K. A. Akanni and J. W. Evans, Effective transport coefficients in heterogeneous media, Chemical Engineering Science, vol.42, issue.8, pp.1945-1954, 1987.
DOI : 10.1016/0009-2509(87)80141-0

G. P. Androutsopoulos and C. E. Salmas, A New Model for Capillary Condensation???Evaporation Hysteresis Based on a Random Corrugated Pore Structure Concept:?? Prediction of Intrinsic Pore Size Distributions. 1. Model Formulation, Industrial & Engineering Chemistry Research, vol.39, issue.10, pp.3747-3763, 2000.
DOI : 10.1021/ie0001624

K. Balakrishnan and R. D. Gonzalez, Preparation of Pt/Alumina Catalysts by the Sol-Gel Method, Journal of Catalysis, vol.144, issue.2, 1993.
DOI : 10.1006/jcat.1993.1341

M. Barrande, R. Bouchet, and R. Denoyel, Tortuosity of Porous Particles, Analytical Chemistry, vol.79, issue.23, pp.9115-9121, 2007.
DOI : 10.1021/ac071377r

E. P. Barrett, L. G. Joyner, and P. P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, vol.73, issue.1, pp.373-380, 1021.
DOI : 10.1021/ja01145a126

E. R. Becker and C. J. Pereira, Computer-aided design of catalysts, New York : M. Dekker (Chemical industries, vol.51, 1993.

J. W. Beeckman, Mathematical description of heterogeneous materials, Chemical Engineering Science, vol.45, issue.8, pp.2603-2610, 1990.
DOI : 10.1016/0009-2509(90)80148-8

J. W. Beeckman and G. F. Froment, Catalyst deactivation by site coverage and pore blockage, Chemical Engineering Science, vol.35, issue.4, pp.805-815, 1980.
DOI : 10.1016/0009-2509(80)85064-0

S. K. Bhatia, Directional autocorrelation and the diffusional tortuosity of capillary porous media, Journal of Catalysis, vol.93, issue.1, pp.192-196, 1985.
DOI : 10.1016/0021-9517(85)90163-0

R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport phenomena " . Rev, 2007.

C. Bobin, État de l'art sur les méthodes développées en porosimétrie mercure et en physisorption d'azote pour une meilleure caractérisation texturale des solides poreux ou divisés, 2010.

B. P. Boudreau, The diffusive tortuosity of fine-grained unlithified sediments, Geochimica et Cosmochimica Acta, vol.60, issue.16, pp.3139-3142, 1996.
DOI : 10.1016/0016-7037(96)00158-5

K. E. Brenan and L. R. Campbell, Numerical Solution of Initial-Value Problems in Algebraic Equations " . En ligne : https://books.google.fr/books?, 1996.

S. Brunauer, P. H. Emmet, and E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, vol.60, issue.2, pp.309-319, 1938.
DOI : 10.1021/ja01269a023

S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, On a Theory of the van der Waals Adsorption of Gases, Journal of the American Chemical Society, vol.62, issue.7, pp.1723-1732, 1940.
DOI : 10.1021/ja01864a025

S. C. Carniglia, Construction of the tortuosity factor from porosimetry, Journal of Catalysis, vol.102, issue.2, pp.401-418, 1986.
DOI : 10.1016/0021-9517(86)90176-4

P. Chang and C. R. Wilke, Some Measurements of Diffusion in Liquids., The Journal of Physical Chemistry, vol.59, issue.7, pp.592-596, 1955.
DOI : 10.1021/j150529a005

M. O. Coppens and J. B. Bhatt, Models representing porous media, 2017.

R. C. Dykhuizen and W. H. Casey, An analysis of solute diffusion in rocks, Geochimica and Cosmochimica Acta, pp.2797-2805, 1989.
DOI : 10.1016/0016-7037(89)90157-9

P. H. Emmett and S. Brunauer, The Use of Low Temperature van der Waals Adsorption Isotherms in Determining the Surface Area of Iron Synthetic Ammonia Catalysts, Journal of the American Chemical Society, vol.59, issue.8, pp.428-1553, 1938.
DOI : 10.1021/ja01287a041

C. Feng and W. E. Stewart, Practical Models for Isothermal Diffusion and Flow of Gases in Porous Solids, Industrial & Engineering Chemistry Fundamentals, vol.12, issue.2, pp.143-147, 1973.
DOI : 10.1021/i160046a001

E. M. Forman, M. A. Trujillo, K. J. Ziegler, S. A. Bradley, H. Wang et al., Self-diffusion of heptane inside aggregates of porous alumina particles by pulsed field gradient NMR, Microporous and Mesoporous Materials, pp.117-123, 2016.
DOI : 10.1016/j.micromeso.2016.04.027

S. P. Friedman and N. A. Seaton, A corrected tortuosity factor for the network calculation of diffusion coefficients, Chemical Engineering Science, vol.50, issue.5, 1995.
DOI : 10.1016/0009-2509(94)00220-L

X. Gao, J. C. Diniz-da-costa, and S. K. Bhatia, Understanding the diffusional tortuosity of porous materials: An effective medium theory perspective, Chemical Engineering Science, vol.110, pp.55-71, 2014.
DOI : 10.1016/j.ces.2013.09.050

F. Gaulier and . Solaize, Rapport mi-thèse: Étude de la diffusion des charges lourdes en conditions réelles dans les catalyseurs d'hydrotraitement, 2014.

G. Halsey, Physical Adsorption on Non???Uniform Surfaces, The Journal of Chemical Physics, vol.173, issue.10, pp.931-937, 1948.
DOI : 10.1021/ja01262a047

K. D. Hammond, W. C. Conner, and . Jr, Analysis of Catalyst Surface Structure by Physical Sorption " . Advances in Catalysis, pp.1-102, 2013.

N. Haq and D. M. Ruthven, A chromatographic study of sorption and diffusion in 5A zeolite, Journal of Colloid and Interface Science, vol.112, issue.1, pp.164-169, 1986.
DOI : 10.1016/0021-9797(86)90078-0

H. W. Haynes and P. N. Sarma, A model for the application of gas chromatography to measurements of diffusion in bidisperse structured catalysts, AIChE Journal, vol.19, issue.5, 1973.
DOI : 10.1002/aic.690190526

N. Iversen and B. B. Jorgensen, Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity, Geochimica et Cosmochimica Acta, vol.57, issue.3, pp.571-578, 1993.
DOI : 10.1016/0016-7037(93)90368-7

A. B. Jarzbeski and J. Lorenc, Pore network connectivity and effective diffusivity of silica aerogels, Chemical Engineering Science, vol.50, issue.2, pp.357-360, 1995.
DOI : 10.1016/0009-2509(94)00231-F

A. Johnson, I. M. Roy, G. P. Matthews, and D. Patel, An improved simulation of void structure, water retention and hydraulic conductivity in soil with the Pore-Cor three-dimensional network, European Journal of Soil Science, vol.44, issue.3, pp.477-489, 2003.
DOI : 10.2136/sssaj1980.03615995004400050002x

M. F. Johnson and W. E. Stewart, Pore structure and gaseous diffusion in solid catalysts, Journal of Catalysis, vol.4, issue.2, pp.248-252, 1965.
DOI : 10.1016/0021-9517(65)90015-1

F. J. Keil, Diffusion and reaction in porous networks, Catalysis Today, vol.53, issue.2, pp.245-258, 1999.
DOI : 10.1016/S0920-5861(99)00119-4

S. Kirkpatrick, Percolation and Conduction, Reviews of Modern Physics, vol.1, issue.4, p.574, 1973.
DOI : 10.1088/0022-3719/1/6/308

P. Klobes, K. Meyer, and R. G. Munro, Porosity and Specific Surface Area Measurements for Solid Materials, 2006.

K. Köhler and . Berlin, Modern Methods in Heterogeneous Catalysis Research, 2006.

S. Kolitcheff and . Solaize, Rapport mi thèse Approche multi technique des phénomènes de diffusion en hydrotraitement de distillat, 2015.

S. Kolitcheff, Approche multitechnique des phénomènes de diffusion en hydrotraitement de distillats, 2017.

S. Kolitcheff, E. Jolimaitre, A. Hugon, J. Verstraete, P. Carrette et al., Tortuosity of mesoporous alumina catalyst supports: Influence of the pore network organization, Microporous and Mesoporous Materials, pp.91-98, 2017.
DOI : 10.1016/j.micromeso.2017.04.010

URL : https://hal.archives-ouvertes.fr/hal-01581729

P. Kortunov, S. Vasenkov, J. Kärger, M. Fé-elía, M. Perez et al., Pulsed-field gradient nuclear magnetic resonance study of transport properties of fluid catalytic cracking catalysts, Magnetic Resonance Imaging, vol.23, issue.2, pp.233-237, 2005.
DOI : 10.1016/j.mri.2004.11.016

R. Krishna and J. A. Wesseling, The Maxwell-Stefan approach to mass transfer, Chemical Engineering Science, vol.52, issue.6, pp.861-911, 1997.
DOI : 10.1016/S0009-2509(96)00458-7

B. Kuchta, Adsorption: Modelling of physisorption in porous materials " . Laboratoire Madirel, Université Aix-Marseille. En ligne : https://www.google.fr/search?ie=UTF-8&oe=utf- 8&q=kuchta&safe=strict&gws_rd=cr, 2010.

G. M. Laudone, G. P. Matthews, and P. A. Gane, Modelling diffusion from simulated porous structures, Chemical Engineering Science, vol.63, issue.7, 1987.
DOI : 10.1016/j.ces.2007.12.031

J. Schoelkopf and S. A. Huggett, Estimation of structural element sizes in sand and compacted blocks of ground calcium carbonate using a void network model, Transport in Porous Media, pp.403-419, 2007.

G. M. Laudone, G. P. Matthews, P. A. Gane, C. J. Ridgway, and J. Schoelkopf, Estimation of the effective particle sizes within a paper coating layer using a void network model, Chemical Engineering Science, vol.60, issue.23, pp.6795-6802, 2005.
DOI : 10.1016/j.ces.2005.06.002

P. Leprince, Raffinage du Pétrole Procédés de transformation, pp.104-173, 1998.

H. Liu and N. A. Seaton, Determination of the connectivity of porous solids from nitrogen sorption measurements???III. Solids containing large mesopores, Chemical Engineering Science, vol.49, issue.11, pp.1869-1878, 1994.
DOI : 10.1016/0009-2509(94)80071-5

H. Liu, L. Zhang, and N. A. Seaton, Determination of the connectivity of porous solids from nitrogen sorption measurements ??? II. Generalisation, Chemical Engineering Science, vol.47, issue.17-18, pp.4393-4404, 1992.
DOI : 10.1016/0009-2509(92)85117-T

M. D. Mantle, Diffusion and Effective Diffusivity in Porous Media, 2010.

C. Morin, Préparation d'alumine à porosité contrôlée Etude de l'interaction de la boehmite dans des solvants et des propriétés fonctionnelles des matériaux resultants, 2014.

E. E. Petersen, Diffusion in a pore of varying cross section, AIChE Journal, vol.4, issue.3, pp.343-345, 1958.
DOI : 10.1002/aic.690040322

L. Petzold, Numerical Solution of Differential-Algebraic Equations, 1982.

G. Poncelet and P. Grange, Preparation of Catalysts III Scientific Bases for the Preparation of Heterogeneous Catalysts Jacobs, éd. En ligne : https://books.google.fr/books?, 1983.

S. M. Rao and M. Coppens, Increasing robustness against deactivation of nanoporous catalysts by introducing an optimized hierarchical pore network???Application to hydrodemetalation, Chemical Engineering Science, vol.83, pp.66-76, 2012.
DOI : 10.1016/j.ces.2011.11.044

S. Reyes, E. Iglesia, and K. F. Jensen, Application of percolation theory concepts to the analysis of gas-solid reactions, Solid State Ionics, pp.833-842, 1989.

S. Reyes and K. F. Jensen, Estimation of effective transport coefficients in porous solids based on percolation concepts, Chemical Engineering Science, vol.40, issue.9, pp.1723-1734, 1985.
DOI : 10.1016/0009-2509(85)80034-8

C. Rieckmann and F. J. Keil, Simulation and experiment of multicomponent diffusion and reaction in three-dimensional networks, Chemical Engineering Science, vol.54, issue.15-16, pp.3485-3493, 1999.
DOI : 10.1016/S0009-2509(98)00480-1

J. Rouquerol, D. H. Everett, D. Avnir, C. W. Fairbridge, J. H. Haynes et al., Recommendations for the characterization of porous solids (Technical Report), Pure and Applied Chemistry, vol.66, issue.8, pp.1739-1758, 1994.
DOI : 10.1351/pac199466081739

J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, and K. S. Sing, Adsorption by Powders and Porous Solids, 2014.

J. Rouquerol, F. Rouquerol, and K. S. Sing, Adsorption by Powders and Porous Solids, 1999.

D. M. Ruthven, Principles of Adsorption and Adsorption Processes, 1984.

C. E. Salmas, A. K. Ladavos, S. P. Skaribas, P. J. Pomonis, and G. P. Androutsopoulos, -Plot Method and a Pore Percolation???Connectivity Model, Langmuir, vol.19, issue.21, pp.8777-8786, 2003.
DOI : 10.1021/la034913t

N. A. Seaton, Determination of the connectivity of porous solids from nitrogen sorption measurements, Chemical Engineering Science, vol.46, issue.8, pp.1895-1909, 1991.
DOI : 10.1016/0009-2509(91)80151-N

L. Shen and Z. Chen, Critical review of the impact of tortuosity on diffusion, Chemical Engineering Science, vol.62, issue.14, pp.3748-3755, 2007.
DOI : 10.1016/j.ces.2007.03.041

K. S. Sing, D. H. Everett, R. Haul, L. Moscou, R. A. Pierotti et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional), Pure and Applied Chemistry, vol.54, issue.11, pp.603-619, 1984.
DOI : 10.1351/pac198254112201

M. Soliman, Y. Zeghayer, and A. Ajbar, A modified orthogonal collocation method for reaction diffusion problems, Brazilian Journal of Chemical Engineering, vol.22, issue.4, pp.967-975, 2014.
DOI : 10.1016/0009-2509(67)80074-5

M. C. Spearing and G. P. Matthews, Modelling characteristic properties of sandstones, Transport in Porous Media, pp.71-90, 1991.
DOI : 10.1007/BF00136822

D. Stauffer and A. Aharony, Introduction to Percolation Theory " . Revised 2 nd Edition, 1985.

H. Surjanhata, An orthogonal collocation sollutions of partial differential equations Institute of Technology. Faculty of New Jersey, 1993.

M. M. Tomadakis and S. V. Sotirchos, Transport properties of random arrays of freely overlapping cylinders with various orientation distributions, The Journal of Chemical Physics, vol.67, issue.1, pp.616-626, 1993.
DOI : 10.1063/1.321615

H. Toulhoat, D. Hudebine, P. Raybaud, D. Guillaume, and S. Kressmann, THERMIDOR: A new model for combined simulation of operations and optimization of catalysts in residues hydroprocessing units, Catalysis Today, vol.109, issue.1-4, pp.135-153, 2005.
DOI : 10.1016/j.cattod.2005.08.023

D. Uzio and . Solaize, Note technique: Détermination de la connectivité d'un réseau poreux à partir des isothermes d'adsorption d'azote -Application à l'étude de catalyseurs industriels, 1997.

D. Uzio, P. Euzen, and . Solaize, Note technique: Caractérisation de supports de catalyseur par adsorption d'azote. Influence des opérations unitaires de préparation sur les propriétés texturales, 2000.

H. A. Van-eekelen, The random-spheres model for porous materials, Journal of Catalysis, vol.29, issue.1, pp.75-82, 1973.
DOI : 10.1016/0021-9517(73)90204-2

J. Villadsen and M. L. Michelsen, Solution of Differential Equation Models by Polynomial Approximation, 1978.

J. Villadsen and W. E. Stewart, Solution of boundary-value problems by orthogonal collocation, Chemical Engineering Science En, vol.22, 1967.

N. Wakao and J. M. Smith, Diffusion in catalyst pellets, Chemical Engineering Science, vol.17, issue.11, pp.825-834, 1962.
DOI : 10.1016/0009-2509(62)87015-8

E. Weiland, Caractérisation des propriétés texturales et de transport de supports de catalyseurs, 2015.

H. L. Weissberg, Effective Diffusion Coefficient in Porous Media, Journal of Applied Physics, vol.34, issue.9, 1963.
DOI : 10.1063/1.1706534

P. B. Weisz and A. B. Schwartz, Diffusivity of porous-oxide-gel?Derived catalyst particles, Journal of Catalysis, vol.1, issue.5, pp.399-406, 1962.
DOI : 10.1016/0021-9517(62)90090-8

G. Ye, Y. Sun, X. Zhou, K. Zhu, J. Zhou et al., Method for generating pore networks in porous particles of arbitrary shape, and its application to catalytic hydrogenation of benzene, Chemical Engineering Journal, vol.329, issue.1, pp.56-65, 2017.
DOI : 10.1016/j.cej.2017.02.036