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Processus d’exclusion avec des sauts longs en contact avec des réservoirs

Résumé: Cette thèse est consacrée à dériver la limite hydrodynamique et hydrostatique du processus
d’exclusion avec des sauts longs dans la boîte ΛN = {1, · · · , N − 1}, pour N ≥ 2, en contact avec une
infinité de réservoirs de densité α à gauche et β à droite de la boîte ΛN . Le taux de saut est décrit par
une probabilité de transition p qui est symétrique et a une queue lourde, proportionnelle à | · |−(1+γ)

pour γ > 1. Les réservoirs ajoutent ou enlèvent des particules avec un taux proportionnel à κN−θ , où
κ > 0 et θ ∈ R. Nous considérons les deux cas suivants:

i) Le cas γ > 2. La probabilité de transition p a une variance finie. Si θ < 0 (resp. θ > 0) les réservoirs
ajoutent ou enlèvent rapidement (resp. lentement). D’après la valeur de θ , nous prouvons que
l’évolution temporelle de la densité spatiale des particules est décrite par certaines équations aux
dérivées partielles avec différentes conditions aux limites.

ii) Le cas γ ∈ (1,2). La probabilité de transition p a une variance infinie. Si θ = 0 nous obtenons une
collection d’équations de réaction-diffusion fractionnaires régionales indexées par le paramètre κ
et les conditions aux limites de Dirichlet. Nous analysons également la convergence de l’unique
solution faible de ces équations lorsque nous envoyons le paramètre κ à zéro et à l’infini. Lorsque
nous considérons θ 6= 0, nous conjecturons que le profil limite lorsque κ → 0 est celui que nous
devrions obtenir en prenant des réservoirs peu lents (petites valeurs positives de θ) et le profil
limite quand κ → ∞ est celui que nous devrions obtenir en prenant des réservoirs très rapides
(θ < 0). Si θ < 0 nous prouvons que l’évolution temporelle de la densité spatiale des particules est
décrite par une équation de réaction avec conditions aux limites de Dirichlet, que coïncide avec la
limite κ→∞ précédente.

Mots-clés. La limite hydrodynamique, l’équation réaction-diffusion, conditions aux limites, proces-
sus d’exclusion avec des longs sauts.
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Exclusion process with long jumps in contact with reservoirs

Abstract. This thesis is devoted to the derivation of the hydrodynamic and the hydrostatic limit
of the exclusion process with long jumps in the box ΛN = {1, . . . , N − 1}, for N ≥ 2, in contact with
infinitely many reservoirs with density α on the left and β at the right of the box ΛN . The jump rate is
described by a transition probability p which is symmetric and has a long tail, proportional to | · |−(1+γ)

for γ > 1. The reservoirs add or remove particles with rate proportional to κN−θ , where κ > 0 and
θ ∈ R. We consider the following two cases:

i) The case γ > 2. The transition probability rate p has finite variance. If θ < 0 (resp. θ > 0) the
reservoirs fastly (resp. slowly) add or remove particles in the bulk. According to the value of θ
we prove that the time evolution of the spatial density of particles is described by some partial
differential equations with various boundary conditions.

ii) The case γ ∈ (1,2). The probability transition rate p has infinite variance. If κ = 0 we obtain a
collection of regional fractional reaction-diffusion equations indexed by the parameter κ and with
Dirichlet boundary conditions. We also analyze the convergence of the unique weak solution of
these equations when we send the parameter κ to zero and to infinity. When considering θ 6= 0,
we conjecture that the limiting profile when κ→ 0 is the one that we should obtain when taking
not very slow reservoirs (small positive values of θ) and the limiting profile when κ→∞ is the
one that we should obtain when taking very fast reservoirs (θ < 0). If θ < 0 we prove that the
time evolution of the spatial density of particles is described by a reaction equation with Dirichlet
boundary conditions, which coincides with the previous limit as κ→∞.

Key words. Hydrodynamic limit, Reaction-diffusion equation, Boundary conditions, Exclusion pro-
cess with long jumps.
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ΛN The finite set of points {1, · · · , N − 1} for N ≥ 2
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u, v Macroscopic variables
t Macroscopic time
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Θ(N)t Microscopic time
p Transition probability function
πN Empirical measure
η(t) The Markov process : exclusion process
σx ,y Exchange of occupation variables at x , y
σx Creation/annihilation of a particle at site x
α, β , γ, κ, θ Parameters
δa Dirac mass at a
LN Generator of the process
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−(−∆)γ/2 Fractional Laplacian of exponent γ/2
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Chapter 1

Introduction

Contents

1.1 From Microscopic to Macroscopic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Symmetric exclusion process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Boundary driven symmetric exclusion process . . . . . . . . . . . . . . . . . 3
1.2.2 A warming-up example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Infinitely extended reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Other kinds of reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Diffusive case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 Hydrodynamic and hydrostatic limit . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Fick’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Super-diffusive case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.1 Regional fractional Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.2 Hydrodynamic and hydrostatic limit . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.3 Fractional Fick’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1 From Microscopic to Macroscopic

One of the things that can be perceived with astonishment is the fact that our world looks
differently depending on the scale we look at it, for example at the macroscopic and at the
microscopic scales.

For look closely, whenever rays are let in and pour the sun’s light through the dark places in houses:

for you will see many tiny bodies mingle in many ways all through the empty space right in the light

of the rays, and as though in some everlasting strife wage war and battle, struggling troop against

troop, nor ever crying a halt, harried with constant meetings and partings; so that you may guess from

this what it means that the first-beginnings of things are fore ever tossing in the great void. So far as

maybe, a little thing can give a picture of great things and afford traces of a concept.

1



Lucretius (c. 99 BC - c. 55 BC)1

A macroscopic system is constituted by a large number of particles, typically of order 1023

(the Avogadro’s number). For example, a glass of water, the air in the room. We can character-
ize such system by a small number of macroscopic quantities called thermodynamics variables:
density, temperature, pressure, volume or others. Thermodynamics variables do not depend
on the behavior of few individual particles, but on the statistical properties of many particles.

In the microscopic world the particles are governed by Newton’s equation of motions (or
Schrödinger’s equations if quantum effects are taken into account). Due to the large number of
particles it does not seem viable to try to understand the system by studying the deterministic
behavior of each particle according to Newton’s (or Schrödinger’s) equations. Such particles
behave savagely and chaotically despite their deterministic nature. The most interesting is
that this erratic microscopic behavior is reflected in a coherent behavior of the thermodynamic
variables. The fundamental question is: How do these particles manage to organize themselves
in order to do this latter? At this point is where statistical mechanics appears and takes a
preponderant role. Its goal is to begin with the microscopic laws of physics that govern the
behavior of the individual particles of the system and deduce the macroscopic properties of the
system. So, statistical mechanics is a bridge between the microscopic and macroscopic worlds.

We say that a macroscopic system is in equilibrium if there is no net macroscopic flow of
matter (or energy) within the system, otherwise the system is said to be out of the equilibrium
(non-equilibrium state). Moreover, we say that a macroscopic system is in its stationary (or
steady) state when its thermodynamics variables do not change with time.

In order to introduce some important concepts, let us analyze an example using the sta-
tistical mechanics approach introduced by Ludwig Boltzmann (one of the fathers of statistical
mechanics) in the nineteenth century. Consider a gas confined to a finite volume V . We are
interested in the study of the temporal evolution of the system. The first step is to examine the
equilibrium states of the system and characterize them by a small number of thermodynamics
variables. Suppose, for simplicity, that the unique thermodynamic variable of interest is the
density ρ0. Now, suppose that the system is starting out of equilibrium. Denote by Vu a neigh-
borhood of u ∈ V , such that it is small with respect the whole volume, but large enough to have
a huge number of particles. The latter assumption allows to believe that in each neighborhood
Vu the system is very close to an equilibrium state characterized by a density ρ0(u) (in this case
the density may depend on u): this is called local equilibrium property. Then, we can analyze
the temporal evolution of the gas in the volume, assuming that the local equilibrium property
is propagated in a smooth way in time: after an elapsed time t we look at Vu and note that
the system is in a new local equilibrium characterized by a density ρt(u), which does not only
depend on the space variable u but on t. Then, the equation of the density is described by a
partial differential equation, called hydrodynamic equation. The approach that allows to obtain
(from the microscopic dynamics) this partial differential equation is called hydrodynamic limit.
Now, the non-equilibrium state reaches a stationary state after an elapsed time large enough
(t →∞) characterized by a stationary density profile. The derivation of the macroscopic sta-
tionary profiles (from the microscopic dynamics) is done through of the hydrostatic limit and

1Lucretius. De rerum natura
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the stationary partial equation that governs this stationary profile is called hydrostatic equation
[15, 13, 16, 40, 57].

Two assumptions can be considered in order to derive rigorously the propagation of the local
equilibrium. The first simplification consists in considering a system governed by deterministic
equations of motion but with a low density of particles, in such way that we just have a finite
number of collisions in a finite lapse of time. In the second simplification, we do not assume
a low density of particles but the particles are no longer governed by deterministic equations
of motion but by stochastic rules (see [57] for details of these two assumptions). We are
interested in the latter simplification, which is at the origin of the introduction of (stochastic)
interacting particle systems. This term begins to emerge in the late 1960’s, the pioneers in this
field being F. Spitzer [56] in the United states and R. L Dobrushin in the Soviet Union [24, 25].
More specifically, an interacting particle system consists of many particles which evolve like
a Markov process. Some examples of interacting particles systems are the stochastic Ising
model, the voter model, the contact process and the exclusion process [47]. In this work we
are interested in the exclusion process.

1.2 Symmetric exclusion process

The exclusion process is a continuous time interacting particle system introduced in the math-
ematical literature during the seventies by Frank Spitzer [56]. Despite the simplicity of its
dynamics, it captures the main features of more realistic diffusive systems driven out of equi-
librium [47, 48, 57]. It is a system of identical particles which perform jumps on the lattice Z
like random walks, each one being independent of the others and following the exclusion rule:
a jump is suppressed if the target site of the jump is already occupied. This latter rule allows
just single occupancy per site and introduce interaction between particles. More precisely, the
dynamics is the following: particles are distributed on Z, each site being occupied by at most
one particle. Fix a transition probability function p : Z → [0,1]. Associated to each pair of
sites {x , y} ⊂ Z there is a Poisson clock of parameter 1, independent from the others. When it
rings the state of the occupation of sites x and y are interchanged with probability p(x− y). If
both sites are occupied or both sites are vacant, nothing happens. If one of the sites is occupied
and the other is vacant, the interchange is seen as a jump of the particle from the occupied
site to the empty site (see Figure 1.1). We say that the process is finite (resp. long) range if
p(x) = 0 for |x | large enough (resp. otherwise). In the particular case where the exclusion
process has range 1, i.e. p(x) = 0 for |x |> 1, it is called the simple exclusion process. We say
that it is a symmetric (resp. asymmetric) exclusion process in the case where p is symmetric, i.e.
p(−x) = p(x) (resp. ∃x , p(x) 6= p(−x)).

1.2.1 Boundary driven symmetric exclusion process

Now, in order to take into account the interaction of the system with its environment, the
symmetric exclusion process can also be considered in contact with reservoirs. Such reservoirs
work macroscopically at different particle densities and microscopically create or annihilate
particles in the system. For instance, in Figure 1.2, we consider the one dimensional symmetric

3
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Figure 1.1: Time evolution on Z.

simple exclusion process in an open lattice of length N − 1, called the bulk, in contact with
two reservoirs. Fix α,β ∈ (0,1). At the left boundary, particles are created with rate α and
annihilated with rate 1−α. At the right boundary this is done with rates β and 1−β . Consider
first the system in its steady state. Observe that in the case where α = β the system is in
equilibrium, i.e there is an absence of flux of particles (mathematically, since p is symmetric
the invariant measure is reversible). On the other hand, if α < β there is a flow of matter
from the right boundary to the left one (or in the other way around if α > β). The presence
of this exchange of matter between the system and the boundaries creates a non-equilibrium
stationary state with a steady flux of particles through the system. The hydrodynamic limit
of this process is studied in [30], and the hydrodynamic equations correspond to the heat
equation with Dirichlet boundary conditions imposed by reservoir densities. The hydrostatic
profile is given by a linear profile connecting these densities α,β at 0,1 respectively: ρ̄(u) =
(β−α)u+α. One can go further in the study of the system. For instance, after having obtained
the hydrodynamics (law of large numbers), it is natural to ask about the Gaussian fluctuations
around the solution of the hydrodynamic or hydrostatic equation [10, 12, 34, 35, 44]. We
can also study large deviations, which describe the probability of large fluctuations around the
solution of the hydrodynamic or hydrostatic equation [5, 6, 26, 31, 43, 51, 52].

x y0 NN -11

1− β

β

1− α

α
1
2

1
2

× ×

Figure 1.2: Symmetric simple exclusion process in contact with reservoirs.
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A variant of the process introduced above is when the process is in the presence of a mech-
anism (placed in the bonds or in the reservoirs) that regulates (decreasing/increasing) the
rate of the passage of particles through them. Recently a series of work have been devoted
to the study of the simple exclusion process whose dynamics is perturbed by the presence of
a slow bond [33], a slow site [35], slow boundary effects [1] and current boundary effects
[14, 17, 18, 49]. The behavior of the system is then strongly affected and new conditions
may be derived at the macroscopic level. In Subsection 1.2.2 below, we see how the boundary
conditions of the hydrodynamic equation may be affected due to the presence of slow/fast
boundaries effects in the context of the simple exclusion process.

1.2.2 A warming-up example

In order to illustrate the type of results that we are going to prove, we derive heuristically
the hydrodynamic and hydrostatic equations of the symmetric simple exclusion process with
slow/fast boundary (for details of slow boundaries see [1]). Fix N ≥ 2, which represents the
inverse of the distance between neighboring sites and that will increase to infinity. Denote
by ηx ∈ {0, 1} the particle occupancy at the site x

N ∈ (0, 1). Therefore, the configuration
{η1, · · · ,ηN−1} is an element of the space ΩN := {0, 1}ΛN , where 1

NΛN is a discretization with
mesh 1

N of the continuous space (0,1) through the map x ∈ ΛN →
x
N ∈ (0,1) where ΛN =

{1, · · · , N − 1}. From the latter we see how the macroscopic space (0,1) and the microscopic
space ΛN are naturally connected. The simple exclusion process with slow/fast boundaries
can be defined as follows: on each site of ΛN there exists at most one particle, which can
jump to one of its nearest neighbors according to the exclusion rule. Fix κ > 0, θ ∈ R and
0 < α ≤ β < 1. A particle at the site 1 (resp. N − 1) can get out from the system ΛN with
rate ακN−θ (resp. βκN−θ), whereas if the site 1 (resp. N − 1) is empty a particle from the
reservoir can get into the site 1 (resp. N − 1) with rate (1 − α)κN−θ (resp. (1 − β)κN−θ).
This dynamics corresponds to a Markov process {η(t)}t≥0 defined on ΩN whose infinitesimal
generator is given by

LN := LB
N +κN−θ Lb

N .

Here the generator LB
N corresponds to the bulk dynamics and its action on functions f : ΩN → R

is

(LB
N f )(η) =

N−2
∑

x=1

[ f (σx ,x+1η)− f (η)],

where for x , y ∈ ΛN , σx ,yη is the configuration in ΩN which is obtained from η by exchanging
the values of ηx and ηy :

(σx ,yη)z =







ηz, z 6= x , y,

ηy , z = x ,

ηx , z = y.

(1.2.1)
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The generator Lb
N , corresponding to non-conservative boundary dynamics, acts on functions

f : ΩN → R as

(Lb
N f )(η) =[α(1−η1) +η1(1−α)][ f (σ1η)− f (η)]

+[β(1−ηN−1) +ηN−1(1− β)][ f (σN−1η)− f (η)],

where for any x ∈ ΛN , the function σx corresponds to the creation/annihilation of a particle
at site x:

(σxη)z =

¨

ηz, z 6= x ,

1−ηx , z = x .
(1.2.2)

We consider the Markov process speeded up in the time scale N 2, so that {ηN (t)}t≥0 :=
{η(tN 2)}t≥0 has infinitesimal generator N 2 LN . This time re-normalization is in order to ob-
serve non-trivial hydrodynamic phenomena.

First we analyze the hydrostatic behavior. Since the Markov process {ηN (t)}t≥0 is irre-
ducible, it is well know that there exists a unique measure µ̄N which is invariant under the
evolution of ηN (t). The expectation under µ̄N is denoted by Eµ̄N

. In the case where α= β the
measure µ̄N is reversible and can be computed easily (Bernoulli product measure with param-
eter α). In such case we say that the system is in equilibrium, since there is no flow of matter
in the system. If α 6= β the invariant measure is irreversible (µ̄N is expressed in [19] in a semi-
explicit matrix product form), i.e. the system is no longer in equilibrium. Recall that even if the
system is not in equilibrium, due to the huge number of particles and the "strong" interaction
between them, we expect that the system is "close" (in some sense) to a local equilibrium state.
Thus, we can use the local equilibrium property in order to associate a macroscopic profile to
this invariant measure, i.e. there should exist a profile ρ̄ : [0, 1]→ R such that for all u ∈ [0,1]
we have that

Eµ̄N
[η[uN]] =: ρ̄N ([uN])∼ ρ̄

� [uN]
N

�

. (1.2.3)

Above [·] stands for the integer part. Note that applying the generator to the function
η→ ηx for x ∈ ΛN , we have that

LNηx =







ηx−1 − 2ηx +ηx+1, if x ∈ {2, · · · , N − 2},
η2 −η1 + κN−θ (α−η1), if x = 1,

ηN−2 −ηN−1 +κN−θ (β −ηN−1), if x = N − 1.

(1.2.4)

Since the measure is invariant we know that Eµ̄N
[LNηx] = 0, for all x ∈ ΛN (see [47] for

details). Then, we have a linear system of equations whose solution is given by ρ̄N (x) =
aN x + bN , where

aN =
κ(β −α)

2Nθ − 2κ+κN
and bN = aN

�

Nθ

κ
− 1

�

+α.

This shows that (1.2.3) is valid with
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ρ̄(u) =



















(β −α)u+α, if θ < 1,
κ(β −α)

2+κ
u+α+

(β −α)
2+κ

, if θ = 1,
β +α

2
, if θ > 1.

(1.2.5)

Now, we focus on the hydrodynamic behavior. For t ≥ 0 we denote by µN ,t the law of the
process ηN at time t. The expectation under µN ,t is denoted by EµN ,t

. We assume that at time
t = 0 a local equilibrium holds and we expect that the local equilibrium property is conserved a
time t, i.e. there exists a profile ρ : [0,∞)×[0,1]→ R such that for all (t, u) ∈ [0,∞)×[0,1]
we have that

EµN ,t
[η[uN](tN 2)]∼ ρt

� [uN]
N

�

.

In order to derive the form of ρ, we proceed as follows. Fix a smooth function G : [0,∞)×
[0, 1]→ R. We know by Dynkin’s formula (see A.5 in [40]) that

M N
t (G) := N−1

∑

x∈ΛN

Gt(
x
N )η

N
x (t)− N−1

∑

x∈ΛN

G0(
x
N )ηx(0)− N−1

∫ t

0

∑

x∈ΛN

N 2Gs(
x
N )LNη

N
x (s)ds,

(1.2.6)

is a martingale with respect to the filtration {Ft}t≥0, where for each t ≥ 0,Ft := σ({ηN (s)}s≤t).
After summation by parts and using (1.2.4) we have that

M N
t (G) =N−1

∑

x∈ΛN

Gt(
x
N )η

N
x (t)− N−1

∑

x∈ΛN

G0(
x
N )ηx(0)

−N−1

∫ t

0

N−2
∑

x=2

ηN
x (s)∆N Gs(

x
N )−η

N
N−1(s)∇

+
N Gs(

N−2
N ) +η

N
1 (s)∇

+
N Gs(

1
N )ds

+κN 1−θ

∫ t

0

(α−ηN
1 (s))Gs(

1
N ) + (β −η

N
N−1(s))Gs(

N−1
N )ds,

(1.2.7)

where, for u ∈ [0, 1],∆N G(u) = N 2[G(u− 1
N )−2G(u)+G(u+ 1

N )] and∇+N G(u) = N[G(u+ 1
N )−

G(u)] stand, respectively, for the discrete Laplacian and the discrete derivative of a function
G. Take the expectation with respect to µN ,t in last expression. Since M N

t (G) is a martingale
vanishing a time 0 and the expectation of martingales is constant, EµN ,t

[M N
t (G)] = 0. By

invoking the local equilibrium property we have that the macroscopic profile should satisfy

N−1
∑

x∈ΛN

Gt(
x
N )ρt(

x
N )− N−1

∑

x∈ΛN

G0(
x
N )ρ0(

x
N )

−N−1

∫ t

0

N−2
∑

x=2

ρs(
x
N )∆N Gs(

x
N )−ρs(

N−1
N )∇

+
N Gs(

N−2
N ) +ρs(

1
N )∇

+
N Gs(

1
N )ds

+κN 1−θ

∫ t

0

(α−ρs(
1
N ))Gs(

1
N ) + (β −ρs(

N−1
N ))Gs(

N−1
N )ds ≈ 0.

(1.2.8)
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Case θ < 1: In this regime, since θ < 1 and we are going to take N large in (1.2.8), we see
that it is necessary to assume that ρs(

1
N ) ∼ α and ρs(

N−1
N ) ∼ β for all s ∈ [0, t]. Then, letting

N →∞ we get that
∫ 1

0

Gt(u)ρt(u)du−
∫ 1

0

G0(u)ρ0(u)du−
∫ t

0

∫ 1

0

∆Gs(u)ρs(u)duds

+

∫ t

0

β∂uGs(1)−α∂uGs(0)ds = 0.

Therefore we obtain that ρ is the weak solution of the heat equation with Dirichlet boundary
condition:

¨

∂tρt(u) =∆ρt(u), (t, u) ∈ [0, T]× (0,1),
ρt(0) = α, ρt(1) = β , t ∈ (0, T],

and with initial condition ρ0.
Case θ = 1: Letting N →∞ in (1.2.8) we get that

∫ 1

0

Gt(u)ρt(u)du−
∫ 1

0

G0(u)ρ0(u)du−
∫ t

0

∫ 1

0

∆Gs(u)ρs(u)duds

+

∫ t

0

ρs(1)∂uGs(1)−ρs(0)∂uGs(0)ds+ κ

∫ t

0

(α−ρs(0))Gs(0) + (β −ρs(0))Gs(1)ds = 0.

Then we obtain that ρ is the weak solution of the heat equation with Robin boundary condi-
tions:

¨

∂tρt(u) =∆ρt(u), (t, u) ∈ [0, T]× (0, 1),
∂uρ t(0) = κ(ρt(0)−α), ∂uρ t(1) = κ(β −ρt(1)), t ∈ (0, T],

(1.2.9)

and with initial condition ρ0.
Case θ > 1: Letting N →∞ in (1.2.8) we have that

∫ 1

0

Gt(u)ρt(u)du−
∫ 1

0

G0(u)ρ0(u)du−
∫ t

0

∫ 1

0

ρs(u)∆Gs(u)duds

+

∫ t

0

ρs(1)∂uGs(1)−ρs(0)∂uGs(0)ds = 0

Then we obtain that ρ is the weak solution of (1.2.9) with κ = 0 (the heat equation with
Neumann boundary conditions).

Note that the profile ρ̄ given in (1.2.5) is a stationary solution of the corresponding hy-
drodynamic equation 2, which are different if θ < 1, θ = 1 or θ > 1. Moreover, note that
the slow boundaries at the microscopic level have an effect on the system at the macroscopic
level. In fact, in the case θ = 0 we see that such interaction allows to have a fixed density

2The stationary solution is unique if θ ≤ 1.
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at the boundaries (α on the left and β on the right). Now, increasing the value of θ , we see
that the previous behavior is maintained up to values of θ lower than 1, i.e. the interaction
with the boundary is not slowed enough to give a new behavior. In the case where θ > 1, the
reservoirs are sufficiently slowed to not permit any exchange of mass between the system and
the reservoir, i.e. the boundary conditions at the macroscopic level describe a system isolated
from the environment. Now, in the case θ = 1 we have a transition phase between the two
cases above, i.e. the boundary conditions are a combination between Dirichlet and Neumann
boundary conditions.

We have already studied the role of θ , but in the definition of the dynamics of the process,
we said that the reservoirs add or remove particles with rate proportional to κN−θ . Why is the
value of κ important? It is because it can be used as a tool in order to understand the transition
from one phase (θ < 1) to another (θ > 1) at the macroscopic level. For instance, suppose that
in the example above we only know the behavior for θ = 1 and that we would like to know
the hydrodynamic behavior of the system for values of θ around 1. We note that in the case
θ = 1 the hydrodynamic equation depends on κ. Intuitively we can see that if we take κ→∞
in (1.2.9) we obtain the heat equation with Dirichlet boundary conditions. On the other hand,
if we take κ→ 0 in (1.2.9) we get the heat equation with Neumann boundary conditions. The
same conclusion also applies to the stationary profile (see (1.2.5)). What we learn from the
above simple example is that the behavior of the system for values of θ ∈ (1 − a, 1) (resp.
θ ∈ (1,1+ a)) for some a > 0 may be obtained taking at the macroscopic level κ very large
(resp. κ very small) in the hydrodynamic equation (1.2.9) obtained for θ = 1. This approach
does not give us the optimal value of a and for that reason we only deduce the behavior for
values of θ close to 1. If we take this approach at the formal level it would be very useful to
recognize new phases, which could be difficult to obtain directly at the microscopic level (see
Theorem 3.2.10).

The purpose of this work is to extend formally the scenario informally explained above to a
process with long range interactions. We call this process the exclusion process with long jumps
in contact with reservoirs.

1.3 The model

In this work we are interested in the case where the probability transition function p has a heavy
tail proportional to | · |−(1+γ) for γ > 1. Curiously it is only very recently that the investigation
of the exclusion process with long jumps has started [3, 38, 39, 36, 55, 58].

More precisely, for N ≥ 2 let ΛN = {1, . . . , N − 1} be a finite lattice of size N − 1 called the
bulk. We consider the exclusion process in contact with reservoirs, which is a Markov process
{η(t)}t≥0 with state space ΩN = {0, 1}ΛN . The configurations of the state space ΩN are denoted
by η, so that for x ∈ ΛN , ηx = 0 means that the site x is vacant while ηx = 1 means that the
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site x is occupied. The translation invariant transition probability on Z is defined by

p(z) =







cγ
|z|γ+1

, if z 6= 0,

0, if z = 0
(1.3.1)

where c−1
γ
= 2ζγ+1 (ζs is the Riemann zeta function defined for s > 1). In fact the results

obtained in this thesis could probably be generalized to the case where p is such that p(z) ∼
L(z)|z|−(1+γ) as z → ±∞ for some slowly varying function L. Moreover, the model can be
defined in higher dimensions and we should expect similar results. However the proofs could
be much more technical.

1.3.1 Infinitely extended reservoirs

We consider the process in contact with infinitely many stochastic reservoirs at all the negative
integer sites z ≤ 0 and at all the integer sites z ≥ N . We fix four parameters α,β ∈ (0,1), κ > 0
and θ ∈ R. Particles can get into (resp. exit) the bulk of the system from any site at the left of
0 at rate ακN−θ p(z) (resp. (1−α)κN−θ p(z)), where z is the jump size (see Figure 1.3). The
stochastic reservoir at the right acts in the same way as the left reservoir but with the intensity
α replaced by β .

x y N -11

Left reservoir Right reservoir

Bulk

p(y − x)

(1− α) κ
Nθp(·)

α κ
Nθp(·) β κ

Nθp(·)

(1− β) κ
Nθp(·)

Figure 1.3: Exclusion process with long jumps and infinitely extended reservoirs.

Hence, we have the presence of two dynamics: bulk and boundary dynamics. The dynamics
in the bulk is defined as follows. Each pair of sites of the bulk {x , y} ⊂ ΛN carries a Poisson
process of intensity one. The Poisson processes associated to different bonds are independent.
If for the configuration η, the clock associated to the bond {x , y} rings, then we exchange the
values ηx and ηy with rate p(y − x)/2. It is clear that this dynamics conserves the number
of particles of the system. Now we explain the dynamics at the boundaries. Each pair of sites
{x , y} with x ∈ ΛN and y ∈ Z−ΛN carries a Poisson process of intensity one, all of them being
independent. Recall that the coupling with the reservoirs is regulated by a prefactor κN−θ ,
κ > 0, θ ∈ R. If for the configuration η, the clock associated to the bond {x , y} rings and
y ≤ 0 then we change ηx into 1− ηx with rate κNθ p(x − y) [(1− α)ηx + α(1− ηx)]. At the
right boundary the dynamics is similar but instead of α the density is given by β . Observe that
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the reservoirs add and remove particles on all the sites of the bulk ΛN , and not only at the
boundaries, but with rates which decrease as the distance from the corresponding reservoir
increases. The process is characterized by its infinitesimal generator

LN = L0
N +κN−θ L`N + κN−θ L r

N . (1.3.2)

Here the generator L0
N corresponds to the bulk dynamics and its action on functions f : ΩN → R

is given by

(L0
N f )(η) =

∑

x ,y∈ΛN

p(x − y)ηx(1−ηy)[ f (σ
x ,yη)− f (η)]

=
1

2

∑

x ,y∈ΛN

p(x − y)[ f (σx ,yη)− f (η)],
(1.3.3)

where for x , y ∈ ΛN , σx ,yη is the configuration in ΩN is given in (1.2.1). The generators L`N
and L r

N corresponding to non-conservative boundary dynamics act on a function f : ΩN → R
as

(L`N f )(η) =
∑

x∈ΛN
y≤0

p(x − y)cx(η;α)[ f (σxη)− f (η)],

(L r
N f )(η) =

∑

x∈ΛN
y≥N

p(x − y)cx(η;β)[ f (σxη)− f (η)]
(1.3.4)

where σxη was introduced in (1.2.2) and cx(η;α) = [ηx(1− α) + (1− ηx)α] and cx(η;β) =
[ηx(1− β) + (1−ηx)β].

We would like to characterize the collective behavior of the microscopic process described
above. In order to obtain this characterization we need to establish a connection between the
microscopic and the macroscopic system, by using a limit procedure. Such a limit procedure
give us the convergence of the spatial density of particles (called empirical measure associated
to the process) to the solution of a macroscopic equation. As we said before, this is called
hydrodynamic limit.

The next two chapters are devoted to analyze the repercussions at the macroscopic level by
changing γ in the probability transition function and the strength of the reservoirs by changing
θ and κ.

1.3.2 Other kinds of reservoirs

In this work we decided to consider in details only one kind of reservoirs. However, since
a reservoir model is not universal, other natural models are of interest. We explain three
possible cases where the boundary conditions are linear, but there exist very interesting and
more complicated models for which the boundary conditions are non-linear [18, 49].
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Case 1: The reservoir consists on the left (resp. on the right) of a single Glauber dynamics
whose action of the generator on a function f : ΩN → R is

(L`N f )(η) =
κ

Nθ

∑

x∈ΛN

cx(η;α)p(x)[ f (σxη)− f (η)],

�

resp. (L r
N f )(η) =

κ

Nθ

∑

x∈ΛN

cx(η;β)p(N − x)[ f (σxη)− f (η)]
�

.

Thus it creates a particle at the site x ∈ ΛN with rate κ
Nθ αp(x) (resp. κ

Nθ βp(N − x))
if the site x is empty and it removes a particle at the site x with rate κ

Nθ (1−α)p(x)
(resp. κNθ (1−β)p(N − x)) if the site x is occupied. The bulk dynamics is unmodified
(see Figure 1.4).

0 x y NN -11
Bulk

p(y − x)

(1− α) κ
Nθp(·)

α κ
Nθp(·) β κ

Nθp(·)

(1− β) κ
Nθp(·)

Figure 1.4: Case 1

Case 2: The reservoir consists on the left (resp. on the right) of a single Glauber dynamics
whose action of the generator on a function f : ΩN → R is

(L`N f )(η) =
κ

Nθ
c1(η;α)[ f (σ1η)− f (η)],

�

resp. (L r
N f )(η) =

κN
Nθ

cN−1(η;β)[ f (σN−1η)− f (η)]
�

.

Thus it creates a particle at the site 1 with rate κ
Nθ α (resp. κNθ β) if the site 1 (resp. N−

1) is empty and it removes a particle at the site 1 with rate κ
Nθ (1−α) (resp. κNθ (1−β))

if the site 1 (resp. N − 1) is occupied. The bulk dynamics is unmodified (see Figure
1.5).

Case 3: The reservoir consists on the left (resp. on the right) of an infinite number of Glauber
dynamics whose action of the generator on a local function f : {0,1}Z→ R is

(L`N f )(η) =
κ

Nθ

∑

x≤0

cx(η;α)[ f (σxη)− f (η)],

�

resp. (L r
N f )(η) =

κ

Nθ

∑

x≥N

cx(η;β)[ f (σxη)− f (η)]
�

.
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x y0 NN -11

(1− β)κN−θ

βκN−θ

(1− α)κN−θ

ακN−θ
×

p(y − x)

Figure 1.5: Case 2

Thus it creates a particle at the site x ≤ 0 (resp. x ≥ N) with rate κ
Nθ α (resp. κNθ β)

if the site x is empty and it removes a particle at the site x ≤ 0 (resp. x ≥ N) with
rate κ

Nθ (1−α) (resp. κNθ (1− β)) if the site x is occupied (see Figure 1.6). Moreover,
in this case we assume that the long jumps are not restricted to sites x , y ∈ ΛN but
may occur in all the lattice Z, i.e. the action of the bulk dynamics generator on a
local function f : {0, 1}Z→ R is now described by

(L0 f )(η) =
1

2

∑

x ,y∈Z

p(x − y)[ f (σx ,yη)− f (η)].

x y N0 N -11· · · · · ·

p(y − x)

(1− α)κN−θακN−θ βκN−θ (1− β)κN−θ

Figure 1.6: Case 3

1.4 Diffusive case

In Chapter 2 we consider the probability transition function p for γ > 2. In such case we can
give a complete scenario for all θ ∈ R of the behavior of the system. By a complete scenario
we mean that we can describe the macroscopic behavior of the system for any value of θ ∈ R.
Since θ ranges from −∞ to ∞ the interaction of the particles with the boundaries can be
slowed down or fasted up.

In this case the transition function p has mean zero and finite variance , i.e.
∑

z∈Z

zp(z) = 0, σ2 :=
∑

z∈Z

z2p(z)<∞.

13



Then, in spite our process has long jumps we will see that it is a diffusive system. However the
presence of long jumps allows to obtain new phases that in the diffusive system of short range
are not reached.

1.4.1 Hydrodynamic and hydrostatic limit

The problem we address is to characterize the hydrodynamic behavior of the process described
above and to analyze the repercussions at the macroscopic level of slowing down or fasting up
the interaction with the reservoirs, by changing the values of θ . Usually the characterization of
the hydrodynamic limit is formulated in terms of a weak solution of some partial differential
equation, namely, the hydrodynamic equation. Depending on the intensity of the coupling
with the reservoirs we will observe a phase transition for profiles which are solutions of the
hydrodynamic equation with different types of boundary conditions, depending on the range
of the parameter θ .

We extend the results of the symmetric simple exclusion process with slow boundary that
was studied in [1] and reviewed in Subsection 1.2.2 by considering long jumps, infinitely ex-
tended reservoirs and also fast reservoirs (θ < 0). In the case θ ≥ 0 (slow reservoirs) we
recover in our model a similar hydrodynamical behavior to the one obtained in [1], since we
imposed that the probability transition rate to be symmetric and with finite variance. The
presence of long jumps and the fast boundaries (θ < 0) generate two new phases of transition
which do not occur in the case of short range. In fact, for the short range case of [1] it is
possible to extend the results of [1] to the case θ < 0 (see Subsection 1.2.2). However, in such
case we will not see a new behavior: in the regime θ < 0 the heat equation with Dirichlet
boundary conditions appears, as in the case θ ∈ [0,1).

More specifically, let us consider first the case θ < 1 for which three phases can be identified.
We will show that the empirical measure associated to the particle systems that we described
above converges to the weak solution of the reaction-diffusion equation with inhomogeneous
Dirichlet boundary conditions:











∂tρt(u) =
σ̂2

2 ∆ρt(u) + κ̂
¦

α−ρt (u)
uγ + β−ρt (u)

(1−u)γ

©

, (t, u) ∈ [0, T]× (0, 1),

ρt(0) = α, ρt(1) = β , t ∈ [0, T],
ρ0(u) = ρ0(u), u ∈ (0,1),

(1.4.1)

with σ̂ and κ̂ being parameters specified below. When θ < 2− γ the boundaries are enough
fasted to make the diffusion part disappear, i.e. the profile is solution of (1.4.1) with σ̂ = 0
and κ̂ = κcγγ

−1. Physically it means that the particles are entering and leaving the system so
fast that they do not have time to diffuse. For θ = 2− γ we have a transition phase. In such
case we get that the profile satisfies (1.4.1) with σ̂ = σ and κ̂ = κcγγ

−1. If θ ∈ (2 − γ, 1),
the boundary effects are such that we get the classical heat equation with Dirichlet boundary
conditions, that means that the profile is solution of (1.4.1) with σ̂ = σ and κ̂= 0.

Now we consider the case θ ≥ 1 for which two phases can be identified. In this case the
empirical measure associated to the process converges to the weak solution of the heat equation
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with Robin boundary conditions:







∂tρt(u) =
σ̂2

2 ∆ρt(u), (t, u) ∈ [0, T]× (0,1),
∂uρt(0) =

2m̂
σ̂2 (ρt(0)−α), ∂uρt(1) =

2m̂
σ̂2 (β −ρt(1)), t ∈ [0, T]

ρ0(u) = g(u), u ∈ (0, 1),
(1.4.2)

where m̂ is a parameter specified below. If θ = 1, the reservoirs are slowed enough so that we
obtain that the profile satisfies (1.4.2) with σ̂ = σ and m̂= κ

∑

z≥1 zp(z). For θ ∈ (1,∞), the
reservoirs are sufficiently slowed so that we get the heat equation with Neumann boundary
conditions, that is, the profile solves equation (1.4.2) with σ̂ = σ and m̂ = 0. Physically
it means that the particles almost do not interact with the reservoirs (isolated system). We
resume all the results in Figure 1.7.
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Figure 1.7: The five different hydrodynamic regimes in terms of γ and θ .

After having established the hydrodynamic behavior, we can study their stationary solutions
which should describe the mean density profile in the non-equilibrium stationary state of the
microscopic system in the thermodynamic limit N →∞ (see Figure 1.8). Since in the case
θ > 2 − γ we recover the same hydrodynamic behavior as in [1] for θ ≥ 0, then the hydro-
static behavior coincides as well (see (1.2.5)). For θ ∈ (2− γ, 1) (heat equation with Dirichlet
boundary conditions) the stationary solution is the linear profile connecting α at 0 to β at 1.
For θ = 1 (heat equation with Robin boundary conditions) the profile is still linear but the

15



values at the boundaries are different and given by:

ρ̄(0) =
(α+ β)σ2 + 2αmκ

2(mκ+σ2)
and ρ̄(1) =

(α+ β)σ2 + 2βmκ
2(mκ+σ2)

. (1.4.3)

For θ > 1 (heat equation with Neumann boundary conditions) we expect that if we compute
directly the stationary profile in the non-equilibrium stationary state of the microscopic system
in the thermodynamic limit, the stationary profile will be flat with the value α+β

2 . Note that by
taking t →∞ in (1.4.2) (with σ̂ = σ and m̂= 0) we obtain that the stationary solution of the
heat equation with Neumann boundary conditions is given by

∫ 1

0
ρ0(v)dv, which in general

differs from α+β
2 . However, the latter constant is the appropriate one since it is the limit of

the empirical density profile in the stationary state for θ > 1. In fact, this constant can be
recovered from the stationary solution with Robin boundary condition by sending κ→ 0 (see
(1.4.3)).

On the other hand, the form of the stationary solution in the reaction equation, i.e. when
θ < 2− γ, is explicitly given by ρ̄∞(u) := V0(u)

V1(u)
for u ∈ [0, 1] and where

V0(u) = αr−(u) + β r+(u), V1(u) = r−(u) + r+(u), (1.4.4)

where the functions r± : (0,1)→ (0,∞) are defined by

r−(u) = cγγ
−1u−γ, r+(u) = cγγ

−1(1− u)−γ. (1.4.5)

It is not difficult so see that this profile is increasing, non-linear, convex on (0, 1/2) and concave
on (1/2, 1), with ρ̄∞(0) = α and ρ̄∞(1) = β . Finally, obtaining the properties of the stationary
solution of the reaction-diffusion equation, i.e. θ = 2− γ, is more tricky. We will see that the
solution of the stationary reaction-diffusion equation satisfies the properties of ρ̄∞, described
above. These stationary profiles obtained from the hydrodynamic limit may also be obtained
directly from the microscopic model (hydrostatic limit). We will do it in the particular case
θ = 2− γ (see Chapter 2, Section 2.4).

Now, we explain, without proofs, how our results have to be modified considering the three
different kind of reservoirs given in Subsection 1.3.2. In the two first cases, the density profile
will be described by a function ρt(u)where u ∈ [0, 1]while in the third case it will be described
by a function ρt(u) where u ∈ R, since the system evolves on Z.

Case 1: We still have five different regimes. The changes with respect to our results are:

a) the value of θ for which we obtain the reaction-diffusion equation (now is θ =
γ−1 instead of θ = 2−γ) and the reaction equation (now is for θ < 1−γ instead
of θ < 2− γ);

b) the term that depends on γ in (1.4.1) are the same as before but the exponent in
this case is 1+γ instead of γ. We note that all the other regimes are not affected.
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(α+β)σ2+2βmκ
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Figure 1.8: Stationary solution of the hydrodynamic equations according to the value of θ and γ > 2.

Case 2: We have now only three different regimes. If θ > 1 the macroscopic behavior is
described by the heat equation with Neumann boundary conditions; if θ = 1, it is
described by the heat equation with Robin boundary condition; if θ < 1 (positive or
negative) it is described by the heat equation with Dirichlet boundary conditions.

Case 3: We have now only three different regimes.

a) If θ > 2 the reservoirs are too weak and the density profile evolves in the diffusive
scaling according to the heat equation on R

∂ ρt(u) =
σ2

2 ∆ρt(u),

without any boundary conditions.

b) If θ = 2, the density profile evolves in the diffusive scaling according to the
reaction-diffusion equation on R given by

∂tρt(u) =
σ2

2 ∆ρt(u)−κ1u≤0(ρt(u)−α)−κ1u≥1(ρt(u)− β).

c) If θ < 2, the reservoirs are so fast that in the diffusive time scale they fix the
density profile to be α at the left of 0 and β at the right of 1. In the bulk (0,1),
the density profile evolves according to the heat equation restricted to (0,1) with
these inhomogeneous Dirichlet boundary conditions.
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1.4.2 Fick’s law

In the steady state an other issue of physical interest that we can study is the derivation of the
Fick’s law. Fick’s law is a phenomenological law stating that the flux of matter (current) due
to the diffusion goes from regions of high concentration to regions of low concentration, with
a magnitude that is proportional to the concentration gradient:

W = −D∂uρ̄(u), (1.4.6)

where W denotes the current, and D is the diffusion coefficient. For instance, for our model in
the case where θ ∈ (2− γ, 1), we know from the hydrodynamic equation that D = σ2

2 . Then,
we expect that Fick’s law holds in the steady state with

W = −σ
2

2 (β −α),

since we know that ρ̄(u) = (β −α)u+α for u ∈ [0,1]. Since for θ = 2−γ we have a reaction-
diffusion equation, the classical Fick’s law has to be replaced by the generalized Fick’s law. In
fact, we should have a first term coming from the diffusion part and the other one coming from
the reaction term due to the reservoirs. Then we expect to have

W = −σ
2

2 ∂vρ̄(v) + κ̂

∫ 1

v

α− ρ̄(u)
uγ

du− κ̂
∫ v

0

β − ρ̄(u)
(1− u)γ

du, (1.4.7)

for v ∈ [0, 1] and where ρ̄ is the stationary solution of (1.4.2). Above we have just considered
the Fick’s law at a macroscopic level. We can also try to obtain the Fick’s law directly at the
microscopic level. Since we are considering α≤ β , we know that there exists a flux of particles.
We consider the microscopic current Wx for x ∈ ΛN ∪ {N}, which is defined as the rate of
particles crossing x − 1

2 from the left to the right, minus the rate of particles crossing x − 1
2

from the right to the left. If θ < 1, we expect that the expectation of the current Wx under
the stationary measure is of order N−1. In the case θ ∈ (2 − γ, 1) (resp. θ = 2 − γ) the
first order correction (i.e. N−1) to the expectation of the current W[vN] under the stationary
measure should converge to (1.4.6) (resp. (1.4.7)). As we said before, in Chapter 2 we study
some properties of the case θ = 2 − γ and we complete this study deriving the generalized
Fick’s law from the microscopic system. Since similar arguments can be also done in the case
θ ∈ (2 − γ, 1) to derive the classical Fick’s law from the microscopic system, we omitted its
proof.

1.5 Super-diffusive case

Normal (diffusive) transport phenomena are described by standard random walk models.
Anomalous transport, in particular transport phenomena giving rise to super-diffusion, are
nowadays encapsulated in the Lévy flights or Lévy walks framework [27, 60] and appear in
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physics, finance, biology ... A Lévy flight is nothing but a random walk in which the step-
lengths have a probability distribution that is heavy tailed. A (one-dimensional) Lévy walker
moves with a constant velocity v for a heavy-tailed random time τ on a distance x = vτ in ei-
ther direction with equal probability and then chooses a new direction and moves again. One
then easily shows that for Lévy flights or Lévy walks, the space-time scaling limit P(x , t) of
the probability distribution of the particle position x(t) is solution of the fractional diffusion
equation

∂t P = −c(−∆)γ/2P (1.5.1)

where c is a constant and γ ∈ (1, 2). In physics, the description of anomalous transport phe-
nomena by Lévy walks instead of Lévy flights is sometimes preferred despite the two models
have the same scaling limit form provided by (1.5.1) because the first ones have a finite speed
of propagation (see [60] for more details).

While Lévy walks and Lévy flights are today well known and are popular models to describe
super-diffusion in infinite systems in various application fields, there has been recently several
physical studies pointing out that it would be desirable to have a better understanding of Lévy
walks in bounded domains. For bounded domains, boundary conditions and exchange with
reservoirs or environment have to be taken into account. A particular interest for this problem is
related to the description of anomalous diffusion of energy in low-dimensional lattices [20, 45]
in contact with reservoirs [21, 22, 46]. It is well established that superdiffusive systems are
much more sensitive to the reservoirs and boundaries than diffusive systems but quantitative
informations, like the form of the singularities of the profiles at the boundaries, are still missing.

In Chapter 3, motivated by these studies, we consider the boundary driven exclusion process
with long jumps whose distribution is in the form of (1.3.1) with 1 < γ < 2, which may be
considered as a substitute to Lévy flights in bounded domains with reservoirs when Lévy flights
are moreover interacting. As we will see, the main operator emerging from the microscopic
dynamic is a non-local operator, namely, the regional fractional Laplacian. For that reason we
recall the definition and basic properties of the regional fractional Laplacian. Details can be
found in [37, 9].

1.5.1 Regional fractional Laplacian

Consider an open subset I of R. Let L1
�

I , du
(1+|u|1+γ)

�

be the space of all Borel functions G on I
satisfying

∫

I

|G(u)|
(1+ |u|)1+γ

du<∞. (1.5.2)

The regional fractional Laplacian−(−∆)γ/2I is defined on the set of functions G ∈ L1
�

I , du
(1+|u|1+γ)

�

by

− (−∆)γ/2I G (u) = cγ lim
ε→0

∫

I

1|v−u|≥ε
G(v)− G(u)

|v − u|1+γ
dv (1.5.3)

provided the limit exists.
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When I = R, we get that the previous definition coincides with the fractional Laplacian
denoted by −(−∆)γ/2 (see [9, 23]). Up to a multiplicative constant, −(−∆)γ/2 is the generator
of a γ-Lévy stable process. The fractional Laplacian can also be defined in an equivalent way
as a pseudo-differential operator of symbol |ξ|γ (up to a multiplicative constant). We have the
following identification

∀u ∈ I , −(−∆)γ/2I G(u) = −(−∆)γ/2G(u) + VI(u)G(u), (1.5.4)

for all smooth function G : [0,1]→ R with compact support included in I and where VI(u) =

cγ
∫

I c

dv
|u− v|γ+1

for all u ∈ I (see [8]). In this work we are interested in the cases I = (0, 1). In

order to simplify the notation we use

L := −(−∆)γ/2(0,1)

and V(0,1)(u) = r−(u) + r+(u) = V1(u) for all u ∈ (0,1) (see (1.4.4)).

1.5.2 Hydrodynamic and hydrostatic limit

We have the natural stimulus of trying to extend the results obtained in the previous section.
Our main result is the derivation of the hydrodynamic and hydrostatic limit for the density
of particles for this system. If θ = 0 the limiting PDE depends on the value of κ (we use
the notation ρκ for indicating the dependence on κ of the solution) and takes the form of a
fractional heat equation with a singular reaction term:

¨

∂tρ
κ
t (u) = Lρ

κ
t (u) +κcγγ

−1
¦

α−ρκt (u)
uγ + β−ρκt (u)

(1−u)γ

©

, (t, u) ∈ [0, T]× (0,1),

ρκt (0) = α, ρκt (1) = β , t ∈ [0, T].
(1.5.5)

The singular reaction term fixes the density at 0 to be α and at 1 to be β (see remark 3.2.4).
We obtain in this way a new family operators indexed by κ, taking the form

Lκ = L− κV1,

where V1 is given in (1.4.4). These operators are symmetric non-positive when restricted to
the set of smooth functions compactly supported in (0,1). For κ = 1, we recover the so-
called restricted fractional Laplacian, where the fractional Laplacian −(−∆)γ/2 is restricted to
act only on functions that are zero outside (0, 1) (see [59]) while in the limit κ → 0 we get
the so-called regional fractional Laplacian. We recall that since the fractional Laplacian is a
non-local operator, the definition of a fractional Laplacian with Dirichlet boundary conditions
is not obvious from a modeling point of view. In the PDE’s literature several candidates have
been proposed, for instance, "restricted fractional Laplacian", "spectral fractional Laplacian",
"Neumann Fractional Laplacian " (see [59, 2]), but often without a clear physical interpretation.
A probabilistic interpretation of these operators is possible and may enlighten their meaning.
The restricted fractional Laplacian (κ = 1) corresponds to the generator of a γ-Lévy stable
process killed outside of (0,1), while the regional fractional Laplacian (κ = 0) corresponds to
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the generator of a censored γ-Lévy stable process on (0,1) (see [8, 37]). For κ 6= 0,1 we could
rely on the Feynman-Kac formula but we do not pursue this issue here. As mentioned above
our reservoirs are regulated by the parameters κN−θ , κ > 0, and in this regime of γ we focus
on the case θ ≤ 0. For θ < 0 the hydrodynamic equation is given by







∂tρ
κ
t (u) = −κρ

κ
t (u)V1(u) +κV0(u), (t, u) ∈ [0, T]× (0,1),

ρκt (0) = α, ρκt (1) = β , t ∈ [0, T],
ρκ0 (u) = g(u), u ∈ (0, 1),

where V0(u) is given in (1.4.4). This equation can be explicitly solved (see Remark 3.2.7).
Moreover, we can interpret this case saying that the reservoirs are fast enough in such a way
that the particles do not have time to perform anomalous diffusion. We resume our panorama
in Figure 1.9.
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Figure 1.9: Regimes in terms of γ and θ .

Now, we conjecture that for small values of θ > 0 the hydrodynamic equation is given by






∂tρ
0
t (u) = Lρ

0
t (u), (t, u) ∈ [0, T]× (0, 1),

ρ0
t (0) = α, ρ0

t (1) = β , t ∈ [0, T],
ρ0

0(u) = g(u), u ∈ (0, 1).
(1.5.6)

Remember that we explained in the end of Subsection 1.2.2 the importance of the parameter
κ, which in this case will aid to support the conjecture above. Indeed, in Theorem 3.2.10 of
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Chapter 3, we analyze the convergence of the profile (that we obtained for θ = 0 and which
is indexed in κ) when κ → 0. Indeed, when κ → 0 we obtain that the limiting profile is a
weak solution of the equation above. This approach gives us a conjecture of the hydrodynamic
behavior for small values of θ > 0. However, we cannot discard other possible transitions.
In fact, we believe that the fractional versions of the heat equation with Robin and Neumann
boundary conditions could appear for θ sufficiently large. For the "Robin case" we do not have
any conjecture for the form of the hydrodynamic equation but we expect it occurs for θ = γ−1.
For the "Neumann case" (θ > γ− 1) the hydrodynamic equation could be the following

¨

∂tρt(u) = Lρt(u), (t, u) ∈ [0, T]× (0, 1),
ρ0(u) = g(u), u ∈ (0,1).

(1.5.7)

Observe the difference of (1.5.7) and (1.5.6), in (1.5.7) we do not impose any boundary con-
dition for ρt . This case can be interpreted as the extension of the heat equation with Neumann
boundary conditions to the 1 < γ < 2 case. In fact the boundary conditions are encapsulated
in L. We leave these open problems for a future work.

After having obtained the hydrodynamic limit for θ = 0, we study their stationary solutions
ρ̄κ, which are not explicit apart from the case κ= 1 and the case κ=∞, i.e. ρ̄∞ = limκ→∞ ρ̄

κ.
These profiles coincide with the profiles of the microscopic system in their non-equilibrium
stationary states (see Chapter 3 for the κ= 1 case). The bounded continuous function ρ̄κ has
α and β as boundary conditions and is such that it solves in a distributional sense the equation

Lκρ̄κ = −κV0. (1.5.8)

We prove that as κ → 0, ρ̄κ → ρ̄0 in a suitable topology where ρ̄0 is a weakly harmonic
function of the regional fractional Laplacian L, i.e. we can take κ= 0 in (1.5.8).

In Chapter 3 we also show that (for κ= 1, θ = 0) the stationary density profile is described
by the stationary solution of a fractional diffusion equation with Dirichlet boundary conditions:

¨

L1ρ̄
1 + V0 = 0, u ∈ (0, 1),

ρ̄1(0) = α, ρ̄1(1) = β .
(1.5.9)

There are many recent studies focusing on the regularization properties of fractional oper-
ators in bounded domains [50, 54, 32]. Even in this one dimensional setup, the question is in

general non trivial. For κ=∞ we have an explicit expression given by ρ̄∞(u) =
V0(u)
V1(u)

for all

u ∈ [0,1], which has Hölder regularity equal to γ at the boundaries. For κ = 1, the profile ρ̄1

is given in terms of a Poisson kernel and it has Hölder regularity equal to γ

2 at the boundaries
(see [4]). In the case κ = 0 we just know that the profile ρ̄κ is at least γ−1

2 -Hölder on [0, 1].
For κ 6= 1, it should be possible to prove the interior regularity of ρ̄κ by some existing methods
[50] but the boundary regularity that numerical simulations seem to indicate to depend on κ
is much more challenging.
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1.5.3 Fractional Fick’s law

In this case the "classical" generalized Fick’s law is violated and shall be replaced by a fractional
Fick’s law of particle transport. In Chapter 3 we prove the validity of the fractional Fick’s law
for θ = 0 and κ= 1 (see Theorem 3.2.16). Consider the current Wx introduced in Subsection
1.4.1. We first prove that the expectation of the current Wx under the stationary measure is of
order N 1−γ. Then, we prove that the fractional order correction (i.e. N 1−γ) to the expectation
of the current W[vN] under the stationary measure converges to a semi-explicit expression given
by

∫ v

0

∫ 1

v

ρ̄(w)− ρ̄(u)
|w− u|γ+1

dudw+ κcγγ
−1

�

∫ 1

v

α− ρ̄(u)
uγ

du−
∫ v

0

β − ρ̄(u)
(1− u)γ

du

�

,

for v ∈ [0, 1] where ρ̄ is the unique stationary solution of (1.5.5). Recall that Fick’s law
represents the simplest relationship between the flux and the gradient of the density, which
turns out to be local. However in this case, it is replaced by a non-local law, describing a
different transport process.
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Chapter 2

Diffusive case

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Statement of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Hydrodynamic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Hydrodynamic Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4 Hydrostatic equation for θ = 2− γ . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.5 Hydrostatic Limit and generalized Fick’s law for θ = 2− γ . . . . . . . . . . 33

2.3 Proof of the Hydrodynamic limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Heuristics for the hydrodynamic equations . . . . . . . . . . . . . . . . . . . 35
2.3.2 Tightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.3 Replacement lemmas and auxiliary results . . . . . . . . . . . . . . . . . . . . 43
2.3.4 Estimates on Dirichlet forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.5 Replacement Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.6 Fixing the profile at the boundary . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.7 Energy Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.8 Characterization of limit points . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4 Proof of Hydrostatic Limit and generalized Fick’s law . . . . . . . . . . . . . . . . . 65
2.4.1 Proof of Theorem 2.2.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.4.2 Proof of Theorem 2.2.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.5 Proof of Theorem 2.2.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.1 Introduction

We consider an exclusion process with long jumps in the bulk ΛN = {1, . . . , N − 1}, for N ≥ 2,
in contact with infinitely extended reservoirs on the left and on the right of the bulk. The jump
rate is described by a transition probability p which is symmetric, with infinite support but
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with finite variance. The reservoirs add or remove particles with rate proportional to κN−θ ,
where κ > 0 and θ ∈ R. If θ < 0 (resp. θ > 0) the reservoirs fastly (resp. slowly) add and
remove particles in the bulk. According to the value of θ we prove that the time evolution of
the spatial density of particles is described by some partial differential equations with various
boundary conditions.

2.2 Statement of results

In this chapter we consider the process introduced in Section 1.3, whose generator LN is given
in (1.3.2). In this case the probability transition function p (see (1.3.1)) depends on a pa-
rameter γ > 2. Since p is symmetric it is mean zero, that is:

∑

z∈Z zp(z) = 0. We denote
m=

∑

z≥1 zp(z). Moreover, p has finite variance that is σ2 :=
∑

z∈Z z2p(z)<∞.

Remark 2.2.1. Along this chapter we will note that many of our results are true, in the case
where p has finite variance, in the more general setting where we only assume p to be translation
invariant and mean zero.

We consider the Markov process speeded up in the time scale Θ(N) and we use the notation
ηN (t) := η(tΘ(N)), so that {ηN (t)}t≥0 has infinitesimal generator Θ(N)LN . Although ηN(t)
depends on α, β , κ and θ , we shall omit these indexes in order to simplify notation.

Let us denote by µ̄N the unique invariant measure of {η(t)}t≥0. If α = β = ρ then µ̄N is
equal to the Bernoulli product measure with density ρ. It is denoted by νρ. The expectation
of a function f with respect to µ̄N (resp. νρ) is denoted by 〈 f 〉N (resp. 〈 f 〉ρ) or µN ( f ) (resp.
νρ( f )). For any ρ ∈ (0,1) the density of µ̄N with respect to νρ is denoted by fN ,ρ.

2.2.1 Notation

From now on up to the rest of this chapter we fix a finite time horizon [0, T]. To properly state
the hydrodynamic and hydrostatic limit, we need to introduce some notations and definitions.
The Hilbert space L2([0,1]d , h(u)du) for d = 1,2 is abbreviated by L2

h([0, 1]d) and we denote
its inner product by 〈·, ·〉h and the corresponding norm by ‖ · ‖h. When h ≡ 1 we simply write
L2([0, 1]d), 〈·, ·〉 and ‖ · ‖. The set C∞([0,1]d) denotes the set of smooth functions on [0, 1]d .
The supremum norm is denoted by ‖·‖∞. We denote by C∞c ((0, 1)d) the set of all smooth real-
valued functions defined in (0, 1)d with compact support included in (0, 1)d . For an interval
I in R and integers m and n, we denote by Cm,n([0, T] × I) the set of functions defined on
[0, T]× I that are m times differentiable on the first variable and n times differentiable on the
second variable. An index on a function will always denote a fixed variable, not a derivative.
For example, Gt(u) means G(t, u). The derivative of G ∈ Cm,n([0, T]× I) will be denoted by
∂t G (first variable) and ∂uG (second variable). We also consider the set Cm,n

c ([0, T] × [0, 1])
of functions G ∈ Cm,n([0, T]× [0,1]) such that Gt has a compact support included in (0, 1) for
any time t.
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We denote by ∆ the Laplacian operator: ∆ =
∑d

i=1 ∂
2

ui
. The semi inner-product 〈·, ·〉1 is

defined on the set C∞([0,1]d) by

〈F, G〉1 =
∫

[0,1]d

d
∑

i=1

(∂ui
F)(u) (∂ui

G)(u) du.

The corresponding semi-norm is denoted by ‖ · ‖1.

Definition 2.2.2. The Sobolev spaceH 1([0,1]d) is the Hilbert space defined as the completion of
C∞([0, 1]d) for the norm

‖ · ‖2
H 1([0,1]d ) := ‖ · ‖2 + ‖ · ‖2

1.

Its elements elements coincide a.e. with continuous functions. The completion of C∞c ((0, 1)d)
for this norm is denoted by H 1

0 ([0,1]d). This is a Hilbert space whose elements coincide a.e.
with continuous functions vanishing at the boundary of [0,1]d . On H 1

0 ([0,1]d), the two norms
‖ · ‖H 1([0,1]d ) and ‖ · ‖1 are equivalent. We also define the spaces H 1

h ([0, 1]d) := H 1([0, 1]d) ∩
L2

h([0, 1]d) and H 1
0,h([0,1]d) :=H 1

0 ([0,1]d)∩ L2
h([0, 1]d) and the space L2(0, T ;H 1([0,1])) is

the set of measurable functions f : [0, T]→H 1([0, 1]) such that
∫ T

0

‖ fs‖2
H 1([0,1])ds <∞.

The space L2(0, T ;H 1
0 ([0,1])) is defined similarly.

We write f (u)® g(u) if there exists a constant C independent of u such that f (u)≤ C g(u)
for every u. We will also write f (u) = O(g(u)) if the condition | f (u)| ® |g(u)| is satisfied.
Sometimes, in order to stress the dependence of a constant C on some parameter a, we write
C(a).

2.2.2 Hydrodynamic equations

We can now give the definition of the weak solutions of the hydrodynamic equations that will
be derived in this chapter.

Definition 2.2.3. Let σ̂ ≥ 0 and κ̂ ≥ 0 be some parameters. Let g : [0,1] → [0,1] be a
measurable function. We say that ρ : [0, T]× [0, 1]→ [0, 1] is a weak solution of the reaction-
diffusion equation with inhomogeneous Dirichlet boundary conditions











∂tρt(u) =
σ̂2

2 ∆ρt(u) + κ̂
¦

α−ρt (u)
uγ + β−ρt (u)

(1−u)γ

©

, (t, u) ∈ [0, T]× (0, 1),

ρt(0) = α, ρt(1) = β , t ∈ [0, T],
ρ0(u) = g(u), u ∈ (0, 1),

(2.2.1)

if the following three conditions hold:

i) ρ ∈ L2(0, T ;H 1([0,1])) if σ̂ > 0 and
∫ T

0

∫ 1

0

¦

(α−ρt (u))2

uγ + (β−ρt (u))2

(1−u)γ

©

du d t <∞ if κ̂ > 0,
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ii) ρ satisfies the weak formulation:

FRD(t,ρ, G, g) :=

∫ 1

0

ρt(u)Gt(u) du−
∫ 1

0

g(u)G0(u) du

−
∫ t

0

∫ 1

0

ρs(u)
�

σ̂2

2 ∆+ ∂s

�

Gs(u) du ds

− κ̂
∫ t

0

∫ 1

0

Gs(u)
�

α−ρs(u)
uγ

+
β −ρs(u)
(1− u)γ

�

du ds = 0,

for all t ∈ [0, T] and any function G ∈ C1,2
c ([0, T]× [0,1]),

iii) if σ̂ > 0 and κ̂= 0, then ρt(0) = α and ρt(1) = β for t a.s in [0, T].

Remark 2.2.4. Observe that in the case σ̂ > 0 and κ̂ = 0 we recover the heat equation with
Dirichlet inhomogeneous boundary conditions. If σ̂ = 0 the equation does not have a diffusion
part and the solution is fully explicit. Despite in the weak formulation we do not require any
boundary condition (except the second part of item i) nor any regularity assumption, it turns out
that the (unique) weak solution is smooth and satisfies the boundary conditions of item iii).

Remark 2.2.5. Observe that in the case σ̂ > 0 and κ̂ > 0 the item i) of the previous definition
implies that ρt(0) = α and ρt(1) = β , for almost every t in [0, T]. Indeed, first note that by
item i) we know that ρt is 1

2 -Hölder for almost every t in [0, T] since a function inH 1([0,1]) is
1
2 -Hölder. Now, taking ε ∈ (0,1) we note that

∫ T

0

(ρt(0)−α)2

γ− 1
d t =

∫ T

0

lim
ε→0
εγ−1

∫ 1

ε

(ρt(0)−α)2

uγ
dud t.

By summing and subtracting ρt(u) inside the square on the right hand side in the previous equality
and using the inequality (a + b)2 ≤ 2a2 + 2b2 we get that the term on the right the hand side of
last equality is bounded from above by

2

∫ T

0

lim
ε→0
εγ−1

∫ 1

ε

(ρt(0)−ρt(u))2

uγ
dud t + 2

∫ T

0

lim
ε→0
εγ−1

∫ 1

ε

(ρt(u)−α)2

uγ
dud t.

Since ρt is 1
2 -Hölder for almost every t in [0, T] the first term in the previous expression vanishes.

Now, the second term in the previous expression is bounded from above by

2 lim
ε→0
εγ−1

∫ T

0

∫ 1

0

(ρt(u)−α)2

uγ
dud t,

which vanishes since the second claim of item i) holds. Thus, we have that
∫ T

0

(ρt(0)−α)2

γ− 1
d t = 0,

whence we get that ρt(0) = α for almost every t in [0, T]. Showing that ρt(1) = β for almost
every t in [0, T] is completely analogous.
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Definition 2.2.6. Let σ̂ > 0 and m̂ ≥ 0 be some parameters. Let g : [0, 1] → [0, 1] be a
measurable function. We say that ρ : [0, T] × [0, 1] → [0, 1] is a weak solution of the heat
equation with Robin boundary conditions







∂tρt(u) =
σ̂2

2 ∆ρt(u), (t, u) ∈ [0, T]× (0,1),
∂uρt(0) =

2m̂
σ̂2 (ρt(0)−α), ∂uρt(1) =

2m̂
σ̂2 (β −ρt(1)), t ∈ [0, T]

ρ0(u) = g(u), u ∈ (0, 1),
(2.2.2)

if the following two conditions hold:

i) ρ ∈ L2(0, T ;H 1([0,1])),

ii) ρ satisfies the weak formulation:

FRob(t,ρ, G, g) :=

∫ 1

0

ρt(u)Gt(u) du−
∫ 1

0

g(u)G0(u) du

−
∫ t

0

∫ 1

0

ρs(u)
�

σ̂2

2 ∆+ ∂s

�

Gs(u) du ds

+
σ̂2

2

∫ t

0

{ρs(1)∂uGs(1)−ρs(0)∂uGs(0)} ds

− m̂

∫ t

0

{Gs(0)(α−ρs(0)) + Gs(1)(β −ρs(1))} ds = 0,

(2.2.3)

for all t ∈ [0, T], any function G ∈ C1,2([0, T]× [0, 1]).

Remark 2.2.7. Observe that in the case m̂= 0 the PDE above is the heat equation with Neumann
boundary conditions.

2.2.3 Hydrodynamic Limit

LetM+ be the space of positive measures on [0, 1]with total mass bounded by 1 equipped with
the weak topology. For any configuration η ∈ ΩN we define the empirical measure πN (η, du)
on [0, 1] by

πN (η, du) =
1

N − 1

∑

x∈ΛN

ηxδ x
N
(du) , (2.2.4)

where δa is a Dirac mass on a ∈ [0, 1], and

πN
t (η, du) := πN (ηN (t), du).

Fix T > 0 and θ ∈ R. We denote by PµN
the probability measure in the Skorohod space

DT
ΩN

:= D([0, T],ΩN ) induced by the Markov process {ηN (t)}t≥0 and the initial probability
measure µN and we denote by EµN

the expectation with respect to PµN
. Let {QN}N≥1 be the

sequence of probability measures on DT
M+ := D([0, T],M+) induced by the Markov process

{πN
t }t≥0 and by PµN

.
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Definition 2.2.8. Let g : [0,1] → [0, 1] be a measurable function. We say that a sequence of
probability measures {µN}N≥1 in ΩN is associated to the profile g if for any continuous function
G : [0,1]→ R and every δ > 0

lim
N→∞

µN

�

η ∈ ΩN :

�

�

�

�

�

1
N − 1

∑

x∈ΛN

G
�

x
N

�

ηx −
∫ 1

0

G(u)g(u)du

�

�

�

�

�

> δ

�

= 0. (2.2.5)

The main result of this chapter is summarized in the following theorem (see Figure 1.7).

Theorem 2.2.9. (Hydrodynamic limit) Let g : [0, 1]→ [0, 1] be a measurable function and let
{µN}N≥1 be a sequence of probability measures in ΩN associated to g. Then, for any 0≤ t ≤ T,

lim
N→∞
PµN

�

ηN (·) ∈ DT
ΩN

:

�

�

�

�

�

1
N − 1

∑

x∈ΛN

G
�

x
N

�

ηN
x (t)−

∫ 1

0

G(u)ρt(u)du

�

�

�

�

�

> δ
�

= 0,

where the time scale is given by

Θ(N) =

¨

N 2, if θ ≥ 2− γ,

Nγ+θ , if θ < 2− γ,
(2.2.6)

and ρ is the unique weak solution of :

• (2.2.1) with σ̂ = 0 and κ̂= κcγγ
−1, if θ ∈ (−∞, 2− γ);

• (2.2.1) with σ̂ = σ and κ̂= κcγγ
−1, if θ = 2− γ;

• (2.2.1) with σ̂ = σ and κ̂= 0, if θ ∈ (2− γ, 1);

• (2.2.2) with σ̂ = σ and m̂= mκ, if θ = 1;

• (2.2.2) with σ̂ = σ and m̂= 0, if θ ∈ (1,∞).

It is not always possible to write fully explicit expressions for the solutions of these hydro-
dynamic equations. The form of the corresponding stationary solutions is of interest since the
latter are expected to describe, in general, the mean density profile in the non-equilibrium sta-
tionary state of the microscopic system in the thermodynamic limit N →∞. Observe that this
is not a trivial fact since it requires to exchange the limit t →∞ with N →∞ (and for θ > 1
this is for example false, see below).

The stationary solutions of the hydrodynamic limits in the θ > 2−γ case are standard. On
the other hand, the form and properties of the stationary solutions in the θ ≤ 2− γ case are
original and more tricky to obtain in the θ = 2−γ case. This problem is studied in more details
in Section 2.2.5.

For θ ∈ (2−γ, 1) (heat equation with Dirichlet boundary conditions) the stationary solution
is the linear profile connecting α at 0 to β at 1. For θ = 1 (heat equation with Robin boundary
conditions) the profile is still linear but the values at the boundaries are different. Observe that
if κ → 0 these values converge to α+β

2 so that the profile becomes flat and equal to α+β
2 . For
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θ > 1 (heat equation with Neumann boundary conditions) the stationary solution is constant
equal to

∫ 1

0
g(u)du where g is the initial condition. In fact, for θ > 1, we expect that if we com-

pute directly the stationary profile in the non-equilibrium stationary state of the microscopic
system in the thermodynamic limit, the stationary profile will be flat with the value α+β

2 . This
value is therefore memorized in the form of the hydrodynamic limit for θ = 1, despite the fact
that it has been forgotten in the hydrodynamic limit for θ > 1. In the case θ < 2−γ (reaction
equation) the stationary profile is fully explicit and given by ρ̄∞(u) = V0(u)

V1(u)
(recall (1.4.4)).

Observe that this profile is increasing, non-linear, convex on (0, 1/2) and concave on (1/2, 1)
and connects α at 0 to β at 1. At the boundaries the profile is very flat. In Subsection 2.2.5
we claim that these properties remain valid for the stationary solution of the hydrodynamic
equation in the case θ = 2− γ and in Section 2.5 we give the respective proof.

2.2.4 Hydrostatic equation for θ = 2− γ

For the case θ = 2 − γ we use the notation ρ̄κ, for indicating the dependence on κ of the
stationary density profile.

Definition 2.2.10. Let κ > 0. We say that ρ̄κ : [0,1]→ [0, 1] is a weak solution of the stationary
reaction-diffusion equation with Dirichlet conditions

¨

−σ
2

2 ∆ρ̄
κ(u) + κV1(u)

¦

ρ̄κ(u)− ρ̄∞(u)
©

= 0, u ∈ (0, 1),

ρ̄κ(0) = α, ρ̄κ(1) = β ,
(2.2.7)

where ρ̄∞(u) =
V0(u)
V1(u)

, if

i) ρ̄κ ∈H 1([0,1]).

ii)
∫ 1

0

¦

(α−ρ̄κ(u))2

uγ + (β−ρ̄
κ(u))2

(1−u)γ

©

du<∞.

iii) For any function G ∈ C∞c ((0,1)) we have that

− 〈ρ̄κ, σ
2

2 ∆G〉+κ〈ρ̄κ, G〉V1
− κ〈V0, G〉= 0. (2.2.8)

Remark 2.2.11. Observe that items i) and ii) of the previous definition imply that ρ̄κ(0) = α and
ρ̄κ(1) = β (see Remark 2.2.5).

Remark 2.2.12. Since ρ̄∞ is a continuous function such that
∫ 1

0

�

(α− ρ̄∞(u))2

uγ
+
(β − ρ̄∞(u))2

(1− u)γ

�

du<∞

and ρ̄∞(0) = α and ρ̄∞(1) = β , it is easy to see that from item i) and item ii) in Definition
2.2.10 we have that ρ̄κ − ρ̄∞ ∈H 1

0,V1
([0,1]).
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Proposition 2.2.13. There exists a unique weak solution to (2.2.7).

Proof. First note that we can rewrite (2.2.8) as

− 〈ϕκ, σ
2

2 ∆G〉+κ〈ϕκ, G〉V1
= 〈ρ̄∞, σ

2

2 ∆G〉, (2.2.9)

where ϕκ(u) = ρ̄κ(u)− ρ̄∞(u).
Let aκ :H 1

0,V1
([0, 1])×H 1

0,V1
([0,1])→ R be the bilinear form defined as

aκ(ϕ,%) = 〈ϕ,%〉1 + κ〈ϕ,%〉V1
,

for any functions ϕ,% ∈H 1
0,V1
([0, 1]). We note that aκ is coercive. Indeed

aκ(ϕ,ϕ) = ‖ϕ‖2
1 + κ‖ϕ‖

2
V1
≥min{1,κV1(

1
2)}‖ϕ‖

2
H 1([0,1])

and trivially we have that aκ(ϕ,ϕ)≥ κ‖ϕ‖2
V1

. By using the Cauchy-Schwarz inequality we can
get that

|aκ(ϕ,%)| ≤ ‖ϕ‖1‖%‖1 + κ‖ϕ‖V1
‖%‖V1

.

The latter allows to conclude that the bilinear form aκ is also continuous. Now we consider
the linear form Iρ̄∞ :H 1

0,V1
([0, 1])→ R defined by Iρ̄∞(ϕ) = −

σ2

2 〈ρ̄
∞,ϕ〉1. This linear form is

continuous. Indeed, first note that ρ̄∞ ∈ C2([0,1]). Using the Cauchy-Schwarz inequality we
get that

|Iρ̄∞(ϕ)| ≤
σ2

2 ‖ρ̄
∞‖1‖ϕ‖1.

On the other hand, using integration by parts and the Cauchy-Schwarz inequality we have that

|Iρ̄∞(ϕ)|=
σ2

2 |〈∆ρ̄
∞V−1/2

1 , V 1/2
1 ϕ〉| ≤ σ2

2 ‖ρ̄
∞V−1/2

1 ‖‖ϕ‖V1
.

Now we can apply Lax-Milgram’s Theorem to guarantee that there exists a unique function
ϕκ ∈ H 1

0,V1
([0, 1]), which satisfies (2.2.9) for any function G ∈ C∞c ((0, 1)). Then in order to

conclude the proof it is enough to take ρ̄κ(u) = ϕκ(u)+ρ̄∞(u)which clearly satisfies Definition
2.2.10.

As an immediate consequence of the uniqueness result we have that the graph of ρ̄κ has a
rotational symmetry with respect to the point (1

2 , α+β2 ) (see Lemma 2.2.14). This result will be
used in the proof of Theorem 2.2.17.

Lemma 2.2.14. Let ρ̄κ be the weak solution of (2.2.7). Then we have that ρ̄κ(u) + ρ̄κ(1− u) =
α+ β .

Proof. Note that α+β − ρ̄κ(1−u) is a weak solution of (2.2.7). Then, by uniqueness we have
that ρ̄κ(u) = α+ β − ρ̄κ(1− u).
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2.2.5 Hydrostatic Limit and generalized Fick’s law for θ = 2− γ

The first result is the following law of large numbers for the empirical density under the sta-
tionary measure µ̄N .

Theorem 2.2.15. (Hydrostatic limit) For any continuous function G : [0,1] → R and for any
δ > 0

lim
N→∞

µ̄N

�

�

�

�

�

�

1
N − 1

∑

x∈ΛN

G( x
N )ηx −

∫ 1

0

G(u)ρ̄κ(u)du

�

�

�

�

�

> δ

�

= 0,

where ρ̄κ is the unique weak solution of (2.2.7).

In order to state our second result, which is the "generalized Fick’s law", we must introduce
the concept of current. Then, given x ∈ ΛN ∪ {N} and a configuration η, we denote by Wx(η)
the current over the value x − 1

2 which is defined as the rate of particles crossing x − 1
2 from

the left to the right minus the rate of particles crossing x − 1
2 from the right to the left. Then,

the current can be written as

Wx(η) =
∑

1≤y≤x−1
x−1<z≤N−1

p(z − y)[ηy −ηz]

+
κ

Nθ

∑

x≤z≤N−1
y≤0

p(z − y)(α−ηz)−
κ

Nθ

∑

1≤y≤x−1
z≥N

p(z − y)(β −ηy)

:=W 0
x (η) +

κ

Nθ
W `,r

x (η).

(2.2.10)

We will often omit the dependence of Wx on η. Note that for any x ∈ ΛN we have the following
microscopic continuity equation

LNηx = −(Wx+1 −Wx).

Recall (1.4.5).

Theorem 2.2.16. (Generalized Fick’s law.) For all v ∈ (0,1) the following Fick’s law holds

lim
N→∞

N〈W[vN]〉N =−
σ2

2 ∂vρ̄
κ(v) +κ

∫ 1

v

(α− ρ̄κ(u))r−(u)du

−κ
∫ v

0

(β − ρ̄κ(u))r+(u)du,

(2.2.11)

where ρ̄κ is the unique weak solution of (2.2.7).

Observe that (2.2.11) does not depend on v. Indeed, it can be proved by taking the deriva-
tive with respect to v of the right hand side of (2.2.11) and showing that it vanishes thanks to
ρ̄κ being the unique solution of (2.2.7). Then, we have that

lim
N→∞

N〈W1〉N = κ
∫ 1

0

(α− ρ̄κ(u))r−(u)du.
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Our last result is about the behavior of the weak solution of (2.2.7). Namely, we prove that
this solution is increasing, convex on [0, 1

2] and concave on [1
2 , 1]. Those facts follow directly

from a description of the dependence of the profile on the parameter κ that we prove thanks
to an adaptation of the maximum principle. In a second step, we will see that those properties
induce a precise description of the behavior of the profile near the boundary, it will allow us
to improve the regularity given by the existence theory, based on Lax-Milgram theorem (see
Lemma 2.2.13) and enlarge the space where we have uniqueness (H 1

V1
([0, 1]) to C([0,1])).

Recall ρ̄∞ from Definition 2.2.10 and let ρ̄0(u) = (β −α)u+α.

Theorem 2.2.17. (Stationary solution) Let ρ̄κ be the unique stationary weak solution of (2.2.7).
Then,

i) ρ̄κ increases on [0,1], it is convex on [0, 1
2] and concave on [1

2 , 1]. In the midle, ρ̄κ(1
2) =

α+β
2

and (β −α)≤ (ρ̄κ)′(1
2)≤ γ(β −α).

ii) If κ < ι and ρ̄κ, ρ̄ι are the respective solutions of (2.2.7) then we have

• ρ̄0(u)> ρ̄κ(u)> ρ̄ι(u)> ρ̄∞(u) if u ∈ (0, 1
2),

• ρ̄0(u)< ρ̄κ(u)< ρ̄ι(u)< ρ̄∞(u) if u ∈ (1
2 , 1).

iii) ρ̄κ ∈ C2([0,1])∩ C∞((0,1)), its behavior at the boundary is precisely described:

ρ̄κ(u) ∼
u→0
α+ (β −α)uγ + o(uγ) and ρ̄κ(u) ∼

u→1
β − (β −α)(1− u)γ + o ((1− u)γ).

Note that in the general case γ > 2, the regularity of ρ̄κ on [0,1] is optimal: if 2≤ n< γ <
n+1, ρ̄κ cannot be in Cn+1([0,1]) by item iii) of Theorem 2.2.17. The function ρ̄κ can possibly
be a smooth function only if γ is an integer. It is easy to see that ρ̄κ depends linearly on the
boundary conditions. Since κ and σ can be associated in a single parameter, Corollary 2.5.2
ends the description of the dependence of ρ̄κ in all the parameters. Moreover, in Corollary
2.5.2, we also prove that

ρ̄κ ∈ C([0,1])∩ C∞((0, 1)),

independently of Theorem 2.2.17 and this result will be useful in the proof of such Theorem.

2.3 Proof of the Hydrodynamic limit

The proof of Theorem 2.2.9 follows the usual approach of convergence in distribution of
stochastic processes. In Subsection 2.3.2, we show that the sequence {QN}N≥1 is tight and
in Subsection 2.3.8 we prove that all limiting points of the sequence {QN}N≥1 are concentrated
on trajectories of measures that are absolutely continuous with respect to the Lebesgue mea-
sure, that is πt(du) = ρt(u)du for all u ∈ [0,1]. Now we argue that the density ρ is a weak
solution of the corresponding hydrodynamic equation for each regime of θ . The precise proof
of this result is given ahead in Proposition 2.3.18.
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Before beginning the steps of the proof, in the following subsection we give the main ideas
which are behind the identification of limit points as weak solutions of the partial differential
equations given in Section 2.2.2.

2.3.1 Heuristics for the hydrodynamic equations

The identification of the density ρ as a weak solution of the hydrodynamic equation is obtained
by using auxiliary martingales. For that purpose, and to make the exposition simpler, we fix
a function G : [0, 1] → R which does not depend on time and is two times continuously
differentiable. If θ < 1 we will assume further that it has a compact support included in (0, 1)
and for θ ≥ 1 we assume that it has a compact support but not necessarily contained in [0,1]
so that G has a good decay at infinity. In the last case observe that G can take non-zero values
at 0 and 1. We know by Dynkin’s formula that

M N
t (G) = 〈π

N
t , G〉 − 〈πN

0 , G〉 −
∫ t

0

Θ(N)LN 〈πN
s , G〉 ds, (2.3.1)

is a martingale with respect to the filtration {Ft}t≥0 whereFt := σ({η(s)}s≤t) for all t ∈ [0, T].
Above the notation 〈πN

s , G〉 represents the integral of G with respect the measure πN
s . This

notation should not be mistaken with the notation used for the inner product in L2([0,1]).
A simple computation, based on (2.3.17) and the discussion after this equation, shows that
EµN

�

�

M N
t (G)

�2�

vanishes as N →∞. Now we look at the integral term in (2.3.1). A simple
computation shows that

∫ t

0

Θ(N)LN (〈πN
s , G〉) ds =

Θ(N)

N − 1

∫ t

0

∑

x∈ΛN

LN G( x
N )η

N
x (s) ds

+
κΘ(N)

(N − 1)Nθ

∫ t

0

∑

x∈ΛN

(Gr−N )(
x
N )(α−η

N
x (s)) ds

+
κΘ(N)

(N − 1)Nθ

∫ t

0

∑

x∈ΛN

(Gr+N )(
x
N )(β −η

N
x (s)) ds,

(2.3.2)

where for all x ∈ ΛN

(LN G)( x
N ) =

∑

y∈ΛN

p(y − x)
�

G( y
N )− G( x

N )
�

,

r−N (
x
N ) =

∑

y≥x

p(y), r+N (
x
N ) =

∑

y≤x−N

p(y).
(2.3.3)

Now, we want to extend the first sum in (2.3.2) to all the integers. For that purpose we
extend the function G to R in such a way that it remains two times continuously differentiable.
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By the definition of LN , we get that

Θ(N)

N − 1

∫ t

0

∑

x∈ΛN

LN G( x
N )η

N
x (s) ds =

Θ(N)

N − 1

∫ t

0

∑

x∈ΛN

(KN G)( x
N )η

N
x (s) ds

−
Θ(N)

N − 1

∫ t

0

∑

x∈ΛN
y≤0

�

G( y
N )− G( x

N )
�

p(x − y)ηN
x (s) ds

−
Θ(N)

N − 1

∫ t

0

∑

x∈ΛN
y≥N

�

G( y
N )− G( x

N )
�

p(x − y)ηN
x (s) ds,

(2.3.4)

where
(KN G)( x

N ) =
∑

y∈Z

p(y − x)
�

G( y
N )− G( x

N )
�

.

Now we state some required convergence.

Lemma 2.3.1. Let G : R→ R be a two times continuously differentiable function with compact
support. We have

limsup
N→∞

sup
x∈ΛN

�

�

�N 2(KN G)( x
N )−

σ2

2 ∆G( x
N )
�

�

�= 0.

Proof. See Appendix 4.2.

Lemma 2.3.2. Let γ > 0 and a ∈ (0,1). Then we have the following uniform convergence on
[a, 1− a]

i) lim
N→∞

Nγr−N (u) = r−(u),

ii) lim
N→∞

Nγr+N (u) = r+(u).

Proof. See Appendix 4.3.

Now, we are going to analyze all the terms in (2.3.4) and the boundary terms in (2.3.2) for
the different regimes of θ . Thus, we will be able to see how the different boundary conditions
appear on the hydrodynamic equations given in Subsection 2.2.2 from the underlying particle
system.

2.3.1.1 The case θ < 2− γ

In this regime we take initially a function G : (0,1)→ R two times continuously differentiable
and with compact support in (0, 1) (so that we can choose an extension by 0 outside of (0,1)).

Now we start by analyzing the first term on the right hand side of (2.3.4). Recall (2.2.6).
Since Θ(N) = Nγ+θ , a simple computation, shows that the first term on the right hand side of
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(2.3.4) vanishes for θ < 2−γ. Indeed, by a Taylor expansion on G and the fact that p is mean
zero, we have that

Nγ+θ
∑

y∈Z

(G( y+x
N )− G( x

N ))p(y)

is of same order as
Nγ+θ−2G′′( x

N )
∑

y∈Z

y2p(y)

and since θ < 2− γ and p has finite variance last expression vanishes as N →∞.
Moreover, a simple computation shows that the second and third terms on the right hand

side of (2.3.4) vanish as N →∞, since Θ(N) = Nγ+θ and θ < 2− γ. Indeed we can bound
from above, for example the second term in (2.3.4) by tNθ times

1

N − 1

∑

x∈ΛN

Nγr−N (
x
N ) |G(

x
N )|

because G vanishes outside (0, 1) and |ηN
x (s)| ≤ 1 for all s > 0. Since θ < 0 and that the

previous sum converges to the (finite) integral of |G|r− on (0, 1), by Lemma 2.3.2, the previous
display vanishes as N →∞. Now we look at the boundary terms in (2.3.2). The second term
on the right hand side of (2.3.2) can be written, for the choice of Θ(N) = Nγ+θ , as:

κNγ

N − 1

∫ t

0

∑

x∈ΛN

G
�

x
N

�

r−N (
x
N )(α−η

N
x (s)) ds

which can be replaced, thanks to Lemma 2.3.2 and the fact that G has compact support, by

κ

∫ t

0

〈α−πN
s , Gr−〉 ds→ κ

∫ t

0

∫ 1

0

G(u)r−(u)(α−ρs(u))du ds

as N →∞. The last convergence holds because G has a compact support included in (0,1) so
that Gr− is a continuous function. For the remaining term we can perform exactly the same
analysis.

2.3.1.2 The case θ = 2− γ

In this case, and as above, we take initially a function G : (0, 1)→ R two times continuously
differentiable and with compact support in (0,1) (so that we can choose a two times continu-
ously differentiable extension which is 0 outside of (0, 1)). In this case, since Θ(N) = N 2, by
Lemma 2.3.1, the first term on the right hand side of (2.3.4) can be replaced, for N sufficiently
big, by

1

N − 1

∫ t

0

∑

x∈ΛN

σ2

2 ∆G( x
N )η

N
x (s) ds.
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Moreover, a computation similar to the one in the previous case shows that the second and
third terms on the right hand side of (2.3.4) vanish as N →∞ (recall that Θ(N) = N 2 and
γ > 2). Finally, the first term on the right hand side of (2.3.2) can be rewritten as

κNγ

(N − 1)

∫ t

0

∑

x∈ΛN

(Gr−N )(
x
N ) (α−η

N
x (s)) ds

which can be replaced, thanks to Lemma 2.3.2 and the fact that G has compact support, by

κ

∫ t

0

〈α−πN
s , Gr−〉 ds→ κ

∫ t

0

∫ 1

0

G(u)r−(u)(α−ρs(u))du ds

as N →∞ because Gr− is a continuous function. The same computation can be done for the
remaining term.

2.3.1.3 The case θ ∈ (2− γ, 1)

In this case we take again a function G : (0, 1)→ R two times continuously differentiable and
with compact support in (0, 1) and extend it by 0 outside of (0,1). As above, we can easily
show that the last two terms on the right hand side of (2.3.2) vanish as N → ∞, since we
can transform each one of them into N 2+γ−θ times a converging integral, which vanishes since
θ > 2−γ. Analogously, the second and third terms on the right hand side of (2.3.4) also vanish
because, for example, the second term on the right hand side of (2.3.4)

N 2

N − 1

∫ t

0

∑

x∈ΛN

G( x
N )r

−
N (

x
N )η

N
x (s) ds

can be bounded from above by a constant times tN 2−γ times a sum converging to the integral
of |G|r− on (0,1). The estimate of the third term is analogous. Therefore since γ > 2, both
vanish as N →∞.

Remark 2.3.3. Observe that in the three previous cases, we imposed to G to have a compact
support included in (0,1). This was used in order to extend smoothly the function G by 0 outside
of (0, 1) (the condition G(0) = G(1) = 0 would not have been sufficient) and this was fundamental
to ensure that the functions Gr−, Gr+ do not have singularities at the boundaries. On the other
hand, in the two next cases, it will be fundamental to consider test functions G : [0,1]→ R which
are not necessarily 0 at the boundaries in order to "see" the boundaries in the weak formulation.

2.3.1.4 The case θ = 1

In this case we consider an arbitrary function G : [0,1]→ R which is two times continuously
differentiable and we extend it on R in a two times continuously differentiable function with
compact support. Its support strictly (a priori) contains [0, 1] since G can take non-zero values
at 0 and 1. We start by looking at the terms coming from the boundary, namely the two last
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terms on the right hand side of (2.3.2). Then, in the second term on the right hand side
of (2.3.2) (resp. the third term) we perform at first a Taylor expansion on G and then we
replace ηx by the average −→η εN0 (resp. ηx by←−η εNN ) defined in (2.3.31), which can be done as
a consequence of Lemma 2.3.12 as pointed out in Remark 2.3.13. Moreover, note that

∑

x∈ΛN

r−N (
x
N ) −−−→N→∞

∑

y≥1

yp(y) = m,
∑

x∈ΛN

r+N (
x
N ) −−−→N→∞

∑

y≥1

yp(y) = m. (2.3.5)

Therefore, we can write the last two terms in (2.3.2) as

mκ

∫ t

0

{(α−←−η εN0 (sN 2))G(0) + (β −−→η εNN (sN 2))G(1)} ds,

plus lower-orders terms (with respect to N). Since (in some sense that we will see in the proof
of Proposition 2.3.18),

−→η εN0 (sN 2) −−−→
N→∞

ρs(0),
←−η εNN (sN 2) −−−→

N→∞
ρs(1)

last term writes as

mκ

∫ t

0

{(α−ρs(0))G(0) + (β −ρs(1))G(1)} ds. (2.3.6)

Now we look at the remaining terms, namely, the two last terms on the right hand side of
(2.3.4). Recall that the function G has been extended into a two times continuously differen-
tiable function on R. By a Taylor expansion on G we can write those terms as

N

N − 1

∑

x∈ΛN

G′( x
N )Θ

−
xη

N
x (s)−

N

N − 1

∑

x∈ΛN

G′( x
N )Θ

+
xη

N
x (s) (2.3.7)

plus lower-order terms (with respect to N). Above for x ∈ ΛN ,

Θ−x =
∑

y≤0

(x − y)p(x − y) and Θ+x =
∑

y≥N

(y − x)p(x − y).

Note that
∑

x∈ΛN

Θ±x ® 1 and
1
N

∑

x∈ΛN

xΘ±x −−−→N→∞
0. (2.3.8)

Moreover, note that
∑

x∈ΛN

Θ−x =
∑

x∈ΛN

∑

y≥x

yp(y) −−−→
N→∞

σ2

2 ,
∑

x∈ΛN

Θ+x =
∑

x∈ΛN

∑

y≥N−x

yp(y) −−−→
N→∞

σ2

2 . (2.3.9)

In order to prove the convergence of
∑

x∈ΛN
Θ−x (or of

∑

x∈ΛN
Θ+x in (2.3.9)) we use Fubini’s

theorem to get that

∑

x∈ΛN

Θ−x =
∑

y∈ΛN

y
∑

x=1

yp(y) +
∑

y≥N

∑

x∈ΛN

yp(y) =
∑

y∈ΛN

y2p(y) + (N − 1)
∑

y≥N

yp(y),
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and since γ > 2 the result follows. By another Taylor expansion on G we can write (2.3.7) as

N

N − 1
G′(0)

∑

x∈ΛN

Θ−xη
N
x (s)−

N

N − 1
G′(1)

∑

x∈ΛN

Θ+xη
N
x (s) (2.3.10)

plus lower-order terms (with respect to N). Thanks to Lemma 2.3.12 we can replace in the term
on the left (resp. right) hand side of last expression ηx(sN 2) by −→η εN0 (sN 2) (resp. ←−η εNN (sN 2)).
Therefore, (2.3.10) can be replaced, for N sufficiently big and then ε sufficiently small, by

G′(0)σ
2

2
−→η εN0 (sN 2)− G′(1)σ

2

2
←−η εNN (sN 2).

Now, since (in some sense that we will see in the proof of Proposition 2.3.18) we have that
−→η εN0 (sN 2) −−−→

N→∞
ρs(0) and←−η εNN (sN 2) −−−→

N→∞
ρs(1), last term tends to

G′(0)σ
2

2 ρs(0)− G′(1)σ
2

2 ρs(1). (2.3.11)

Putting together (2.3.6) and (2.3.11) we see the boundary terms that appear at the right
hand side of (2.2.3).

2.3.1.5 The case θ ∈ (1,∞)

In this case we consider an arbitrary function G : [0,1]→ R which is two times continuously
differentiable and we extend it on R in a two times continuously differentiable function with
compact support. Its support may strictly contain [0,1] since G can take non-zero values at 0
and 1. The last two terms on the right hand side of (2.3.2) vanish, as N →∞ since, we can
bound, for example, the first term on the right hand side of (2.3.2) by a constant times

N 1−θ
∑

x∈ΛN

r−N (
x
N ).

Since γ > 2 last expression vanishes if θ > 1. Thus, we only need to look at (2.3.4). Therefore,
in order to see the boundaries terms that appear in (2.2.3), we can use exactly the computations
already done in the case θ = 1 from which we obtain (2.3.11).

2.3.2 Tightness

In this section we prove that the sequence {QN}N≥1, defined in Section 2.2.3, is tight.

Proposition 2.3.4. The sequence of measures {QN}N≥1 is tight with respect to the Skorohod topol-
ogy of DT

M+ .

Proof. In order to prove the assertion see, for example, Proposition 1.6 of Chapter 4 in [40], it
is enough to show that, for all ε > 0

lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

PµN

�

ηN (·) ∈ DT
ΩN

:
�

�〈πN
τ+τ̄, G〉 − 〈πN

τ
, G〉

�

�> ε
�

= 0, (2.3.12)
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holds for any function G belonging to C([0,1]). Here TT is the set of stopping times bounded
by T and we implicitly assume that all the stopping times are bounded by T , thus, τ+ τ̄ should
be read as (τ+ τ̄) ∧ T . In fact it is enough to prove the assertion for functions G in a dense
subset of C([0, 1]), with respect to the uniform topology.

We split the proof according to two different regimes of θ , namely θ ≥ 1 and θ < 1.
When θ ≥ 1 we prove (2.3.12) directly for functions G ∈ C2([0,1]) and we conclude that the
sequence is tight. When θ < 1, we prove (2.3.12) first for functions G ∈ C2

c ((0,1)) and then
we extend it, by a L1([0,1]) approximation procedure which is explained below, to functions
G ∈ C1([0,1]), the latter space being dense in C([0,1]) for the uniform topology.

Recall from (2.3.1) that M N
t (G) is a martingale with respect to the natural filtration {Ft}t≥0.

In order to prove (2.3.12) it is enough to show that

lim
δ→0

limsup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

�

�

�

�

∫ τ+τ̄

τ

Θ(N)LN 〈πN
s , G〉ds

�

�

�

�

= 0 (2.3.13)

and
lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

�

�

M N
τ
(G)−M N

τ+τ̄(G)
�2�

= 0. (2.3.14)

Proof of (2.3.13): Given a function G, we claim that

|Θ(N)LN (〈πN
s , G〉)|®1 (2.3.15)

for any s ≤ T , which trivially implies (2.3.13). To prove it, we recall (2.3.2) and start to prove
that the last two terms of (2.3.2) are bounded. For example, the absolute value of the second
term at the right hand side of (2.3.2) is bounded from above by

∫ t

0

�

�

�

Θ(N)κ
(N − 1)Nθ

∑

x∈ΛN

(Gr−N )(
x
N )(α−η

N
x (s))

�

�

�ds. (2.3.16)

For θ < 1, we use the fact that G ∈ C2
c ((0,1)) and that |ηN

x (s)| ≤ 1 is bounded, and we bound
from above this last term by a constant times Θ(N)N−θ−γ. Using the definition of Θ(N) it is
easy to see, for θ < 2 − γ and for 2 − γ ≤ θ < 1, that (2.3.16) is bounded from above by a
constant. This proves (2.3.15) in the case θ < 1. In the case θ ≥ 1, we use the fact that the
sum in (2.3.16) is uniformly bounded in N to conclude that (2.3.16) is bounded from above
even if G does not have a compact support included in (0,1) . A similar argument can be done
for the last term at the right hand side of (2.3.2).

Now we need to bound the first term at the right hand side of (2.3.2). For θ < 1 we use

the fact that G ∈ C2
c ((0, 1)) so that

�

�

�

Θ(N)
N − 1

〈πN
s ,LN G〉

�

�

� is less or equal than

Θ(N)

N − 1

∑

x∈ΛN

|(KN G)( x
N )|+

Θ(N)

N − 1

∑

x∈ΛN

|G( x
N )|r

−
N

�

x
N

�

+
Θ(N)

N − 1

∑

x∈ΛN

|G( x
N )|r

+
N

�

x
N

�

.

41



The two terms at the right hand side of the previous expression can be bounded from above by
a constant times Θ(N)N−γ. It is clearly bounded in the case θ ≥ 2− γ since then Θ(N) = N 2

(recall γ > 2). In the case θ < 2 − γ, Θ(N) = Nθ+γ and thus Θ(N)N−γ is bounded. This
together with Lemma 2.3.1 shows that

�

�

�

Θ(N)
N − 1

〈πN
s ,LN G〉

�

�

�®1,

which proves the claim (2.3.15) in the case θ < 1. Now, in the case θ ≥ 1, since Θ(N) = N 2,
we have that the first term at the right hand side of (2.3.2) is bounded from above by a constant
times

N 2

N − 1

∑

x∈ΛN

|KN G( x
N )|+

N 2

N − 1

∑

x∈ΛN

∑

y≤0

�

�G( y
N )− G( x

N )
�

� p(x − y)

+
N 2

N − 1

∑

x∈ΛN

∑

y≥N

�

�G( y
N )− G( x

N )
�

� p(x − y).

By the Mean Value Theorem, the last two terms of the previous expression can be bounded
from above by

‖G′‖∞
∑

x∈ΛN

∑

y≤0

|y − x |p(x − y)®
∑

x∈ΛN

1
xγ−1

which is finite since γ > 2. This together with Lemma 2.3.1 proves (2.3.15) in the case θ ≥ 1.

Proof of (2.3.14): We know by Dynkin’s formula that

�

M N
t (G)

�2
−
∫ t

0

Θ(N)
�

LN 〈πN
s , G〉2 − 2〈πN

s , G〉LN 〈πN
s , G〉

�

ds,

is a martingale with respect to the filtration {Ft}t≥0. From the computations of Appendix 4.1
we get that the term inside the time integral in the previous display is equal to

Θ(N)
(N − 1)2

∑

x<y∈ΛN

�

G
�

x
N

�

− G
� y

N

��2
p(x − y)(ηN

y (s)−η
N
x (s))

2

+
Θ(N)κ

Nθ (N − 1)2
∑

x∈ΛN

(G( x
N ))

2r−N (
x
N )(α−η

N
x (s))(1− 2ηN

x (s))

+
Θ(N)κ

Nθ (N − 1)2
∑

x∈ΛN

(G( x
N ))

2r+N (
x
N )(β −η

N
x (s))(1− 2ηN

x (s)).

Since Θ(N) ≤ N 2 and G′ is bounded it is easy to see that the absolute value of the previous
display is bounded from above by a constant times

1
(N − 1)2

∑

x ,y∈ΛN

(x − y)2p(x − y) +
Θ(N)

Nθ (N − 1)2
∑

x∈ΛN

(G( x
N ))

2
�

r−N (
x
N ) + r+N (

x
N )
�

. (2.3.17)
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Since
∑

x ,y∈ΛN
(x − y)2p(x − y) = O(N) the first term in (2.3.17) is O(N−1). For the second

term at the right hand side of (2.3.17), we split the argument according to the cases θ ≥ 1 and
θ < 1. First when θ ≥ 1, by using the fact that γ > 2 and G is bounded so that the sum in that
term is finite, and since Θ(N) = N 2, we conclude that the term is O(N−θ )≤ O(N−1). From this
we obtain (2.3.14). Now if θ < 1, recall that G has compact support and Lemma 2.3.2. We
then write

Θ(N)
Nθ (N − 1)2

∑

x∈ΛN

(G( x
N ))

2
�

r−N (
x
N ) + r+N (

x
N )
�

=
Θ(N)

Nθ+γ(N − 1)
IN (G)

where IN (G) is a Riemann sum converging to
∫ 1

0
(G(u))2

�

r−(u) + r+(u)
�

du <∞. Therefore
the second term in (2.3.17) is of order Θ(N)N−1−θ−γ = O(N−1) by (2.2.6). This ends the proof
of tightness in the case θ ≥ 1, since C2([0,1]) is a dense subset of C([0,1]) with respect to the
uniform topology.

Nevertheless, for θ < 1, we have proved (2.3.13) and (2.3.14), and thus (2.3.12), only
for functions G ∈ C2

c ((0,1)) and we need to extend this result to functions in C1([0, 1]). To
accomplish that, we take a function G ∈ C1([0, 1]) ⊂ L1([0, 1]), and we take a sequence of
functions {Gk}k≥0 ∈ C2

c ((0, 1)) converging to G with respect to the L1-norm as k→∞. Now,
since the probability in (2.3.12) is less or equal than

PµN

�

ηN
· ∈ D

T
ΩN

:
�

�〈πN
τ+τ̄, Gk〉 − 〈πN

τ
, Gk〉

�

�>
ε

2

�

+ PµN

�

ηN
· ∈ D

T
ΩN

:
�

�〈πN
τ+τ̄, G − Gk〉 − 〈πN

τ
, G − Gk〉

�

�>
ε

2

�

and since Gk has compact support, from the computation above, it remains only to check that
the last probability vanishes as N →∞ and then k →∞. For that purpose, we use the fact
that

�

�〈πN
τ+τ̄, G − Gk〉 − 〈πN

τ
, G − Gk〉

�

�≤
2
N

∑

x∈ΛN

�

�(G − Gk)(
x
N )
�

� ,

and we use the estimate

1
N

∑

x∈ΛN

�

�(G − Gk)(
x
N )
�

�≤
∑

x∈ΛN

∫ (x+1)/N

x/N

�

�(G − Gk)(
x
N )− (G − Gk)(u)

�

� du+

∫ 1

0

|(G − Gk)(u)|du

≤
1

N
‖(G − Gk)

′‖∞ +
∫ 1

0

|(G − Gk)(u)|du.

We conclude the result by taking first the limsup in N →∞ and then in k→∞.

2.3.3 Replacement lemmas and auxiliary results

In this section we establish some technical results needed in the proof of the hydrodynamic
limit. In what follows, we will suppose without loss of generality that α ≤ β . Let h : [0, 1]→
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[0, 1] be a Lipschitz function such that α≤ h(u)≤ β , for all u ∈ [0,1]. Let νN
h be the Bernoulli

product measure on ΩN with marginals given by

νN
h {η : ηx = 1}= h

�

x
N

�

. (2.3.18)

Given two functions f , g : ΩN → R and a probability measure µ on ΩN , we denote here by
〈 f , g〉µ the scalar product between f and g in L2(ΩN ,µ), that is,

〈 f , g〉µ =
∫

f (η)g(η) dµ.

The notation above should note be mistaken to the notation that we introduced in Subsection
2.2.1. We denote by HN (µ|νN

h ) the relative entropy of a probability measure µ on ΩN with
respect to the probability measure νN

h on ΩN . It is easy to prove the existence of a constant
C0 := C0(α,β), such that

HN (µ|νN
h )≤ NC0. (2.3.19)

In fact, using the explicit formula for the entropy and the definition of the product measure
νN

h , we get that

H(µ|νN
h ) =

∑

η∈ΩN

µ(η) log

�

µ(η)
νN

h (η)

�

≤
∑

η∈ΩN

µ(η) log

�

1
νN

h (η)

�

≤ log

�

�

1
α∧ (1− β)

�N
�

∑

η∈ΩN

µ(η)≤ N log
�

1
α∧ (1− β)

�

≤ NC0.

Remark 2.3.5. We note that above we use the fact that α 6= 0 and β 6= 1 since in last estimate
the constant C0 = − log(α∧ (1− β)).

2.3.4 Estimates on Dirichlet forms

For a probability measure µ on ΩN , x , y ∈ ΛN and a density function f : ΩN → [0,∞) with
respect to µ we introduce

Ix ,y(
p

f ,µ) :=

∫

�
Æ

f (σx ,yη)−
Æ

f (η)
�2

dµ,

Iαx (
p

f ,µ) :=

∫

cx(η;α)
�
Æ

f (σxη)−
Æ

f (η)
�2

dµ.

Then we define
DN (

p

f ,µ) := (D0
N + D`N + Dr

N )(
p

f ,µ)

where

D0
N (
p

f ,µ) :=
1

2

∑

x ,y∈ΛN

p(y − x) Ix ,y(
p

f ,µ),
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D`N (
p

f ,µ) :=
κ

Nθ

∑

x∈ΛN
y≤0

p(y − x) Iαx (
p

f ,µ) =
κ

Nθ

∑

x∈ΛN

r−N (
x
N )I

α
x (
p

f ,µ)

and Dr
N(
p

f ,µ) is the same as D`N (
p

f ,µ) but in Iαx (
p

f ,µ) the parameter α is replaced by β
and r−N is replaced by r+N .

Our first goal is to express, for the measure νN
h , a relation between the Dirichlet form defined

by 〈LN

p

f ,
p

f 〉νN
h

and DN(
p

f ,νN
h ). More precisely, we claim that for any positive constant B,

there exists a constant C > 0 such that

1
BN
〈LN

p

f ,
p

f 〉νN
h
≤ −

1
4BN

DN (
p

f ,νN
h ) +

C
BN

∑

x ,y∈ΛN

p(y − x)
�

h( x
N )− h( y

N )
�2

+
Cκ

BN 1+θ

∑

x∈ΛN

n
�

h( x
N )−α)

2r−N (
x
N ) +

�

h( x
N )− β

�2
r+N (

x
N )
o

.
(2.3.20)

Our aim is then to choose h in order to minimize the error term, i.e. the two last terms at the
right hand side of the previous inequality.

If h is such that h(0) = α and h(1) = β , since it is assumed to be Lipschitz, we get the
estimate

N
B
〈LN

p

f ,
p

f 〉νN
h
≤ −

N
4B

DN (
p

f ,νN
h ) +

C
B
σ2 +

Cκ
BN 1+θ

∑

x∈ΛN

¦

x2r−N (
x
N ) +

�

x − N
�2

r+N (
x
N )
©

.

(2.3.21)

Moreover, if the function h is such that h(0) = α and h(1) = β , Hölder of parameter γ/2 at the
boundaries and Lipschitz inside, then we have

N
B
〈LN

p

f ,
p

f 〉νN
h
≤−

N
4B

DN (
p

f ,νN
h ) +

C
B
σ2 +

Cκ
BNγ+θ−2

. (2.3.22)

On the other hand if the function h is constant, equal to α (or to β), then we have

N
B
〈LN

p

f ,
p

f 〉να ≤ −
N
4B

DN (
p

f ,να) +
Cκ
B

N 1−θ . (2.3.23)

In order to prove (2.3.20) we need some intermediate results. In what follows C is a
constant depending on α and β whose value can change from line to line.

Lemma 2.3.6. Let T : η ∈ ΩN → T (η) ∈ ΩN be a transformation and c : η→ c(η) be a positive
local function. Let f be a density with respect to a probability measure µ on ΩN . Then, we have
that

¬

c(η)[
Æ

f (T (η))−
Æ

f (η)] ,
Æ

f (η)
¶

µ

≤ −
1
4

∫

c(η)
��
Æ

f (T (η))
�

−
�
Æ

f (η)
��2

dµ

+
1

16

∫

1
c(η)

�

c(η)− c(T (η))
µ(T (η))
µ(η)

�2
��
Æ

f (T (η))
�

+
�
Æ

f (η)
��2

dµ.

(2.3.24)
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Proof. By writing the term at the left hand side of (2.3.24) as its half plus its half and summing
and subtracting the term needed to complete the square as written in the first term at the right
hand side of (2.3.24), we have that

∫

c(η)
�
Æ

f (T (η))−
Æ

f (η)
�
Æ

f (η) dµ

=−
1
2

∫

c(η)
�
Æ

f (T (η))−
Æ

f (η)
�2

dµ

+
1
2

∫

�
Æ

f (T (η))
�2
�

c(η)− c(T (η))
µ(T (η))
µ(η)

�

dµ.

Repeating again the same argument, the second term at the right hand side of last expression
can be written as

1
4

∫

�
�
Æ

f (T (η))
�2
−
�
Æ

f (η)
�2�

�

c(η)− c(T (η))
µ(T (η))
µ(η)

�

dµ.

By Young’s inequality and the elementary equality a2 − b2 = (a − b)(a + b), last expression is
bounded from above by

1
4

∫

c(η)
��
Æ

f (T (η))
�

−
�
Æ

f (η)
��2

dµ

+
1

16

∫

1
c(η)

�

c(η)− c(T (η))
µ(T (η))
µ(η)

�2 ��Æ

f (T (η))
�

+
�
Æ

f (η)
��2

dµ,

which finishes the proof.

Lemma 2.3.7. There exists a constant C := C(h) such that for any N ≥ 1 and any density f with
respect to νN

h

sup
x 6=y∈ΛN

∫

f (σx ,yη) dνN
h (η) ≤ C , sup

x∈ΛN

∫

f (σxη) dνN
h (η) ≤ C .

Proof. Let us prove only the left hand side bound since the proof of the second one is similar.
We perform in the left hand side integral above the change of variables ω= σx ,yη and we use
that, uniformly in x , y ∈ ΛN and ω, we have

θ x ,y(ω) =
νN

h (σ
x ,yω)

νN
h (ω)

= 1+O( 1
N ). (2.3.25)

By using the fact that f is a density it is easy to conclude.

Now, let us look at some consequences of these lemmas. We start with the bulk generator
L0

N given in (1.3.3).
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Corollary 2.3.8. There exists a constant C > 0 (independent of f and N) such that
¬

L0
N

p

f ,
p

f
¶

νN
h

≤ −
1
4

D0
N (
p

f ,νN
h ) + C

∑

x ,y∈ΛN

p(y − x)
�

h( x
N )− h( y

N )
�2

for any density f with respect to νN
h .

Proof. To prove this we note that
¬

L0
N

p

f ,
p

f
¶

νN
h

=
1
2

∑

x ,y∈ΛN

p(y − x)
¬�
Æ

f (σx ,yη)−
Æ

f (η)
�

,
Æ

f (η)
¶

νN
h

.

Now, by Lemma 2.3.6 with c ≡ 1, T = σx ,y , and Lemma 2.3.7, last expression is bounded from
above by

−
1
4

D0
N (
p

f ,νN
h ) + C

∑

x ,y∈ΛN

p(y − x)
�

h
�

x
N

�

− h
� y

N

�

�2
,

because |θ x ,y(η)− 1|2 ® (h( x
N )− h( y

N ))
2.

Now we look at the generators of the reservoirs given in (1.3.4).

Corollary 2.3.9. Let θ ∈ R be fixed. There exists a constant C > 0 (independent of f and N)
such that

〈L`N
p

f ,
p

f 〉νN
h
≤ −

1
4

D`N (
p

f ,νN
h ) +

Cκ
Nθ

∑

x∈ΛN

r−N (
x
N )
�

h( x
N )−α

�2
,

〈L r
N

p

f ,
p

f 〉νN
h
≤ −

1
4

Dr
N (
p

f ,νN
h ) +

Cκ
Nθ

∑

x∈ΛN

r+N (
x
N )
�

h( x
N )− β

�2

for any density f with respect to νN
h .

Proof. We present the proof for the first inequality but we note that the proof of the second
one is analogous. First observe that




L`N
p

f ,
p

f
�

νN
h

is equal to

κ

Nθ

∑

x∈ΛN
y≤0

p(y − x)
¬

cx(η;α)
�
Æ

f (σxη)−
Æ

f (η)
�

,
Æ

f (η)
¶

νN
h

.

Now, by using Lemma 2.3.6 with c(η) = cx(η;α), T = σx and Lemma 2.3.7, last expression is
bounded from above by

−
1
4

D`N (
p

f ,νN
h ) +

Cκ
Nθ

∑

x∈ΛN
y≤0

p(y − x)
�

h( x
N )−α

�2
.

From the two previous corollaries the claim (2.3.20) follows.
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2.3.5 Replacement Lemmas

Lemma 2.3.10. For any density f with respect to νN
h , any x ∈ ΛN and any positive constant Ax ,

we have that
�

�

�




tαx , f
�

νN
h

�

�

� ®
1
Ax

Iαx (
p

f ,νN
h ) + Ax + |h(

x
N )−α|,

where tαx (η) = ηx −α. The same result holds if α is replaced by β .

Proof. By a simple computation we have that:
�

�

�




tαx , f
�

νN
h

�

�

�≤
1
2

�

�

�

�

∫

tαx (η)( f (η)− f (σxη)) dνN
h

�

�

�

�

+
1
2

�

�

�

�

∫

[ f (σxη) + f (η)]tαx (η) dνN
h

�

�

�

�

,

where σx is the flip given in (1.2.2). By Young’s inequality, using the fact that (a − b) =
(
p

a −
p

b)(
p

a +
p

b) for all a, b ≥ 0 and Lemma 2.3.7, the first term at the right side of
(2.3.26) is bounded from above, for any positive constant Ax , by

Ax

4

∫

(tαx (η))
2

cx(η;α)

��
Æ

f (σxη)
�

+
�
Æ

f (η)
��2

dνN
h +

Iαx (
p

f ,νN
h )

4Ax
® Ax +

Iαx (
p

f ,νN
h )

Ax
.

Now, we look at the second term on the right hand side of (2.3.26). By using the fact that νN
h

is product and denoting by η̄ the configuration η removing its value at x so that (ηx , η̄) = η,
we have that the second term at the right side of (2.3.26) is equal to

1
2

�

�

∑

η̄

�

(1−α)( f (1, η̄) + f (0, η̄))νN
h (ηx = 1)−α( f (0, η̄) + f (1, η̄))νN

h (ηx = 0)
�

νN
h (η̄)

�

�

=
1
2

�

�

�

∑

η̄

�

h( x
N )−α

�

( f (0, η̄) + f (1, η̄))νN
h (η̄)

�

�

�

® |h( x
N )−α|

∑

η̄

h( x
N ) f (1, η̄)νN

h (η̄) +
�

1− h( x
N )
�

f (0, η̄)νN
h (η̄)

=|h( x
N )−α|

∑

η∈ΩN

f (η)νN
h (η) =

�

h( x
N )−α

�

because maxx∈ΛN

¦

1

2h
� x

N

� , 1

2
�

1−h
� x

N

��

©

is bounded from above by a constant depending only on α

and β . Above f (1, η̄) (resp. f (0, η̄)) means that we are computing f (η) with ηx = 1 (resp.
ηx = 0).

Lemma 2.3.11. Let θ > 1. For any t > 0, we have that

limsup
N→∞

EµN

�

�

�

�

∫ t

0

N 1−θ
∑

x∈ΛN

Gr−N (
x
N )(η

N
x (s)−α) ds

�

�

�

�

= 0,

limsup
N→∞

EµN

�

�

�

�

∫ t

0

N 1−θ
∑

x∈ΛN

Gr+N (
x
N )(η

N
x (s)− β) ds

�

�

�

�

= 0,

(2.3.26)

for any bounded function G : R→ R.
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Proof. We present the proof for the first term, but we note that the proof for the second term
is completely analogous.

We start by fixing a Lipschitz profile h such that h(0) = α ≤ h(u) ≤ β = h(1), for all
u ∈ [0,1]. By the entropy and Jensen’s inequalities, for any B > 0, the first expectation of
(2.3.26) is bounded from above by

H(µN |νN
h )

BN
+

1
BN

logEνN
h

�

eBN
�

�

∫ t
0 N1−θ∑

x∈ΛN
Gr−N

�

x
N

�

(ηN
x (s)−α)ds

�

�

�

. (2.3.27)

We can remove the absolute value inside the exponential since e|u| ≤ eu + e−u and

lim sup
N→∞

N−1 log(aN + bN )=max
§

lim sup
N→∞

N−1 log(aN ), lim sup
N→∞

N−1 log(bN )
ª

. (2.3.28)

By (2.3.19) and Feynman-Kac’s formula, (2.3.27) is bounded from above by

C0

B
+ t sup

f

¦

N 1−θ
∑

x∈ΛN

�

�

�Gr−N (
x
N )〈t

α
x , f 〉νN

h

�

�

�+
N
B

¬

LN

p

f ,
p

f
¶

νN
h

©

,

where the supremum is carried over all the densities f with respect to νN
h . We recall that

tαx (η) = ηx −α. From Lemma 2.3.10 we have that there exists a constant C := C(α,β ,γ) > 0
such that

N 1−θ
∑

x∈ΛN

�

�

�(Gr−N )(
x
N )〈t

α
x , f 〉νN

h

�

�

�≤ CN 1−θ
∑

x∈ΛN

|(Gr−N )(
x
N )|
�

Ax +
Iαx (
p

f ,νN
h )

Ax
+ x

N

�

≤ 4C2κ−1BN 1−θ
∑

x∈ΛN

G2( x
N )r

−
N (

x
N ) +

N
4B

D`N (
p

f ,νN
h )

+ CN−θ
∑

x∈ΛN

|G( x
N )|r

−
N (

x
N )x .

(2.3.29)

The last inequality is obtained by choosing Ax = 4κ−1C |G( x
N )|B. Recall (2.3.21).

Since θ > 1 and the function G is bounded, we use (2.3.29) and (2.3.21) and we estimate
from above (2.3.27) by a constant times

1
B
+

1
BN 1+θ

∑

x∈ΛN

¦

x2r−N (
x
N ) +

�

x − N
�2

r+N (
x
N )
©

+ BN 1−θ
∑

x∈ΛN

r−N (
x
N ) + N−θ

∑

x∈ΛN

r−N (
x
N )x ,

which, by

∑

x∈ΛN

x2r−N (
x
N )®







N 3−γ, γ ∈ (2, 3),
log N , γ= 3,

1, γ > 3,

(2.3.30)

and (2.3.5), goes to zero, taking first N →∞ and then B→∞.

Let us define for ` ∈ N the following empirical averages

−→η `0 :=
1
`

∑̀

y=1

ηy and ←−η `N :=
1
`

N−1
∑

y=N−1−`

ηy . (2.3.31)
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Lemma 2.3.12. For any t > 0 and any θ ≥ 1 we have that

lim sup
ε→0

limsup
N→∞

EµN

�

�

�

�

∫ t

0

∑

x∈ΛN

Θ−x (η
N
x (s)−

−→η εN0 (sN 2)) ds
�

�

�

�

= 0,

lim sup
ε→0

limsup
N→∞

EµN

�

�

�

�

∫ t

0

∑

x∈ΛN

Θ+x (η
N
x (s)−

←−η εNN (sN 2)) ds
�

�

�

�

= 0.

Proof. We present the proof for the first term, but we note that the proof for the second one is
analogous. Here we take as reference measure the Bernoulli product measure with constant
parameter (for example α) and we recall (2.3.23). By the entropy and Jensen’s inequalities
the expectation in the statement of the lemma is bounded from above, for any B > 0, by

H(µN |νN
α
)

BN
+

1
BN

logEνN
α

�

eBN
�

�

∫ t
0

∑

x∈ΛN
Θ−x (η

N
x (s)−

−→η εN0 (sN2)) ds
�

�

�

.

As in the previous proof, we can remove the absolute value inside the exponential, so that by
(2.3.19) and by Feynman-Kac’s formula last expression can be estimated from above by

C0

B
+ t sup

f

¦ ∑

x∈ΛN

Θ−x 〈τ
εN
x , f 〉νN

α
+

N
B

¬

LN

p

f ,
p

f
¶

νN
α

©

,

where the supremum is carried over all the densities f with respect to νN
α

. Here τεNx (η) =
ηx −

−→η εN0 .
Now we have to split the sum in x , depending on whether N − 1≥ x ≥ εN or x ≤ εN − 1.

We start by the first case and we have

〈τεNx , f 〉νN
α
=

1
εN

εN
∑

y=1

∫

(ηx −ηy) f (η) dνN
α
=

1
εN

εN
∑

y=1

x−1
∑

z=y

∫

(ηz+1 −ηz) f (η) dνN
α

.

By writing the previous term as its half plus its half and by performing in one of the terms the
change of variables η into σz,z+1η, for which the measure νN

α
is invariant, we write it as

1
2εN

εN
∑

y=1

x−1
∑

z=y

∫

( f (η)− f (σz,z+1η))(ηz+1 −ηz) dν
N
α

.

By using the fact that (a− b) = (
p

a−
p

b)(
p

a+
p

b) for any a, b ≥ 0 and since ab ≤
Aa2

2
+

b2

2A
for all A> 0, we have that

N−1
∑

x=εN

Θ−x 〈τ
εN
x , f 〉νN

α
≤

A

4εN

N−1
∑

x=εN

Θ−x

εN
∑

y=1

x−1
∑

z=y

∫

(
Æ

f (η)−
Æ

f (σz,z+1η))2dνN
α

+
1

4AεN

N−1
∑

x=εN

Θ−x

εN
∑

y=1

x−1
∑

z=y

∫

(
Æ

f (η) +
Æ

f (σz,z+1η))2(ηz+1 −ηz)
2dνN

α
.

(2.3.32)
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By neglecting the jumps of size bigger than one, we see that

DNN (
p

f ,νN
α
) =

∑

z∈ΛN

∫

�
Æ

f (η)−
Æ

f (σz,z+1η)
�2

dνN
α
® D0

N (
p

f ,νN
α
).

Therefore, by using also (2.3.8), the first term at the right hand side of (2.3.32) can be bounded
from above by

A

4

N−1
∑

x=εN

Θ−x DNN (
p

f ,νN
α
) ® ADNN (

p

f ,νN
α
) ® AD0

N (
p

f ,νN
α
). (2.3.33)

Recall (2.3.23) and observe that DN (
p

f ,νN
α
) ≥ D0

N (
p

f ,νN
α
). Then we choose the constant

A in the form A = CN/B for some suitable constant C in order that one half of the term
− N

4B DN (
p

f ,νN
α
) appearing in (2.3.23) counterbalances negatively the term at the right hand

side of (2.3.33). Moreover we can bound from above the last term at the right hand side of
(2.3.32) by (use Lemma 2.3.7)

CB
N

N−1
∑

x=εN

Θ−x
1

2εN

εN
∑

y=1

x−1
∑

z=y

∫

(
Æ

f (η) +
Æ

f (σz,z+1η))2(ηz+1 −ηz)
2dνN

α

®
B
N

∑

x∈ΛN

xΘ−x

which vanishes as N →∞ by (2.3.23). Therefore we proved that uniformly in ε

limsup
B→∞

limsup
N→∞

sup
f

¦

N−1
∑

x=εN

Θ−x 〈τ
εN
x , f 〉νN

α
+

N
B

¬

LN

p

f ,
p

f
¶

νN
α

©

= 0.

It remains to prove that

limsup
B→∞

lim sup
ε→0

limsup
N→∞

sup
f

¦

εN−1
∑

x=1

Θ−x 〈τ
εN
x , f 〉νN

α
+

N
B

¬

LN

p

f ,
p

f
¶

νN
α

©

= 0. (2.3.34)

If x ≤ εN − 1, we write

〈τεNx , f 〉νN
α
=

1
εN

εN
∑

y=1

∫

(ηx −ηy) f (η) dνN
α

=
1
εN

x−1
∑

y=1

x−1
∑

z=y

∫

(ηz+1 −ηz) f (η) dνN
α
−

1
εN

εN
∑

y=x+1

y−1
∑

z=x

∫

(ηz+1 −ηz) f (η) dνN
α

,

and the same estimates as before give that there exists a constant C > 0 such that for any
A> 0,

εN−1
∑

x=1

Θ−x 〈τ
εN
x , f 〉νN

α
≤ C

�

ADN (
p

f ,νN
α
) +
εN

A

εN−1
∑

x=1

Θ−x

�

.
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Recall (2.3.23) and (2.3.8). Then, we choose A = N/8CB and we get that (2.3.34). This
finishes the proof.

Remark 2.3.13. We note that above, if we change in the statement of the lemma Θ±x by r±N , then
the same result holds by performing exactly the same estimates as above, because what we need is
that

∑

x∈ΛN

Θ±x ® 1 and
1
N

∑

x∈ΛN

xΘ±x → 0

which also holds for r±N instead of Θ±x since γ > 2.

2.3.6 Fixing the profile at the boundary

Let Q be a limit point of the sequence {QN}N≥1, whose existence follows from Proposition
2.3.4 and assume, without lost of generality, that {QN}N≥1 converges to Q. We note that since
our model is an exclusion process, it is standard [40] to show that Q almost surely the tra-
jectories of measures are absolutely continuous with respect to the Lebesgue measure, that is:
πt(du) = ρt(u)du for any t ∈ [0, T]. In Subsection 2.3.7 we prove that the density ρ belongs
to L2(0, T ;H 1([0, 1])) if θ ≥ 2− γ. In particular, for almost every t, ρt can be identified with
a continuous function on [0, 1].

In this section we prove iii) of Definition 2.2.3, that is, for θ ∈ [2− γ, 1) we show that the
profile satisfies ρt(0) = α and ρt(1) = β for t ∈ [0, T] a.s. Recall (2.3.31). Observe that

EµN

�

�

�

�

∫ t

0

(−→η εN
0 (sN 2)−α) ds

�

�

�

�

= EQN

�

�

�

�

∫ t

0

(〈πs, ι
0
ε
〉 −α) ds

�

�

�

�

where ι0
ε
(u) = ε−1 1(0,ε)(u) for all u ∈ (0,1). Therefore we have that for any δ > 0,

QN

�

�

�

�

∫ t

0

(〈πs, ι
0
ε
〉 −α) ds

�

�

�> δ

�

≤ δ−1EµN

�

�

�

�

∫ t

0

(−→η εN
0 (sN 2)−α) ds

�

�

�

�

.

By Portemanteau’s Theorem 1 we conclude that

Q
�

�

�

�

∫ t

0

(〈πs, ι
0
ε
〉 −α) ds

�

�

�> δ

�

≤ δ−1 lim inf
N→∞

EµN

�

�

�

�

∫ t

0

(−→η εN
0 (sN 2)−α) ds

�

�

�

�

.

Now, if we are able to prove that the right hand side of the previous inequality is equal to zero,
since we have thatQ a.s. πs(du) = ρs(u)du with ρs a continuous function in 0 for almost every
s, by taking the limit as ε → 0, we can deduce that Q a.s. ρs(0) = α for a.e. s ∈ [0, T]. A
similar argument applies for the right boundary. Therefore it is sufficient to prove the following
lemma.

1In fact, since ι0
ε

is not a continuous function it is not given for free that the set
¦

π ;
�

�

�

∫ t

0
(〈πs, ι

0
ε
〉 −α) ds

�

�

�> δ
©

is an open

set in the Skorohod topology. A simple argument based on a L1-approximation of ι0
ε

by continuous functions permits to bypass
this difficulty.
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Lemma 2.3.14. Let θ < 1. For any t ∈ [0, T] we have that

lim sup
ε→0

lim sup
N→∞

EµN

�

�

�

�

∫ t

0

(−→η εN
0 (sN 2)−α) ds

�

�

�

�

= 0,

lim sup
ε→0

lim sup
N→∞

EµN

�

�

�

�

∫ t

0

(←−η εN
N (sN 2)− β) ds

�

�

�

�

= 0.

Last lemma is a consequence of the next two results.

Lemma 2.3.15. Let θ < 1. For any t ∈ [0, T] we have that

lim sup
N→∞

EµN

�

�

�

�

∫ t

0

(ηN
1 (s)−α) ds

�

�

�

�

= 0,

lim sup
N→∞

EµN

�

�

�

�

∫ t

0

(ηN
N−1(s)− β) ds

�

�

�

�

= 0.

Proof. We give the proof for the first display, but we note that for the other one it is similar.
Fix a Lipschitz profile h such that h(0) = α ≤ h(u) ≤ β = h(1), for all u ∈ [0, 1] and h is γ/2-
Hölder at the boundary. By the entropy and Jensen’s inequalities, for any B > 0, the previous
expectation is bounded from above by

H(µN |νN
h )

BN
+

1
BN

logEνN
h

�

eBN|
∫ t

0 (η
N
1 (s)−α) ds|

�

.

By (2.3.19), Feynman-Kac’s formula and noting, as we did in the proof of Lemma 2.3.11, that
we can remove the absolute value inside the exponential, last display can be estimated from
above by

C0

B
+ t sup

f

§




tα1 , f
�

νN
h
+

N
B

¬

LN

p

f ,
p

f
¶

νN
h

ª

, (2.3.35)

where the supremum is carried over all the densities f with respect to νN
h . Here we recall that

tα1 (η) = η1 − α. By Lemma 2.3.10, since h is Lipschitz, for any A > 0, the first term in the
supremum in (2.3.35) is bounded from above by

C
�

1
A

Iα1 (
p

f ,νN
h ) + A+

1
N

�

for some constant C > 0 independent of f and A. Moreover from (2.3.22), since

DN (
p

f ,νN
h )≥ D`N (

p

f ,νN
h )

and γ+ θ − 2≥ 0, we know that there exists a constant C ′ > 0 such that

N
B
〈LN

p

f ,
p

f 〉νN
h
≤ −

N 1−θ

4B

∑

x∈ΛN

Iαx (
p

f ,νN
h )r

−
N (

x
N ) +

C ′

B
.
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To get an upper bound, at the right hand side of the previous inequality, we only keep the term
coming from x = 1 in the sum. Now, by choosing A = 4C(r−N (

1
N ))

−1BNθ−1, we get then that
the expression inside brackets in (2.3.35) is bounded by

4C2 BNθ−1

r−N (
1
N )
+

C

N
+

C ′

B
.

Now since r−N (
1
N ) is bounded from below by a constant independent of N and θ < 1, the proof

follows by sending first N →∞ and then B→∞.

Lemma 2.3.16. Let θ ∈ R. For any t > 0 we have that

lim sup
ε→0

limsup
N→∞

EµN

�

�

�

�

∫ t

0

−→η εN
0 (sN 2)−ηN

1 (s)) ds
�

�

�

�

= 0,

lim sup
ε→0

limsup
N→∞

EµN

�

�

�

�

∫ t

0

←−η εN
N (sN 2)−ηN

N−1(s)) ds
�

�

�

�

= 0.

Proof. We present the proof of the first item, but we note that for the second it is exactly the
same. Fix a Lipcshitz profile h such that h(0) = α ≤ h(u) ≤ β = h(1), for all u ∈ [0,1] and
h is γ/2-Hölder at the boundary. By the entropy and Jensen’s inequalities, for any B > 0, the
previous expectation is bounded from above by

H(µN |νN
h )

BN
+

1
BN

logEνN
h

�

eBN|
∫ t

0
−→η εN

0 (sN2)−ηN
1 (s) ds|

�

.

By (2.3.19), Feynman-Kac’s formula, and using the same argument as in the proof of the pre-
vious lemma, the estimate of the previous expression can be reduced to bound

C0

B
+ t sup

f

¦1
`

`+1
∑

y=2

|〈v1
y , f 〉νN

h
|+

N
B

¬

LN

p

f ,
p

f
¶

νN
h

©

,

(2.3.36)

where `= εN and v1
y(η) = ηy−η1. Here the supremum is carried over all the densities f with

respect to νN
h . Note that since y ∈ ΛN we know that v1

y(η) =
∑y−1

z=1 (ηz+1 − ηz). Observe now
that

y−1
∑

z=1

∫

(ηz+1 −ηz) f (η)dν
N
h =

1
2

y−1
∑

z=1

∫

(ηz+1 −ηz)( f (η)− f (σz,z+1η))dνN
h

+
1
2

y−1
∑

z=1

∫

(ηz+1 −ηz)( f (η) + f (σz,z+1η))dνN
h .
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By using the fact that for any a, b ≥ 0, (a− b) = (
p

a−
p

b)(
p

a+
p

b) and Young’s inequality,
we have, for any positive constant A, that

1
`

`+1
∑

y=2

|〈v1
y , f 〉νN

h
| ≤

1
2A`

`+1
∑

y=2

y−1
∑

z=1

∫

(ηz+1 −ηz)
2
�
Æ

f (η) +
Æ

f (σz,z+1η)
�2

dνN
h

+
A
2`

`+1
∑

y=2

y−1
∑

z=1

∫

�
Æ

f (η)−
Æ

f (σz,z+1η)
�2

dνN
h

+
1
2`

`+1
∑

y=2

�

�

�

�

�

y−1
∑

z=1

∫

�

ηz+1 −ηz

�

�

f (η) + f (σz,z+1η)
�

dνN
h

�

�

�

�

�

.

(2.3.37)

By neglecting the jumps of size bigger than one, we see that

DNN (
p

f ,νN
h ) =

∑

z∈ΛN

∫

�
Æ

f (η)−
Æ

f (σz,z+1η)
�2

dνN
h ® D0

N (
p

f ,νN
h ).

Then, the second term on the right hand side of (2.3.37) is bounded from above by

A
2`

`+1
∑

y=2

DNN (
p

f ,νN
h )≤ A DNN (

p

f ,νN
h )

≤ CA D0
N (
p

f ,νN
h )≤ CA DN (

p

f ,νN
h )

where C is a positive constant independent of A,`, f . Then, for the choice A= N(4BC)−1 and
from (2.3.22), since γ+ θ − 2≥ 0, we can bound from above (2.3.36) by

2BC
N`

`+1
∑

y=2

y−1
∑

z=1

∫

(ηz+1 −ηz)
2
�
Æ

f (η) +
Æ

f (σz,z+1η)
�2

dνN
h

+
1
2`

`+1
∑

y=2

�

�

�

�

�

y−1
∑

z=1

∫

�

ηz+1 −ηz

�

�

f (η) + f (σz,z+1η)
�

dνN
h

�

�

�

�

�

+
C ′

B

®
B`
N
+

1
B
+

1
2`

`+1
∑

y=2

�

�

�

�

�

y−1
∑

z=1

∫

�

ηz+1 −ηz

�

�

f (η) + f (σz,z+1η)
�

dνN
h

�

�

�

�

�

(2.3.38)

for some constant C ′ > 0. For the last inequality we used Lemma 2.3.7. Observe that B`/N =
Bε vanishes as ε→ 0. It remains to estimate the third term on the right hand side of the last
inequality. For that purpose we make a similar computation to the one of Lemma 2.3.10. Let

Cz =max

¨

1

h
�

z
N

� �

1− h
�

z+1
N

�� ,
1

h
�

z+1
N

� �

1− h
�

z
N

��

«

which is bounded from above by a constant depending only on α and β . By using the fact that
νN

h is product and denoting by η̃ the configuration η removing its value at z and z + 1 so that
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(ηz,ηz+1, η̃) = η, we have that

y−1
∑

z=1

�

�

�

�

∫

(ηz+1 −ηz)( f (η) + f (σz,z+1η))dνN
h

�

�

�

�

=
y−1
∑

z=1

�

�

�

�

�

∑

η̃

( f (0, 1, η̃) + f (1,0, η̃))h( z+1
N )(1− h( z

N )) ν
N
h (η̃)

−
∑

η̃

( f (1,0, η̃) + f (0, 1, η̃))h( z
N )(1− h( z+1

N )) ν
N
h (η̄)

�

�

�

�

�

.

By regrouping terms, the last expression is equal to

=
y−1
∑

z=1

�

�

�

∑

η̃

�

h
�

z+1
N

�

− h
�

z
N

��

( f (0, 1, η̃) + f (1, 0, η̃)) νN
h (η̃)

�

�

�

≤
1
2

y−1
∑

z=1

Cz

�

�

�h
�

z+1
N

�

− h
�

z
N

��

�

�

�

∑

η̃

¦

f (1, 0, η̃) h
�

z
N

��

1− h
�

z+1
N

��

νN
h (η̃)

+ f (0, 1, η̄)
�

1− h
�

z
N

��

h
�

z+1
N

�

νN
h (η̃)

©

®
y−1
∑

z=1

�

�

�h
�

z+1
N

�

− h
�

z
N

��

�

�

�.

Above, for example, f (1,0, η̃) (resp. f (0, 1, η̃)) means that we are computing f (η) with η
such that ηz = 1 and ηz+1 = 0 (resp. ηz = 0 and ηz+1 = 1). Since h is Lipschitz, by (2.3.38),
this estimate provides an upper bound for (2.3.36) which is in the form of a constant times

B`
N
+

1
B
+

1
N`

`+1
∑

y=2

y ® Bε + B−1 + ε

which vanishes, as ε→ 0 and then B→∞. This ends the proof.

2.3.7 Energy Estimates

Let Q be a limit point of the sequence {QN}N≥1, whose existence follows from Proposition
2.3.4 and assume, without lost of generality, that {QN}N≥1 converges to Q. We note that since
our model is an exclusion process, it is standard (see [40]) to show that, Q almost surely, the
trajectories of measures are absolutely continuous with respect to the Lebesgue measure, that
is: πt(du) = ρt(u)du for any t ∈ [0, T].

2.3.7.1 The case θ ≥ 2− γ

Recall that in this case the system is speeded up in the diffusive time scale so that Θ(N) = N 2.
In this section we prove that the density ρ belongs to L2(0, T ;H 1([0, 1])), see Definition 2.2.2.
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For that purpose, we define the linear functional `ρ on C0,1
c ([0, T]× (0, 1)) by

`ρ(G) =

∫ T

0

∫ 1

0

∂uGs(u)ρs(u) duds =

∫ T

0

∫ 1

0

∂uGs(u) dπs(u)ds.

By Proposition 2.3.17 below we have that `ρ is,Q almost surely, continuous, thus we can extend
this linear functional to L2([0, T]× (0, 1)). Moreover, by Riesz’s Representation Theorem we
find ζ ∈ L2([0, T]× (0, 1)) such that

`ρ(G) = −
∫ T

0

∫ 1

0

Gs(u)ζs(u)duds,

for all G ∈ C0,1
c ([0, T]× (0, 1)), which implies that ρ ∈ L2(0, T ;H 1([0,1])).

Proposition 2.3.17. For all θ ≥ 2− γ. There exist positive constants C and c such that

E
�

sup
G

�

`ρ(G)− c‖G‖2
2

	

�

≤ C <∞,

where the supremum above is taken on the set C0,1
c ([0, T]× (0, 1)). Here we denote by ‖G‖2 the

norm of a function G ∈ L2([0, T]× (0,1)).

Proof. By density it is enough to prove the result for a countable dense subset {Gm}m∈N on
C0,2

c ([0, T]× (0,1)) and by the Monotone Convergence Theorem it is enough to prove that

E
�

sup
k≤m

�

`ρ(G
k)− c‖Gk‖2

2

	

�

≤ K0,

for any m and for K0 independent of m. Now, we define Φ : DT
M+ → R by

Φ(π·) =max
k≤m

¨

∫ T

0

∫ 1

0

∂uGk
s (u) dπs(u)ds− c‖Gk‖2

2

«

,

which is a continuous and bounded function for the Skorohod topology of DT
M+ . Thus we have

that

E[Φ] = lim
N→∞
EµN

�

max
k≤m

¨

∫ T

0

1
N − 1

N−1
∑

x=1

∂uGk
s (

x
N )η

N
x (s)ds− c‖Gk‖2

2

«�

.

By the entropy inequality, Jensen’s inequality and the fact that emaxk≤m ak ≤
∑m

k=1 eak the previous
display is bounded from above by

C0 +
1
N

logEνN
h

�

m
∑

k=1

e
∫ T

0

∑

x∈ΛN
∂uGk

s

� x
N

�

ηN
x (s)ds−cN‖Gk‖22

�

,

57



where h is Lipschitz such that h(0) = α≤ h(u)≤ β = h(1), for all u ∈ [0,1] and it is
γ

2
-Hölder

at the boundary. In order to deal with the second term in the previous display we use (2.3.28)
and it is enough to bound

limsup
N→∞

1
N

logEνN
h

h

e
∫ T

0

∑

x∈ΛN
∂uGs

� x
N

�

ηN
x (s)ds−cN‖G‖22

i

,

for a fixed function G ∈ C0,2
c ([0, T]×(0,1)), by a constant independent of G. By Feynman-Kac’s

formula, the last expression is bounded from above by

lim sup
N→∞

∫ T

0

sup
f

¦ 1
N

∫

∑

x∈ΛN

∂uGs(
x
N )ηx f (η)dνN

h − c‖G‖2
2 +

Θ(N)
N 〈LN

p

f ,
p

f 〉νN
h

©

ds

where the supremum is carried over all the densities f with respect to νN
h . Let us now focus on

the first term inside braces in the previous expression. Observe first that the space derivative
of Gs can be replaced by the discrete gradient ∇N Gs(

x−1
N ) = N

�

Gs(
x
N ) − Gs(

x−1
N )
�

of Gs with
an error RN (G) satisfying uniformly the bound |RN (G)| ® 1/N since G ∈ C0,2

c ([0, T]× (0, 1)).
By summing and subtracting the term ∇N Gs(

x−1
N ) inside the sum, and doing a summation by

parts, we can write

1
N

∫

∑

x∈ΛN

∂uGs(
x
N )ηx f (η)dνN

h =

∫ N−2
∑

x=1

Gs(
x
N )(ηx −ηx+1) f (η)dν

N
h + RN (G).

A simple computation shows that we can write the first term at the right hand side of the
previous display as

1
2

∫ N−2
∑

x=1

Gs(
x
N )(ηx −ηx+1)( f (η)− f (σx ,x+1η))dνN

h

+
1
2

∫ N−2
∑

x=1

Gs(
x
N )(ηx −ηx+1) f (σ

x ,x+1η)(1− θ x ,x+1(η))dνN
h .

(2.3.39)

Recall that for u, v ≥ 0, u− v = (
p

u−
p

v)(
p

u+
p

v) and the inequality ab ≤
Ba2

2
+

b2

2B
which

is valid for any B > 0. Taking B =
N
Θ(N)

and using Lemma 2.3.7 we bound the first term in

(2.3.39) by

N
4Θ(N)

∫ N−2
∑

x=1

(Gs(
x
N ))

2(
Æ

f (η) +
Æ

f (σx ,x+1η))2dνN
h

+
Θ(N)
4N

∫ N−2
∑

x=1

(
Æ

f (η)−
Æ

f (σx ,x+1η))2dνN
h

≤
Θ(N)
4N

D0
N (
p

f ,νN
h ) +

CN
Θ(N)

∑

x∈ΛN

(Gs(
x
N ))

2
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for some C > 0. Similarly we can estimate the second term in (2.3.39) from above by

1
4N

∫ N−2
∑

x=1

(Gs(
x
N ))

2(ηx −ηx+1)
2 f (σx ,x+1η)dνN

h

+
N
4

∫ N−2
∑

x=1

f (σx ,x+1η)(θ x ,x+1(η)− 1)2dνN
h

®
1
N

∑

x∈ΛN

(Gs(
x
N ))

2 + 1.

We use now (2.3.22) with B = 1 there and observe that last two terms at the right hand side
of (2.3.22) are bounded from above by a constant since γ + θ − 2 ≥ 0. Observe also that
D0

N (
p

f ,νN
h ) ≤ DN(

p

f ,νN
h ). Recalling that Θ(N) = N 2 we get then that (2.3.39) is bounded

from above by

C

∫ T

0

�

1+
1
N

∑

x∈ΛN

(Gs(
x
N ))

2
�

ds − c‖G‖2
2 + RN (G)

where C is a positive constant independent of G. We then choose c > C in order to conclude
that

limsup
N→∞

¦

C

∫ T

0

�

1+
1
N

∑

x∈ΛN

(Gs(
x
N ))

2
�

ds − c‖G‖2
2 + RN (G)

©

® 1.

This finishes the proof.

2.3.7.2 The case θ ≤ 2− γ

In this section we prove that the function (t, u)→ ρt(u)−α (resp. (t, u)→ ρt(u)−β) belongs
to L2([0, T] × (0, 1), d t ⊗ dµ) (resp. L2([0, T] × (0, 1), d t ⊗ dµ′)), where µ (resp. µ′) is the
measure that has the density with respect to the Lebesgue measure given by

u ∈ [0,1]→
1
uγ

�

resp.
1

(1− u)γ
�

. (2.3.40)

Let νN
h be as above, where h : [0,1]→ [0,1] is a profile such that h(0) = α ≤ h(u) ≤ β =

h(1), for all u ∈ [0, 1], Hölder of parameter γ/2 at the boundary and Lipschitz inside. Let
G ∈ C1,∞

c ([0, T] × [0,1]). By the entropy and Jensen’s inequalities and the Feynmann-Kac’s
formula, we have that

EµN

�

∫ T

0

d t N γ−1
∑

x∈ΛN

Gt(
x
N )r

−
N

�

x
N

�

(ηN
x (t)−α)

�

≤C0 +

∫ T

0

sup
f

¨

Nγ−1
∑

x∈ΛN

Gt(
x
N )r

−
N

�

x
N

�

〈tαx , f 〉νN
h
+
Θ(N)

N

¬

LN

p

f ,
p

f
¶

νN
h

«

d t

(2.3.41)

where the supremum is taken over all the densities f on ΩN with respect to νN
h . Below C is

a constant that may change from line to line. Since the profile is Hölder of parameter γ/2 at
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the boundary and Lipschitz inside, and from (2.3.22) the term at the right hand side of last
expression is bounded from above by

−
Θ(N)
4N

DN(
p

f ,νN
h ) +

Θ(N)
N 2

C +
Θ(N)
Nγ+θ

C .

Repeating the proof of Lemma 2.3.14, we get that (2.3.41) is bounded from above by

CNγ−1
∑

x∈ΛN

r−N
�

x
N

��

Gt

�

x
N

��2
+ C +

Θ(N)
N 2

C +
Θ(N)
Nγ+θ

C .

We take the limit N →∞. We conclude that there exist constants C > 0 independent of G
such that

E

�

∫ T

0

∫ 1

0

(ρt(u)−α)Gt(u)

|u|γ
dud t − C

∫ T

0

∫ 1

0

(Gt(u))2

|u|γ
dud t

�

®1.

By using a similar method as in the proof of the previous lemma we see that the supremum
over G can be inserted in the expectation so that

E

�

sup
G

¨

∫ T

0

∫ 1

0

(ρt(u)−α)Gt(u)

|u|γ
dud t − C

∫ T

0

∫ 1

0

(Gt(u))2

|u|γ
dud t

«�

®1.

The previous formula implies that

E

�

∫ T

0

∫ 1

0

(ρt(u)−α)2

|u|γ
dud t

�

®1,

which proves the claim.

2.3.8 Characterization of limit points

We prove in this section that for each range of θ , all limit pointsQ of the sequence {QN}N∈N are
concentrated on trajectories of measures absolutely continuous with respect to the Lebesgue
measure whose density ρ is a weak solution of the corresponding hydrodynamic equation.
Let Q be a limit point of the sequence {QN}N≥1, whose existence follows from Proposition
2.3.4 and assume, without lost of generality, that {QN}N≥1 converges to Q. As mentioned
above, since there is at most one particle per site, it is easy to show that Q is concentrated
on trajectories πt(du) which are absolutely continuous with respect to the Lebesgue measure,
that is, πt(du) = ρt(u)du (for more details see [40]). Below, we prove, for each range of θ ,
that the density ρ is a weak solution of the corresponding hydrodynamic equation.

Proposition 2.3.18. If Q is a limit point of {QN}N∈N then

1. if θ < 1:

Q
�

π· ∈ DT
M+ : FRD(t,ρ, G, g) = 0,∀t ∈ [0, T],∀G ∈ C1,2

c ([0, T]× [0,1])
�

= 1.
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2. if θ ≥ 1:

Q
�

π· ∈ DT
M+ : FRob(t,ρ, G, g) = 0,∀t ∈ [0, T],∀G ∈ C1,2([0, T]× [0,1])

�

= 1.

Remark 2.3.19. In this proposition, the constants κ̂, σ̂, m̂ appearing in FRD and FRob are fixed in
Theorem 2.2.9.

Proof. Note that in order to prove the proposition, it is enough to verify, for δ > 0 and G in the
corresponding space of test functions, that

Q
�

π· ∈ DT
M+ : sup

0≤t≤T
|F•(t,ρ, G, g)|> δ

�

= 0,

for each θ , where F• stands for FRD if θ < 1 and FRob if θ ≥ 1. From here on, in order to
simplify notation, we will erase π· from the sets that we have to look at.

•We start with the case θ ≥ 1. Recall FRob(t,ρ, G, g) from Definition 2.2.3. Observe that, due
to the boundary terms that involve ρs(1) and ρs(0), the set inside last probability is not an open
set in the Skorohod topology, therefore we cannot use directly Portmanteau’s Theorem as we
would like to. In order to avoid this problem, we fix ε > 0 and we consider two approximations
of the identity given by ι0

ε
(u) = 1

ε1(0,ε)(u) and ι1
ε
(u) = 1

ε1(1−ε,1)(u) and we sum and subtract to
ρs(0) (resp. ρs(1)) the mean 〈πs, ι

0
ε
〉 = 1

ε

∫ ε

0
ρs(u)du (resp. 〈πs, ι

1
ε
〉 = 1

ε

∫ ε

1−ε ρs(u)du). Thus,
we bound last probability from above by the sum of the following four terms

Q
�

sup
0≤t≤T

�

�

�〈ρt , Gt〉 − 〈ρ0, G0〉 −
∫ t

0

〈ρs,
�

σ̂2

2 ∆+ ∂s

�

Gs〉ds −
∫ t

0

〈πs, ι
0
ε
〉
�

σ̂2

2 ∂uGs(0)− m̂Gs(0
�

ds

+

∫ t

0

〈πs, ι
1
ε
〉
�

σ̂2

2 ∂uGs(1) + m̂Gs(1)
�

ds −m̂

∫ t

0

Gs(0)α+ Gs(1)β ds
�

�

�>
δ

4

�

,

(2.3.42)

Q
�
�

�

�〈(ρ0 − g), G0〉
�

�

�>
δ

4

�

, (2.3.43)

Q
�

sup
0≤t≤T

�

�

�

∫ t

0

�

ρs(0)− 〈πs, ι
0
ε
〉
�

�

m̂Gs(0)−
σ̂2

2 ∂uGs(0)
�

ds
�

�

�>
δ

4

�

, (2.3.44)

and

Q
�

sup
0≤t≤T

�

�

�

∫ t

0

�

ρs(1)− 〈πs, ι
1
ε
〉
�

(m̂Gs(1) +
σ̂2

2 ∂uGs(1))ds
�

�

�>
δ

4

�

. (2.3.45)

We note that the terms (2.3.44) and (2.3.45) converge to 0 as ε→ 0 since we are comparing
ρs(0) (resp. ρs(1)) with the corresponding average around the boundary points 0 (resp. 1)
and (2.3.43) is equal to zero since Q is a limit point of {QN}N∈N and QN is induced by µN

which satisfies (2.2.5). Therefore it remains only to consider (2.3.42). We still cannot use
Portmanteau’s Theorem, since the functions ι0

ε
and ι1

ε
are not continuous. Nevertheless, we

can approximate each one of these functions by continuous functions in such a way that the

61



error vanishes as ε→ 0. Then, from Proposition A.3 of [33]we can use Portmanteau’s Theorem
and bound (2.3.42) from above by

lim inf
N→∞

QN

�

sup
0≤t≤T

�

�

�〈ρt , Gt〉 − 〈ρ0, G0〉 −
∫ t

0

〈ρs,
�

σ̂2

2 ∆+ ∂s

�

Gs〉ds

−
∫ t

0

〈πs, ι
0
ε
〉
�

σ̂2

2 ∂uGs(0)− m̂Gs(0
�

ds+

∫ t

0

〈πs, ι
1
ε
〉
�

σ̂2

2 ∂uGs(1) + m̂Gs(1)
�

ds

−m̂

∫ t

0

Gs(0)α+ Gs(1)β ds
�

�

�>
δ

24

�

.

(2.3.46)

Summing and subtracting

∫ t

0

N 2 LN 〈πN
s , Gs〉ds to the term inside the supremum in (2.3.46),

recalling (2.3.1) and (2.3.31), the definition of QN , we bound (2.3.46) from above by the sum
of the next two terms

lim inf
N→∞

PµN

�

sup
0≤t≤T

�

�M N
t (G)

�

�>
δ

25

�

, (2.3.47)

and

lim inf
N→∞

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

N 2 LN 〈πN
s , Gs〉 ds−

σ̂2

2

∫ t

0

〈ρs,∆Gs〉ds

−
∫ t

0

−→η εN0 (s)
�

σ̂2

2 ∂uGs(0)− m̂Gs(0
�

ds+

∫ t

0

←−η εNN−1(s)
�

σ̂2

2 ∂uGs(1) + m̂Gs(1)
�

ds

−m̂

∫ t

0

Gs(0)α+ Gs(1)β ds
�

�

�>
δ

25

�

.

(2.3.48)

From Doob’s inequality together with (2.3.17), (2.3.47) goes to 0 as N →∞. Finally, (2.3.48)
can be rewritten as

lim inf
N→∞

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

N 2 LN 〈πN
s , Gs〉 ds−

σ̂2

2

∫ t

0

〈πN
s ,∆Gs〉 ds

−
∫ t

0

−→η εN0 (s)
�

σ̂2

2 ∂uGs(0)− m̂Gs(0
�

ds+

∫ t

0

←−η εNN−1(s)
�

σ̂2

2 ∂uGs(1) + m̂Gs(1)
�

ds

−m̂

∫ t

0

Gs(0)α+ Gs(1)β ds
�

�

�>
δ

25

�

.

(2.3.49)

Now, from (2.3.2) and (2.3.4) we can bound from above the probability in (2.3.49) by the sum
of the five following terms

PµN

�

sup
0≤t≤T

�

�

�

N 2

N − 1

∫ t

0

∑

x∈ΛN

(KN Gs)(
x
N )η

N
x (s)ds−

σ̂2

2

∫ t

0




πN
s ,∆Gs

�

ds
�

�

�>
δ

26

�

, (2.3.50)
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PµN

�

sup
0≤t≤T

�

�

�

N 2

N − 1

∫ t

0

∑

x∈ΛN

∑

y≤0

�

Gs(
y
N )− Gs(

x
N )
�

p(x − y)ηN
x (s)ds

+
σ̂2

2

∫ t

0

−→η εN0 (sN 2)∂uGs(0) ds
�

�

�>
δ

26

�

,

(2.3.51)

and

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

Nκ

N − 1

∑

x∈ΛN

(Gsr
−
N )(

x
N )(α−η

N
x (s)) ds−mκ

∫ t

0

Gs(0)(α−
−→η εN0 (sN 2))ds

�

�

�>
δ

26

�

(2.3.52)

and the sum of two terms which are very similar to the two previous ones but which are
concerned with the right boundary. Thus, to conclude we have to show that these five terms
go to 0 as N →∞. Applying Lemma 2.3.1 and noting that |ηN

x (s)| ≤ 1 for any x and any s ≥ 0,
we conclude that (2.3.50) goes to 0 as N →∞. Note also that by Taylor expansion, we can
bound from above (2.3.51) by

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

∂uGs(0)
∑

x∈ΛN

Θ−x
�

ηN
x (s)−

−→η εN0 (sN 2)
�

ds
�

�

�>
δ

28

�

. (2.3.53)

Using Lemma 2.3.12 we see that (2.3.53) vanishes as N →∞. Now we look at (2.3.52) and
we prove that it vanishes as N → ∞. Performing a Taylor expansion on Gs at 0 and using
(2.3.5) the probability in (2.3.52) is bounded from above by

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

Gs(0)
∑

x∈ΛN

r−N (
x
N )
�−→η εN0 (sN 2)−ηN

x (s)
�

ds
�

�

�>
δ

28

�

,

plus lower-order terms (with respect to N). From Lemma 2.3.12 and Remark 2.3.13 last display
vanishes as N →∞. Similarly the two terms which are similar to (2.3.51) and (2.3.52) but
which are concerned with the right boundary vanish as N →∞. Thus the proof is finished.

• Now we treat the case θ < 1. We have to prove that

Q
�

π· ∈ DT
M+ : sup

0≤t≤T
|FRD(t,ρ, G, g)|> δ

�

= 0

for any G ∈ C1,2
c ([0, T]× [0, 1]). We can bound from above the previous probability by

Q
�

sup
0≤t≤T

�

�

�〈ρt , Gt〉 − 〈ρ0, G0〉 −
∫ t

0

〈ρs,
�

σ̂2

2 ∆+ ∂s

�

Gs〉ds

−κ̂
∫ t

0

〈Gs, V0〉ds+ κ̂

∫ t

0

〈Gs,ρs〉V1
ds
�

�

�>
δ

2

�

,

(2.3.54)

and

Q
�
�

�

�〈(ρ0 − g), G0〉
�

�

�>
δ

2

�

. (2.3.55)
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We note that (2.3.55) is equal to zero since Q is a limit point of {QN}N∈N and QN is induced
by µN which satisfies (2.2.5). We note that from Proposition A.3 of [33], the set inside the
probability in (2.3.54) is an open set in the Skorohod space (the singularities of V0 and V1 are
not present because Gs has compact support included in (0,1)). From Portmanteau’s Theorem
we bound (2.3.54) from above by

lim inf
N→∞

QN

�

sup
0≤t≤T

�

�

�〈ρt , Gt〉 − 〈ρ0, G0〉 −
∫ t

0

〈ρs,
�

σ̂2

2 ∆+ ∂s

�

Gs〉ds

− κ̂
∫ t

0

〈Gs, V0〉 ds +κ̂

∫ t

0

〈Gs,ρs〉V1
ds
�

�

�>
δ

2

�

.

(2.3.56)

Summing and subtracting

∫ t

0

Θ(N)LN 〈πN
s , Gs〉ds to the term inside the previous absolute value,

recalling (2.3.1) and the definition of QN , we can bound the previous probability from above
by the sum of the next two terms

PµN

�

sup
0≤t≤T

�

�M N
t (G)

�

�>
δ

4

�

,

and

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

Θ(N)LN 〈πN
s , Gs〉ds−

∫ t

0

¬

πN
s , σ

2

2 ∆Gs

¶

ds

− κ̂
∫ t

0

〈Gs, V0〉 ds +κ̂

∫ t

0

〈Gs,ρs〉V1
ds
�

�

�>
δ

4

�

.

(2.3.57)

The first term above can be estimated as in the case θ ≥ 1 and it vanishes as N → ∞. It
remains to prove that (2.3.57) vanishes as N →∞. For that purpose, we recall Lemma 2.3.2
and we use (2.3.2), (2.3.4) to bound it from above by the sum of the following terms

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

Θ(N)

N − 1

∑

x∈ΛN

(KN Gs)(
x
N )η

N
x (s)ds−

σ̂2

2

∫ t

0




πN
s ,∆Gs

�

ds
�

�

�>
δ

24

�

, (2.3.58)

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

¦ κΘ(N)
(N − 1)Nθ

∑

x∈ΛN

(Gsr
−
N )(

x
N )(α−η

N
x (s))

−κ̂
∫ 1

0

(Gsr
−)(u)(α−ρs(u))du

©

ds
�

�

�>
δ

24

�

,

(2.3.59)

and

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

¦ κΘ(N)
(N − 1)Nθ

∑

x∈ΛN

(Gsr
+
N )(

x
N )(β −η

N
x (s))

−κ̂
∫ 1

0

(Gsr
+)(u)(β −ρs(u))du

©

ds
�

�

�>
δ

24

�

,

(2.3.60)
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In the case θ ∈ [2− γ, 1), since Θ(N) = N 2 and σ̂ = σ, from Lemma 2.3.1 we have that
(2.3.58) goes to 0 as N →∞. In the case θ < 2 − γ, since Θ(N) = Nθ+γ and σ̂ = 0, from
Lemma 2.3.1 we also have that (2.3.58) goes to 0 as N →∞.

In order to see that the boundary terms (2.3.59) and (2.3.60) go to 0 as N →∞ it is enough
to note that since Gs has compact support in (0, 1) we know by Lemma 2.3.2 that NγGsr

−
N (u)

and NγGsr
+
N (u) converge uniformly to (Gsr

−)(u) and (Gsr
+)(u), respectively, as N →∞. This

ends the proof.

2.4 Proof of Hydrostatic Limit and generalized Fick’s law

In this section we prove Theorems 2.2.15 and 2.2.16. LetM+
2 , be the space of positive measures

on [0,1]2 with total mass bounded by 1 equipped with the weak topology. For any η ∈ ΩN the
empirical measure π̂N (η) ∈M+

2 is defined by

π̂N (η) =
1

(N − 1)2

N−1
∑

x ,y=1

ηxηyδ(x/N ,y/N)

where δ(u,v) is the Dirac mass on (u, v) ∈ [0,1]2. RecallM+ introduced in Subsection 2.2.3. Let
PN be the law onM+×M+

2 induced by (πN , π̂N ) : ΩN →M+×M+
2 when ΩN is equipped with

the non-equilibrium stationary state µ̄N . To simplify notations, we denote π̂N (η) by π̂N and
the action of π ∈M+

2 on a continuous function G : [0, 1]2→ R by 〈π, G〉=
∫

[0,1]2 G(u)π(du).
Our goal is to prove that every limit point P∗ of the sequence {PN}N≥2 is concentrated on the

set of measures (π, π̂) ofM+×M+
2 such that π (resp. π̂) is absolutely continuous with respect

to the Lebesgue measure on [0, 1] (resp. [0,1]2) and with a density ρ̄κ(u) for all u ∈ (0, 1)
(resp. ρ̄κ(u)ρ̄κ(v) for all (u, v) ∈ (0, 1)2) where ρ̄κ is a weak solution of (2.2.7).

Lemma 2.4.1. The sequence {PN}N≥2 is tight. Let P∗ be a limit point of the sequence {PN}N≥2.
Then P∗ is concentrated on absolutely continuous measures. The density π is a positive function
inH 1([0, 1]) and satisfies that

∫ 1

0

¦

(α−π(u))2
uγ + (β−π(u))

2

(1−u)γ

©

du<∞.

Proof. SinceM+×M+
2 is compact in the weak topology we have that the sequence {PN}N≥2 is

tight onM+×M+
2 (see e.g [7]). P∗ is concentrated on absolutely continuous measures because

the process allows at most one particle per site. By construction we get that the densities of π̂
are product.

The proof that the densityπ belongs toH 1([0,1]) and satisfies
∫ 1

0

¦

(α−π(u))2
uγ + (β−π(u))

2

(1−u)γ

©

du<
∞ is analogous to the one done in Section 2.3.7, and for this reason it is reported to Appendix
4.7.

Let P∗ be a limit point of the sequence {PN}N≥2 whose existence follows from the previous
lemma. Hereinafter, we assume without lost of generality that {PN}N≥2 converges weakly to
P∗.
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Lemma 2.4.2. Let ρ̄κ be the unique weak solution of (2.2.7). For any F, G in C∞c ([0, 1]) we have

∫

[0,1]2

¦

F(u)
�

−σ
2

2 ∆G(v) +κG(v)V1(v)
�

+ G(v)
�

−σ
2

2 ∆F(u) + κF(u)V1(u)
�©

Iκ(u, v)dudv = 0

(2.4.1)

where
Iκ(u, v) = E∗ [(π(u)− ρ̄κ(u)) (π(v)− ρ̄κ(v))] .

Proof. We have that

N 2 LN (〈πN , G〉) =
1

N − 1

∑

x∈ΛN

�

N 2
∑

y∈Z

�

G( y+x
N )− G( x

N )
�

p(y)

�

ηx

+
N 2

N − 1

∑

x∈ΛN

�

G( x
N )r

−
N (

x
N ) + G( x

N )r
+
N (

x
N )
�

ηx

+
N 2

N − 1

∑

x∈ΛN

�

G( x
N )r

−
N (

x
N )(α−ηx) + G( x

N )r
+
N (

x
N )(β −ηx)

�

.

(2.4.2)

Taking the expectation with respect to µ̄N on both sides of (2.4.2), by stationarity, the left
hand side vanishes. By using Lemma 2.3.1, Lemma 2.3.2 and weak convergence we have that

E∗
�

∫ 1

0

−
σ2

2
∆G(u) + G(u)V1(u)π(u)du

�

− κ
∫ 1

0

V0(u)G(u)du= 0. (2.4.3)

Now we compute LN (〈π̂N , J〉) where J : [0,1]2→ R is a smooth test function with compact
support strictly included in [0,1]2 and which is identically equal to 0 on the diagonal. Consider
a small δ > 0 and take a smooth even function Hδ : R→ [0,1] which is equal to 0 on [−δ,δ]
and equal to 1 outside of [−2δ, 2δ]. Let then Jδ(u, v) = F(u)G(v)Hδ(v − u), (u, v) ∈ [0, 1]2.

For u ∈ [0,1] let

Fδ,u(v) = F(v)Hδ(v − u), Gδ,u(v) = G(v)Hδ(v − u). (2.4.4)

By using Lemma 4.1.1 (see Appendix 4.1) we get that

N 2 LN (〈π̂N , Jδ〉) =
1

N − 1

∑

x∈ΛN

F( x
N )N

2 LN (〈πN , G
δ,

x
N
〉)ηx

+
1

N − 1

∑

y∈ΛN

G( y
N )N

2 LN(〈πN , F
δ,

y
N
〉)ηy

−
N 2

(N − 1)2
∑

x ,y∈ΛN

p(y − x)(ηy −ηx)
2Jδ(

x
N , y

N ).

(2.4.5)
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Since Jδ(u, v) is equal to 0 for |u− v| ≤ δ, we have that

µ̄N

�

− N 2

(N − 1)2
∑

x ,y∈ΛN

p(y − x)(ηy −ηx)
2Jδ(

x
N , y

N )

�

= O(N 1−γ).

We multiply (2.4.5) by N 2 and take the expectation with respect to µ̄N on both sides, the
left hand side being then equal to 0 by stationarity. By using Lemmas 2.3.1 and 2.3.2, (2.4.3)
and weak convergence we conclude that

E∗
�

∫

[0,1]2

¦

F(u)(−σ
2

2 ∆Gδ,u(v) +κV1(v)Gδ,u(v))
©

π(u)π(v)dudv

�

+E∗
�

∫

[0,1]2

¦

G(v)(−σ
2

2 ∆Fδ,v(u) +κV1(u)Fδ,v(u))
©

π(u)π(v)dudv

�

−E∗
�

∫

[0,1]2
κ
�

F(u)Gδ,u(v)V0(v)π(u) + Fδ,v(u)G(v)V0(u)π(v)
	

dudv

�

= 0.

We can take the limit δ→ 0 and since Hδ converges to the function identically equal to 1,
we get

E∗
�

∫

[0,1]2

¦

F(u)(−σ
2

2 ∆G(v) + κV1(v)G(v))
©

π(u)π(v)dudv

�

+E∗
�

∫

[0,1]2

¦

G(v)(−σ
2

2 ∆F(u) + κV1(u)F(u))
©

π(u)π(v)dudv

�

−E∗
�

∫

[0,1]2
κ {F(u)G(v)V0(v)π(u) + F(u)G(v)V0(u)π(v) } dudv

�

= 0.

(2.4.6)

Let ρ̄ be the unique weak solution of (2.2.7). Then we have
∫ 1

0

−σ
2

2 ∆G(u)ρ̄κ(u) + κV1(u)ρ̄
κ(u)G(u)du−κ

∫ 1

0

G(u)V0(u) du= 0, (2.4.7)

for all G ∈ C∞c ((0, 1)). By using (2.4.3) and (2.4.7) in equation (2.4.6), then (2.4.1) follows.

Now consider the following definition

Definition 2.4.3. We say that Īκ : [0, 1]2→ [0, 1] is a weak solution of
¨

−σ
2

2 ∆ Īκ(u, v) +κ Īκ(u, v)V̂ (u, v) = 0, (u, v) ∈ (0, 1)2,

Īκ(u, v) = 0, (u, v) ∈ ∂ [0,1]2
(2.4.8)

where V̂ (u, v) = V1(u) + V1(v) and ∂ [0, 1]2 denotes the boundary of the set [0, 1]2, if
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i) Īκ ∈H 1
0,V̂
([0, 1]2),

ii) For any function G ∈ C∞c ((0, 1)2) we have that

− 〈 Īκ, σ
2

2 ∆G〉+κ〈 Īκ, G〉V̂ = 0. (2.4.9)

Lemma 2.4.4. The unique weak solution of (2.4.8) is the constant function equal to zero.

Proof. It is clear that the function equal to zero is a weak solution of (2.4.8). Now, we use the
Lax-Milgram’s Theorem in order to prove uniqueness.

Let aκ :H 1
0,V̂
([0,1]2)×H 1

0,V̂
([0,1]2)→ R be the bilinear form defined as

aκ(ϕ,%) = 〈ϕ,%〉1 + κ〈ϕ,%〉V̂ ,

for functions ϕ,% ∈H 1
0,V̂
([0,1]2). We note that aκ is coercive, indeed

aκ(ϕ,ϕ) = ‖ϕ‖2
1 + κ‖ϕ‖

2
V̂
≥min{1,κV̂ (1

2)}‖ϕ‖
2
H 1([0,1]2)

and trivially we have that aκ(ϕ,ϕ)≥ κ‖ϕ‖2
V̂
. By using the Cauchy-Schwarz’s inequality we get

that
|aκ(ϕ,%)| ≤ ‖ϕ‖1‖ϕ‖1 +κ‖%‖V̂‖%‖V̂ .

The latter allows to conclude that the bilinear form aκ is also continuous. Then the Lax-
Milgram’s Theorem guarantees that there exists a unique function Īκ, which satisfies (2.4.9)
for any function G ∈ C∞c ((0,1)2).

2.4.1 Proof of Theorem 2.2.15

Let ρ̄κ the weak solution of (2.2.7) and recall the definition of the function Iκ : [0, 1]2 → R
introduced in Lemma 2.4.2. We want to prove that Iκ is a weak solution of (2.4.8). First, we
claim that Iκ ∈ H 1

0,V̂
([0,1]2) = H 1

0 ([0, 1]2) ∩ L2
V̂
([0, 1]2). Indeed, since ρ̄κ,π ∈ H 1([0, 1])

(see Definition 2.2.10 and Lemma 2.4.1) then we have Iκ ∈H 1
0 ([0,1]2). In order to show that

Iκ ∈ L2
V̄
([0,1]2), note that

∫

[0,1]2
(Iκ(u, v))2V̂ (u, v)dudv ≤ E∗

�

∫

[0,1]2
P2(u, v)V̂ (u, v)dudv

�

≤ 2E∗
�

∫

[0,1]2
P2(u, v)V1(v)dudv

�

,

(2.4.10)

where P(u, v) = (π(u)− ρ̄κ(u)) (π(v)− ρ̄κ(v)). In the first inequality above we used Jensen’s
inequality and in the last one we performed a change of variables. Note that the last term on
the right hand side of (2.4.10) is bounded from above by a constant times

E∗
�

∫ 1

0

(π(u)− ρ̄κ(u))du

∫ 1

0

�

(π(v)− ρ̄∞(v))2 + (ρ̄∞(v)− ρ̄κ(v))2
�

V1(v)dv

�

. (2.4.11)
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Since we know that π, ρ̄κ satisfy items i) and ii) then by Remarks 2.2.11 and 2.2.12 we have
that (2.4.11) is finite. Therefore we get that Iκ ∈ L2

V̂
([0,1]2). Now, by Lemma 2.4.2 we have

that the function Iκ is a weak solution of (2.4.8). By Lemma 2.4.4 we have that Iκ ≡ 0. Whence
we conclude that I(u, u) = 0 for all u ∈ (0, 1) or equivalently P∗ almost surely π = ρ̄κ. This
concludes the proof of Theorem 2.2.15.

An important step in the proof of Theorem 2.2.16 is the stationarity of µ̄N in order to
derive an upper bound of the average current. Recall that the expectation with respect to µ̄N

is denoted by 〈·〉N .

Lemma 2.4.5. Fix N ≥ 2. There exists a constant C > 0 such that 〈W1〉N ≤ CN−1.

Proof. By stationarity of µ̄N we have that

〈W1〉N =
1

N − 1

N−1
∑

x=1

〈Wx〉N =
1

N − 1

N−1
∑

x=1

〈W 0
x 〉N +

1
N − 1

N−1
∑

k=1

〈W `,r
x 〉N = (I) + (I I).

For (I) we observe that

(I) =
1

N − 1

∑

y<z
y,z∈ΛN

p(z − y)(z − y)[〈ηy〉N − 〈ηz〉N] = −
1

N − 1

N−2
∑

y=1

N−1−y
∑

x=1

x p(x)[〈ηy+x〉N − 〈ηy〉N].

Now, using Fubini’s Theorem we get

(I) = −
1

N − 1

N−2
∑

x=1

x p(x)
N−1−x
∑

y=1

[〈ηy+x〉N − 〈ηy〉N].

Observe that for any sequence ( f (x))x∈Z and any n, k ≥ 1 we have

n
∑

x=1

[ f (x + k)− f (x)] =
k
∑

x=1

[ f (n+ 1+ k− x)− f (x)]. (2.4.12)

It follows that

(I) = −
1

N − 1

N−2
∑

x=1

x p(x)
x
∑

y=1

[〈ηN−y〉N − 〈ηy〉N]

so that

|I | ≤
2

N − 1

N−2
∑

x=1

x2p(x)≤ σ2(N − 1)−1.

The last inequality is obtained using the fact that p has finite variance.
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For (I I) we first use Fubini’s theorem which permits to rewrite (I I) as

κ

Nθ+1

N−1
∑

x=1

x r−N (
x
N )(α− 〈ηx〉N ) +

κ

Nθ+1

N−1
∑

x=1

(N − 1− x)r+N (
x
N )(〈ηx〉N − β).

We will just analyze the first term on the right hand side of the latter expression, because
analogous arguments can be done for the other one. Fix a ∈ (0, 1

2). Note that
�

�

�

�

�

κ

Nθ+1

N−1
∑

x=1

x r−N (
x
N )(α− 〈ηx〉N )

�

�

�

�

�

≤
κ

Nθ+1

 

[aN]−1
∑

x=1

x r−N (
x
N )|α− 〈ηx〉N |+ 2

N−1
∑

x=[aN]

x r−N (
x
N )

!

.

Using Lemma 2.3.2 we get that

2κ
Nθ+1

N−1
∑

x=[aN]

x r−N (
x
N )®N−1.

Since the measure µ̄N is invariant, by writing 〈LNηx〉N = 0, it is easy to see that

〈ηx〉N =

∑

y∈ΛN
p(x , y)〈ηy〉N +

κ

Nθ
β r+N

�

x
N

�

+α
κ

Nθ
r−N
�

x
N

�

∑

y∈ΛN
p(x , y) +

κ

Nθ
r+N
�

x
N

�

+
κ

Nθ
r−N
�

x
N

�

,

for any x ∈ ΛN . Then we have that

〈ηx〉N −α=

∑

y∈ΛN
p(x , y)(〈ηy〉N −α) +

κ

Nθ
(β −α)r+N

�

x
N

�

∑

y∈ΛN
p(x , y) +

κ

Nθ
r+N
�

x
N

�

+
κ

Nθ
r−N
�

x
N

�

.

By neglecting terms in the denominator and bounding from above |〈ηy〉N − α| by 2 , then
for any x ∈ {1, · · · , [aN]− 1} we have that

|〈ηx〉N −α| ≤
2
∑

y∈ΛN
p(x , y) +

κ

Nθ
(β −α)r+N

�

x
N

�

κ

Nθ
p(1)

≤
2Nθ

κp(1)
+
(β −α)r+N

�

x
N

�

p(1)

=
Nθ

cγκ
+ c−1

γ
(β −α)r−N

�

N−x
N

�

≤
Nθ

cγκ
+ γ−1(β −α) (N − [aN])−γ .

Then, using the previous result and the fact that γ > 2, we have

κ

Nθ+1

[aN]−1
∑

x=1

x r−N (
x
N )|α− 〈ηx〉N | ≤

�

1
N
+
κ(β −α)
γN

Nγ

[N − aN]γ

� cγζγ−1

γ

≤
�

cγζγ−1

γ
+

2γκ(β −α)cγζγ−1

γ2

�

N−1,
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where ζs is the Riemann zeta function defined for s > 1. It is clear by the previous inequality
that

�

�

�

�

�

κ

Nθ+1

N−1
∑

x=1

x r−N (
x
N )(α− 〈ηx〉N )

�

�

�

�

�

®N−1,

and we are done.

2.4.2 Proof of Theorem 2.2.16

For any δ > 0 we define the function Gδ ∈ C∞c ((0, 1)) such that 0 ≤ Gδ(u) ≤ 1 and Gδ(u) = 1
for u ∈ [δ, 1−δ]. By stationarity of µ̄N we have that

N〈W[vN]〉N =
N
∑

x=1

〈Wx〉N =
N
∑

x=1

Gδ(
x
N )〈Wx〉N +

N
∑

x=1

(1− Gδ(
x
N ))〈Wx〉N

=
N
∑

x=1

Gδ(
x
N )〈Wx〉N + 〈W1〉N

N
∑

x=1

(1− Gδ(
x
N ))

=
N
∑

x=1

Gδ(
x
N )
�

〈W 0
x 〉N +

κ

Nθ
〈W `,r

x 〉N
�

+O(δ),

(2.4.13)

where in the last equality we used the definition of Gδ and the fact that 〈W1〉N = O(N−1) (see
Lemma 2.4.5 above). We first consider the term in (2.4.13) with κ

Nθ 〈W
`,r
x 〉N . Since Gδ has

compact support included in (0, 1) we use Lemma 2.3.2 and Riemann sum to get easily that

lim
N→∞

κ

N 2

∑

x∈ΛN

Gδ(
x
N )〈N

γW `,r
x 〉N = κ

∫ 1

0

Gδ(v)

�

∫ 1

v

(α− ρ̄κ(u))r−N (u)du

−
∫ v

0

(β − ρ̄κ(u))r+N (u)du

�

dv.

On the other hand, by stationarity of µ̄N it is easy to see that
∑N

x=1 Gδ(
x
N )〈W

0
x 〉N is equal to

κ

Nθ

N
∑

x=1

Gδ(
x
N )

x−1
∑

y=1

�

(α− 〈ηy〉N)r−N (
y
N ) + (β − 〈ηy〉N )r+N (

y
N )
�

.

Taking N to infinity we have that last expression converges to

κ

∫ 1

0

Gδ(v)

�∫ v

0

(α− ρ̄κ(u))r−N (u)du+

∫ v

0

(β − ρ̄κ(u))r+N (u)du

�

dv.

By summing the two previous displays we get that

lim
N→0

N〈W[vN]〉N = κ

�

∫ 1

0

(α− ρ̄κ(u))r−N (u)du

�

∫ 1

0

Gδ(v)dv.
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We conclude the proof by taking δ→ 0.

2.5 Proof of Theorem 2.2.17

In this section we present some properties of the solution of (2.2.7) given in Theorem 2.2.17
which will give us an idea of its behavior. The variation of ρ̄κ and its derivative can be sum-
marized in Figure 2.1.

u

(ρ̄κ)′′(u)

(ρ̄κ)′(u)

ρ̄κ(u)

0 1
2 1

0 + 0 − 0

00

(ρ̄κ)′(1
2)(ρ̄κ)′(1
2)

00

αα

ββ

α+β
2

.

Figure 2.1: The variations of ρ̄κ.

As we will see, the properties of ρ̄κ are very related to the ones satisfied by ρ̄∞. We now
set up those properties in the following lemma.

Lemma 2.5.1. Setting ρ̄∞(u) = α (1−u)γ

uγ+(1−u)γ + β
uγ

uγ+(1−u)γ , ρ̄
∞ has the following properties

i) ρ̄∞(u) is a solution of (2.2.7) for σ = 0.

ii) ρ̄∞(u) + ρ̄∞(1− u) = α+ β .

iii) (ρ̄∞)′(u) = γ(β −α) (1−u)γ−1uγ−1

(uγ+(1−u)γ)2 , in particular ρ̄∞ is increasing.

iv) ρ̄∞ is convex on [0, 1/2] and concave on [1/2,1].

Proof. The computations which lead to prove i)− iii) are not difficult to verify, since ρ̄∞(u)
has an explicit form. From iii), we get that (ρ̄

∞)′′(u)
β−α is equal to

γ(γ− 1)
uγ−2(1− u)γ−2

(uγ + (1− u)γ)2
(1− 2u) + 2γ2 uγ−1(1− u)γ−1

(uγ + (1− u)γ)3
((1− u)γ−1 − uγ−1).

We check that those two terms are both non negative for u ∈ [0,1/2] and both non positive
for u ∈ [1/2,1].

In items iii) and iv) of Lemma 2.5.1, we recognize the properties that we will prove for
ρ̄κ. We now start the proof of the properties listed in Theorem 2.2.17. The methods used in
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the proof of the item iii) are quite different from the ones used for the two first ones. Thus, we
have decided to split the proof in two parts by seeking of lightness.

Proof of item i) and ii) of Theorem 2.2.17. We split the proof in four steps.
First step: Position of ρ̄κ related to ρ̄∞.
We first prove the inequalities in item ii) of Theorem 2.2.17 between ρ̄κ and ρ̄∞ by contra-
diction. Suppose that we can find û ∈ (1

2 , 1) such that ρ̄κ(û)> ρ̄∞(û). We set

u :=max{v ∈ [û, 1]|∀u ∈ [û, v), ρ̄κ(u)> ρ̄∞(u)},
u :=min{v ∈ [0, û]|∀u ∈ (v, û], ρ̄κ(u)> ρ̄∞(u)}. (2.5.1)

According to Lemmas 2.2.14 and 2.5.1, ρ̄κ(1
2) = ρ̄

∞(1
2) =

α+β
2 , therefore, u≥ 1

2 . The continu-
ity of ρ̄κ − ρ̄∞ allow us to deduce that ρ̄κ(u) = ρ̄∞(u). For all h ∈ [0, û− u], we get

ρ̄κ(u+ h)− ρ̄κ(u)
h

≥
ρ̄∞(u+ h)− ρ̄∞(u)

h
.

Letting h go to 0, we deduce that (ρ̄κ)′(u)≥ (ρ̄∞)′(u), which is well defined since u≤ û< 1.
Take u ∈ [u, u), since 1 > u ≥ 1

2 we have (ρ̄∞)′′(u) ≤ 0 by item iv) in Lemma 2.5.1. On the
other hand, since ρ̄κ(u) ≥ ρ̄∞(u), we have (ρ̄κ)′′(u) ≥ 0 by (2.2.7), then (ρ̄κ − ρ̄∞)′′ is non
negative on [u, u). Integrating this property, we get for all u ∈ [u, u)

(ρ̄κ)′(u)− (ρ̄∞)′(u)≥ (ρ̄κ)′(u)− (ρ̄∞)′(u)≥ 0.

Since u> û, by a second integration over [û, ū] we deduce that

ρ̄κ(u)− ρ̄∞(u)≥ ρ̄κ(û)− ρ̄∞(û)> 0.

By continuity of ρ̄κ−ρ̄∞, last expression is only possible when u= 1. We deduce that ρ̄κ(1)>
ρ̄∞(1) which is wrong since both terms are equal to β . On [1

2 , 1], we have proved that ρ̄κ ≤
ρ̄∞.
If we can find u ∈ (1

2 , 1) such that ρ̄κ(u) = ρ̄∞(u), then u is a local maximum of ρ̄κ − ρ̄∞.
According to Lemma 2.5.1 and (2.2.7), (ρ̄κ)′′(u) − (ρ̄∞)′′(u) = −(ρ̄∞)′′(u) > 0, which is a
contradiction. On (1

2 , 1), we have proved that ρ̄κ < ρ̄∞. The opposite inequality on (0,1/2)
can be easily deduced from Lemma 2.2.14 and item ii) of Lemma 2.5.1. Finally we have

ρ̄κ(u)> ρ̄∞(u) for all u ∈ (0, 1
2) and ρ̄κ(u)< ρ̄∞(u) for all u ∈ (1

2 , 1). (2.5.2)

Second step: Position of ρ̄κ related to ρ̄ι.
The proof of that point is very similar to the previous one, we just point out the differences.
As previously we argue by contradiction and suppose that for û ∈ (1

2 , 1), we have that ρ̄κ(û)>
ρ̄ι(û). Changing∞ for ι in the last step, we define 1

2 ≤ u< û< u≤ 1 as we did in (2.5.1). As
before, we have ρ̄κ ≥ ρ̄ι on [u, u], ρ̄κ(u) = ρ̄ι(u) and (ρ̄κ)′(u) ≥ (ρ̄ι)′(u). For all u ∈ [u, u],
we have by (2.2.7)

(ρ̄ι)′′(u) =
2ι
σ2

V1(u)(ρ̄
ι(u)− ρ̄∞(u))≤

2ι
σ2

V1(u)(ρ̄
κ(u)− ρ̄∞(u))≤ (ρ̄κ)′′(u)

(note that we needed to know that ρ̄κ(u)− ρ̄∞(u) ≤ 0). As previously, we get ρ̄κ(1) > ρ̄ι(1)
which is wrong.
If we can find u ∈ (1

2 , 1) such that ρ̄κ(u) = ρ̄ι(u), then u is a local maximum of ρ̄κ − ρ̄ι.
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According to (2.2.7), we get

(ρ̄κ − ρ̄ι)′′(u) =
2(κ− ι)
σ2

V1(u)(ρ̄
κ(u)− ρ̄∞(u)).

Since ρ̄κ(u)− ρ̄∞(u)< 0, we deduce (ρ̄κ − ρ̄ι)′′(u)> 0 which is a contradiction.
Using Lemma 2.2.14 again, we finally get

ρ̄κ(u)> ρ̄ι(u) for all u ∈ (0, 1
2) and ρ̄κ(u)< ρ̄ι(u) for all u ∈ (1

2 , 1). (2.5.3)

Third step: Proof of ii).
On [1

2 , 1] we have proved that ρ̄κ is strictly concave, ρ̄0 is a linear function given by

ρ̄0(u) = (β −α)u+α. (2.5.4)

Since ρ̄κ(1
2) = ρ̄

0(1
2) and ρ̄κ(1) = ρ̄0(1), we deduce by concavity that ρ̄0 < ρ̄κ on (1

2 , 1). Using
Lemma 2.2.14 again, we get

ρ̄0(u)> ρ̄κ(u) for all u ∈ (0, 1
2) and ρ̄0(u)< ρ̄κ(u) for all u ∈ (1

2 , 1). (2.5.5)

Putting (2.5.2), (2.5.3) and (2.5.5) together, we have proved item ii) of Theorem 2.2.17.
Fourth step: Proof of i).
According to (2.5.2) and (2.2.7), it is clear that (ρ̄κ)′ increases on [0, 1

2] and decreases on
[1

2 , 1]. The convexity and the concavity of ρ̄κ on these sets is established. Since (ρ̄κ)′′ ≤ 0 on
[1

2 , 1), (ρ̄κ)′(u) goes to a limit ` ∈ R∪ {−∞} when u goes to 1. By (2.5.2), for all u in [1
2 , 1],

we also have ρ̄κ(u)≤ ρ̄∞(u)≤ β = ρ̄κ(1), then ` cannot be negative. Using Lemma 2.2.14 to
deduce what happens at 0, we have

lim
u→0
(ρ̄κ)′(u) = lim

u→1
(ρ̄κ)′(u) = ` ∈ R+. (2.5.6)

From the variations of (ρ̄κ)′, we deduce that (ρ̄κ)′(u)≥ `≥ 0 on [0,1].
According to Lemmas 2.2.14 and 2.5.1 and (2.5.4), it is clear that we have ρ̄∞

�

1
2

�

= ρ̄κ
�

1
2

�

=
ρ̄0
�

1
2

�

= α+β
2 . For all u in [1

2 , 1] we have established ρ̄0 ≤ ρ̄κ ≤ ρ̄∞, by item iii) in Lemma
2.5.1 and (2.5.4), we deduce that

(β −α) = (ρ̄0)′
�

1
2

�

≤ (ρ̄κ)′
�

1
2

�

≤ (ρ̄∞)′
�

1
2

�

= γ(β −α).

It ends the proof of item i) of Theorem 2.2.17.

We end by investigating the behavior of ρ̄κ at the boundary.
Proof of item iii) of Theorem 2.2.17. According to (2.5.6), it is clear that ρ̄κ ∈ C1([0, 1])
with (ρ̄κ)′(0) = (ρ̄κ)′(1) = `. Using the first order Taylor approximation of ρ̄κ around 0, we
get from (2.2.7) that

(ρ̄κ)′′(u) =
u→0

2cγκ

γσ2

�

`u+ o(u)
uγ

+
α− β + `u+ o(u)

(1− u)γ

�

=
u→0

2cγκ`u
1−γ

γσ2
+ o

�

u1−γ
�

.

Since γ > 2, we deduce that (ρ̄κ)′′ is integrable at 0 if and only if ` = 0. If not, we have
limu→0(ρ̄κ)′(u) = +∞ which is wrong by (2.5.6). We have proved

lim
u→0
(ρ̄κ)′(u) = lim

u→1
(ρ̄κ)′(u) = 0. (2.5.7)

The next part of the proof is devoted to show that (ρ̄κ)′′ satisfies the same property. Since we
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do not have any clear information about (ρ̄κ)(3), the proof is more complex and we will have
to split it in several steps.
First step: proof of lim infu→0(ρ̄κ)′′(u) = lim supu→1(ρ̄

κ)′′(u) = 0.
We now suppose that lim infu→0(ρ̄κ)′′(u) 6= 0. According to item i) of Theorem 2.2.17, (ρ̄κ)′′

is positive on (0, 1
2). Then, we can find M > 0 such that (ρ̄κ)′′(u)≥ M in a neighborhood of 0.

In other words for n= 0, there exists ε, M > 0 such that for all u ∈ (0,ε) we have that

(ρ̄κ)′′(u)≥
M

un(γ−2)
. (2.5.8)

If (2.5.8) is satisfied for 0 ≤ n < 1
γ−2 , we integrate it two times and since ρ̄κ(0) = α and

(ρ̄κ)′(0) = 0, we get for any u ∈ (0,ε) that

ρ̄κ(u)≥ α+ Cu2−n(γ−2)

where C := M [(1− n(γ− 2))(2− n(γ− 2))]−1. Using (2.2.7), we have that for all u ∈ (0,ε),

(ρ̄κ)′′(u)≥
2cγκ

γσ2

�

Cu2−n(γ−2)

uγ
+
α+ Cu2−n(γ−2) − β

(1− u)γ

�

∼
u→0

2cγκC

γσ2

1
u(n+1)(γ−2)

.

Then, changing M for
cγκC

γσ2
and taking potentially ε a bit smaller, it is clear that (2.5.8) is also

satisfied for n+1. Finally, we take m< 1
γ−2 ≤ m+1 such that (2.5.8) is satisfied for n= m+1 by

induction. Since (m+ 1)γ > 1 we deduce that (ρ̄κ)′′ is not integrable in [0,ε] and contradicts
(2.5.7). We have proved that lim infu→0(ρ̄κ)′′(u) = 0 and using Theorem 2.2.14 we deduce
that lim supu→1(ρ̄

κ)′′(u) = 0.
Second step: Choosing the good neighborhood of 1.
For simplicity we first suppose that α < β = 0 and point out that in this situation ρ̄κ and ρ̄∞

are non positive because of item i) of Theorem 2.2.17. According to Lemma 2.5.1 and (2.2.7),
it is clear that we have

ρ̄∞(u) ∼
u→1
α(1− u)γ, (ρ̄∞)′(u) ∼

u→1
−γα(1− u)γ−1 (2.5.9)

and

(ρ̄κ)′′(u) ∼
u→1

2αcγκ

γσ2

�

ρ̄κ(u)−ρ∞(u)
ρ∞(u)

�

. (2.5.10)

We now fix ε > 0 and we set A= 2γ2(1+ε)σ2

κcγε
. From the equivalences given in (2.5.9) and (2.5.10),

we can find λ > 0 such that for all u ∈ (λ, 1), we have the following inequalities

i) (ρ̄κ)′′(u)≤
�

αcγκ
γσ2

�

ρ̄κ(u)−ρ̄∞(u)
ρ̄∞(u) ≤ 0 ii) (ρ̄∞)′(u)≤ −2γα(1− u)γ−1

iii)
ρ̄∞(u)
(1+ ε)

≥ α(1− u)γ−1 ≥ (1+ ε)ρ̄∞(u) iv)
�

1
1−A(1−u)γ−2

�γ

≤ (1+ ε) .
(2.5.11)

Since limsupu→1(ρ̄
κ)′′(u) = 0, according with i) in (2.5.11) , we can find u1 ∈ (λ, 1) such that

ρ̄κ(u1)
ρ̄∞(u1)

≤ (1+ ε). We now prove that in (u1, 1), we have ρ̄κ

ρ̄∞ ≤ (1+ ε)
4. If in (u1, 1) we have

ρ̄κ ≥ (1+ε)ρ̄∞, it is obvious. If not, then we take û ∈ (u1, 1) such that ρ̄κ(û)< (1+ε)ρ̄∞(û).
We set u=min{v ∈ (u1, û)|∀u ∈ (v, û]ρ̄κ(u)< (1+ ε)ρ̄∞(u)}.
Third step: estimate on û− u.
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By continuity, it is clear that ρ̄κ(u) = (1+ ε)ρ̄∞(u) . Thus we have for all h ∈ [0, û− u],

ρ̄κ(u+ h)− ρ̄κ(u)
h

≤
(1+ ε)(ρ̄∞(u+ h)− ρ̄∞(u))

h
and taking h→ 0 we get that

(ρ̄κ)′(u)≤ (1+ ε)(ρ̄∞)′(u).

By definition of u and by (2.5.11), for all v ∈ [u, û] we have

(ρ̄κ)′′(v)≤
αcγκ

γσ2

�

ρ̄κ(v)− ρ̄∞(v)
ρ̄∞(v)

�

≤
εαcγκ

γσ2
≤ 0. (2.5.12)

We now integrate (2.5.12) on [u, û] to get

(ρ̄κ)′(û) = (ρ̄κ)′(u) +

∫ û

u

(ρ̄κ)′′(s)ds ≤ (1+ ε)(ρ̄∞)′(u) +
εαcγκ

γσ2
(û− u)

≤ −2(1+ ε)γα(1− u)γ−1 +
εαcγκ

γσ2
(û− u).

Since (ρ̄κ)′ is positive, we get

û− u≤
2γ2(1+ ε)σ2

κcγε
︸ ︷︷ ︸

(1− u)γ−1.

= A

(2.5.13)

Fourth step: estimate on ρ̄κ(û)
ρ̄∞(û) and conclusion.

Thanks to (2.5.11), we deduce that this distance is small enough to get a good estimate of
ρ̄κ(û)
ρ̄∞(û) . Since ρ̄κ increase and ρ̄∞ is negative, we have:

ρ̄κ(û)
ρ̄∞(û)

≤
ρ̄κ(u)
ρ̄∞(û)

≤
ρ̄κ(u)
ρ̄∞(u)

ρ̄∞(u)
ρ̄∞(û)

≤ (1+ ε)3
α(1− u)γ

α(1− û)γ

≤ (1+ ε)3
�

1− u

1− u− A(1− u)γ−1

�γ

≤ (1+ ε)4.

We have proved that we could find u1 < 1 such that for all u ∈ [u1, 1), we have ρ̄κ(u)
ρ̄∞(û) ≤ (1+ε)

4,
in other words ρ̄κ(u) ∼

u→1
ρ̄∞(u). Using (2.5.9) and (2.5.10), we get

lim
u→1
(ρ̄κ)′′(u) = 0 and ρ̄κ(u) ∼

u→1
α(1− u)γ.

If β 6= 0, we can check that ρ̄κ−β is solution of (2.2.7) for the boundary conditions (α−β , 0),
we get ρ̄κ(u) =

u→1
β + (α− β)(1− u)γ + o((1− u)γ) . We deduce the similar property when u

goes to 0 by Lemma 2.2.14.

Corollary 2.5.2. The solution ρ̄κ is unique in C([0,1]) and the mapping κ 7→ ρ̄κ is continuous
from [0,+∞] to C([0,1]).

Proof. Step 1 : uniqueness. Previously, we have proved in Proposition 2.2.13 that there was a
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unique solution ρ̄κ of (2.2.7) such that

ρ̄κ − ρ̄∞ ∈H 1
0,V1
([0,1]).

It is well known thatH 1
0 ([0,1]) ,→ C1/2([0,1]) (see [29]), since we also have ρ̄∞ ∈ C2([0,1]),

it is clear that ρ̄κ ∈ C([0,1]).
From now until the end of this step, we just consider ρ̄κ as a weak solution of (2.2.7)

such that ρ̄κ ∈ C([0,1]). From (2.2.7), the second weak derivative ∆ρ̄κ is continuous on
(0, 1). Therefore, it is enough to deduce that ∆ρ̄κ is actually a classical second derivative, the
argument is standard, we briefly explain how we proceed. We fix ε > 0. For τ < ε we define
ρ̄κ,τ = ρ̄κ ∗ ( 1

τθ (
·
τ)) where θ is an even non negative smooth function supported in (0, 1)

such that
∫

θ (u)du = 1. The function ρ̄κ,τ is smooth and well defined on [2ε, 1− 2ε] and its
second derivative is (∆ρ̄κ)∗( 1

τθ (
·
τ)). Using the uniform continuity of ρ̄κ and∆ρ̄κ on [ε, 1−ε],

we prove that ρ̄κ,τ and (ρ̄κ,τ)′′ converge, respectively, to ρ̄κ and ∆ρ̄κ in L∞([2ε, 1− 2ε]) as
τ goes to 0. Since C2([2ε, 1 − 2ε]) is a Banach space for that convergence, we deduce that
ρ̄κ ∈ C2([2ε, 1− 2ε]) and its weak and classical second derivative are both ∆ρ̄κ.

Letting ε go to 0 we get that ρ̄κ ∈ C2((0,1)) and its classical second derivative is given by
(2.2.7). By induction, we get immediately that

ρ̄κ ∈ C([0,1])∩ C∞((0, 1)). (2.5.14)

One can check that in the proof of Theorem 2.2.17 we have only used (2.5.14). It is easy
to check that the regularity and behavior of ρ̄κ near the boundary given in iii) of Theorem
2.2.17 are enough to ensure ρ̄κ − ρ̄∞ ∈ H 1

0,V1
([0,1]). By Proposition 2.2.13 we deduce that

the solutions are unique in C([0, 1]) .
Step 2: continuity. Take a sequence of real numbers {κn}n∈N monotone such that κn −−−→n→∞

κ ∈ [0,+∞]. According to item ii) of Theorem 2.2.17, for all u in [0, 1], the mapping ι 7→
ρ̄ι(u) is monotone and bounded, then {ρ̄κn(u)}n∈N is also monotonous and bounded for all u,
thus it converges. We set ρ̂(u) := limn→∞ ρ̄

κn(u) ∀u ∈ [0, 1]. According to item i) of Theorem
2.2.17, for all n ∈ N we have

||(ρ̄κn)′||L∞([0,1]) = (ρ̄
κn)′(1

2)≤ γ(β −α).

By the Arzela-Ascoli’s Theorem, we can find a subsequence {n(k)}k∈N such that ||ρ̄κn(k)
−ρ̂||L∞([0,1])

goes to 0 as k→∞. For all u, since {ρ̄κn(u)}n∈N is monotonous and convergent, if m > n we
have |ρ̄κm

(u)− ρ̂(u)| ≤ |ρ̄κn
(u)− ρ̂(u)|. Taking the supremum on all u ∈ [0, 1], we deduce that

�

‖ρ̄κn − ρ̂‖L∞([0,1])

	

n∈N decreases. We get

lim
n→∞

||ρ̄κn − ρ̂||L∞([0,1]) = 0. (2.5.15)

In order to conclude, we just have to identify ρ̂. When κ = +∞, we come back to item
i) of Theorem 2.2.17. It allows us to deduce that for all n, we have the uniform estimate
||(ρ̄κn)′′||L1([0,1]) = 2(ρ̄κn)′(1

2)≤ 2γ(β −α). Dividing (2.2.7) by κnV1, we get that

||ρ̄κn − ρ̄∞||L1(0,1) ≤
σ2

2κn

�

�

�

�

�

�

�

�

1
V1

�

�

�

�

�

�

�

�

L∞(0,1)

||(ρ̄κn)′′||L1(0,1) ≤
σ2

2κn
2γ+1γ(β −α) −−−→

n→∞
0.

77



By uniqueness of the limit in the distribution space, we deduce from (2.5.15) that ρ̂ = ρ̄∞.
When κ belongs to [0,+∞), we end proving that ρ̂ is the unique solution of (2.2.7).

Take ε > 0 and Kε = [ε, 1 − ε]. From (2.2.7) and (2.5.15) it is clear that (ρ̄κn)′′ goes to
the mapping u 7→ 2κ

σ2 V1(u)(ρ̂(u)− ρ̄∞(u)) in L∞(Kε). Since C2(Kε) is a Banach space for the
norm f 7→ || f ||L∞(Kε) + || f

′′||L∞(Kε), we deduce that ρ̂ ∈ C2(Kε) and its second derivative is
ρ̂′′(u) = 2κ

σ2 V1(u)(ρ̂(u)− ρ̄∞(u)). Letting ε go to 0 and getting the boundary conditions from
(2.5.15), we deduce that ρ̂ is the unique solution of (2.2.7) for the limit parameter κ.
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Chapter 3

Super-diffusive case
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3.1 Introduction

In this chapter we prove the hydrodynamic limit for the symmetric exclusion process with long
jumps given by a mean zero probability transition rate with infinite variance and in contact
with infinitely many reservoirs with density α at the left of the system and β at the right of the
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system. The strength of the reservoirs is ruled by κN−θ > 0. Here N is the size of the system,
κ > 0 and θ ∈ R. Our results are valid for θ ≤ 0. For θ = 0, we obtain a collection of fractional
reaction-diffusion equations indexed by the parameter κ and with Dirichlet boundary condi-
tions. Their solutions also depend on κ. For θ < 0, the hydrodynamic equation corresponds to
a reaction equation with Dirichlet boundary conditions. The case θ > 0 is still open. For that
reason we also analyze the convergence of the unique weak solution of the equation in the case
θ = 0 when we send the parameter κ to zero. Indeed, we conjecture that the limiting profile
when κ→ 0 is the one that we should obtain when taking small values of θ > 0. Comparing
with the case γ > 2, we do not rule out the possible presence of other transition phases.

3.2 Statement of results

In this chapter we consider the process introduced in Section 1.3, whose generator LN is given
by (1.3.2). We assume that γ ∈ (1,2). Thus, we have that p has infinite variance but finite
mean (see (1.3.1)).

To study the hydrodynamic limit we will consider the Markov process speeded up in the time
scale Θ(N), so that {ηN(t)}t≥0 := {η(tΘ(N))}t≥0 has infinitesimal generator Θ(N)LN . Recall
from Chapter 2 that µ̄N is the unique invariant measure of {η(t)}t≥0 and that if α = β = ρ
then µ̄N = νρ. The expectation of a function f with respect to µ̄N (resp. νρ) is denoted by
〈 f 〉N (resp. 〈 f 〉ρ) or µN ( f ) (resp. νρ( f )). For any ρ ∈ (0, 1) the density of µ̄N with respect to
νρ is denoted by fN ,ρ

3.2.1 Notation

From now on up to the rest of this chapter we fix a finite time horizon [0, T]. To properly state
the hydrodynamic and hydrostatic limits, we need to introduce some notations and definitions.

We recall that the fractional Laplacian −(−∆)γ/2 := −(−∆)γ/2R of exponent γ/2 is defined
on the set of functions G : R→ R such that

∫ ∞

−∞

|G(u)|
(1+ |u|)1+γ

du<∞ (3.2.1)

by

−(−∆)γ/2G (u) = cγ lim
ε→0

∫ ∞

−∞
1|u−v|≥ε

G(v)− G(u)

|u− v|1+γ
dv

provided the limit exists (which is the case, for example, if G is in the Schwartz space). Above
cγ is set in (1.3.1). Up to a multiplicative constant, −(−∆)γ/2 is the generator of a γ-Lévy stable
process (see Subsection 1.5.1 in Chapter 1).

We define the operator L by its action on functions G ∈ C∞((0,1)), by

∀u ∈ (0, 1), (LG)(u) = cγ lim
ε→0

∫ 1

0

1|u−v|≥ε
G(v)− G(u)

|u− v|1+γ
dv.
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To see that the right hand side above is well defined we perform a second order Taylor expan-
sion of G at u, we observe by a symmetry argument that for ε sufficiently small

∫ 1

0

1|v−u|≥ε
v − u

|v − u|1+γ
dv =

∫ 1−u

u

v

|v|1+γ
dv

and we conclude by using that the remainder term is integrable. The operator L is called the
regional fractional Laplacian on (0, 1). The semi inner-product 〈·, ·〉γ/2 is defined on the set
C∞((0,1)) by

〈G, H〉γ/2 =
cγ
2

∫∫

[0,1]2

(H(u)−H(v))(G(u)− G(v))

|u− v|1+γ
dudv.

The corresponding semi-norm is denoted by ‖ · ‖γ/2. Observe that for any G, H ∈ C∞((0,1))
we have that

〈G,−LH〉= 〈−LG, H〉= 〈G, H〉γ/2.

Recall (1.4.4). We also introduce a family of operators indexed by κ and taking the form

Lκ = L− κV1. (3.2.2)

Acting on C∞c ((0, 1)) these operators are symmetric and non-positive. For κ = 1, we recover
the so-called restricted fractional Laplacian (see [59]):

∀u ∈ (0, 1), −(−∆)γ/2G (u) = (LG)(u)− V1(u)G(u) := (L1G)(u), (3.2.3)

while in the limit κ→ 0 we get the regional fractional Laplacian.

Definition 3.2.1. The Sobolev spaceH γ/2 :=H γ/2([0,1]) consists of all square integrable func-
tions g : (0, 1)→ R such that ‖g‖γ/2 <∞. This is a Hilbert space for the norm ‖ · ‖H γ/2 defined
by

‖g‖2
H γ/2 := ‖g‖2 + ‖g‖2

γ/2.

Its elements coincide a.e. with continuous functions. The completion of C∞c ((0,1)) for this norm
is denoted by H γ/2

0 := H γ/2
0 ([0, 1]). This is a Hilbert space whose elements coincide a.e. with

continuous functions vanishing at 0 and 1. On H γ/2
0 , the two norms ‖ · ‖H γ/2 and ‖ · ‖γ/2 are

equivalent.
The space L2(0, T ;H γ/2) is the set of measurable functions f : [0, T]→H γ/2 such that

∫ T

0

‖ ft‖2
H γ/2 d t <∞.

The spaces L2(0, T ;H γ/2
0 ) and L2(0, T ; L2

h) are defined similarly.

We now extend the definition of the regional fractional Laplacian on (0, 1), which has been
defined on C∞((0, 1)), to the spaceH γ/2.
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Definition 3.2.2. For ρ ∈H γ/2 we define the distribution Lρ by

〈Lρ, G〉= 〈ρ,LG〉, G ∈ C∞c ((0,1)).

Let us check that Lρ is indeed a well defined distribution. Consider a sequence {Gn}n≥1 ∈
C∞c ((0,1)) converging to 0 in the usual topology of the test functions. By the integration by
parts formula for the regional fractional Laplacian (see Theorem 3.3 in [37]) we have for any
ρ ∈H γ/2 that 〈Lρ, Gn〉= 〈ρ, Gn〉γ/2. Now using the Cauchy-Schwarz inequality and the mean
value theorem, we get that 〈Lρ, Gn〉 is bounded from above by a constant times

‖ρ‖γ/2‖Gn‖γ/2 ®‖ρ‖γ/2‖G′n‖
2
∞

∫∫

[0,1]2
|u− v|1−γdudv

which goes to 0 as n→∞ since γ ∈ (1, 2). Therefore Lρ is a well defined distribution.

3.2.2 Hydrodynamic equations

We can now give the definition of the weak solutions of the hydrodynamic equations that will
be derived in this chapter. Recall V0 from (1.4.4).

Definition 3.2.3. Let κ̂ ≥ 0 be some parameter and let g : [0, 1] → [0, 1] be a measurable
function. We say that ρκ̂ : [0, T] × [0, 1] → [0, 1] is a weak solution of the non-homogeneous
regional fractional reaction-diffusion equation with Dirichlet boundary conditions given by







∂tρ
κ̂
t (u) = Lκ̂ρ

κ̂
t (u) + κ̂V0(u), (t, u) ∈ [0, T]× (0, 1),

ρκ̂t (0) = α, ρκ̂t (1) = β , t ∈ [0, T],
ρκ̂0 (u) = g(u), u ∈ (0, 1),

(3.2.4)

if :

i) ρκ̂ ∈ L2(0, T ;H γ/2).

ii)
∫ T

0

∫ 1

0

¦

(α−ρκ̂t (u))
2

uγ + (β−ρ
κ̂
t (u))

2

(1−u)γ

©

du d t <∞ for κ̂ > 0; ρκ̂t (0) = α, ρκ̂t (1) = β for almost every
t ∈ [0, T], for κ̂= 0.

iii) For all t ∈ [0, T] and all functions G ∈ C1,∞
c ([0, T]× (0,1)) we have that

FDir(t,ρ
κ̂, G, g) :=




ρκ̂t , Gt

�

− 〈g, G0〉 −
∫ t

0

¬

ρκ̂s ,
�

∂s +Lκ̂
�

Gs

¶

ds− κ̂
∫ t

0

〈Gs, V0〉 ds = 0.

(3.2.5)

Remark 3.2.4. Note that item ii) is different for κ̂ > 0 and κ̂= 0. We can see that the condition
for κ̂ = 0 is weaker than the condition for κ̂ > 0. In fact, item i) and item ii) for κ̂ > 0 of the
previous definition imply that ρκ̂t (0) = α and ρκ̂t (1) = β , for almost every t in [0, T]. Indeed,
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first note that by item i) we know that ρt is γ−1
2 -Hölder for almost every t in [0, T] (see Theorem

8.2 of [23] ). Then, we note that

∫ T

0

(ρκ̂t (0)−α)
2

γ− 1
d t =

∫ T

0

lim
ε→0
εγ−1

∫ 1

ε

(ρκ̂t (0)−α)
2

uγ
dud t.

By summing and subtracting ρκ̂t (u) inside the square in the expression on the right hand side in
the previous equality and using the inequality (a + b)2 ≤ 2a2 + 2b2 we get that the right hand
side of the previous equality is bounded from above by

2

∫ T

0

lim
ε→0
εγ−1

∫ 1

ε

(ρκ̂t (0)−ρ
κ̂
t (u))

2

uγ
dud t + 2

∫ T

0

lim
ε→0
εγ−1

∫ 1

ε

(ρκ̂t (u)−α)
2

uγ
dud t.

Since ρt is γ−1
2 -Hölder for almost every t in [0, T] the term on the left hand side in the previous

expression vanishes. Now, the term on the right hand side in the previous expression is bounded
from above by

2 lim
ε→0
εγ−1

∫ T

0

∫ 1

0

(ρκ̂t (u)−α)
2

uγ
dud t,

which vanishes as a consequence of item ii). Thus, we have that

∫ T

0

(ρκ̂t (0)−α)
2

γ− 1
d t = 0,

whence we get that ρκ̂t (0) = α for almost every t in [0, T]. Showing that ρκ̂t (1) = β for almost
every t in [0, T] is completely analogous.

Moreover, the existence and uniqueness of a weak solution to the equation above, for κ̂ > 0
does not require the strong form of ii). Nevertheless, in order to prove Theorem 3.2.10 we need to
impose that condition.

Remark 3.2.5. Observe that in the case κ̂= 1, since L1 = −(−∆)γ/2 we obtain in Definition 3.2.3
the fractional heat equation with reaction and Dirichlet boundary conditions, i.e.







∂tρ
1
t (u) = L1ρ

1
t (u) + V0(u), (t, u) ∈ [0, T]× (0, 1),

ρ1
t (0) = α, ρ1

t (1) = β , t ∈ [0, T],
ρ1

0(u) = g(u), u ∈ (0, 1),

by (3.2.3) and (3.2.2) the notion of item iii) is reduced to

FDir(t,ρ
1, G, g) :=




ρ1
t , Gt

�

− 〈g, G0〉 −
∫ t

0

¬

ρ1
s ,
�

∂s − (−∆)γ/2
�

Gs

¶

ds−
∫ t

0

〈Gs, V0〉 ds = 0,

for all t ∈ [0, T] and all functions G ∈ C1,∞
c ([0, T]× (0, 1)).
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Definition 3.2.6. Let κ̂ > 0 be some parameter and let g : [0,1] → [0, 1] be a measurable
function. We say that ρκ̂ : [0, T] × [0, 1] → [0, 1] is a weak solution of the non-homogeneous
reaction equation with Dirichlet boundary conditions given by







∂tρ
κ̂
t (u) = −κ̂ρ

κ̂
t (u)V1(u) + κ̂V0(u), (t, u) ∈ [0, T]× (0,1),

ρκ̂t (0) = α, ρκ̂t (1) = β , t ∈ [0, T],
ρκ̂0 (u) = g(u), u ∈ (0, 1),

(3.2.6)

if:

i)
∫ T

0

∫ 1

0

¦

(α−ρκ̂t (u))
2

uγ + (β−ρ
κ̂
t (u))

2

(1−u)γ

©

du d t <∞.

ii) For all t ∈ [0, T] and all functions G ∈ C1,∞
c ([0, T]× (0,1)) we have

FReac(t,ρ
κ̂, G, g) :=




ρκ̂t , Gt

�

− 〈g, G0〉 −
∫ t

0




ρκ̂s ,∂sGs

�

ds

+ κ̂

∫ t

0




ρκ̂s , Gs

�

V1
ds− κ̂

∫ t

0

〈Gs, V0〉 ds = 0.

Remark 3.2.7. Note that the explicit solution ρ∞, κ̂ of (3.2.6) is given by

ρ∞, κ̂
t (u) = ρ̄∞(u) + (g(u)− ρ̄∞(u))e−tκ̂V1(u),

where ρ̄∞(u) =
V0(u)
V1(u)

. As we will see, the function ρ̄∞ plays an important role in the proof of

some of our main results, namely, Theorems 3.2.10 and 3.2.17.

Lemma 3.2.8. The weak solutions of (3.2.4) and (3.2.6) are unique.

Aiming to concentrate in the main facts, the proof of this lemma is reported to Appendix
4.6.

3.2.3 Hydrodynamic limit

First we want to state the hydrodynamic limit of the process {ηN (t)}t≥0 speeded up in time scale
Θ(N), with state space ΩN and with infinitesimal generator Θ(N)LN defined in (1.3.2). Recall
(2.2.4). We denote by PµN

the probability measure in the Skorohod spaceDT
ΩN

:= D([0, T],ΩN )
induced by the Markov process {ηN (t)}t≥0 and the initial measure µN in ΩN and we denote by
EµN

the expectation with respect to PµN
. Let {QN}N≥1 be the sequence of probability measures

on the Skorohod space DT
M+ := D([0, T],M+) induced by the Markov process {πN

t }t≥0 and by
PµN

.
Recall Definition 2.2.8. At this point we are ready to state the hydrodynamic limit of the

process {ηN (t)}t≥0.
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Theorem 3.2.9. (Hydrodynamic limit) Let g : [0, 1]→ [0, 1] be a measurable function and let
{µN}N≥1 be a sequence of probability measures on ΩN associated to g. Then, for any 0≤ t ≤ T,

lim
N→∞
PµN

�

ηN (·) ∈ DT
ΩN

:

�

�

�

�

�

1
N − 1

∑

x∈ΛN

G
�

x
N

�

ηN
x (t)−

∫ 1

0

G(u)ρκt (u)du

�

�

�

�

�

> δ

�

= 0,

where the time scale is given by Θ(N) = Nγ+θ and ρκt is the unique weak solution of:

• (3.2.6) with κ̂= κ, if θ < 0;

• (3.2.4) with κ̂= κ, if θ = 0.

At this point it is very natural to ask about the case θ > 0. In the case discussed in Chapter
2 we obtained a complete panorama (θ ∈ R). In the super-diffusive case the study is more
interesting and more difficult. Remember Theorem 2.2.9 in Chapter 2 and Theorem 3.2.9
above. We see that the hydrodynamic behavior obtained in the diffusive case (γ > 2) with θ <
2−γ is also valid in the super-diffusive case with θ < 0. In fact, these two cases are governed by
a reaction equation with Dirichlet boundary conditions. The behavior in the diffusive case with
θ = 2−γ is given by the reaction-diffusion equation with Dirichlet boundary conditions. Here,
it is replaced by a fractional reaction-diffusion equation with Dirichlet boundary conditions in
the super-diffusive case (γ ∈ (1, 2)), the condition θ = 2− γ for γ > 2 being replaced by the
condition θ = 0 for γ ∈ (1,2). So far, for θ > 0 we do not know what is the hydrodynamic
behavior of the system. Now, recall that in the end of the Subsection 1.2.2, we discussed about
the importance of κ in the macroscopic equations. We showed intuitively that by letting κ go
to∞ (or 0) it is possible to get the transition from one phase to another at the macroscopic
level. For instance, in the diffusive case we have two phases of transition: when θ = 2 − γ
and θ = 1. The hydrodynamic equation for the former is the reaction-diffusion equation with
Dirichlet boundary conditions and depends on κ. Taking κ→ 0 (resp. κ→∞) it is no difficult
to get the heat (resp. a reaction) equation with Dirichlet boundary conditions. Then we get a
similar behavior at the macroscopic level when θ ∈ (2− γ, 1) (resp. θ ∈ (−∞, 2− γ)) and κ
is large (resp. small) enough. Now, the hydrodynamic equation for θ = 1 is the heat equation
with Robin boundary condition depending on κ. Taking κ→ 0 (resp. κ→∞) it is not difficult
to get the heat equation with Neumann (resp. Dirichlet) boundary conditions. Then we get a
similar behavior at the macroscopic level when θ ∈ (1,∞) (resp. (2− γ, 1) and κ is enough
large (resp. small).

For the super-diffusive case we have that item ii) of Theorem 3.2.10 stated below confirms
that taking κ large enough in the regional fractional reaction-diffusion equation with Dirichlet
boundary conditions we get a reaction equation with Dirichlet boundary conditions. Then,
with the idea above in mind from item i) of Theorem 3.2.10 we conjecture that when taking
κ small enough in the regional fractional reaction-diffusion equation with Dirichlet boundary
conditions we pass to the fractional heat equation with Dirichlet boundary conditions. It is clear
that we are not discarding other phases. In fact, we believe that all the phases obtained in the
diffusive case can be extended to their fractional versions. However, the fact that the operator
that governs the macroscopic state is a non-local operator makes it difficult to understand
properly the corresponding boundary conditions (see Figure 1.9).
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Theorem 3.2.10. Let ρ0 : [0, 1]→ [0,1] be a measurable function. Further, let ρκ be the unique
weak solution of (3.2.4), with initial condition ρ0 which is independent of κ and let ρ̂κt := ρκt/κ,
for all t ∈ [0, T]. Then

i) ρκ converges strongly to ρ0 in L2(0, T ;H γ/2) as κ goes to 0, where ρ0 is the weak solution
of (3.2.4) with κ̂= 0 and initial condition ρ0.

ii) If ρ0− ρ̄∞ ∈H γ/2 then ρ̂κ converges strongly to ρ∞ in L2(0, T ; L2
V1
) as κ goes to∞, where

ρ∞ is the weak solution of (3.2.6).

Remark 3.2.11. The convergence in Theorem 3.2.10 is also true in L2(0, T ; L2). In fact, we
will see that a crucial step in the proof of the theorem is to show that ρκ converges strongly in
L2(0, T ; L2). The convergence in i) is also true in L2(0, T ; L2

V1
) and it is a consequence of the

fractional Hardy’s inequality (see (3.4.2)).

3.2.4 Hydrostatic equation

In order to state the hydrostatic limit and fractional Fick’s law we first define the Hydrostatic
equation.

Definition 3.2.12. Let κ̂ ≥ 0 be some parameter. We say that ρ̄κ̂ : [0, 1] → [0, 1] is a weak
solution of the stationary regional fractional reaction-diffusion equation with non-homogeneous
Dirichlet boundary conditions given by

¨

Lκ̂ρ̄κ̂(u) + κV0(u) = 0, u ∈ (0, 1),
ρ̄κ̂(0) = α, ρ̄κ̂(1) = β ,

(3.2.7)

if:

i) ρ̄κ̂ ∈H γ/2.

ii)
∫ 1

0

§

(α−ρ̄κ̂(u))2
uγ + (

β−ρ̄κ̂(u))2
uγ

ª

du<∞ if κ̂ > 0 and ρ̄κ̂(0) = α, ρ̄κ̂(1) = β if κ̂= 0.

iii) For any function G ∈ C∞c ((0, 1)) we have

F̄Dir(ρ̄
κ̂, G) :=




ρ̄κ̂,Lκ̂G
�

+ κ̂ 〈G, V0〉= 0.

Remark 3.2.13. We observe that ρ̄0 is a weak harmonic function for L.

Lemma 3.2.14. There exists a unique weak solution of (3.2.7).

Proof. See Appendix 4.5.
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3.2.5 Hydrostatic limit and Fractional Fick’s law

We study in this subsection the asymptotic behavior of the empirical measure under the sta-
tionary state µ̄N (hydrostatic limit) for the case where κ = 1 and θ = 0. However this result
could work for values of κ > 0. As a result of hydrostatic limit we obtain a fractional version
of the Fick’s law. Moreover, in order to understand the hydrostatic behavior for small values of
θ , we study in Theorem 3.2.17 the limit of ρ̄κ as κ→∞.

Theorem 3.2.15. (Hydrostatic limit) Let γ ∈ (1, 2). For any continuous function G : [0,1]→ R
we have that

lim
N→∞

1

N − 1

N−1
∑

z=1

G( z
N )ηz =

∫ 1

0

G(u)ρ̄1(u)du

in probability under µ̄N defined in Chapter 2.

The classic Fick’s law describes diffusion phenomena. In the standard case, the diffusion
turns out to be described locally. However, in this chapter we are considering a model which
presents a non-standard diffusion and will not be described locally. Our second result is the fol-
lowing "fractional Fick’s law". Recall the definition of the current Wx (see (2.2.10)) introduced
in Chapter 2.

Theorem 3.2.16. (Fractional Fick’s law) The following fractional Fick’s law holds

lim
N→∞

Nγ−1〈W1〉N = cγ

∫ u

−∞

∫ ∞

u

ρ̄1(v)− ρ̄1(w)

(w− v)1+γ
dwdv +

cγ
γ(γ− 1)

(β −α) (3.2.8)

where ρ̄1 : R→ [0,1] is the unique solution of (3.2.7) for κ= 1 and u is arbitrary in (0, 1).

Observe that the current is a non-local function of the density. The right hand side of (3.2.8)
does not depend on u. This can be proved by taking the derivative with respect to u on the
right hand side of (3.2.8) and showing that it vanishes thanks to (3.2.12).

Our last result is about the behavior of ρ̄κ as κ goes to 0 or∞. In the case κ→∞, the
profile converges to the explicit function given in Remark 3.2.7, verifying that for values of κ
large enough we obtain a behavior similar to the case θ < 0 (microscopically, it means that
the interaction between the system and the reservoirs is very intense, not allowing anoma-
lous diffusion). Similarly, we conjecture that the profile obtained taking κ→ 0 describes the
hydrostatic behavior of our model for small values of θ > 0.

Theorem 3.2.17. Let ρ̄κ be the unique weak solution of (3.2.7). Then,

i) ρ̄κ converges strongly to ρ̄0 inH γ/2 as κ goes to 0, where ρ̄0 is the weak solution of (3.2.7)
with κ̂= 0.

ii) ρ̄κ converges strongly to ρ̄∞ in L2
V1

as κ goes to∞.
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3.3 Proof of Theorem 3.2.9: Hydrodynamic limit

The proof of this theorem follows the usual approach of convergence in distribution of stochas-
tic processes: recall the sequence {QN}N≥1 defined similarly as in Subsection 2.2.3 in Chapter
2. We prove tightness of the sequence {QN}N≥1 and then we prove uniqueness of the limiting
point, which we denote by Q. These two results combined give the convergence of {QN}N≥1 to
Q, as N →∞. In order to characterize the limiting point Q, we prove that all limiting points
of the sequence {QN}N≥1 are concentrated on trajectories of measures that are absolutely con-
tinuous with respect to the Lebesgue measure and whose density ρκt is a weak solution of the
hydrodynamic equation as given in Definition 3.2.3. From the uniqueness of the weak solu-
tions of this equation, namely Lemma 3.2.14, we conclude that {QN}N≥1 has a unique limit
point Q.

First, in following subsection we explain how item iii) in Definition 3.2.3 appears. In Sub-
section 3.3.2 we prove that {QN}N≥1 is tight, then in Subsection 3.3.3 we obtain energy esti-
mates which provides some regularity of the limiting trajectories, allowing to identify and fix
the boundary conditions. The latter is crucial to ensure the uniqueness of the limiting point.
We conclude with the characterization of the limiting point in Subsection 3.3.4.

3.3.1 Heuristics for the hydrodynamic equations

In order to make the presentation simple, let us fix a function G : [0,1]→ R which does not
depend on time.

By Dynkin’s formula (see Lemma A.5.1 in [40]) we have that

M N
t (G) = 〈π

N
t , G〉 − 〈πN

0 , G〉 −
∫ t

0

Θ(N)LN 〈πN
s , G〉ds, (3.3.1)

is a martingale with respect to the filtration {Ft}t≥0 where Ft := σ({ηN (s)}s≤t) for all t ∈
[0, T].

Above, for an integrable function G : [0, 1] → R, recall we used the notation 〈πN
t , G〉 to

represent the integral of G with respect the measure πN
t :




πN
t , G

�

=
1

N − 1

∑

x∈ΛN

G
�

x
N

�

ηx(tΘ(N)).

Recall that LNηx is equal to
∑

y∈ΛN

p(x − y)[ηy −ηx] +
κ

Nθ

∑

y≤0

p(x − y)[α−ηx] +
κ

Nθ

∑

y≥N

p(x − y)[β −ηx].

Therefore, a simple computation shows that

Θ(N)LN (〈πN , G〉) =
Θ(N)

N − 1

∑

x∈ΛN

(LN G)( x
N )ηx

+
κΘ(N)

(N − 1)Nθ

∑

x∈ΛN

G( x
N )
�

r−N (
x
N )(α−ηx) + r+N (

x
N )(β −ηx)

�

,

(3.3.2)
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where, we denote by LN G the continuous function on [0, 1] which is defined as the linear
interpolation of the functions

(LN G)( x
N ) =

∑

y∈ΛN

p(y − x)
�

G( y
N )− G( x

N )
�

,

for all x ∈ ΛN with (LN G)(0) = (LN G)(1) = 0. We also define the functions r±N : [0, 1]→ R as
the linear interpolation of the function

r−N (
x
N ) =

∑

y≥x

p(y), r+N (
x
N ) =

∑

y≤x−N

p(y),

for all x ∈ ΛN with r±N (0) = r±N (
1
N ) and r±N (1) = r±N (

N−1
N ). Finally, letKN be the operator defined

by

KN =LN − r−N − r+N (3.3.3)

which, for functions G with compact support in [0, 1], satisfies

(KN G)( x
N ) =

∑

y∈Z

p(y − x)
�

G( y
N )− G( x

N )
�

.

Lemma 3.3.1. Let G be a smooth function with compact support included in [a, 1 − a] where
a ∈ (0, 1). Then we have the following uniform convergence on [a, 1− a]

i) limN→∞ Nγr−N (u) = r−(u),

ii) limN→∞ Nγr+N (u) = r+(u),

iii) limN→∞ Nγ(KN G)(u) = − [(−∆)γ/2G] (u).

Proof. This Lemma establishes uniform convergence of Riemann sums to the corresponding
integrals. But since the uniformity statement requires a bit of technical work it is postponed to
Appendix. The two first items of the previous lemma are in fact valid for γ ∈ (0,∞). See the
proof in Appendix 4.3. For the proof of item iii) see Appendix 4.4.

We also can deduce from the previous lemma that

lim
N→∞

Nγ(LN G)(u) = (LG)(u) (3.3.4)

uniformly in [a, 1− a], for all functions G with compact support included in [a, 1− a]. Now,
we are going to analyze all the terms in (3.3.2) for θ ≤ 0. Thus, we will be able to see how
the different boundary conditions appear on the hydrodynamic equations given in Subsection
3.2.2 from the underlying particle system.
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3.3.1.1 The case θ < 0

In this regime we take Θ(N) = Nγ+θ and a function G ∈ C∞c (0, 1). By using (3.3.4) we have
that the first term on the right hand side of (3.3.2) vanishes since θ < 0. Now, the second term
on the right hand side in (3.3.2) is equal to κ〈α−πN

t , Gr−N 〉+κ〈β −π
N
t , Gr+N 〉. By Lemma 3.3.1

the previous expression converges, as N goes to∞, to

κ

∫ 1

0

(α−ρκt (u))G(u)r
−(u)du+ κ

∫ 1

0

(β −ρκt (u))G(u)r
+(u)du

= −κ
∫ 1

0

ρκt (u)G(u)V1(u)du+ κ

∫ 1

0

G(u)V0(u)du.

3.3.1.2 The case θ = 0

In this regime we take Θ(N) = Nγ and a function G ∈ C∞c (0,1). The first term on the right
hand side in (3.3.2) can be replaced, thanks to (3.3.4) by

〈πN
t ,LG〉 →

∫ 1

0

(LG)(u)ρκt (u)du,

as N goes to ∞. Similarly, the second term on the right hand side of (3.3.2) is equal to
κ〈α−πN

t , Gr−〉+ κ〈β −πN
t , Gr+〉 which converges, as N goes to∞, to

κ

∫ 1

0

(α−ρκt (u))G(u)r
−(u)du+ κ

∫ 1

0

(β −ρκt (u))G(u)r
+(u)du

= −κ
∫ 1

0

ρκt (u)G(u)V1(u)du+ κ

∫ 1

0

G(u)V0(u)du.

This intuitive argument is rigorously proved in Subsection 3.3.4.

3.3.2 Tightness

In this subsection we prove that the sequence {QN}N≥1 is tight. We use the usual approach,
which says that is enough to show (2.3.12) for any function G belonging to C([0, 1]). In fact, it
is enough to prove it for a dense set of C([0, 1]), e.g. C2([0,1]). Above TT is the set of stopping
times bounded by T and we implicitly assume that all the stopping times are bounded by T ,
thus, τ+τ̄ should be read as (τ+τ̄)∧T . We prove (2.3.12) directly for functions G ∈ C2([0, 1])
and we conclude that the sequence is tight.

Proposition 3.3.2. The sequence of measures {QN}N≥1 is tight with respect to the Skorohod topol-
ogy of DT

M+ .

Proof. Recall from (3.3.1) that M N
t (G) is a martingale with respect to the natural filtration

{Ft}t≥0. In order to prove (2.3.12) it is enough to show that

lim
δ→0

limsup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

�

�

�

�

�

�

∫ τ+τ̄

τ

Θ(N)LN 〈πN
s , G〉ds

�

�

�

�

�

�

= 0 (3.3.5)
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and
lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

�

�

M N
τ
(G)−M N

τ+τ̄(G)
�2�

= 0. (3.3.6)

By using (3.3.4) for any function G ∈ C2([0, 1]) we can bound the first term at the right hand
side in (3.3.2) by a constant. By using the fact that |ηN

x (s)| ≤ 1 and
∑

x≥1

�

r−N (
x
N ) + r+N (

x
N )
�

<∞ (3.3.7)

(since γ > 1), we can bound from above the second term at the right hand side in (3.3.2) by
a constant times Θ(N)N−1−θ . Considering the different values of θ we see that such term is
bounded from above by a constant. Then we have that

|Θ(N)LN (〈πN
s , G〉)|®1 (3.3.8)

for any s ≤ T , which trivially implies (3.3.5).
In order to prove (3.3.6), by Dynkin’s formula (see Appendix 1 in [40]) we know that

�

M N
t (G)

�2
−
∫ t

0

Θ(N)
�

LN 〈πN
s , G〉2 − 2〈πN

s , G〉LN 〈πN
s , G〉

�

ds,

is a martingale with respect to the natural filtration {Ft}t≥0. By Lemma 4.1.1 in Appendix 4.1
we get that the term inside the time integral in the previous expression is equal to

Θ(N)
(N − 1)2

∑

x<y∈ΛN

�

G
�

x
N

�

− G
� y

N

��2
p(x − y)(ηN

y (s)−η
N
x (s))

2

+
κΘ(N)

Nθ (N − 1)2
∑

x∈ΛN

�

G
�

x
N

��2
(1− 2ηN

x (s))
�

r−N (
x
N )(α−η

N
x (s))

�

+
κΘ(N)

Nθ (N − 1)2
∑

x∈ΛN

�

G
�

x
N

��2
(1− 2ηN

x (s))
�

r+N (
x
N )(β −η

N
x (s))

�

.

(3.3.9)

Since the first derivative of G is bounded it is easy to see that the absolute value of (3.3.9) is
bounded from above by a constant times

Θ(N)
(N − 1)4

∑

x ,y∈ΛN

(x − y)2p(x − y) +
κΘ(N)

Nθ (N − 1)2
∑

x∈ΛN

�

G
�

x
N

��2 �
r−N (

x
N ) + r+N (

x
N )
�

. (3.3.10)

Note that (x − y)2p(x − y)®1 because γ > 1, so that

Θ(N)
(N − 1)4

∑

x ,y∈ΛN

(x − y)2p(x − y)®Θ(N)N−2 = O(Nγ−2).

By (3.3.7), the remaining terms in (3.3.10) are O(Θ(N)N−θ−2) so that (3.3.10) is O(Nγ−2).
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Thus, since τ is a stopping time and γ < 2 we have that

lim
δ→0

limsup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

�

�

M N ,G
τ
−M N ,G

τ+τ̄

�2�

= lim
δ→0

limsup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

�

∫ τ+τ̄

τ

Θ(N)
�

LN 〈πN
s , G〉2 − 2〈πN

s , G〉LN 〈πN
s , G〉

�

ds

�

= 0.

3.3.3 Energy Estimates

We prove in this subsection that any limit point Q of the sequence {QN}N≥1 is concentrated on
trajectories πκt (u)du with finite energy, i.e. πκ belongs to L2(0, T ;H γ/2). Moreover, we prove
that πκt satisfies item ii) in Definition 3.2.3. The latter is the content of Theorem 3.3.3 stated
below. Fix a limit point Q of the sequence {QN}N≥1 and assume, without of loss of generality,
that the sequence QN converges to Q as N goes to∞.

Theorem 3.3.3. The probability measure Q is concentrated on trajectories of measures of the
form πκt (u)du, such that for any interval I ⊂ [0, T] the density πκ satisfies

i)
∫

I
‖πκt ‖

2
γ/2d t ® |I |(κ+ 1), if θ = 0.

ii)

∫

I

∫ 1

0

�

(α−πκt (u))
2

uγ
+
(β −πκt (u))

2

(1− u)γ

�

du d t ® |I |
κ+ 1
κ

, if θ ≤ 0.

Remark 3.3.4. It follows from item i) of the previous theorem and from Theorem 8.2 of [23] that
πκt is, P almost surely, γ−1

2 -Hölder for all t ∈ I .
By taking I = [0, T] in item i) of Theorem 3.3.3 we see that πκ ∈ L2(0, T ;H γ/2). Moreover,

from item ii) of Theorem 3.3.3, we claim that
∫

I

‖πκt − ρ̄
∞‖2

V1
d t ® |I |

κ+ 1
κ

where ρ̄∞ is given in Remark 3.2.7. Note that
∫

I

‖πκt − ρ̄
∞‖2

V1
d t = cγ

∫

I

∫ 1

0

�

(πκt (u)− ρ̄
∞(u))2

γuγ
+
(πκt (u)− ρ̄

∞(u))2

γ(1− u)γ

�

dud t. (3.3.11)

By summing and subtracting α inside the first square in the expression on the right hand side in
(3.3.11), β in the second one and using the fact that (a+ b)2 ≤ 2(a2 + b2) we get that (3.3.11)
is bounded from above by

2cγγ
−1

∫

I

∫ 1

0

�

(πκt (u)−α)
2

uγ
+
(πκt (u)− β)

2

(1− u)γ

�

dud t

+2cγγ
−1

∫

I

∫ 1

0

�

(α− ρ̄∞(u))2

uγ
+
(β − ρ̄∞(u))2

(1− u)γ

�

dud t.

(3.3.12)
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Now, by using item ii) of Theorem 3.3.3 we have that the first term in the previous expression is

bounded by constant times |I |
κ+ 1
κ

. Finally, using the definition of ρ̄∞ (see Remark 3.2.7) the

second term in (3.3.12) is equal to

2cγγ
−1(β −α)2|I |

∫ 1

0

(uγ + (1− u)γ)−1du®1.

Before we prove Theorem 3.3.3, we recall some estimates on the Dirichlet form (introduced
in Subsections 2.3.3, 2.3.4) which are needed in due course.

3.3.3.1 Estimates on the Dirichlet form

In this subsection and in the proof of Theorem 3.3.3 we use h, νN
h , HN and DN introduced in

Subsection 2.3.4. Our goal is to express, for the measure νN
h , a relation between the Dirichlet

form defined by 〈LN

p

f ,
p

f 〉νN
h

and the quantity DN . More precisely, we have the following
result.

Lemma 3.3.5. For any positive constant B and any density function f with respect to νN
h , there

exists a constant C > 0 (independent of f and N) such that

Θ(N)
NB
〈LN

p

f ,
p

f 〉νN
h
≤ −
Θ(N)
4NB

DN (
p

f ,νN
h ) +

CΘ(N)
NB

∑

x ,y∈ΛN

p(y − x)
�

h( x
N )− h( y

N )
�2

+
CκΘ(N)
Nθ+1B

∑

x∈ΛN

n
�

h( x
N )−α

�2
r−N (

x
N ) +

�

h( x
N )− β

�2
r+N (

x
N )
o

.

(3.3.13)

The proof of this statement is similar to the one in Section 2.3.3 and thus it is omitted.
Moreover, note that as a consequence of the previous lemma, for a Lipschitz function h such
that α≤ h(u)≤ β we have that

Θ(N)
NB
〈LN

p

f ,
p

f 〉νN
h
≤ −
Θ(N)
4NB

DN (
p

f ,νN
h ) +Θ(N)N

−γC(κN−θ + 1)
B

. (3.3.14)

Note that taking h(0) = α≤ h(u)≤ β = h(1) for all u ∈ [0,1] and h Lipschitz in Lemma 2.3.10
we also get for any positive constant Ax that

�

�

�〈ηx −α, f 〉νN
h

�

�

� ®
1
Ax

Iαx (
p

f ,νN
h ) + Ax +

x
N

. (3.3.15)

3.3.3.2 Proof of of Theorem 3.3.3

Firs step: πκ ∈ L2(0, T ;H γ/2) Q almost surely. Recall that in this case (θ = 0) the system
is speeded up in the sub-diffusive time scale Θ(N) = Nγ. Let ε > 0 be a small real number.
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Let F ∈ C0,∞
c (I × [0, 1]2), where the I is a subinterval of [0, T]. By the entropy and Jensen’s

inequality and Feynman-Kac’s formula (see Lemma A.7.2 in [40]), we have that

EµN

�

∫

I

Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

Ft(
x
N , y

N )p(y − x)(ηN
y (t)−η

N
x (t))

�

d t

≤ C0 +

∫

I

sup
f

¦

Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

Ft(
x
N , y

N )p(y − x)

∫

(ηy −ηx) f (η)dν
N
h + Nγ−1

¬

LN

p

f ,
p

f
¶

νN
h

©

d t

(3.3.16)

where the supremum is taken over all densities f on ΩN with respect to νN
h . Note that, by a

change of variables, we have that

Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

Ft(
x
N , y

N )p(y − x)

∫

(ηy −ηx) f (η)dν
N
h

=Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

F a
t (

x
N , y

N )p(y − x)

∫

(ηy −ηx) f (η)dν
N
h

=Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

F a
t (

x
N , y

N )p(y − x)

∫

ηy ( f (η)− f (σx ,yη)) dνN
h

+Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

F a
t (

x
N , y

N )p(y − x)

∫

ηx f (η) (θ x ,y(η)− 1) dνN
h

(3.3.17)

where θ x ,y(η) =
dνN

h (σ
x ,yη)

dνN
h (η)

and F a is the antisymmetric part of F , i.e. for all t ∈ I and (u, v) ∈
[0, 1]2

F a
t (u, v) =

1

2

�

Ft(u, v)− Ft(v, u)
�

.

Observe that F a
t (u, u) = 0. By Young’s inequality, the fact that f is a density and |ηy | ≤ 1, we

have that, for any A> 0, the third term in (3.3.17) is bounded from above by a constant times

Nγ−1A
∑

x ,y∈ΛN
|x−y|≥εN

�

F a
t

�

x
N , y

N

��2
p(y − x) +

Nγ−1

A

∑

x ,y∈ΛN
|x−y|≥εN

p(y − x)Ix ,y(
p

f ,νN
h )

≤
cγA

N 2

∑

x ,y∈ΛN
|x−y|≥εN

�

F a
t

�

x
N , y

N

��2

| x
N −

y
N |1+γ

+
2Nγ−1

A
D0

N (
p

f ,νN
h ).

94



Since h is Lipschitz we have that supη∈ΩN
|θ x ,y(η)− 1| = O

�

|x−y|
N

�

. By Young’s inequality and

the fact that f is a density, for any A
′
> 0, the last term in (3.3.17) is bounded from above by

Nγ−1

A′
∑

x ,y∈ΛN
|x−y|≥εN

�

F a
t

�

x
N , y

N

��2
p(y − x) + A

′
Nγ−1

∑

x ,y∈ΛN
|x−y|≥εN

p(y − x)
�

|x−y|
N

�2

=
cγ

A′N 2

∑

x ,y∈ΛN
|x−y|≥εN

�

F a
t

�

x
N , y

N

��2

| x
N −

y
N |1+γ

+
A
′
cγ

N 2

∑

x ,y∈ΛN
|x−y|≥εN

1
| x

N −
y
N |γ−1

.

Recall (3.3.14), so that by choosing A= 8 and B = 1 and using the two results above we have
just proved that (3.3.16) is bounded from above by C0 plus

cγ(8+
1
A′
)

N 2

∑

x 6=y∈ΛN

�

F a
t (

x
N , y

N )
�2

| x
N −

y
N |1+γ

+ C(κ+ 1) + cγA
′
A
′′
,

where

A
′′

:= sup
ε>0

sup
N≥1

1

N 2

∑

x ,y∈ΛN
|x−y|≥εN

1
| x

N −
y
N |γ−1

<∞

since γ < 2. Therefore, we have proved that there exist constants A
′′′

and B
′

(independent of
ε > 0, N ≥ 1, and F ∈ C∞c (I × [0,1]2)) such that

EµN

�

∫

I

Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

Ft(
x
N , y

N )p(y − x)(ηN
y (t)−η

N
x (t)) d t

�

= EµN

�∫

I

−2cγ〈πN
t , gN

t 〉 d t

�

≤
∫

I

A
′′′

N 2

∑

x ,y∈ΛN
|x−y|≥εN

cγ
�

F a
t (

x
N , y

N )
�2

| x
N −

y
N |1+γ

d t + B
′
|I |(κ+ 1).

(3.3.18)

Above the function gN is defined on I × [0,1] by

gN
t (u) =

1

N

∑

y∈ΛN

1�
�

y
N −u

�

�≥ε

F a
t

�

u, y
N

�

|u− y
N |1+γ

and it is a discretization of the smooth function g defined on (t, u) ∈ I × [0,1] by

gt(u) =

∫ 1

0

1{|v−u|≥ε}
F a

t (u, v)

|u− v|1+γ
dv.
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Let Qε = {(u, v) ∈ [0, 1]2 ; |u− v| ≥ ε}. Observe first that for symmetry reasons we have that
for any integrable function π,

∫ 1

0

π(u)gt(u)du=

∫∫

Qε

(π(v)−π(u))F a
t (u, v)

|u− v|1+γ
dudv.

By taking the limit as N →∞ in (3.3.18), we conclude that there exist constants C > 0
independent of F ∈ C0,∞

c (I × [0,1]2) and ε > 0 such that

EQ





∫

I

∫∫

Qε

(πκt (v)−π
κ
t (u))F

a
t (u, v)

|u− v|1+γ
− C

�

F a
t (u, v)

�2

|u− v|1+γ
dudvd t



 ® |I |(κ+ 1).

From Lemma 7.5 in [41] we can insert the supremum over F inside the expectation above, so
that

EQ



sup
F

(

∫

I

∫∫

Qε

(πκt (v)−π
κ
t (u))F

a
t (u, v)

|u− v|1+γ
− C

�

F a
t (u, v)

�2

|u− v|1+γ
dudvd t

)



 ® |I |(κ+ 1).

Since the function (u, v) ∈ [0,1]2 → π(v)−π(u) is antisymmetric we may replace F a by F in
the previous variational formula, i.e.

EQ



sup
F

(

∫

I

∫∫

Qε

(πκt (v)−π
κ
t (u))Ft(u, v)

|u− v|1+γ
− C

�

Ft(u, v)
�2

|u− v|1+γ
dudvd t

)



 ® |I |(κ+ 1). (3.3.19)

Consider the Hilbert space L2([0,1]2, dµε) where µε is the measure whose density with
respect to Lebesgue measure is given by (u, v) ∈ [0,1]2→ 1|u−v|≥ε |u− v|−(1+γ). By taking

Πκ : (t; u, v) ∈ I × [0,1]2→ πκt (v)−π
κ
t (u),

the previous formula implies that

EQ

�

∫

I

∫∫

[0,1]2

�

Πκt (u, v)
�2

dµε(u, v)d t

�

® |I |(κ+ 1). (3.3.20)

Letting ε→ 0, by the monotone convergence theorem, we conclude that

∫

I

∫∫

[0,1]2

(πκt (v)−π
κ
t (u))

2

|u− v|1+γ
dudvd t <∞

Q almost surely.
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Second step:

∫

I

∫ 1

0

�

(α−πκt (u))
2

uγ
+
(β −πκt (u))

2

(1− u)γ

�

du d t <∞ Q almost surely. Now we

have to prove that the function (t, u)→ πκt (u)−α is in the space L2(I × (0, 1), d t⊗ dµ), where
µ is the measure whose density with respect to the Lebesgue measure is given by

u ∈ (0, 1)→
1
uγ

.

A similar argument shows that the function (t, u)→ πκt (u)−β belongs to L2([0, T]×(0,1), d t⊗
dµ′), where µ′ is the measure whose density with respect to the Lebesgue measure is given by

u ∈ [0,1]→
1

(1− u)γ
.

Let νN
h be the Bernoulli product measure corresponding to a profile h which is Lipschitz

such that h(0) = α ≤ h(u) ≤ β = h(1) for all u ∈ [0, 1]. Let G ∈ C∞c (I × [0, 1]). Using the
entropy and Jensen’s inequalities and the Feynman-Kac’s formula we get that

EµN

�

∫

I

Nγ−1
∑

x∈ΛN

Gt r
−
N

�

x
N

�

(ηN
x (t)−α)

�

d t

≤ C0 +

∫

I

sup
f

¨

Nγ−1
∑

x∈ΛN

(Gt r
−
N )
�

x
N

�

〈ηx −α, f 〉νN
h
+Θ(N)N−1

¬

LN

p

f ,
p

f
¶

νN
h

«

d t,

(3.3.21)

where the supremun is taken over all the densities f on ΩN with respect to νN
h . Using (3.3.14)

with B = 1 we can bound from above the second term on the right hand side of (3.3.21) by

−
Θ(N)
4N

DN (
p

f ,νN
h ) + CΘ(N)N−γ(κN−θ + 1),

and from 3.3.15 with Ax =
Gt

� x
N

�

κ the term on the right side of (3.3.21) is bounded from above
by

CNγ−1

κ

∑

x∈ΛN

r−N
�

x
N

��

Gt

�

x
N

��2
+ C(κ+ 1).

Taking N →∞ we can conclude that there exists a constant C ′ > 0 independent of G and of
t such that

EQ

�

∫

I

∫ 1

0

�

(πκt (u)−α)Gt(u)

|u|γ
−

C ′

κ

G2
t (u)

|u|γ

�

dud t

�

® |I |(κ+ 1).

From Lemma 7.5 in [41]we can insert the supremum over G inside the expectation above, and
we get

EQ

�

sup
G

¨

∫

I

∫ 1

0

�

(πκt (u)−α)Gt(u)

|u|γ
−

C ′

κ

G2
t (u)

|u|γ

�

dud t

«�

® |I |(κ+ 1). (3.3.22)
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The previous formula implies that
∫

I

∫ 1

0

(πκt (u)−α)
2

|u|γ
dud t <∞

Q almost surely. Similarly, we get
∫

I

∫ 1

0

(πκt (u)− β)
2

|u|γ
dud t <∞

Q almost surely.

Final step. By Definition 3.2.3, the two steps above allow us to show thatQ is concentrated on
trajectories of measures whose density is a weak solution of the corresponding hydrodynamic
equation (see Proposition 3.3.6). By uniqueness of the weak solution (see Lemma 3.2.8) we
get that Q is unique. Indeed, we have that Q = δ{ρκt (u)du} (Dirac mass). Then, by using the
latter, we compute the expectation in (3.3.20) and (3.3.22) and we are done.

3.3.4 Characterization of limit points

In the present subsection we characterize all limit pointsQ of the sequence {QN}N≥1, which we
know that exist from the results of Subsection 3.3.2. Let us assume without lost of generality,
that {QN}N≥1 converges to Q. Since there is at most one particle per site, it is easy to show
that Q is concentrated on trajectories of measures absolutely continuous with respect to the
Lebesgue measure, i.e. πκt (du) = ρκt (u)du (for details see [40]). In Proposition 3.3.6 below
we prove, for each range of θ , thatQ is concentrated on trajectories of measures whose density
satisfies a weak form of the corresponding hydrodynamic equation. Moreover, we have seen
in Theorem 3.3.3 that Q is concentrated on trajectories of measures whose density satisfies the
energy estimate, i.e. ρκ ∈ L2(0, T ;H γ/2) and

∫ T

0

∫ 1

0

�

(α−ρκt (u))
2

uγ
+
(β −ρκt (u))

2

(1− u)γ

�

dud t <∞.

Since a weak solution of the hydrodynamic equation (3.2.4) is unique we have thatQ is unique
and takes the form of a Dirac mass.

Proposition 3.3.6. If Q is a limit point of {QN}N≥1 then

1. if θ < 0:

Q
�

π· ∈ DT
M+ : FReac(t,ρ

κ, G, g) = 0,∀t ∈ [0, T], ∀G ∈ C1,2
c ([0, T]× [0,1])

�

= 1.

2. if θ = 0:

Q
�

π· ∈ DT
M+ : FDir(t,ρ

κ, G, g) = 0,∀t ∈ [0, T], ∀G ∈ C1,2
c ([0, T]× [0, 1])

�

= 1.
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Proof. Note that in order to prove the proposition, it is enough to verify, for δ > 0 and G in the
corresponding space of test functions, that

Q
�

π· ∈ DT
M+ : sup

0≤t≤T
|Fθ (t,ρκ, G, g)|> δ

�

= 0,

for each θ , where Fθ stands for FReac if θ < 0 and FDir if θ = 0 . Indeed, we have that

Fθ (t,ρ
κ, G, g) =




ρκt , Gt

�

− 〈g, G0〉 −
∫ t

0

¬

ρκs ,
�

∂s + 1{θ=0}L
�

Gs

¶

ds

+1{θ≤0}κ

∫ t

0




ρκs , Gs

�

V1
ds− 1{θ≤0}κ

∫ t

0

〈Gs, V0〉 ds = 0.

(3.3.23)

From here on, in order to simplify notation, we will erase π· from the sets that we have to
look at.

By definition of Fθ above we can bound from above the previous probability by the sum of

Q
�

sup
0≤t≤T

|Fθ (t,ρκ, G,ρ0)|>
δ

2

�

(3.3.24)

and

Q
�

|〈ρ0 − g, G0〉|>
δ

2

�

.

We note that last probability is equal to zero since Q is a limit point of {QN}N≥1 and QN is
induced by µN which is associated to g. Now we deal with (3.3.24). Since for θ ≤ 0 the
function Gs has compact support included in (0,1) the singularities of V0 and V1 are not present,
thus from Proposition A.3 of [33], the set inside the probability in (3.3.24) is an open set in the
Skorohod topology. Therefore, from Portmanteau’s Theorem we bound (3.3.24) from above
by

lim inf
N→∞

QN

�

sup
0≤t≤T

|Fθ (t,ρκ, G,ρ0)|>
δ

2

�

.

Summing and subtracting

∫ t

0

Θ(N)LN 〈πN
s , Gs〉ds to the term inside the previous absolute value,

recalling (3.3.1) and the definition of QN , we can bound the previous probability from above
by the sum of the next two terms

PµN

�

sup
0≤t≤T

�

�M N
t (G)

�

�>
δ

4

�

and

PµN

�

sup
0≤t≤T

�

�

�

�

�

∫ t

0

Θ(N)LN 〈πN
s , Gs〉ds−

∫ t

0




πN
s ,1{θ=0}LGs

�

ds

+ 1{θ≤0}κ

∫ t

0

〈ρs, Gs〉V1
ds −1{θ≤0}κ

∫ t

0

〈Gs, V0〉 ds

�

�

�

�

�

>
δ

4

�

.

(3.3.25)
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By Doob’s inequality we have that

PµN

�

sup
0≤t≤T

�

�M N
t (G)

�

�>
δ

4

�

®
1
δ2
EµN

�

∫ T

0

Θ(N)
�

LN 〈πN
s , G〉2 − 2〈πN

s , G〉LN 〈πN
s , G〉

�

ds

�

.

In the proof of Proposition 3.3.2 we have proved that the term inside the time integral in the
previous expression is O(Nγ−2). Then, using the fact that γ < 2 we have that last probability
vanishes as N →∞. It remains to prove that (3.3.25) vanishes as N →∞. For that purpose,
we recall (3.3.2) and we bound (3.3.25) from above by the sum of the following terms

PµN

�

sup
0≤t≤T

�

�

�

�

�

∫ t

0

Θ(N)

N − 1

∑

x∈ΛN

LN Gs(
x
N )η

N
x (s)ds−

∫ t

0




πN
s ,1{θ=0}LGs

�

ds

�

�

�

�

�

>
δ

24

�

, (3.3.26)

PµN

�

sup
0≤t≤T

�

�

�

�

�

∫ t

0

¨

κΘ(N)
Nθ (N − 1)

∑

x∈ΛN

(Gsr
−
N )(

x
N )(α−η

N
x (s))

−1{θ≤0}κ

∫ 1

0

(Gsr
−)(u)(α−ρκs (u))du

«

ds

�

�

�

�

�

>
δ

24

�

(3.3.27)

and

PµN

�

sup
0≤t≤T

�

�

�

�

�

∫ t

0

¨

κΘ(N)
Nθ (N − 1)

∑

x∈ΛN

(Gsr
+
N )(

x
N )(β −η

N
x (s))

−1{θ≤0}κ

∫ 1

0

(Gsr
+)(u)(β −ρκs (u))du

«

ds

�

�

�

�

�

>
δ

24

�

. (3.3.28)

For θ = 0 from (3.3.4) we have that (3.3.26) goes to 0 as N →∞. For θ ≤ 0 we have that
from Lemma 3.3.1 the boundary terms (3.3.27) and (3.3.28) go to 0 as N →∞. This finishes
the proof Proposition 3.3.6.

3.4 Proof of Theorem 3.2.10

For an easy understanding of the proof of items i) and ii) of Theorem 3.2.10, we first introduce
some notation and prove some lemmata.

Recall the function ρ̄∞ introduced in Remark 3.2.7 which can be rewritten as

ρ̄∞(u) =
βuγ +α(1− u)γ

uγ + (1− u)γ
.

We have that ρ̄∞(0) = α and ρ̄∞(1) = β . Moreover, it is not difficult to see that ρ̄∞ ∈
C1([0, 1]) and that

lim
u→0
(ρ̄∞(u))′u2−γ = lim

u→1
(ρ̄∞(u))′(1− u)2−γ = 0,
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and from Lemma 7.2 of [37] we conclude that

‖ρ̄∞‖γ/2 <∞. (3.4.1)

Hereinafter, we simplify the notation of ρ∞, 1 (see Remark 3.2.7) by denoting it by ρ∞.
By the fractional Hardy’s inequality (see e.g. [28]) and the fact that V1(

1
2) ≤ V1(u) for all

u ∈ (0,1) we know that
‖g‖®‖g‖V1

®‖g‖γ/2 (3.4.2)

for any g ∈H γ/2
0 .

In order to prove items i) and ii) of Theorem 3.2.10 we first guarantee the existence of weak
solutions of equation (3.2.4) with κ̂= 0 and (3.2.6), (see Lemmas 3.4.1 and 3.4.3 below), then
we establish the convergence in L2(0, T ; L2) (see Lemmas 3.4.2 and 3.4.4 below) which will
allow us to conclude.

Lemma 3.4.1. Let ρ0 : [0, 1] → [0, 1] be a measurable function. Then, there exists a weak
solution of (3.2.4) with κ̂= 0 and initial condition ρ0.

Proof. The strategy of the proof is to construct the solution as the limit of ρκ, as κ→ 0, where
ρκ is the weak solution of (3.2.4) with initial condition ρ0 and κ̂= κ.

By item i) in Theorem 3.3.3 and since κ > 0 we know that
∫

I

‖ρκt ‖
2
γ/2d t ® |I |(κ+ 1) (3.4.3)

for any interval I ⊂ [0, T]. We define

∀t ∈ [0, T], ∀u ∈ [0, 1], ϕκt (u) := ρκt (u)− ρ̄
∞(u). (3.4.4)

Since we are interested in small values of κ, say κ ≤ 1, from (3.4.3), (3.4.1) and the fact
(a+ b)2 ≤ 2a2 + 2b2, it is not difficult to see that

∫

I

‖ϕκt ‖
2
γ/2d t ® |I |, (3.4.5)

thus we have that ϕκ ∈ L2(0, T ;H γ/2
0 ). It is also easy to see that ϕκ satisfies

〈ϕκt , Gt〉 − 〈ϕ0, G0〉 −
∫ t

0




ϕκs , (L+ ∂s)Gs

�

ds+ κ

∫ t

0

〈ϕκs , Gs〉V1
ds−

∫ t

0

〈ρ̄∞,LGs〉ds = 0

(3.4.6)

for all t ∈ [0, T], for any function G ∈ C1,∞
c ([0, T]× (0, 1)) and where ϕ0(u) = ρ0(u)− ρ̄∞(u).

From (3.4.5) we conclude that there exists a subsequence of {ϕκ}κ∈(0,1) converging weakly to

some element ϕ0 ∈ L2(0, T ;H γ/2
0 ) as κ → 0. We claim that ρ0 := ρ̄∞ + ϕ0 is the desired

solution. Indeed, first note that since the norm ‖·‖γ/2 is weakly lower-semicontinuous we have
that

∫

I

‖ϕ0
t ‖

2
γ/2d t ® |I |. (3.4.7)
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By using (a+ b)2 ≤ 2a2 + 2b2 we have that
∫

I

‖ρ0
t ‖

2
γ/2d t ≤ 2

∫

I

‖ρ̄∞‖2
γ/2d t + 2

∫

I

‖ϕ0
t ‖

2
γ/2d t ® |I |.

Taking I = [0, T], we have thatρ0 satisfies item i) of Definition 3.2.3. Sinceϕ0 ∈ L2(0, T ;H γ/2
0 ),

it is easy to see that ρ0
t (0) = ρ̄

∞(0) = α and ρ0
t (1) = ρ̄

∞(1) = β for almost every t ∈ [0, T].
Then, item ii) for κ̂ = 0 in Definition 3.2.3 is satisfied. In order to verify that ρ0 satisfies item
iii) in Definition 3.2.3 we first integrate (3.4.6) over [0, t]. Thus we have that

∫ t

0

〈ϕκs , Gs〉ds− t〈ϕ0, G0〉 −
∫ t

0

∫ s

0




ϕκr , (L+ ∂r)Gr

�

drds

+κ

∫ t

0

∫ s

0

〈ϕκr , Gr〉V1
drds−

∫ t

0

∫ s

0

〈ρ̄∞,LGr〉drds = 0

for any function G ∈ C1,∞
c ([0, T]× (0, 1)). Taking κ→ 0, by weak convergence and Lebesgue’s

dominated convergence theorem we get from the previous equality that
∫ t

0

〈ϕ0
s , Gs〉ds− t〈ϕ0, G0〉 −

∫ t

0

∫ s

0

�


ϕ0
r , (L+ ∂r)Gr

�

− 〈ρ̄∞,LGr〉
	

drds = 0.

Now, taking the derivative with respect to t in the previous equality we get that ϕ0 satisfies

〈ϕ0
t , Gt〉 − 〈ϕ0, G0〉 −

∫ t

0

〈ϕ0
s ,
�

L+ ∂s

�

Gs〉 ds−
∫ t

0

〈ρ̄∞,LGs〉ds = 0, (3.4.8)

for all t ∈ [0, T]. Then, item iii) with κ = 0 in Definition 3.2.3 follows from (3.4.8), the
definition of ρ0 and ρ̄∞.

Lemma 3.4.2. Let ρ0 : [0,1]→ [0,1] be a measurable function. Let ρκ be the weak solution of
(3.2.4) with initial condition ρ0 and κ̂= κ. Then, ρκ converges strongly to ρ0 in L2(0, T ; L2) as
κ goes to 0, where ρ0 is the weak solution of (3.2.4) with κ̂= 0 and initial condition ρ0.

Proof. Note that it is enough to show that
∫ t

0

‖ρκs −ρ
0
s ‖

2 ds ® t2κ,

for all t ∈ [0, T]. By Lemma 3.4.1 we know that ρ0 = ρ̄∞ + ϕ0. Then, last inequality is
equivalent to

∫ t

0

‖ϕκs −ϕ
0
s ‖

2 ds ® t2κ. (3.4.9)

By subtracting (3.4.8) from (3.4.6) and calling δk
t := ϕκt −ϕ

0
t we obtain that

〈δκt , Gt〉 −
∫ t

0




δκs , (L+ ∂s)Gs

�

ds = −κ
∫ t

0

〈ϕκs , Gs〉V1
ds (3.4.10)
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for any function G ∈ C1,∞
c ([0, T]× (0,1)). Let {Hκ

n}n≥1 be a sequence of functions in the space
C1,∞

c ([0, T]× (0,1)) converging to δκ as n→∞ with respect to the norm of L2(0, T ;H γ/2
0 )

and for n ≥ 1, let Gκn (s, u) =
∫ t

s
Hκ

n (r, u)dr. We claim that by plugging Gn into (3.4.10) and
taking n→∞ we get that

∫ t

0

‖δκs ‖
2 ds+

1
2
















∫ t

0

δκs ds
















2

γ/2

= −κ
∫ t

0

�

ϕκs ,

∫ t

s

δκr dr

�

V1

ds. (3.4.11)

We postpone the justification of the equality above to the end of the proof. Now, by using
successively the Cauchy-Schwarz’s inequality we have that

∫ t

0

‖δκs ‖
2 ds+

1
2
















∫ t

0

δκs ds
















2

γ/2

≤ κ
∫ t

0

‖ϕκs ‖V1
















∫ t

s

δκr dr
















V1

ds

® κ

√

√

√

∫ t

0

‖ϕκs ‖
2
γ/2ds

√

√

√

√

∫ t

0
















∫ t

s

δκr dr
















2

γ/2

ds.

(3.4.12)

In the last inequality of the previous expression we used (3.4.2). By the triangular inequality

we have that

√

√
∫ t

0










∫ t

s
δκr dr










2

γ/2
ds is bounded from above by

√

√

√

∫ t

0

�∫ t

s

‖δκr ‖γ/2dr

�2

ds ≤

√

√

√

t

∫ t

0

∫ t

0

‖δκr ‖
2
γ/2drds ®

√

√

√

t2

∫ t

0

�

‖ϕκr ‖
2
γ/2 + ‖ϕ0

r ‖
2
γ/2

�

dr.

(3.4.13)

In the first inequality in the previous display we used the Cauchy-Schwarz’s inequality and
in the second inequality we used the Minkowski’s inequality and the inequality (a + b)2 ≤
2(a2 + b2). Using (3.4.5) and (3.4.7), we get from (3.4.12) and (3.4.13) the result.

We conclude this proof justifying (3.4.11). Note that it is enough to show that

i) lim
n→∞

∫ t

0

〈δκs , (∂sG
κ
n )(s, ·)〉ds = −

∫ t

0

‖δκs ‖
2ds.

ii) lim
n→∞

∫ t

0

〈δκs ,LGκn (s, ·)〉ds = −
1

2










∫ t

0

δκs ds









2

γ/2
.

iii) lim
n→∞

∫ t

0




ϕκs , Gκn (s, ·)
�

V1
ds =

∫ t

0

�

ϕκs ,

∫ t

s

δκr dr

�

V1

ds.

For i) we rewrite
∫ t

0
〈δκs , (∂sG

κ
n )(s, ·)〉ds as

−
∫ t

0

〈δκs , Hκ
n (s, ·)〉 ds = −

∫ t

0




δκs , Hκ
n (s, ·)−δ

κ
s

�

ds−
∫ t

0

‖δκs ‖
2 ds.
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Observe then that by the Cauchy-Schwarz’s inequality we have
�

�

�

�

�

∫ T

0




δκs , Hκ
n (s, ·)−δ

κ
s

�

ds

�

�

�

�

�

≤
∫ T

0

‖δκs ‖‖H
κ
n (s, ·)−δ

κ
s ‖ ds

≤

√

√

√

∫ T

0

‖δκs ‖2 ds

√

√

√

∫ T

0

‖Hκ
n (s, ·)−δκs ‖2 ds

which goes to 0 as n→∞ since Hκ
n → δ

κ
s in L2(0, T ;H γ/2

0 ). For ii), since Gn has compact sup-
port included in (0,1), we can use the integration by parts formula for the regional fractional
Laplacian (see Theorem 3.3 in [37]) which permits to write

∫ t

0

〈δκs ,LGκn (s, ·)〉ds = −
∫ t

0

¬

δκs , Gκn (s, ·)
¶

γ/2
ds.

Then we have
∫ t

0

¬

δκs , Gκn (s, ·)
¶

γ/2
ds is equal to

∫ t

0

¬

δκs ,

∫ t

s

δκr dr
¶

γ/2
ds+

∫ t

0

¬

δκs , Gκn (s, ·)−
∫ t

s

δκr dr
¶

γ/2
ds

=

∫∫

0≤s<r≤t

〈δκs , δκr 〉γ/2 dsdr +

∫ t

0

¬

δκs ,

∫ t

s

�

Hκ
n (r, ·)−δ

κ
r

�

dr
¶

γ/2
ds

=
1

2

∫∫

[0,t]2
〈δκs , δκr 〉γ/2 dsdr +

∫ t

0

¬

δκs ,

∫ t

s

�

Hκ
n (r, ·)−δ

κ
r

�

dr
¶

γ/2
ds

=
1

2










∫ t

0

δκs ds









2

γ/2
+

∫ t

0

¬

δκs ,

∫ t

s

�

Hκ
n (r, ·)−δ

κ
r

�

dr
¶

γ/2
ds.

To conclude the proof of ii) it is sufficient to show that the term at the right hand side of last
expression vanishes as n goes to∞. Indeed, such a term is bounded from above by

∫ t

0








δκs










γ/2










∫ t

s

�

Hκ
n (r, ·)−δ

κ
r

�

dr









γ/2
ds ≤

∫ t

0








δκs










γ/2

∫ t

s








Hκ
n (r, ·)−δ

κ
r










γ/2
dr ds

≤
∫ t

0








δκs










γ/2

∫ t

0








Hκ
n (r, ·)−δ

κ
r










γ/2
dr ds =

�∫ t

0








δκs










γ/2
ds

� �∫ t

0








Hκ
n (r, ·)−δ

κ
r










γ/2
dr

�

≤t

√

√

√

∫ t

0








δκs










2

γ/2
ds

√

√

√

∫ t

0








Hκ
n (r, ·)−δκr










2

γ/2
dr −−−→

n→∞
0.

(3.4.14)

Note that we obtained the inequalities above as consequence of a successive use of Cauchy-
Schwarz’s inequalities.
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To prove iii) we rewrite
∫ t

0
〈ϕκs , Gκn (s, ·)〉V1

ds as
∫ t

0

�

ϕκs ,

∫ t

s

�

Hκ
n (r, ·)−δ

κ
r

�

dr

�

V1

ds+

∫ t

0

�

ϕκs ,

∫ t

s

δκr dr

�

V1

ds

and, to conclude the proof it is sufficient to show that the term at the left hand side of last
expression vanishes as n → ∞. Indeed, as consequence of a successive use of the Cauchy-
Schwarz’s inequality such a term is bounded from above by

∫ t

0








ϕκs










V1










∫ t

s

�

Hκ
n (r·)−δ

κ
r

�

dr









V1

ds ≤ t

√

√

√

∫ t

0








ϕκs










2

V1

ds

√

√

√

∫ t

0








Hκ
n (r, ·)−δκr










2

V1

dr

≤C t

√

√

√

∫ t

0








ϕκs










2

γ/2
ds

√

√

√

∫ t

0








Hκ
n (r, ·)−δκr










2

γ/2
dr −−−→

n→∞
0

where in the last inequality we used the fractional Hardy’s inequality (see (3.4.2)).

Lemma 3.4.3. Let ρ0 : [0, 1] → [0,1] be a measurable function. Consider the function ρ∞t =
ρ̄∞ + (ρ0 − ρ̄∞)e−tV1 . If g∞ := ρ0 − ρ̄∞ ∈H γ/2, then

i) ρ∞ ∈ L2(0, T ;H γ/2) .

ii) ρ∞ is a weak solution of (3.2.6) with initial condition ρ0.

Proof. For i) note that by using the inequality (a+ b)2 ≤ 2a2 + 2b2 we get that
∫ T

0

‖ρ∞t ‖
2
γ/2d t ≤ 2T‖ρ̄∞‖2

γ/2 + 2

∫ T

0





g∞e−tV1






2

γ/2 d t.

Since ‖ρ̄∞‖γ/2 <∞ (see (3.4.1)) it is enough to prove that the term on the right hand side of

last expression is finite. Note that




g∞e−tV1






2

γ/2 is equal to

cγ
2

∫∫

[0,1]2

�

g∞(u)e−tV1(u) − g∞(v)e−tV1(v)
�2

|u− v|γ+1
dudv

=
cγ
2

∫∫

[0,1]2

�

g∞(u)
�

e−tV1(u) − e−tV1(v)
�

+ (g∞(u)− g∞(v)) e−tV1(v)
�2

|u− v|γ+1
dudv.

Using the fact that (a+ b)2 ≤ 2a2+2b2 and that |g∞(u)| ≤ 2 for any u ∈ [0, 1] we get that last
expression is less than 8‖e−tV1‖2

γ/2+2‖g∞‖2
γ/2. Note that the term 8‖e−tV1‖2

γ/2 can be written as

4cγ

∫∫

[0,1]2

�∫ u

v
−tV ′1(w)e

−tV1(w)dw
�2

|u− v|γ+1
dudv

=4cγ

∫∫

[0,1]2

�∫ u

v
t
�

γ

w r−(w)− γ

1−w r+(w)
�

e−tV1(w)dw
�2

|u− v|γ+1
dudv.
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Using again (a+ b)2 ≤ 2a2 + 2b2 and the fact that e−tV1(w) ≤ e−t r±(w) for any w ∈ [0, 1], we get
that last expression is bounded from above by

8cγ

∫∫

[0,1]2

�∫ u

v
γ

w t r−(w)e−t r−(w)dw
�2

|u− v|γ+1
+

�∫ u

v
γ

1−w t r+(w)e−t r+(w)dw
�2

|u− v|γ+1
dudv

=16cγ

∫∫

[0,1]2

�∫ u

v
γ

w t r−(w)e−t r−(w)dw
�2

|u− v|γ+1
dudv.

In the last equality we used a symmetry argument. We can write last expression as

Cγ t
2−2γ
γ

∫∫

[0,1]2

�

∫ u

v
wγ−2(t r−(w))

2γ−1
γ e−t r−(w)dw

�2

|u− v|γ+1
dudv,

where Cγ = 16c
2−γ
γ

γ γ
4γ−2
γ . Since the function Eγ : [0,∞)→ [0,∞) defined as Eγ(z) = z

2γ−1
γ e−z

is bounded from above by Eγ
�

2γ−1
γ

�

, we can bound last expression from above by

Cγ t
2−2γ
γ E2

γ
(2γ−1
γ )

∫∫

[0,1]2

�∫ u

v
wγ−2dw

�2

|u− v|γ+1
dudv

= Cγ t
2−2γ
γ E2

γ
(2γ−1
γ )(γ− 2)−2

∫∫

[0,1]2

�

uγ−1 − vγ−1
�2

|u− v|γ+1
dudv,

which is finite from (7.2) in the proof of Lemma 7.2 of [37]. Thus, we have that

8‖e−tV1‖2
γ/2 ® t

2−2γ
γ . (3.4.15)

Therefore, if g∞ ∈H γ/2 then we conclude that

∫ T

0

‖ρ∞t ‖
2
γ/2d t ® T‖ρ̄∞‖2

γ/2 + T ‖g∞‖2
γ/2 +

∫ T

0

t
2−2γ
γ d t ® T‖ρ̄∞‖2

γ/2 + T ‖g∞‖2
γ/2 + T

2−γ
γ ,

which is finite since γ < 2.

For ii), since ρ∞ is the solution of (3.2.6) then it satisfies item ii) of Definition 3.2.6. In
order to see that ρ∞ satisfies item i) of Definition 3.2.6, note that using (a+ b)2 ≤ 2a2 + 2b2
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we have that
∫ T

0

∫ 1

0

 
�

α−ρ∞t (u)
�2

uγ
+

�

β −ρ∞t (u)
�2

(1− u)γ

!

dud t

≤ 2T

∫ 1

0

�

(α− ρ̄∞(u))2

uγ
+
(β − ρ̄∞(u))2

(1− u)γ

�

du+
8γ
cγ

∫ T

0

‖e−tV1‖2
V1

d t

= 2T (β −α)2
∫ 1

0

(uγ + (1− u)γ) du+
8γ
cγ

∫ T

0

‖e−tV1‖2
V1

d t

≤ 2γ(β −α)2T +
8γ
cγ

∫ T

0

‖e−tV1‖2
V1

d t.

For the term on the right hand side of last expression we first see that we can extend continu-
ously the function e−tV1 in such a way that it vanishes at 0 and at 1. There exists a constant C2

(see 3.4.2) such that the previous expression is bounded from above by

2γ(β −α)2T +
8γC2

2

cγ

∫ T

0

‖e−tV1‖2
γ/2d t.

Thus, we obtain the desired result by using (3.4.15).

Lemma 3.4.4. Let ρ0 : [0, 1] → [0, 1] be a measurable function, such that ρ0 − ρ̄∞ ∈ H γ/2.
Furthermore, let ρκ and ρ∞ be the weak solutions of (3.2.4) with κ̂= κ and (3.2.6), respectively,
and with the same initial condition ρ0. Let ρ̂κt := ρκt/κ , for all t ∈ [0, T]. Then ρ̂κ converges
strongly to ρ∞ in L2(0, T ; L2), as κ goes to∞.

Proof. It is enough to show that
∫ t

0

‖ρ̂κs −ρ
∞
s ‖

2 ds =

∫ t

0

‖ϕ̂κs −ϕ
∞
s ‖

2 ds ®
1
p
κ

, (3.4.16)

for all t ∈ [0, T] where ϕ̂κt = ρ̂
κ
t − ρ̄

∞ and ϕ∞t = (ρ0− ρ̄∞)e−tV1 . It is not difficult to see that
ϕ̂κt satisfies

〈ϕ̂κt , Gt〉 − 〈ϕ0, G0〉 −
∫ t

0

〈ϕ̂κs ,∂sGs〉 ds+

∫ t

0

〈ϕ̂κs , Gs〉V1
ds−

1
κ

∫ t

0

〈ρ̂κs ,LGs〉ds = 0 (3.4.17)

for all functions G ∈ C1,∞
c ([0, T]× (0,1)). Then, calling δ̂k := ϕ̂κ −ϕ∞ we have that

〈δ̂κt , Gt〉 −
∫ t

0




δ̂κs ,
�

1
κL+ ∂s

�

Gs

�

ds+

∫ t

0




δ̂κs , Gs

�

V1
=

1
κ

∫ t

0

〈ρ∞s , Gs〉γ/2ds (3.4.18)

for any function G ∈ C1,∞
c ([0, T] × (0,1)). Let {Ĥκ

n}n≥1, be a sequence of functions in the
space C1,∞

c ([0, T], (0,1)) converging to δ̂κ with respect to the norm of L2(0, T ;H γ/2
0 ). Now,
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for n ≥ 1 we define the test function Ĝκn (s, u) =
∫ t

s
Ĥκ

n (r, u)dr. Plugging Ĝκn into (3.4.18) and
using a similar argument as in proof of Lemma 3.4.2 we get that

∫ t

0

‖δ̂κs ‖
2 ds+

1
2κ
















∫ t

0

δ̂κs ds
















2

γ/2

+
1
2
















∫ t

0

δ̂κs ds
















2

V1

=
1
κ

∫ t

0

�

ρ∞s ,

∫ t

s

δ̂κr dr

�

γ/2

ds.

By neglecting terms we get that
∫ t

0

‖ρ̂κs −ρ
∞
s ‖

2 ds =

∫ t

0

‖δ̂κs ‖
2 ds ≤

1
κ

∫ t

0

�

ρ∞s ,

∫ t

s

δ̂κr dr

�

γ/2

ds.

Then it suffices to show that

1
κ

∫ t

0

�

ρ∞s ,

∫ t

s

δ̂κr dr

�

γ/2

ds ®
1
p
κ

.

Indeed, by using twice the Cauchy-Schwarz’s inequality we have that the term at the left hand
side of the previous expression is bounded from above by

1
κ

∫ t

0

‖ρ∞s ‖γ/2
















∫ t

s

δ̂κr dr
















γ/2

ds ≤
1
κ

√

√

√

∫ t

0

‖ρ∞s ‖
2
γ/2ds

√

√

√

√

∫ t

0
















∫ t

s

δ̂κr dr
















2

γ/2

ds.

Since by hypothesis ρ0 − ρ̄∞ ∈ H γ/2 we know from item i) of Lemma 3.4.3 that ρ∞ ∈
L2(0, T ;H γ/2). Thus, from the latter and by the triangular inequality, the right hand side
in the previous expression can be bounded from above by a constant times

1
κ

√

√

√

∫ t

0

�∫ t

s

‖δ̂κr ‖γ/2dr

�2

ds ®
1
κ

√

√

√

t

�∫ t

0

‖δ̂κr ‖γ/2dr

�2

.

By using again the Cauchy-Schwarz’s inequality, the term on the right hand side in the last
expression is bounded from above by

1
κ

√

√

√

t2

∫ t

0

‖δ̂κr ‖
2
γ/2dr =

1
κ

√

√

√

t2

∫ t

0

‖ρ̂κr −ρ∞r ‖
2
γ/2dr ®

1
κ

√

√

√

2t2

∫ t

0

‖ρ̂κr ‖
2
γ/2 + ‖ρ∞r ‖

2
γ/2dr.

In the last inequality we used the Minkowski’s inequality and the fact that (a+ b)2 ≤ 2a2+2b2.
Now, since

∫ t

0
‖ρ̂κr ‖

2
γ/2dr ®κ (this is due to item i) of Theorem 3.3.3 and a change of variables)

and ρ∞ ∈ L2(0, T ;H γ/2) we can see that

1
κ

√

√

√

2t2

∫ t

0

‖ρ̂κr ‖
2
γ/2 + ‖ρ∞r ‖

2
γ/2dr ®

1
κ

p
κ+ 1®

1
p
κ

,

and we are done.
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3.4.1 Proof of item i) of Theorem 3.2.10.

Recall ϕκt defined in (3.4.4). Note that it is enough to show (3.4.9) with ‖ · ‖ replaced with
‖ · ‖γ/2. From (3.4.10) we obtain, for ε > 0, that

〈δκt+ε, Gt+ε〉 − 〈δκt , Gt〉 −
∫ t+ε

t

〈δκs , (L+ ∂s)Gs〉 ds = −κ
∫ t+ε

t

〈ϕκs , Gs〉V1
ds (3.4.19)

for any function G ∈ C1,∞
c ([0, T]× [0, 1]). Let {Hκ

n}n≥1 be a sequence of functions in the space
C1,∞

c ([0, T], (0, 1)) converging to δκ with respect to the norm of L2(0, T ;H γ/2
0 ) as n →∞.

Now, for n ≥ 1, we define the test function Gκn (t, u) = 1
ε

∫ t+ε

t
Hκ

n (r, u)dr. Plugging Gκn into last
equality and taking n→∞, a similar argument to the one of the proof of Lemma 3.4.2 allows
to get

1
ε

�

δκt+ε −δ
κ
t ,

∫ t+ε

t

δκr dr

�

+ ε
















1
ε

∫ t+ε

t

δκr dr
















2

γ/2

= κ

∫ t+ε

t

�

ϕκs ,
1
ε

∫ t+ε

t

δκr dr

�

V1

ds.

Integrating last equality over [0, t̃] we get:

ε

∫ t̃

0
















1
ε

∫ t+ε

t

δκr dr
















2

γ/2

d t =κ

∫ t̃

0

∫ t+ε

t

�

ϕκs ,
1
ε

∫ t+ε

t

δκr dr

�

V1

ds d t

−
1
ε

∫ t̃

0

�

δκt+ε −δ
κ
t ,

∫ t+ε

t

δκr dr

�

d t.

(3.4.20)

Now we use the Cauchy-Schwarz’s inequality, Hardy’s inequality (see (3.4.2)) and (3.4.5) to
get that

κ

∫ t̃

0

∫ t+ε

t

�

ϕκs ,
1
ε

∫ t+ε

t

δκr dr

�

V1

ds d t ®κ
∫ t̃

0

∫ t+ε

t

‖ϕκs ‖γ/2
















1
ε

∫ t+ε

t

δκr dr
















γ/2

ds d t

®κ

√

√

√

∫ t̃

0

∫ t+ε

t

‖ϕκs ‖
2
γ/2dsd t

√

√

√

√

∫ t̃

0

∫ t+ε

t
















1
ε

∫ t+ε

t

δκr dr
















2

γ/2

ds d t

®κε
p

t̃

√

√

√

√

∫ t̃

0
















1
ε

∫ t+ε

t

δκr dr
















2

γ/2

d t.

(3.4.21)
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Let us estimate the second term on the right hand side (3.4.20). First note that by changing
variables we have that

−
1
ε

∫ t̃

0

�

δκt+ε −δ
κ
t ,

∫ t+ε

t

δκr dr

�

d t

=
1
ε

∫ t̃

0

∫ t+ε

t

〈δκt ,δκr 〉drd t −
1
ε

∫ t̃

0

∫ t+ε

t

〈δκt+ε,δ
κ
r 〉drd t

=
1
ε

∫ t̃

0

∫ r+ε

r

〈δκt ,δκr 〉d tdr −
1
ε

∫ t̃+ε

ε

∫ t

t−ε
〈δκt ,δκr 〉drd t.

(3.4.22)

The first term first term at the right hand side of the last equality can be split as

1
ε

�

∫ ε

0

∫ ε

r

〈δκt ,δκr 〉d tdr +

∫ ε

0

∫ r+ε

ε

〈δκt ,δκr 〉d tdr +

∫ t̃

ε

∫ r+ε

r

〈δκt ,δκr 〉d tdr

�

.

By Fubini’s theorem, we have that the second term at the right hand side of (3.4.22) is equal
to

1
ε

�

∫ ε

0

∫ r+ε

ε

〈δκt ,δκr 〉d tdr +

∫ t̃

ε

∫ r+ε

r

〈δκt ,δκr 〉d tdr +

∫ t̃+ε

t̃

∫ t̃+ε

r

〈δκt ,δκr 〉d tdr

�

.

Therefore we can write the second term on the right hand side of (3.4.20) as

−
1
ε

∫ t̃+ε

t̃

∫ t̃+ε

r

〈δκt ,δκr 〉d t dr +
1
ε

∫ ε

0

∫ ε

r

〈δκt ,δκr 〉d t dr

≤
1
ε

∫ t̃+ε

t̃

∫ t̃+ε

t̃

‖δκt ‖‖δ
κ
r ‖d t dr +

1
ε

∫ ε

0

∫ ε

0

‖δκt ‖‖δ
κ
r ‖d t dr

=
1
ε

�

∫ t̃+ε

t̃

‖δκt ‖ d t

�2

+
1
ε

�∫ ε

0

‖δκt ‖ d t

�2

≤
∫ t̃+ε

t̃

‖δκt ‖
2d t +

∫ ε

0

‖δκt ‖
2d t,

(3.4.23)

where in the inequalities above we used the Cauchy-Schwarz’s inequality. Then, using (3.4.21)
and (3.4.23) in (3.4.20) we obtain that

∫ t̃

0
















1
ε

∫ t+ε

t

δκr dr
















2

γ/2

d t ®κ
p

t̃

√

√

√

√

∫ t̃

0
















1
ε

∫ t+ε

t

δκr dr
















2

γ/2

d t +
1
ε

∫ t̃+ε

t̃

‖δκt ‖
2d t +

1
ε

∫ ε

0

‖δκt ‖
2d t.

Taking ε → 0, using Lebesgue’s differentiation Theorem (see Theorem 1.35 in [53]) and the
fact that δκ0 = 0 (since the initial condition for ρκ and ρ0 is the same) we get that

∫ t̃

0

‖δκt ‖
2
γ/2d t ®κ

p

t̃

√

√

√

∫ t̃

0

‖δκt ‖2
γ/2d t + ‖δκt̃ ‖

2,
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for all t̃ ∈ [0, T]. Integrating last inequality over [0, T] and using the Cauchy-Schwarz’s in-
equality and (3.4.9) we conclude that

∫ T

0

∫ t̃

0

‖δκt ‖
2
γ/2d td t̃ ®κT

√

√

√

∫ T

0

∫ t̃

0

‖δκt ‖2
γ/2d td t̃ +κT 2, (3.4.24)

where in the last inequality we have used (3.4.9). Then, by a simple computation we have that
∫ T

0

∫ t̃

0

‖δκt ‖
2
γ/2d td t̃ ®κT 2. (3.4.25)

By Fubini’s Theorem, we get that
∫ T

0

∫ t̃

0

‖δκt ‖
2
γ/2 d td t̃ =

∫ T

0

(T − t)‖δκt ‖
2
γ/2 d t ≥

T
2

∫ T/2

0

‖δκt ‖
2
γ/2 d t. (3.4.26)

The result now follows from (3.4.25) and (3.4.26).

3.4.2 Proof of item ii) of Theorem 3.2.10

Recall ϕ̂κt and ϕ∞t defined in Lemma 3.4.4. It is enough to show (3.4.16) with ‖ · ‖ replaced
with ‖ · ‖V1

:
∫ T

0

‖ϕ̂κt −ϕ
∞
t ‖

2
V1

d t ®
1
p
κ

. (3.4.27)

From (3.4.18), we obtain, for ε > 0, that

〈δ̂κt+ε, Gt+ε〉−〈δ̂κt , Gt〉−
∫ t+ε

t

〈δ̂κs ,
�1
κ
L+∂s

�

Gs〉 ds+

∫ t+ε

t

〈δ̂κs , Gs〉V1
ds =

1
κ

∫ t+ε

t

〈ρ∞s , Gs〉γ/2ds

(3.4.28)

for any function G ∈ C1,∞
c ([0, T]× [0, 1]). Let {Ĥκ

n}n≥1 be a sequence of functions in the space
C1,∞

c ([0, T], (0, 1)) converging to δ̂κ with respect to the norm of L2(0, T ;H γ/2
0 ) as n →∞.

Now, for n ≥ 1 we define the test functions Ĝκn (u) =
1
ε

∫ t+ε

t
Ĥκ

n (r, u)dr. Plugging Ĝκn into
(3.4.28) and taking n→∞, a similar argument to the one of the proof of Lemma 3.4.2 allows
to get

1
ε

�

δ̂κt+ε − δ̂
κ
t ,

∫ t+ε

t

δ̂κr dr

�

+
ε

κ
















1
ε

∫ t+ε

t

δ̂κr dr
















2

γ/2

+ ε
















1
ε

∫ t+ε

t

δ̂κr dr
















2

V1

=
1
κ

∫ t+ε

t

�

ρ∞s ,
1
ε

∫ t+ε

t

δ̂κr dr

�

γ/2

ds. (3.4.29)
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By neglecting the term
ε

κ










1
ε

∫ t+ε

t
δ̂κr dr










2

γ/2
in (3.4.29) and then integrating that equality over

[0, t̃] we get that

ε

∫ t̃

0
















1
ε

∫ t+ε

t

δ̂κr dr
















2

V1

d t ≤
1
κ

∫ t̃

0

∫ t+ε

t

�

ρ∞s ,
1
ε

∫ t+ε

t

δ̂κr dr

�

γ/2

ds d t

−
1
ε

∫ t̃

0

�

δ̂κt+ε − δ̂
κ
t ,

∫ t+ε

t

δ̂κr dr

�

d t. (3.4.30)

Now we use twice the Cauchy-Schwarz’s inequality in order to get that the first term on the
right hand side in the previous expression is bounded from above by

1
κ

∫ t̃

0

∫ t+ε

t

‖ρ∞s ‖γ/2
















1
ε

∫ t+ε

t

δ̂κr dr
















γ/2

ds d t

≤
1
κ

√

√

√

∫ t̃

0

∫ t+ε

t

‖ρ∞s ‖
2
γ/2dsd t

√

√

√

√

∫ t̃

0

∫ t+ε

t
















1
ε

∫ t+ε

t

δ̂κr dr
















2

γ/2

ds d t

≤
p
ε

κ

√

√

√

∫ t̃

0

∫ t+ε

t

‖ρ∞s ‖
2
γ/2dsd t

√

√

√

√

∫ t̃

0
















1
ε

∫ t+ε

t

δ̂κr dr
















2

γ/2

d t.

(3.4.31)

By a similar argument as the one in the proof of item i) of Theorem 3.2.10 we have that the
second term on the right hand side in (3.4.30) is bounded from above by

1
ε

∫ t̃+ε

t̃

‖δ̂κt ‖
2d t +

1
ε

∫ ε

0

‖δ̂κt ‖
2d t. (3.4.32)

Therefore, by using (3.4.31) and (3.4.32) in (3.4.30) we get that

∫ t̃

0
















1
ε

∫ t+ε

t

δ̂κr dr
















2

V1

d t ≤
1
κ

√

√

√

∫ t̃

0

1
ε

∫ t+ε

t

‖ρ∞s ‖
2
γ/2dsd t

√

√

√

√

∫ t̃

0
















1
ε

∫ t+ε

t

δ̂κr dr
















2

γ/2

d t

+
1
ε

∫ t̃+ε

t̃

‖δ̂κt ‖
2d t +

1
ε

∫ ε

0

‖δ̂κt ‖
2d t.

Taking ε → 0, using Lebesgue’s differentiation Theorem (see Theorem 1.35 in [53]) and the
fact that δ̂κ0 = 0 we get that

∫ t̃

0

‖δ̂κt ‖
2
V1

d t ≤
1
κ

√

√

√

∫ t̃

0

‖ρ∞t ‖2
γ/2d t

√

√

√

∫ t̃

0

‖δ̂κt ‖2
γ/2d t + ‖δ̂κt̃ ‖

2,
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for all t̃ ∈ [0, T]. Integrating the previous expression over [0, T] and using the Cauchy-
Schwarz’s inequality we get that

∫ T

0

∫ t̃

0

‖δ̂κt ‖
2
V1

d td t̃ ≤
1
κ

√

√

√

∫ T

0

∫ t̃

0

‖ρ∞t ‖2
γ/2d td t̃

√

√

√

∫ T

0

∫ t̃

0

‖δ̂κt ‖2
γ/2d td t̃ +

∫ T

0

‖δ̂κt̃ ‖
2d t̃

®
1
κ

√

√

√

∫ T

0

∫ T

0

‖δ̂κt ‖2
γ/2d td t̃ +

1
p
κ

,

®
1
κ

√

√

√

2T

∫ T

0

‖ρ̂κt ‖2
γ/2 + ‖ρ

∞
t ‖2

γ/2d t +
1
p
κ

,

®
1
κ

Æ

(κ+ 2) +
1
p
κ

.

(3.4.33)

In the second inequality above we used the fact that ρ∞ ∈ L2(0, T ;H γ/2) (see item i) of
Lemma 3.4.3) and (3.4.27), while in the third inequality of we used Minkoski’s inequality and
the fact that (a + b)2 ≤ 2a2 + 2b2. And finally, the last inequality of (3.4.33) is true since
ρ∞ ∈ L2(0, T ;H γ/2) and by item i) of Theorem 3.3.3. Then, by a simple computation we
have that

∫ T

0

∫ t̃

0

‖δ̂κt ‖
2
V1

d td t̃ ®
1
p
κ

. (3.4.34)

By Fubini’s Theorem, we have that

∫ T

0

∫ t̃

0

‖δ̂κt ‖
2
V1

d td t̃ =

∫ T

0

(T − t)‖δ̂κt ‖
2
V1

d t ≥
T
2

∫ T/2

0

‖δ̂κt ‖
2
V1

d t. (3.4.35)

The result now follows from (3.4.34) and (3.4.35).

3.5 Proof of Theorem 3.2.17

In this section we prove items i) and ii) of Theorem 3.2.17. We are interested in analyzing the
convergence of the stationary solution ρ̄κ as κ→ 0 and κ→∞. From Definition 3.2.12, for
κ≥ 0, and for ϕ̄κ = ρ̄κ − ρ̄∞ we have that ϕ̄κ ∈H γ/2

0 and

〈ϕ̄κ,−LG〉+κ〈ϕ̄κ, G〉V1
= Iρ̄∞(G), (3.5.1)

for any test function G of compact support included in (0, 1). Above Iρ̄∞ :H γ/2
0 → R is a linear

form defined by Iρ̄∞(G) = 〈ρ̄∞,LG〉. Moreover, this linear form is continuous. Indeed, using
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integration by parts given in Proposition 3.3 in [37] we have that

|Iρ̄∞(G)|=

�

�

�

�

�

∫ 1

0

ρ̄∞(u)LG(u)du

�

�

�

�

�

=
cγ
2

�

�

�

�

�

∫∫

[0,1]2

(ρ̄∞(u)− ρ̄∞(v))(G(u)− G(v))
|u− v|γ+1

dvdu

�

�

�

�

�

≤ ‖ρ̄∞‖γ/2‖G‖γ/2 <∞.
(3.5.2)

Above we used the Cauchy-Schwarz’s inequality and the fact that ‖ρ̄∞‖γ/2 is finite (see ((3.4.1))).
Therefore, |Iρ∞(G)|®‖G‖H γ/2

0
.

Then it is enough to analyze the behavior of ϕ̄κ. We claim that we can take G = ϕ̄κ in
(3.5.1). The justification is postponed to the end of the proof. Whence, from (3.5.2) we have
that

‖ϕ̄κ‖2
γ/2 +κ‖ϕ̄

κ‖2
V1
= Iρ̄∞(ϕ̄

κ)®‖ϕ̄κ‖γ/2, (3.5.3)

from where we conclude that ‖ϕ̄κ‖γ/2 <∞. Plugging this back into (3.5.3) we get that

‖ϕ̄κ‖V1
®

1
p
κ

. (3.5.4)

Now, note that ϕ̄0 ∈ H γ/2
0 satisfies 〈ϕ̄0,−LG〉 = Iρ̄∞(G), for any function G ∈ C∞c ((0, 1)).

Then ϕ̄κ − ϕ̄0 satisfies
〈ϕ̄κ − ϕ̄0,−LG〉+ κ〈ϕ̄κ, G〉V1

= 0,

for any function G ∈ C∞c ((0, 1)). We claim that we can take G = ϕ̄κ − ϕ̄0 in the previous
equality. The proof is analogous to the one done at the end of this section. Thus, we get that

‖ϕ̄κ − ϕ̄0‖2
γ/2 = k〈ϕ̄κ, ϕ̄0 − ϕ̄κ〉V1

≤ κ‖ϕ̄κ‖V1
‖ϕ̄κ − ϕ̄0‖V1

.

From (3.5.4) and fractional Hardy’s inequality given in (3.4.2) we have that

‖ϕ̄κ − ϕ̄0‖2
γ/2 ®

p
κ‖ϕ̄κ − ϕ̄0‖V1

®
p
κ‖ϕ̄κ − ϕ̄0‖γ/2,

from where we conclude that ‖ϕ̄κ − ϕ̄0‖γ/2 ®
p
κ. Then ϕ̄κ converges to ϕ̄0, as k → 0 in the

‖ · ‖γ/2 norm. So far we proved item i).

Remark 3.5.1. From fractional Hardy’s inequality (see 3.4.2) the convergence is also true in L2
V1

and since
‖ϕ̄κ − ϕ̄0‖V1

≥ V1(
1
2)‖ϕ̄

κ − ϕ̄0‖

we conclude that the convergence also holds in L2.

For item ii), by (3.5.4) we get that ‖ϕ̄κ‖V1
→ 0 and so ‖ϕ̄κ‖ → 0 as k→∞.

We conclude this proof by showing that we can take G = ϕ̄κ in (3.5.1). Indeed, since
C∞c ((0,1)) is dense inH γ/2

0 , there exists a sequence {H̄κ
n}n≥1 in C∞c ((0, 1)) converging to ϕ̄κ,

i.e, ‖H̄κ
n − ϕ̄

κ‖γ/2 → 0 as n →∞. Observe that as a result of the latter and (3.4.2) we also
have ‖H̄κ

n − ϕ̄
κ‖V1
→ 0 as n→∞. Using the Cauchy-Schwarz’s inequality we have that
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〈ϕ̄κ, H̄κ
n − ϕ̄

κ〉γ/2 ≤ ‖ϕ̄κ‖γ/2‖H̄κ
n − ϕ̄

κ‖γ/2,

〈ϕ̄κ, H̄κ
n − ϕ̄

κ〉V1
≤ ‖ϕ̄κ‖V1

‖H̄κ
n − ϕ̄

κ‖V1
,

Iρ̄∞(H̄
κ
n − ϕ̄

κ)≤ ‖ρ̄∞‖γ/2‖H̄κ
n − ϕ̄

κ‖γ/2,

all going to 0 as n→∞. Thus, we can rewrite (3.5.1) as

〈ϕ̄κ,−Lϕ̄κ〉+ 〈ϕ̄κ,−L(H̄κ
n − ϕ̄

κ)〉+κ(〈ϕ̄κ, ϕ̄κ〉V1
+ 〈ϕ̄κ, H̄κ

n − ϕ̄
κ〉V1
) = Iρ̄∞(ϕ̄

κ) + Iρ̄∞(H̄
κ
n − ϕ̄

κ).

Now it is enough to take n→∞.

3.6 Proofs of the Hydrostatic limit and Fractional Fick’s law

Here we write the proof for the case θ = 0 and κ = 1, but it can be extended for κ > 0.
The first step in the proof consists to obtain a sharp upper bound on the average current in
the non-equilibrium stationary state (see Lemma 3.6.1). This bound will be used to derive
an estimate of the entropy production (Lemma 3.6.2) which is the key estimate to obtain by
a coarse graining argument and entropy bounds, that the empirical density at each extremity
of ΛN is given by α and β (Corollary 3.6.4). To identify the form of the stationary profile in
the bulk, we use a method introduced in [42] for boundary driven diffusive systems (Lemma
3.6.6). Fractional Fick’s law is then derived.

3.6.1 Entropy production bounds

Recall the definition of the current Wx (see (2.2.10)) introduced in Chapter 2.

Lemma 3.6.1. We have that 〈W1〉N = O(N 1−γ), for any N ≥ 2.

Proof. By stationarity we have that for any x ∈ ΛN , 〈W1〉N = 〈Wx〉N . It follows that

〈W1〉N =
1

N − 1

N−1
∑

x=1

〈Wx〉N =
1

N − 1

∑

y<z

p(z − y)[〈ηy〉N − 〈ηz〉N]θ (y, z)

+ (β −α)
∑

y≤0
z≥N

p(z − y)
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where θ (y, z) = Card{x ∈ ΛN ; y + 1 ≤ x ≤ z}. Considering the different positions of y, z in
ΛN , we get

〈W1〉N =
1

N − 1

N−1
∑

z=1

z[α− 〈ηz〉N]
∑

y≤0

p(z − y)

+
1

N − 1

N−1
∑

y=1

(N − 1− y)[〈ηy〉N − β]
∑

z≥N

p(z − y)

+
1

N − 1

∑

y<z
z,y∈ΛN

p(z − y)(z − y)[〈ηy〉N − 〈ηz〉N]

= (I) + (I I) + (I I I).

(3.6.1)

We have that

|(I)| ≤
2

N − 1

N−1
∑

z=1

z
∑

y≥z

p(y) = O(N 1−γ)

since
∑

y≥z p(y) = O(z−γ) as z→∞. A similar upper bound is valid for (I I). For the last term
we observe that

(I I I) = −
1

N − 1

N−2
∑

y=1

N−1−y
∑

k=1

kp(k)[〈ηy+k〉N − 〈ηy〉N].

Now, using Fubini’s Theorem we get

(I I I) = −
1

N − 1

N−2
∑

k=1

kp(k)
N−1−k
∑

y=1

[〈ηy+k〉N − 〈ηy〉N].

Recall (2.4.12). It follows that

|(I I I)|=
1

N − 1

N−2
∑

k=1

kp(k)
k
∑

y=1

|〈ηN−y〉N − 〈ηy〉N | ≤
2

N − 1

N−2
∑

k=1

k2p(k) = O(N 1−γ).

A simple consequence of this lemma is the following bound on the Dirichlet form with
respect to the stationary state. Recall from Section 3.2 that for any ρ ∈ (0, 1) the density of µ̄N

with respect to νρ is denoted by fN ,ρ.
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Lemma 3.6.2. Let ρ ∈ (0,1). There exists a constant C := C(ρ,α,β) > 0 such that for any
N ≥ 2

∑

x ,y∈ΛN

p(y − x)
D
�q

fN ,ρ(σx ,yη)−
q

fN ,ρ(η)
�2E

ρ
≤

C

Nγ−1
,

∑

x∈ΛN

∑

y≤0

p(y − x)
D
�q

fN ,α(σxη)−
q

fN ,α(η)
�2E

α
≤

C

Nγ−1
,

∑

x∈ΛN

∑

y≥N

p(y − x)
D
�q

fN ,β(σxη)−
q

fN ,β(η)
�2E

β
≤

C

Nγ−1
.

Proof. To simplify the notation we denote fN ,ρ by fN . By definition of stationary state we have:

0= 〈 fN LN log fN 〉ρ
= 〈 fN L0

N log fN 〉ρ + 〈 fN L r
N log fN 〉ρ + 〈 fN L`N log fN 〉ρ.

(3.6.2)

We first obtain an upper bound for the second and the third term on the right hand side of the
previous equality. For any R> 0, the second term is equal to

∑

x∈ΛN
y≥N

p(x − y)〈 fN (η)ηx(1− β) [log fN (σ
xη)− log fN (η)]〉ρ

+
∑

x∈ΛN
y≥N

p(x − y)〈 fN (η)(1−ηx)β [log fN (σ
xη)− log fN (η)]〉ρ

=
∑

x∈ΛN
y≥N

p(x − y)
­

fN (η)ηx(1− β)
�

log
RfN (σxη)

fN (η)

�·

ρ

+
∑

x∈ΛN
y≥N

p(x − y)
­

fN (η)(1−ηx)β
�

log
fN (σxη)
RfN (η)

�·

ρ

− log R
∑

x∈ΛN
y≥N

p(x − y) 〈 fN (η) (ηx(1− β)− (1−ηx)β)〉ρ .

(3.6.3)

Now by the change of variable w= σxη we have that (3.6.3) is equal to

−
∑

x∈ΛN
y≥N

p(x − y)
­

fN (σ
x w)(1−wx)(1− β)

�

log
fN (σx w)
RfN (w)

��

ρ

1−ρ

�·

ρ

+
∑

x∈ΛN
y≥N

p(x − y)
­

fN (η)(1−ηx)β
�

log
fN (σxη)
RfN (η)

�·

ρ

− log R
∑

x∈ΛN
y≥N

p(x − y) 〈 fN (η) (ηx(1− β)− (1−ηx)β)〉ρ .
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Now, choosing R=
β

1− β
1−ρ
ρ

and using (x − y) log( y
x )< 0, we have that the last expression

is equal to

β

R

∑

x∈ΛN
y≥N

p(x − y)
­

(1−wx) (RfN (w)− fN (σ
x w))

�

log
fN (σx w)
RfN (w)

�·

ρ

− log R
∑

x∈ΛN
y≥N

p(x − y) 〈 fN (η) (ηx(1− β)− (1−ηx)β)〉ρ

≤ − log
�

β

1− β
1−ρ
ρ

�

∑

x∈ΛN
y≥N

p(x − y) 〈 fN (η) (ηx − β)〉ρ .

We proved therefore that

〈 fN L r
N log fN 〉ρ ≤ − log

�

β

1− β
1−ρ
ρ

�

〈WN 〉N .

Similar computations give that

〈 fN L`N log fN 〉ρ ≤ − log
�

1−α
α

ρ

1−ρ

�

〈W1〉N .

By Lemma 3.6.1, we get that there exists a constant C ′ > 0 such that

〈 fN L r
N log fN 〉ρ ≤ C ′N 1−γ, 〈 fN L`N log fN 〉ρ ≤ C ′N 1−γ.

Therefore, by (3.6.2), we have that −〈 fN L0
N log fN 〉ρ ≤ CN 1−γ. Now, using the simple inequality

a(log b − log a) ≤ 2
p

a(
p

b −
p

a), we obtain that −〈
p

fN L0
N

p

fN 〉ρ ≤ CN 1−γ. This gives the
first inequality in Lemma 3.6.2 since the left hand side of the previous inequality is equal to
the left hand side of the first inequality of Lemma 3.6.2 because L0

N is reversible with respect
to νρ for any ρ. Choosing now ρ = α, and using again the simple inequality a(log b− log a)≤
2
p

a(
p

b−
p

a), we have that

−〈
Æ

fN ,α L`N
Æ

fN ,α〉α ≤ C ′N 1−γ.

Since L`N is reversible with respect to να we have that

− 〈
Æ

fN ,α L`N
Æ

fN ,α〉α

=
1

2

∑

x∈ΛN

∑

y≤0

p(y − x)
D

[ηx(1−α) + (1−ηx)α]
�q

fN ,α(σxη)−
q

fN ,α(η)
�2E

α
.

Since α∧ 1−α≤ ηx(1−α)+ (1−ηx)α, the term above is bigger or equal to a constant times
the left hand side of the second inequality of Lemma 3.6.2. The third inequality of Lemma
3.6.2 is obtained similarly by choosing ρ = β .

118



3.6.2 Proof of Theorem 3.2.15

LetM+
2 , be the space of positive measures on [0,1]2 with total mass bounded by 1 equipped

with the weak topology. For any η ∈ ΩN the empirical measure π̂N (η) ∈M+
2 is defined by

π̂N (η) =
1

(N − 1)2

N−1
∑

x ,y=1

ηxηyδ(x/N ,y/N)

where δ(u,v) is the Dirac mass on (u, v) ∈ [0,1]2. RecallM+ introduced in Subsection 2.2.3. Let
PN be the law onM+×M+

2 induced by (πN , π̂N ) : ΩN →M+×M+
2 when ΩN is equipped with

the non-equilibrium stationary state µ̄N . To simplify notations, we denote π̂N (η) by π̂N and
the action of π ∈M+

2 on a continuous function G : [0, 1]2→ R by 〈π, G〉=
∫

[0,1]2 G(u)π(du).
The sequence {PN}N≥2 is tight onM+ ×M+

2 . This is obvious since it is a family of proba-
bilities over the compact setM+ ×M+

2 . Our goal is to prove that every limit point P∗ of this
sequence is concentrated on the set of measures (π, π̂) ofM+ ×M+

2 such that π (resp. π̂) is
absolutely continuous with respect to the Lebesgue measure on [0, 1] (resp. [0, 1]2) and with
a density ρ̄1(u) (resp. ρ̄1(u)ρ̄1(v)) where ρ̄1 is a weak solution of (3.2.7).

Lemma 3.6.3. Let P∗ be a limit point of the sequence {PN}N . Then P∗ is concentrated on measures
(π, π̂) such that π (resp. π̂) is absolutely continuous with respect to Lebesgue measure on [0,1]
(resp. [0,1]2). The density ρ of π is a continuous function on [0,1] and the density of π̂ is equal
to ρ ⊗ρ : (u, v) ∈ [0,1]2→ ρ(u)ρ(v).

Proof. See Appendix 4.8.

With some abuse of notation we denote by {PN}N a fixed subsequence converging to a limit
point P∗. A generic element ofM+×M+

2 is denoted by (π, π̂) with the convention that π and
π̂ = π⊗π denotes the probability measure as well as its density with respect to the Lebesgue
measure.

Proposition 3.6.4. We have that P∗ almost surely π(0) = α and π(1) = β .

Proof. For small ε > 0 and small λ ∈ R, let B be the box B := {[Nε], . . . , N − 1} in ΛN and let
u be the function defined by

u= eλ
∑

x∈B ηx .

We recall that the action of the generator L`N on a function f : ΩN → R can be rewritten as

(L`N f )(η) =
∑

z∈ΛN

r−N
�

z
N

��

ηz(1−α) + (1−ηz)α
��

f (σzη)− f (η)
�

where r−N
�

z
N

�

=
∑

y≥z p(y). An elementary computation shows that

−
L`N u

u
=
�

(eλ − 1)− 2(1−α)(coshλ− 1)
�

∑

z∈B

r−N
�

z
N

�

(ηz −α)

− 2α(1−α)(coshλ− 1)
∑

z∈B

r−N
�

z
N

�

.
(3.6.4)
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Multiplying (3.6.4) by fN ,α, integrating with respect to να and using the variational formula of
the Dirichlet form (see Theorem A.10.2 in [40]) we deduce that

�

(eλ − 1)− 2(1−α)(coshλ− 1)
�

∑

z∈B

r−N
�

z
N

�

(〈ηz〉N −α)

≤
∑

z∈ΛN

r−N
�

z
N

�

D
�q

fN ,α(σzη)−
q

fN ,α(η)
�2E

α

+ 2α(1−α)(coshλ− 1)
∑

z∈B

r−N
�

z
N

�

≤ CN 1−γ + 2α(1−α)(coshλ− 1)
∑

z∈B

r−N
�

z
N

�

where the last inequality is a consequence of Lemma 3.6.2. Observe that for λ→ 0, the term
(eλ−1)−2(1−α)(coshλ−1) is equivalent to λ and has therefore the sign of λ for sufficiently
small λ. The term coshλ−1 is of order λ2. Assume first that λ > 0 is small. Then there exists
a constant C > 0 independent of λ,ε and N such that

µN

�

〈πN −α , Nγ 1[ε,1]
�

z
N

�

r−N
�

z
N

�

〉
�

= Nγ−1
∑

z∈B

r−N
�

z
N

�

(〈ηz〉N −α)≤
C

λ
+ CλN−1

∑

z∈B

Nγr−N
�

z
N

�

.

By Lemma 3.3.1 we have that

N−1
∑

z∈B

Nγr−N
�

z
N

�

®
∫ 1

ε

u−γdu= O(ε1−γ).

Therefore we conclude that

lim sup
ε→0

εγ−1 lim sup
N→∞

µN

�

〈πN −α , 1[ε,1]
�

z
N

�

Nγr−N
�

z
N

�

〉
�

≤ 0.

Similarly, by considering small λ < 0, we deduce that

lim inf
ε→0

εγ−1 lim inf
N→∞

µN

�

〈πN −α , 1[ε,1]
�

z
N

�

Nγr−1
N

�

z
N

�

〉
�

≥ 0.

By using Lemma 3.3.1 we deduce that P∗ a.s. we have

lim
ε→0
εγ−1

∫ 1

ε

π(u)−α
uγ

du= 0.

But since by Lemma 3.6.3 π is a continuous function on [0,1], if π(0) 6= α, we have that

lim
ε→0
εγ−1

∫ 1

ε

π(u)−α
uγ

du=
π(0)−α
γ− 1

6= 0

and we get a contradiction. We deduce thus that π(0) = α. Similarly π(1) = β .
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Remark 3.6.5. The usual proof of this proposition for driven diffusive systems is quite different
and based on the so-called two-blocks estimate ([30], [41]). It turns out that in the context of
exclusion process with long jumps in contact with stochastic reservoirs this approach does not work
since the control of the entropy production is not sufficient to cancel the heavy tails of p, even by
using the arguments of [38].

Lemma 3.6.6. Let ρ̄1 be the unique weak solution of (3.2.7). For any F, G in C∞c ([0, 1]) we have

∫

[0,1]2

�

G(u)((−∆)γ/2F)(v) + F(v)((−∆)γ/2G)(u)
�

I(u, v)dudv = 0

where I(u, v) = E∗
�

(π(u)− ρ̄1(u))(π(v)− ρ̄1(v))
�

.

Proof. Recall (3.3.3). We have that

LN (〈πN , F〉) =
1

N − 1

∑

x∈ΛN

∑

y∈Z

F( x
N )p(y − x)(ηy −ηx)

= 〈πN ,KN F〉+
α

N − 1

∑

x∈ΛN

(F r−N )(
x
N ) +

β

N − 1

∑

x∈ΛN

(F r+N )(
x
N ).

(3.6.5)

We then multiply (3.6.5) by Nγ and take the expectation with respect to µ̄N on both sides,
the left hand side being then equal to 0 by stationarity. By using Lemma 3.3.1 and weak
convergence we conclude that

E∗
�

∫ 1

0

�

LF − r−F − r+F
	

(u) π(u)du

�

+

∫ 1

0

�

αr−F + β r+F
	

(u) du= 0.

We compute now LN (〈π̂N , J〉) where J : [0, 1]2→ R is a smooth test function with compact
support strictly included in [0,1]2 and which is identically equal to 0 on the diagonal. Consider
a small δ > 0 and take a smooth even function Hδ : R→ [0,1] which is equal to 0 on [−δ,δ]
and equal to 1 outside of [−2δ, 2δ]. Let then Jδ(u, v) = F(u)G(v)Hδ(v − u), (u, v) ∈ [0,1]2.
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Recall (2.4.4). By using Lemma 4.1.1 we get that

LN(〈π̂N , Jδ〉) =
1

N − 1

∑

x∈ΛN

ηx F( x
N )〈π

N ,KN Gδ,x/N 〉

+
1

N − 1

∑

x∈ΛN

ηx G( x
N )〈π

N ,KN Fδ,x/N 〉

+
α

N − 1

∑

x∈ΛN

ηx G( x
N )

¨

1

N − 1

∑

y∈ΛN

Fδ,x/N (
y
N )r

−
N (

y
N )

«

+
α

N − 1

∑

x∈ΛN

ηx F( x
N )

¨

1

N − 1

∑

y∈ΛN

Gδ,x/N (
y
N )r

−
N (

y
N )

«

+
β

N − 1

∑

x∈ΛN

ηx G( x
N )

¨

1

N − 1

∑

y∈ΛN

Fδ,x/N (
y
N )r

+
N (

y
N )

«

+
β

N − 1

∑

x∈ΛN

ηx F( x
N )

¨

1

N − 1

∑

y∈ΛN

Gδ,x/N (
y
N )r

+
N (

y
N )

«

−
1

(N − 1)2
∑

x ,y∈ΛN

p(y − x)(ηy −ηx)
2Jδ(

x
N

y
N ).

(3.6.6)

Since Jδ(u, v) is equal to 0 for |u− v| ≤ δ, we have that

Nγµ̄N

�

− 1

(N − 1)2
∑

x ,y∈ΛN

p(y − x)(ηy −ηx)
2Jδ(

x
N

y
N )

�

= O(N−1).

We multiply (3.6.6) by Nγ and take the expectation with respect to µ̄N on both sides, the left
hand side being then equal to 0 by stationarity. By using Lemma 3.3.1 and weak convergence
we conclude that

−E∗
�

∫

[0,1]2

�

G(u)((−∆)γ/2Fδ,u)(v) + F(v)((−∆)γ/2Gδ,v)(u)
	

π(u)π(v)dudv

�

+E∗
�

∫

[0,1]2

�

G(u)αr−(v)Fδ,u(v) + G(u)β r+(v)Fδ,u(v)
	

π(u)dudv

�

+E∗
�

∫

[0,1]2

�

F(u)αr−(v)Gδ,u(v) + F(u)β r+(v)Gδ,u(v)
	

π(u)dudv

�

= 0.

We can take the limit δ→ 0 and since Hδ converges to the function identically equal to 1,
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we get

−E∗
�

∫

[0,1]2

�

G(u)((−∆)γ/2F)(v) + F(v)((−∆)γ/2G)(u)
	

π(u)π(v)dudv

�

+E∗
�

∫

[0,1]2

�

G(u)αr−(v)F(v) + G(u)β r+(v)F(v)
	

π(u)dudv

�

+E∗
�

∫

[0,1]2

�

F(u)αr−(v)G(v) + F(u)β r+(v)G(v)
	

π(u)dudv

�

= 0.

We have also proved that for any smooth compactly supported function H

−E∗
�

∫ 1

0

((−∆)γ/2H)(u)π(u)du

�

+

∫ 1

0

�

αr−H + β r+H
	

(u) du= 0.

Let ρ̄ be the unique weak solution of (3.2.7). Then we have

−
∫ 1

0

((−∆)γ/2H)(u)ρ̄(u)du+

∫ 1

0

�

αr−H + β r+H
	

(u) du= 0.

It follows that
∫

[0,1]2

�

G(u)((−∆)γ/2F)(v) + F(v)((−∆)γ/2G)(u)
�

I(u, v)dudv = 0.

Since P∗ almost surely π(0) = ρ̄1(0) = α and π(1) = ρ̄1(1) = β and that π, ρ̄1 are contin-
uous functions, by extending then to R by π(u) = ρ̄1(u) = α if u ≤ 0 and π(u) = ρ̄1(u) = β if
u≥ 1, we get that for any F, G in C∞c ([0,1]2),

∫

R2

�

G(u)((−∆)γ/2F)(v) + F(v)((−∆)γ/2G)(u)
�

I(u, v)dudv = 0.

By using Theorem 3.12 in [9] we deduce that I is a.s. constant with respect to the Lebesgue
measure on [0, 1]2. Since by Proposition 3.6.4, we have I(0, 0) = I(1, 1) = 0, we deduce that
I is identically equal to 0. Thus P∗ almost surely π = ρ̄1. Thus, we have proved the following
proposition.

Proposition 3.6.7. The sequence {PN}N converges in law to the delta measure concentrated on

(ρ̄1(u)du, ρ̄1(u)ρ̄1(v)dudv)

where ρ̄1 is the unique weak solution of (3.2.7).

Theorem 3.2.15 is a trivial consequence of this proposition.
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3.6.3 Proof of Fick’s law (Theorem 3.2.16)

Let us define for z ∈ ΛN

r̃−N
�

z
N

�

=
∑

y≥z

yp(y), r̃+N
�

z
N

�

= −
∑

y≤z−N

yp(y)

which are, up to a multiplicative constant, defined as r±N with γ replaced by γ − 1 ∈ (0,1).
Recalling (3.6.1) we see that

Nγ−1〈W1〉N = µN

�

〈πN ,ϕN 〉
�

+ Nγ−1θN

where ϕN : (0,1)→ R defined by

ϕN (
z
N ) = −Nγ

∑

y≤0

z
N p(z − y) + Nγ

∑

y≥N

�

1− 1
N −

z
N

�

p(y − z)

+ Nγ
∑

y>z
y∈ΛN

p(y − z)
� y−z

N

�

− Nγ
∑

y<z
y∈ΛN

p(y − z)
� z−y

N

�

= − z
N Nγr−N

�

z
N

�

+
�

1− 1
N −

z
N

�

Nγr+N
�

z
N

�

+ Nγ
∑

y∈ΛN

p(y − z)
� y−z

N

�

= − z
N Nγr−N

�

z
N

�

+
�

1− 1
N −

z
N

�

Nγr+N
�

z
N

�

+ Nγ−1 r̃−N
�

z
N

�

− Nγ−1 r̃+N
�

z
N

�

is a discrete approximation of the function ϕ : (0,1)→ R given by

ϕ(u) =
cγ

γ(1− γ)
{(1− u)1−γ − u1−γ}

and

θN =
α

N − 1

N−1
∑

z=1

∑

y≤0

z p(z − y)−
β

N − 1

N−1
∑

y=1

∑

z≥N

(N − 1− y) p(z − y).

It is easy to compute the limit of Nγ−1θN by writing it as a Riemann sum:

lim
N→∞

Nγ−1θN = αcγ lim
N→∞

N

N − 1

1

N 2

N−1
∑

z=1

∑

y≤0

z
N

�

�

z
N −

y
N

�

�

1+γ

− β cγ lim
N→∞

N

N − 1

1

N 2

N−1
∑

y=1

∑

z≥N

(1− 1
N −

y
N )

�

�

z
N −

y
N

�

�

1+γ

= αcγ

∫ 1

0

�

∫ 0

−∞

d y
|z−y|1+γ

�

z dz − β cγ

∫ 1

0

�

∫ +∞

1

dz
|z−y|1+γ

�

(1− y) d y

=
cγ(α− β)
γ(2− γ)

.
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Let us now compute the limit of µN

�

〈πN ,ϕN 〉
�

= 1
N−1

∑N−1
z=1 ϕN (

z
N )〈ηz〉N . Observe that the

function ϕ is singular at u = 0 and u = 1 but it is integrable on [0,1]. Lemma 3.3.1 implies
that limN→∞ |ϕN ([Nu]/N)−ϕ(u)|= 0 uniformly in u ∈ [a, 1−a],for any a ∈ (0,1). Therefore
we fix some small a ∈ (0, 1) and we split the sum in three sums, one over z < aN , one over
aN ≤ z ≤ (1− a)N and the last one over z > (1− a)N . By using the estimate (4.3.1) for r−N
and similar ones for r+N , r̃±N it is easy to get that

�

�

�ϕN

�

z
N

�

�

�

�®
�

�

z
N

�1−γ
+
�

1− z
N

�1−γ�

so that (use 〈ηz〉N ≤ 1)

�

�

�

1

N − 1

∑

z<aN
z>(1−a)N

ϕN (
z
N )〈ηz〉N

�

�

�® [a2−γ + (1− a)2−γ].

By using the uniform convergence of ϕN to ϕ over [a, 1− a], as N →∞, we get that

lim
N→∞

1

N − 1

∑

aN≤z≤(1−a)N

ϕN(
z
N )〈ηz〉N =

∫ 1−a

a

ϕ(u)ρ̄1(u)du.

Thus sending first N →∞ and then a→ 0 we conclude that

lim
N→∞

µN

�

〈πN ,ϕN 〉
�

=

∫ 1

0

ϕ(u)ρ̄1(u)du.

Then Theorem 3.2.16 follows by simple integral computations and using the fact that ρ̄1 is
the stationary solution of the fractional diffusion equation with Dirichlet boundary conditions.
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4.1 Computations involving the generator

Lemma 4.1.1. For any x 6= y ∈ ΛN , we have

i) L0
N (ηxηy) = ηx L0

Nηy +ηy L0
Nηx − p(y − x)(ηy −ηx)2,

ii) L r
N (ηxηy) = ηx L r

Nηy +ηy L r
Nηx ,

iii) L`N (ηxηy) = ηx L`Nηy +ηy L`Nηx .
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Proof. For i) we have, by definition of L0
N , that

L0
N (ηxηy) =

1

2

∑

x̄ , ȳ∈ΛN

p( ȳ − x̄)
�

(σ x̄ , ȳη)x(σ
x̄ , ȳη)y −ηxηy

�

=
1

2

∑

x̄ , ȳ∈ΛN

p( ȳ − x̄)
�

((σ x̄ , ȳη)xηy −ηxηy) + ((σ
x̄ , ȳη)yηx −ηxηy)+

+(σ x̄ , ȳη)x(σ
x̄ , ȳη)y − (σ x̄ , ȳη)xηy − (σ x̄ , ȳη)yηx +ηxηy

�

=ηx L0
Nηy +ηy L0

Nηx +
1

2

∑

x̄ , ȳ∈ΛN

p( ȳ − x̄)
�

(σ x̄ , ȳη)x −ηx

� �

(σ x̄ , ȳη)y −ηy

�

=ηx L0
Nηy +ηy L0

Nηx − p(y − x)(ηy −ηx)
2.

In order to prove ii), note that
�

(σ x̄η)x −ηx

� �

(σ x̄η)y −ηy

�

is equal to zero, for all x̄ ∈ Z.
Thus, by definition of L r

N , we have that

L r
N (ηxηy) =

∑

x̄∈ΛN , ȳ≥N

p( ȳ − x̄) [η x̄(1− β) + (1−η x̄)β]
�

(σ x̄η)x(σ
x̄η)y −ηxηy

�

= ηx L r
Nηy +ηy L r

Nηx+
∑

x̄∈ΛN , ȳ≥N

p( ȳ − x̄) [η x̄(1− β) + (1−η x̄)β]
�

(σ x̄η)x −ηx

� �

(σ x̄η)y −ηy

�

= ηx L r
Nηy +ηy L r

Nηx .

The proof of the third expression is analogous.

4.2 Proof of Lemma 2.3.1

Let ε > 0 be fixed. We have that N 2(KN G)( x
N ) is equal to

N 2
∑

|y|≥εN

(G( x+y
N )− G( x

N ))p(y) + N 2
∑

|y|<εN

(G( x+y
N )− G( x

N ))p(y). (4.2.1)

The first term at the left hand side in (4.2.1) goes to zero with N , since we have that
�

�

�

�

�

N 2
∑

|y|≥εN

(G( x+y
N )− G( x

N ))p(y)

�

�

�

�

�

®
‖G‖∞N 2

(εN)γ
.

On the term at the right hand side of (4.2.1) we perform a Taylor expansion of G and we have
that

N 2
∑

|y|<εN

[G( x+y
N )− G( x

N )]p(y) = N 2
∑

|y|<εN

�

G′( x
N )

y
N +

1
2

G′′( x
N )(

y
N )

2
�

p(y),

plus lower-order terms (with respect to N). Now, we use the fact that p is symmetric to see
that

∑

|y|<εN yp(y) = 0. Since p has finite second moment,
∑

|y|<εN y2p(y)→ σ2 as N goes to
∞, so that the proof ends.
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4.3 Proof of Lemma 2.3.2

Let us prove the first item, the second one being similar. It is sufficient to prove it for u in the
form z/N , z ≥ aN . We have, by performing an integration by parts, that

Nγr−N (
z
N )− r−( z

N ) = Nγ
∑

y≥z

p(y)− cγ

∫ ∞

z/N

u−γ−1du= cγ
∑

y≥z

�

1
N

� y
N

�−γ−1
−
∫ (y+1)/N

y/N

u−γ−1 du

�

= cγ
∑

y≥z

∫ (y+1)/N

y/N

�

� y
N

�−γ−1
− u−γ−1

�

du= cγ
∑

y≥z

∫ (y+1)/N

y/N

d

du

�

u−
� y+1

N

��

�

� y
N

�−γ−1
− u−γ−1

�

du

= −(γ+ 1)cγ
∑

y≥z

∫ (y+1)/N

y/N

u−(γ+2)
�

u− y+1
N

�

du.

Therefore we have that
�

�

�Nγr−N (
z
N )− r−( z

N )
�

�

�≤ cγN
−1( z

N )
−γ−1 (4.3.1)

which is of order O(N−1) since z/N ≥ a.

4.4 Proof of Lemma 3.3.1

Note that it is sufficient to prove it for u= x
N . By using the symmetry of p we can rewrite

(KN G)( x
N ) =

1

2

∑

z∈Z

p(z)
�

G( x+z
N ) + G( x−z

N )− 2G( x
N )
�

.

We split the sum over z ∈ Z into a sum over z ≥ 1 and over z ≤ −1 (recall that p(0) = 0)
and we treat separately the convergence of these two sums. Since the study is the same we
consider only the sum over z ≥ 1. Then, by a discrete integration by parts, we have

Nγ
∑

z≥1

p(z)
�

G( x+z
N ) + G( x−z

N )− 2G( x
N )
�

=
∞
∑

z=2

Nγr−N (
z
N )
n

θ x
N
( z

N )− θ x
N
( z−1

N )
o

+ Nγr−N (
1
N ) θ x

N
( 1

N )

where
θv(u) = G(u+ v) + G(v − u)− 2G(v).

By a second order Taylor expansion of G, which is uniform over x since G has compact support,
we see that since γ < 2,

lim
N→∞

Nγr−N (
1
N ) θ x

N
( 1

N ) = 0

uniformly over x . Our aim is now to replace in the remaining sum the term Nγr−N (
z
N ) by r−( z

N ).
Recall that we have seen in Appendix 4.3 that for any a ∈ (0, 1) there exists a constant Ca > 0
such that

|Nγr−N (
z
N )− r−( z

N )| ≤ CaN−1.
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We rewrite the sum
∞
∑

z=2

�

Nγr−N (
z
N )− r−( z

N )
	

n

θ x
N
( z

N )− θ x
N
( z−1

N )
o

as the sum over 2 ≤ z ≤ aN and the sum over z > aN . In fact the sum over z > aN is equal
to the sum over 3N > z > aN since for z ≥ 3N , θ x

N
( z

N ) − θ x
N
( z−1

N ) = 0. Moreover, we have

that |θ x
N
( z

N )− θ x
N
( z−1

N )| = O(N−1) uniformly in x and z. The sum over 3N > z > aN is thus

bounded from above by C ′a/N for some positive constant C ′a (going to∞ as a goes to 0). Since
θv(u)≤ Cu2 for some positive constant uniformly in v, by using the estimate (4.3.1) obtained
in the proof of the first item, we have also that

�

�

�

�

�

[aN]
∑

z=2

�

Nγr−N (
z
N )− r−( z

N )
	

n

θ x
N
( z

N )− θ x
N
( z−1

N )
o

�

�

�

�

�

≤ C ′
[aN]
∑

z=2

( z
N )

2N−1( z
N )
−γ−1 ≤ C ′′a2−γ

for constants C ′, C ′′ which do not depend on a and x . In conclusion, the replacement of the
term Nγr−N (

z
N ) by r−( z

N ) costs C ′′a2−γ+ C ′a/N . Therefore, by sending N →∞ and then a→ 0,
we are reduced to estimate

∞
∑

z=2

r−( z
N )
n

θ x
N
( z

N )− θ x
N
( z−1

N )
o

=
1

N

∞
∑

z=2

r−( z
N )θ

′
x
N
( z

N ) + εN (x).

By a second Taylor expansion, and using that γ < 2, it is easy to see that

lim
N→∞

sup
x∈ΛN

|εN (x)|= 0.

To conclude we observe that there exists C > 0 such that

|r−(u)θ ′v(u)− r−(u′)θ ′v(u
′)| ≤ C |u− u′|(u∧ u′)−γ,

uniformly in v. This is because θ ′v(0) = 0. It follows that

�

�

�

�

�

1

N

∞
∑

z=2

r−( z
N )θ

′
x
N
( z

N )−
∫ ∞

2/N

r−(u)θ ′x
N
(u)du

�

�

�

�

�

=

�

�

�

�

�

�

∞
∑

z=2

∫

z+1
N

z
N

(r−( z
N )θ

′
x
N
( z

N )− r−(u)θ ′x
N
(u))du

�

�

�

�

�

�

®Nγ−2
∞
∑

z=2

z−γ

where the last term goes to 0, as N goes to∞.

4.5 Proof of Lemma 3.2.14

Recall (3.5.1). As we will see below, by Lax-Milgram’s Theorem (see [11]), there exists a unique
function ϕ̄κ̂ ∈ H γ/2

0 which is solution of (3.5.1). Then, it is not difficult to see that ρ̄κ̂ :=
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ϕ̄κ̂ + ρ̄∞ is the desired weak solution of (3.2.7). For that purpose, let aκ̂ :H γ/2
0 ×H γ/2

0 → R
be the bilinear form defined, for G, F ∈H γ/2

0 , as

aκ̂(F, G) = 〈F, G〉γ/2 + κ̂〈F, G〉V1
. (4.5.1)

From Lax-Milgram Theorem, in order to conclude the existence and uniqueness it is enough to
prove that aκ̂ is coercive and continuous. For κ̂ > 0, we can easily see that

aκ̂(G, G)≥min{1, κ̂V1(
1
2)}
�

‖G‖2
γ/2 + ‖G‖

2
�

=min{1, κ̂V1(
1
2)}‖G‖

2
H γ/2

0

.

For κ̂= 0, since onH γ
0 the norms ‖ · ‖γ/2 and ‖ · ‖H γ/2 are equivalent we have that

a0(G, G) = ‖G‖2
γ/2 ¦ ‖G‖

2
H γ/2

0

.

Therefore aκ̂ is coercive for κ̂ ≥ 0. Moreover, by using the Cauchy-Schwarz inequality we
obtain that

|aκ̂(F, G)| ≤ ‖F‖γ/2‖G‖γ/2 + κ̂(‖F‖V1
‖G‖V1

).

From the fractional Hardy’s inequality (see (3.4.2)) we have that

|aκ̂(F, G)|® (κ̂+ 1)(‖F‖γ/2‖G‖γ/2)

and since onH γ/2
0 the norms ‖ · ‖γ/2 and ‖ · ‖H γ/2 are equivalent, we conclude that the bilinear

form aκ̂ is continuous for κ̂≥ 0. This end the proof.

4.6 Uniqueness of weak solutions

The uniqueness of the weak solutions of the partial differential equations given in Chapter 2
and 3 is fundamental for the proof of the hydrodynamic limit.

4.6.1 Diffusive case

The uniqueness of weak solutions of (2.2.1) is standard if κ̂ = 0. Since we were not able to
find in the literature a proof in the case κ̂ > 0 we give a complete proof below. The proof of
uniqueness of weak solutions of (2.2.2) can be found in, for example, [1].

Now we prove the uniqueness of weak solutions of (2.2.1). We assume that σ̂ > 0 and
κ̂ > 0 first and then we consider the case σ̂ = 0 and κ̂ > 0.

Let ρ1 and ρ2 be two weak solutions of (2.2.1) with the same initial condition and let us
denote ρ̃ = ρ1 −ρ2. By assumption we have that

ρ̃ ∈ L2
�

0, T ;H 1([0,1])
�

∩ L2
�

0, T ; L2
V1
([0, 1])

�

,

recall that V1(u) = u−γ + (1 − u)−γ and 〈·, ·〉V1
(resp. ‖ · ‖V1

) is the scalar product (resp. the
norm) corresponding to the Hilbert space L2

V1
([0,1]).
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For almost every t ∈ [0, T], we identify ρ̃t with its continuous representation in [0, 1].
Therefore, from Remark 2.2.5, we have that ρ̃t(0) = ρ̃t(1) = 0 for all t ∈ [0, T]. Since
H 1

0 ([0,1]) is equal to the set of functions in H 1([0,1]) vanishing at 0 and 1 we have that

for a.e. time t ∈ [0, T], ρ̃t ∈ H 1
0 ([0,1]) and in fact ρ̃ ∈ L2

�

0, T ;H 1
0 ([0,1])

�

. From ii) in

Definition 2.2.3, for any t ∈ [0, T] and any G ∈ C1,2
c ([0, T]× [0,1]) we have

∫ 1

0

ρ̃t(u)Gt(u) du−
∫ t

0

∫ 1

0

ρ̃s(u)
�

∂s +
σ̂2

2 ∆
�

Gs(u) duds+ κ̂

∫ t

0

∫ 1

0

V1(u)Gs(u)ρ̃s(u) du ds = 0.

(4.6.1)

We know that C1,∞
c ([0, T] × (0, 1)) is dense in L2

�

0, T ;H 1
0 ([0,1])

�

∩ L2
�

0, T ; L2
V1([0,1])

�

.

Therefore, let {Hn}n≥0 be a sequence of functions in C1,∞
c ([0, T] × (0, 1)) converging to ρ̃

with respect to the norms of L2
�

0, T ;H 1
0 ([0, 1])

�

and L2
�

0, T ; L2
V1([0,1])

�

. We define Gn in

C1,∞
c ([0, T]× [0, 1]) by ∀t ∈ [0, T], ∀u ∈ [0,1],

Gn(t, u) =

∫ T

t

Hn(s, u) ds. (4.6.2)

Plugging Gn into (4.6.1) and letting n→∞ we conclude, by Lemma 4.6.1 below, that

∫ T

0

∫ 1

0

ρ̃2
s (u) du ds+ σ̂2

4










∫ T

0

ρ̃sds









2

1
+ κ̂

2










∫ T

0

ρ̃sds









2

V1

= 0.

It follows that for almost every time s ∈ [0, T] the continuous function ρ̃s is equal to 0 and
we conclude the uniqueness of weak solution to (2.2.1) in the case σ̂ > 0.

Lemma 4.6.1. Let {Gn}n≥0 be defined as in (4.6.2). We have

i) limn→∞

∫ T

0

∫ 1

0
ρ̃s(u) (∂sGn)(s, u) duds = −

∫ T

0

∫ 1

0
ρ̃2

s (u) duds.

ii) limn→∞

∫ T

0

∫ 1

0
ρ̃s(u)∆Gn(s, u) duds = − 1

2










∫ T

0
ρ̃sds










2

1
.

iii) limn→∞

∫ T

0

∫ 1

0
V1(u)Gn(s, u)ρ̃s(u) du ds = 1

2










∫ T

0
ρ̃sds










2

V1

<∞.

Proof. For i) we write

−
∫ T

0

∫ 1

0

ρ̃s(u) (∂sGn)(s, u) duds =

∫ T

0

∫ 1

0

ρ̃s(u)Hn(s, u) duds

=

∫ T

0

〈ρ̃s , Hn(s, ·)〉 ds =

∫ T

0




ρ̃s , Hn(s, ·)− ρ̃s

�

ds +

∫ T

0

‖ρ̃s‖2 ds.
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Observe then that by the Cauchy-Schwarz inequality we have

�

�

�

�

�

∫ T

0




ρ̃s , Hn(s, ·)− ρ̃s

�

ds

�

�

�

�

�

≤
∫ T

0

‖ρ̃s‖‖Hn(s, ·)− ρ̃s‖ ds

≤

√

√

√

∫ T

0

‖ρ̃s‖2 ds

√

√

√

∫ T

0

‖Hn(s, ·)− ρ̃s‖2 ds

(4.6.3)

which goes to 0 as n → ∞. Above we have used the fact that {Hn}n≥0 converges to ρ̃ as
N →∞ with respect to the norm of L2(0, T ;H 1

0 ([0,1])).
For ii) we first use the integration by parts formula forH1([0, 1]) functions which permits

to write

∫ T

0

∫ 1

0

ρ̃s(u)∆Gn(s, u) duds = −
∫ T

0

¬

ρ̃s , Gn(s, ·)
¶

1
ds

=

∫ T

0

¬

ρ̃s ,

∫ T

s

ρ̃r dr
¶

1
ds+

∫ T

0

¬

ρ̃s , Gn(s, ·)−
∫ T

s

ρ̃r dr
¶

1
ds

=

∫∫

0≤s<r≤T

〈ρ̃s , ρ̃r〉1 dr ds +

∫ T

0

¬

ρ̃s ,

∫ T

s

{Hn(r, ·)− ρ̃r}dr
¶

1
ds

=
1

2

∫∫

[0,T]2
〈ρ̃s , ρ̃r〉1 drds +

∫ T

0

¬

ρ̃s ,

∫ T

s

{Hn(r, ·)− ρ̃r}dr
¶

1
ds

=
1

2










∫ T

0

ρ̃sds









2

1
+

∫ T

0

¬

ρ̃s ,

∫ T

s

{Hn(r, ·)− ρ̃r}dr
¶

1
ds.

To conclude the proof of ii) it is sufficient to prove that the last term in the previous expression
vanish as n→∞. Indeed, the absolute value of such term is bounded from above by

∫ T

0








ρ̃s










1










∫ T

s

{Hn(r, ·)− ρ̃r}dr









1
ds ≤

∫ T

0








ρ̃s










1

∫ T

s








Hn(r, ·)− ρ̃r










1
dr ds

≤

�

∫ T

0








ρ̃s










1
ds

� �

∫ T

0








Hn(r, ·)− ρ̃r










1
dr

�

≤T

√

√

√

∫ T

0








ρ̃s










2

1
ds

√

√

√

∫ T

0








Hn(r, ·)− ρ̃r










2

1
dr −−−→

n→∞
0.

Above we have used the Cauchy-Schwarz inequality and the fact that {Hn}n≥0 converges to ρ̃
as N →∞ with respect to the norm of L2(0, T ;H 1

0 ([0,1])).
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The proof of iii) is similar. We have that
∫ T

0

¬

ρ̃s , Gn(s, ·)
¶

V1

ds is equal to

∫ T

0

¬

ρ̃s ,

∫ T

s

ρ̃r dr
¶

V1

ds+

∫ T

0

¬

ρ̃s , Gn(s, ·)−
∫ T

s

ρ̃r dr
¶

V1

ds

=

∫∫

0≤s<r≤T

〈ρ̃s , ρ̃r〉V1
dr ds +

∫ T

0

¬

ρ̃s ,

∫ T

s

{Hn(r, ·)− ρ̃r}dr
¶

V1

ds

=
1

2

∫∫

[0,T]2
〈ρ̃s , ρ̃r〉V1

dr ds +

∫ T

0

¬

ρ̃s ,

∫ T

s

{Hn(r, ·)− ρ̃r}dr
¶

V1

ds

=
1

2










∫ T

0

ρ̃sds









2

V1

+

∫ T

0

¬

ρ̃s ,

∫ T

s

{Hn(r, ·)− ρ̃r}dr
¶

V1

ds.

To conclude the proof of iii) it is sufficient to show that

lim
n→∞

∫ T

0

¬

ρ̃s ,

∫ T

s

{Hn(r, ·)− ρ̃r}dr
¶

V1

ds = 0.

This is a consequence of the Cauchy-Schwarz inequality:
�

�

�

�

�

∫ T

0

¬

ρ̃s ,

∫ T

s

{Hn(r, ·)− ρ̃r}dr
¶

V1

ds

�

�

�

�

�

≤
∫ T

0








ρ̃s










V1










∫ T

s

{Hn(r, ·)− ρ̃r}dr









V1

ds

≤
∫ T

0








ρ̃s










V1

∫ T

s








Hn(r, ·)− ρ̃r










V1

dr ds

≤

�

∫ T

0








ρ̃s










V1

ds

� �

∫ T

0








Hn(r, ·)− ρ̃r










V1

dr

�

≤T

√

√

√

∫ T

0








ρ̃s










2

V1

ds

√

√

√

∫ T

0








Hn(r, ·)− ρ̃r










2

V1

dr −−−→
n→∞

0.

Note that when σ̂ > 0 and κ̂ = 0 the proof above also shows uniqueness of the weak
solution of the heat equation with Dirichlet boundary conditions.

Now we look at the case σ̂ = 0. In this case we do not have any regularity assumption on
ρ̃. However, it can be proved that

∫ T

0

∫ 1

0

ρ̃2
s (u) duds+ κ̂

2










∫ T

0

ρ̃sds









2

V1

= 0

holds by showing only the first and third item of the previous lemma. This requires only
the density of C1,∞

c ([0, T]× (0, 1)) in L2
�

0, T ; L2
V1
([0,1])

�

. We also note that in the proof of
item i) in Lemma 4.6.1, in order to conclude the convergence in (4.6.3), before applying the
Cauchy-Schwarz inequality, we multiply and divide the integrand function by V1 and since V−1

1
is bounded we get that ‖ρ̃sV

−1
1 ‖

2 <∞ and the result follows.
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4.6.2 Super-diffusive case: Proof of Lemma 3.2.8

We only focus in the proof of the uniqueness of weak solutions of (3.2.4) for κ̂= κ. In the end
of the section we comment the other cases.

Let ρκ,1 and ρκ,2 two weak solutions of (3.2.4) with the same initial condition and let us
denote ρ̃κ = ρκ,1 − ρκ,2. For almost every t ∈ [0, T], we identify ρ̃κt with its continuous
representation on [0, 1]. Therefore, by Remark 3.2.4 we have ρ̃κt (0) = ρ̃

κ
t (1) = 0. SinceH γ/2

0

is equal to the set of functions in H γ/2 vanishing at 0 and 1 we have that ρ̃κt ∈ H
γ/2

0 for a.e.
time t ∈ [0, T] and, in fact, ρ̃κ ∈ L2(0, T ;H γ/2

0 ). Moreover, for any t ∈ [0, T] and all functions
G ∈ C1,∞

c ([0, T]× (0,1)) we have

〈ρ̃κt , Gt〉 −
∫ t

0

¬

ρ̃κs ,
�

∂s +L
�

Gs

¶

ds+ κ

∫ t

0




ρ̃κs , Gs

�

V1
ds = 0. (4.6.4)

Note that C1,∞
c ([0, T] × (0,1)) is dense in L2(0, T ;H γ/2

0 ). Let {Hκ
n}n≥1 be a sequence of

functions in C1,∞
c ([0, T]× (0,1)) converging to ρ̃κ with respect to the norm of L2(0, T ;H 1/2

0 )
as n → ∞. For n ≥ 1, we define the test functions ∀t ∈ [0, T], ∀u ∈ [0,1], Gκn (t, u) =
∫ T

t
Hκ

n (s, u) ds. Plugging Gκn into (4.6.4) and letting n → ∞ we conclude by Lemma 4.6.2
below that

∫ T

0

‖ρ̃κs ‖
2ds+

1

2










∫ T

0

ρ̃κs ds









2

γ/2
+
κ

2










∫ T

0

ρ̃κs ds









2

V1

= 0.

Recall that 〈·, ·〉V1
(resp. ‖ · ‖V1

) is the scalar product (resp. the norm) corresponding to the
Hilbert space L2

V1
.

Then, it follows that for almost every time s ∈ [0, T] the continuous function ρ̃κs is equal to
0 and we conclude the uniqueness of the weak solutions to (3.2.4).

Lemma 4.6.2. Let {Gκn}n≥1 be defined as above. We have

i) lim
n→∞

∫ T

0




ρ̃κs , (∂sG
κ
n )(s, ·)

�

ds = −
∫ T

0

‖ρ̃κs ‖
2ds.

ii) lim
n→∞

∫ T

0




ρ̃κs ,LGκn (s, ·)
�

ds = −
1

2










∫ T

0

ρ̃κs ds









2

γ/2
.

iii) lim
n→∞

∫ T

0




ρ̃κs , Gκn (s, ·)
�

ds =
1

2










∫ T

0

ρ̃κs ds









2

V1

<∞.

Proof. For i) we write

−
∫ T

0




ρ̃κs , (∂sG
κ
n )(s, ·)

�

ds =

∫ T

0

〈ρ̃κs , Hκ
n (s, ·)〉ds =

∫ T

0




ρ̃κs , Hκ
n (s, ·)− ρ̃

κ
s

�

ds+

∫ T

0

‖ρ̃κs ‖
2ds.
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Observe then that by the Cauchy-Schwarz inequality we have that
�

�

�

�

�

∫ T

0




ρ̃κs , Hκ
n (s, ·)− ρ̃

κ
s

�

ds

�

�

�

�

�

≤
∫ T

0

‖ρ̃κs ‖‖H
κ
n (s, ·)− ρ̃

κ
s ‖ ds

≤

√

√

√

∫ T

0

‖ρ̃κs ‖2 ds

√

√

√

∫ T

0

‖Hκ
n (s, ·)− ρ̃κs ‖2 ds

which goes to 0 as n→∞.
For ii) we first use the integration by parts formula for the regional fractional Laplacian (see

Theorem 3.3 in [37]) which permits to write

∫ T

0




ρ̃κs ,LGκn (s, ·)
�

ds = −
∫ T

0

¬

ρ̃κs , Gκn (s, ·)
¶

γ/2
ds.

Then we have that
∫ T

0

¬

ρ̃κs , Gκn (s, ·)
¶

γ/2
ds is equal to

∫ T

0

¬

ρ̃κs ,

∫ T

s

ρ̃κt d t
¶

γ/2
ds+

∫ T

0

¬

ρ̃κs , Gκn (s, ·)−
∫ T

s

ρ̃κt d t
¶

γ/2
ds

=

∫∫

0≤s<t≤T

〈ρ̃κs , ρ̃κt 〉γ/2 dsd t +

∫ T

0

¬

ρ̃κs ,

∫ T

s

�

Hκ
n (t, ·)− ρ̃

κ
t

�

d t
¶

γ/2
ds

=
1

2

∫∫

[0,T]2
〈ρ̃κs , ρ̃κt 〉γ/2 dsd t +

∫ T

0

¬

ρ̃κs ,

∫ T

s

�

Hκ
n (t, ·)− ρ̃

κ
t

�

d t
¶

γ/2
ds

=
1

2










∫ T

0

ρ̃κs ds









2

γ/2
+

∫ T

0

¬

ρ̃κs ,

∫ T

s

�

Hκ
n (t, ·)− ρ̃

κ
t

�

d t
¶

γ/2
ds.

To conclude the proof of ii) it is sufficient to show that the last term in the previous expression
vanish as n→∞. This is a consequence of a successive use of Cauchy-Schwarz inequalities.
Indeed, the last term in the previous expression is bounded from above by

∫ T

0








ρ̃κs










γ/2










∫ T

s

�

Hκ
n (t, ·)− ρ̃

κ
t

�

d t









γ/2
ds ≤

∫ T

0








ρ̃κs










γ/2

∫ T

s








Hκ
n (t, ·)− ρ̃

κ
t










γ/2
d t ds

≤
∫ T

0








ρ̃κs










γ/2

∫ T

0








Hκ
n (t, ·)− ρ̃

κ
t










γ/2
d t ds =

�

∫ T

0








ρ̃κs










γ/2
ds

� �

∫ T

0








Hκ
n (t, ·)− ρ̃

κ
t










γ/2
d t

�

≤T

√

√

√

∫ T

0








ρ̃κs










2

γ/2
ds

√

√

√

∫ T

0








Hκ
n (t, ·)− ρ̃

κ
t










2

γ/2
d t −−−→

n→∞
0.

The proof of iii) is similar to the proof of ii) by using the fractional Hardy’s inequality (see
(3.4.2)) and since C∞c ((0, 1)) is dense in Hγ/2

0 we have that any g ∈ Hγ/2
0 is also in the space
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L2
V1

and that (3.4.2) remains valid for g. In particular, we have that the right hand side of iii)
is finite.

We have that
∫ T

0

¬

ρ̃κs , Gκn (s, ·)
¶

V1

ds is equal to

∫ T

0

¬

ρ̃κs ,

∫ T

s

ρ̃κt d t
¶

V1

ds+

∫ T

0

¬

ρ̃κs , Gκn (s, ·)−
∫ T

s

ρ̃κt d t
¶

V1

ds

=

∫∫

0≤s<t≤T

〈ρ̃κs , ρ̃κt 〉V1
dsd t +

∫ T

0

¬

ρ̃κs ,

∫ T

s

�

Hκ
n (t, ·)− ρ̃

κ
t

�

d t
¶

V1

ds

=
1

2

∫∫

[0,T]2
〈ρ̃κs , ρ̃κt 〉V1

dsd t +

∫ T

0

¬

ρ̃κs ,

∫ T

s

�

Hκ
n (t, ·)− ρ̃

κ
t

�

d t
¶

V1

ds

=
1

2










∫ T

0

ρ̃κs ds









2

V1

+

∫ T

0

¬

ρ̃κs ,

∫ T

s

�

Hκ
n (t, ·)− ρ̃

κ
t

�

d t
¶

V1

ds.

As a consequence of a successive use of the Cauchy-Schwarz inequalities and Hardy’s inequality
we have that the term at the right hand side in the previous expression is bounded from above
by

∫ T

0








ρ̃κs










V1










∫ T

s

�

Hκ
n (t·)− ρ̃

κ
t

�

d t









V1

ds ≤
∫ T

0








ρ̃κs










V1

∫ T

s








Hκ
n (t, ·)− ρ̃

κ
t










V1

d t ds

≤
∫ T

0








ρ̃κs










V1

∫ T

0








Hκ
n (t, ·)− ρ̃

κ
t










V1

d t ds =

�

∫ T

0








ρ̃κs










V1

ds

� �

∫ T

0








Hκ
n (t, ·)− ρ̃

κ
t










V1

d t

�

≤T

√

√

√

∫ T

0








ρ̃κs










2

V1

ds

√

√

√

∫ T

0








Hκ
n (t, ·)− ρ̃

κ
t










2

V1

d t

≤C T

√

√

√

∫ T

0








ρ̃κs










2

γ/2
ds

√

√

√

∫ T

0








Hκ
n (t, ·)− ρ̃

κ
t










2

γ/2
d t −−−→

n→∞
0.

The proof of the uniqueness of the weak solutions of (3.2.4) for κ = 0 is analogous, the
difference is that only the first two items in Lemma 4.6.2 above are required. The uniqueness
of the weak solutions of (3.2.6) is analogous as well, in this case only items i) and iii) in Lemma
4.6.2 above are required.

4.7 Energy estimates for Lemma 2.4.1

In this section we prove that the density π belongs to H 1([0,1]) and satisfies
∫ 1

0

¦

(α−π(u))2
uγ +

(β−π(u))2

(1−u)γ

©

du<∞ .

In order to prove that π ∈ H 1([0,1]), we adapt the proof of the Proposition A.1.1 in
[42]. Let G ∈ C∞c ([0, 1]) and denote by {ηN (t)}t≥0 the boundary driven symmetric long-range
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exclusion with generator N 2 LN . By stationarity of µ̄N and the entropy inequality (2.3.19) we
have

µ̄N

�

cγ

N−2
∑

x=1

G( x
N )(ηx −ηx+1)

�

= Eµ̄N

�

∫ 1

0

¨

N−2
∑

x=1

cγG(
x
N )(η

N
x (t)−η

N
x+1(t))

«

d t

�

≤ C0 +
1

N
log

n

EνN
h

�

eN
∫ 1

0

¦

cγ
∑N−2

x=1 G(
x
N ))(η

N
x (t)−η

N
x+1(t))

©

d t
�o

where C0 is a bound on the relative entropy of µ̄N with respect to νN
h . By Feynman-Kac’s formula

the last expression is bounded by from above by

C0 + sup
f

¨

cγ

N−2
∑

x=1

G( x
N )

∫

ΩN

(ηx −ηx+1) f (η)dν
N
h (η) + N

¬

LN

p

f ,
p

f
¶

νN
h

«

≤C0 + sup
f

¨

cγ

N−2
∑

x=1

G( x
N )

∫

ΩN

(ηx −ηx+1) f (η)dν
N
h (η)−

N
4

D0
N (
p

f ,νN
h ) + C

«

where the supremum is taken over all densities f onΩN with respect to νN
h . In the last inequality

we used (2.3.22). Note that
∑N−2

x=1 G( x
N )p(1)

∫

ΩN
(ηx −ηx+1) f (η)dνN

h (η) is equal to

cγ
2

N−2
∑

x=1

G( x
N )

∫

(ηx −ηx+1)( f (η)− f (σx ,x+1η))dνN
h (η)

+
cγ
2

N−2
∑

x=1

G( x
N )

∫

(ηx −ηx+1) f (σ
x ,x+1η)(1− θ x ,x+1(η))dνN

h (η)

≤
C
N

N−2
∑

x=1

(G( x
N ))

2 +
N
4

D0
N (
p

f ,νN
h ) + C .

In the last inequality we used the facts that for a, b ≥ 0, a− b = (
p

a−
p

b)(
p

a+
p

b), Young’s
inequality and (2.3.25). Then we have that

µ̄N

�

cγ
N

∑

x∈ΛN

∇N G( x−1
N )ηx

�

≤
C
N

N−2
∑

x=1

(G( x
N ))

2 + C ,

where∇N G( x−1
N ) = N(G( x

N )−G( x−1
N )). Taking the limit N →∞ , we conclude that there exist

constants C > 0 independent of G ∈ C∞c ([0, 1]) such that

E∗
�

∫ 1

0

cγG
′(u)π(u) du− C‖G‖2

�

≤ C .

It is easy to see that the supremum over G can be inserted in the expectation (see Lemma 7.5
in [41]) so that

E∗
�

sup
G

¨

∫ 1

0

cγG
′(u)π(u) du− C‖G‖2

«�

<∞.
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Then, we get π ∈H 1([0,1]).
Now, in order to prove that

∫ 1

0

¦

(α−π(u))2
uγ + (β−π(u))2

(1−u)γ

©

du <∞ we note that it is enough to

prove that the function u → π(u) − α belongs to L2
r−([0,1]) and the function u → π(u) − β

belongs to L2
r+([0,1]).

By stationarity of µ̄N , entropy inequality and the Feynman-Kac’s formula, we have that

EµN

�

∫ 1

0

d t Nγ−1
∑

x∈ΛN

G( x
N )r

−
N

�

x
N

�

(ηN
x (t)−α)

�

≤ C0 + sup
f

¨

Nγ−1
∑

x∈ΛN

G( x
N )r

−
N

�

x
N

�

〈tαx , f 〉νN
h
+ N

¬

LN

p

f ,
p

f
¶

νN
h

« (4.7.1)

where 〈tαx , f 〉νN
h
=
∫

ΩN
(ηx −α) f (η) dνN

h and the supremum is taken over all the densities f on
ΩN with respect to νN

h . Since the profile h is Hölder of parameter γ/2 at the boundaries and
Lipschitz inside, and from (2.3.22) the term at the right hand side of last expression is bounded
from above by

−
N
4

DN (
p

f ,νN
h ) + C .

By using Lemma 2.3.10 with Ax = (4κ)−1G( x
N ) it is easy to show that the last expression in

(4.7.1) is bounded from above by

CNγ−1
∑

x∈ΛN

r−N
�

x
N

�

(G( x
N ))

2 + C .

We take the limit N →∞ and we conclude that there exists a constant C > 0 independent of
G such that

E∗
�

∫ 1

0

(π(u)−α)G(u)r−(u) du − C

∫ 1

0

(G(u))2r−(u) du

�

®1.

By using a similar method as in the proof of the previous subsection we see that the supremum
over G can be inserted in the expectation so that

E∗
�

sup
G

¨

∫ 1

0

(π(u)−α)G(u)r−(u) du − C

∫ 1

0

(G(u))2r−(u) du

«�

®1.

The previous formula implies that E∗
�

∫ 1

0
(π(u)−α)2r−(u) du

�

®1. Similarly we prove that the
function u→ π(u)− β belongs to L2

r+([0, 1]).

4.8 Proof of Lemma 3.6.3

The fact that P∗ is concentrated on absolutely continuous measures is obvious since for any
continuous function G : [0,1]→ R we have

|〈πN , G〉| ≤
1

(N − 1)

N−1
∑

x=1

|G( x
N )|

139



and similarly for π̂N . Since for any continuous function G, the functional π ∈ M+
d → 〈π, G〉

is continuous, by weak convergence, we have that P∗ is concentrated on measures (π, π̂) such
that for any continuous function G : [0,1]→ R, Ĝ : [0,1]2→ R

|〈π, G〉| ≤
∫

[0,1]

|G(u)|du, |〈π̂, Ĝ〉| ≤
∫

[0,1]2
|Ĝ(u, v)|dudv

which implies that such a π and π̂ are absolutely continuous with respect to the Lebesgue mea-
sure. The densities are denoted by π and π̂. Since π̂N is a product measure whose marginals
are given byπN , by weak convergence, we have that π̂(u, v) = π(u)π(v) for any (u, v) ∈ [0,1]2.

To prove that π is continuous we adapt the proof of [42] Proposition A.1.1. Recall νN
h

defined in (2.3.18), for h : [0,1] → [0, 1] a smooth function such that α ≤ h(u) ≤ β , for all
u ∈ [0,1], and h(0) = α and h(1) = β .

Let ε > 0 be a small real number. Let F ∈ C∞c ([0,1]2) be a smooth test function and de-
note by {η(t)}t≥0 the boundary driven symmetric long-range exclusion process with generator
NγLN . By stationarity of µ̄N and the entropy inequality we have

µ̄N

�

Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

F( x
N , y

N )p(y − x)(ηy −ηx)

�

= EµN

�∫ 1

0

d t N γ−1
∑

x ,y∈ΛN
|x−y|≥εN

F( x
N , y

N )p(y − x)(ηN
y (t)−η

N
x (t))

�

≤ C0 +
1

N
log

�

EνN
h

�

e
h

Nγ
∫ 1

0 d t
∑

F(
x
N ,

y
N )p(y−x)(ηN

y (t)−η
N
x (t))

i�

�

where the sum is over the same domain as before and C0 is a constant resulting from the bound
of the relative entropy of µN with respect to νN

h .

By Feynman-Kac’s formula the last expression is bounded by
λN

N
+C0 where the eigenvalue

λN is given by the variational formula

λN = sup
f

§

Nγ
∑

x ,y∈ΛN
|x−y|≥εN

F( x
N , y

N )p(y − x)〈(ηy −ηx) f (η)〉νN
h
+ Nγ

¬

LN

p

f ,
p

f
¶

νN
h

ª

(4.8.1)

and the supremum is taken over all the densities f on ΩN with respect to νN
h . Let F a be the

antisymmetric (resp. symmetric) part of F , i.e. ∀(u, v) ∈ [0, 1]2,

F a(u, v) =
1

2

�

F(u, v)− F(v, u)
�

, F s(u, v) =
1

2

�

F(u, v) + F(v, u)
�

.

Observe that F a(u, u) = 0 and that F = F a + F s. We can rewrite
∑

x ,y∈ΛN
|x−y|≥εN

F( x
N , y

N )p(y − x)〈(ηy −ηx) f (η)〉νN
h
=

∑

x ,y∈ΛN
|x−y|≥εN

F a( x
N , y

N )p(y − x)〈(ηy −ηx) f (η)〉νN
h

(4.8.2)
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as

∑

x ,y∈ΛN
|x−y|≥εN

F a( x
N , y

N )p(y − x)〈ηy ( f (η)− f (σx ,yη))〉νN
h

+
∑

x ,y∈ΛN
|x−y|≥εN

F a( x
N , y

N )p(y − x)〈ηy f (σx ,yη) (1− θ x y(η))〉νN
h

=
∑

x ,y∈ΛN
|x−y|≥εN

F a( x
N , y

N )p(y − x)〈ηy ( f (η)− f (σx ,yη))〉νN
h

+
∑

x ,y∈ΛN
|x−y|≥εN

F a( x
N , y

N )p(y − x)〈ηx f (η) (θ x y(η)− 1)〉νN
h

= (I) + (I I)

where θ x y(η) =
dνN

h (σ
x ,yη)

dνN
h (η)

. By Cauchy-Schwarz inequality, the fact that f is a density and |ηy | ≤
1, we have that (I) is bounded above by

∑

x ,y∈ΛN
|x−y|≥εN

�

�F a( x
N , y

N )
�

� p(y − x)
s

¬

[
Æ

f (σx ,yη)−
Æ

f (η)]2
¶

νN
h

.

Since ρ is Lipshitz we have that supη∈ΩN
|θ x y(η)− 1| = O

�

|x−y|
N

�

. Therefore, by using the

elementary inequality |ab| ≤ a2

2C +
C b2

2 , and the fact that f is a density, we have that (I I) is
bounded above by a constant (independent of N ,ε, F) times

∑

x ,y∈ΛN
|x−y|≥εN

p(y − x)
�

F a
�

x
N , y

N

��2
+

∑

x ,y∈ΛN
|x−y|≥εN

p(y − x)
�

|x−y|
N

�2

= cγN
1−γ

�

1

N 2

∑

x ,y∈ΛN
|x−y|≥εN

�

F a
�

x
N , y

N

��2

| x
N −

y
N |1+γ

+
1

N 2

∑

x ,y∈ΛN
|x−y|≥εN

| x
N −

y
N |

1−γ

�

.

Observe that

sup
ε>0

sup
N≥1

1

N 2

∑

x ,y∈ΛN
|x−y|≥εN

| x
N −

y
N |

1−γ <∞

since 1− γ > −1.
By using (4.8.1), (3.3.14), Cauchy-Schwarz inequality and the previous upper bound for

(4.8.2) it follows that there exist constants C ′, C ′′, C ′′′, K (independent of ε > 0, N ≥ 1 and
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F ∈ C∞c ([0, 1]2)) such that

λN

N
≤ Nγ−1 sup

f

�

∑

x ,y∈ΛN
|x−y|≥εN

p(y − x)
�

�

�F a( x
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N )
�

�
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¬
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¶
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h

−C ′
¬
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¶

νN
h

�

�

+
C
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N 2

∑

x ,y∈ΛN
|x−y|≥εN

�

F a
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x
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��2

| x
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y
N |1+γ

+ K

≤ C
′′′ 1

N 2

∑

x 6=y∈ΛN

cγ
| x

N −
y
N |1+γ
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F a( x
N , y

N )
�2
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We have proved that

µ̄N

�

Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

F( x
N , y

N )p(y − x)(ηy −ηx)

�

= −2cγ µ̄
N
�

〈πN , gN 〉
�

®
1

N 2

∑

x ,y∈ΛN
|x−y|≥εN

cγ
| x

N −
y
N |1+γ

�

F a( x
N , y

N )
�2
+ 1.

Above gN is the function defined by

∀u ∈ [0, 1], gN (u) =
1

N

∑

y∈ΛN
�

�

y
N −u

�

�≥ε

F a
�

u, y
N

�

|u− y
N |1+γ

and it is a discretization of the smooth function g defined by

∀u ∈ [0,1], g(u) =

∫

y∈[0,1],
|y−u|≥ε

F a(u, y)

|y − u|1+γ
d y.

Let Qε = {(u, v) ∈ [0,1]2 ; |u− v| ≥ ε}.Observe first that for symmetry reasons we have that
for any integrable function π,

∫ 1

0

π(u)g(u)du=
1

2

∫∫

Qε

(π(v)−π(u))F a(u, v)

|u− v|1+γ
dudv.

We take the limit N →∞ and we conclude that there exists a constant C > 0 independent of
F ∈ C∞c ([0, 1]2) and ε > 0 such that

E∗





∫∫

Qε

(π(v)−π(u))F a(u, v)

|u− v|1+γ
dudv − C

∫∫

Qε

�

F a(u, v)
�2

|u− v|1+γ
dudv



 ®1.
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It is easy to see that the supremum over F can be inserted in the expectation (see Lemma 7.5
in [41]) so that

E∗



sup
F

(

∫∫

Qε

(π(v)−π(u))F a(u, v)

|u− v|1+γ
dudv − C

∫∫

Qε

�

F a(u, v)
�2

|u− v|1+γ
dudv

)



 ®1.

By writing F = F a + F s, and observing that the function (u, v) ∈ [0,1]2 → π(v) − π(u) is
antisymmetric, we have that

∫∫

Qε

(π(v)−π(u))F a(u, v)

|u− v|1+γ
dudv =

∫∫

Qε

(π(v)−π(u))F(u, v)

|u− v|1+γ
dudv.

Moreover, by using the definition of F a and using the inequality ( a+b
2 )

2 ≤ a2+b2

2 , it is easy to see
that

∫∫

Qε

�

F a(u, v)
�2

|u− v|1+γ
dudv ≤

∫∫

Qε

�

F(u, v)
�2

|u− v|1+γ
dudv.

It follows that

E∗



sup
F

(

∫∫

Qε

(π(v)−π(u))F(u, v)

|u− v|1+γ
dudv − C

∫∫

Qε

�

F(u, v)
�2

|u− v|1+γ
dudv

)



 ®1.

Consider the Hilbert space L2([0,1]2, dµε) where µε is the measure whose density with
respect to Lebesgue measure is (u, v) ∈ [0, 1]2 → 1|u−v|≥ε |u − v|−(1+γ). By letting Π : (u, v) ∈
[0, 1]2→ π(v)−π(u) the previous formula implies that

E∗
�

∫∫

[0,1]2
(Π(u, v))2 dµε(u, v)

�

®1.

Letting ε→ 0, by the monotone convergence theorem, we conclude that
∫∫

[0,1]2

(π(v)−π(u))2

|u− v|1+γ
dudv

is finite P∗ a.s.. It follows from Theorem 8.2 of [23] that P∗ almost surely π is γ−1
2 -Hölder. This

concludes the proof of Lemma 3.6.3.
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