Skip to Main content Skip to Navigation
Theses

Procédures de décision par élicitation incrémentale de préférences en optimisation multicritère, multi-agents et dans l'incertain

Nawal Benabbou 1
1 DECISION
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : This thesis work falls within the area of algorithmic decision theory which is at the junction of decision theory, operations research and artificial intelligence. Our aim is to produce algorithms allowing the fast resolution of decision problems in complex environments (multiple criteria, multi-agents, uncertainty). This work focuses on decision-theoretic elicitation and uses preferences to efficiently determine the best solutions among a set of alternatives explicitly or implicitly defined (combinatorial optimization). For combinatorial optimization problems, we propose and study a new approach consisting in interleaving incremental preference elicitation and preference-based search. The idea is to use the exploration to identify informative preference queries while exploiting answers to better focus the search on the preferred solutions. This approach leads us to propose incremental elicitation procedures for multi-objective state-space search problems, multicriteria shortest path problems, multicriteria minimum spanning tree problems, multi-agents knapsack problems and sequential decision problems under uncertainty. We provide theoretical guarantees on the correctness of the proposed algorithms and we present numerical tests showing their practical efficiency.
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01786851
Contributor : Abes Star :  Contact
Submitted on : Monday, May 7, 2018 - 1:01:52 AM
Last modification on : Thursday, June 11, 2020 - 4:49:15 PM
Long-term archiving on: : Monday, September 24, 2018 - 2:43:49 PM

File

2017PA066101.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01786851, version 1

Citation

Nawal Benabbou. Procédures de décision par élicitation incrémentale de préférences en optimisation multicritère, multi-agents et dans l'incertain. Algorithme et structure de données [cs.DS]. Université Pierre et Marie Curie - Paris VI, 2017. Français. ⟨NNT : 2017PA066101⟩. ⟨tel-01786851⟩

Share

Metrics

Record views

604

Files downloads

906