1,N+1bN+1

)
/(l1,N +m1,N+1)2.

(2.29)

In the case of periodic end conditions the non-zero elements in the rows k = 1 and k = N

are given by

J1,N = 2δ1bN ± φ1b1 ± λ1b2 , JN,N−1 = 2δN bN−1 + φN bN ± λN b1 ,

J1,1 = 2ψ1b1 ± φ1bN + γ1b2 , JN,N = 2ψN bN + φN bN−1 ± γN b1 , (2.30)

J1,2 = 2θ1b2 + γ1b1 ± λ1bN , JN,1 = 2θN b1 ± γN bN ± λN bN−1 .

Regarding the CPU costs, in general, computing the inverse of a matrix with dimensions

N ×N requires O(N3) operations, see e.g. [80]. The Jacobian matrix for the PH quintic

spline is tridiagonal and has constant entries (see [25], page 36).

For ATPH splines the Jacobian matrix J for the system (2.18) is also tridiagonal and

depends on the coefficients δ
k
, φ

k
, λ

k
, ψ

k
, γ

k
, θ

k
for k = 1, . . . , N which are given by equa-

tion (2.19). The increment vector δb(k−1) = −J−1(b(k−1))f(b(k−1)) can be computed in

O(N) arithmetic operations [80].

The computation cost for ATPH is a bit higher than for the PH splines because of the

need of evaluation of the entries of the Jacobian matrix of the former. The overhead

consists in 690N+50 elementary operations for open and 690N elementary operations

for closed ATPH splines, where N is the number of interpolation points. By elementary

operations we intend additions/substractions, multiplications/divisions and evaluation

of trigonometric functions. In fact, in row k of the Jacobian we have 690 elementary op-

erations for k = 1, ...N , and 25 elementary operations for k = 0 as well as for k = N + 1

in the case of open ATPH splines. This evaluation of the entries of the Jacobian matrix

must be computed only once before starting the Newton-Raphson iteration.

The higher cost for ATPH splines is offset by the extra flexibility enjoyed by these splines

which allow for minimization of shape functionals, such as IMV and IES, considered in

section 2.5.

Considering the quadratic convergence of the Newton-Raphson method [81] and the

tridiagonal nature of J, we can deduce that the method calculates the “good” ATPH

spline curve in a very efficient way, if one provides an initial approximation b(0) close to

the solution.
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As a convergence measure of the Newton-Raphson method, we use

ε
k

=

√√√√ N∑
i=1

|f (k)i |2 (2.31)

where f (k)
i

= f (k)
i

(b(k)
i−1
,b(k)

i
,b(k)

i+1
) is the i-th equation of system (2.18), evaluated at the

solution of the k-th Newton-Raphson iteration for k = 1, 2, . . ..

2.4.3 Initial values

To find the solution to the systems (2.18), (2.20) and (2.18), (2.21) with the Newton-

Raphson method, which was described in the previous section, we need a starting appro-

ximation b(0). As in [26], the initial values are obtained by relating mid-point derivatives

of the ATPH spline to mid-point derivatives of the cubic B-spline. For brevity, we re-

strict our attention to uniformly parametrized cubic B-splines interpolating the same

data.

For open curves, we consider the cubic B-spline with knots t0 = t1 = t2 = t3 = 0,

t
k

= k − 3 for k = 4, . . . , N + 2, and tN+3 = tN+4 = tN+5 = tN+6 = N .

In the case of closed curves, the knots t0 , . . . , tN+6 for the cubic B-spline are regarded

as a cyclical list. Given the knots t3 < t4 < . . . < tN+2 < tN+3 , the additional knots

t0 , t1 , t2 and tN+4 , tN+5 , tN+6 are determined by the equations:

tN+4 = tN+3 + (t4 − t3), tN+5 = tN+4 + (t5 − t4), tN+6 = tN+5 + (t6 − t5),

t2 = t3 + (tN+2 − tN+3), t1 = t2 + (tN+1 − tN+2), t0 = t1 + (tN − tN+1).

By De Boor’s algorithm we can calculate the cubic B-spline curve c(t) with nodal points

q
k

= c(t
k+3

), k = 0, . . . , N , as well as their derivatives at the mid-points between the

knots, c′
(
1
2(t

k+2
+ t

k+3
)
)

for k = 1, . . . , N . Then we compare these derivatives with

those from (2.16) evaluated at t =
α
k
2 and thus obtain the linear system

[
y
1,k−1

b
k−1

+
(
(1− y

1,k−1
) + 2c

1,k
+ y

1,k

)
b

k
+ (1− y

1,k
)b

k+1

]
2(c

1,k
+ 1)

=

√
c′
(

1
2 (t

k+2
+ t

k+3
)
)
, (2.32)

for k = 1, . . . , N . As in the case of the general system (2.18), we must provide the

following end conditions to close this system.

(i) For specified end derivatives the square roots of equations (2.20) provide two more

equations:

y1,0b0 + (1− y1,0)b1 =
√

d0 and y1,N bN + (1− y1,N )bN+1 =
√

dN . (2.33)
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So the solution of the system (2.32), (2.33) for k = 1, . . . , N is the starting appro-

ximation b(0) = (b(0)
0
,b(0)

1
, . . . ,b(0)

N
,b(0)

N+1
) for this case.

(ii) The initial and final equations of the system (2.32) in the case of periodic end

conditions are given by:

[
±

l
1,N

l
1,N

+m
1,1

bN +
(

m1,1

l
1,N

+m
1,1

+ 2c1,1 + y1,1

)
b1 + (1− y1,1)b2

]
2(c1,1 + 1)

=
√

c′
(
1
2
(t3 + t4)

)
, (2.34)[

y1,N−1bN−1 +
(

(1− y1,N−1) + 2c1,N +
l
1,N

l
1,N

+m
1,1

)
bN ±

m1,1

l
1,N

+m
1,1

b1

]
2(c1,N + 1)

=
√

c′
(
1
2
(tN + tN+1)

)
.

Therefore, the initial value b(0) = (b(0)
1
, . . . ,b(0)

N
) is obtained as the solution of the

system (2.32), (2.34) for k = 2 . . . , N − 1.

Since each complex square root on the right hand side of (2.32),(2.33) or (2.32),(2.34)

admits two values, we will use the following procedure to select one as in [26]. A par-

ticular sign for the square root on the right hand side of the first equation of (2.33),

respectively (2.34), is chosen. Then the rest of the values are taken so that the dot prod-

uct of the right hand side of two consecutive equations is non-negative, by interpreting

complex numbers as vectors in R2. Finally, the dot product of the two square roots in

equations (2.34) determines the sign ±.

2.4.4 Numerical examples

Numerous examples were executed for both open and closed curves and they were

implemented in MATLAB. Figure 2.4 shows illustrative examples of C2 ATPH spline

curves. Relevant data from these examples are summarized in Table 2.2. Initial values

for the Newton-Raphson method are calculated by comparing mid-point derivatives

of the ATPH curve with those of the cubic B-spline, (see subsection 2.4.3). Figures

2.5 and 2.6 show the behaviour of different choices of the sequence {α
k
}
k=1,...,N

. We

observe that the free parameters {α
k
}
k=1,...,N

act as shape parameter for the ATPH

interpolants. This can clearly be seen in these figures, where different ATPH splines

interpolate the same data.

We remark that according to the choice of the sequence of parameters {α
k
}
k=1,...,N

,

some ATPH curves have more pleasing distribution of curvature than others. Figures

2.7 and 2.8 show the comparison of the C2 cubic B-spline, the C2 PH quintic spline

and the C2 ATPH spline for open and closed curves, respectively. In these figures, as

well as in many others, we use color lines to distinguish among various examples. We
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Figure 2.4: Top: Example of an open C2 ATPH spline curve that interpolates 4
points. Bottom: Example of a closed C2 ATPH spline curve that interpolates 6 points

(see Table 2.2).

Curve N {α
k
}
k=1,...,N

Interpolating points End-derivatives Error

Open curve 3 α1 = 0.3671π, q0 = −2.1 + 1.8i, d0 = 0.9918− 3.6084i, ε0 = 295.3429
α2 = 0.6667π, q1 = −0.8333− 0.1i, d3 = 1.4668− 1.9834i. ε1 = 38.3156
α3 = 0.3766π, q2 = 0.9833 + 1.4167i, ε2 = 1.1791

q3 = 2.5667 + 0.6i. ε3 = 0.013
ε4 = 0.00000000144

Closed curve 5 α1 = 0.2228π, q0 = 6.6670 + 0.6667i, ε0 = 0.0982
α2 = 0.2292π, q1 = 8.5000 + 4.6670i, ε1 = 0.0418
α3 = 0.2626π, q2 = 2.1667 + 4.5000i, ε2 = 0.0243
α4 = 0.2578π, q3 = 0.3333 + 2.5000i, ε3 = 0.0084
α5 = 0.2610π, q4 = 2.3333− 0.3333i, ε4 = 0.00039

q5 = 6.6670 + 0.6667i. ε5 = 0.0002
ε6 = 0.000049

Table 2.2: Data for C2 ATPH splines in Figure 2.4.

Figure 2.5: Open C2 ATPH splines interpolating the same data, obtained for different
sequences of {α

k
}

k=1,2,3
and their corresponding curvature profiles.
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Figure 2.6: Variability of a closed C2 ATPH splines that interpolates q
0
, . . . ,q

5
with

respect to several choices of the sequences {α
k
}
k=1,...,5

and their corresponding curvature

profiles.

Figure 2.7: Comparison of the C2 ATPH spline, the C2 PH quintic spline and the
C2 cubic B-spline.

can see that the ATPH interpolants have a slightly more pleasant curvature behaviour

than their polynomial counterpart represented by the PH quintic spline curve. From

this observation, a method to objectively choose the parameters {α
k
}
k=1,...,N

has been

developed in section 2.5.

On the other hand, the homotopy method allows to compute the complete family of C2

ATPH splines that interpolate q0 , . . . ,qN . In the case of open curves there are 2N+1

distinct ATPH splines and 2N for closed curves. This method requires to examine all

the solutions for selecting a without undesired loop, which becomes very expensive for

N > 10. For example, given a sequence of interpolating points q0 , . . . ,q11 with q0 6= q11 ,

we would have to compute 212 = 4096 different C2 ATPH splines and to identify the
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Figure 2.8: Comparison of the C2 ATPH spline, the C2 PH quintic spline and the
C2 cubic B-spline.

“good” ATPH spline among all the solutions, as the one with smallest bending energy

and smallest absolute rotation index. On the contrary, the Newton-Raphson method

computes the “good” ATPH spline in an efficient manner. It can be employed to

calculate ATPH splines that interpolate large sequences of interpolation points, as is

illustrated in Figures 2.9 and 2.10.

Moreover, the ATPH curves offer the shape parameters α
k
, which allow for optimization

procedures that can lead to aesthetically more pleasing curves. For example, in Section

2.6, we present the approximation of well-known trigonometric curves with ATPH

spline curves, by adjusting the sequence of parameters {α
k
}
k=1,...,N

, for k = 1, . . . N .

In Tables 2.3 and 2.4 we present comparative convergence measures (equation (2.31)) of

the Newton-Raphson iteration for ATPH and PH quintic spline curves. The correspond-

ing open and closed C2 ATPH curves are illustrated in Figures 2.9 and 2.10, respectively.

Shape Number of points εr ATPH curves εr PH curves

Semisine 10 ε6 =2.3668e-16 ε6 =2.2304e-15

Mountain 20 ε6 =2.6414e-16 ε6 =2.3735e-15

Spiral 30 ε5 =5.0446e-15 ε5 =5.1433e-13

Quirky 40 ε6 =3.2643e-16 ε6 =2.5939e-12

Table 2.3: Error comparisons according to (2.31) for open-curve test cases illustrated
in Figure 2.9.

The convergence behavior of the Newton-Raphson iteration is largely successful. The

method works very well even for a big number of interpolating points, for both open

and closed curves.
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Figure 2.9: Open C2 ATPH spline curves for increasing number of input data points.

Shape Number of points εr ATPH curves εr PH curves

Kidney 10 ε6 =2.2298e-15 ε6 =2.5599e-15

Gunk 20 ε6 =9.9191e-15 ε6 =9.8593e-14

Squiggly 30 ε5 =6.0296e-15 ε5 =6.8822e-14

Big-closed 40 ε7 =2.2367e-15 ε7 =2.2569e-15

Table 2.4: Error comparisons according to (2.31) for closed -curve test cases illustrated
in Figure 2.10.

Given a sequence of parameters {α
k
}
k=1,...,N

, with α
k

= α for k = 1, . . . N , we have

noted that for increasing values of α in (0, 2π/3) the C2 ATPH spline curve becomes

increasingly longer. The reason for this fact lies in the dependency on α of the control

points of each ATPH segment curve according to equation (2.12). Numerous experi-

ments suggest that for α
k

= α the total arc-length of the ATPH spline is monotonically

increasing with respect to α. The Figure 2.11 shows an illustrative example.

In the case of a given sequence of parameters {α
k
}
k=1,...,N

with αj 6= αi for j 6= i, it is

more difficult to characterize the behaviour of the C2 ATPH spline curve for limit values

of the shape parameters. This is due to the dependency on α
k−1

, α
k
, α

k+1
of the values

w0 ,w2 (see (2.15), (2.14)) of the control points in each segment (2.12).

2.4.5 Kantorovich theorem

We have implemented the Newton-Raphson method to construct C2 ATPH interpolat-

ing splines. In the last section, we presented numerical examples of this construction
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Figure 2.10: Closed C2 ATPH spline curves for increasing number of input data
points.

Figure 2.11: Examples of ATPH splines with different sequence of parameters
{α

k
}

k=1,...,3
, with α

k
= α and their corresponding total arc-length s

T
.

and we have observed heuristically that this method converges rapidly to the desired

solution. Moreover, these results are supported mathematically by the Kantorovich the-

orem (see [25]), which gives a convergence criterion for the Newton-Raphson method.

We will describe the use of this Kantorovich condition in the context of ATPH spline

equations.

We employ the infinity norm (‖.‖∞) for vectors and matrices for formulating the con-

vergence conditions. For simplicity, we write ‖.‖ instead of ‖.‖∞.

Theorem 2.2. Let f(b) be the map CN+2 → CN+2 for open curves or CN → CN for

closed curves, defined by (2.18), (2.20) or (2.18), (2.21), with Jacobian matrix J(b)

given by (2.28), (2.29) or (2.28), (2.30), where b denotes b = (b0 , . . . ,bN+1) for open

curves or b = (b1 , . . . ,bN ) for closed curves.

Let b(0) ∈ D ⊆ CN+2 in the case of open curves and respectively, b(0) ∈ D ⊆ CN in the
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case of closed curves, denote the initial point for the Newton-Raphson method in (2.27).

Given the sequence of parameters {α
k
}
k=1,...,N

with αk ∈ (0, 2π/3), we suppose:

1. ‖J−1(b(0))‖ ≤ B, B ∈ R+

2. ‖J−1(b(0))f(b(0))‖ ≤ C, C ∈ R+

3. ‖J(x)− J(y)‖ ≤ K‖x− y‖ for all x,y ∈ D and K ∈ R+,

and define

h = BCK r =
1−
√

1− 2h

h
C.

If the conditions

h ≤ 1

2
, S = {b | ‖b− b(0)‖ ≤ r} ⊂ D

hold, then the Newton-Raphson iterations

b(r+1) = b(r) − J−1(b(r))f(b(r)), r = 1, 2 . . .

always remain inside the ball S with center b(0) and radius r, and converge to a solution

b∗ of f(b) = 0.

In our context the first two conditions of Theorem 2.2 are easy to test. Since the Jacobian

J is tridiagonal, we simply calculate the exact inverse J−1 of the Jacobian at the starting

approximation b(0) and we set B = ‖J−1(b(0))‖. In the same way, for condition 2 we

explicitly determine the vector J−1(b(0))f(b(0)) and set C = ‖J−1(b(0))f(b(0))‖.
Finally, for condition 3 we require a Lipschitz constant K for the Jacobian matrix J,

which is obtained according to the following Lemma.

Lemma 2.3. In condition 3 of Theorem 2.2 let D = CN+2 or D = CN . Given a

sequence of parameters {α
k
}
k=1,...,N

with αk ∈ (0, 2π/3), for the tridiagonal Jacobian

matrix J, we obtain the following Lipschitz constants:

(i) If αk = α for k = 1 . . . , N, we have K = 40072,

(ii) If αi 6= αj for i 6= j ∈ {1, . . . , N}, we have

K = max
1≤k≤N

{2, 2 ∗ (| δk | + | ψk | + | λk | + | φk | + | γk | + | θk |)} for open curves or

K = max
1≤k≤N

{2 ∗ (| δk | + | ψk | + | λk | + | φk | + | γk | + | θk |)} for closed curves.

Proof

(ii) For a given sequence of parameters {α
k
}
k=1,...,N

with αi 6= αj for i 6= j, x =
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(x0, . . . ,xN+1), y = (y0, . . . ,yN+1), and the Jacobian matrix defined by (2.28), (2.29)

or (2.28), (2.30), we denote the sum of absolute values across row k of J(x) − J(y) by

Jk, which is

Jk =| 2δk(xk−1 − yk−1) + φk(xk − yk) + λk(xk+1 − yk+1) |

+ | φk(xk−1 − yk−1) + 2ψk(xk − yk) + γk(xk+1 − yk+1) |

+ | λk(xk−1 − yk−1) + γk(xk − yk) + 2θk(xk+1 − yk+1) |

≤
(
2 | δk | + | φk | + | λk |

)
| xk−1 − yk−1 |

+ (| φk | +2 | ψk | + | γk |) | xk − yk |

+
(
| λk | + | γk | +2 | θk |

)
| xk+1 − yk+1 |

with 1 ≤ k ≤ N for open curves or 2 ≤ k ≤ N − 1 for closed curves, where we use the

triangle inequality.

In the case of open curves, for J0 and JN+1, we obtain

J0 = − 2

l1,0 +m1,1

| l1,0(x0 − y0) +m1,1(x1 − y1) |

≤
2l1,0

l1,0 +m1,1

| x0 − y0 | +
2m1,1

l1,0 +m1,1

| x1 − y1 |

=| x0 − y0 | + | x1 − y1 |

and

JN+1 = − 2

l1,N +m1,N+1

| l1,N (xN − yN ) +m1,N+1(xN+1 − yN+1) |

≤
2l1,N

l1,N +m1,N+1

| xN − yN | +
2m1,N+1

l1,N +m1,N+1

| xN+1 − yN+1 |

=| xN − yN | + | xN+1 − yN+1 |,

where we have used (2.10) and (2.11).

In the case of closed curves, for J1 and JN , we obtain

J1 =| 2ψ1(x1 − y1) + σφ1(xN − yN ) + γ1(x2 − y2) |

+ | 2θ1(x2 − y2) + γ1(x1 − y1) + σλ1(xN − yN ) |

+ | 2δ1(xN − yN ) + σφ1(x1 − y1) + σλ1(x2 − y2) |

≤
(
2 | ψ1 | + | σ || φ1 | + | γ1 |

)
| x1 − y1 |
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+ (2 | θ1 | + | σ || λ1 | + | γ1 |) | x2 − y2 |

+
(
2 | δ1 | + | σ || φ1 | + | σ || λ1 |

)
| xN − yN |

=
(
2 | ψ1 | + | φ1 | + | γ1 |

)
| x1 − y1 |

+ (2 | θ1 | + | λ1 | + | γ1 |) | x2 − y2 |

+
(
2 | δ1 | + | φ1 | + | λ1 |

)
| xN − yN | .

Analogously

JN =| 2θN (x1 − y1) + σγN (xN − yN ) + σλN (xN−1 − yN−1) |

+ | 2δN (xN−1 − yN−1) + φN (xN − yN ) + σλN (x1 − y1) |

+ | 2ψN (xN − yN ) + σφN (xN−1 − yN−1) + σγN (x1 − y1) |

≤
(
2 | θN | + | λN | + | γN |

)
| x1 − y1 |

+ (2 | δN | + | λN | + | φN |) | xN−1 − yN−1 |

+
(
2 | ψN | + | γN | + | φN |

)
| xN − yN | .

Thus, noting that

‖x− y‖ = max
0≤k≤N+1

{| xk − yk |},

we obtain the following inequalities, which proves Lemma 2.3 (ii).

For open curves

‖J(x)− J(y)‖ = max
0≤k≤N+1

{Jk}

≤ max
1≤k≤N

{2, 2 ∗ (| δk | + | ψk | + | λk | + | φk | + | γk | + | θk |)}‖x− y‖,

and for closed curves

‖J(x)− J(y)‖ = max
1≤k≤N

{Jk}

≤ max
1≤k≤N

{2 ∗ (| δk | + | ψk | + | λk | + | φk | + | γk | + | θk |)}‖x− y‖.
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(i) In the case of a given sequence of parameters {α
k
}
k=1,...,N

with αk = α for k = 1, . . . , N

by considering the fact that α ∈ (0, 2π/3) we have

Jk =| 2δ(xk−1 − yk−1) + φ(xk − yk) + λ(xk+1 − yk+1) | +

=| φ(xk−1 − yk−1) + 2ψ(xk − yk) + γ(xk+1 − yk+1) | +

=| λ(xk−1 − yk−1) + γ(xk − yk) + 2θ(xk+1 − yk+1) |

≤
(
2 | δ | + | φ | + | λ |

)
| xk−1 − yk−1 | +(| φ | +2 | ψ | + | γ |) | xk − yk |

+
(
| λ | + | γ | +2 | θ |

)
| xk+1 − yk+1 |

≤ 2(| δ | + | γ | + | λ | + | φ | + | ψ | + | θ |)‖x− y‖

≤ 32(cos(α)− 1)4 sin4(α)
(
14 | sin(α) | (| cos(α) | +1)

+ 4α(| cos(α) | +2)(| cos(α) | +1)
)
‖x− y‖

≤ 32 ∗ 16 ∗ (28 + 24 ∗ 2π/3)‖x− y‖

= 40072‖x− y‖.

So we have obtained the inequality of Lemma 2.3 (i).

2.4.6 Empirical results

The global bound K = 40072 works for any α assuming αk = α for k = 1, . . . , N . It

is not difficult to calculate Lipschitz constants Kα for some specific α in the interval

(0, 2π/3). Figure 2.12 and Table 2.5 show these Lipschitz constants Kα, which are

much smaller than the global bound K = 40072 given in Lemma 2.3 (i). In spite of

the choice of each αk was restricted to the interval (0, 2π/3), since the space U5 is a

Chebyshev space in this interval, we calculated Lipschitz constants Kα for α ∈ (0, π).

This allows to verify their behavior in the whole interval.

The Newton-Raphson method allows for an initial condition obtained from a cubic

B-spline to converge to a “good” solution as considered in [25]. In fact, Newton-Raphson

method takes the given initial condition to a point for which Lipschitz constants Kα

guarantees convergence. Tables 2.6, 2.7 illustrate the above assertions for some specific

values of α. Note that in these cases Lipschitz constants Kα are the same for both

open and closed curves, this is because the aforementioned constant only depends

on parameters αk = α for k = 1, . . . , N . The Kantorovich condition h < 1/2 is

accomplished from the first iteration (h1 see Table 2.6) for open curves, whereas for

closed curves it is fulfilled from the fourth iteration (h4 see Table 2.7).

In spite of the fact that in the case of sequence of parameters {α
k
}
k=1,...,N

, with αi 6= αj

for i 6= j the computations are more complex, we may report that the behaviour is

similar to the case of αk = α for k = 1, . . . , N . So, to analyse the convergence of the
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Newton-Raphson method for {α
k
}
k=1,...,N

, with αi 6= αj and i 6= j, we have selected

two different configurations of sequences for both open and closed curves. The first

selection comprises 10 sequences of parameters whose values are chosen following a

chordal heuristic. This means that for a given α1 , the choice of the parameter α
k

with k > 1 depends on the distance between two consecutive interpolating points q
k−1

and q
k
. The second arrangement is composed of 10 arbitrary increasing sequences of

{α
k
}
k=1,...,N

.

The results of the convergence parameter of Theorem 2.2, hi for i ≥ 0, in the case of

open curves are listed in Tables 2.8, 2.9 and for closed curves in Tables 2.10, 2.11. We

have observed that the Kantorovich condition h < 1
2 is achieved not only for constant

sequences of parameters, but also for any sequences of parameters. Namely, taking

chordal sequences of parameters, the Kantorovich condition h < 1
2 is accomplished

after the second iteration (h2, see Table 2.8) for open curves, whereas for closed curves

it is satisfied from the fourth iteration (h4, see Table 2.10). For arbitrary sequences

of parameters the convergence is also achieved after a few iterations, see Table 2.9 for

open curves and Table 2.11 for closed curves. The data presented in the aforementioned

Tables are by no means “special”, they are, in fact, representative of what we have

observed in numerous examples. The resulting interpolating ATPH curves are displayed

in Figures 2.13, 2.14 for open curves and in Figures 2.15, 2.16 for closed curves. We

have used these examples to illustrate the convergence that can be attained in the

construction of ATPH splines. Many examples have shown that the convergence

condition of Theorem 2.2 is in general satisfied after a small number of iterations for

any sequence of parameters.

As proposed in [25] we also have observed that the convergence condition h < 1/2

is obtained in less iterations, if we substitute the computed Lipschitz constant by an

approximation K∗,

K∗ =
‖J(b(0))− J(b)‖
‖b(0) − b‖

, (2.35)

where b(0) is the initial point for the Newton-Raphson method and b is the good1

solution.

Tables 2.13, 2.12 and 2.14, 2.15, summarize the results obtained with K∗ for chordal

and arbitrary sequences of the previously given parameters.

All the experiments performed allow us to conclude that the Newton-Raphson iteration is

an efficient practical scheme to construct ATPH splines that interpolate point sequences.

1Assuming that b(0) is calculated from an interpolating cubic B-spline without loops (in practice
given by the conditions (2.22)). The good solution b is an iteration of b(0) such that its difference with
the previous iteration is within a certain tolerance, namely Tol = 1.0−20.
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Figure 2.12: Lipschitz constants Kα.

α Kα α Kα

π/18 2 5π/9 549.2

π/9 2 11π/18 1119.4

π/6 2 2π/3 1717.7

2π/9 2 13π/18 1965.8

5π/18 2 7π/9 1620.0

π/3 2 5π/6 884.2

7π/18 9.9 8π/9 260.5

4π/9 53.5 17π/18 21.1

π/2 201.1 π 2

Table 2.5: The Lipschitz constants Kα corresponding to points *, * and * of Fig-
ure 2.12.

α Kα h0 h1 h2 h3

5π/18 2 13.6397 0.4716 6.0255e-04 7.9437e-10

π/3 2 0.7777 0.0197 1.3149e-05 3.6838e-12

7π/18 9.9 7.1331 0.5428 0.0030 8.6226e-08

4π/9 53.5 55.9560 6.9301 0.0993 1.8969e-05

π/2 201.1 277.6468 46.7705 1.2275 7.6743e-04

5π/9 549.2 948.3287 199.7283 8.1390 0.0120

11π/18 1119.4 2.3628e+03 593.1812 34.1615 0.0978

2π/3 1717.71 4.4283e+03 1.28667e+03 98.6317 0.4862

Table 2.6: Test data for open ATPH curves. The quantities listed are: αk = α for
k = 1, 2, 3, Lipschitz constants Kα and the convergence parameters h0 at the starting

approximation and hi, 1 ≤ i ≤ 3 at the ith iteration.
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α Kα h0 h1 h2 h3 h4 h5

5π/18 2 155.3650 227.3300 81.0998 4.2599 1.2083 0.3643

π/3 2 10.0116 17.8138 5.2251 0.7660 0.2189 0.0702

7π/18 9.9 5.7644 11.4538 3.0132 0.6796 0.2163 0.0736

4π/9 53.5 5.7564 12.1211 3.0121 0.8746 0.3184 0.1149

π/2 201.1 5.8799 12.77832 3.0869 1.0745 0.4455 0.1700

5π/9 549.2 6.1268 13.6497 3.2442 1.3091 0.6142 0.2479

11π/18 1119.4 6.5297 14.9942 3.5137 1.6184 0.8601 0.3700

2π/3 1717.71 7.1423 17.2029 3.9430 2.0647 1.2596 0.5085

Table 2.7: Test data for closed ATPH curves. The quantities listed are: αk = α for
k = 1, . . . , 5, Lipschitz constants Kα and the convergence parameters h0 at the starting

approximation and hi, 1 ≤ i ≤ 5 at the ith iteration.

{α
k
}
k=1,2,3

K h0 h1 h2

{0.3183π, 0.4138π, 0.2546π} 4.187 47.1714 2.0234 0.0139

{0.3254π, 0.4209π, 0.2582π} 5.306 49.3147 2.4345 0.0178

{0.3325π, 0.4279π, 0.2617π} 6.682 51.7001 2.8810 0.0227

{0.3395π, 0.4350π, 0.2653π} 8.364 54.3735 3.3678 0.0285

{0.3466π, 0.4421π, 0.2653π} 10.41 57.3892 3.9018 0.0355

{0.3537π, 0.4492π, 0.2723π} 12.88 60.8117 4.4918 0.0439

{0.3608π, 0.4562π, 0.2759π} 15.84 64.7163 5.1487 0.0539

{0.3678π, 0.4633π, 0.2794π} 19.39 69.1903 5.8858 0.0657

{0.3749π, 0.4704π, 0.2829π} 23.60 74.3346 6.7186 0.0798

{0.3820π, 0.4775π, 0.2865π} 28.57 80.2641 7.6659 0.0965

Table 2.8: Test data for open ATPH curves corresponding to chordal α’s.

Figure 2.13: Right : open curves corresponding to chordal sequences of parameters.
Left : zoomed curves.
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Figure 2.14: Open curves corresponding to arbitrary sequences of parameters.

Figure 2.15: Top: closed curves corresponding to chordal sequences of parameters.
Left : zoomed curves.

Figure 2.16: Closed curves corresponding to arbitrary sequences of parameters.
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{α
k
}
k=1,2,3

K∗ h∗0 h∗1 h∗2

{0.3183π, 0.4138π, 0.2546π} 1.553 17.4938 0.7504 0.0052

{0.3254π, 0.4209π, 0.2582π} 2.062 19.1672 0.9462 0.0069

{0.3325π, 0.4279π, 0.2617π} 2.708 20.9549 1.1677 0.0092

{0.3395π, 0.4350π, 0.2653π} 3.520 39.4275 3.7657 0.0474

{0.3466π, 0.4421π, 0.2653π} 4.529 22.8803 1.4172 0.0120

{0.3537π, 0.4492π, 0.2723π} 5.774 24.9727 1.6979 0.0155

{0.3608π, 0.4562π, 0.2759π} 7.297 27.2673 2.0141 0.0197

{0.3678π, 0.4633π, 0.2794π} 9.416 29.8064 2.3714 0.0248

{0.3749π, 0.4704π, 0.2829π} 11.37 32.6397 2.7765 0.0310

{0.3820π, 0.4775π, 0.2865π} 14.03 35.8247 3.2380 0.0385

Table 2.12: Test data for open ATPH curves for chordal α’s.

{α
k
}
k=1,2,3

K∗ h∗0 h∗1 h∗2 h∗3

{0.0633π, 0.0926π, 0.0882π} 2.332e-10 270.6432 29.4568 6.3868 0.1847

{0.1607π, 0.1301π, 0.1913π} 2.534e-05 19.5222 2.3373 0.1202 2.5221e-04

{0.1496π, 0.2228π, 0.2728π} 0.0034 570.7164 69.2591 2.9747 0.0047

{0.3183π, 0.4138π, 0.2706π} 1.9530 10.5136 0.5459 0.0032 8.6955e-08

{0.3301π, 0.4166π, 0.2706π} 2.3620 12.2178 0.6697 0.0042 1.3173e-07

{0.3848π, 0.5286π, 0.4749π} 120.2365 106.8301 14.1652 0.2434 7.9713e-05

{0.4058π, 0.4797π, 0.5433π} 168.0991 217.3235 38.5230 1.1007 8.0024e-04

{0.5139π, 0.4606π, 0.5946π} 258.6053 449.3682 94.3293 3.5070 0.0042

{0.4673π, 0.5960π, 0.6173π} 489.6316 807.0998 183.1753 8.7369 0.0175

{0.6667π, 0.4845π, 0.6037π} 438.3178 1175.8 306.7938 18.4335 0.0604

Table 2.13: Test data for open ATPH curves for arbitrary α’s.



Chapter 2. Planar C2 Algebraic Trigonometric Pythagorean Hodograph splines 39

{α
k
} k

=
1
,.
..
,5

K
∗

h
∗ 0

h
∗ 1

h
∗ 2

h
∗ 3

h
∗ 4

{0
.1

91
0π
,0
.2

22
8π
,0
.2

54
6π
,0
.2

51
5π
,0
.2

57
8π
}

0.
00

59
23

.4
97

4
25

.8
2
1
6

9
.6

8
6
0

1
.6

3
4
3

0
.2

0
8
6

{0
.1

93
8π
,0
.2

24
6π
,0
.2

55
7π
,0
.2

52
1π
,0
.2

59
1π
}

0.
00

62
20

.5
47

2
23

.0
2
3
8

8
.4

6
6
3

1
.4

2
5
8

0
.1

7
6
8

{0
.1

96
6π
,0
.2

26
4π
,0
.2

56
8π
,0
.2

52
7π
,0
.2

60
3π
}

0.
00

65
18

.0
18

0
20

.5
8
0
4

7
.4

2
2
8

1
.2

4
6
4

0
.1

5
0
5

{0
.1

99
5π
,0
.2

28
1π
,0
.2

57
8π
,0
.2

53
3π
,0
.2

61
6π
}

0.
00

69
15

.8
43

8
18

.4
4
1
5

6
.5

2
7
6

1
.0

9
1
9

0
.1

2
8
7

{0
.2

02
3π
,0
.2

29
9π
,0
.2

58
9π
,0
.2

53
9π
,0
.2

62
8π
}

0.
00

72
13

.9
69

8
16

.5
6
4
8

5
.7

5
7
4

0
.9

5
8
4

0
.1

1
0
6

{0
.2

05
1π
,0
.2

31
7π
,0
.2

60
0π
,0
.2

54
5π
,0
.2

64
1π
}

0.
00

76
12

.3
50

2
14

.9
1
4
4

5
.0

9
3
1

0
.8

4
2
9

0
.0

9
5
6

{0
.2

07
9π
,0
.2

33
4π
,0
.2

61
0π
,0
.2

55
1π
,0
.2

65
3π
}

0.
00

79
10

.9
47

0
13

.4
5
9
9

4
.5

1
8
5

0
.7

4
2
7

0
.0

8
3
1

{0
.2

10
8π
,0
.2

35
2π
,0
.2

62
1π
,0
.2

55
7π
,0
.2

66
5π
}

0.
00

83
9.

72
83

12
.1

7
5
3

4
.0

2
0
2

0
.6

5
5
6

0
.0

7
2
7

{0
.2

13
6π
,0
.2

37
0π
,0
.2

63
1π
,0
.2

56
3π
,0
.2

67
8π
}

0.
00

87
8.

66
71

11
.0

3
8
4

3
.5

8
7
1

0
.5

7
9
7

0
.0

6
4
0

{0
.2

16
4π
,0
.2

38
7π
,0
.2

64
2π
,0
.2

56
9π
,0
.2

69
0π
}

0.
00

92
7.

74
09

10
.0

3
0
1

3
.2

0
9
6

0
.5

1
3
5

0
.0

5
6
8

T
a
b
l
e
2
.1
4
:

T
es

t
d

at
a

fo
r

cl
os

ed
A

T
P

H
cu

rv
es

ch
o
rd

a
l
α

’s
.



Chapter 2. Planar C2 Algebraic Trigonometric Pythagorean Hodograph splines 40

{α
k
} k

=
1
,.
..
,5

K
∗

h
∗ 0

h
∗ 1

h
∗ 2

h
∗ 3

h
∗ 4

h
∗ 5

{0
.1

46
4π
,0
.1

52
8π
,0
.1

91
0π
,0
.1

59
2π
,0
.1

75
1π
}

2.
10

94
e-

05
21

.0
52

7
11

.7
68

3
1
2
.9

9
6
8

2
.0

7
8
8

0
.9

7
2
0

0
.2

7
5
8

{0
.1

44
0π
,0
.1

60
7π
,0
.1

77
8π
,0
.1

91
3π
,0
.2

06
9π
}

7.
12

59
e-

05
45

.8
27

4
23

.0
89

0
2
1
.5

5
2
3

3
.3

3
9
2

1
.3

5
3
5

0
.3

4
0
1

{0
.2

16
4π
,0
.2

38
7π
,0
.2

62
8π
,0
.1

61
4π
,0
.2

34
0π
}

0.
00

31
52

.8
68

6
43

.7
22

6
2
7
.9

9
6
6

3
.5

7
5
5

1
.1

7
5
2

0
.3

4
0
8

{0
.2

86
5π
,0
.3

31
7π
,0
.2

76
2π
,0
.2

13
4π
,0
.3

46
3π
}

0.
19

72
47

.5
09

2
48

.8
25

4
1
9
.8

6
2
8

2
.6

0
2
8

0
.6

1
7
5

0
.1

6
0
9

{0
.3

18
3π
,0
.2

29
2π
,0
.4

16
6π
,0
.2

70
6π
,0
.3

82
0π
}

0.
59

95
44

.3
13

8
23

.1
93

9
1
6
.0

5
2
2

2
.1

2
2
3

0
.5

1
4
4

0
.1

7
7
2

{0
.4

13
8π
,0
.3

82
0π
,0
.5

09
3π
,0
.4

77
5π
,0
.5

57
0π
}

86
.5

18
8

18
.0

77
6

24
.0

18
9

5
.8

3
7
2

1
.7

0
8
5

0
.5

6
7
9

0
.1

8
7
2

{0
.4

61
3π
,0
.4

85
8π
,0
.4

79
7π
,0
.5

43
3π
,0
.5

57
0π
}

12
4.

64
01

14
.2

90
8

17
.7

48
6

4
.9

0
9
4

1
.6

0
7
4

0
.5

9
7
5

0
.2

1
6
6

{0
.5

13
9π
,0
.5

41
1π
,0
.4

60
6π
,0
.3

83
6π
,0
.5

94
6π
}

21
1.

58
06

17
.8

75
4

26
.0

83
7

8
.2

9
6
8

3
.2

4
3
9

1
.3

1
9
8

0
.4

6
9
3

{0
.4

67
3π
,0
.4

95
0π
,0
.5

96
0π
,0
.6

17
3π
,0
.5

15
7π
}

34
3.

85
20

8.
05

69
19

.6
15

6
2
.7

2
5
3

1
.9

9
9
3

0
.4

6
0
5

0
.1

4
0
3

{0
.6

04
9π
,0
.6

66
7π
,0
.4

84
5π
,0
.5

58
5π
,0
.6

03
7π
}

65
6.

47
06

7.
84

89
13

.0
81

9
4
.2

7
8
5

2
.0

8
7
7

1
.0

8
6
7

0
.4

2
5
5

T
a
b
l
e
2
.1
5
:

T
es

t
d

at
a

fo
r

cl
os

ed
A

T
P

H
cu

rv
es

a
rb

it
ra

ry
α

’s
.



Chapter 2. Planar C2 Algebraic Trigonometric Pythagorean Hodograph splines 41

2.5 Designing C2 ATPH spline curves using fairness func-

tionals

In the last sections, the construction of C2 ATPH splines by a homotopy method and

the Newton-Raphson method was presented. These curves are described by interpola-

tion constraints, end condition constraints and sequences of free parameters for shape

adjustment. For different choices of these free parameters {α
k
}
k=1,...,N

, we obtain various

ATPH splines that interpolate the same data. We have remarked that according to the

choice of {α
k
}
k=1,...,N

, some ATPH curves are aesthetically more pleasing than others.

So, it is useful to develop a method for objectively selecting the sequence {α
k
}
k=1,...,N

. In

consequence, we will apply nonlinear optimization methods to a pre-established fairness

functional to iteratively find the parameters {α
k
}
k=1,...,N

that minimize the objective

function.

2.5.1 Definition of fairness functionals

We use two traditional measures for fairness of curves, the bending energy (E) (2.26)

and the minimum curvature variation (MV), see e.g. [82–84]. The MV fairness measure

is the integral of the square the derivative of curvature with respect to arc length∫
(κ′(s))2ds. (2.36)

The measure E is interpreted as the measure of the strain energy to bend a thin beam

subject to given constraints. The measure (2.36) may be used to minimize the total

variation of the curvature.

The value of the functionals E and MV change with a change of scale. So, taking in

account this factor, we introduce the following functionals, see [82]

IMV = (

∫
(ds))3

∫
(κ′(s))2ds, IES =

∫
κ2(s)ds

∫
ds, (2.37)

which are scale independent.

2.5.2 Implementation

The definition of fairness functionals is an essential first step for the design of faired

ATPH spline curves. Our approach to design faired ATPH curves relies on the use of

standard constrained optimization. We will summarize the generic algorithm as follows:
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Algorithm

1. Choose a fairness functional to use as objective function g.

2. Express g as a function of the parameters {α
k
}
k=1,...,N

.

3. Choose a numerical method for the evaluation of the chosen functional g.

4. Give suitable starting values {α
k
}
k=1,...,N

for the algorithm to minimize g.

5. Choose a multivariate minimization method.

6. The minimization method iteratively performs the following steps:

6a. Calculates the starting approximation as in the subsection 2.4.3.

6b. Uses Newton Raphson’s method to construct the ATPH spline, see subsection

2.4.2.

6c. Evaluate the objective function g. Depending on its value the iteration is

either stopped or a new set of parameters {α
k
}
k=1,...,N

is proposed.

The chosen multivariate minimization method for the examples presented in this section

is the interior-point algorithm of the MATLAB “fmincon” constrained-optimization func-

tion, where the objective function g is one of the fairness functionals described above.

The numerical method for the evaluation of the fairness functional is the MATLAB func-

tion “integral”.

Figure 2.17 shows the two ATPH splines that are produced by applying the fairness

functional IMV (blue curve) and the bending energy IES (green curve), respectively,

which interpolate the same set of points. The curves are visually similar and nearly

indistinguishable on some segments, the curvature plots help to identify the shape dif-

ferences between these curves. For the open ATPH curve, the value of IMV = 116.22

is greater than IES = 25.0506. Similarly, for the closed ATPH curve IMV = 256.6238

is greater than IES = 10.0259. This is because of the cubic factor in the definition of

the functional IMV. However, the ATPH curve minimizing the fairness functional IMV

has a smoother and lower curvature profile than the one obtained by minimizing the

functional IES, indicating a slightly better shape for the first one than the last one.

2.6 Reproduction of well-known trigonometric curves

We have considered C2 ATPH spline curves that interpolate a given set of points sampled

from a well-known trigonometric curve such as circle, limaçon, cardioid, deltoid, etc. We
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Figure 2.17: Left : The C2 ATPH spline curves correspond to minimizing the func-
tionals IES and IMV. Right : Curvature profiles for both curves.

have observed that by adjusting the sequences of parameters {α
k
}
k=1,...,N

, the interpolat-

ing C2 ATPH spline curve closely agrees with the underlying trigonometric curve. For

conciseness, we illustrate this behaviour for the cases of the unit circle and the limaçon,

see Figures 2.18 and 2.19. The parametrization of the limaçon is given by the para-

metric representation x(θ) = (x(θ), y(θ)) = ((0.5 + cos(θ)) cos(θ), (0.5 + cos(θ)) sin(θ)).

We compare these curves with the approximations given by the C2 PH quintic spline

defined with the chordal parametrization given in [25] and the C2 cubic B-spline.

To construct the interpolating C2 ATPH spline and the C2 PH quintic spline with the

Newton-Raphson method described in section 2.4.2, we need a starting approximation

b(0). These initial values depend on mid-point derivatives of a known curve. In this

case, we have used the mid-point derivatives of the respective trigonometric curve.

As a measure of the approximation of the trigonometric curves with C2 ATPH spline

curves and C2 PH quintic spline curves, we use the approximation errors: maximum

square error MSE and root-mean-square error RMSE, defined by

MSE =

∑n
k=1 |Ỹk

− Y
k
|2

n
RMSE =

√
MSE (2.38)

where Ỹ
k

is the k-th point on the original trigonometric curve (called prediction point)

and Y
k

is the k-th point on the interpolating curve (called observed point).
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We consider arcs of planar trigonometric curves defined by parametric equations g(θ) =

(x(θ), y(θ)) with θ ∈ [0, 2π], the interpolating C2 ATPH segment r
k
(t) with t ∈ [0, αk]

for αk ∈ (0, 2π/3) with k = 1, . . . , N and the C2 PH quintic spline segment r
k,PH

(t)

defined with the chordal parametrization as in [25].

In our case, the observed points are defined by Y
k

= r
k
(
α
k
2 ) for ATPH curves and

Y
k

= r
k,PH

(
t
k−1

+t
k

2 ) for PH quintic curves with k = 1 . . . , N . The prediction points Ỹ
k

are computed by using a code called distance2curve of MATLAB, which finds the closest

point on a curve to any given point.

Figure 2.18: Left : Comparison of the C2 ATPH spline curve, the C2 PH quintic
spline curve, the C2 cubic B-spline and the unit circle. Right : Curvature profiles of the

four spline curves.

Figure 2.19: Left : Comparison of the C2 ATPH spline curve, the C2 PH quintic
spline curve, the C2 cubic B-spline and the limaçon. Right : curvature profiles of the

four curves.

• In the case of the unit circle, the sequence of parameters {α
k
}
k=1,...,4

for the ATPH

spline curve is given by α
k

= θi−θi−1 , where {θi}i=0,...,4
= {0, π/4, π/3, π/2, 2π/3} .

The four curves, the ATPH spline curve, the PH quintic spline curve, the cubic

B-spline and the unit circle, are almost identical on the scale of the plot and

their curvature profiles allow to visualize shape differences (see Figure 2.18). The
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distribution of the curvature (Figure2.18 Right) from the nominal value κ = 1 pro-

vides a measure of “smoothness”. We can observe that 0.9992 ≤ κ ≤ 1.0019 for

the interpolating C2 ATPH spline whereas for the C2 PH quintic spline we have

0.8301 ≤ κ ≤ 1.0245 and for the C2 cubic B-spline we have 0.6104 ≤ κ ≤ 1.0724.

We have used a change of parameter to adjust the curvature plot of the ATPH

spline curve to the interval [0, 1].

Quantity (2.31) illustrates the remarkable convergence of the Newton-Raphson

method in this example, at the 4-th iteration the value of error (2.31) is already

ε4 =4.3837e-15. In addition the accurate approximation of the unit circle illus-

trated in Figure 2.18 with the C2 ATPH spline curve is supported by the errors

MSE and RMSE, which are 2.0362e-11 and 4.5124e-6, respectively. On the other

hand these quantities for the interpolating C2 PH quintic spline curve are 1.7036e-

6 and 0.0013, respectively.

We have observed through many examples that the C2 ATPH spline curves can be

employed to interpolate large sequences of interpolating points on the unit circle.

In Table 2.16 we present comparative approximation errors: εr−ATPH , MSE−ATPH

and RMSE−ATPH for the ATPH curves and εr−PH , MSE−PH and RMSE−PH for

the PH quintic curves, where r denotes the r-th iteration of the Newton-Raphson

method. Both curves interpolate the same data. For these data, we have selected

non-uniform and increasingly larger sequences of interpolating points illustrated in

Figure 2.20. The corresponding arcs of the unit circle, the interpolating C2 ATPH

spline curves and the interpolating C2 PH quintic spline curves are in a very good

agreement and therefore figures are not included. The approximation errors given

by the C2 ATPH spline curves are smaller than for the C2 PH quintic spline curves

as is clearly apparent in the results. Moreover, we obtain a “good” ATPH spline

curve in the first iteration of the Newton-Raphson method and for the PH quintic

spline curve more iterations are necessary. This somehow compensates for the

higher computational cost for the evaluation of the Jacobian matrix in the case of

ATPH spline curves.

• In the case of the limaçon, the interpolating points qi = (xi , yi) with i = 0, . . . , 4

are given by xi(θi) = (0.5 + cos(θi)) cos(θi) and yi(θi) = (0.5 + cos(θi)) sin(θi),

where {θi}i=0,...,4
= {π/18, π/4, π/3, π/2, 2π/3} . So we have chosen the sequence

of parameters {α
k
}
k=1,...,4

as α
k

= θ
k
−θ

k−1
. Figure 2.19 shows the C2 ATPH spline

curve, the C2 PH quintic spline curve, the C2 cubic B-spline and the respective

limaçon, which are barely distinguishable on the scale of the plot. We can observe

that the ATPH spline curve and the limaçon have similar curvature profiles (see

Figure 2.19 Right), specifically 1.1151 ≤ κ ≤ 2.3102 for the ATPH spline curve

and 1.1156 ≤ κ ≤ 2.3094 for the limaçon. On the other hand the distributions of
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Figure 2.20: Sequences of 10, 15, respectively 20 interpolating points on the unit
circle.

Number of points εr MSE RMSE

10 ε1−ATPH =3.0749e-16 MSE−ATPH =1.0619e-10 RMSE−ATPH =1.0305e-5
ε1−PH =44.5434
ε5−PH =1.6278e-14 MSE−PH =1.7966e-10 RMSE−PH =1.3404e-5

15 ε1−ATPH =3.0696e-16 MSE−ATPH =7.0874e-11 RMSE−ATPH =8.4187e-6
ε1−PH =208.0952
ε6−PH =3.8881e-14 MSE−PH =7.9633e-11 RMSE−PH =8.9237e-6

20 ε1−ATPH =2.8308e-16 MSE−ATPH =5.8221e-11 RMSE−ATPH =7.6302e-6
ε1−PH =789.9844
ε6−PH =8.0038e-14 MSE−PH =7.1517e-11 RMSE−PH =8.4568e-6

Table 2.16: Comparison of approximation errors for C2 ATPH spline curves and C2

PH quintic spline curves interpolating the same sequences of points on the unit circle.

curvature of the PH spline curve and the cubic B-spline are quite different from

the distribution of curvature of the limaçon, where for the first and second one

we have 0.8541 ≤ κ ≤ 1.7952 and 0.5087 ≤ κ ≤ 2.4232, respectively. In this

example, the C2 ATPH spline approximation errors MSE and RMSE are 1.0347e-

10 and 1.0172e-5, respectively. For its C2 PH quintic spline approximation the

corresponding errors are 1.2057e-5 and 0.0035, respectively. These values confirm

the close agreement of the ATPH spline curves with the arcs of the limaçon.

As in the case of the unit circle, we can interpolate increasingly larger sequences

of points on the limaçon with ATPH spline curves. In table 2.17 we present the

corresponding values of the approximation errors for the ATPH spline curves and

the PH quintic spline curves, both curves interpolating the same sequence of points

illustrated in Figure 2.21.
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All test cases suggest that the ATPH spline curves can be used to reproduce quite

accurately arcs of trigonometric curves.

Figure 2.21: Sequences of 10, 15, respectively 20 interpolating points on the limaçon.

Number of points εr MSE RMSE

10 ε5−ATPH =2.0385e-16 MSE−ATPH =1.9501e-11 RMSE−ATPH =4.4160e-6
ε5−PH =5.5070e-4
ε7−PH =4.2833e-14 MSE−PH =5.3663e-8 RMSE−PH =2.3165e-4

15 ε4−ATPH =1.7580e-16 MSE−ATPH =5.3750e-12 RMSE−ATPH =2.3184e-6
ε4−PH =1.3888

ε7−PH =7.2197e-14 MSE−PH =2.2188e-8 RMSE−PH =1.4895e-4

20 ε4−ATPH =4.4777e-16 MSE−ATPH =2.2622e-13 RMSE−ATPH =4.7562e-7
ε4−PH =3.7687

ε7−PH =1.0067e-13 MSE−PH =2.6941e-9 RMSE−PH =5.1905e-5

Table 2.17: Comparison of approximation errors for C2 ATPH spline curves and C2

PH quintic spline curves interpolating the same sequences of points on the limaçon.



Chapter 3

Hermite interpolation by spatial

Algebraic Trigonometric

Pythagorean Hodograph curves

3.1 Introduction

We consider in this chapter the construction of smooth spatial, Algebraic Trigono-

metric Pythagorean Hodograph (ATPH) curves that interpolate given end points and

end derivatives. The ATPH curves are parametric curves defined over the mixed

algebraic-trigonometric space U5 (see chapter 2), whose hodograph or derivative sat-

isfies a Pythagorean condition. The solution of the first-order Hermite interpolation

problem by planar ATPH curves has been studied by Romani et al. in [51], using the

complex representation of them. This characterization facilitates the construction and

shape analysis of the ATPH interpolants. The obtained four solutions are analyzed

and the best interpolant is identified by means of shape measures. The solution of an

analogous problem by the well-known Pythagorean-Hodograph (PH) quintic curves was

investigated in [46]. The extension of PH curves to the spatial case has thoroughly

been studied in [31–35]. Choi et al. [35] presented an elegant characterization of spatial

PH curves in terms of quaternions. This representation was used by Farouki et al. in

[31, 34] to solve the C1 Hermite interpolation problem by spatial PH quintic curves. The

resulting solutions have two degrees of freedom. Farouki et al. considered in [33] three

methods to choose optimally these free angular parameters, which strongly influence the

shape of the interpolants. Similarly, we consider the spatial ATPH curves to efficiently

solve the C1 Hermite interpolation problem. As done in [31, 32] for spatial PH quintic

curves, to simplify the construction of the Hermite interpolants a representation in terms

48
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of quaternions for spatial ATPH curves is used in this chapter and a general approach

exploiting their properties is proposed.

The problem of Hermite interpolation by ATPH curves inherently implies a three-

parameter family of solutions. The three parameters that determine spatial ATPH

Hermite interpolants are angular variables (θ, β, α). We identify optimal values for

them to select a “good” interpolant among the family of solutions.

The remainder of the chapter is organized as follows. In Section 3.2 we recall some re-

sults on quaternion algebra. In Section 3.3 we describe the quaternion representation of

spatial ATPH curves. In Section 3.4 the spatial ATPH curves are employed to solve the

C1 Hermite interpolation problem. Several illustrative examples are presented in Section

3.5. The criteria for selecting the three free parameters of ATPH are then described in

Section 3.6.

3.2 Preliminaries of quaternion algebra

The theory of complex numbers was extended to three dimensions by W. R. Hamilton

[85], calling this new numeral system quaternions. The space of quaternions is denoted

by H. Each quaternion number can be uniquely written as a linear combination of the

four units 1, i, j, k with coefficients in R. Thus, a quaternion number has the form

A = a+ axi + ayj + azk = a+ a, (3.1)

where a, ax, ay, az are real numbers and i, j,k denote three imaginary units. The compo-

nent a of A is called scalar part of the quaternion and a is denominated its vector part.

The 3-dimensional vectors and real numbers are considered as pure vector and pure

scalar quaternions, of the form A = a and A = a, respectively. We simply denote such

quaternions as a and a.

Quaternion addition or subtraction, and scalar multiplication are defined in the usual

manner in R4 [85], that is

A±B = (a± b) + (ax ± bx)i + (ay ± by)j + (az ± bz)k = (a± b) + (a± b),

rA = ra+ raxi + rayj + razk = r(a+ a),

for two any quaternion numbers A,B ∈ H and r ∈ R.

The basis elements 1, i, j, k satisfy the following identities:

i2 = j2 = k2 = ijk = −1.
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Therefore, all possible products of the basis elements are

ij = −ji = k, jk = −kj = i, ki = −ik = j. (3.2)

Using the above relations, the product of quaternions is given by

AB = (ab− axbx − ayby − azbz) + (abx + bax + aybz − azby)i

+ (aby + bay + azbx − axbz)j + (abz + baz + axby − aybx)k

= ab− a · b + ab + ba + a× b,

(3.3)

where the dot and the cross are the usual three dimensional scalar and vector cross

products, respectively.

Quaternion multiplication is non-commutative, i.e. AB 6= BA. However, all other alge-

braic properties hold, namely, associativity, existence of a neutral element and inverse

of elements with respect to multiplication and addition.

For every quaternion A = a + a, there is a conjugate quaternion A∗ = a − a, and the

norm of A is the non-negative quantity |A| defined by

|A| =
√
AA∗ =

√
a2 + a2x + a2y + a2z =

√
a2 + |a|2.

Besides, for any two quaternions A,B holds |AB| = |BA| and product conjugation

satisfies the relation (AB)∗ = B∗A∗.

3.2.1 Quaternion equations

The interpolation of first-order Hermite data by spatial ATPH curves, as in the case of

PH quintic curves [31]-[32], involves equations of the form

AiA∗ = d, (3.4)

with the unknown quaternion A = a0+axi+ayj+azk and a given pure vector quaternion

d = dxi + dyj + dzk. We use the solutions of this system given in [31]-[32].

Note that the system of equations (3.4) splits into three equations in four unknowns,

namely

a20 + a2x − a2y − a2z = dx,

2(a0az + axay) = dy,

2(axaz − a0ay) = dz.
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So, the solutions of (3.4) have one degree of freedom. Particularly, taking a0 = 0 and
d
|d| = (λx, λy, λz), the real solutions of (3.4) are given by

ax = ±
√

1

2
(1 + λx) | d |,

ay = ± λy
1 + λx

√
1

2
(1 + λx) | d |,

az = ± λz
1 + λx

√
1

2
(1 + λx) | d |.

Therefore,

A = ±(i +
λy

1 + λx
j +

λz
1 + λx

k)

√
1

2
(1 + λx) | d |. (3.5)

On the other hand, consider a quaternion B satisfying the following equation

BiB∗ = i. (3.6)

Then the quaternion Ã = AB is also a solution of (3.4), due to

ÃiÃ∗ = ABi(AB)∗ = ABiB∗A∗ = AiA∗.

By setting B = a+ bi + cj + dk, equation (3.6) is equivalent to the system

a2 + b2 − c2 − d2 = 1, 2(ad+ bc) = 0, 2(bd− ac) = 0,

whose real solutions are of the form (a, b, c, d) = (cos(φ), sin(φ), 0, 0). Thus, we can

parametrize all real solutions to (3.6) in terms of a parameter φ as

B(φ) = cos(φ) + sin(φ)i. (3.7)

Then quaternion Ã can be written in terms of A and φ as

Ã = −ax sinφ+ ay cosφi + (ay cosφ+ az sinφ)j + (az cosφ− ay sinφ)k

and we can deduce a general solution A(φ) to equation (3.4) from the particular solution

(3.5) as follows

A(φ) =

(
− sinφ+ cosφi +

λy cosφ+ λz sinφ

1 + λx
j +

λz cosφ− λy sinφ

1 + λx
k

)√
1

2
(1 + λx) | d |. (3.8)

Using the notation exp(φi) = cosφ + sinφi and taking an unit vector δ =
d

|d|
in the

direction of d and the unit bisector vector of δ and i, n =
δ + i

|δ + i|
, we can write the
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above equation as

A(φ) =
√
| d |n exp(φi). (3.9)

Note that in the previous equation there is a combination of scalars, vectors and quater-

nions and the quaternion product is implicit.

3.3 Spatial Algebraic Trigonometric Pythagorean Hodo-

graph curves

Romani et al. [51] extended the well-known definition of planar polynomial Pythagorean

Hodograph (PH) curves to the algebraic-trigonometric case, calling this new class of pla-

nar PH curves, Algebraic Trigonometric Pythagorean Hodograph (ATPH) curves. The

complex model for planar ATPH curves was studied in chapter 2, where the hodograph

r′(t) = (x′(t), y′(t)) of an ATPH curve r(t) is obtained by squaring a complex function

w(t) = u(t) + iv(t) yielding w2(t) = u2(t)− v2(t) + i2u(t)v(t). This hodograph is identi-

fied as the real and imaginary parts of w2(t). An analogous approach for spatial ATPH

curves in terms of quaternions is studied in this section.

Recall that a parametric space curve is called a PH curve (cf. [31]), if the first derivative

is the square of another polynomial. Specifically, r(t) = (x(t), y(t), z(t)) is a space PH

curve if

x′2(t) + y′2(t) + z′2(t) = σ2(t) (3.10)

for some polynomial σ(t). According to [31], the condition (3.10) holds if and only if

x′(t) = u2(t) + v2(t)− p2(t)− q2(t),

y′(t) = 2u(t)q(t) + 2v(t)p(t),

z′(t) = 2v(t)q(t)− 2u(t)p(t).

for some polynomials u(t), v(t), p(t), q(t).

The spatial ATPH curves are defined similarly, but with respect to four functions

u(t), v(t), p(t), q(t) in the trigonometric space U2 introduced in chapter 2.

Definition 3.1. Let u(t), v(t), p(t), q(t) be non-zero functions in the space U2 . Then

a spatial parametric curve r(t) = (x(t), y(t), z(t)) with t ∈ [0, α] and α ∈ (0, 2π/3) is

called spatial Algebraic Trigonometric Pythagorean Hodograph curve or spatial ATPH
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curve, if its first derivative is of the form

x′(t) = u2(t) + v2(t)− p2(t)− q2(t),

y′(t) = 2u(t)q(t) + 2v(t)p(t),

z′(t) = 2v(t)q(t)− 2u(t)p(t).

(3.11)

The representation (3.11) can be reformulated using quaternions [86]. Consider the

pythagorean hodograph as a pure vector quaternion function in the form

r′(t) = [u2(t) + v2(t)− p2(t)− q2(t)]i + 2[u(t)q(t) + v(t)p(t)]j + 2[v(t)q(t)− u(t)p(t)]k.

This representation can be expressed in terms of a quaternion function A(t). Namely,

r′(t) = A(t)iA∗(t), (3.12)

where A(t) = u(t) +v(t)i+p(t)j+ q(t)k with u(t), v(t), p(t), q(t) ∈ U2 and A∗(t) denotes

the conjugate of A(t), see [35].

Since A(t) is a quaternion function in the space U2 , it can be written as follows,

A(t) = A0B
2
0
(t) +A1B

2
1
(t) +A2B

2
2
(t), (3.13)

with quaternion coefficients Ar = ur + vri + prj + qrk, r = 0, 1, 2. Note that (3.12)

defines r′(t) as a pure vector quaternion. By integrating the hodograph defined in

(3.12), we obtain a parametric curve in the algebraic-trigonometric space U5 , which can

be expressed in the normalized B-basis of U5 as

r(t) =
5∑

k=0

p
k
B5

k
(t), t ∈ [0, α] (3.14)

with control points p
k

= x
k
i + y

k
j + z

k
k defined by

p1 = p0 +
n0

16s41
A0iA

∗
0
,

p2 = p1 +
n0 − 6n2

16s41
(A0iA

∗
1

+A1iA
∗
0
),

p3 = p2 +
n2
8s41

(A0iA
∗
2

+ 2(1 + c2)A1iA
∗
1

+A2iA
∗
0
),

p4 = p3 +
n0 − 6n2

16s41
(A1iA

∗
2

+A2iA
∗
1
),

p5 = p4 +
n0

16s41
A2iA

∗
2
,

(3.15)
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for an arbitrary constant of integration p0 and the abbreviations s1, c2, n0, n1 defined

in (2.4) and (2.5).

3.4 C1 Hermite interpolation problem

In this section we are concerned with the Hermite interpolation problem. More pre-

cisely, the ATPH curve is used to interpolate prescribed end points pi,pf and tangent

vectors at these points. Henceforth, the tangent vectors at pi,pf will be denoted by

di,df , respectively. We use the quaternion representation for spatial ATPH curves with

hodographs of the form (3.12).

3.4.1 ATPH interpolants solving the C1 Hermite problem

In order to determine conditions under which end points pi,pf and end-derivatives

di,df can be interpolated by a spatial ATPH curve, we propose a variation of the

method proposed in [31] to solve the Hermite interpolation problem by polynomial PH

curves.

To solve this interpolation problem it is convenient to write the data as pure quaternions,

namely

pi = pxii + pyij + pzik di = dxii + dyij + dzik,

pf = p
xf

i + p
yf

j + p
zf

k df = dxf i + dyf j + dzfk.

The interpolation conditions

r′(0) = di, r′(α) = df ,

then yield the system of equations for A0 and A2,

A0iA
∗
0 = di A2iA

∗
2 = df . (3.16)

Writing the vectors di and df as di
|di| = (λxi, λyi, λzi) and

df

|df | = (λxf , λyf , λzf ), the

equations (3.16) can be solved [31] as according to (3.8)

A0 =

(
− sinφ0 + cosφ0i+

λyi cosφ0 + λzi sinφ0

1 + λxi
j+

λzi cosφ0 − λyi sinφ0
1 + λxi

k

)√
1

2
(1 + λxi) | di |,

A2 =

(
− sinφ2 + cosφ2i+

λyf cosφ2 + λzf sinφ2

1 + λxf
j+

λzf cosφ2 − λyf sinφ2

1 + λxf
k

)√
1

2
(1 + λxf ) | df |,

(3.17)
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where φ0, φ2 are angular parameters. It follows from the interpolation conditions r(0) =

pi and r(α) = pf the following equation∫ α

0
A(t)iA∗(t)dt = pf − pi

=
n0

16s41
A2iA

∗
2 +

n0 − 6n2
16s41

(A1iA
∗
2 +A2iA

∗
1)

+
n2
8s41

(A0iA
∗
2

+ 2(1 + c2)A1iA
∗
1

+A2iA
∗
0
)

+
n0 − 6n2

16s41
(A0iA

∗
1

+A1iA
∗
0
)

+
n0

16s41
A0iA

∗
0
,

then we have that

16s41(pf − pi) = n0A2iA
∗
2 + (n0 − 6n2)(A1iA

∗
2 +A2iA

∗
1)

+ 2n2(A0iA
∗
2

+ 2(1 + c2)A1iA
∗
1

+A2iA
∗
0
)

+ (n0 − 6n2)(A0iA
∗
1

+A1iA
∗
0
)

+ n0A0iA
∗
0
.

From the previous equation we would like to find the quaternion coefficient A1. After

some simplifications, completing squares and making several re-arrangements, we obtain

16s41n2(1 + c2)(pf − pi) = [(n0 − 6n2)2A0iA
∗
0 + 4n2(n0 − 6n2)(1 + c2)A0iA

∗
1 + (n0 − 6n2)2A0iA

∗
2]

+ [4n2(n0 − 6n2)(1 + c2)A1iA
∗
0 + 16n22(1 + c2)2A1iA

∗
1

+ 4n2(n0 − 6n2)(1 + c2)A1iA
∗
2]

+ [(n0 − 6n2)2A2iA
∗
0 + 4n2(n0 − 6n2)(1 + c2)A2iA

∗
1 + (n0 − 6n2)2A2iA

∗
2].

Substituting (3.16) in the above equation and setting ρ := n0−6n2 and ω := 4n2(1+c2),

we have

(ρA0 + ωA1 + ρA2)i(ρA0 + ωA1 + ρA2)
∗ = 16s41ω(pf − pi) + [ρ2 − ωn0](di + df )

+ [ρ2 − 2ωn2](A0iA
∗
2 +A2iA

∗
0).

(3.18)

If we denote the right-hand side of equation (3.18) by d and knowing A0, A2, we can

rewrite equation (3.18) as

DiD∗ = d
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where D = ρA0 +ωA1 +ρA2. This equation has the form (3.4), therefore we can deduce

a solution from (3.8) as follows

D =

(
− sinφ1 + cosφ1i +

λy cosφ1 + λz sinφ1
1 + λx

j +
λz cosφ1 − λy sinφ1

1 + λx
k

)√
1

2
(1 + λx) | d |,

where φ1 denotes an angular parameter and d
|d| = (λx, λy, λz).

Therefore,

A1 =
1

ω

(
− sinφ1 + cosφ1i +

λy cosφ1 + λz sinφ1
1 + λx

j +
λz cosφ1 − λy sinφ1

1 + λx
k

)√
1

2
(1 + λx) | d |

− ρ

ω
(A0 +A2).

Note that A1 depends on parameters φ0, φ1, φ2.

The three quaternions coefficients Ai, i = 0, 1, 2 can be rewritten in the form (3.9), so

A0 =
√
| di |ni exp(φ0i),

A1 = − ρ
ω

(A0 +A2) +
1

ω

√
| d |n exp(φ1i),

A2 =
√
| df |nf exp(φ2i),

(3.19)

where δi =
di
| di |

, δd =
d

| d |
, δf =

df
| df |

, ni =
δi + i

| δi + i |
, n =

δd + i

| δd + i |
, nf =

δf + i

| δf + i |
and exp(φri) = cosφr + sinφri, r = 0, 1, 2.

Note that the hodograph (3.12) depends on differences of the angles φ0, φ1, φ2 as follows.

The control points pk, k = 0, . . . , 5, defined by equation (3.15) depend on the product

of quaternions AriA
∗
s for r, s ∈ 0, 1, 2. Each quaternion Ar, As can be expressed as

Ar = Ar(0)(cosφr + sinφri) and As = As(0)(cosφs + sinφsi) where Ar(0), As(0) is the

value when φr = 0 and φs = 0, respectively. Therefore

AriA
∗
s = [Ar(0)(cosφr + sinφri)]i[As(0)(cosφs + sinφsi)]

∗

= Ar(0)[(cosφr + sinφri)i(cosφs − sinφsi)]A
∗
s(0)

= Ar(0)[(cosφr sinφs − cosφs sinφr) + (sinφr sinφs + cosφs cosφr)i]A
∗
s(0)

= Ar(0)[sin(φs − φr) + cos(φs − φr)i]A∗s(0).

This means that AriA
∗
s depend on the differences of the angular parameters φ0, φ1, φ2.

Consequently, without loss of generality, one of the parameters can be taken equal to

zero, say φ1. Then the three quaternions A0, A1, A2 (3.19) can be written in terms of
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two angles θ = 1
2(φ0 + φ2) and β = φ2 − φ0. So, we have that

A0 =
√
| di |ni exp((θ − 1

2β)i),

A2 =
√
| df |nf exp((θ + 1

2β)i),

A1 = − ρ
ω

(A0 +A2) +
1

ω

√
| d |n.

(3.20)

with (θ, β) ∈ [0, 2π]× [0, 2π].

3.5 Empirical results

In this section we present examples of spatial ATPH curves, constructed from given

Hermite data pi,di and pf ,df using the method described above. We compare these

curves with the polynomial PH quintic solving the same C1 Hermite problem.

As for the polynomial PH curves, the solution to the ATPH Hermite interpolation prob-

lem, depends on the two parameters θ, β. Furthermore in our case, there is one more

free parameter α which can be used as shape parameter.

Firstly, for illustrating the method to construct ATPH interpolants, described in section

3.4, we have used the Hermite data given in Table 3.1. The interpolating ATPH curves

are displayed in Figures 3.1 and 3.4, together with the corresponding PH quintic curve.

Curvature and torsion profiles of the ATPH curves illustrated in Figure 3.1 are displayed

in Figures 3.2 and 3.3, respectively. For these examples, we have varied the values of

the parameters (θ, β, α) over the domain [0, 2π]× [0, 2π]× [0, 2π/3] (see Tables 3.1,3.2).

The selection of the angular parameters (θ, β) has a high influence on the shape of the

ATPH interpolants. Moreover, if we fixed these parameters and vary the value of the

parameter α, we obtain different ATPH curves interpolating the same data. This can be

clearly seen in Figures 3.1 and 3.4. In Figure 3.4 we have drawn in blue the ATPH curve

that corresponds to the choice of the parameter α = π/10 and in black for the ATPH

curve corresponding to α = 2π/3. For the selected values of α given in Table 3.1, these

curves agree with the shortest and the longest ATPH interpolant. The respective values

of the total arc-length are given in the legend (see Figure 3.4). Furthermore, based on

numerous examples we have observed that, as in the planar case, for increasing values

of α ∈ (0, 2π/3) the curves become longer.

According to the choice of the parameters (θ, β, α) some ATPH curves are more aes-

thetically pleasing than others. So, to select these parameters such that the resulting

ATPH curve satisfies a fairness criterion, we have opted to apply an optimization method

to a suitable shape integral for the ATPH Hermite interpolants with respect to these

parameters. This method is explained in the next section.
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Shape Hermite data Parameter α

Figure 3.1 pi = (0, 0, 0), pf = (1, 1, 1) α = π/4, π/3, 2π/5, π/2, 3π/5, 2π/3
di = (−0.8, 0.3, 1.2), df = (0.5,−1.3,−1.0)

Figure 3.4 pi = (5, 0, 1), pf = (−3,−4, 1) α = π/10, π/4, π/3, 2π/5, π/2, 2π/3
di = (25,−15, 1), df = (25,−15, 1)

Table 3.1: Hermite data pi,di and pf ,df for the examples illustrated in Figures 3.1
and 3.4.

Figures 3.1(a), 3.4(a) θ = 5π/4 β = 3π/2 Figures 3.1(e), 3.4(c) θ = π/2 β = 0

Figure 3.1(b) θ = 5π/8 β = 7π/4 Figure 3.1(f) θ = 3π/2 β = 0

Figures 3.1(c), 3.4(b) θ = 9π/8 β = 7π/4 Figure 3.1(g) θ = 7π/8 β = 7π/4

Figure 3.1(d) θ = 0 β = 0 Figures 3.1(h), 3.4(d) θ = π/8 β = 3π/4

Table 3.2: Various choices of the angular parameters θ, β for the ATPH interpolants
illustrated in Figures 3.1 and 3.4.
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Figure 3.1: The spatial ATPH interpolants to the end points pi = (0, 0, 0), pf =
(1, 1, 1) and end derivatives di = (−0.8, 0.3, 1.2), df = (0.5,−1.3,−1.0). The choice of
the two parameters is given in Tables 3.1, 3.2. The corresponding PH quintic interpolant

is drawn in red.
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Figure 3.2: Curvature profiles of the spatial ATPH interpolants illustrated in Figure
3.1. The corresponding curvature profile of the PH quintic interpolant is drawn in red.
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Figure 3.3: Torsion profiles of the spatial ATPH interpolants illustrated in Figure
3.1. The corresponding torsion profile of the PH quintic interpolant is drawn in red..
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3.6 Selection of angular parameters (θ, β, α)

The solution to the ATPH Hermite interpolation problem, specified by (3.19), depends

on three free angular parameters (θ, β, α). As one criterion to optimally calculate these

parameters, we have considered the minimization of integral shape measures.

We use the concepts of curvature, torsion and arc length to define numerical measures

of the fairness of ATPH curves. Recall that the Frenet formulas for spatial parametric

curves are defined as (see, e.g., [87])

t =
r′

| r′ |
n =

r′ × r′′

| r′ × r′′ |
× t b = t× n, (3.21)

where t,n,b are the unit tangent, normal and binormal vectors, respectively, for r. Let

κ and τ be the curvature and torsion, respectively, given by

κ =
| r′ × r′′ |
| r′ |3

τ =
(r′ × r′′) · r′′′

| r′ × r′′ |2
. (3.22)

To calculate the curvature, torsion and their derivatives, it is required to express the first,

second, third and fourth order curve derivatives in terms of the quaternion representation

of r′, so we have that

r′ = AiA∗

r′′ = A′iA∗ +AiA′∗

r′′′ = A′′iA∗ + 2A′iA′∗ +AiA′′∗

r(4) = A′′′iA∗ + 3A′′iA′∗ + 3A′iA′′∗ +AiA′′′∗.

The integral fairness measures that we use for calculating the free parameters (θ, β, α),

were studied in [82],[84], which are

F1 =

∫
κ2ds,

F2 =

∫ (
κ′
)2
ds

F3 =

∫
(κ′2 + τ ′2)ds.

(3.23)

Note that the functionals F1, F2, F3 are invariant under rigid body transformations.

Since the value of these functionals change with a change of scale, we modify them to

obtain functionals whose values are independent of scale, by including an arc length
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Figure 3.4: The spatial ATPH interpolants to the end points pi = (5, 0, 1), pf =
(−3,−4, 1) and end derivatives di = df = (25,−15, 1) obtained with the values of
the two parameters is given in Tables 3.1 and 3.2. The corresponding PH quintic
interpolant is drawn in red. The shortest and longest ATPH interpolant are drawn in

blue and black, respectively.

term to offset the scaling factor,

F̂1 =

∫
ds

∫
κ2ds,

F̂2 =

(∫
ds

)3 ∫
κ′2ds

F̂3 =

(∫
ds

)3 ∫
(κ′2 + τ ′2)ds,

(3.24)

These functionals are scale invariant and they preserve the properties of the func-

tionals F1, F2, F3, i.e., its characteristic shape (geometric invariants of the curve) and

parametrization independence. Thus two different parameterizations of the same curve

will have the same value of the measure of fairness.
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The functionals given in (3.24) are defined in terms of a parametrized function by arc

length. To evaluate them, each one must be converted to the parameter t. For this, the

differential with respect to s is converted to a differential in t. Since dt
ds = 1

|r′(t)| then

ds =| r′(t) | dt, where

| r′(t) |=
(
r′(t) · r′(t)

)1/2
.

This yields the following expression for F̂1, F̂2, F̂3

F̂1 =

∫
| r′ | dt

∫
κ2 | r′ | dt,

F̂2 =

(∫
| r′ | dt

)3 ∫ ( κ′2

| r′ |

)
dt,

F̂3 =

(∫
| r′ | dt

)3 ∫ (
κ′2 + τ ′2

) 1

| r′ |
dt.

(3.25)

Finally, we express dκ
dt and dτ

dt in terms of the derivatives of the ATPH curve r(t). The

derivative of κ with respect to t is given by

κ′ =
vdu− udv

v2

where

u = r′ × r′′

du = r′ × r′′′

v =| r′ |3

dv = 3 | r′ | (r′ · r′′)

Taking the derivative of τ with respect to t yields

τ ′ =
wdx− xdw

w2

where

x = (r′ × r′′) · r′′′

dx = (r′ · r′′) · r(4) + (r′ × r′′′) · r′′′

w = (r′ × r′′) · (r′ × r′′)

dw = 2(r′ × r′′) · (r′ × r′′′).

For conciseness, the parameter t is omitted in the last equations.
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3.6.1 Implementation

As in the planar case, the definition of fairness functionals for designing faired spatial

ATPH curves is a fundamental step. This has been considered in the previous section.

Next we apply nonlinear optimization methods to these functionals, in order to objec-

tively select the free parameters of the ATPH curves.

In section 3.4.1, we described the spatial ATPH curves as parametric curves defined by

the prescribed end points pi,pf , tangent vectors di,df at these points and three free

angular parameters (θ, β, α) for shape adjustment. The automatic generation of a faired

ATPH curve consists of finding these parameters such that the resulting ATPH curve

minimizes one of the fairness functionals described previously. For this, the following

algorithm is carried out.

Algorithm

• Choose a fairness functional among F̂1,F̂2, F̂3 to be used as objective function g.

• Express the chosen functional as a function of the free parameters (θ, β, α).

• Choose a numerical method for the evaluation of the function g.

• Choose a minimization algorithm and starting values for the algorithm to minimize

g. Execute the minimization using the numerical method chosen in the preceding

step.

Our approach to implement this algorithm in the MATLAB language, has been to choose

as minimization algorithm the constrained-optimization function “fmincon” and as nu-

merical method for evaluating g the function “integral”.

3.6.2 Numerical examples

We present examples of C1 ATPH Hermite interpolants to illustrate the selection crite-

rion of the three angular parameters (θ, β, α) explained above. We compare these curves

with their polynomial counterpart, the well-known PH quintic Hermite interpolants. We

use the five sets of end derivatives listed in Table 3.3, which were taken from [33]. In

each case, the end points are pi = (0, 0, 0), pf = (1, 1, 1), excluding case 4, in which we

change the point pf to pf = (0.15396,−0.60997, 0.40867). The interpolating C1 ATPH

Hermite curves and C1 PH quintic Hermite curves are displayed in Figures 3.5-3.11.

We have applied the optimization method to the three functionals F̂1, F̂2, F̂3, to calcu-

late the angular parameters (θ, β, α) for ATPH curves and the parameters (θ, β) for PH
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quintic curves.

Tables 3.4 and 3.6 give F̂1, F̂2, F̂3 values for the examples illustrated in Figures 3.5-

3.13, with their corresponding curvature and torsion profiles. Observe that for almost

all ATPH interpolants their curvature and torsion profiles are more pleasing than those

belonging to PH quintic curves. Tables 3.7 and 3.5 give the respective values of the total

arc length corresponding to each functional, which are denoted by SF̂1
, SF̂2

and SF̂3
,

respectively. From these Tables, we observe that the minimization method applied to

the aforementioned fairness functionals, select “good” spatial ATPH curves among the

three-parameter family of solutions.

di df
case 1 (1.0,0.0,1.0) (0.0,1.0,1.0)

case 2 (-0.8,0.3,1.2) (0.0,1.0,1.0)

case 3 (0.4,-1.5,-1.2) (-1.2,-0.6,-1.2)

case 4 (-0.8,0.3,1.2) (0.5,-1.3,-1.0)

case 5 (10.0,0.0,10.0) (0.0,1.0,1.0)

Table 3.3: Derivative data for the five test curves.

case 1 case 2 case 3 case 4 case 5

F̂1 2.2831 20.3518 46.0858 7.8142 38.2689

F̂2 24.5246 566.9004 1.8791e+03 13.0809 1.2468e+03

F̂3 33.4794 716.6572 1.8843e+03 37.6373 1.7360e+03

Table 3.4: Functional values for PH quintic curves.

case 1 case 2 case 3 case 4 case 5

SF̂1
1.8086 2.3108 2.8541 1.0796 3.0762

SF̂2
1.8034 2.3108 2.8468 1.1086 3.3071

SF̂3
1.8109 2.3108 2.8522 1.1553 3.2969

Table 3.5: Total arc length corresponding to each functional for the PH quintic curves.

case 1 case 2 case 3 case 4 case 5

F̂1 2.2145 14.9878 30.8441 7.3635 2.5603

F̂2 1.4096e-08 53.7248 1.4353 1.5889 8.8308

F̂3 0.0094 72.2111 143.8706 7.1030 1.2938e+03

Table 3.6: Functional values for ATPH curves.
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case 1 case 2 case 3 case 4 case 5

SF̂1
1.8375 3.1418 4.5640 1.0185 1.8714

SF̂2
1.8720 3.1418 4.5636 1.0216 1.9124

SF̂3
1.8719 3.1418 4.5647 1.0227 2.2277

Table 3.7: Total arc length corresponding to each functional for the ATPH curves.
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Figure 3.5: The spatial ATPH curves obtained by minimizing F̂1. The corresponding
PH quintic interpolant is drawn in red.
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Figure 3.6: Curvature profiles of the spatial ATPH curves (green line) and the corre-
sponding PH quintic curve (red line) of Figure 3.5.
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Figure 3.7: Torsion profiles of the spatial ATPH curves (green line) and the corre-
sponding PH quintic curve (red line) of Figure 3.5.
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Figure 3.8: The spatial ATPH curves obtained by minimizing F̂2. The corresponding
PH quintic interpolant is drawn in red.
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Figure 3.9: Curvature profiles of the spatial ATPH curves (green line) and the corre-
sponding PH quintic curve (red line) of Figure 3.8.
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Figure 3.10: Torsion profiles of the spatial ATPH curves (green line) and the corre-
sponding PH quintic curve (red line) of Figure 3.8.
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Figure 3.11: The spatial ATPH curves obtained by minimizing F̂3. The corresponding
PH quintic interpolant is drawn in red.
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Figure 3.12: Curvature profiles of the spatial ATPH curves (green line) and the
corresponding PH quintic curve (red line) of Figure 3.11.
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Figure 3.13: Torsion profiles of the spatial ATPH curves (green line) and the corre-
sponding PH quintic curve (red line) of Figure 3.11.

3.6.3 Approximation of arcs of 3D parametric curves

We consider spatial C1 ATPH curves that interpolate given end points and associated

end-derivatives from known 3D parametric curves. We have observed that calculating

the free parameters (θ, β, α) by minimizing an integral shape measure, the interpolating
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ATPH curve closely approximates the corresponding space parametric curve. To illus-

trate the performance, we present the process for some kinds of helices. We compare

the approximations accomplished through the C1 ATPH curves with the C1 PH quintic

curves.

We use the approximation errors MSE and RMSE given by the equation (2.38) as mea-

sures of the approximation of arcs of 3D parametric curves with ATPH curves and PH

quintic curves. Recall that to evaluate the quantities MSE and RMSE, we need to spec-

ify the prediction points Ỹ
k

for k = 1, . . . , n (points on the original 3D parametric curve)

and the observed points Y
k

with k = 1, . . . , n (points on the interpolating 3D curve), see

section 2.6.

We consider a discretization {t
k
}k=1,...,n of n evenly spaced points in the interval [0, α]

with α ∈ (0, 2π/3), for the interpolating ATPH curve r(t). Thus the observed points in

this case are given by Y
k

= r(t
k
) for k = 1, . . . , n.

Similarly, for the interpolating PH quintic curve rPH (t) with t ∈ [0, 1], the observed

points are determined by Y
k

= rPH (t
k
), where {t

k
}k=1,...,n is an uniform discretization

of the interval [0, 1].

Finally, to calculate the prediction points Ỹ
k
, we use the code distance2curve of MATLAB,

which allows to determine the nearest point on the original curve to any given point.

For all examples, the free parameters (θ, β, α) for the ATPH curves and the parameters

(θ, β) for the PH quintic curves, are calculated with the minimization process of the

fairness functional F̂3.

• Circular helix: a helix is a smooth 3-dimensional curve, which is parametrized by:

x = r cos t, y = r sin t, z = at,

where r is the radius and a is a constant that give the rise per turn. The curvature

and the torsion of a helix are given by

κ =
r

r2 + a2
, τ =

a

r2 + a2
.

In particular, we consider the simplest helix with equations

x = cos t, y = sin t, z = t,

where r = 1 and a = 1.

Figure 3.14 Left shows the behavior of the C1 ATPH curve, the C1 PH quin-

tic curve and the circular helix interpolating the end points pi = (1, 0, 0),

pf = (0.7071, 0.7071, 0.7854) and the end derivatives di = (0, 1, 1), df =

(−0.7071, 0.7071, 1). The three curves are in remarkable agreement and they are
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almost indistinguishable on the plot. Figure 3.14 Right and Bottom displays their

curvature and torsion profiles, respectively. These plots exhibit shape differences

between the curves that cannot be visualized in Figure 3.14Left. Note that the

interpolating C1 ATPH curve and the circular helix have equal curvature and tor-

sion values, namely κ = 0.5 and τ = 0.5; whereas for the C1 PH quintic curve we

have 0.3935 ≤ κ ≤ 0.5717 and 0.5050 ≤ τ ≤ 0.5719.

The error values MSE and RMSE illustrate the accurate approximation of the

circular helix with the C1 ATPH curve, which are 2.5111e-13 and 5.0111e-7, re-

spectively. On the contrary, these quantities for the C1 PH quintic curve are

MSE=1.0897e-11 and RMSE=0.0033.

Figure 3.14: Left : Comparison of the C1 ATPH curve, the C1 PH quintic curve
and the circular helix. Right : Curvature profiles of the three curves. Bottom: The

distribution of torsion for each curve.

• Hyperbolic helix: a space curve with parametric equations

x = cosh t, y = sinh t, z = t,
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is known as a hyperbolic helix. The curvature and torsion of a hyperbolic helix are

given by:

κ =
1

2 cosh2 t
, τ =

1

2 cosh2 t
.

Figure 3.15 illustrates the corresponding arc of the hyperbolic helix, the C1 ATPH

curve and the C1 PH quintic curve, interpolating the end points pi = (1, 0, 0),

pf = (1.1024, 0.4640, 0.4488) and associated end derivatives di = (0, 1, 1), df =

(0.4640, 1.1024, 1). From their curvature and torsion distribution displayed in Fig-

ure 3.15 Right and Bottom, respectively, we can deduce that the ATPH curve

achieves a very good approximation of the arc of the hyperbolic helix. This affir-

mation is supported by the fact that values of the approximation errors MSE and

RMSE are low, namely MSE=6.7163e-9 and RMSE=8.1953e-5, while these values

in the case of the PH quintic curve are 1.2581e-4 and 0.0112, respectively.
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Figure 3.15: Left : Comparison of the C1 ATPH curve, the C1 PH quintic curve
and the hyperbolic helix. Right : Curvature profiles of the three curves. Bottom: The

distribution of torsion for each curve.



Chapter 4

Odontological information along

conical surfaces

4.1 Introduction

Over the past thirty years, the field of medicine has been using different means of med-

ical imaging and these are in constant evolution. In particular, the odontological area

is undergoing technological changes. With the discovery of X-rays in 1895, a significant

advance in the diagnostic area was obtained; images of internal structures not visible

clinically by the human eye were built.

In spite of its great applicability, there is still a limitation with respect to the resulting

image and the interpretation of it. Until the 1970’s when the diagnostic technique of

X-ray computed tomography (CT) was introduced by Godfrey Newbold Hounsfield

and Allan MacLeod Cormack, the diagnoses were obtained only in the form of two-

dimensional radiographic images.

Since the considered structures are three-dimensional (teeth, maxillas, craniums, etc.)

this has limited health professionals, including dentists, because the information of

width, height and depth of the sagittal, coronal and axial planes is lost in the pro-

cess of obtaining the CT scan. Taking into consideration that if the radiographic images

are flat and based on two of these planes, there is always a third plane of the space

sacrificed and not possible to evaluate.

Thanks to the incorporation of tomography and its applicability in dentistry in the

1990’s, it is possible to obtain 3D images, based on the three planes of the space (sagit-

tal, coronal and axial) for simultaneously visualizing the structures and performing a

multi-planar reconstruction. This has allowed producing images with greater specificity

and sensitivity, remarkable properties achieved without super-positioning structures.

81
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Specifically for jaws and teeth, the less explored plane corresponds to the depth or the

anterior-posterior relationship of the object of study (tooth) and the adjacent anatomical

structures. This relationship is very important to perform an exploration or diagnosis,

to propose a treatment plan and of course to avoid complications.

In addition, complete visualization of dental structures and their relationship with ad-

jacent tissues allows exploration beyond the sole purpose of a patient’s consultation and

highly increases the probability of discovering tomographic indications and specificities

that until that moment were not part of the consultation.

The teeth consist of structures of different densities, including enamel, dentin and pulp,

which behave differently with the passage of X-rays. Therefore, performing an a priori

identification of different dental structures such as anatomical variants, presence of cal-

cifications, dilacerations or root curves, perforations, accessory ducts, pathologies, etc.,

determines the success or failure of a dental treatment. In order to adequately study

the anatomical structure of the teeth, curved slices that follow an area of the 3D volume

are highly desirable.

A first approach in that direction was presented in the Visible Human Project [66],

which offers information about human anatomy accessible to the scientific community.

It is a database that consists of 1871 horizontal plane sections from which “photos”of

oblique slices -that can be extracted from the data volume- can be reconstructed. This

process is mathematically well known: it involves the trilinear interpolation [88]. In

fact, the Visible Human portal offers a computational tool for extracting information of

organs along slices, which may be used to reconstruct three-dimensional virtual models

of them.

A more interesting problem is the information extraction along curved slices, for instance,

along surfaces of interest (in order to determine calcifications or other malformations), or

along a jaw bone (with the purpose of making visible the information of several contigu-

ous dental pieces). The deployment of such information is potentially useful in surgical

planning. In general, when a surface is displayed in a plane, some of the areas of the

slice need to be stretched and this generates a distortion problem: the shape and/or size

of the original organ, along a particular section, can differ from the shape and/or size

when it is displayed in a plane screen. It is the same problem of deformation that arises

when building earth maps.

Particularly, in the medical area, the problem of flattening a surface without stretching

was considered by Saroul in his PhD thesis [71]. Saroul minimizes the deformation in

an area specified by the user at the expense of other areas (which might be less rele-

vant or interesting) where the deformation is not controlled. However, if we consider

developable surfaces in this context, the problem of metric distortion can be solved.

Specifically, developable surfaces are a special case of ruled surfaces, which can be un-

folded or developed onto a plane without deformation, i.e., without stretching or tearing.
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Mathematically speaking, developable surfaces are characterized by the property of pos-

sessing the same tangent plane at all points of given ruling. Due to the property to be

isometrically mapped into the plane, these surfaces are interesting for visualization pur-

poses. Developable surfaces can be classified into conical surfaces, cylindrical surfaces

and tangent surfaces, which have been widely studied in many books [87, 89–91]. For

the applications of this type of surfaces in areas such as engineering and manufacturing

the scientific community has been studying them from different perspectives.

A way to describe these surfaces is to use the concept of duality between points and

planes in 3D projective space. It means that a developable surface can be seen as the

envelope of a one-parametric family of tangent planes see, e.g., [92]. This is called the

dual representation. In [92], a developable surface is designed using control planes with

Bézier and B-splines bases. In [93, 94], the authors have combined the dual representa-

tion of a developable surface with nonuniform rational B-splines (NURBS) to construct

developable NURBS surfaces. In [95], Peternell uses Laguerre geometry to represent

developable surfaces as a one-parameter family of planes on the Blaschke model. All

these methods define the surface as a NURBS family of planes and consequently as a

curve in the dual projective space.

Another approach for dealing with developable surfaces is to use them for interpolating

certain constraints. In [94, 96] the authors deal with developable Bézier patches interpo-

lating two 3D boundary curves. Chu and Séquin simplified this method. They showed

in [97] that given one 3D boundary curve, five degrees of freedom are available for a

second boundary curve of the same degree to completely determine quadratic and cubic

developable Bézier patches in 3D. According to this property, Aumann proposes in [98],

an algorithm to generate developable Bézier patches through a Bézier curve. Fernández-

Jambrina in [99] generalizes that algorithm to B-spline surfaces of arbitrary degree and

arbitrary number of pieces. More recently, Bo and Wang present in [100] a method for

constructing developable surfaces containing a prescribed 3D curve as geodesic.

On the other hand, in the articles [74, 101] the authors construct global developable sur-

faces by joining several pieces of simple developable surfaces. In particular, Leopoldseder

and Pottmann in [74] based on an article by Fuhs and Stachel [102] about circular pipe-

connections, approximate general developable surfaces by circular cone segments.

The use of developable surfaces in the medical context has been studied in several arti-

cles. Figuereido and Hersch [72] propose the extraction of information about 3D volumes

contained in cylinders built on plane curves. The aforementioned has been generalized

to developable surfaces by Paluszny [73] whose construction, from the computer aided

geometric design point of view, has first been studied by Aumann [98]. Paluszny [73]

constructs developable surfaces along a Catmull-Rom-Overhauser curve from [103], cut-

ting the sixteen teeth of the upper human jaw bone. The main disadvantage of these

methods is that the resulting surfaces are not easy to adjust to a prescribed curved slice
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area: a certain amount of manual tweaking is required. It is not clear how to make

this process fully automatic in an elegant and numerically stable fashion. Besides, the

flat presentation of the developable surface requires a numerical method. For solving

these difficulties, we applied in [75] the method of circular cone splines presented by

Leopoldseder and Pottmann in [74]. This construction of conical surfaces is used to

model curved slices containing information about some dental pieces of a human jaw

bone. The resulting surface crosses the maxilla (upper or lower) and contains the main

axis of each dental piece, that is, a straight line that passes through the root and the

“center”of the dental crown, which permits to visualize the teeth simultaneously. This

method has the advantage that its development can be explicitly calculated without

the need to use numerical integration. The conical patches allow for the inspection and

measuring of clinically relevant features, which are textured on flattened curved slices.

In this way the difficulty to calculate the development of general developable surfaces

generated by Paluszny in [73] and Figuereido and Hersch in [72] is solved. However, this

method of approximation with circular cones has some limitations, such as the possible

presence of cone vertices within the curved slice or the appearance of not faithful cone

segments to the anatomical structure of the teeth.

To overcome these limitations, we study the design of cone segments along spatial C1

ATPH curves. These curves allow to solve efficiently the C1 Hermite problem, as was

explained in chapter 3. Besides, the spatial C1 ATPH interpolants exhibit smoother

and more pleasing curvature and torsion profiles compared with those of spatial C1 PH

quintic curves and the cubic B-splines. The cone splines are constructed by joining seg-

ments of cones with tangent continuity along given generators (main axis of each tooth)

as in the case of circular cone splines. However, for our construction, cone vertices can

be excluded of the region of interest for the visualization and the resulting surface has no

sharp edges, which is not possible to achieve with the circular cones method described

above.

We apply the construction of cone splines from C1 ATPH curves for modeling a curved

slice containing information about all dental pieces of a lower maxilla. These surfaces

are compared with those constructed from circular cone segments.

The remainder of this chapter is organized as follows. In Section 4.2, we explain the

procedure to deal with tomographic volumes for extracting information of interest. Par-

ticularly, within odontological volumes, we define for each dental piece a contact element

(e, τ), which denotes a line and a plane, respectively. These contact elements display

clinical information of each tooth. From this, we construct conical surfaces that interpo-

late sequences of contact elements. These surfaces are related to the choice of a spatial

curve. We consider biarc splines and spatial C1 ATPH splines. The first technique to

interpolate consecutive contact elements by circular cones is presented in Section 4.3.

We explain the general algorithm to construct the interpolating cone splines from spatial
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C1 ATPH segment curves in Section 4.4, where several computed examples using this

construction are compared with the aforementioned method.

4.2 Odontological volume

In this section we explain the procedure to deal with odontological volumes, with the

purpose of extracting from these the initial information (main axis of the tooth) of each

dental piece. This information is necessary for constructing the curved slices along jaw

bones within volumes. We start by introducing some terminology about medical imag-

ing.

Digital imaging for the biomedical sciences is commonly referred to as medical imag-

ing. The German physicist W. C. Röntgen produced in 1895 the electromagnetic ra-

diation in the wavelengths, that correspond to X-rays. This discovery allowed medical

imaging to become an important tool in medicine, since these can be used in diag-

noses, planning treatments, procedures and clinical monitoring. Currently medical im-

ages are produced with various techniques, among them are Computed Tomography

(CT) and Magnetic Resonance Imaging (MRI). Figure 4.1 shows two slices, of MRI

and CT, see https://mri.radiology.uiowa.edu/visible_human_datasets.html for

additional examples. Particularly, in this chapter we consider a tomographic volume

Figure 4.1: MRI slice of the body of a man and CT slice of the head of a woman.

extracted from http://pubimage.hcuge.ch:8080/DATA/. This consists of 166 axial

(horizontal) slices of the lower human jaw and contains sixteen teeth. Figure 4.2 shows

four slices from this DICOM volume. The CTs or MRIs are composed of images, which

are files with extension “.dcm”. The latter is the standard format for manipulation,

storage, printing and transmission of medical imaging information. Some programs that

allow to read and modify files in format DICOM are OsiriX, MicroDicom, Radiant, Open

Dicom Viewer, etc. In our case, we use MATLAB to manipulate these files.

https://mri.radiology.uiowa.edu/visible_human_datasets.html
http://pubimage.hcuge.ch:8080/DATA/
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Figure 4.2: Four axial (horizontal) slices of an odontological volume.

To analyze a tomography with Matlab, we can use the instructions dicomread and di-

cominfo. Each slice or 2D image that composes a CT is interpreted in Matlab as a square

matrix, whose entries correspond to the gray level at each point of the slice. Using the

function dicomread we obtain the matrix with the gray level of each pixel. For example,

given the file Image1.dcm, the instruction M = dicomread(′Image1.dcm′) generates

the matrix M with the codification of colors of the image. Figure 4.3 shows an example of

the assignment of colors of a tomography. The instruction dicominfo(′Image1.dcm′)

allows to visualize the additional information about patient and image data, such as

position and orientation.

4.2.1 Object of study

Teeth and jaws are an essential part of the functions of feeding and phonation. Each

dental piece is constituted by a soft connective tissue specialized in irrigation and inner-

vation known as the pulp, which is covered by calcified tissues such as dentin, enamel

and cement, which are differentiated by their level of mineralization or density. In ad-

dition each tooth is attached to the bone through the periodontium or the supporting
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Figure 4.3: Codification of colors of a medical image.

tissues.

In both jaws (upper and lower), we can find 16 teeth, divided into 4 groups depending on

the function that they perform in the masticatory system: incisors, canines, premolars

and molars. In the upper jaw, we find anatomical structures such as the nostrils, the floor

of the nostrils, the nasopalatine foramen, the intermaxillary suture, the maxillary sinus,

the maxillary sinus walls, the maxillary tuberosity, among others. At the mandibular

level, the relevant structures are the lingual foramen, the dental foramen, the inferior

dental nerve canal, the external oblique line and the basal ridge. Therefore, for the

radiographic and tomographic evaluation of the jaws and dental pieces, it is extremely

important to know the anatomy of each one of them. Since the radiographies are two-

dimensional images representing three-dimensional structures, to evaluate its anatomy

and variants is difficult for the dentists. So we propose to construct developable curved

slices within computed tomography (CT) volumes. For this, we define some elements,

which are denominated contact elements and are explained in the next subsection.

4.2.2 Contact element for a dental piece

For each tooth we determine a contact element (e, τ) (e denotes a line and τ a plane)

displaying the information of clinical interest. Given a segmentation of a tooth, the

choice of the plane τ depends on the position of the roots that need to be visualized.

The segmentation is manual, it means, for each dental piece we determine the DICOM

files that contain information of the tooth structure and we select a set of points on each

image. From this dataset, we calculate the best plane that allows to visualize the piece

completely. Then we texture it with the corresponding information extracted from the

odontological DICOM files using a method of texturization.

The straight line e is a line segment that passes through the root and the “center” of the
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dental crown1 and is contained in the plane τ . Figure 4.4 illustrates the plane chosen for

Figure 4.4: Contact element (e, τ) of one tooth dental piece, where e,d is the or-
thonormal basis for τ such that n = e × d is the unit normal vector of τ and e gives

the direction of the line e.

a dental piece, which has been textured with the corresponding information. There are

different methods of texturization, some of them orthogonal coordinates, UV mapping,

trilinear interpolation and nearest-neighbor interpolation, see [104]. Particularly, we use

the trilinear interpolation, which smoothes the image more or less and its computation

time is comparable with the other methods. Figure 4.5 shows all planes chosen along

the lower maxilla.

Figure 4.5: 3D view of the planes τ
i

for i = 1, . . . , 16, which have been textured with
the information of each dental piece.

We now explain the mathematical construction of the contact elements. We want to

build cone splines from fixed sequences of pairs of lines/planes as given contacts. The

idea is to select a sequence of lines e
k

and planes τ
k
, where e

k
is contained in τ

k
, and

interpolate two consecutive elements (e
k
, τ

k
) with two segments of cones, which have the

same tangent plane τc along a common generator ec .

1If the tooth has more than one root, the straight line must pass through the midpoint of these and
the “center” of the dental crown.
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Namely, let {(e
k
, τ

k
)}k=1,...,n be a sequence pairs (line, plane) in R3, where the plane τ

k

contains the line e
k

for k = 1, . . . , n. We refer to the pair (e
k
, τ

k
) as contact element.

For each (e
k
, τ

k
) we associate an orthonormal basis. We denote by e

k
the unit vector

directing the line e
k
. Let e

k
,d

k
be the orthonormal basis for τ

k
such that n

k
= e

k
× d

k

is the unit normal vector of τ
k
.

Figure 4.6 shows two contact elements (ei , τi), i = 1, 2 each one with the corresponding

orthonormal basis.

Figure 4.6: Two contact elements (e
1
, τ

1
), (e

2
, τ

2
).

4.3 Curved slices constructed with segments of cones

In this section we construct conical surfaces that interpolate a given sequence of n

contact elements {(e
k
, τ

k
)}k=1,...,n. These surfaces might be tied up with the choice of

a 3D curve. Specifically, we consider biarc splines and spatial C1 ATPH splines. The

first technique deals with making curved slices with circular cone segments. The second

one is about the construction of cone segments along a spatial C1 ATPH curve. In both

cases, the resulting surface is a cone spline such that each pair of cones will join with

tangent continuity along a common generator. The two techniques implemented allow

to construct curved slices with cone segments to interpolate a given sequence of contact

elements within a CT volume. Particularly, we apply both constructions for modeling

curved slices that allow to visualize relevant information about all the dental pieces of a

lower jaw bone. We will explain both methods and their application in the next sections.
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4.3.1 Circular cones with prescribed contacts

Leopoldseder and Pottmann presented in [74] an algorithm for the approximation of a

given developable surface by a cone spline surface and it depends on an adecuate choice

of generators on this surface. The authors leave the problem of finding the best choice

of generators as an open question. Our problem is different, we have “in principle” a

fixed sequence of pairs of line/plane as given contact elements. We use the technique

from [74] to build a cone spline with these contact elements. The algorithm works as

follows.

4.3.1.1 General algorithm

Given two consecutive contact elements (e1, τ1) and (e2, τ2) we want to find two circular

cones ∆1, ∆2, with different vertices v1, v2, that have a common generator ec and the

same tangent plane τc along this generator. Each ∆i must also contain the generator

ei, and its tangent plane along ei must match up with τi. The axes of a pair of cones in

this position either intersect in a point m or are parallel. We consider the case in which

the axes intersect in m (see Figure 4.7). It can be shown ([74]) that the pair of cones

Figure 4.7: Circular cones with a common generator and their axes intersect at a
point m.
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described in the previous paragraph have an inscribed sphere Σ, whose center is the

point m. This sphere touches both cones along two circles: c1 and c2 (see Figure 4.8).

The sphere Σ is determined from the two consecutive contact elements (ei, τi). If m1

and m2 are points of the generators e1 and e2, the point m is the intersection of the

normal planes

γi : (x−mi) · di = 0, i = 1, 2 (4.1)

with the bisector plane of the two tangent planes

σ : x · (n1 − n2)−m1 · n1 + m2 · n1 = 0, (4.2)

where ni and di are vectors of the orthonormal basis for the plane τi with i = 1, 2,

respectively.

Each one of the cones ∆1, ∆2, will touch the sphere Σ along a circle, c1 and c2 respec-

tively, and these circles will be tangentially connected at the point c. The circles c1

and c2 allow us to construct a biarc which connects, with tangential continuity in c, a

segment of the circle c1 with a segment of the circle c2 (see Figure 4.9). This joins gen-

erator e1 with generator e2. For a standard rational Bézier representation for the biarc,

Figure 4.8: Sphere Σ inscribed in the circular cones ∆1 and ∆2.

we will denote its control points by a1, b1, c, b2, a2, (Figure 4.9). Let b1 = a1 + λ1d1

and b2 = a2 − λ2d2. The point ai is the intersection point between the sphere Σ and

the generator ei, such that the vector di is the vector tangent to the spherical biarc at
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Figure 4.9: Biarc with its control polygon.

this point.

The control polygon of a circle has the shape of an isosceles triangle; the segment of the

internal control points, b1, b2, satisfy the condition

‖b2 − b1‖2 = (λ1 + λ2)
2. (4.3)

This is equivalent to

(a2 − a1)
2 − 2λ1(a2 − a1) · d1 − 2λ2(a2 − a1) · d2 + 2λ1λ2(e1 · e2 − 1) = 0. (4.4)

Thus, if we choose λ1 using the equation (4.4) we can calculate λ2. For the construction

of the biarc, the contact point c is given by:

c =
λ2b1 + λ1b2

λ1 + λ2
. (4.5)

In general, given a set de n + 1 control points b0, . . .bn, each one associated with a

scalar ωi called weight, a degree-n rational Bézier curve is defined by:

c(t) =
ω0B

n
0 (t)b0 + . . .+ ωnB

n
n(t)bn

ω0Bn
0 (t) + . . .+ ωnBn

n(t)bn
,

where Bn
i (t) are well known Bernstein polynomials.

So, setting the weights at the end points of the two arcs to 1, we can express the Bézier

rational quadratic form of each circular arc as follows:

c1(t) =
a1(1− t)2 + ω11b12t(1− t) + ct2

(1− t)2 + ω112t(1− t) + t2
(4.6)

c2(t) =
c(1− t)2 + ω12b22t(1− t) + a2t

2

(1− t)2 + ω122t(1− t) + t2
, (4.7)
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where the weights ω1i, associated to the internal control points, are given by:

ω1i =
|(bi − ai)(c− ai)|
‖bi − ai‖ ‖c− ai‖

. (4.8)

If λi is positive, the arc with control points ai, bi, c and weights ω1i > 0 are used. On

the contrary, the complementary arc and a negative weight ω1i may used.

Finally, once found the biarc as was described above, we can compute the vertices vi of

the two cone segments. These are calculated as the intersection of the tangent plane to

the sphere Σ at point c with generators ei. The axes of the cone pair are the lines that

pass through vi and center m of Σ, respectively.

4.3.2 Numerical examples

Given the two contact elements in Table 4.1, they are interpolated with two circular

cone segments, see Figure 4.10, which are constructed following the algorithm exposed

above.

e1 = (−0.1151, 0.2405, 0.9638) e2 = (−0.1785, 0.1650, 0.9070)

n1 = (0.0427,−0.9682, 0.2466) n2 = (0.4305,−0.8734, 0.2278)

d1 = (0.9925, 0.0690, 0.1013) d2 = (0.8847, 0.4583, 0.0849)

a1 = (252.6524, 62.0000, 92.5000) a2 = (266.5158, 65.1388, 91.5000)

Table 4.1: Test data for the cone pair displayed in Figure 4.10.

Figure 4.10: Different 3D views of the circular cone segments that interpolate the
two contact elements given in Table 4.1.
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In order to calculate a cone pair within the one parameter set of solutions, we may

choose λ1 and compute λ2 using the equation (4.4). Figure 4.11 illustrates interpolating

circular cone segments for different values of λ1, which were built for the same pair of

contiguous contact elements. The parameter λ1 allows for the adjustment of each pair

of cone segments according to visualization needs.

Figure 4.11: Pair of segments of cones ∆1 and ∆2, which correspond to values λ1
from left to right to 3.0, 4.5, 6.0, and 7.5, respectively.

e1 = (−0.1850, 0.0766, 0.9798) n1 = (−0.8904,−0.3890,−0.2364)

e2 = (−0.1336,−0.0313, 0.9905) n2 = (−0.9348,−0.2774,−0.2219)

e3 = (0.1460, 0.0383, 0.9885) n3 = (−0.9819,−0.0566,−0.1809)

e4 = (0.0872, 0.1173, 0.9893) n4 = (−0.8757,−0.4642,−0.1328)

e5 = (0.0539, 0.2021, 0.9779) n5 = (−0.9561,−0.2511, 0.1509)

d1 = (0.0416,−0.9955,−0.0857) a1 = (191.6601, 143.7573, 94.0000)

d2 = (0.4640,−0.8852,−0.0346) a2 = (198.1889, 115.3458, 94.0000)

d3 = (0.2540,−0.9672, 0.0000) a3 = (205.7467, 95.8731, 94.0000)

d4 = (0.6401,−0.7675, 0.0345) a4 = (215.1201, 76.6013, 92.5000)

d5 = (0.8751,−0.4812, 0.0512) a5 = (227.3686, 70.2131, 91.5000)

Table 4.2: Test data for the cones spline displayed in Figure 4.14.
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Figure 4.12: Example of a cone pair where one vertex lies inside of the region of
interest.

Figure 4.13: Left : example of a cone pair with sharp edges. Right : example of a
s-shaped cone pair.

For some choices of the parameter λ1, it may happen that one or both vertices of the

pair of cones lie inside of the region in which it is important to visualize information (see

Figure 4.12). Other times the cones of a pair lie locally on different sides of their common

tangent plane, this might lead to either to sharp edges in the cone spline (Figure 4.13

Right) or a s-shaped cone pair (Figure 4.13 Left).

As an example we consider a sequence of 5 contact elements {(ei , τi)}i=1,...,5 given in

Table 4.2. The values listed are: the orthonormal base ei ,di ,ni for the planes τi i =

1, . . . , 5 and the end points ai which lie on the lines ei for i = 1, . . . , 5, respectively.

This data is interpolated with 8 circular cone segments displayed in Figure 4.14. Note
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that the cones ∆3 and ∆4 present a sharp edge in the common generator. And also the

vertex of the cone ∆7 lies inside of the region delimited by the line segments e4 and e5 .

These situations constitute a limitation of this method. Sometimes it is not possible to

avoid the presence of cone vertices within the approximating curved slice.

Figure 4.14: Circular cones interpolating the 5 contact elements given in Table 4.2.

4.3.3 Dental information along circular cone splines

In spite of the above shortcomings they might be useful to visualize information inside

the CT volume. Particularly, we apply the construction of circular cones from biarcs

given in the previous section, to modeling a curved slice that contains information about

the internal structure of a sequence of neighboring teeth in a jaw bone.

By choosing the planes and lines found for each tooth as contact elements, we construct

a curved slice built along segments of circular cones. Specifically, this process involves

the following steps:

• Given a pair of contiguous contact elements (ei, τi), i = 1, 2 corresponding to two

consecutive teeth, we calculate the center m of the sphere Σ (on which we will

construct the biarc), as the intersection of three planes whose normal vectors are

d1, d2 and n1 − n2, according to equations equations (4.1) and (4.2), where the

point mi ∈ ei is the midpoint of the tooth (this is chosen manually) and di, pi, ni

are vectors of the orthonormal basis for the planes τi with i = 1, 2, respectively.

• We interpolate the given generators e1 and e2 by a pair of cones ∆1 and ∆2 whose

axes intersect at the point m. The sphere Σ touches each one of these cones along

a circle. We denote them by c1 and c2, respectively.

• The circles c1 and c2 generate the spherical biarc that connects the generators ei.

Its endpoints are ai = ei ∩ Σ, and the tangent vectors are pi, with i = 1, 2.
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• The inner Bézier points are given by b1 = a1 + λ1d1, c and b2 = a2 − λ2d2, and

can be calculated using the equations (4.4) and (4.5), once the parameter λ1 is

chosen freely.

Figure 4.15 shows the visualization of one dental piece choosing the parameter λ1 = 8

for the first pair of cones and λ1 = 7 for the second.

Figure 4.16 illustrates pairs of segments of circular cones for different values of λ1,

Figure 4.15: Cone spline in 3D composed of four segments of circular cones for one
tooth of the lower jaw. The black dashed lines are the generators ei, i = 1, 2, 3 of given

contact elements and the blue dashed lines are the common generators eci , i = 1, 2.

which were built for the same pair of contiguous contact elements.

Figure 4.17 illustrates a curved slice constructed with a sequence of segments of circular

cones, manually choosing parameter values λ1 to allow a good overall view of the teeth

of the lower jaw bone. Although we can select each segment of cone within one family of

circular cones, sometimes occur problems to completely visualize the dental piece under

study. For example, in Figure 4.17 note that for some cones its vertex lies inside of the

region of interest and others present a sharp edge in the common generator. This is a

limitation of the technique, because it is not possible to completely visualize the dental

pieces. These issues can be solved applying the technique to construct cone pairs from

spatial ATPH curves, which is explained in the next subsection. More precisely, this

technique allows to choose the vertices of the cones according to medical visualization

needs and avoids the presence of cones with shape edges and s-shaped.
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Figure 4.16: Pairs of segments of circular cones, which correspond to values λ1 =
6, 12, 18, 24, respectively, where the blue dash line represents the common generator.

Figure 4.17: 3D view of the construction of a curved slice with segments of cones for
some dental pieces of the lower jaw bone.
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4.4 Spatial ATPH curves for designing a G1 cone pair

Given a sequence of n contact elements {(e
k
, τ

k
)}k=1,...,n, we want to construct cone

segments that interpolate it with tangent continuity which does not have the problems

of circular cone splines. Each cone segment will be defined by a space ATPH curve r(t)

-the directrix - and a fixed point v -the vertex -, lying outside of a region of interest. The

steps to construct two cone segments that interpolate two contact elements are given in

the following subsection.

4.4.1 General algorithm

Let (ei , τi), i = 1, 2 be two consecutive contact elements. The idea is to interpolate

(ei , τi), i = 1, 2 with two cone segments ∆1, ∆2, which possess the same tangent plane

τc along a common generator ec . The two vertices vi, i = 1, 2 of ∆1, ∆2 are chosen on

the lines ei , i = 1, 2 such that each one lies outside of the region of interest, see Figure

4.18. The common generator ec of the cone segments ∆1, ∆2 is the line joining the

points v1, v2, as it is illustrated in Figure 4.18.

Let ai be a point on the line ei and let ei , di , ni be the vectors constituting the

orthonormal basis for each plane τi , such that ni = ei × di is the unit normal vector of

τi with i = 1, 2, respectively, see Figure 4.6.

The directrix of each cone will be a C1 ATPH Hermite curve ri(t) for i = 1, 2, whose

end points are ai and ac , and the end tangents at these points are the unit vectors di

and dc for i = 1, 2, respectively, see Figure 4.18. The point ac and the tangent vector

dc are calculated as follows.

The contact point ac is selected as the midpoint of the vertices v1, v2 and the tangent

vector dc at this point is the mean of vectors di , i = 1, 2, see Figure 4.18.

Thus we have the C1 Hermite data -the end points a1 , ac , a2 , with associated end

tangents d1 , dc , d2- for calculating the interpolating ATPH curves r1 , r2 .

Each ATPH curve can be expressed as

ri(t) =

5∑
k=0

p
k,i
B5

k
(t), t ∈ [0, αi], i = 1, 2, (4.9)
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Figure 4.18: Pair of C1 ATPH curves r
1
, r

2
that interpolate the end points a

1
,ac,a2

associated to the end derivatives d
1
,dc,d2, respectively.

where B5
k
(t) is the normalized B-basis of space U5 (see the equation (2.3)) and p

k,i
,

k = 0, . . . , 5 denote its control points, which are defined by

p1,i = p0,i +
n0

16s41
A0iA

∗
0
,

p2,i = p1,i +
n0 − 6n2

16s41
(A0iA

∗
1

+A1iA
∗
0
),

p3,i = p2,i +
n2
8s41

(A0iA
∗
2

+ 2(1 + c2)A1iA
∗
1

+A2iA
∗
0
),

p4,i = p3,i +
n0 − 6n2

16s41
(A1iA

∗
2

+A2iA
∗
1
),

p5,i = p4,i +
n0

16s41
A2iA

∗
2
,

(4.10)

where the abbreviations s1, c2, n0, n2 are defined in (2.4) and (2.5). The values

A0, A1, A2 are given by equation (3.20). By construction, we have that p0,1 = a1 ,

p5,1 = p0,2 = ac and p5,2 = a2 .

Each ATPH curve ri(t) depends on three free parameters (θi, βi, αi), i = 1, 2. In order

to choose optimally these parameters, we apply a minimization process over one of the
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following functionals

F̂1 =

∫
| r′ | dt

∫
κ2 | r′ | dt,

F̂2 =

(∫
| r′ | dt

)3 ∫ ( κ′2

| r′ |

)
dt,

F̂3 =

(∫
| r′ | dt

)3 ∫ (
κ′2 + τ ′2

) 1

| r′ |
dt,

(4.11)

where κ and τ denote the curvature and the torsion of r(t), respectively.

For the sake of clarity, we summarize the steps of the algorithm to construct a G1 cone

pair through C1 ATPH curves. Each pair of cones will interpolate two given contact

elements.

Algorithm

Input: (ei , τi), ai , di , for i = 1, 2.

1. Choose v1 and v2 lying outside of the region of interest.

2. Let ac = v1+v2
2 and dc =

d1+d2
2 .

3. Compute the three free parameters (θi, βi, αi), i = 1, 2 of the ATPH
curve ri from (4.9) minimizing a functional given in (4.11).

Output: Control points p
k,i

, k = 0, . . . , 5, i = 1, 2 of the ATPH curves r1 , r2 .

Table 4.3

4.4.2 Numerical examples

We consider the data given in Table 4.1. The quantities listed are: the orthonormal base

for the two contact elements (ei , τi), i = 1, 2. Namely ei ,di ,ni for i = 1, 2 and the end

points ai lying on the lines ei for i = 1, 2, respectively, which are illustrated in Figure

4.18.

Following the preceding algorithm, we have chosen the vertices v1 and v2, which are v1 =

(256.1051, 54.7844, 63.5861) and v2 = (254.0189, 76.6916, 159.3996). Then we calculate

the contact point ac with associated tangent dc . So, ac = (255.0620, 65.7380, 111.4929)

and dc = (0.9386, 0.2636, 0.0931). Finally we compute the three parameters (θi, βi, αi),

i = 1, 2 for each segment of ATPH curve, minimizing each functional given in (4.11). In

Table 4.4 we present the corresponding values of the functionals F̂1, F̂2, and F̂3 for the

ATPH curves r1 , r2 . In this case, the value of F̂1 is significantly smaller than the values

of F̂2 and F̂3. Therefore, we construct the pair of cones through the ATPH curves r1 ,

r2 with the parameters (θi, βi, αi), i = 1, 2 given by the minimization of F̂1.
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In Figure 4.18 we display the points a1 , a2 and ac and the contact elements (e1 , τ1),

F̂1 F̂2 F̂3

r1 150.9804 4.8725e+06 8.1061e+06

r2 150.0417 8.5217e+06 1.5179e+07

Table 4.4: Values of the functionals F̂1, F̂2, and F̂3, given by the minimization process.

(e2 , τ2), which are interpolated with the pair of C1 ATPH curves r1 , r2 calculated for

the functional F̂1 illustrated in Figure 4.19.

These same contact elements were interpolated with circular cone segments, see Figure

4.10, which were constructed following the algorithm explained in section 4.3.1.1. Note

that the resulting cones constructed from a pair of C1 ATPH curve (see Figure 4.19)

and a biarc (see Figure 4.10) are very similar. This is because the spatial ATPH curve

closely approximates 3D parametric curves, as circular helices (see Section 3.6.3). On

Figure 4.19: Top: Cone pair defined by the vertices v1,v2 and a pair of C1 ATPH
curves r1 , r2 that interpolate the points a1 ,ac,a2. Bottom: 3D views of this cone pair.

the other hand the data given in Table 4.2 is interpolated with 8 cone segments, see

Figure 4.20, which are calculated following the method explained above. This method

allows to construct the interpolating cone spline free of singularities inside the region

of interest. The resulting surface does not present sharp edges due to the geometric
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properties of the functional used to calculate the cone segments. In this case, we have

used the functional F̂3 (see equation (4.11)), which minimizes the rate of change of the

curvature and the torsion, for each ATPH curve segment that composes the cone spline.

In general the functionals F̂1, F̂2, F̂3 (see equation (4.11)) can be used according to the

geometric needs of the practical application under consideration.

Even if the circular cones are simpler surfaces than the general cones described in Section

4.4, the construction of the latter ones allows to avoid the presence of singular points

in the region of interest. Therefore, for applications in odontological area, using general

cones designed from C1 ATPH curves may be produce more faithful results.

Figure 4.20: Cone spline designed from the C1 Hermite ATPH curves that interpolate
the data given in Table 4.2.

4.4.3 Cone splines from 3D ATPH curves to visualize odontological

information

We construct cone slices through 3D ATPH curves, that cross the lower maxilla of a

computed tomography (CT) volume, in order to present simultaneously relevant infor-

mation of all dental pieces. We use the same CT volume used in the section 4.3.3.

For simplicity, let us look at two consecutive contact elements (ei , τi), i = 1, 2, for which

we compute the corresponding cone pair. The steps of this construction are summarized

as follows:

• We consider for each dental piece one contact element. In particular, for the

examples in this section we use the sequence of contact elements illustrated in

Figure 4.5.

• To construct each cone pair, we choose two points v1 and v2, on the bounding

generators e1 , e2 , lying outside of the region of interest. These points are the

vertices of the cone pair.



Chapter 4. Odontological information along conical surfaces 104

• The middle point between v1 and v2 will be the contact point ac.

• Let ai be a point on the line ei and ei , di and ni the vectors forming the orthonor-

mal basis for each plane τi with i = 1, 2. We calculate dc as the mean vector of

d1 and d2.

• We compute C1 Hermite ATPH curves r1 and r2 interpolating the end points a1,

ac and ac, a2 with associated end derivatives d1, dc and dc, d2, respectively.

Each interpolating ATPH curve depends on three parameters (θ, β, α). We mini-

mize a functional F̂1, F̂2 or F̂3 to determine these free angular parameters.

Figure 4.21 shows a cone spline constructed as explained above, which allows to visualize

a dental piece of the lower maxilla. This spline is composed of four cone segments and

contains each straight line that passes through the root and the “center” of the dental

crown (black dashed lines in Figure 4.21). The segments of cones are connected G1 along

the common rulings (blue dashed lines in Figure 4.21).

Figure 4.22 shows different 3D views of a cone spline in a dental volume that allows

Figure 4.21: 3D view of the construction of a curved slice for visualizing a tooth of
the lower jaw.

to visualize all the teeth of lower maxilla. Depending on their arrangement in the jaws,

various dental pieces might be related to different anatomical structures. The precise

visualization of this situation is relevant to diagnosis and treatment plan. We have

also extended the curved slice given in Figure 4.22 to achieve the visualization of the

full dental foramen, see Figure 4.23. This was possible, because this technique permits

to select the vertex of each cone that composes the developable surface. Additionally,

this type of surface has the property of allowing for its planar unfolding, i.e., it may

be mapped on the plane without stretching. This process is referred to as isometric
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Figure 4.22: 3D views of the construction of a curved slice with segments of cone
splines for all dental pieces of the lower jaw.

flattening. Developable patches allow for the inspection and measuring of clinically

relevant features which are textured on flattened curved slices. Figure 4.24 illustrates

the corresponding development of the curved slice displayed on Figure 4.23.

Figure 4.23: 3D views of a curved slice showing the information related to the lower
jaw.
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Figure 4.24: View of development without distortion of the curved slice in Figure
4.23.

Sometimes, the constructed developable surface does not show sufficient information to

realize a diagnosis or a treatment plan. For that reason, we use the technique of “offset

surfaces”. This method permits to construct “parallel” surfaces, i.e, surfaces following

a direction into the volume, previously fixed. See, e.g., Figure 4.25.

In addition, the “offset surfaces” can fill up the whole dental volume, which allows to

obtain and/or to extend information regarding the dental pieces. In Figure 4.26 can be

Figure 4.25: Example of “offset” surfaces.

seen two “offset” spline surfaces from Figure 4.23. The illustrations in Figure 4.27 show

the information related to the same dental pieces, using the technique of circular cone

splines from biarcs (Figure 4.27 left) and cone splines from spatial ATPH curves (Figure

4.27 right), respectively. Note that with the method of circular cones, in general it is

not possible to visualize completely the dental piece, due to the presence of one vertex
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Figure 4.26: Two “offset” spline surfaces of the surface illustrated in Figure 4.23.
One “offset” in each direction, in order to provide additional information for diagnosis.

within the region of interest. The curved slice constructed through an ATPH curve does

not present this limitation.

Figure 4.27: Example of a tooth using the techniques of cone splines from biarcs
(left) and 3D ATPH curves (right).



Chapter 5

Analysis and conclusions

In this thesis, we have solved 2D and 3D interpolation problems with ATPH curves. The

solution to the 3D interpolation problem has been used to construct piecewise conical

patches, with the purpose of visualizing odontological information contained in 3D CT

volumes. The results obtained in each chapter are summarized as follows:

• We presented in chapter 2 a new solution to the problem of interpolating a planar

sequence of points by a C2 continuous spline curve. We obtain the resulting

C2 ATPH splines, which depend on several shape parameters, by solving a non-

linear quadratic system of equations in complex unknowns. Thanks to the shape

parameters, we obtain a diversity of ATPH interpolating splines for each given

sequence of points. Moreover, these free parameters can be conveniently used to

either improve the curvature distribution of the ATPH curve or to adjust the shape

according to the application. We compared these splines with the well-known

polynomial PH quintic splines and the cubic B-splines. We observe that if the

sequences of free parameters are suitably selected, the ATPH interpolants exhibit

smoother and more pleasing curvature profiles than those of the PH quintic splines

and cubic B-splines. In order to objectively select the sequence of parameters we

employed minimization methods of standard pre-established fairness functionals.

• In chapter 3, we have studied spatial ATPH curves, which are characterized in

terms of quaternions. After introducing this representation, they are employed

to solve the first-order Hermite interpolation problem. This problem is reduced

to solving a system of three quadratic equations in three quaternion unknowns.

Three angular variables remain free on solving this system, for which we propose

several integral criteria for automatically determining these free parameters. Their

performance has been examined through several examples. Furthermore, we have

compared the C1 interpolating ATPH curves with the corresponding PH quintic

108
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interpolant. Finally, we successfully approximated known 3D parametric curves

with ATPH curves by calculating the three free shape parameters through integral

criteria.

• In chapter 4, we introduced two techniques for extracting information along curved

slices (which can be flattened without deformation) from dental data volumes.

Under visual inspection both techniques yield results of comparable quality. The

main advantage of the approach with cone splines from spatial ATPH curves as

compared to circular cone splines is the possibility to avoid the presence of cone

vertices within the curved slice, which would be singular points of the cone spline.

In the case of circular cones, once the biarc is found, the vertices v1 and v2 of the

two cone segments are completely determined, which implies a limitation for this

technique.

The main similarities and differences between circular cone splines adapted from

[74] and our new technique of cone splines from ATPH curves are:

– Both cone splines interpolate a sequence of contact elements (plane/line) and

each segment can be adjusted independently while preserving the tangent

continuity property at common generators. In other words: each method

provides local control.

– Both surfaces can be unfolded isometrically onto the plane.

– Cone splines from ATPH curves are faithful to the tooth sequence, because of

the vertices can be chosen according to the medical visualization needs. On

the contrary, the circular cone splines technique does not have this flexibility

because given the biarc, the developable surface is completely determined and

it might present sharp edges or s-shapes.

Within the odontological field we consider the extraction of texture information

along curved slices of sets of teeth, their internal properties and their placement

in the maxillofacial bone structure. Our new technique to construct cone splines

from ATPH curves allows for flat display and exact measurements in 2D, because

the relationship between the 3D slice and its 2D display is given by an isometry.

As shown in Figure 4.23, the method also allows for the full maxillofacial display

in 3D and 2D which might be informative in aspects such as a thorough inspec-

tion of dental pieces together with relevant anatomical information such as bone

decalcification, the height of the dental floor and the position of the pieces with

respect to the palatal vault.

Other possible fields of application of our technique include the construction of

curved sections of veins (to study valve function) and arteries (for detecting calci-

fications).
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Apart from further exploring the application potential of the presented methods

in the medical field, it will be an interesting topic of future research to construct

spatial C2 ATPH splines that interpolate a sequence of points with prescribed end

conditions. Note that this leads to a system of quadratic equations in quaternion

unknowns, with three degrees of freedom in each subinterval. Suitable strate-

gies for fixing these free parameters based on optimizing shape measures must be

addressed.
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metric polynomials. Computer Aided Geometric Design, 15(9):909–923, 1998. doi:

10.1016/S0167-8396(98)00031-4.

[77] E. Mainar and J. M. Peña. A general class of Bernstein-like bases. Computers and

Mathematics with Applications, 53(11):1686–1703, 2007. doi: 10.1016/j.camwa.

2006.12.018.

[78] R. T. Farouki. The conformal map z → z2 of the hodograph plane. Computer

Aided Geometric Design, 11:363–390, 1994. doi: 10.1016/0167-8396(94)90204-6.

[79] K. Sunyoung and K. Masakazu. CMPSm: A Continuation Method for Polynomial

Systems (MATLAB version) -User’s Manual. Dept. of Math. and Comp. Sci,

Tokyo Inst. of Tech., Meguro, Tokyo 152-8552 Japan., April 2002.



Bibliography 118

[80] S. D. Conte and C. de Boor. Elementary Numerical Analysis: An Algorithmic

Approach. McGraw-Hill, 1980. doi: 0070124477.

[81] R. Bellman. Methods of Nonlinear Analysis, volume II. Academic Press, 1973.
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