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CHAPTER 1
Introduction

The problem of estimating a multivariate function from corrupted observations arises throughout many areas
of engineering. For instance, in the particular field of medical signal and image processing, this task has
attracted special attention and even triggered new concepts and notions that have found applications in many
other fields. This interest is mainly due to the fact that the medical data analysis pipeline is often carried
out in challenging conditions, since one has to deal with noise, low contrast and undesirable transformations
operated by acquisition systems. On the other hand, the concept of sparsity had a tremendous impact
on data reconstruction and restoration in the last two decades. Sparsity stipulates that some signals and
images have representations involving only a few non-zero coefficients. This turned out to be verifiable in
many practical problems. Imposing sparsity priors on a corrupted input consists in setting to zero small
coefficients which results in removing noise components. Two of the most commonly used notions of sparsity
are sparse decompositions on some families of orthogonal bases called wavelets and sparse discrete gradients
obtained through Total Variation.

Wavelets

Wavelets have been studied and used for nearly half a century. They have been launched by geo-physicists in
the 80′s for analyzing seismic signals. Surprisingly, this analyzing tool, became a major drive in many theo-
retical fields as well as in solving some practical problems. Some of the first real life applications of wavelets
were audio signal analysis and image compression and denoising. Statisticians, attracted by the ability of
wavelets in characterizing some classes of functional spaces, started an extensive investigation in the early
90’s aiming at providing a theoretical understanding of the performance of wavelet denoising. Particularly,
the works of Donoho and Johnstone have set up the ground for wavelet non parametric estimation and the
construction of related thresholding algorithms.

Total Variation

A second notion which promotes sparsity is Total Variation (TV). In opposition to wavelets which were
motivated by practical issues, TV came from theory to practice when researchers noticed that performing
denoising tasks using Tykhonov and L2 regularization does not preserve strong discontinuities. Rudin, Osher
and Fatemi were the first to use TV as a regularization term in a variational framework for image restoration.
Since, TV became a classical tool in image processing and computer vision with applications ranging from
clustering to segmentation and motion estimation. The non-differentiability of TV also inspired many works
on non-smooth convex optimization.

Sparsity in several dimensions

Two concepts of dimensionality are present in sparsity. The first one is the dimension of the data; a function
of more than one variable is called a “multivariate function". The second concept appears in the transfor-
mation (sparse) domain; coefficients play the role of variables. In both cases dealing with several dimensions
has always been regarded with pessimism. This is due to the “curse of dimensionality" which constraints

1
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI123/these.pdf 
© [Y. Farouj], [2016], INSA Lyon, tous droits réservés



2 CHAPTER 1. INTRODUCTION

theoretical performances to the dimension. More precisely the minimax theory quantifies this curse by show-
ing that the dimension appears as a negative exponent in convergence rates. Nonetheless, for estimation
purposes with many variables, sparsity can be regarded from different angles. First, the unknown function
might not depend on all variables but only on a few of them. Thus, sparsity can be related to “dimen-
sionality reduction” . The performances are then linked to the effective dimension which is lower than
the dimension of the study space (to which the unknown belongs). Such reductions appear in statistics and
machine learning problems such as variable or feature selection problems. Generally, multivariate functions
(data) have variables with physical meanings (space, time, spectral, · · · ). Such variables are not expected
to be inactive and thus dimension reduction cannot be applied. They can, however, have different roles and
behaviours. This can be seen as an “anisotropy” feature. Each variable can be then treated separately with
optimal tools.

Structured Sparsity

Sparsity aims at controlling the cardinality of coefficients in a given representation. This results in elitist
denoising procedures such as hard or soft thresholding that act individually on each coefficient regardless of
any prior on the structure of non-zero coefficients. However, in many situations, we can expect predefined
patterns in sparsity. When analyzing real signals and images, local structures in the function domain results in
blocks of wavelet coefficients having the same behaviour; small coefficients are often structured in well-defined
neighbourhoods at a fixed scale. Wavelet coefficients also show a natural hierarchical (multi-resolution)
structure across scales. The notion of structured sparsity emerged in the recent years to promote meaningful
sparse representations by grouping coefficients that have, presumably, the same behaviour. This is often
done through structured `1-norms imposing either disjoint or overlapping groups of variables.

Positioning of the dissertation

The structured sparsity literature focuses on grouping variables in the transformation domain. This is partly
a result of the many challenges arising in approximation and learning of very high-dimensional data. Only
few works considered imposing structures on variables or dimensions before applying the sparsifying transfor-
mation. This is surprising because such structures can be seen simply by visualizing the data. As mentioned
before, a natural and easy structure can be revealed by considering anisotropy along the variables. This PhD
thesis aims at using this idea to develop sparse representations and regularity priors for multivariate function
estimation. In particular, a special attention is given to groupwise anisotropy. This notion enables grouping
variables into sub-sets having the same behaviour. We also consider anisotropy as a general concept which
goes beyond regularity. Grouped variables can also share the same physical properties or can be observed
under the same model.

The present dissertation deals with non-parametric multivariate function estimation; we consider the
problem of estimating a multivariate function f from a corrupted observation g

g = f + ε,

where ε is a noise component. Each of the three parts of the manuscript handles this problem with a
particular prior on f often motivated by challenges arising in medical imaging:

1. In Part I, we consider that f is a function of d ≥ 3 variables and that these variables can be grouped in
sub-ensembles on which f shows a similar behaviour. This behaviour can be related to the regularity
of f or/and the physical meaning of the variables.

Some natural groupings appearing in real applications are

(i) Space-time: Dynamic data, such as image sequences, show different regularities along spatial and
temporal variables. Note also that in many acquisition systems the sequences are acquired frame
by frame. As a consequence, many noise models depend only on spatial dimensions.
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(ii) Velocity-time: In the case of incompressible flows, the difference between dimensions is also due
to the physical properties of the flow; the divergence on spatial variables is null.

(iii) Time-frequency / space-frequency: Time-frequency representations, spectral and hyperspectral
data show also different regularities along variables.

2. Part II deals with a case that occurs in ultrasound imaging in which the function f depends on two
variables and the variance of the noise component is a function of the unknown f . Ultrasound images
represent, often, anisotropic features such as vessels and skin layers.

3. Part III covers another situation that arises in functional magnetic resonance imaging. Similarly to
some cases examined in Part I, the function f depends on spatial and temporal variables. Here, an
additional difference between the dimensions comes from fact that the function f is observed under
the action of a blur operator in the time domain due to the neural system response.

For each of the three problems we suggest a solution that is based on two main ingredients: sparsity
and anisotropy. In Part I, we introduce a generalization of the hyperbolic wavelet construction on groups
of variables. This allowed us to benefit from both isotropic and anisotropic constructions of wavelets for
non-parametric estimation tasks, but also to take into account other characteristics such as divergence
properties. An hyperbolic two-dimensional generalization of the wavelet-Fisz methodology is presented in
Part II. Theoretically, this construction guarantees optimal estimators in the minimax sens. We demonstrate
that for the particular case of wavelet-Fisz thresholding, the two-dimensional hyperbolic wavelet construction
outperforms the isotropic wavelet construction also in practice as predicted by theoretical results. This is
not always the case for classical wavelet procedures. In Part III, we use a particular TV regularization
composed of two terms (spatial and temporal). These two terms can be seen as single structured TV term
that offers an isotropic treatment in spatial dimensions and an anisotropic prior in space/time. Moreover,
this constructions allowed us to take into account the blur operator in the temporal domain using a particular
generalization of TV. Let us, now, give a detailed outline of the different chapters of this manuscript.

Outline

In Chapter 2, we present an overview on wavelets, their different constructions and multivariate extensions,
along with some mathematical tools which are going to be useful in the sequel. In particular, we recall
related functional spaces, statistical models and elements of non-parametric estimation.

Chapter 3 describes total variation and its use in signal and image processing. We also discuss some
basic elements on convex optimization related to total variation minimization.

Chapter 4 offers a new construction of wavelet atoms. First, we show the limits of the standard tensor-
product (hyperbolic) construction in image denoising. Then, we motivate the use of such constructions in
cases when the regularities along variables are different. This led us to a generalized hyperbolic construction
which allows grouping variables with respect to regularity features while performing non-parametric estima-
tion. For thresholding estimators, we show, under usual assumptions on wavelet functions, that the L2 -loss
falls to the dimension of the group of variables with the highest dimension. Moreover, we show that other
features besides regularity can be taken thanks to this construction. In particular, divergence-freedom and
variance stabilization can be imposed on groups of variables.

Chapter 5 uses the construction presented in Chapter 4 to show how denoising tasks can be performed
with respect to the anisotropy of the unknown. We present examples of denoising on spatio-temporal data
(image sequences and incompressible flows) and also spectral and hyperspectral data.

In Chapter 6, we give a discussion about the positioning of our work compared to existing works on
structured group-sparsity. We also mention some orientations for future works on the wavelet construction
presented in this part of the thesis.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI123/these.pdf 
© [Y. Farouj], [2016], INSA Lyon, tous droits réservés



4 CHAPTER 1. INTRODUCTION

In Chapter 7, we consider the following two-dimensional function estimation problem: we want to recover
an unknown function α from a noisy observation X, where the noise component has zero mean and a variance
function depending on the unknown α. We prove the optimality of hyperbolic wavelet-Fisz hard-thresholding
when u belongs to anisotropic Besov balls. This method computes the hyperbolic wavelet transform of the
image, before applying a multiscale variance stabilization technique, via a Fisz transformation. This adapts
the wavelet coefficients statistics to the wavelet thresholding paradigm. We also describe a data-driven
extension of this technique when h is unknown following previous works by Fryzlewicz and Dellouile. The
data-driven extension removes the need for any prior knowledge of the noise model parameters by estimating
the noise variance using an isotonic Nadaraya-Watson estimator.

In Chapter 8, we use the techniques presented in Chapter 7 to develop an algorithm and its fully data-
driven extension for noise reduction in ultrasound imaging. The use of hyperbolic wavelets enables to recover
the image while respecting the anisotropic nature of structural details. Experiments on synthetic and real
data demonstrate the potential of the proposed algorithm at recovering ultrasound images while preserving
tissue details. Furthermore, for this particular wavelet denoising strategy, we show that the results obtained
by the hyperbolic construction confirm the theoretical claims. Comparisons with other noise reduction
methods show that our method is competitive with the state-of-the art OBNLM filter. Finally, we emphasize
the noise model we consider by applying our variance estimation procedure on real images.

Chapter 9 is devoted to some orientations for future works on the wavelet-Fisz and its applications.

Chapter 10 put in review some of the fundamental works on fMRI data analysis before stating the fMRI
deconvolution problem that we will consider in the next chapter.

Chapter 11 introduces new strategies for fMRI spatio-temporal deconvolution without anatomical priors.
That is, only the membership of the contributing voxels to the gray matter and the global homogeneity of
the activation are taken into account. The presented atlas free Total Activation (AfTA) technique is an
extension of the Total Activation (TA) framework; we formulate a variational denoising problem involving
two regularization terms. These terms express sparsity along variables by taking the temporal and the spatial
characteristics. The first term uses a generalized total variation which promotes a block-type structure on
the the underlying activity-inducing signal by inverting the hemodynamic response function. The second
term is a weighted total variation which favors globally coherent activation patterns within the gray matter
while preserving strong discontinuities. Evaluation on synthetic demonstrated the potential of AfTA at
recovering the brain activity. Furthermore, we applied this techniques to a real task-evoked fMRI data from
an experiment with prolonged resting state periods disturbed by visual stimuli. The results show the ability
of proposed technique at retrieving both spontaneous and task-related activities without prior knowledge of
the timing of the experimental paradigm nor the triggered regions.

Finally, ?? is devoted to a discussion on a possible extension of the deconvolution method presented in
the previous chapter. We consider the problem of estimating both the fMRI signal and the systems response.
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CHAPTER 2
Wavelets

Abstract

In this chapter, we present an overview on wavelets, their different constructions
and multivariate extensions, along with some mathematical tools which are
going to be useful in the sequel. In particular, we recall related functional
spaces, statistical models and elements of non-parametric estimation.

2.1 Introduction

The origin of wavelets goes back to the beginning of the 80’s when Morlet [1981] had the idea of analyz-
ing seismic signals by integrating them against translated and dilated versions of a mother function called
“wavelet". The purpose is to retrieve a localized description of both time and frequency information. Sur-
prisingly, this analyzing tool, which is purely motivated by its application, turned out to be a connection
point of various research fields which appear, at first sight, to be disconnected. Thus, wavelets provided a
remedy for two distinct pathologies of the Fourier representation:

• Signal processing and quantum physics researchers understood early a major limitation of Fourier
analysis: though it gives a complete description in the frequency domain, the temporal information is
completely lost.

• While engineers and physicists were busy with solving the localization problem above, mathematicians
were still trying to find appropriate bases for some functional spaces arising in applied analysis as Besov
and Sobolev spaces.

These two questions have been studied, before wavelets, with two ancestors which are respectively the frames
of Gabor [1946] providing a time-frequency representation but not an orthogonal basis of L2 and the basis
constructed by Haar [1910] from shifted and dilated versions of a step function which gives an unconditional
orthogonal basis for all Lp spaces with p ≥ 2 but cannot be a basis for functional spaces of regular (continuous)
functions.

The wavelet theory came with a sort of synthesis of these ideas by providing unconditional orthonormal
bases for large classes of functional spaces and making the connection between Gabor’s time-frequency
analysis and Haar’s time-scale representation. This connection turned out to be crucial as the time-scale
representation allowed sub-band coding practitioners to use pyramidal algorithms for fast implementation.
Wavelets are an exciting example of a tool which was discovered for practical purposes and turned out to
be of great use in theory. Nowadays, wavelets are standard tools in harmonic analysis, statistic, physics
and engineering. In the next section, we briefly present the general framework of time-frequency analysis to
motivate the section 2.3 about the multi-resolution theory leading to the construction of wavelet filter. The
description of functional spaces through wavelet expansions are given in section 2.4 and then one of the most
celebrated applications, which is statistical non-parametric estimation, is given in the last section.
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Figure 2.1: Pavings of the time domain and frequency domain representations.

2.2 Time-frequency Analysis

In this section, we expose fundamental elements of time-frequency analysis. In particular, we recall the basic
representations and expose their disadvantages which motivated the definition of wavelets.

2.2.1 Fourier Analysis

Fourier analysis of a function f ∈ L2(R) consists in representing the function as a sum of elementary signals
corresponding to sines and cosines (pure harmonics) and thus complex exponentials

f(t) =
1

2π

∫
R
f̂(ω)eiωtdω

where the Fourier transform is given by

f̂(ω) =

∫
R
f(t)e−iωtdt

The integration against f is done on the complete domain. This implies that a local change in the
temporal domain affects all points in the Fourier domain. Thus, the representation produced by the family
{e−iωt} is local in frequency but global in time (cf. Figure 2.1). From a functional analysis point of view, the
most notable property of the Fourier representation is the energy preservation given by the Plancherel identity
||f ||2 = ||f̂ ||2. This allows one to decide from the amplitude of the Fourier coefficients, the membership of
f in L2 spaces. That is, the exponentials family is an unconditional basis for L2 spaces. However, for other
Lp spaces, there is no equivalent of the Plancherel identity. Thus the membership to those spaces cannot
be characterized only by knowledge on the amplitude of the Fourier representation. These drawbacks can
be related to the fact that the Fourier transform is global: the natural way to address them is to introduce
some localization through windowed transforms.

2.2.2 Gabor Analysis

The most straightforward way to introduce some localization is to split the time line into segments Ij =
[aj , aj+1], where aj is an increasing sequence of real numbers. Then, replace the exponantials in the Fourier
transform by the family 11Ijeiωt where j ∈ Z and 11Ij is the indicator function over the segment Ij . The
resulting transform is known as the windowed Fourier transform. It is now possible to have a basis of
L2(R) by periodicity. However, the discontinuity induced by the indicator windows generates functions with
Fourier coefficients having a slow decay. Gabor [1946] suggested to replace the indicator function by a family
of translated and frequency-modulated smooth functions. The resulting family of functions is of the form

gω0,t0 = g(t− t0)eiω0t, (ω0, t0) ∈ R2

where g is a normalized (||g||22 = 1) function called the Gabor window which define the time-frequency
support. The width of such a support is however limited by the Heisenberg inequality. This limit can be
defined by measuring the width of the window g via the following quadratic deviations
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Figure 2.2: Pavings of the time-frequency and time-scale representations.

∆x(g) =
(∫

R
(t− t̄(g))2|g(t)|2dt

) 1
2
,

and

∆ω(g) =
(∫

R
(ω − ω̄(ĝ))2|ĝ(t)|2dt

) 1
2
,

where the means t̄(g) and ω̄(ĝ) are given by

t̄(g) =

∫
R
t|g(t)|2dt ; ω̄(ĝ) =

∫
R
ω|ĝ(ω)|2.

The Heisenberg inequality reads

∆x(g)∆ω(g) ≥ 1

2

As a result, the elements of the family {gω0,t0} cannot have an arbitrary small time-frequency support.

The minimum
1

2
is reached when g has a Gaussian form. To represent an arbitrary function as a linear

combination of such Gaussian functions, one needs all possible combinations of the parameters (ω0 and t0)
which is an overly redundant paving of the time-frequency domain. The price to pay in this case, compared
to the windowed Fourier transform, is to renounce on having a basis of L2(R). In fact, to have an orthogonal
basis with Gabor systems, one should expect to have a very poor localization either in time or frequency
(cf. Bourgain [1988]). This result is known as the strong uncertainty principle due to Balian [1981] which
highlights the incompatibility of non-redundancy and time-frequency concentration. It states than any basis
of L2(R) of the Gabor system form is expected to have a window which have an infinite support either in
space domain or phase domain:

∆x(g)∆ω(g) =∞.

In order to overcome the strong uncertainty principle, and still have a non-redundant basis, one should
go beyond the Gaussian window of the Gabor framework, which is too well-localized, and thus losing some
time-frequency concentration. Here again, there are two approaches:

• The time-frequency approach: The paving is performed independently from time width. The function
are given as in the Gabor system {gω0,t0}ω0,t0 .

• The time-scale approach: The temporal support is varying and is inverse proportional to the frequency
within the limitations of the uncertainty principle.

The most celebrated examples of the local time-scale approach are wavelets.
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8 CHAPTER 2. WAVELETS

2.2.3 Continuous Wavelet Transform (CWT)

Following Morlet’s ideas, Grossmann and Morlet [1984] showed that a family constructed from a well chosen
function ψ by translations and dilations

ψs,τ (t) =
1√
s
ψ
( t− τ

s

)
can be used for the expansion of function in L2(R). It turned out that such families can form, under

some conditions on ψ, orthonormal bases of L2(R) (cf. Strömberg [1983] and Meyer [1985]). For a function
ψ ∈ L2(R) with ||ψ||22 = 1 and null average, the continuous wavelet transform Wf of the function f is given
by the following formula:

Wf(s, τ) = 〈f, ψs,τ 〉 =

∫
R
f(t)ψs,τ (t) dt

Under the Calderón’s admissibility condition:

Cψ =

∫ ∞
0

|ψ̂(ω)|2

ω
dω < +∞,

one has the so–called reconstruction formula

f(t) =
1

Cψ

∫
R2

Wf(s, τ)ψs,τ (t) dτ
ds

s2
.

Note that the wavelet transform is quasi-isometric as

||f(t)||22 =
1

Cψ
||Wf ||22.

To have a non-redundant discrete time-scale representation as the one in the previous paragraph, the
definition of the discrete wavelet transform is needed.

2.2.4 Discrete Wavelet Transform (DWT)

The discrete wavelet transform (DWT) used by Morlet consists in a discretization of the time and scale
parameters in a way that one is proportional to the other s = kτ . The most used choice for the discret grid
is the dyadic one. Here again, the starting point is ψ and the wavelet family is constructed from translated
and dilated on the grid

{ψ(2jt− k)}j,k, with (j, k) ∈ Z2.

The discrete counterpart of the Calderón’s admissibility condition is given for each ω belonging to a
discretization of the real line, by

∑
j∈Z
|ψ̂(2−jω)|2 = 1

2.3 Multiresolution Analysis (MRA)

In this section we describe how wavelets are constructed. A classical way to address this description is to do
it through the Multiresolution Analysis (MRA) framework introduced by Mallat [1989].
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2.3. MULTIRESOLUTION ANALYSIS (MRA) 9

2.3.1 Definition of MRA

A multiresolution analysis of L2(R) is an increasing sequence of closed subspaces (Vj)j∈Z,

{0} ⊂ · · ·Vj−1 ⊂ Vj ⊂ Vj+1 · · · ⊂ L2(R)

verifying the following properties:

(i)
⋂
j∈Z

Vj = {0}

(ii) L2(R) =
⋃
j∈Z

Vj .

(iii) ∀f ∈ L2(R), ∀j ∈ Z : f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1

(iv) ∀f ∈ L2(R), ∀k ∈ Z : f(x) ∈ V0 ⇐⇒ f(x− k) ∈ V0

(v) ∃ϕ ∈ V0 such that {ϕ(.− k)}k∈Z forms a frame of the subset V0.

The assumptions (i) and (ii) ensures completeness through the density of the union of the sub-spaces
(Vj)j∈Z in L2(R). Assumption (iii) means that the sub-spaces (Vj)j∈Z are time-scaled versions of each other.
Assumption (iv) ensures that V0 is translation invariant. Assumption (v) requires that V0 is a linear span of
shifted versions on Z of a generating functions ϕ called the scaling function.

Note that assumptions (iii) and (iv) guarantee that

∀f ∈ L2(R), ∀k ∈ Z : f(x) ∈ Vj ⇐⇒ f(2jx− k) ∈ Vj+1

It also follows, from the assumption (v), that all for all j ∈ Z, the subspace Vj can be described as a
linear span using the family {ϕ(2j . − k)}k∈Z. Finally, the fact that any function of V0 has to be expressed
as an infinite linear combination of shifted versions of ϕ imposes some decay rate at the infinity on ϕ.

2.3.2 Wavelet bases

If we suppose that we are given a function ϕ such that the family {ϕ(.− k)}k∈Z forms an orthonormal basis
of V0, then at each resolution scale j, the subspace Vj has an orthonormal basis {ϕj,k(.) = 2j/2ϕ(2j .−k)}k∈Z.
As a consequence, any function f ∈ L2(R) can be approximated at the scale j by an orthogonal projection
on Vj as follows

Pjf(t) =
∑
k∈Z
〈f, ϕj,k〉ϕj,k.

Pjf is an approximation of f at scale 2−j . To get a better approximation at a finest scale 2−(j+1), we
should be able to evaluate the difference

Qjf = Pj+1f − Pjf,

or equivalently find Qjf such that Pj+1f = Pjf +Qjf . If we denote by Wj the orthogonal complement
of Vj

Vj ⊕Wj = Vj+1, (2.1)

then Qj is the projection of f on Wj . Wavelets appears as orthonormal bases of the spaces {Wj}j∈Z. In
the same way as the scaling function is used to construct bases for {Vj}j∈Z, it is possible to construct bases
of Wj from a function ψ called mother wavelet. The function ψ is chosen such that {ψ(.− k)}k∈Z forms an
orthonormal basis of W0. The basis {ψj,k}k∈Z of Wj is then constructed as translated and dilated versions
of ψ

ψj,k(t) = 2j/2ψ(2jt− k), ∀j ∈ Z, ∀k ∈ Z,
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10 CHAPTER 2. WAVELETS

where the factor 2j/2 is the L2 normalization. As a result, we have

Qjf =
∑
k∈Z
〈f, ψj,k〉ψj,k.

It implies that any function of L2(R) can be written as a combination of {ψj,k}(j,k)∈Z2 in two ways

f =
∑
j,k∈Z
〈f, ψj,k〉ψj,k, (2.2)

or

f =
∑
k∈Z
〈f, ϕj,k〉ϕj,k +

∑
l>j

∑
k∈Z
〈f, ψl,k〉ψl,k, (2.3)

Each of these two constructions come from

Vj ⊕Wj · · · ⊕Wl−1 = Vl, j < l. (2.4)

with l goes to +∞ which can be easily deduced from 2.1.
The expansion in (2.2) is obtained by letting j goes to −∞, while the expansion in (2.3) is obtained by

fixing j. These two expansions correspond respectively to the two following decompositions

L2(R) =
⊕
j∈Z

Wj

and

L2(R) = Vj ⊕
⊕
l≥j

Wl.

Similarly, the union of the bases of the subspaces {Wj}j∈Z results in two types of orthonormal wavelet
bases of L2(R)

B = {ψj,k}j,k∈Z,

and
Bj = {ϕj,k}k∈Z ∪ {ψl,k}l≥j,k∈Z.

In the sequel, without lost of generality on the theoretical results, we will consider the second case Bj at
scale j = 0. For the sake of readability, we denote ϕ0,k = ψ−1,k for k ∈ Z. The coefficients dj,k = 〈f, ψj,k〉
for j ≥ 1 and k ∈ Z are called wavelet coefficients, while the coefficients c0,k = 〈f, ψ−1,k〉 for k ∈ Z are called
approximation coefficients. The orthogonality of the construction is of great theoretical benefit. For example,
it simplifies the study of approximation errors and performances of non-parametric estimation. Moreover,
the wavelet coefficients of a Gaussian white noise have also a Gaussian distribution. This latter remark will
be at the heart of Part I and Part II of this thesis. However, in practice, orthogonal constructions are not
flexible. For example, they cannot be symmetric. Bi-orthogonal constructions [Cohen et al., 1992] can be
used to overcome this issue. They consist in two dual multiresolution analyses whose scaling functions ϕ
and ϕ∗ satisfy 〈ϕ,ϕ∗(· − k)〉 = δ0,k. The first one is used for decomposition while the second one is used for
reconstruction. The system (ϕ,ψ, ϕ∗, ψ∗) is a basis of L2(R) and verifies∫

R
ψj,k(t)ψ

∗
j′,k′(t) dt = δj−j′δk−k′ ; ∀j ≥ −1,∀j′ ≥ −1, ∀(k, k′) ∈ Z2,

where δ is the Kronecker symbol, and any function of L2(R) can be expressed as

f =
∑

j≥−1,k∈Z
〈f, ψj,k〉ψ∗j,k. (2.5)
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2.3.3 Fast Wavelet Transform (FWT)

One of the keys that explain the success of the Fourier Transform in real applications is the Fast Fourier
Transform (FFT) algorithm. Discovered by Cooley and Tukey [1965], this algorithm allows to compute the
Fourier transform of sampled signal of length N in N log2(N) operations instead of N2. When N is dyadic
the FFT factorizes the Fourier transfer matrix into 2 log(N) sparse matrices. This idea of reduction via a
dyadic scheme appears also in wavelet analysis. The Fast Wavelet Transform (FWT) is due to Mallat [1989]
who made the connection between the wavelet transform and the pyramidal filtering algorithms (cf. Adelson
et al. [1987]). In order to perform the basis change induced from equation (2.1) at each scale j, finite filters h
and g are used instead of analytic functions ϕ and ψ. These filters are defined such as they allow to compute
scaling and wavelet coefficients, respectively, from fine to coarse scales in the following way

cj,k = 2
∑
k′∈Z

h[k] cj+1,2k′−k,

dj,k = 2
∑
k′∈Z

g[k] cj+1,2k′−k.

This forward transformation corresponds to the direct sum iteration (2.4). It can be computed accu-
rately by a scheme of alternating downsampling/filtering in N operations. To have a counter part of the
reconstruction formula (2.3), approximations from coarse to fine scales are computed by a cascade filtering

cj+1,k =
1

2

∑
k′∈Z

h[2k′ − k] cj,k′ + g[2k′ − k] dj,k′ ,

until the finest possible scale is reached. Note that in the bi-orthogonal case, h and g should be replaced,
in the later equation, by their dual filters h∗ and g∗ corresponding to the couple (ϕ∗, ψ∗). This inverse
transformation can also be computed by a scheme of alternating upsampling/filtering in N operations.

2.3.4 Multivariate MRA

There is two different paradigms for the construction of multivariate wavelet basis from univariate ones; sepa-
rable and non-separable constructions. The starting point is a system (ϕ,ψ) which provides a multiresolution
analysis {Vj}j≥0 of L2(R) which leads to the following decomposition

L2(R) =
⊕
l≥−1

Wl.

with W−1 = V0. In order to get a multivariate MRA, we should first remark that

L2(Rd) =
⋃
l≥0

Vl ⊗ · · · ⊗ Vl.

Separable MRA

The most natural way to construct a wavelet basis of L2(Rd), d > 1, is through a tensor product. Thus,
a basis of L2(Rd) can be constructed using the univariate tensor iteration (2.4) at each dimension in the
following way (

Vl ⊕Wl · · · ⊕Wj−1

)
⊕ · · · ⊕

(
Vl ⊕Wl · · · ⊕Wj−1

)
= Vj ⊗ · · · ⊗ Vj , j > l. (2.6)

This corresponds to the following decomposition (letting l = 0)

L2(Rd) =
⊕

j1,··· ,jd≥−1

Wj1 ⊗ · · · ⊗Wjd (2.7)
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Figure 2.3: Tilings of the wavelet representation in the “isotropic” and “hyperbolic” cases.

Let us denote j̄ = (j1, · · · , jd) and j̄ = (k1, · · · , kd) The corresponding wavelet basis is called “Hyper-
bolic”1(cf. DeVore et al. [1998]) and it is obtained using the tensor product of univariate wavelets

BH = {ψj̄,k̄(x)}j̄,k̄ = {ψj1,k1(x1)× · · · × ψjd,kd(xd) : j̄ = (j1, · · · , jd) ∈ (N ∪ {−1})d, k̄ = (k1, · · · , kd) ∈ Zd}.
(2.8)

Non-separable MRA

Notice that all combinations of the scale parameter j̄ are allowed in the separable construction. In particular,
scales are mixed and thus the multiresolution structure is lost. To retrieve this structure, the degree of liberty
of the scaling parameter should be reduced to one. Let us denote S0

l = Vl and S1
l = Wl for each l ∈ Z. The

decomposition (2.6) can also be written in the following way(
S0
l ⊕ S0

l · · · ⊕ S0
l

)
⊕
⊕
l<j

⊕
(i1,··· ,id)∈{0,1}d\{(0,··· ,0)}

(
Si1l ⊕ S

i2
l · · · ⊕ S

id
l

)
= S0

j ⊗ · · · ⊗ S0
j . (2.9)

In this case the sub-spaces are arranged by scale, thus providing a multiresolution structure. Note that
the approximation sub-spaces are used at all scales l < j. A basis of L2(Rd) in the non–separable case is
then given by

L2(Rd) =
⊕
j≥0

⊕
(i1,··· ,id)∈{0,1}d\{(0,··· ,0)}

(
Si1j ⊕ S

i2
j · · · ⊕ S

id
j

)
(2.10)

Let us denote ψ(0)
j,k = ϕj,k and ψ(1)

j,k = ψj,k. Then, the wavelet basis corresponding to the non-separable
MRA is called “isotropic” (cf. Mallat [1989] or Daubechies [1992]) and it is given by the collection

BI = {ψ(i1)
j,k1

(x1)× · · · × ψ(id)
j,kd

(xd) : j ≥ 0, (k1, · · · , kd) ∈ Zd, (i1, · · · , id) ∈ {0, 1}d\{(0, · · · , 0)}} (2.11)

The term "isotropic” comes, of course, from the fact that the wavelet product is allowed only for functions
at the same scale which provides an isotropic treatment on the different variables. It is not mandatory to
impose isotropy to have a non-separable construction which have a multiresolution structure. Roughly
speaking (cf. [Triebel, 2004]), it is sufficient to impose that the degree of freedom of the scale vector is equal
to one. This can also be done imposing that the ratio between two scales ji and ji′ , with i 6= i′, is constant
(j/j′ = Constant). The isotropic case is obtained if the ratio is equal to one. Otherwise, the obtained
construction is called anisotropic. Such a construction is not of great interest as only one anisotropy is

1This wavelets appears under other names names in the literature, such as mixing scales Remenyi et al. [2014] or rectangu-
lar Zavadsky [2007].
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Figure 2.4: Meyer wavelet.

allowed; this prior is too strong in practice. In the sequel we will consider only the isotropic and the
hyperbolic constructions and their properties from a statistical point of view. Figure 2.3 shows the difference
in the spatial tilling between the isotropic and the hyperbolic case. Figure 2.4 shows the “Meyer" wavelet and
scaling functions, while Figure 2.5 highlights the difference in the supports of the isotropic and hyperbolic
two-dimensional Meyer wavelets across scales.

2.4 Related functional spaces

The notion of sparsity has been at the heart of wavelet-based processing since its beginning in early 90’s.
It relies on the ability of representing a given function using only a few wavelet coefficients. This concept
was mainly motivated by compression problems (cf. DeVore et al. [1992a]), but turned out to be useful for
denoising (cf. Donoho et al. [1995]) and more recently for recovery in what called the compressed sensing
theory (cf. Candès et al. [2006]). This notion can be quantified using functional spaces. This spaces are
also crucial to evaluate the statistical performances of wavelet estimators. To emphasize this ideas we start
by highlighting the link between frequency/time-scale representations and functional spaces such as Sobolev
and Besov. For the sake of readability, we restrict ourselves to the one-dimensional case. Extensions to
classical multivariate isotropic spaces are straightforward.

2.4.1 Sobolev Spaces

Sobolev spaces appear naturally in the study of partial differential equations (pde’s). Actually, it has been
early observed that, for theoretical and practical reasons, spaces of continuous functions Cm are not well
adapted for solutions of pde’s (see for example the book of Brezis [1983]). In particular, the summability of
the solution and its derivatives appearing in the equation must be verified. Sobolev spaces provides such a
characterization

W s,p([0, 1]) =

{
f ∈ Lp([0, 1])

∣∣∣∣ ∀α ≤ s, Dαf ∈ Lp([0, 1])

}
,

where p ∈ [1,+∞] and Dα is the α-th derivative. Such a definition can be extended to the multivariate
case by considering α as multiindex. The case p = 2 is for particular interest because the resulting space
Hs([0, 1]) = W s,2([0, 1]) forms a Hilbert space. Moreover, as the Fourier transform is well defined for
functions in Lp([0, 1]), the Parseval identity provides an alternative characterization of these spaces

Hs([0, 1]) =

{
f ∈ L2([0, 1])

∣∣∣∣ ||f ||Hs =

(∑
`∈Z
|〈f, e−i`.〉|2

(
1 + |`|2

)s)1/2

<∞
}
,
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Figure 2.5: Two-dimensional Meyer wavelet.

In words, functions of Hs([0, 1]) are described by the decay of their Fourier coefficients. This has an
interesting consequence on the approximation properties of the Fourier expansion. In fact, a truncated
N -term linear approximation2 of f through its (discrete) Fourier expansion is given by3

fN =

N/2∑
k=−N/2

〈f, e−2iπk.〉e2iπk..

Note that

|k|s|〈f, e−2iπk.〉| ≤

(∑
`∈Z
|〈f, e−2iπ`.〉|2

(
1 + |`|2s

))1/2

.

The right hand side converges whenever f is in Hs([0, 1]), and thus we have

f ∈ Hs([0, 1]) =⇒ |〈f, e−2iπk.〉| ≤ C

|k|s
.

As a consequence, the N − term approximation of f verifies the following error rate (cf. Mallat [2008],
Theorem 9.2)

||fN − f ||22 ≤ O(N−2s). (2.12)

This rate shows the efficiency of Fourier coefficients in representation of functions of Hs([0, 1]) thanks
to the equivalence between smoothness and Fourier coefficients decay. Wavelets provide a similar rate of
convergence; if the mother-wavelet ψ and the scaling function φ at least s vanishing moments, one has
(cf. Mallat [2008], Theorem 9.5)

||Pjf − f ||22 ≤ O(2−2js), (2.13)

with N = 2j . Sobolev spaces gather all spaces of functions that are characterized by global smoothness.
In particular, the approximation error (2.12) is valid for continuous functions Cα and α-Lipschitz functions.

2In fact, there are N + 1 terms by considering the term given by k = 0.
3The Fourier expansion on [0, 1] is calculated through 2π-periodization.
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2.4. RELATED FUNCTIONAL SPACES 15

However, in many applications, particularly image processing, one is confronted to functions that are piece-
wise smooth. Such functions present discontinuities with the result that the Fourier series expansion does
not converge anymore. These functions cannot belong to any Sobolev space and cannot be characterized
by Fourier representations. In order to fill this gap Besov [1956] introduced spaces of functions that allows
singularities.

2.4.2 Besov Spaces

Besov spaces can be seen as an extension of Sobolev spaces. Their mathematical definition requires the
definition of the smoothness modulus (cf. DeVore and Popov [1988]). Let us define the first and second order
finite difference operators

∆hf(x) = f(x+ h)− f(x), ∀(x, h) ∈ R2,

and its r-th order extension

∆r
h(f)(x) = ∆h ◦∆h ◦ · · ·∆h︸ ︷︷ ︸

r

(f)(x).

∆r
h is decaying to 0 when the step size h → 0. The smoothness modulus measures this decay in a given

Lp-norm

ωr,p(f, h) = sup
|h̃|≤h
||∆r

h̃
f ||p.

Derivability of order r allows decay rate of order hr. This order of derivability is also equivalent to say that
the function is r-Lipschitz. The role of the Lp-norm is to maintain this regularity by ignoring singularities
having regularities smaller than r up to a certain order. This is done thanks to the possibility of calibrating
regularities by compensating the loss in the dimension in singularities. This leads to the definition of Besov
spaces as given by DeVore and Popov [1988]

Definition 2.4.1. Let f ∈ Lp, 1 ≤ p ≤ ∞. A Besov space of indices s > 0, p and 1 ≤ p, q ≤ ∞, is denoted
by Bs

p,q and characterized by

f ∈ Bs
p,q ⇐⇒ |f |Bsp,q =


(∫ +∞

0

(
h−sωbs+1c,p(f, h)

)q dh
h

) 1
q

< +∞, if q < +∞

sup
h>0

(
h−sωbs+1c,p(f, h)

)
< +∞ if q = +∞

The parameter q is not of capital importance compared to s and p. It is often ignored or just assumed
to be +∞. The application |.|Bsp,q is called the Besov seminorm of indices (s, p, q). The Besov space norm is
given by

||f ||Bsp,q = |f |Bsp,q + ||f ||p.

It is interesting to note that Besov Spaces gather functions with Lipschitz and Holder regularities as well
as functions in Sobolev spaces. This is due to the universality of the regularity measure in the sense of the
smoothness modulus which can be seen as a local continuity criteria. For example, when p = q = 2, Bs

2,2

coincides with the Sobolev space Hs and when s < 1, Bs
p,∞ is the Lipschitz space Lip(s, Lp) and Bs

∞,∞ is
the Hölder space of order s.

A fundamental characterization of Besov spaces is obtained by wavelet coefficients. In fact, in the same
way that Sobolev spaces are approximation spaces of Fourier coefficients, i.e on which the error rate in (2.12)
is obtained, Besov spaces are natural approximation spaces for wavelet coefficients. The following theorem
provides a characterization of Besov spaces through wavelets coefficients (cf. DeVore et al. [1992b])
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16 CHAPTER 2. WAVELETS

Definition 2.4.2. Let f be a function of Lp(R) and

ck =

∫
ϕ0,k(x)f(x)dx ; dj,k =

∫
ψj,k(x)f(x)dx.

Then, we have the following characterization of Besov spaces

f ∈ Bs
p,q ⇐⇒ ||f ||Bsp,q =


|c|p +

(∑
j≥0

2jq(s−1/p+1/2)|dj |qp

) 1
q

< +∞, if q < +∞

|c|p + sup
j≥0

2jq(s−1/p+1/2)|dj,.|p < +∞ if q = +∞,

where c = {ck}k and dj = {dj,k}k. This latter characterization provides an alternative definition Besov
norms based on wavelet coefficients. It consists in taking the p-norm of wavelet coefficients at each scale and
a q-norm across scales. The smoothness parameter s appears as an exponent which controls the decay of the
coefficients at each scale. The linear approximation properties of wavelet are stated in the following theorem
(cf. Härdle et al. [2012], Theorem 9.6).

Theorem 2.4.1. Let v ∈ N, 0 < s < v, 1 ≤ p, q ≤ +∞ and (ϕ,ψ) an orthogonal multi-resolution system
such that ϕ and ψ have v vanishing moments. Then we have

f ∈ Bs
p,q ⇐⇒

{
∀j ∈ N, ||Pjf − f ||2 ≤ O(2−jsuj), if p ≥ 2

∀j ∈ N, ||Pjf − f ||2 ≤ O(2−j(s+1/2−1/p)uj), if 1 ≤ p < 2,

where (uj)(j∈N) ∈ `q(N) is a sequence of positive numbers.

This theorem can also be seen as a N − term approximation with N = 2j in the same spirit as the
approximation given by the Fourier transform.

2.4.3 Nonlinear approximation

Approximations such as wavelet projection and truncated Fourier series are called linear in the sense that
they depend only on the number N of coefficients and not on the function to be approximated. However, it
is clear that for obtaining the best N − term approximation, over a given basis, coefficients should be chosen
such as the error is the smallest possible. In other words, large coefficients should be taken into account in
the approximation. This is naturally done in the case of Fourier approximation as the largest coefficients are
likely to be concentrated around the origin which is not the case for wavelet coefficients. This latter remark
motivated the introduction of nonlinear approximation (cf. DeVore [1998]). It consists in choosing the N
term with largest amplitudes. This is equivalent to keeping coefficients up to a threshold T . Let IT be the
set of multiindex corresponding to the coefficients that are kept

IT =

{
(j, k) ∈ N ∪ {−1} × Z)

∣∣∣ |〈f, ψj,k〉| ≥ T
}
.

Let us set N = #(IT ). The nonlinear N -term approximation of f , in the orthogonal case, is given by

fN =
∑

(j,k)∈IT

〈f, ψj,k〉ψj,k. (2.14)

Besov spaces are still approximation spaces for wavelet coefficients in the nonlinear case. The approxi-
mation rates are given by the following theorem (cf. Mallat [2008], Theorem 9.10).

Theorem 2.4.2. Let v ∈ N, 0 < s < v, 1 ≤ p, q ≤ +∞ and (ϕ,ψ) a orthogonal multi-resolution system such
as ϕ and ψ have v vanishing moments. Then we have

f ∈ Bs
p,q ⇐⇒ ∀j ∈ N, ||fN − f ||2 ≤ O(N−suj),

where (uj)(j∈N) ∈ `q(N) is a sequence of positive numbers.
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2.4. RELATED FUNCTIONAL SPACES 17

In particular, in the case when p < 2, the nonlinear approximation improves the decay of the coefficients
and thus the approximation error. It turns out that the case p = 1 appears naturally in signal and image
modeling, which favours nonlinear approximation.

2.4.4 Link with signal and image processing

The simplest interpretation of a Besov space Bs
p,q is to say that it is roughly the space of functions that

have s derivatives in Lp which can be distinguished by a finer regularity parameter q. This is, however,
not naturally appealing for functions representing real life signals and natural images like the ones we will
deal with in this thesis. A more appealing assumption on such functions is their membership to a Bounded
Variation (BV) space as explained by Meyer [2001]. Such spaces contain functions whose weak gradient is
finite measure. This is accomplished by integration against a test function.

Definition 2.4.3. A function f : [0, 1]d −→ R is said to be of bounded variation; f ∈ BV ([0, 1]d), if and
only if f ∈ L1(Ω) and

|f |BV ([0,1]d) =

∫
[0,1]d

|Df | := sup
||g||∞≤1

{∫
[0,1]d

f divg dx
∣∣∣ g ∈ C1

c ([0, 1]d,Rd)

}
<∞.

where div refers to the divergence operator. Thus, BV spaces are Banach spaces defined by duality and
can be equipped by the following norm

||f ||BV ([0,1]d) = ||f ||Lp([0,1]d) +

∫
[0,1]d

|Df |.

These spaces do not have unconditional bases. They can, however, be linked to Besov spaces by embedding
properties. This allows to approximate the ||.||BV ([0,1]d). In particular, we have the following embeddings

B1
1,1([0, 1]d) ⊂ BV ([0, 1]d) ⊂ B1

1,+∞([0, 1]d). (2.15)

To understand how these embeddings are obtained, let us consider, for the sake of simplicity, the one
dimensional case for which the BV semi-norm is given by

|f |BV ([0,1]) =

∫
[0,1]
|f ′(x)| dx

The embeddings (2.15) are direct consequence of the following theorem (cf. Mallat [2008], Theorem 9.13)

Theorem 2.4.3. Let f be a function of L2([0, 1]) and a wavelet ψ of bounded variation. There exist A,B > 0
such that

|f |BV ([0,1]) ≤ B ×
∑

j≥−1,k∈Z
2j/2|〈f, ψj,k〉| = B||f ||B1

1,1([0,1]) (2.16)

and

|f |BV ([0,1]) ≥ A× sup
j≥0

{∑
k∈Z

2j/2|〈f, ψj,k〉|
}

= B||f ||B1
1,∞([0,1]) (2.17)

Remark 1. Inequalities (2.16) and (2.17) are the ”tightest" possible in terms of wavelet coefficients; the
embedding (2.15) gives the most accurate link between BV and Besov spaces.

The complete proof can be found in Mallat [2008]. We give a sketch of it as the representation of images
through their wavelet coefficients is at the heart of the present thesis. The first inequality is a consequence
of the fact that

|f |BV ([0,1]) =
∣∣∣ ∑
j≥−1,k∈Z

〈f, ψj,k〉ψj,k
∣∣∣
BV ([0,1])

=
∑

j≥−1,k∈Z
〈f, ψj,k〉|ψj,k|BV ([0,1]).
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18 CHAPTER 2. WAVELETS

Moreover, a change of variable gives

|ψj,k|BV ([0,1]) = 2j/2|ψ|BV ([0,1]),

which leads to the inequality (2.16). The second inequality comes from the fact that the wavelet ψ has
at least one vanishing moment; thus, it has a primitive with the same support. this allows and integration
by parts for each L2-product of the wavelet decomposition

〈f, ψj,k〉 = 2−j/2〈f ′,Ψj,k〉, ∀j ≥ −1,∀k ∈ Z, with Ψj,k(x) = Ψ(2jx− k).

The inequality (2.17) follows by summation. The embedding (2.15) has an essential consequence in
function estimation. In fact, recovering a function f ∈ BV ([0, 1]) from a corrupted observation g can be
done in a variational framework (cf. [Rudin et al., 1992])

f̃ = arg min
f∈[0,1]

{
|f |BV ([0,1]) + λ||f − g||22

}
.

As we now the semi-norm |.|BV ([0,1]) is well concentrated between two Besov semi-norms -Moreover, it is
controlled by the semi-norm |f |B1

1,1([0,1])- the latter variational problem can be replaced by

f̃ = arg min
f∈[0,1]

{
|f |B1

1,1([0,1]) + λ||f − g||22

}
. (2.18)

That is, the relatively abstract BV semi-norm is replaced by |.|B1
1,1([0,1]) which is simply a weighted `1-

norm of wavelet coefficients. As a result, the minimization problem (2.18) can be fully characterized in the
wavelet domain.

f̃ = arg min
f∈[0,1]

{ ∑
j≥−1,k∈Z

|fj,k|+ λ
∑

j≥−1,k∈Z
|fj,k − gj,k|2

}
, (2.19)

where fj,k = 〈f, ψj,k〉 and gj,k = 〈g, ψj,k〉 are the respective wavelet coefficients of f and g. Note that the
L2 normalizations disappear as they appear on both terms and thus can be factorized. If we assume that
the coefficients are uncorrelated, then the problem (2.19) is completely separable; that is, it can be solved
for each couple (j ≥ −1, k ∈ Z)

f̃j,k = arg min
fj,k

{
|fj,k|+ λ|fj,k − gj,k|2

}
,

which solution is the zero of its derivative

sgn(fj,k) + 2λ(fj,k − gj,k)

That is

f̃j,k = T 1
2λ

(gj,k)

where Tγ , with θ > 0, is the soft-thresholding operator

Tθ(u) :=

u− θ u
|u|
, if |u| > θ

0, if |u| ≤ θ
(2.20)

This operator is the base of the celebrated wavelet shrinkage framework introduced by Donoho and
Johnstone [1994] for non-parametric estimation.
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2.5 Nonparametric function estimation

2.5.1 Generalities

Non-parametric estimation aims at recovering, predicting or estimating a function from an observation under
very general assumptions on regularity, such as the membership to a particular functional space. We define
some notions which are going to be useful in the sequel.

Statistical modeling

The unknown function might refer different observations of interest, depending on the considered statistical
model. The first example is density estimation where the observable quantities

(X1, · · · , Xn) (2.21)

are n independent and identically distributed (i.i.d.) random variables with unknown density f . The second
example concerns continuous stochastic process {X(t); t ∈ [0, 1]} defined by

dX(t) = f(t)dt+ (n)−1/2dW (t), (2.22)

where f : [0, 1]→ R is a unknown function playing the role of the drift and dW is a Wiener process. The
third example arises when the unknown function is sampled data that are corrupted by additive Gaussian
noise

Xt = f(t/n) + zt, (2.23)

where (z1, · · · , zn) are i.i.d. random variables with zero mean and unit variance. This latter case is
of particular interest because many problems of denoising in signal and image processing are given under
model (2.23).

Lp-risk

A function which takes the observations as variables is called “estimator". The risk evaluates the error of
the estimation when reconstructing the original function.

Definition 2.5.1. Let f̂n : [0, 1]d → R be an estimator of a function f . The Lp-risk of f̂n is defined as

rp(f̂n) = Ef (||f̂n − f ||pp),

where Ef is the expectation with respect to the probability law of the observations.

Different values of p allow different characterizations of the local behavior of the estimator. The most
commonly used value is p = 2 for which the risk is simply the mean squared error. The risk does not
only allow to evaluate the performances of a given estimator but also the construction of optimal estimators
through the minimax framework.

Minimax risk

The minimax framework was introduced by Von Neumann in the 1920′s for the study of optimal strategies in
two-player zero-sum game theory. Its main purpose is minimizing the possible loss for a worst case scenario.
An important breakthrough in statistics was the extension of Von Neumann’s ideas to classical problems in
statistical decision theory by Wald [1945a,b, 1947, 1949]. In particular, for function estimation, we have the
following definition over a given functional space Fα with a regularity (multi-) parameter α.

Definition 2.5.2. The minimax risk over Fα is defined by

Rn,p(Fα) = inf
f̂n

sup
Fα

Ef (||f̂n − f ||pp),
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The study of the minimax risk relies on studying its asymptotic convergence through lower bounds and
upper bounds.

Definition 2.5.3. We call a lower bound any sequence un of positive numbers for which a exists c > 0 such
that

Rn,p(Fα) ≥ c un

Definition 2.5.4. We call an upper bound any sequence un of positive numbers for which a exists c > 0 such
that

Rn,p(Fα) ≤ c un

Definition 2.5.5. We call the minimax rate of convergence any sequence un of positive numbers for which
a exist c1, c2 > 0 such that

c1 un ≤ Rn,p(Fα) ≤ c2 un

Definition 2.5.6. Let f̂n be an estimator of f . f̂n is called optimal, if it achieves the minimax rate of
convergence un, in the sense that

sup
Fα

Ef (||f̂n − f ||pp) = O(un).

The minimax rate of convergence allows to know exactly the best performance that can be achieved for a
given statistical model on a given functional space with respect to a given risk. The first examples of minimax
bounds where established by Farrell [1972] for density estimation at fixed point and not on global functional
spaces. minimax rate of convergence for general Lp errors, with 1 ≤ p ≤ ∞, are due to Bretagnolle and
Huber [1979] Bretagnolle and Huber. The majority of these works considered Hölder regularities on which
the authors obtained rates of the form n−α/(2α+1) up to a logarithmic factor, where α is the Hölder regularity
parameter, or their multivariate extensions which are of the form n−α/(2α+d), where d is the dimension of the
observations. Nemirovskii et al. [1985] found the same rates when the considered functional class is a Sobolev
space under regression models. Finally, these rates where again obtained for Besov spaces by Kerkyacharian
and Picard [1992]. A remarkable result appears in the work of Nemirovskii [1985], where it is stated that
linear estimators, such as Kernel-based smoothing, splines smoothing or projections methods, cannot achieve
these rate of convergence. The rise of wavelets had set the ground for the development of nonlinear estimators
which overcome this limitation.

2.5.2 Wavelet estimation

Wavelet based function estimation appeared shortly after the emergence of wavelets. The first works concerns
linear methods based on projection for density estimation (cf. Doukhan and León [1990] and Kerkyacharian
and Picard [1992]). In most cases, the results obtained for density estimation can be naturally extended to
regression and Wigner process models. Nonlinear methods, which are based on thresholding, were introduced
in a series of papers by Donoho and Johnstone [1994, 1995], then developed and synthesized by Donoho et al.
[1995, 1996]. We present the most remarkable results on the performances of linear and nonlinear estimation
which are valid for problems (2.21), (2.22) and (2.23). Any of these problems can be written in the wavelet
domain

Yj,k = dj,k + zj,k, j = 0, · · · , J − 1, k = 1, · · · , 2j ,

with J = log2 n. The Yj,k are wavelet coefficients of the observation Xt, dj,k are wavelet coefficients of
the unknown f and zj,k are the wavelet coefficients of the noise component zt. The coefficients corresponding
to (−1, 1) are approximation coefficients. By considering that the unknown belongs to a given functional
space, wavelet coefficients are expected to be more or less sparse. Wavelet estimation aims at estimating dj,k
from Yj,k by putting some coefficients to zero. Thus, one needs to fix the set of indices that are kept In. The
estimated coefficients d̂j,k are given as

d̂j,k = T (dj,k)11In(j, k), (2.24)
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where 11In(j, k) is the indicator function; equal to one if (j, k) ∈ In and zero otherwise. If The estimated
coefficients are used to construct an estimation of f

f̂ =
J∑
j=1

2j∑
k=1

d̂j,kψj,k

When {zt}nt=1 are i.i.d Gaussian, so are their wavelet coefficients4. This property is crucial for the
construction of wavelet estimators. It facilitates the study of theoretical performances and the choice of
thresholding parameters in practice.

Linear estimation

Linear estimation relies on the approximation properties of projection operators. It uses the fact that the
finest scale in the decomposition can be calibrated to detect features with a given smoothness. Let f be a
function observed under models (2.21), (2.22) or (2.23). A linear estimator -by truncation- is constructed by
taking d̂j,k as Yj,k up to a certain scale J∗ and ignoring the others. This is equivalent to taking T (dj,k) = dj,k
and

In =
{

(j, k) : j = 0, · · · , J∗ − 1, k = 1, · · · , 2j with J∗ < J
}
.

In the sequel, we note fLn the linear estimator. The choice of J∗ is related to the a priori regularity of
f and the variance of the noise which we assumed to unit. In particular, we have the following theorem
(cf. Kerkyacharian and Picard [1993])

Theorem 2.5.1. Assume that f ∈ Bs
p,q with 2 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. Choose J∗ ' n

1
2s+1 , Then

inf
f̂Ln

sup
Bsp,q

E(||f̂Ln − f ||22) = O(n−
−2s
2s+1 )

Remark 2. The rate of convergence obtained in the last theorem is minimax. It can be obtained also for
other Lp errors by replacing O(n−

−2s
2s+1 ) by O(n−

−2sp
2s+1 ). Note however that the theorem is valid only for p ≥ 2.

In fact, for p ≤ 2 linear estimators cannot achieve minimax rates of convergence, not even up to logarithmic
terms. Moreover, the choice of the critical scale J∗ depends on the regularity of the unknown which is not of
practical interest.

Nonlinear estimation

The nonlinear estimation relies more on the sparsity of wavelet coefficients than the scale. We take T (dj,k) =
dj,k and

In =

{
(j, k) : j = 0, · · · , J − 1, k = 1, · · · , 2j

∣∣∣ |Yj,k| > tn

}
,

where tn is the threshold. The optimal value of such threshold- in a minimax sense- was given in Donoho
and Johnstone as tn =

√
2 log n. In the case when the standard deviation is not unit but a positive σ 6= 1 the

tn = σ
√

2 log n. Such a thresholding procedure is called hard thresholding. Note f̂Hn the obtained estimator.
Its performances are given by the following theorem (cf. Donoho et al. [1995])

Theorem 2.5.2. Assume that f ∈ Bs
p,q with 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. Choose tn =

√
2 log n, Then

inf
f̂Hn

sup
Bsp,q

E(||f̂Hn − f ||22) = O((n/ log n)−
−2s
2s+1 )

4Under the assumption that the wavelet system is orthogonal.
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As in the linear case, it is possible to extend this theorem to more general Lp errors. Note that the
minimax rates of convergence is obtained up to a logarithmic term. Such a rate is called nearly minimax. It
is however obtained also for 1 ≤ p < 2 without prior knowledge on the regularity parameter s. This theorem
is still valid for an estimator fSn constructed by soft thresholding (cf Donoho and Johnstone [1995]), where

In =

{
(j, k) : j = 0, · · · , J − 1, k = 1, · · · , 2j

}
,

and T (dj,k) = Ttn(dj,k) is the soft thresholding operator defined in (2.20).

2.5.3 Beyond Gaussian situations

In regression problems, the assumption that the noise components {zt}nt=1 is crucial for wavelet estimation.
As mentioned before, this hypothesis is crucial for the theory and the practice of wavelet nonparametric
estimation. However, one might have to deal with noise components which are not necessarily Gaussian
or i.i.d. In such situations, wavelet estimators need to be adapted to the noise distribution. Two seminal
works in this direction are attributed to Johnstone and Silverman [1997] who constructed scale dependent
thresholding techniques for correlated noise suppression and Neumann [1996] for stationary non-Gaussian
time series. We refer to Neumann and von Sachs [1995] for a review on such adaptations. Particular cases,
which will be of interest for us in the sequel, are heteroscedastic regression models (cf. Efromovich and
Pinsker [1996]). These models are characterized by a time-dependent variance

Xt = f(t/n) + σ(t)zt,

where σ : [0, 1] → R+. For such models, adaptive wavelet estimation techniques were developed by Cai
and Wang [2008] which can estimate locally the value of σ and achieve, up to a logarithmic term, the optimal
rates of convergence as in the i.i.d. Gaussian case. Now consider that f has values in [0, 1] and that σ depends
not on t but on f(t/n). The corresponding heteroscedastic model reads as follows

Xt = f(t/n) + σ(f(t/n))zt. (2.25)

The problem of estimating f , under model (2.25), using wavelet thresholding was studied first by Fry-
zlewicz and Nason [2004] for the particular case of Poisson estimation. In this case, the observable quantities
Xt are independent variables with Poisson distribution. The mean and the variance are linked via the rela-
tion Var(Xt) = σ(E(Xt)) with σ(u) = u. Their proposed methodology, called Haar-Fisz, uses a local means
pre-estimation of the unknown f to stabilize the variance. Fryzlewicz [2008] generalized these technique to
any non-increasing variance function σ. The obtained wavelet-Fisz methodology attains optimal rates of
convergence as in the i.i.d Gaussian case. Moreover, the methodology was extended to cases when σ is un-
known, still with optimal rates of convergence. It is interesting to note that the large class of multiplicative
models are given in the form can be written in the form (2.25). These models are given as

Xt = f(t/n)zt, (2.26)

Such situations arise, for instance, in periodogram estimation which allows spectral density estimation
(cf. Fryzlewicz et al. [2008]). Models of the form (2.26) are often handled using logarithmic transformations
which allow to transform multiplicative models to additive models. The main drawback of logarithmic is
the fact that they can hide or cancel features with high energy. Moreover, studying the performances of the
log-transformed functions is not straightforward. Another way to write (2.26) is of the form (2.25). In fact,
equation (2.26) is equivalent to

Xt = f(t/n) + f(t/n)z̃t, (2.27)

where z̃t = zt−1. The wavelet-Fisz will be exposed in details later, as it the base of the methodology proposed
in Part 1 of the present thesis. In particular the optimal of the estimation in anisotropic multivariate setting
is studied.
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2.5.4 Multivariate wavelet estimation

Wavelet nonparametric estimation can be extended to the multivariate case considering wavelet bases from
a multivariate MRA. The multivariate case appears, first and naturally when dealing with images. Nason
and Silverman [1994] showed how wavelet estimators can be constructed in such cases. Performances and
optimality results appeared first in Tribouley [1995] for multivariate Besov classes for the density estimation
problem. Delyon and Juditsky [1996] generalized the results for nonparametric estimation. In all these
works, authors used non-separable MRA constructions and considered classical (isotropic) Besov spaces
where the regularity is the same along all variables. However, Neumann and von Sachs [1997] and Neumann
[2000] showed that, when the unknown belongs to anisotropic Besov spaces, hyperbolic wavelets, which are
construted upon a a separable MRA construction achieves optimal rates of convergence. Recently, Autin
et al. [2015] showed that non-separable wavelet cannot achieve optimal performances when the unknown
has an anisotropic regularity. They used, the more recent technique of maxiset unstead of the minimax
introduced by Cohen et al. [2001]. This technique considers a given rates of convergence and seeks for the
largest class on which this rate is obtained. Anisotropy wavelet processing is at the heart of the present work.
Part I consider functions in anisotropic two-dimensional spaces while in Part II, we study the potential of
considering isotropy and anisotropy and high dimensions.
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CHAPTER 3
Total Variation & Elements of convex optimization

Abstract

In this chapter, we present an overview on total variation and its use in signal
and image processing. We also discuss some basic elements on convex opti-
mization related to total variation minimization. The topics addressed in this
chapter are going to be useful in chapter 10

3.1 Introduction

Though the wavelet framework presented in the previous chapter had a major impact on signal and image
denoising, the assumptions on the observation remains relatively restricted. In particular, the data is sup-
posed to be corrupted only by noise and this noise should be (asymptotically) Gaussian. Total Variation
(TV) regularization, introduced by Rudin et al. [2003], provides a rather flexible tool for recovery tasks.
Similarly to wavelets techniques, it is also efficient in preserving structural details. The general procedure
aims at minimizing a functional combining a TV term and a data-fidelity term which tends at bounding
the error due to noise without a necessary knowledge of its statistics. The solution to this problem is not
straightforward because of the non-differentiability of the TV semi-norm. This deceptive complication arises
in all minimization problems evolving a `1 regularization which provoked a big fuss in the signal and image
community yielding to a consequent number of works on the subject. We start by describing `1-regularization
and related optimization algorithms, then we address total variation. We note that our review here will not
exhaustive neither be theory-oriented as we only aim at using this tools for a practical problem related to
functional Magnetic resonance imaging (fMRI) deconvolution.

3.2 Sparsity promoting `1-regularization

In the sparsity priors literature, the `1 norm appeared intuitively as a convex relaxation of the `0 quasi-norm
which counts the number of nonzero entries of its argument. Suppose that we are are observing a signal

g = f + ε, (3.1)

and that f has a sparse representation under the action of an operator Φ. Reconstructing f can be
achieved by imposing sparsity within a distance δ from the observation. This gives the following problem1

min||Φ f ||0 subject to ||g − f ||2 ≤ δ. (3.3)
1This is called an analysis prior. One could also consider a synthesis prior in which the argument inside the norm is directly

the sparse vector w = Φ f
min||w||0 subject to ||g − Φ−1w||2 ≤ δ, (3.2)

where Φ−1 is the inverse of Φ.

27
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Finding a solution to (3.3) is combinatorially complex . In fact, it requires testing all possibilities for
the vector Φ f . To overcome this problem the `0 quasi-norm is replaced by the `1 norm which favors large
coefficients

min||Φ f ||1 subject to ||g − f ||2 ≤ δ. (3.4)

The advantage of this formulation comes from the nature of the `1 norm which is the closest convex
function to the `0 quasi-norm. This means that this problem can be solved using classical tools from convex
programming. Further, it is possible to consider this problem in a variational way by combining the norm
and the constraints

min
f
λ||Φ f ||1 +

1

2
||g − f ||2, (3.5)

where the parameter λ aims at controlling the trade-off between the sparsity of the term Φ f and the
deviation from the observation g.

3.3 Related optimization algorithms

Minimization problems of the form (3.5) rises two challenges. First, the presence of two terms and second
the non-differentiability of the regularization term. The differentiabily issue is addressed using proximity
operator of Moreau [1965].

3.3.1 Proximity operators

Definition 3.3.1. Let ϕ be a lower semicontinious convex function. The proximity operator proxϕ(x) is
defined as

proxϕ(x)(y) = arg min
y

{
||x− y||22 + γϕ(y)

}
.

One of the keys behind the success of `1-regularization is the simplicity of the proximity operator of the
`1-norm given by

proxγ|.|1(x) = arg min
y

{
||x− y||22 + γ|y|1

}
.

with γ ∈ R. An easy computation shows that this operator coincides with soft-thresholding operator Tγ
defined by its point-wise components

Tγ(x)k = sgn(xk) max {|xk| − γ, 0}

with x = {x1, · · · , xn} and y = {y1, · · · , yn}. This operator can be used to solve (3.5)for a large class
of operators Ψ using proximal splitting algorithms. These algorithms include, for instance, the forward-
backward algorithm [Mercier, 1979, Lions and Mercier, 1979, Chen and Rockafellar, 1997, Combettes and
Wajs, 2005], the Douglas-Rachford [Eckstein and Bertsekas, 1992] scheme or the generic scheme of Condat
[2013] which brings together many proximal splitting algorithms as particular cases. We, first, describe in
the sequel the classical Forward-Backward algorithm, then its generalized version with an arbitrary number
of regularization terms.

3.3.2 The Forward-Backward algorithm

Consider the following problem

min
x
F (x) +G(x), (3.6)
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where F has a Lipschitz continuous gradient and G is simple2 The forward-backward splitting algorithm
reads

Algorithm 1 Forward-Backward algorithm for solving (3.6)

Input: (1) Corrupted data y, (2) a gradient descent stepsize µ = 1/L where L is the Lipschitz constant of
F and (3) update constant τ

Output: Estimate x̃
1: x̃(0) = y ; r(1) = x̃(0)

2: for k = 1 : kmax do
3: r(k+1) = proxµG(x̃(k) − µ∇F (x̃(k)))

4: x̃(k+1) = x̃(k) + τ(r(k+1) − x̃(k))
5: end for

3.3.3 The Generalized Forward-Backward algorithm

Now, we consider a similar problem to (3.6) which involve several simple functions {G}ni=1

min
x
F (x) +

n∑
i=1

Gi(x), (3.7)

The generalized forward-backward splitting algorithm for solving this problem was introduced by Raguet
et al. [2013]. It computes a weighted average of the functions {xi}ni=1 verifying

min
x
F (x) +Gi(x), (3.8)

The algorithm is given as follows

Algorithm 2 Generalized Forward-Backward algorithm for solving (3.8)

Input: (1) Corrupted data y, (2) a gradient descent stepsize µ = 1/L where L is the Lipschitz constant of
F , (3) update constant τ and (4) ωi ∈ [0, 1] with

∑n
i=1 ωi = 1.

Output: Estimate x̃

1: x̃(0) = y ; r(1)
i = x̃(0)

2: for k = 1 : kmax do
3: for i = 1 : n do
4: r

(k+1)
i = r

(k)
i + τ

(
prox µ

ωi
Gi(2x̃

(k) − r
(k)
i − µ∇F (x̃(k))− x̃(k))

)
5: x̃(k+1) =

n∑
i=1

ωir
(k+1)
i

6: end for
7: end for

3.4 Total Variation

The classical TV of a one-dimensional continuous3 function s(t) defined on an interval [a, b], is given as the
L1-norm of its continuous derivative D{s} ∫ b

a
|D{s}(t)|dt. (3.9)

Its discrete counterpart is defined through the finite difference operator ∆

2Its proximity operator is easy to compute.
3Or more generally functions in Sobolev spaces H1.
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TV (s) =
∑
t∈Z
|∆{s}[t]| =

n∑
t=1

|s[t]− s[t− 1]| (3.10)

TV-regularization is performed via the following `1-minimization problem

f̂ = arg min
f

{
||g − f ||22 + λTV (f)

}
. (3.11)

The forward-backward algorithm, in this case, lies on two steps which are a gradient decent for data-
fidelity and a proximal operator for TV correction. Its accelerated version consists in updating the relaxation
parameter for a faster convergence. In part III, we will use an accelerated version of this algorithm in the
spirit of the fast iterative soft thresholding algorithm (FISTA) of Beck and Teboulle [2009]. It requires to

set a gradient descent step µ <
1

||∆T ||22
, where ∆T is the discrete divergence operator.

Algorithm 3 FISTA for TV

Input: g, λ, µ, kmax, f (1), r1

Output: Estimate f̂
1: f̃ (0) = f̃ (1) = f (1) ; h(1) = f (1)

2: for k = 1 : kmax do
3: f̃ (k) = f̃ (k) − µ∆

{
g −∆T

{
h(k)

}}
4: f (k+1) = f̃ (k) − Tλ

(
f̃ (k)

)
5: rk+1 =

1 +
√

1 + 4r2
k

2

6: h(k+1) = f̃ (k) +
rk − 1

rk+1

(
f̃ (k) − f̃ (k−1)

)
7: end for
8: f̂ = g −∆T

{
f (k+1)

}
TV had a large success in image processing because it imposes small bounded-variation; reducing the

magnitude of the finite differences imposes regularity on the variations of the image. This is a vaguely
accepted prior for images. One-dimensional signals, on the other hand, often show richer variations. A
particular situation in which a signal can be recovered accurately using TV is when it is composed mainly
of blocks; i.e ∆f is mainly spikes. This is, for example, the case for the neural activation. However, in the
case of fMRI time courses, one is observing signals which are convolved versions of the neural activation.
This problem motivated the introduction of the generalized TV by Karahanoglu et al. [2011] which is at the
heart of the work presented in Part III.
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CHAPTER 4
Variable Groupwise Structured Wavelets

Abstract

A generalized hyperbolic cross construction of wavelet atoms is presented.
First, we show the limits of the standard tensor-product (hyperbolic) con-
struction in image denoising. Then, we motivate the use of such constructions
in cases when the regularities along variables are different. This led us to a
generalized hyperbolic construction which allows grouping variables with re-
spect to regularity features while performing non-parametric estimation. For
thresholding estimators, we show, under usual assumptions on wavelet func-
tions, that the L2 -loss falls to the dimension of the group of variables with the
highest dimension. Moreover, we show that other features besides regularity
can be taken thanks to this construction. In particular, divergence-freedom
and variance stabilization can be imposed on groups of variables.

4.1 Introduction and Motivation

We consider the problem of recovering an unknown function from a noisy observation. This task is common
in various problems related to image processing. We are interested in the following Additive White Gaussian
noise (AWGN) model

fε = f + εξ (4.1)

where fε is the observed data, ε ∈ (0,∞) the noise level and ξ ∼ N (0, 1) is a white noise. The goal is
to recover f from its noisy observation fε. We are interested in cases where the multidimensional function
f depends on variables with different physical meaning along the different coordinate axes (e.g spatial,
temporal, spectral, hyperspectral,. . .).

Non parametric methods for denoising based on wavelets expansions of the function fε have been widely
developed in the two last decades since the seminal work of Donoho and Johnstone [Donoho and Johnstone,
1994] defining the celebrated wavelet shrinkage procedure (cf. chapter 2). Thereafter, these wavelet denoising
techniques have been extended to deal with images or volumes of images. In such situations, variables live
in the same (physical) space. Thus, it is natural to use the standard (isotropic) multidimensional wavelet
bases. However, in many applications one is confronted to data in which the variables have different natures
and hence, the signal or image of interest is likely to have different properties according to these different
variables. We give here some examples:

Spectral, Multispectral and Hyperspectral data A first example is the evolutionary spectra of
non-stationary processes which is a bidimensional function, of frequency and time. In this estimation con-
text emerges the theory of anisotropic function estimation based on the thresholding of hyperbolic wavelet
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coefficients of the preperiodogram [Neumann and Von Sachs, 1997]. A similar phenomenon can be observed
in multispectral and hyperspectral imaging; The 3D stack of images have completely different regularities
in spectral and spatial variables as the data consists of the same image with different spectral bands and
wavelengths [Chang, 2003, Shaw and Burke, 2003].

Image and volume sequences An image or volume temporal sequence in which voxel intensities are
preserved over time is governed by the following conservation equation

∂tI + u.∇xI = 0 , (4.2)

where I refers to the sequence and u is the velocity field of the voxels. When the unknown is the velocity u,
Equation (4.2) is the so-called optical flow equation and plays a major role in computer vision since it is the
reference model for motion estimation [Horn and Schunck, 1981]. From a PDE’s point of view this equation
can be seen as a simple advection equation on the scalar field I assuming that the flow is incompressible.
Solutions of such time–dependent partial differential equations have different degrees of smoothness in space
and time and they are not well characterized in isotropic spaces [DeVore et al., 2008].

Velocity fields Now, consider that the velocity field u is given. This situation occurs for example in
blood flow measurement provided by Phase Contrast MRI [Markl et al., 2003] or Ultrasound Doppler [Garcia
et al., 2010]. The output u is computed from phase transitions. It usually suffers from low velocity–to–noise
ratio (VNR) and a denoising step is often needed. The velocity field u can also be computed solving some
PDE modeling the underlying motion. For example, a blood flow verifies variants of Navier-Stokes equa-
tions [Quarteroni et al., 2002]. In this case, the difference between the temporal and the spatial directions is
related to their physical nature in the sense that the divergence over spatial dimensions is null.

Partial Data-dependent noise intensity In many applications, the observed data cannot be prop-
erly modelled by the equation (4.1). In particular the noise intensity can be proportional to the underlying
unknown function. As a consequence wavelet thresholding methods need to be adapted via variance stabi-
lization techniques. Such data–dependent noises models are often purely related to spatial domain because
of the imaging systems. Hereafter the variance stabilization technique will be only applied on the spatial
variables.

In this chapter we describe a novel construction of a so–called structured wavelet basis that can faithfully
represent multivariate functions presenting different characteristics along the different coordinate axis. Our
construction extend the so–called hyperbolic wavelet basis introduced in [DeVore et al., 1998]. It has been
shown that the hyperbolic wavelet basis is well adapted for functions having different degrees of smoothness
along the directions [Neumann, 2000]. In particular, interesting recent results [Autin et al., 2015] brought
to light that classical wavelet estimators cannot achieve optimal reconstructions of functions with different
regularities on the different dimensions. We present a structured wavelets construction which consider sparsity
assumptions on groups of variables and not only on single variables using a generalization of the hyperbolic
construction of wavelets. We describe a relevant type of functional classes which are described by these
structured wavelets basis, and we demonstrate that the minimax lower bound of the L2-loss of the estimator is
driven by the dimension of the largest group, breaking, “partially", the curse of dimensionality. We show that
this generalization do not only allow to take regularity features into account but also physical characteristic
such as divergence-freedom. We also show that the obtained construction can handle situations in which the
noise characteristics are data-dependent but only on a part of the variables.

There is no reason for the standard multidimensional wavelet basis to be systematically outperformed by
the hyperbolic wavelet basis. If the theoretical justification does not exists yet, from an empirical point of
view we will explain the advantages of the primer.

The rest of the chapter is organized as follows. In Section 4.2, we give a reminder on wavelets and their
extensions in multivariate cases. The proposed wavelet construction is exposed and motivated in Section 4.3,
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4.2. LIMITS OF USUAL WAVELET ESTIMATION PROCEDURES 37

along with a derivation of the lower bound of the L2-loss for a particular functional space. Extensive
numerical experiments and comparisons are presented in the next chapter.

4.2 Limits of usual wavelet estimation procedures

First, for the sake of clarity and ease of reading, we recall some definitions from chapter 2. We begin by
introducing one–dimensional wavelet bases, then we describe two different extensions in higher dimensions.

One dimensional wavelet bases are defined from a one-dimensional function ψ, called mother wavelet
and its dilated and translated versions ψj,k(.) = 2j/2ψ(2j . − k) with (j, k) ∈ N × Z and a scaling function
ϕ defined with its dilated and translated versions ϕj,k(.) = 2j/2ϕ(2j . − k). It is then well–known that
{ϕ0,k}k∈Z ∪ {ψj,k}j≤0,k∈Z forms an orthogonal basis of L2(R). In the sequel we shall denote ψ−1,k = ϕ0,k.

In the multivariate setting, one defines multidimensional wavelets as

ψj1,··· ,jd,k1,··· ,kd(x) = ψj1,k1(x1)⊗ · · · ⊗ ψjd,kd(xd). (4.3)

Two possible multidimensional extensions of wavelet bases come from this definition. The first one consists
in taking all possible combinations of the multiindices j = (j1, · · · , jd) ∈ (N ∪ {−1})d, k = (k1, · · · , kd) ∈ Zd
leading to the so–called “hyperbolic”1 wavelet basis [DeVore et al., 1998] Bhyp,d = {ψj,k}j∈(N∪{−1})d,k∈Zd . The
second possibility is to fix the directional dilation indices to be the same along each dimension j = j1 =
· · · = jd. Then one first define multidimensional wavelets ψ(i) for any i ∈ {0, 1}d \ {(0, · · · , 0)} as

ψ(i) = ψ(i1) ⊗ · · · ⊗ ψ(id) with ψ(0) = φ, ψ(1) = ψ (4.4)

and for any j ≥ −1, k ∈ Zd and i ∈ {0, 1}d \ {(0, · · · , 0)}, one set

Ψ
(i)
j,k(x) = 2jd/2ψ(i)(2jx− k)

We also set for any k ∈ Zd, Ψ
(0,··· ,0)
−1,k (x) = [φ ⊗ · · · ⊗ φ](x − k). The family Biso,d = {Ψ(i)

k , j,k} is then an
orthonormal wavelet basis of L2(Rd), which is said to be “isotropic” [Daubechies, 1992]. See Figure 4.1 for
a comparison of hyperbolic and classical wavelet decompositions on a two-dimensional example.

In the sequel, we denote as I the indices of a particular wavelet or scaling function. The set of all combi-
nations of I will be referred as I. If not specified I can refer both to standard or hyperbolic constructions.
In the hyperbolic case one has

I = {I = (j,k) with j = (j1, · · · , jd) ∈ (N ∪ {−1})d, k = (k1, · · · , kd) ∈ Zd}

whereas in the isotropic case

I = {I = (i, j,k) with i ∈ {0, 1}d \ {(0, · · · , 0)}, j ∈ N ∪ {−1}, k = (k1, · · · , kd) ∈ Zd}
∪ {I = ((0, · · · , 0),−1,k)k = (k1, · · · , kd) ∈ Zd}

The wavelet decomposition of a function f ∈ L2([0, 1]d) is then given by

f =
∑
I∈I

βI(f)ΨI , (4.5)

where
βI(f) =

∫
(0,1)d

f(x)ΨI(x) dx. (4.6)

1This wavelets appears under other names names in the literature, such as mixing scales [Remenyi et al., 2014] or rectangu-
lar [Zavadsky, 2007].
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House Isotropic Hyperbolic

Figure 4.1: Wavelets decomposition in isotropic and hyperbolic settings

Denoising methods based on thresholding the wavelet coefficients has proven its effectiveness since the
seminal work of Donoho and Johnstone [Donoho and Johnstone, 1994]. Under model (4.1), it is possible to
recover the unknown function f from its noisy observation fε by different procedures on the wavelet empirical
wavelet coefficients βI(fε). This results in the following estimator

f̂ =
∑
I∈Iε

βI(fε)ΨI ,

where Iε ⊂ I is to the set of multiindices corresponding to the coefficients that are kept in the reconstruction.
The choice of Iε can be performed following different rules. In the sequel we shall consider the most classical
one, the so called hard thresholding rule where

Iε = {I ∈ I s.t |j| ≤ j(tε) and |βI(fε)| > tε} ,

where tε is a threshold calibrated in function of the level of noise ε : tε = 4
√

2ε
√

log ε−1. The integer j(tε)
is chosen such that 2−j(tε) ≤ t2ε < 21−tε . The notation |j| allow to encompass both the hyperbolic and the
isotropic case in the definition of the hard thresholding estimator, since we set |j| = j1 + · · · + jd in the
case of a multidimensional index j = (j1, · · · , jd) whereas one has |j| = j in the case of an unidimensional
scaling index j. Depending on the considered wavelet basis (isotropic or hyperbolic), one has then two
possible estimations procedures which can be derived from the hard thresholding rule : the isotropic hard
thresholding estimator and the hyperbolic one.

We want to compare the numerical performances of these two procedures according to the anisotropic
nature of the data. From the theoretical point of view, this question has already been addressed and
appears in the work of Neumann and Von Sachs [Neumann and Von Sachs, 1997] where the extension of
wavelet thresholding techniques to multivariate anisotropic scenarios is introduced. It is shown that one has
better performances for hyperbolic wavelets whenever the unknown function has some anisotropic features.
Moreover, due to the adaptive nature of the hard thresholding and the fact that isotropy is a particular case
of anisotropy, it has been proved recently that even if the considered data are isotropic, hyperbolic wavelet
thresholding gives the same theoretical guarantees as isotropic wavelets [Autin et al., 2015].

However, empirical evidences contradict this result. We give here a motivational experiment using the
sequence “Ayiko”. In Figure 4.2, we consider a spatial frame (i.e, we fix time). The denoising experiment uses
the hard thresholding rule. Isotropic wavelets are slightly better in terms of PSNR. Moreover, undesirable
axis-aligned artifacts are visible on the reconstruction from noisy data in the hyperbolic settings. This results
are in contradiction with theoretical estimations. A possible explanation for this phenomenon is the biased
definition of anisotropic functional spaces which consider only axis-aligned regularities, and the fact that the
used image, and natural images, in general do not have strong differences in terms of smoothness along the
vertical and the horizontal directions, that is are not strongly anisotropic.

In Figure 4.3, a temporal cross section of the sequence is considered (i.e, we fix one of the spatial
dimensions). The resulting 2D images (see Figure 4.3) has different regularities in time and space and it
then is highly anisotropic. In particular, the resulting image is highly regular in the temporal dimension2. In

2Of course, this is not a generalization. It is also possible to have some irregularity in the temporal dimension, for example,
when new objects are appearing in the scene.
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Original Noisy Isotropic Hyperbolic

26.67 dB 29.45 dB 28.93 dB

Figure 4.2: Denoising of one frame of the Ayiko sequence.

Original Noisy Isotropic Hyperbolic

24.53 dB 30.97 dB 33.68 dB

Figure 4.3: Denoising of a temporal cross section of the sequence Ayiko

this case, the hyperbolic wavelets have clearly superior performance. To have a better understanding of this
phenomenon, the degree of anisotropy can be seen as maximal when the degree of interaction between the
variables is small. This degree is called the atomic dimension. Simple examples where the atomic dimension
is one, are additive models. For example in the two dimensional case, these functions are of the form

f(x1, x2) = f1(x1) + f2(x2), (x1, x2) ∈ R2. (4.7)

Such functions are known to allow rates of convergence corresponding to the one-dimensional case [Autin
et al., 2015]. Figure 4.4 shows an example of denoising under the model (4.7) where f1 and f2 are respectively
the standard test functions, Doppler and Blocks [Antoniadis et al., 2001]. The results show that the hyperbolic
setting outperforms the isotropic setting in this case.

To the best of our knowledge, existing research focuses on cases when the data are fully anisotropic,
that is all the regularities are different according each direction. In this work, we investigate the cases
when variables can be grouped in sub-ensembles with the same physical meaning. This is motivated by the
conclusions of the numerical results in this section and by the fact that functions having a group behavior
arises in many applications such as spatio-temporal and multi-spectral data. This naturally suggests the
use of wavelet atoms that consider both features. In the next section, we discuss the construction of such
wavelets, which are an instance of the so-called composite wavelets [Guo et al., 2004] and the definition of
associated estimation procedures.

4.3 Estimation procedures based on tensored wavelet basis

4.3.1 The tensored wavelet basis and associated estimation procedures

We now introduce the structured wavelet basis [Farouj et al., 2015, 2017], which arise as a case of composite
wavelets defined in [Guo et al., 2004]. The starting point are N multidimensional wavelet bases {ΨI1,1, I1 ∈
I1}, · · · , {ΨIN ,N , IN ∈ IN} of L2(Rd1), · · · , L2(RdN ) respectively. For each I = (I1, · · · , IN ) ∈ I1× · · · × IN ,
one then set

ΨI = ΨI1,1 ⊗ · · · ⊗ΨIN ,N
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Original Noisy Isotropic Hyperbolic

28.11 dB 32.87 dB 37.72 dB

Figure 4.4: Denoising of an additive model.

The family {ΨI, I ∈ I1× · · · × IN} is then a basis of L2(Rd) with d = d1 + · · ·+ dN . Note that if N = d, we
recover anhyperbolic wavelet basis as a special case whereas in the case N = 1 this construction corresponds
to isotropic wavelet basis.

Any function f ∈ L2(Rd) can then be decomposed in

f =
∑
I

βIΨI

One then define the hard thresholding estimator as

f̂ =
∑
I∈Iε

βI(f) ΨI

with Iε = {I ∈ I1 × · · · × IN , |j| = j1 + · · · + jN ≤ j(λε)} where j(λε) is such that 2−j(λε) ≤ λ2
ε < 21−j(λε)

with λε = mε
√

log(ε−1).
The next section aims at proving the optimality of this procedure in the minimax sense.

4.3.2 Minimax results

To state and prove our minimax results about the hard thresholding procedure in the tensored wavelet basis,
we first need to introduce some appropriate functional spaces, which appear as approximation spaces for
our structured wavelet bases. These spaces extend the space of functions with dominating mixed derivatives
introduced in [Schmeisser, 2007] as approximation spaces for the hyperbolic wavelet basis

For a vector α = (α1, · · ·αd) ∈ Nd and function f ∈ L2([0, 1]d), let us define as usual its partial derivatives
in the distribution sense

Dαf =
∂|α|f

∂xα1
1 · · · ∂x

αd
d

,

where |α| = α1 + · · ·+ αd.
Given R = (R1, · · · , RN ) ∈ NN , we now define the following functional spaces

FR
d,N = {f ∈ L2((0, 1)d) ‖f‖FR

d,N
=

N∑
i=1

∑
r=(r1,··· ,rN )∈Nd1×···×NdN ,|ri|≤Ri

‖Dr1 · · ·DrN f‖L2((0,1)d) <∞}

We equip these spaces with the norm

‖f‖FR
d,N

= ‖f‖L2((0,1)d) +
N∑
i=1

∑
r=(r1,··· ,rN )∈Nd1×···×NdN ,|ri|≤Ri

‖Dr1 · · ·DrN f‖L2((0,1)d) .

We then denote FR
d,N (K) the ball of FR

d,N of radius K.
The space FR

d,N contains functions with dominating mixed derivatives which have for any ` ∈ {1, · · · , N},
d` variables having the same regularity order R`. Two special cases of interest arise from this definition:
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• If ∀i = 1, · · · , N we have r` ∈ R, that is if N = d, we find the so–called spaces with dominating mixed
derivatives defined in [Schmeisser, 2007]

FR
N = {f ∈ L2((0, 1)N )|

∑
(r1,··· ,rN ), ri≤Ri

‖Dr1 · · ·DrN f‖L2((0,1)N ) <∞}

• If N = 1 and d1 = d, we recover the classical isotropic Sobolev spaces.

HR = {f ∈ L2((0, 1)d)|
∑

r1∈Nd, |r1|≤R

‖Dr1f‖L2((0,1)d) <∞}

We can now state our main result giving the rate of convergence of the procedure defined in Section 4.3.1
and proving its optimality in the minimax sense :

Theorem 4.3.1. Assume that R1 = · · · = RN = R. Let Jε be such as ε22JεdmaxJε = 2−2JεR, with
dmax = max(di). Then

inf
f̂

sup
f∈Fd,NR (K)

E‖f̂ − f‖22 =
(
ε4R/(2R+dmax)

) (
| log(ε)|N−1

)
.

Note that this rate of convergence shows a lower dimension which is different from one in the mimimax
estimate and thus breaking “partially” the curse of dimensionality. The lower bound, in this case, is of the
order of ε2R/(R+dmax), while it is ε2R/(R+d) in the isotropic case and of ε2R/(R+1) in the fully anisotropic case.
It is interesting to note that the order of the logarithmic term is related to the degrees of freedom of the
scales vector instead of the usual dimension.

4.4 Extension of the method to other settings

The construction (4.3) allows to consider different families of wavelets along the different dimensions. One
could for example consider a representation of a piecewise stationary spectrum with Haar wavelets along
the time and a smooth wavelet along the spatial frequency. The hard thresholding can also be modified
considering possibly random threshold depending not only on the level of noise but also on the index I.
It will be the case when considering stabilisation of variance approaches. Here, we extend the approach
introduced in Section 4.3 by pointing out other situations where specific types of wavelets and estimation
procedure are needed.

4.4.1 Denoising of spatio temporal incompressible flows

We consider the problem of denoising spatio-temporal vector fields with null divergence in space such as
incompressible flows. Denoising such type of data gains a lot of attention with the emergence of Phase
contrast MRI imaging [Markl et al., 2003]. A velocity field is a function of (x, t) where x is the spatial
variable of dimension d ≥ 2. The wavelet paradigm for such data consists in two types of algorithms based
on a decomposing the flow in a divergence free wavelet frame. The classical spatial denoising [Markl et al.,
2003] do not consider the time variable and a thresholding is done on the divergence-free wavelet transform
of each spatial stack. A more interesting procedure was introduced recently by Bostan et al. [Bostan et al.,
2013, 2015] which considers spatio-temporal regularization. The algorithm considers two regularization terms
in a variational framework

f̂ = argmin{||WBdivf ||1 +Rt(f) +
1

2
||gε − f ||22}, (4.8)

whereWBdivf denotes the vector of the coefficients resulting from the decomposition of f in free-divergence
wavelet basis Bdiv and Rt(f) is a term aiming at regularizing f in the temporal dimension on which incom-
pressibility is not maintained. Many choices for Rt(f) are possible. The presence of two norms makes the
minimization process challenging. In particular, the direct use of simple soft-thresholding algorithms is not
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possible. Moreover, the convexity is lost with the result of the non-uniqueness of a minimum. If Rt(f) is
not differentiable, as in the case of the `1-norm, the problem needs to be divided into two sub-problems by
considering one norm at the time in an iterative fashion.

Here, we propose an alternative approach which consists in using one single norm which sparsifies the
complete vector. This can be achieved by the the structured wavelet construction. Let us define the following
spatio tempral wavelets :

Ψ = ψdivx (x)⊗ ψt(t) (4.9)

where ψdiv is a divergence-free spatial wavelet and ψt is a one-dimensional temporal wavelet. With our
construction, we can replace the estimation procedure (4.8) by a simpler one as a thresholding on the
wavelet coefficients of the flow of interest in the structured wavelet basis. We also propose to consider other
possible bases. For example, if temporal discontinuities are not allowed, ψt can be replaced by a Fourier
basis: family of complex exponentials {eint}.

4.4.2 Partial data-dependent noise

Another advantage of the tensor construction given is its ability to deal with the case where the noise
dependss on the data. Such situations occurs, for example, in dynamic imaging when the noise has a specific
spatial characteristic due to imaging system which is not preserved in time. We are, of course interested in
cases where the noise can be removed via known thresholding methods. Consider, for example, the following
noise model

fε = f + F (f)ξ (4.10)

where F is a non-decreasing function and ξ a white noise. Many noise models are of the form (4.10).
Examples are speckle noise in Ultrasound imaging [Loupas et al., 1989] and Poisson noise in Photon imaging
systems [Nowak and Baraniuk, 1999, Fryzlewicz and Nason, 2004]. When an image sequence is considered,
each image of the sequence follows model (4.10). For each image, this model can be solved by wavelet
techniques after a Gaussianizing process on the wavelet coefficients [Fadili et al., 2003, Fryzlewicz, 2008].
The corresponding transform is called the Wavelet-Fisz transform and consists in stabilizing the variance by
dividing wavelet coefficients by local estimations of the noise standard deviation. Now consider the problem
of denoising a sequence in which each image follows model (4.10). Using a construction similar to (4.9)
comes naturally. Here, instead of a divergence free wavelet transformation, a wavelet-Fisz transformation
is considered; the spatio-temporal coefficients are stabilized in the spatial dimension before applying a hard
thresholding procedure. We refer to Part II for a full presentation on the wavelet-Fisz methodology. The next
chapter is devoted to an exhaustive experimental study on the performance of structured wavelet construction
in practice.

4.5 Appendix

4.5.1 Preliminary results on structured wavelets and function spaces

In what follows, we shall need a structured wavelet characterization of the functional spaces FR
N . We have

the following result, which extend Theorem 3.1 of [Schmeisser and Sickel, 2004]

Theorem 4.5.1. Assume that the structured wavelet basis is sufficiently regular. Then f ∈ FR
N,d iff

‖f‖2
hyp,FR

N,d
=
∑
i

∑
j

(
1 + 22(

∑
` j`R`)

) ∑
k∈ZN

|βI|2 <∞ .

In addition, the two norms ‖ · ‖FR
N,d

and ‖ · ‖hyp,FR
N,d

are equivalent.
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These functional spaces can be related in a rather classical way to their weak counterpart. More precisely,
let us define the following weak space :

WN,d(r) = {f ∈ L2, sup
λ>0

λr−2
∑
I

|βI(f)|21|βI(f)|<λ <∞} .

As in Lemma 2.2 of [Kerkyacharian and Picard, 2000], we can prove that we have an alternative definition
of these spaces :

Proposition 4.5.2. Let r ∈ (0, 2). Then

WN,d(r) = {f ∈ L2, sup
λ>0

λr
∑
I

1|βI(f)|>λ <∞} .

Proof
Let us first prove that if f ∈WN,d(r) then supλ>0 λ

r
∑

I 1|βI(f)|>λ <∞. Indeed,∑
I

1|βI(f)|>λ =
∑
I

∑
`≥0

12`λ≤|βI(f)|<2`+1λ

≤
∑
`≥0

∑
I

(2`λ)−2|βI(f)|1|βI(f)|<2`+1λ

We now use the assumption that f ∈WN,d(r) which implies that∑
I

|βI(f)|21|βI(f)|<2`+1λ ≤ (2`+1λ)2−r

Hence ∑
I

1|βI(f)|>λ ≤
∑
`≥0

(2`λ)−2(2`+1λ)2−r ≤ 22−rλ−r

∑
`≥0

2−`r


Since r > 0, the last sum converges and we get the first inclusion.

Conversely, let us assume that supλ>0 λ
r
∑

I 1|βI|>λ <∞ and let us prove that f ∈WN,d(r). Indeed,∑
I

|βI|2 1|βI|<λ =
∑
I

∑
`≥0

|βI(f)|2 12−`−1λ<|βI(f)|<2−`λ

≤
∑
`≥0

∑
I

(2−`λ)2 12−`−1λ<|βI(f)|<2−`λ

We now use the assumption supλ>0 λ
r
∑

I 1|βI(f)|>λ <∞ and deduce that∑
I

|βI(f)|2 1|βI|<λ ≤
∑
`≥0

(2−`λ)2(2−`−1λ)−r

≤ λ2−r

∑
`≥0

2−`(2−r)


Since 2− r > 0 the last sum converges and we can conclude.

The following proposition gives some details about the embeddings between the spaces FR
N,d andWN,d(r) :

Proposition 4.5.3. Assume that R1 = · · · = RN = R. Set r = 2dmax/(dmax + 2R). Then

FR
N,d ⊂WN,d,logN−1(r) .
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Proof
Let f ∈ FR

N,d. Define Jλ such that 2−Jλ ≤ λ
2

2R+dmax ≤ 2−Jλ+1. Observe that∑
I

|βI(f)|21|βI(f)|≤λ ≤
∑
|j|≤Jλ

∑
k

|βI(f)|21|βI(f)|≤λ +
∑
|j|>Jλ

∑
k

|βI(f)|21|βI(f)|≤λ

≤ λ2
∑
|j|≤Jλ

∑
k

1 +
∑
`>Jλ

∑
|j|=`

2−2R|j|

≤ λ2
∑
|j|≤Jλ

2j1d1+···+jNdN +
∑
`>Jλ

2−2R``N−1

≤ λ2
∑
`≤Jλ

∑
|j|=`

2|j|dmax +
∑

`>Jλ,R

2−2R``N−1

≤ λ22JλdmaxJN−1
λ + 2−2RJλJN−1

λ

where in the two last inequalities we used the assumption f ∈ FR
N,d and Theorem 4.5.1. The conclusion

comes from the definition of the index Jλ,N and of that of the space WN,d(r) for r = 2dmax/(dmax + 2R).
We can now use all these results to deduce the minimax results stated in Section 4.3.2.

4.5.2 Proof of upper bound

We fix some function f ∈ FR
N,d and bound as usual the quadratic risk E‖f − f̂‖2L2 :

E‖fε − f̂‖2L2 ≤
∑
i

∑
j1+···+jN>Jε

[βI(f)]2

+
∑
i

∑
j1+···+jN≤Jε

βI(f)2E[1|βI(fε)|≤λε ]

+
∑
i

∑
j1+···+jN≤Jε

E[|βI(fε)− βI(f)|21|βI(fε)|>λε ]

We first bound the sum
∑

i

∑
j1+···+jN>Jε [βI(f)]2 using the assumption f ∈ FRN,d and Theorem 4.5.1. Since

R1 = · · · = RN = R and j1 + · · ·+ jN > Jε, one deduces that∑
i

∑
j1+···+jN>Jε

[β2
I ] ≤ C2−2RJεJN−1

ε .

We now bound the sum
∑

i

∑
j1+···+jN≤Jε

∑
k βI(f)2E[1|βI(fε)|≤λε ]. Observe that if |βI(fε)| ≤ λε, either

|βI(f)| ≤ 2λε either |βI(fε)− βI(f)| > λε. It implies that∑
i

∑
j1+···+jN≤Jε

∑
k

βI(f)2E[1|βI(fε)|≤λε ] ≤
∑
i

∑
j1+···+jN≤Jε

∑
k

βI(f)2E[1|βI(f)|≤λε ]

+
∑
i

∑
j1+···+jN≤Jε

∑
k

βI(f)2E[1|βI(fε)−βI(f)|>λε ]

The sum
∑

i

∑
j1+···+jN≤Jε βI(f)2E[1|βI(f)|≤λε ] is deterministic and equals∑

i

∑
j1+···+jN≤Jε

βI(f)21|βI(f)|≤λε .

It can then be bounded using the embedding proved in Proposition 4.5.3 and the definition of the spaces
WN,d(r).

The bound of the sum
∑

i

∑
j1+···+jN≤Jε

∑
k βI(f)2E1|βI(fε)−βI(f)|>λε comes from the Gaussian assump-

tion on the noise and the classical concentration inequality P(|Z| > λ) ≤ Ce−λ
2/2 valid for any standard
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Gaussian random variable Z which implies that∑
i

∑
j1+···+jN≤Jε

βI(f)2E[1|βI(fε)−βI(f)|>λε ] =
∑
i

∑
j1+···+jN≤Jε

βI(f)2P[|(βI(fε)− βI(f))/ε| > λε/ε]

≤ ε
∑
i

∑
j1+···+jN≤Jε

βI(f)2 = Cεm
2/2

We then deduce that∑
i

∑
j1+···+jN≤Jε

∑
k

βI(f)2E1|βI(fε)|≤λε ≤ Cε
m2/2 + λ4R/(2R+dmax)

ε ≤ Cλ4R/(2R+dmax)
ε

as soon as m > 2
√

2.
Finally the bound of the sum

∑
i

∑
j1+···+jN≤Jε

∑
k E|βI(fε)−βI(f)|21|βI(fε)|>λε shall follow from Propo-

sitions 4.5.2 and 4.5.3. Indeed, one has by the Cauchy Schwartz inequality and as in the bound of the last
sum ∑

i

∑
j1+···+jN≤Jε

∑
k

E|βI(fε)− βI(f)|21|βI(fε)|>λε

≤ ε2
∑

1|βI(f)|>λε + 2Jε/2ε2
∑

P1/2[|βI(fε)− βI(f)| > λε/2]

≤ Cλ4R/(2R+dmax)
ε | log(λε))|N−1 + 2Jε/2εm

2/16 ≤ Cλ4R/(2R+dmax)
ε | log(λε))|N−1

as soon asm > 8. The last display is deduced from Proposition 4.5.3 and the classical concentration inequality
for standard Gaussian random variables. Gathering the bound of the three sums

∑
i

∑
j1+···+jN≤Jε βI(f)2E[1|βI(f)|≤λε ],∑

i

∑
j1+···+jN≤Jε

∑
k βI(f)2E1|βI(fε)−βI(f)|>λε and

∑
i

∑
j1+···+jN≤Jε

∑
k E|βI(fε)−βI(f)|21|βI(fε)|>λε , we get

the upper bound stated in Theorem 4.3.1.

4.5.3 Proof of lower bound

The derivation of a lower bound for wavelet function estimation on FR
N,d(K) relies on a classical procedure

for constructing minimax lower bounds in non-parametric estimation known as the Assouad’s method. We
give here a version of this lemma when functional spaces and quadratic L2 distances are considered (see
Lemma 2 in [Yu, 1997] and Lemma 10.2 in [Härdle et al., 2012]).

Lemma 4.5.4 (Assouad’s lemma). Let V be a functional space containing a set of functions {gτ}τ with
τ ∈ {0, 1}m. For each couple τ and τ ′, we write τ ∼ τ ′ if τ and τ ′ differs in only one coordinate, and τ ∼

k
τ ′

if it is the kth coordinate. If we assume that for any k

inf
τ∼
k
τ ′
E‖gτ − gτ ′‖2L2 ≥ δ

Then, any estimator f̂ of a function f ∈ V verifies

max
gτ

E‖f̂ − gτ‖2L2 ≥ m
δ

2
min
τ∼τ ′
{Λ(Pτ , Pτ ′)},

where Pτ is the probability measure associated to gτ and the affinity Λ is given by

Λ(Pτ , Pτ ′) = 1− |Pτ − Pτ
′ |1

2
.

In order to use this lemma for constructing the lower bound, we need first to reduce the problem to a
parametric family of the form {gτ}τ . The value of m depends on a fixed scale which calibrates the risk in
order to have an optimal convergence. One expects that such scale defines the limit between finest scales for
which the coefficients are small and so dominated by the smoothness (i.e encode noise on some coefficients)
and coarse scales. As coarse scales do not contribute to the risk, the error is driven by the error made on
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the hardest scale of fine scales which we denote Jε. We are given C0 > 0 not depending on ε > 0 and
Jε. Thererafter, we define the following family {gτ}τ depending on ε, C0. For any τ = (τI) ∈ {0, 1}m with
m = #{I s.t |j| = Jε}, we set

gτ =
∑
i

∑
j, j1+···+jN=Jε

βI,τψI with βI,τ =

{
0 if τI = 0
C0ε otherwise. ,

We first check that this family belongs to the class V = FR
N,d(K) :

Lemma 4.5.5. Assume that ε22JεdmaxJε � 2−2JεR, with dmax = max(di). Then we have

{gτ}τ ⊆ FR
N,d(K)

Proof
It directly comes from the definition of the class FR

N,d(K) and from Theorem 4.5.1.
All that remains, now, is to apply lemma 4.5.4 for the class FR

N,d(K) and the parametric family {gτ}τ .
First, note that for the family {gτ}τ , we have

δ = C2
0ε

2.

Note also that the hypercube dimension m is given by the cardinality of the coefficients at the scale Jε.

m = #{I s.t |j| = Jε} = JN−1
ε 2(

∑n
i=1 diji), (4.11)

Hence,

max
gτ

E‖f̂ − gτ‖2L2 ≥ C2
0ε

2JN−1
ε 2(

∑n
i=1 diji) min

τ∼τ ′
{Λ(Pτ , Pτ ′)},

≥ C2
0ε

2JN−1
ε 2Jεdmax min

τ∼τ ′
{Λ(Pτ , Pτ ′)},

As usual, the calibration ε22JεdmaxJε � 2−2JεR imposes that Jε is of the same order as log(ε−1) which
yields to

2Jε =
(
ε2[log(ε−1)]N−1

)−1/(2R+dmax)
. (4.12)

Thus

max
gτ

E‖f̂ − gτ‖2L2 ≥ C2
0ε

2
(
ε2 log(ε−1)]N−1

)−dmax/(2R+dmax)
min
τ∼τ ′
{Λ(Pτ , Pτ ′)}.

Finally, by definition the affinity Λ takes only positive values, which gives

max
gτ

E‖f̂ − gτ‖2L2 ≥ C
(
ε2 log(ε−1)]N−1

)2R/(2R+dmax)
.

with C = C2
0 min
τ∼τ ′
{Λ(Pτ , Pτ ′)}, which ends the proof.
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CHAPTER 5
Experiments

Abstract

In this chapter, we present some experiments to illustrate the effectiveness of
the structured variable grouping presented earlier. We start with the simple
problem of sequence denoising under model (4.1), then we consider the denois-
ing of hyperspectral data, velocity flows and finally denoising under partially
data-dependent noise models.

We aim at showing the merits of using structured wavelets presented above compared to the classical
constructions. Therefore we compare our results with those obtained by wavelet thresholding which do not
take all variables into account (2D-Wavelets) and isotropic multivariate wavelet thresholding techniques (3D-
Wavelets) which acts in the same manner on all variables. We also use simple universal hard thresholding
rules. Except the velocity flows, all data have a [0−255] grey-values range. At each noise level, we compared
results of the different methods using the classical Peak Signal to Noise Ratio (PSNR) as a criteria. In the
case of data-dependent noise, we also show the difference between the true image and the denoised result of
every method. This is known in the literature as the method noise [Buades et al., 2005]. For the wavelet
filters, Daubechies wavelets with 6 vanishing moments are used in the different directions for the 2D-Wavelets
and the Stuctured wavelets, while the 3D-Wavelets are complex isotropic filters [Selesnick and Li, 2003].

In each case, we first define sets of variables that we shall group. On these variables the appropriate
wavelet transform is taken (isotropic, divergence-free) and the appropriate estimator is defined (isotropic
hard thresholding, hyperbolic hard thresholding, Fisz, etc· · · ). The rest of variables are taken into account
by the standard tensor product. It is interesting to note that the complexity of the construction in dimension
d is O(Nd) as for classical isotropic wavelets, no matter what is the order of the variables. Figure 5.1 shows
a particular case construction for d = 3 in which isotropy in {x1, x2} is considered. This latter case will be of
special interest, as x3 will refer to the time variable. It can be seen that the obtained atoms have an isotropic
support along x1 and x2 while it is different along x3. Let us now detail the different cases that we considered :

5.1 Image Sequence denoising

The utility of considering isotropy in space and anisotropy in time was discussed and motivated in Section 4.2.
We also want to show the merit of the spatio-temporal treatment in general. We consider two images for
our synthetic experiments. The first sequence “Ayiko” available on the web 1. The second sequence “Heart”
is generated by the ASSESS software [Clarysse et al., 2011]. This software applies a simple kinematic model
of the heart deformation on an initial image. The result is a non-corrupted realistic simulation of a cardiac
MRI sequence. We corrupted the two sequences with respect to noise model (4.7) by picking a noise level
ε ∈ {5, 10, 15, 20}. PSNR results are given in 5.1. Results obtained by the structured wavelets are clearly

1http://see.xidian.edu.cn/vipsl/database_Video.html
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The 3D atom

x1 − x2 plane x1 − x3 plane

Figure 5.1: Example of a Structured Wavelet atoms.

superior to those obtained by 2D-Wavelets and 3D-Wavelets at all noise levels. The benefit of taking the
temporal dimension into account can be observed as 3D-Wavelets give better results than 2D-Wavelets. As
the visualization is done frame by frame, we show in figure the temporal evolution of the PSNR for each
method. It can be observed that, in the case of the 2D-Wavelet approach it imposes a local treatment in
time, as a consequence there is no temporal evolution of the PSNR. It can be observed that the results of
3D-Wavelets and structured wavelets demonstrate a time-dependent behaviour. In particular, the PSNR
starts and finishes with low values as there is not enough information in the temporal domain and has higher
values in the rest of the sequence. In the case of structured wavelets some sudden drops in the PSNR are
observed due to temporal discontinuities. Note that an interesting phenomenon is observed in the case of
the “Heart” sequence as the periodicity of the cardiac cycles can be seen in the PSNR results. This is due
to the variations in deformation and discontinuities between cycles as the heart motion changes direction
introducing a strong temporal discontinuity.

Original Noisy (σ = 10) 2D-wavelets 3D-Wavelets Structured Wavelets

Figure 5.2: Results of various methods applied to the 20th image of the sequence “Ayiko". Quantitative
evaluation is given in Table 5.1.
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Original Noisy (σ = 10) 2D-wavelets 3D-Wavelets Structured Wavelets

Figure 5.3: Results of various methods applied to the 20th image of the sequence “Heart". Quantitative
evaluation is given in Table 5.1.
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Figure 5.4: PSNR evolution for different methods applied to the sequences “Ayiko” and “Heart”.

“Ayiko" “Heart"
σ 2D 3D Structured 2D 3D Structured
5 35.05 38.12 40.48 35.60 38.54 41.23
10 30.33 33.62 36.16 31.41 34.53 37.12
25 27.75 30.92 33.68 29.00 32.24 34.70
20 26.03 29.11 31.88 27.33 30.70 32.96

Table 5.1: Quantitative comparison (PSNR) for different methods applied to “Ayiko" and “Heart" at different
noise levels.

5.2 Spectral Denoising

We considered also two examples of hyperspectral and multispectral data. The first sample “Uncle Bens” is
taken from the Multispectral database2. It consists of 31 images with a resolution reflectance ranging from
400nm to 700nm. The second sample “Indian Pine” from the AVIRIS hyperspectral sensor database3. It
contains 220 images, each one representing a specific wavelength. The multispectral data was modified to
have a dyadic size in the spectral dimension for the wavelet transform. Note that the Structured Wavelet
approach does not require to have the same size in all dimension as the 3D-Wavelet approach. We show the
results only for the original 31 samples.

2http://www2.cmp.uea.ac.uk/Research/compvis/MultiSpectralDB.htm
3https://purr.purdue.edu/publications/1947
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“Uncle Bens” “Indian Pines”

Figure 5.5: 3D Stacks : “Indian Pines” and “Uncle Bens”.

Original Noisy (σ = 10) 2D-wavelets 3D-Wavelets Structured Wavelets

Figure 5.6: Results of various methods applied to the 20th image of the stack “Uncle Bens”. Quantitative
evaluation is given in Table 5.2.

Original Noisy (σ = 10) 2D-wavelets 3D-Wavelets Structured Wavelets

Figure 5.7: Results of various methods applied to the image 10th image of the stack “Indian Pines". Quan-
titative evaluation is given in Table 5.2.

“Uncle Bens" “Indian Pines"
σ 2D 3D Structured 2D 3D Structured
5 36.14 37.78 39.41 35.26 35.64 37.38
10 32.26 34.24 36.24 31.81 32.22 34.36
15 30.11 32.17 34.16 30.08 30.55 32.70
20 28.67 30.65 32.53 28.94 29.36 31.42

Table 5.2: Quantitative comparison (PSNR) for different methods applied to “Uncle Bens" and “Indian
Pines" at different noise levels.

5.3 Incompressible flows Denoising

The experiments were done on a synthetic velocity map which was initiated by a null divergence vector flow
(u, v) where the horizontal and vertical component are given respectively by u0(x, y) = sin(2πx)2 sin(4πy) and
v0(x, y) = − sin(2πy)2 sin(4πx). The temporal evolution was governed by a rotation matrix u(x, y, t+ 1) =
u(x, y, t) + hu(x, y, t) and v(x, y) = v(x, y, t) − hv(x, y, t) where h is fixed. The result is a velocity map
in form of 4 vertices with increasing velocity (e.g Figure 5.9). We corrupted this flow with gaussian noise
where σ = 0.1, 0.3, 0.5. We tested spatial two-dimensional divergence free wavelets and spatio-temporal
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Figure 5.8: PSNR evolution for different methods applied to the data “Uncle Bens" and “Indian Pines".
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Figure 5.9: 2D+t Flow data : (a) Vector field at the 10th time step. (b) Horizontal velocity at the 10th time
step. (c) Temporal evolution of the horizontal velocity for a fixed vertical plan.

structured divergence free wavelets. Here, the 3D construction is not appropriate as divergence freedom
cannot be imposed in time. We used divergence free wavelets with periodic boundary condition introduced
by Harouna and Perrier [Kadri Harouna and Perrier, 2015]. A visual comparison of the results is given in
5.11. The vector flow obtained using the spatio-temporal structured wavelets are visually smoother and still
preserve divergence freedom. As the velocity is increasing and the the noise variance is constant the PSNR
is increasing within time time Figure 5.12. Note that the spatio-temporal approach fails in some time steps
because of the discontinuities but its overall performance is better than the one of the spatial approach as it
can be seen in Table 5.3.

Horizontal velocity Vertical velocity
σ 2D Structured 2D Structured

0, 1 46.64 49.00 46.65 48.90
0, 3 39.65 43.83 39.51 43.53
0, 5 35.49 39.65 35.47 39.36

Table 5.3: Quantitative comparison (PSNR) for different methods for horizontal and vertical velocity at
different noise levels.
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Figure 5.10: Example of results obtained by the two methods for σ = 0.3 at the 10th time step. (a) Noisy
flow, (b) 2D-Wavelets reconstruction of the flow, (c)Structured Wavelets reconstruction of the flow, (d)
Noisy horizontal velocity, (e) 2D-Wavelets reconstruction of the horizontal velocity., (f) Stuctured Wavelets
reconstruction of the horizontal velocity.

5.4 Mixed models Denoising

Here we consider the model (4.10), we have a particular interest in models arising from ultrasound imag-
ing [Loupas et al., 1989] in which h(f) =

√
f . Our experiments are performed with respect to this model

for σ = {1, 2, 3, 4}. We used spatial isotropic wavelets with Fisz variance stabilization [Fryzlewicz, 2008].
We compared the spatial approach to the spatio-temporal approach. Note that again classical 3D wavelets
are not applicable for this problem. Visual comparisons for the sequences “Ayiko" and “Heart" are given in
Figure 5.13 and Figure 5.14. Note that the spatio-temporal approach provided by the structured wavelet
construction provides a considerable visual improvement compared to the spatial approach. In the PSNR
evolution in Figure 5.16, we can observe again the temporal structure linked to the heart motion and the
superiority of structured wavelets locally and and globally (e.g Table 5.4).

Test Kidney
“Ayiko" “Heart"

σ 2D Structured 2D Structured
1 28.82 29.66 32.93 34.31
2 27.13 29.26 30.44 33.28
3 25.64 28.82 28.48 32.27
4 24.42 28.39 26.90 31.34

Table 5.4: Quantitative comparison (PSNR) for different methods applied to “Ayiko" and “Heart" at different
noise levels.
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Figure 5.11: Example of results obtained by the two methods for σ = 0.3 at the 10th time step. (a) Noisy
flow, (b) Noisy horizontal velocity, (c) 2D-Wavelets reconstruction of the flow, (d) 2D-Wavelets reconstruc-
tion of the horizontal velocity, (c)Structured Wavelets reconstruction of the flow, (d) Stuctured Wavelets
reconstruction of the horizontal velocity.
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Figure 5.12: PSNR evolution for the two methods.

Original Noisy (σ = 2) 2D-wavelets Structured Wavelets

Figure 5.13: Example of results obtained by the two methods for the 20th image of the sequence “Ayiko"
with σ = 0.3.

Original Noisy (σ = 2) 2D-wavelets Structured Wavelets

Figure 5.14: Example of results obtained by the two methods for the 20th image of the sequence “Heart”
with σ = 0.3.

Original 2D-wavelets Structured Wavelets

Figure 5.15: Method noise: various methods applied to the 20th image of the sequence “Heart". Quantitative
evaluation is given in Table 5.1.
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Figure 5.16: PSNR evolution for different methods applied to the sequences “Ayiko" and “Heart".
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CHAPTER 6
Discussion & Perspectives

Abstract

We give in this chapter a discussion about the positioning of our work com-
pared to existing works on structured group-sparsity. We also mention some
orientations for future works on the wavelet construction presented in this part
of the thesis.

6.1 Some related work on structured group-sparsity

First, we want to note that a similar construction to the one presented in the paragraph 4.3.1 was proposed
in [Duarte and Baraniuk, 2012] for compressed sensing which is also motivated by video acquisition and
hyperspectral imaging. There, the purpose was to study the efficiency of considering Kronecker products
of different bases for multivariate signals with different regularities. In particular, the authors studied the
sparsifying properties and conditions for which these bases can be used in the compressed sensing theory.
Structured sparsity have proven to be useful in denoising, existing structures consider groupe-wise sparsity as
in Block Thresholding [Cai, 2002], Hierarchical sparsity as in Tree Thresholding [Baraniuk, 1999] or combina-
tions the two [Autin et al., 2012]. Imposing sparsity in a variational framework can be done via minimizing
a `1-regularized least squares functional. This is known as the Lasso problem [Tibshirani, 1996]. Structuring
the regularization term in groups is known as the group-lasso [Meier et al., 2008] and has other extensions
such as the Fused Lasso [Tibshirani et al., 2005] and the Group Fused Lasso [Alaíz et al., 2013]. All these
paradigms consider structures directly on the sparse representation (i.e after transformation). In our work,
we aimed at showing the merit of considering the group selection on variables before transformation. As
mentioned before, many works in the statistical literature demonstrated the advantages of using hyperbolic
wavelets in multivariate analysis. Overcoming the curse of dimensionality has been pointed first in [Neu-
mann, 2000] with recent contributions in [Autin et al., 2014]. In all these works, anisotropy was considered
on single variables and the authors aimed at dropping the error to dimension one.

6.2 Methodological extensions

The minimax results of Chapter 4 were obtained assuming that the same regularity parameter along he
different groups of variables. As mentioned by [Neumann, 2000], it wouldbe also interesting to consider the
different regularity parameters. This is, actually, more appealing when considering problems with different
regularities such as the experiments presented in Chapter 5. One can predict that the hardest regularity
(smallest parameter) appears in the rate of convergence. Still, this is an open question, particularly, how
this parameter will be combined with the dimension of the largest group.

For Functional Data Analysis within the functional analysis of variance (FANOVA) framework [Abramovich
et al., 2004, Abramovich and Angelini, 2006], the structured wavelet construction might give a new ways of
gathering variables presenting similar behaviour, especially, in very high dimensions.
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Similarly to considering divergence-free wavelets on some variables, it is also possible to consider operator-
like wavelets [Van De Ville et al., 2005, Khalidov et al., 2007]. This type of wavelets can be used, for instance,
to invert convolution operators for joint deconvolution/denoising [Khalidov et al., 2011]. The structured
construction can deal with problems in which the data is blurred only on some of the variables.

6.3 Real applications

As mentioned in Chapter 5, many of our experiments are motivated by real applications. Trying the proposed
methods on real data still the ultimate goal. Applications such as Phase-contrast MRI velocity enhancement
and US Doppler imaging are of great interest and enjoyed a lot of attention, recently.
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Fisz-wavelet thresholding in two-dimensional
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CHAPTER 7
The methodology

Abstract

In this chapter, we consider the following two-dimensional function estimation
problem: we want to recover an unknown function α from a noisy observation
X, where the noise component has zero mean and a variance function depending
on the unknown α. We prove the optimality of hyperbolic wavelet-Fisz hard-
thresholding when u belongs to anisotropic Besov balls. This method computes
the hyperbolic wavelet transform of the image, before applying a multiscale
variance stabilization technique, via a Fisz transformation. This adapts the
wavelet coefficients statistics to the wavelet thresholding paradigm. We also
describe a data-driven extension of this technique when h is unknown following
previous works by Fryzlewicz and Dellouile. The data-driven extension removes
the need for any prior knowledge of the noise model parameters by estimating
the noise variance using an isotonic Nadaraya-Watson estimator.

7.1 Introduction

Consider the following regression model

Xt1,t2 = α(t1/n1, t2/n2) + εt1,t2 t1 = 1, · · · , n1 and t2 = 1, · · · , n2, (7.1)

where εt1,t2 ’s are random variables with E(εt1,t2) = 0. The case where Var(εt1,t2) is constant results in
additive white Gaussian noise models such as the ones studied in the previous part of this thesis. When
Var(εt1,t2) is not constant the regression model is called heteroscedastic. Such models were less studied in
the wavelet thresholding literature. In fact, the empirical wavelet coefficients of the noise component are
non longer a independent, identically distributed Gaussian sequence. This makes the construction of an
elitist empirical program such as thresholding difficult. In many applications, however, the Gaussianity of
the observation is not insured. This has triggered various extensions of the wavelet paradigm depending on
the nature of the problem. For instance, in Poisson intensity estimation, εt1,t2 are centered Poisson and one
has Var(Xt1,t2) = E(Xt1,t2), which is not constant as in the Gaussian case. For such scenarios, Fryzlewicz
and Nason [2004] developed a methodology which they coined Haar-Fisz. The idea behind this technique is
a normalization inspired from the work of Fisz [1955] which turns out to have an exact closed form when
expressed by the scaling or wavelet coefficient of the Haar-wavelet1. It was extended to Poisson intensity
estimation in images Fadili et al. [2003]. Jansen [2006] generalized the Haar-Fisz technique to wavelet-
Fisz procedures with arbitrary wavelet families. Finally, Fryzlewicz [2008] synthesized the wavelet-Fisz
methodology by

1Hence the name Haar-Fisz.
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• Showing its utility in non-parametric regression under (7.1) for a large class of variance functions which
allows to cover other problems than Poisson intensity estimation such as spectral density estimation.

• Obtaining the minimax rate of convergence for the hard thresholding procedure when the unknown
belongs to one-dimensional Besov balls.

• Developing a data-driven extension based on a previous work by Fryzlewicz and Delouille [2005] and
showing the consistency of the minimax rate of convergence in this case.

In this chapter, we extend the main theorem of Fryzlewicz [2008] to two-dimensional anisotropic Besov
balls using the hyperbolic wavelet transform. Our main motivation for studying this problem is an application
in ultrasound imaging which we describe exhaustively in the next chapter. As in many medical imaging
techniques, ultrasound images are rich of anisotropic features such as vessels and skin layers. Moreover, for
the particular case of wavelet-Fisz denoising, the normalization step needs an accurate local means estimation
which can take benefit from filter with anisotropic supports. We keep more discussion about the motivations
and the empirical remarks for the next chapter and we focus here on the methodological results.

7.2 Model & Assumptions

In the sequel, we will consider that (7.1) holds where {Xt1,t2} are assumed to be non-negative and independent
with

E(Xt1,t2) = α(t1/n1, t2/n2) and Var(Xt1,t2) = Var(εt1,t2) = h[α(t1/n1, t2/n2)] . (7.2)

We recall that the purpose is to estimate α, assuming that the function h is known. We define, fol-
lowing Neumann and Von Sachs [1997], a discrete version of the definition of BV spaces through TV on
[0, 1]2.

Definition 7.2.1. A function f : [0, 1]2 −→ R is said to be of bounded variation -belongs to BV ([0, 1]2)- if :

TV[0,1]2(f) =

n1∑
t1=1

n2∑
t2=1

∣∣∣∣f ( t1n1
,
t2
n2

)
− f

(
t1 − 1

n1
,
t2
n2

)
− f

(
t1
n1
,
t2 − 1

n2

)
+ f

(
t1 − 1

n1
,
t2 − 1

n2

)∣∣∣∣ <∞ .

Now, we set the ground for the main result of this chapter by fixing some assumptions on the two quantities
contributing to the observation: The unknown α, the variance function h and the noise component εt1,t2 .

Assumption 1. Let the unknown function be such as α : [0, 1]2 −→ R. We denote α = inf(x,y)∈[0,1]2 α(x, y)
and α = sup(x,y)∈[0,1]2 α(x, y). We assume

(i) α ∈ BV ([0, 1]2).

(ii) sup
u∈[0,1]

TV α(u, ·) <∞ and sup
v∈[0,1]

TV α(·, v) <∞

(iii) 0 < α ≤ α <∞.

Assumption 2. The variance function h is defined on [0,∞) and take values in the same domain. We
denote h = infu∈[α,α] h(u) and h = supu∈[α,α] h(u). We assume

(i) 0 < h ≤ h <∞.

(ii) h is non decreasing

(iii) h is Lipschitz continuous of order 1 on [α, α] with constant L

(iv) There exist δ, δ, Lδ > 0 such that hδ is Holder continuous with exponent δ and constant Lδ.
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Assumption 3. There exists some K > 0 such that for any ` ≥ 0 and all t

E[|εt1,t2 |`] ≤ (`!)1+γK`−2h[α(t1/n1, t2/n2)] .

Assumption 1.(i) and Assumption 1.(ii) describe the smoothness of α. Note that BV spaces and
Besov spaces are related through embedding theorems and motivates the use of wavelet thresholding (cf.
Chap2). Assumption 1.(iii) are natural conditions for a large class of variance functions depending on
α. Assumption 2.(i) and Assumption 2.(ii) are also natural for any variance function while Assump-
tion 2.(iii) and Assumption 2.(iv) are easily verifiable for many distributions of interest having a variance
function h. In particular, Poisson distribution for which h(u) = u, or more generally, distributions for which
h(u) = uγ with γ > 0. Assumption 3 allows the use of the wavelet paradigm in non-Gaussian settings. It
can be seen as an asymptotic Gaussianity assumption.

Before establishing the theoretical results, we give an overview of the Hyperbolic wavelet-Fisz program
for non-parametric estimation under model (7.1).

7.3 Overview of the program

We start by reformulating the model described by equation (7.1) in the wavelet domain by projecting the
equation on hyperbolic wavelet basis of L2([0, 1]2) generated, here again, from a system (ψ, φ) . This yields
to

µ̃j,k = µj,k + εj,k , (7.3)

with j = (j1, j2),k = (k1, k2), j1 = 0, · · · , J1 − 1, j2 = 0, · · · , J2 − 1, k1 = 1, · · · , 2J1 , k2 = 1, · · · , 2J2 where
J1 = log2(n1), J2 = log2(n2). The εj,k are then independent random variables and we want to recover µj,k
from µ̃j,k.

As usual, we separate the paving induced by the couple (j,k) into two regions in order to calibrate the
scale. We fix2 ε ∈ (0, 1), set J = J1 + J2 and define J∗ such that J∗ = (1− ε)J . We then define

I∆ = {(j1, j2, k1, k2), 2j1+j2 ≤ 2J
∗} .

Only coefficients corresponding to I∆ are maintained for the synthesis. We perform a thresholding
operation on the reminding coefficients, following the classical universal threshold of Donoho and Johnstone
[1994] conceived for the case when the errors (εt1,t2) have a Gaussian distribution

λuniv = {2Var(εj,k) log(Card(I∆))}1/2

This threshold does not depend on the couple (j,k). For our case, the noise is non-Gaussian. It does,
however, have an asymptotic Gaussianity property given by Assumption 3. Moreover, we have (by inde-
pendence)

Var(εj,k) = Var

 ∑
t=(t1,t2)

ψj,k−tεt

 =
∑

t=(t1,t2)

ψ2
j,k−th{α(t1/n1, t2/n2)}.

Computing this variance requires pre-estimating the unknown α in the supports of the wavelet basis
elements. This can simply be a local means estimate κj,k for all (j,k). Thus

α̂(t1/n1, t2/n2) =
∑

q=(q1,q2)

κj,k−qXq

The properties that κj,k should verify will be stated in the next section. We can now derive an adaptive
threshold depending on the scale and position

2The choice of this parameter depends on the regularity of α and will be clearer from the results of the next section.
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λj,k = h1/2

 ∑
q=(q1,q2)

κj,k−qXq

× {2 log Card(I∆)}1/2 . (7.4)

for all (j,k) ∈ I∆, coefficients µ̂j,k ’s that are smaller than λj,k are set to zero3. the function reconstructed
from the sequence µ̂j,k is the estimator α̃ of α.

7.4 Mean-square convergence rate

First, we state the assumptions on the constants κj,k.

Assumption 4. The constant κj,k ≥ 0 are such that∑
k

κj,k = 1 ,

∑
k

κ2
j,k ≤ C2j1−J12j2−J2 ,

max
k

κj,k = O(2j1−J12j2−J2) ,

and
suppκj,· = suppψj,· .

for all (j,k) ∈ I∆

The set of these constants at a fixed scale κj,. can be seen as local filter. This is of very practical interest
as we will see in the subsequent chapter. In fact, a filter which verifies these assumptions is simply given by
the scaling operation.

Definition 7.4.1. Let p ≥ 1 and s1, s1 > 1/p. We define the Besov ball

bs1,s2p,p (C) = {ν = (νj,k)j,k,
∑

j1,j2≥0

2p(j1σ1+j2σ2)‖νj,k‖`p}

where νj,k = n
−1/2
1 n

−1/2
2 µj,k, with σ1 = s1 +1/2−1/p, σ2 = s2 +1/2−1/p and ‖νj,k‖`p =

(∑
k1,k2
|νj,k|p

)1/p
.

The function α is said to belong to F (s1,s2)
p if and only if νj,k = n

−1/2
1 n

−1/2
2 µj,k belongs to bs1,s2p,p (C). We

can now give the main result of this chapter which is the following mean-square rate of convergence.

Theorem 7.4.1. Set θ(s1, s2) = 2s1s2/(2s1s2 + s1 + s2). Let α ∈ F (s1,s2)
p and assume that Assumptions 1–4

hold and the functions φ and ψ have at least m vanishing moments. Then

sup
α∈F(s1,s2)

p

E[‖α̃− α‖22] = O((log(n1n2)/(n1n2))2θ(s1,s2))

Remark 3. The rate of convergence given in Theorem 7.4.1 is the best possible over F (s1,s2)
p .

3Or by soft-thresholding
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7.5 Data-driven extension

In some real applications such as ultrasound imaging, the function h is either completely or partially unknown.
Fryzlewicz and Delouille [2005] developed extensions of the wavelet-Fisz algorithm which adapt to models
with unknown variance. This was applied, for instance, to the variance stabilization and normalization of
one-color microarray data Motakis et al. [2006]4. Fryzlewicz [2008] has put this in a theorotical persepective
by showing that it is possible to conserve an optimal rate of convergence even when h is unknown. We give
here our version for the two-dimensional case without prooving its optimality. We expect, however, that as
in the one-dimensional case, one should be able to obtain again the rate given in Theroem 7.4.1.

Before estimating h, we need, again, a preliminary estimation of α(t1/n1, t2/n2). To address this problem,
any filter of low computational cost can be used on the noisy image to obtain a pre-estimation ū. We can
for example apply a simple mean filter of size M1 ×M2 to the data

α̂t1,t2 =
1

(2M1 + 1)(2M2 + 1)

t1+M1∑
p1=t1−M1

t2+M2∑
p2=t2−M2

Xp1,p2 . (7.5)

An estimation of the noise component η is then given by the empirical residuals

ε̂t1,t2 = Xt1,t2 − α̂t1,t2

To estimate the variance, a kernel smoothing technique is applied to the highly oscillating squared
residuals ε̂2

t1,t2 . For any vector w with values belonging to [h, h], the variance estimator predict the value of
h on w. First we define

Wnt(w) =
1

n1n2b
K

(
α(t1/n1, t2/n2)− w

b

)
with b the bandwidth of the kernel K. We also define

Ŵnt(w) =
1

n1n2b
K

(
α̂(t1/n1, t2/n2)− w

b

)
The variance estimator is given by

ĥ(w) =

∑
t1,t2

Ŵnt(w)ε̂2
t1,t2∑

t1,t2
Ŵnt(w)

.

Thus, the counterpart of the threshold (7.4) is given by

λj,k = ĥ1/2

 ∑
q=(q1,q2)

κj,k−qXq

× {2 log Card(I∆)}1/2 . (7.6)

The Kernel smoothing step is obviously the exact same as the one from the dimensional case studied
by Fryzlewicz and Delouille [2005] and Fryzlewicz [2008]. Actually, this step depends only on h which is, in
both cases, a function of [0, 1] with values in R+. The theoretical and empirical statements of this chapter
are tested in practice in Chap. We give there further details on the implementation of the Hyperbolic
Fisz wavelet program and its data-driven counterpart. We also discuss the performances of the hyperbolic
construction compared to the Gaussian noise settings.

4An R software package (DDHFm) for this routine is available on the web: https://cran.r-project.org/web/packages/
DDHFm/index.html
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7.6 Appendix

7.6.1 Proof of Theorem 7.4.1

Set σj,k = V ar(εj,k) =
∑

t ψ
2
k−th[α(t1/n1, t2/n2)] and T = 2J1+J2 . Let τ > 0. Recall that

IT (τ) = {(j1, j2, k1, k2), 2j1+j2 ≤ T 1−τ} .

Define
I0
T (τ) = {(j1, j2, k1, k2) ∈ IT , (j1, j2) 6= (−1,−1)}

We first recall the result for non–random threshold.

Theorem 7.6.1. Set

γ(s1, s2, p) =
2s1s2 + s1 + s2 − 2(s1 + s2)/p̃

s1 + s2
,

with p̃ = min(p, 2). Let τ > 0 s.t.
(1− τ)γ(s1, s2, p) ≥ θ(s1, s2) .

Assume that we are given non–random thresholds s.t. for γT → 1 and some C > 0

γTσI

√
2 log(#I0

T (τ)) ≤ λI,T ≤ C
√

log(T )

for any I ∈ I∗T , s.t. I∗T ⊂ I0
T (τ) and #(I0

T (τ) \ I∗T ) = O(T 1−θ(s1,s2)) and that Assumptions 1,3 and 4 hold.
Then

sup
α∈Fs1,s2p

E[‖α̃− α‖22] = O((log(T )/T )θ(s1,s2))

Remark 4. Since #(I0
T (τ) \ I(LL)) ∼ (J1 + J2)2J1−J

∗
1 +J2−J∗2 , if we set J∗1 = (1− τ)J1 and J∗2 = (1− τ)J2,

the condition #(I0
T (τ) \ I∗T ) = O(T 1−θ(s1,s2)) is satisfied if 1− τ > θ(s1, s2).

Remark 5. This Theorem is the bidimensional counterpart of Theorem 4 of Fryzlewicz [2008]. The quantity
2s/(2s+ 1) is replaced by θ(s1, s2).

Proof. This is Theorem 3.2 of Neumann and Von Sachs [1997].

We now consider the case of random threshold. We are given I∗T ⊂ I0
T such that #(I0

T \ I∗T ) =
O(T 1−θ(s1,s2)). We then consider random thresholds λI,T with I ∈ I∗T . We set

λI = γTh
1/2

 ∑
q=(q1,q2)

κj,k−qα

(
q1

n1
,
q2

n2

)(2 log(#I0
T )
)1/2 and λI = C

√
log(T ) ,

Observe that we have the following lemma

Lemma 7.6.2. Assume that C ≥ (2h)1/2 then for any j,k, supj,k λj,k ≤ λj,k.

We now make the two following assumptions :∑
I∈I∗T

P(λI,T < λI) = O(T−ν) with ν > θ(s1, s2) . (7.7)

∑
I∈I∗T

P(λI,T > λI) = O(T−θ(s1,s2)) . (7.8)
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Theorem 7.6.3. Let τ > 0 s.t. (1− τ)γ(s1, s2, p) ≥ θ(s1, s2). Assume that Assumptions 1,3 and 4 hold and
that we are given random threshold (λI,T )I satisfying (7.7) and (7.8). In addition assume that

0 < τ <
ν − θ(s1, s2)

ν + 1
.

Then
sup

α∈F(s1,s2)
p

E[‖α̃− α‖22] = O((log(T )/T )θ(s1,s2))

Proof. We extend Theorem 6.1 of Neumann [1996]. Observe that

(δ(µ̃I , λI,T )− µI)2 ≤


(µ̃I − µI)2 + (δ(µ̃I , λI)− µI)2 if λI,T < λI
(δ(µ̃I , λI)− µI)2 + (δ(µ̃I , λI)− µI)2 if λI < λI,T < λI
(δ(µ̃I , λI)− µI)2 + (µI)

2 if λI,T > λI

One now uses that

sup
α∈F(s1,s2)

p

E[‖α̃− α‖22] ≤ sup
α∈F(s1,s2)

p

E[1λI,T<λI‖α̃− α‖
2
2] + sup

α∈F(s1,s2)
p

E[1λI<λI,T<λI
‖α̃− α‖22]

+ sup
α∈F(s1,s2)

p

E[1λI,T>λI‖α̃− α‖
2
2]

The term sup
α∈F(s1,s2)

p
E[1λI<λI<λI

‖α̃− α‖22] is bounded thanks to Theorem 7.6.1. To bound

sup
α∈F(m1,m2)

E[1λI<λI‖α̃− α‖
2
2],

we see that

E[1λI,T<λI‖α̃− α‖
2
2] ≤

∑
I

E[1λI,T<λI (µ̃I − µI)
2] +

∑
I

E[(δ(µ̃I , λI)− µI)2]

By Theorem 7.6.1, the sum
∑

I E[(δ(µ̃I , λI) − µI)2] is bounded. To bound
∑

I E[1λI<λI (µ̃I − µI)
2] we use

Hölder inequality with p = 1/τ , we get that

E[1λI<λI (µ̃I − µI)
2] ≤ E[1λI<λI ]

1−τE[(µ̃I − µI)2/τ ]τ = P[λI < λI ]
1−δE[(µ̃I − µI)2/τ ]τ

Since by Assumption 3, E[(µ̃I − µI)2/τ ] = E[|εI |2/τ ] is uniformly bounded, one has∑
I

E[1λI<λI (µ̃I − µI)
2] ≤ C

∑
I

(
P[λI < λI ]

1−τ)
≤ C

(∑
I

P[λI < λI ]

)1−τ

(#IT )τ

≤ T−ν1(1−τ)+τ

If −ν(1 − τ) + τ < −θ(s1, s2), that is 0 < τ < (ν − θ(s1, s2))/(ν + 1), one has T−ν(1−τ)+τ = o
(
T−θ(s1,s2)

)
and the sum

∑
I E[1λI<λI (µ̃I − µI)

2] is negligible.
We now bound sup

α∈F(s1,s2)
p

E[1λI,T>λI‖α̃− α‖
2
2]. Observe that

E[1λI,T>λI‖α̃− α‖
2
2] ≤

∑
I

E[1λI,T>λI (µI)
2] +

∑
I

E[(δ(µ̃I , λI)− µI)2]

By Theorem 7.6.1, the sum
∑

I E[(δ(µ̃I , λI)− µI)2] is bounded. In addition∑
I

E[1λI,T>λI (µI)
2] ≤

∑
I

(µI)
2P[λI,T > λI ] ≤ T−θ(s1,s2)[

∑
I

µ2
I ]

the last inequality coming from Assumption (7.8).
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To finish we check that our Fisz threshold satisfy the conditions above and use the following proposition
(which is similar to Lemma 2 of Fryzlewicz [2008]). To do so we first prove the following large deviation
result

Lemma 7.6.4. Assume that the constants κj,τ satisfy Assumption 5. Suppose Assumptions 2 and 3 hold.
Then for n1, n2 sufficiently large, any ν > 0 and any (j1, j2) ∈ IT (τ)

P

(∣∣∣∣∣∑
q

κj,k−q[Xq − α(q1/n1, q2/n2)]

∣∣∣∣∣ > δ

)
≤ δν(n1n2)−ν

Proof. For any j = (j1, j2), k = (k1, k2) and q = (q1, q2) set

Zj,k,q =
κj,k−q

[
Xq − α

(
q1
n1
, q2n2

)]
(∑

q κ
2
j,k−qE

[
ε2
q

])1/2

Observe that for (j,k) fixed the random variables Zj,k,q are independent, centered and satisfy

sup
q

E exp(|Zj,k,q|p) <∞

for any p < 1/(1 + γ). Observe that this supremum only depends on the constants K,Λ, h involved in
Assumption 3.

By Assumption 5 and Assumption 2 which implies that h is bounded from above, for any j,k, one has∑
q κ

2
j,k−qE

[
ε2
q

]
= O(2j1−J1+j2−J2). Hence by Theorem 7.6.6 recalled in Appendix applied to Zj,k,q and

y = δ/
(∑

q κ
2
j,k−qE

[
ε2
q

])1/2
, n = 2j1+j2 , we obtain that

P

(∣∣∣∣∣∑
q

κj,k−q[Xq − α(q1/n1, q2/n2)]

∣∣∣∣∣ > δ

)

= P

∣∣∣∣∣∑
q

Zj,k,q

∣∣∣∣∣ > δ/

(∑
q

κ2
j,k−qE

[
ε2
q

])1/2


≤ exp(−c1δ
2 · 22(J1+J2)−j1−j2) + 2j1+j2 exp(−c2δ

p2p(J1+J2−j1−j2))

Since J1, J2 →∞ and (j1, j2) ∈ IT (τ), one easily deduces that for J1, J2 sufficiently large and for any ν > 0
one has

P

(∣∣∣∣∣∑
q

κj,k−q[Xq − α(q1/n1, q2/n2)]

∣∣∣∣∣ > δ

)
≤ δν2−ν(J1+J2−j1−j2)

Proposition 7.6.5. Assume that Assumptions 2,3 and 5 hold. Then, for some well–chosen sequence γT → 1
from below, the two inequalities (7.7) and (7.8) both hold for any ν > 0.

Proof. Set
Ŷj,k =

∑
q

κj,k−qXq, Yj,k =
∑
q

κj,k−qα(q1/n1, q2/n2),

and define CT = (2 log #I0
T )1/2/(2 log #IT )1/2 → 1− when T →∞. One then has

P(λI,T < λI) = P(h1/2(Ŷj,k) < CTγTh
1/2(Yj,k))

= P(hδ̃(Ŷj,k) < [CTγT ]2δ̃hδ̃(Yj,k))
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We now use the fact that hδ̃ is δ–Hölder with constant H̃. We then deduce that

P(λI,T < λI) = P(h1/2(Ŷj,k) < CTγTh
1/2(Yj,k))

≤ P(|Ŷj,k − Yj,k| > νT )

with
ΛT = [1− CTγT ]2δ̃/δH̃−1/δhδ̃/δ

To conclude use Lemma 7.6.4. One then deduces that

P(λI,T < λI) ≤ Λ−νT 2−ν(J1−j1+J2−j2)

provided that ΛT tends logarithmically to 0. We then get inequality (7.7). The proof of inequality (7.8) is
similar.

7.6.2 The Bernstein inequality in the independent case for sub–exponential random
variables

We recall know some known results concerning the Bernstein–type inequalities. Let us consider a sequence
X1, X2, · · · of centered real valued random variables defined on a probability space (Ω,A,P), and set Sn =
X1 + X2 + · · · + Xn. The classical Bernstein inequality for independent random variables is given by the
following

Theorem 7.6.6. Suppose that the random variables X1, X2, · · · are independent, centered and satisfy

E|Xi|` ≤ `!σ2
iK

`−2/2 for all ` ≥ 2 . (7.9)

Set Σ2
n = σ2

1 + · · ·+ σ2
n and Sn =

∑n
i=1Xi. Then

P[Sn >
√

2Σ2
nx+Kx] ≤ exp(−x) . (7.10)
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CHAPTER 8
Application to Ultrasound Image denoising

Abstract

We use the techniques presented in chapter 7 to develop an algorithm and
its fully data-driven extension for noise reduction in ultrasound imaging. The
use of hyperbolic wavelets enables to recover the image while respecting the
anisotropic nature of structural details. Experiments on synthetic and real
data demonstrate the potential of the proposed algorithm at recovering ultra-
sound images while preserving tissue details. Furthermore, for this particular
wavelet denoising strategy, we show that the results obtained by the hyperbolic
construction confirm the theoretical claims. Comparisons with other noise re-
duction methods show that our method is competitive with the state-of-the art
OBNLM filter. Finally, we emphasize the noise model we consider by applying
our variance estimation procedure on real images.

8.1 Introduction

ULTRASOUND (US) imaging has been a well-established diagnostic tool in various medical applications for
many years. This technology remains one of the least expensive and safest among medical imaging modalities.
Nevertheless, the examination and the interpretation of ultrasound images is particularly challenging. This
is mainly due to the presence of a particular type of noise called “speckle", which can also be found in
similar imaging systems such as Synthetic-Aperture-Radar (SAR) and laser imaging. In ultrasound imaging,
acquired signals are adjusted, inside the scanner, prior to display, by a non-linear processing transformation
called log-compression (cf. Kaplan and Ma [1994]). This process aims at enhancing backscatterers in order
to facilitate visual understanding. In this chapter, we develop a novel methodology to recover ultrasonic
images using a relevant signal-dependent noise model(cf. Loupas et al. [1989]) that takes into account the
modification of noise characteristics due to the log-compression. Adaptations of non-local and variational
techniques to this model have already been described in the literature respectively by Coupé et al. [2009]
then Jin and Yang [2011].

Although these methods lead to good results in terms of signal-to-noise ratio, they still produce displeasing
visual quality, mostly characterized by attenuated sharp edges. In this chapter we present a different strategy
which belongs to the wavelet denoising approaches ( Donoho and Johnstone [1994]). As in the majority
of denoising approaches, the wavelet denoising paradigm relies on the constraining assumption that the
noise is additive white Gaussian noise (AWGN). To go beyond this case, we adapt a multiscale variance
stabilization technique introduced by Fryzlewicz [2008] in order to make the distribution of wavelet coefficients
asymptotically Gaussian with the same variance. We extend this method to hyperbolic wavelets and show
how variance stabilization can be easily performed using the low frequency outputs from the wavelet transform
at different scales. The motivation behind the use of hyperbolic wavelets is their capacity to provide better
estimators than the standard wavelet-tensor construction whenever images contain anisotropic features (see,
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for example, the works of Neumann [2000], Autin et al. [2015] and Remenyi et al. [2014]). The notion
of anisotropy has been promoted in many works related to ultrasound image denoising (e.g. see Yu and
Acton [2002], Krissian et al. [2007] and Ramos-Llorden et al. [2015]) as it often occurs due to the presence of
features such as skin layers and vessels. Our algorithm consists of the following steps: (1) compute the wavelet
transform of the image, (2) estimate local means by the approximation coefficients of the wavelet transform
at each scale, (3) evaluate the variance function for each local mean component. (4) compute the Fisz-
transformation of the wavelet coefficients: each coefficient is divided by the estimated local variance in order
to stabilize them. (5) hard thresholding: keep the coefficients obtained in step (1) which Fisz-transformed
versions have magnitudes larger than a given.

Finally, we show how our approach can be performed in a blind mode, that is, without any prior knowledge
of the noise variance. This involves the use of a mean filter for a pre-estimation of the image. The variance
function is then estimated using a Nadaraya-Watson estimator.

To validate our methods we present numerical experiments based on synthetic and real data, and a
comparative study with the state of the art non-local and variational algorithms. We demonstrate that
our data-driven approach performs nearly as well as in situations in which the noise variance is known.
Moreover, the measured variance on real ultrasound images confirms the relevance of the noise model we are
considering.

The rest of the chapter is organized as follows. A brief overview of different US noise models and
dedicated denoising techniques is presented in Section 8.2. In section 8.3, we describe the novel wavelet based
algorithm [Farouj et al., 2016] based on the previous chapter. Finally, we provide extensive experimental
results and comparisons in Section 8.4.

8.2 Image formation and Related Work

Medical US imaging consists in sending a collection of ultrasound waves from a probe (an array of transducers)
inside the body. These waves propagate through different tissues, and get reflected back by the scatterers
to the transducers. The echoes are converted back into electrical impulses, and then beam-formed, to give
the so-called Radio-Frequency (RF) signals. These signals are then analyzed in order to retrieve the depth
and the strength of the echos and thus forming the US image from the amplitudes and the locations of the
scatterers. Before display, the RF signals are post-processed. The high frequency carrier is suppressed via
a demodulation step (envelope detection). The dynamic range of the obtained signals is, however, too large
for the human visual perception. In order to overcome this issue, a process called logarithmic compression
is used to enhance backscatterers.

US speckle noise results from the coherent accumulation of individual scattered beams from tissue in-
homogeneities. It can be shown that the sum of contributions of these scatterers within a resolution cell
is normally distributed (cf. Goodman [1975]). Novel techniques emerging in the general image processing
community have been continuously adapted to deal with US speckle noise removal. Hereafter, we propose
an overview of the main models and techniques we are concerned with.

8.2.1 Multiplicative Noise

An important challenge in developing novel methods for denoising ultrasound images is to find an adequate
noise model. One can derive a natural noise model from the knowledge of the statistics of the echo signals. It
can be shown that after the demodulation step, the distribution of the magnitude image is no longer Gaussian
but rather a Rayleigh distribution [Wagner et al., 1983]. This understanding gave rise to multiplicative noise
models similar to those used in SAR imaging. Many filters have been proposed for such a model, including
the seminal works by Lee [1980], et al. Frost et al. [1982] and Kuan et al. [1985]. Anisotropic diffusion filters
of Perona and Malik [1990] have also been successful in US imaging. These include adaptations to account
for speckle noise statistics as in the Speckle Reducing Anisotropic Diffusion (SRAD) proposed by Yu and
Acton [2002] and its oriented version (OSRAD) of Krissian et al. [2007], and more recently, memory-driven
filters of Ramos-Llorden et al. [2015].
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8.2.2 Additive Noise

Multiplicative noise models do not take into consideration the logarithmic compression leading to the final
US images visualized on scanners. A simple solution is to assume that the signal and the noise are totally
distinct. Thus the logarithmic compression step transforms the multiplicative noise into an additive signal-
independent model

v = u+ ε, (8.1)

where v is the observation, u is the unknown image and ε is a random noise component. Wavelet based
methods have been considered to deal with such a model depending on the nature of ε. For example, Zong
et al. [1998] assumed that ε is a zero-mean Gaussian white noise which leads to AWGN models that are
perfectly suited for the classical wavelet thresholding approaches [Donoho and Johnstone, 1994]. Achim et al.
[2001] showed that under model (8.1), the wavelet coefficients of the noise component ε, after logarith-
mic transformations, have non-Gaussian statistics which can be described by some alpha-stable distribu-
tions [Samorodnitsky and Taqqu, 1994] and customized the wavelet thresholding for such a situation.

8.2.3 Hybrid Noise

The main drawback of model (8.1) is that it does not take into account the assumption that the noise
level is proportional to the underlying image intensity. This assumption is widely used and accepted in
Echography. For example, it is the key idea behind motion estimation via speckle tracking [Suhling et al.,
2005]. It turns out that the logarithmic compression makes the statistics of ultrasound images deviate from
the Rayleigh distribution Tuthill et al. [1988]. For instance, a Fisher-Tippett distribution was used in the
work of Slabaugh et al. [2006] to distinguish between tissues in segmentation tasks. A relevant model for
ultrasound noise suppression was presented in [Loupas et al., 1989] and assumes that the variance of the
noise component is no longer constant but respects the following equation

v = u+ uγε, (8.2)

where ε is a zero-mean Gaussian white noise ε ∼ N (0, σ2), with σ ∈ (0,∞), and γ > 0. Model (8.2)
seems to be more appropriate as it preserves the signal dependency and has shown been to be effective for
speckle modelling [Loupas et al., 1989], as well as motion estimation in US image sequences [Tenbrinck et al.,
2013]. This model has the advantage of being general and flexible. Thus, the parameter γ can be adapted to
catch the image statistics depending on the post-processing inside the scanner. In this chapter, we develop
an appropriate wavelet thresholding method assuming that model (8.2) holds true. Adaptations of two other
classical paradigms in denoising, beside wavelet methods, have been studied for model (8.2) [Coupé et al.,
2009, Jin and Yang, 2011]. We recall these paradigms:

Nonlocal methods. The non local point of view was initially developed by Buades et al. [2005] leading
to the famous N-L means filter. It can be seen as a type of smart average filtering that uses the fact that
similar pixels are not necessarily neighbours. Given two pixels, the similarity measure is the Euclidean
distance between patches within their respective neighbourhoods. Note that the Euclidean distance is more
appropriate in white noise cases [Buades et al., 2005]. In the case of the noise model (8.2), Coupé et al. [2009]
presented the OBNLM algorithm in which the Pearson distance is used along with an optimized version of
the N-L means filter.

Variational methods. The variational approach relies on the minimization of a functional involving a data-
fidelity term and a regularity assumption. A common assumption is that images belong to BV (Bounded
Variation) spaces, and so Total Variation (TV) is often used for the regularization term [Rudin et al., 1992].
For AWGN models, the fidelity term is simply given as the Euclidean distance between the unknown image
and the corrupted one. Adaptations to model (8.2) consists in dividing the fidelity term by the unknown
image to the power γ, which is also the standard deviation of the noise. The reader is referred to papers by
Rudin et al. [2003] and by Jin for the case γ = 1 and Jin and Yang [2011] for the case γ = 0.5. However,
the functional cannot be minimized via simple primal dual algorithms [Condat, 2014] as in the AWGN case,
a gradient descent is required.
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Variance stabilization methods in the image processing literature focuses mainly on Poisson or Poisson-
Gaussian noise models, arising in fluorescence microscopy. The Anscombe transform is often used for such
a task (see, for example, the works of Makitalo and Foi [2011], Mäkitalo and Foi [2014] and Boulanger
et al. [2010]). Zhang et al. [2007] used a multiscale procedure to tackle this problem relying also on a
local normalization of wavelet coefficients. To the best of our knowledge, variance stabilization for the noise
model (8.2) has never been considered beyond the one-dimensional case. In the following section we propose a
technique to adapt the wavelet-based methods to such model. Moreover, we present a data-driven algorithm
which solves the problem without prior knowledge of the parameters σ and γ of model (8.2).

8.3 Method

Hyperbolic wavelet bases are unconditional bases for functions in L2([0, 1]2). They provide sparse repre-
sentations so that the simple hard thresholding procedure which consists in keeping only coefficients with
magnitude larger than a given threshold; setting the others to zero, provide estimators with very good
theoretical and practical performances [Neumann, 2000, Autin et al., 2015].

Peppers Isotropic Hyperbolic

Figure 8.1: Wavelet decomposition in isotropic and hyperbolic settings

8.3.1 Notations

We begin with the hyperbolic wavelet transform (HWT). The starting point is a one-dimensional function ψ,
called the mother wavelet, to which one can associate dilated and translated versions ψj,k(.) = 2j/2ψ(2j .−k)
with j ≥ 0 and k ≥ 0. In the same manner, a scaling function ϕ is defined, along with its dilated and
translated versions ϕj,k(.) = 2j/2ϕ(2j .− k). Then, the 2D hyperbolic wavelet basis of L2([0, 1]2) is given by

ψj1,j2,k1,k2(x1, x2) = ψj1,k1(x1)ψj2,k2(x2),

ψ0,j2,k1,k2(x1, x2) = ϕ0,k1(x1)ψj2,k2(x2),

ψj1,0,k1,k2(x1, x2) = ψj1,k1(x1)ϕ0,k2(x2),

ψ0,0,k1,k2(x1, x2) = ϕ0,k1(x1)ϕ0,k2(x2),

(8.3)

for all (j1, j2) ∈ N × N and (k1, k2) ∈ Z2. This construction differs from that of the classical two
dimensional Discrete Wavelet Transform (DWT), in the sense that different dilation factors are used in each
dimension. In the case of the standard 2D DWT, only the cases j1 = j2 are allowed; therefore the resulting
atoms are isotropic.

Let us note I = {j = (j1, j2) ∈ N2 and k = (k1, k2) ∈ Z2} The projection of a function f of L2([0, 1]2)
onto the HWT basis gives a set of hyperbolic wavelet coefficients {dj,k}(j,k)∈I where

dj,k(f) = 〈ψj,k, f〉. (8.4)

The set {d0,k}, where 0 = (0, 0), represent the approximation coefficients. In finite discrete settings, a
maximal scale is fixed at J = log2(N) for an image of size N × N . As the HWT can be seen as a tensor
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product of one-dimensional wavelet transforms, the numerical implementation of the HWT can be achieved
by applying two successive 1D DWT on each of the two dimensions. Figure 8.1 highlights the difference of
the scale-space tilling in the standard and hyperbolic settings. This image will be used in the sequel.

8.3.2 Wavelet denoising

When the noisy observation v verifies model (8.1), the very simple, but powerful, procedure of wavelet
thresholding mentioned earlier (cf. chapter 2 )can be used. In the wavelet domain, the additive model (8.1)
reads

dj,k(v) = dj,k(u) + dj,k(ε), (8.5)

with (j, k) ∈ I. The hard thresholding estimator ûσ is given by

ûσ =
∑

(j,k)∈Iσ

dj,k(v)ψj,k, (8.6)

where Iσ = {(j, k) ∈ I, such that |dj,k(v)| > t(σ)} and t(σ) is the threshold parameter. Moreover, one
of the distinctive features of this procedure is the existence of a universal threshold given by

t(σ) =
(

2 log(Card(I))Var(dj,k(ε))
)1/2

,

= σ
(

2 log(N2)
)1/2

.

(8.7)

In image restoration, we often model the unknown image as an element of anisotropic function spaces,i.e,
the regularity parameters are allowed to be different along the different dimensions. This notion of anisotropy
is at the heart of multivariate function estimation [Neumann, 2000]. Hyperbolic wavelets are well suited to
such situations [Roux et al., 2013]. It has recently been shown by Remenyi et al. [2014], that mixing
scales when constructing wavelets, as in (8.3), makes thresholding techniques comparable to state-of-the art
denoising algorithms. The choice of the threshold (8.7) is crucial and relies on the fact that the wavelet
coefficients are Gaussian and independent. In the next section we show how, in the case of the ultrasound
noise model (8.2), this obstacle can be overcome via a wavelet-based variance stabilization technique of
chapter 7.

8.3.3 The Proposed Wavelet-Fisz (WF) approach

In (8.2), the noise component is of the form

η = uγε, (8.8)

thus, its variance depends on the unknown image. In order to obtain an adaptive image-dependent
threshold we apply the procedure given in chapter 7.

Lemma 8.3.1. Let {ψj,k}(j,k)∈I be a normalized wavelet basis, that is such that ‖ψ‖22 = 1. Let uj,k denote
the restriction of u to the support of the function ψj,k. Assume that, we are given for each (j, k) ∈ I, a
constant function ūj,k, converging to uj,k, as j1, j2 →∞. Then we have

(dj,k(η)

ūγj,k

)
j,k

d−→ N (0, σ), as j1, j2 →∞ . (8.9)

Since the noise is assumed to be a centered Gaussian random variable, the vector
(
dj,k(η)

ūγj,k

)
j,k

is normal

with zero mean. In Appendix 8.6, we derive the asymptotic variance when j1, j2 → ∞ given in (8.9). Con-
vergence and optimality results were given in the previous chapter. The idea of applying the Gaussianizing
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routine to wavelets coefficients was first introduced for Poisson intensity estimation by Fryzlewicz and Nason
[2004], following a general framework introduced by Fisz [1955]. It was later extended to Poisson intensity
estimation in images by Fadili et al. [2003]. An approximation ūj,k of the unknown image u needs to be
computed in the support of the function ψj,k. A key point here is our use of the low frequency outputs
of the wavelet transform at each scale as local means pre-estimations. These outputs are given by scaling
coefficients:

cj,k(f) = 〈ϕj,k, f〉, (8.10)

where
ϕj1,j2,k1,k2(x1, x2) = ϕj1,k1(x1)ϕj2,k2(x2). (8.11)

The support of the function ϕj,k decreases as the value |j| = j1 + j2 increases. As a consequence of the
law of large numbers, the local means approximation (8.10) becomes less accurate. This issue has limited
consequences since, following Fryzlewicz [2008], we consider only the coarsest scales up to a certain level
|j| ≤ Jmax. Not much information is lost since the finest scales consist of high-frequency components which
are essentially noise. Using the lemma 8.3.1, we can now define a new set for the construction of the nonlinear
estimator (8.6) given by

Ĩσ = {(j, k) ∈ I, s.t |j| ≤ Jmax;
|dj,k(v)|
σ cj,k(v)γ

> t(1)}. (8.12)

(a) (b)

Figure 8.2: Outputs of the hyperbolic NDWT of the “Peppers" image: (a) The set of wavelet coefficients
{dj,k}j,k and (b) the set of approximation coefficients {cj,k}j,k

Implementation: The presented WF technique can be performed using the non-decimated wavelets trans-
form (NDWT) introduced in [Coifman and Donoho, 1995]. The wavelets coefficients magnitudes (8.4) and
the approximation coefficients (8.10) for the NDWT are presented in Figure 8.2. It has been shown that the
denoising methods based on NDWT outperforms those based on traditional (decimated) wavelets in terms of
mean-squared error (MSE) and signal-to-noise ratio (SNR) [Nason and Silverman, 1995]. This is mainly due
to its translation invariance. However, the non-decimated wavelet coefficients are, in general, correlated even
if the noise is uncorrelated. The choice of relevant wavelet coefficients becomes a correlated multiple hypoth-
esis testing problem. Thus, the choice of the threshold (8.7) can lead to non-optimal results. In practice, one
can consider the non-decimated wavelet coefficients as separate packets of uncorrelated coefficients [Nason,
2010]. The universal threshold can then be applied to each packet. The pseudo code for the routine is given
in Algorithm 4.

The key step in this algorithm is the stabilization technique leading to the set (sj,k)(j,k)∈I . Figure 8.3
shows how the wavelet coefficients are stabilized after the WF procedure (with σ = 2 and γ = 0.5). We
rescaled the wavelet coefficients magnitudes between 0 and 1 and we fit a normal distribution. The Liver
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Algorithm 4 WF algorithm
Input: f, σ, γ, Jmax
Output: Estimate ũ
1: [dj,k, cj,k]←− NDWT(f)
2: for each couple (j, k) do
3: if |j| > Jmax then dj,k = 0
4: else
5: pj,k = σ × (cj,k)

γ

6: sj,k = |dj,k|/pj,k
7: if sj,k < t(1) then dj,k = 0
8: end if
9: end if

10: end for
11: ũ = INDWT(dj,k)

image represents a section of a human liver along with the portal vein. The diagonal details of the wavelet
transform at the first thresholding scale are examined. At fine scales, the wavelet transformation retrieves,
mainly, the noise component. We can clearly see that the distribution of the wavelet coefficients deviates
from the Gaussian distribution. This phenomenon can be explained by model (8.2) as the noise is perturbed
by the image statistics. In fact, it was observed that the statistics of the wavelet coefficients of an image
are more likely to follow distributions with heavier tails than a Gaussian one, such as Exponential and
Laplacian distributions [Mallat, 1999, Jaffard, 2004]. Note that the non-Gaussianity of the wavelet coefficients
distribution in US images was first observed by Achim et al. [2001]. In this latter work, the authors assumed
that the noise has an alpha-stable distribution.

8.3.4 Fully data-driven extension

Besides the fact that there is no conventional noise model in ultrasound imaging, different authors may use
different parametrizations for a given noise model. In particular, for our model of interest, different values
for the parameters σ and γ are given in [Coupé et al., 2009, Jin and Yang, 2011] and Rudin et al. [2003].
A point of debate is whether a large value should be used for γ and a small one for σ or vice versa. We
sidestep the problem by estimating the standard deviation of the noise directly from the data. Here, we
follow the work of Fryzlewicz and Delouille [2005] who developed extensions of the wavelet-Fisz algorithm
which adapt to models with unknown variance. This was applied, for instance, to the variance stabilization
and normalization of one-color microarray data by Motakis et al. [2006].

Liver Coefficients distribution

−1 −0.5 0 0.5 1
0

1000

2000

3000

4000

5000

6000

7000

D
en
si
ty

Wavelet Coefficients

Stabilized coefficients distribution

−1 −0.5 0 0.5 1
0

1000

2000

3000

4000

5000

6000

D
en
si
ty

Wavelet Coefficients

Figure 8.3: Wavelet decomposition of US images: Statistics of the diagonal details at the finest scale
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Standard deviation estimation

To address this problem, any filter of low computational cost can be used on the noisy image to obtain
a pre-estimation ū. We applied a simple mean filter of size M to the image. An estimation of the noise
component η is then given by the residual

η̂(ū) = v − ū (8.13)

To estimate the variance, a kernel smoothing technique is applied to the highly oscillating squared
residuals η̂2. For any vector w with values belonging to [min(ū),max(ū)], the variance estimator of w is
given as

h(w) = ̂Var(η(w)) =
〈Ŵb(w), η̂2〉
Ŵb(w)

, (8.14)

where W is defined as

Ŵb(w) =
1

N2b
K
( ū− w

b

)
, (8.15)

with b the bandwidth of the kernel K. This regression technique is called the Nadaraya-Watson esti-
mation. Under the assumption that the variance of the noise is a positive power of the image intensity,
as suggested by model (8.2), it is natural to constrain the estimator of the variance to be non-decreasing.
This can be done using the so-called isotonic regression [Fryzlewicz et al., 2007], which consists in finding
the closest non-decreasing function, in term of least mean square error, using a “pool-adjacent-violators”
algorithm [Mair et al., 2009]. We present an example of such a routine on a corrupted 512 × 512 Peppers
image. Our choice of the image Peppers is motivated by the fact that it has many variations in grey values,
resulting in an interval of intensities well covered by the vector w. The global regularity of the image is the
principle criteria for the choice of the the size M of the average filter. In fact, a compromise must be done;
M should be chosen as the largest possible with respect to the homogeneity of the image. One is obliged to
use small values for M if the image has many discontinuities. We investigated various choices for the size
M of the average filter. We found that a value of M = 12 gives a reliable pre-estimation of the image. In
general we recommend the use of this value for images with a moderate number of discontinuities such as
the Peppers image. Naturally, M depends also on the resolution of the image; this dependence is expected
to be linear. The bandwidth b has less influence on the estimator than M . This is due to the regression
step which corrects remaining oscillations. This was also pointed by Fryzlewicz Fryzlewicz [2008]. A value of
b = 3 was found out to be stable. Through the rest of the chapter, we fix this value and tune only M . The
results of two experiments with different values of γ and σ are given in Figure 8.4. As the image pixel values
range from 0 to 255, we simply choose w to be a uniform discretization of [0, 255]. The results confirm the
reliability of the standard deviation estimator h1/2 in comparison to the ground truth.
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Figure 8.4: Standard deviation estimation from experiments on the “Peppers" image for different values of
σ and γ.
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Blind denoising

We describe the adaptation of the WF algorithm to the fully data-driven methodology. For our noise model,
the standard deviation estimator presented in 8.3.4 gives the following approximation

h1/2(w) ≈ σwγ , (8.16)

hence, we have a similar result to the one given in lemma 8.3.1( dj,k(η)

h1/2(cj,k)

)
j,k

d−→ N (0, 1), (8.17)

In Algorithm 4, the parameters σ and γ appear in the auxiliary step 5 for the computation of the variance
in the supports of the wavelets. In order to have a data-driven version of this algorithm, the knowledge σ
and γ should not be required as inputs. Equation (8.17) suggests to replace step 5 in Algorithm 4 by

pj,k = h1/2(cj,k), (8.18)

8.4 Experiments and Discussion

In this section we present some experiments to evaluate the performance of our WF method. In order to
distinguish the different contributions of our work, we divide this section into two parts. First, we compare
the performance of the WF method for both Isotropic (IWF) and Hyperbolic (HWF) constructions, and
then we show the potential of the data-driven extension.

8.4.1 The WF method

We compare our results to those obtained using two other approaches that considers the noise model given by
(8.2). The OBNLM filter has proven to be very effective in speckle noise reduction and to perform better than
classical filters [Coupé et al., 2009]. The variational approach of Jin and Yang [2011] is an adaptation of the
well-established TV denoising to model (8.2). The criteria used for the comparisons were the classical Peak
Signal to Noise Ratio (PSNR), and the Structural Similarity Index Measure (SSIM) [Wang et al., 2004] which
allowed evaluation of the tissue structure preservation. As the great majority of ultrasound imaging is not
concerned with functional studies, the preservation of morphological information while performing denoising
is normally more important than preserving the true measured pixel intensity. We also show the difference
between the true image and the denoised result of every method. This is known in the literature as themethod
noise [Buades et al., 2005]. One expect to retrieve more noise in areas of high pixel intensities according to
model (8.2). The OBNLM filter is available on the web1. The parameters α and M controlling the number
of blocks and the size of the search window are fixed at 3 and 6 as in the original paper, and the filtering
parameter h was optimized for different levels of noise. The variational algorithm was implemented with the
gradient descent step fixed at 0.2 as suggested by the authors. We use Haar wavelets for the WF method.
The scaling function associated to these wavelets behave like a simple mean filter which gives a reliable set
of approximation coefficients {cj,k}j,k. These wavelets are also efficient at preserving discontinuities. We are
aware, however, that these wavelets do not lead to optimal results in terms of PSNR and its is possible to
improve the results using wavelets from other families such as Daubechies or Coiflets. In all experiments,
the coefficients corresponding to the first finest scale are truncated.

Experiments on synthetic data

Our two experiments were performed by adding synthetic noise to clean images. We fix γ = 0.5, as in the
papers of Coupé et al. [2009] and Jin and Yang [2011]. The first image Blocks aims only at demonstrating
the ability of hyperbolic wavelets to deal with highly anisotropic images. In fact, this image is an additive
model when the regularities in the two space dimensions are distinct. This is a highly anisotropic case where

1https://sites.google.com/site/pierrickcoupe
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Blocks Noisy (σ = 4) OBNLM

Variational IWF HWF

Figure 8.5: Results of various methods applied to the image Blocks. Quantitative evaluation is given in
Table 8.1.

Kidney Noisy (σ = 4) OBNLM

Variational IWF HWF

Figure 8.6: Results of various methods applied to the image Kidney. Quantitative evaluation is given in
Table 8.1.

the hyperbolic setting gives optimal results [Autin et al., 2015]. The second Kidney image is a CT image
taken from FIELD II’s website2. This latter example is challenging to denoise because of the presence of
many gray level variations.

Table 8.1 outlines the performances of the different methods with their optimal parameters calibration.
In the case of the image Blocks, the contribution of the hyperbolic setting is clearly visible in terms of PSNR,

2http://field-ii.dk
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Blocks Kidney
PSNR (dB) SSIM Parameters PSNR (dB) SSIM Parameters

Noisy(σ = 2) 22.83 0.135 – 24.83 0.430 –
OBNLM 35.13 0.917 h=1.5 30.05 0.845 h=1
Variational 37.98 0.972 niter=180 28.72 0.814 niter=160
IWF 35.78 0.958 – 29.04 0.837 –
HWF 49.65 0.993 – 30.24 0.866 –

Noisy(σ = 3) 20.95 0.071 – 22.30 0.272 –
OBNLM 32.86 0.836 h=2 28.71 0.752 h=1
Variational 35.57 0.955 niter=260 27.91 0.799 niter=180
IWF 33.75 0.929 – 27.39 0.791 –
HWF 46.65 0.987 – 28.20 0.822 –

Noisy(σ = 4) 19.31 0.044 – 20.83 0.187 –
OBNLM 31.38 0.739 h=2.5 27.81 0.765 h=2
Variational 34.41 0.946 niter=350 28.03 0.782 niter=210
IWF 32.40 0.909 – 26.63 0.764 –
HWF 43.04 0.973 – 27.31 0.791 –

Table 8.1: Quantitative comparison (PSNR & SSIM), and optimal parameters for different methods applied
to the Blocks and Kidney images with different noise levels.

Original OBNLM Variational IWF HWF

Figure 8.7: The method noise [Buades et al., 2005] of the various approaches applied to the Kidney image
(σ = 3).

Image OBNLM Variational IWF HWF

Figure 8.8: Visual evaluation of various methods applied to the Carotid-Thyroid image.

SSIM and visual quality (e.g. Figure 8.5). The hyperbolic Wavelet-Fisz thresholding gives the best results for
all noise levels. The variational approach also gives good results because the image is a piece-wise constant.
However, it suffers from over-blurring effects around the edges. Artifacts due to the patching process are
clearly visible in the OBNLM filter results. For the image Kidney, our approach fails at outperforming the
OBNLM filter and the variational method in terms of PSNR, but remains competitive. This can be explained
by the different philosophy of wavelet thresholding methods more oriented toward the complete elimination
of the noise rather than the minimizing the MSE [Donoho and Johnstone, 1994]. The OBNLM approach
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gives good results when the noise level is low. Conversely, the variational method was more appreciable
for high noise levels. As can be observed in Figure 8.6, the wavelet approaches efficiently preserved the
structure. Unfortunately, we note the presence of artifacts related to the supports of the wavelet basis. This
is a common inconvenience of wavelet thresholding methods. The method noise presented in Figure 8.7
shows the structure of the suppressed noise for each method. It can be observed that, for all methods,
the removed noise component has higher values in areas of high intensities in coherence with the noise
model (8.2). Moreover, the proposed method gives a good compromise between efficient suppression of the
noise and preservation of structures; in the sense that the different regions are easily distinguishable. A
major advantage of wavelet thresholding is its adaptability; the threshold comes directly from the knowledge
of σ and γ. Tuning the OBNLM filter is less straightforward, as the algorithm parameters are not directly
expressed in terms of the model parameters.

Experiments on real data

We propose to evaluate our algorithm on some samples from real US imaging. Unfortunately, the blind
extension of the SSIM presented by Kong et al. [2013] was not suitable here as the noise is signal-dependent.
Therefore comparisons and parameters tuning were entirely based on the visual quality of the resulting image.
We applied the different set of parameters in Table 8.1 and choose those giving the best results. The first
test concerns the Carotid-Thyroid image. In this image shows a human carotid artery. Speckle can be seen
on the left due to blood flow, while the thyroid gland is visible on the right. Denoising such images may be a
pre-processing step in segmentation of the thyroid gland. An enhanced image also eases the tracking of the
carotid artery wall in dynamic imaging. The second test concerns Cranial US. This technique is mostly used
for babies, before the cranial bones have closed, as US waves cannot pass through the skull. An example of
its use is obtaining information on complications in premature birth.

Figure 8.8 shows results obtained using the different algorithms applied to the Carotid-Thyroid image.
The results obtained using the variational method are clearly over-blurred; this is due to the piece-wise
constancy constraint of total variation. The OBNLM filter achieved good results , although, there was some
visible partitioning in the image. The proposed method gives results with well-defined structures thanks the
local treatment of the wavelets paradigm. Moreover, in the hyperbolic case, one can see that the horizontal
structures are nicely recovered. The main artifact with the proposed method is the occurrence of wavelet
basis atoms in the final image. Figure 8.9 reveals how these artifacts can be drastically reduced when the
hyperbolic wavelet is used. In the image obtained using the IWF procedure, small regions representing the
supports of the Haar basis can be seen. These are similar to the artifacts related to patching that occurred
using the Nonlocal methods. An improved result is obtained using the Hyperbolic settings, even though
some lines are still visible.

Image IWF HWF

Figure 8.9: Visual comparison between IWF and HWF for
the Brain image
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8.4.2 The Data-driven WF method

In this section, our experiments reveal the potential of the data-driven extension of our algorithm. The
Table 8.2 presents a comparison of the results obtained using HWF and data-driven HWF (dHWF) for the
“Peppers" image studied in Figure 8.4. As expected, there is a loss, proportional to the noise level, in the
PSNR and the SSIM up to 0.5 dB and 4% respectively. We believe this loss is acceptable, especially when
the noise level is not very high.

PSNR (dB) SSIM
σ 2 3 4 2 3 4

Noisy 20.21 16.65 14.16 0.35 0.23 0.16
HWF 29.25 27.65 26.44 0.78 0.75 0.73
dHWF 29.09 27.40 26.17 0.76 0.72 0.69

Table 8.2: Denoising of “Peppers" image: Quantitative Comparison (PSNR & SSIM) of the HWF and its
fully data-driven version for different noise levels.

We applied this data-driven technique to the 256×256 Liver image studied in Figure 8.3. This image has
a few discontinuities, allowing the use of a large window for the mean filter. Here, we use a window of size
M = 8. The experiments were performed using a PC DELL Latitude E6430 with an Intel Core i7-3740QM
CPU, 2.7 GHZ processor and 8 GB of RAM under Fedora 20, using MATLAB v.8.2.0.701, 64-bit. The
recorded running time for HWT was 40.72 s while it was 54.51 s for dHWT. The difference in timings is due
to the different routines of the variance estimation step. Results are given in Figure 8.10. A first interesting
result is the “non constant slope" of the estimated standard deviation. This points out that model (8.1)
cannot be used. We suspect that this function is proportional to the power of the image, thereby presenting
an image processing based evidence of the noise model (8.2) relevance directly from the data. It was also
noted that the set of wavelet coefficients was well stabilized. We compared the image obtained in the data-
driven mode to the one obtained by using an exhaustive search for the parameter σ with γ = {0.5; 1}. Results
demonstrated that the data-driven result is satisfying and less blurred.

8.5 Conclusion

In this paper, we described a novel approach for denoising ultrasound images based on wavelet thresholding,
variance stabilization and the use of hyperbolic wavelet basis. Quantitative and visual results show the
potential of the proposed method and the merit of the hyperbolic settings. A data-driven extension of our
method is also presented. When applied to real data, this extension provides evidence of the relevance of
the noise model. We also believe that a method free of tuning requirements is very desirable, especially
for physicians. The extension to three-dimensional wavelets can be used for two purposes; 3D denoising or
(2D+t) dynamic US denoising. While the 3D case is straightforward, the dynamic US case must be handled
carefully as the noise variance depends only on the spatial dimension. Thus, the variance stabilization and the
local means approximation should be performed only on the spatial variables. We are currently addressing
this issue.
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Figure 8.10: Experiments on the Liver image: (a) Estimated standard deviation, (b) Blind stabilized Coef-
ficients.

8.6 Variance derivation

We recall that η = uγε, and we note t = (t1, t2)

Var
(dj,k(η)

ūγj,k

)
=

1

ū2γ
j,k

Var
(∑

t

ψj,k(t)u
γ(t)ε(t)

)
,

=
σ2

ū2γ
j,k

∑
t

ψ2
j,k(t)u

2γ(t),

=
σ2

ū2γ
j,k

∑
t

ψ2
j,k(t)u

2γ
j,k(t).

= σ2
∑
t

u2γ
j,k(t)

ū2γ
j,k

ψ2
j,k(t).

Finally, since when j1, j2 →∞, ūj,k converges to uj,k, then for each t in the support of ψj,k, we have

lim
ūj,k→uj,k

u2γ
j,k(t)

ū2γ
j,k

= 1.

Thus

Var
(dj,k(η)

ūγj,k

)
= σ2

∑
t

ψ2
j,k(t) = σ2||ψj,k||22 = σ2.
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8.7 Discussion

From a practical point of view, the two-dimensional hyperbolic construction seems to be more convincing
in the wavelet-Fisz settings than in the classical Gaussian noise settings. This can be explained by the
accuracy of the anisotropic multiscale variance stabilization compared to the isotropic one. Note, also, that
it is possible to perform wavelet-Fisz denoising within a variational framework using the `1-norm of the
wavelet-Fisz coefficients as a regularizer. This allows to take into account other types of deterioration due
to ultrasound imaging systems such as blurring, by constructing appropriate data-fidelity terms. In the
following chapter we give some perspectives and orientations related to the wavelet-Fisz methodology.
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CHAPTER 9
Perspectives

Abstract

We give in this chapter some orientations for future works on the wavelet-Fisz
and its applications.

9.1 Theoretical extensions

A natural extension of the theoretical results of Chapter 7 is the derivation of rates of convergences for the
data-driven wavelet-Fisz method. We expect that, as in the one dimensional case of Fryzlewicz [2008], the
rate of convergence will be optimal. The proof should evolve of showing that the order of error made on the
pre-estimation α̂ is negligible compared to the order of the error made on α̃. More precisely, a Bernstein-type
inequality such as the one given in theorem 7.6.6 must be established for the error

∑
t1,t2
|αt1,t2 − α̂t1,t2 |.

Another interesting extension of the results of Fryzlewicz [2008] -in one or several dimensions- is to derive
rates of convergence in the presence of weakly-depended noise components [Neumann, 2013, Gannaz and
Wintenberger, 2010]. This raises the awkward question of how to extend concentration inequalities and large
deviation results to such settings.

9.2 The wavelet-Fisz-Galerkin method

Consider that the observation obeys the following linear model

yε = K f + ε, (9.1)

where K is a linear operator. When Var(ε) is constant and for certain classes of compact operators K,
the wavelet-Galerkin method can be used for function estimation. This method was developed by Cohen
et al. [2004] for one-dimensional function estimation. It relies on the fact that many compact operators with
fast decay have sparse approximations in the wavelet domain [Beylkin et al., 1991]. The general Galerkin
method consists in projecting (9.1) on a finite dimensional subspace E of L2(R). The linear estimator f̃ ∈ E
is, then, the solution to

〈Kf̃, v〉 = 〈yε, v〉 for all v ∈ E (9.2)

In the wavelet-Galerkin framework, the subspace E is considered to be the linear span WJ . This yields
to a system of the form

KJFJ = Yε,J (9.3)

where KJ is the so-called Galerkin stiffness matrix. Finding FJ requires here a simple matrix inversion
of the stiffness matrix. This can also be done in a nonlinear fashion by adding a thresholding operator Tε on
Yε,J . The system to solve becomes
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KJFJ = Iε(Yε,J). (9.4)

Projection on wavelet spaces is particularly interesting for shift-variant operators1. For instance, Chang
et al. [2000] used the wavelet characterization of compact operators to model foveation in images, while Mal-
gouyres [2002] used it for image-deblurring.

For our application in the previous chapter, a convolution operator can be considered to model ultasound
images while taking into account the blurring inherent to the acquisition [Shin et al., 2009]. Moreover, the
point-spread function (PSF) considered in ultrasound is varies with the depth of the image (shift-variant) with
different characteristics along axial and lateral directions (anisotropic) which encourages the use of hyperbolic
wavelets. In fact, in the same manner as for functions, anisotropic operators have better approximation in
hyperbolic (tensor-product) wavelets [Reich, 2010]. In order to do joint deblurring-denoising in ultrasound,
an idea would be to include the Fisz variance stabilization step in the linear system (9.4). If we denote by
F the stabilization operation and F−1 its inverse, then one can solve

KJFJ = F−1(Tε(F(Yε,J))). (9.5)

This can provide a nice Galerkin wavelet-Fisz framework for solving problems requiring both variance
stabilization and the inversion of an linear operator.

9.3 Wigner-Ville distribution smoothing

In this section we discuss a still open problem of adapting the wavelet-Fisz methodology for the problem
smoothing Wigner-Ville distributions. This problem was pointed to us by R. von Sachs and it is well suited
for the hyperbolic framework because of the different regularities along the two (space/time) dimensions

The study of non-stationary signals through their Wigner-Ville (WV) distributions [Martin and Flandrin,
1985] is a fundamental time-frequency (TF) analysis tool which proved its utility over many years in numerous
applications ranging from speech processing, music, geophysics and bio-engineering. Besides its ability to
provide a compact characterization of the TF plan compared to classical spectrograms or scalograms, it also
enjoys many interesting mathematical properties such as energy conservation. For a given function x(t) of
L2(R), the WV is given by

Wx(t, f) =

∫ ∞
−∞

x(t+ τ/2)x∗(t− τ/2)e−2jπfτ dτ.

The main drawback of this representation comes from its quadratic nature. In fact, cross interference
terms appears whenever the signal is multi-component. In an additional model, one expects

Wx+z(t, f) = Wx(t, f) +Wz(t, f) + 2Re{Wx,z(t, f)},

with

Wx,z(t, f) =

∫ ∞
−∞

x(t+ τ/2)z∗(t− τ/2)e−2jπfτ dτ.

This limitation makes the interpretation very challenging. When the second component is a random
process, the denoising problem of retrieving Wx(t, f) from Wx+z(t, f) is particularly challenging as the
modeling of the noise component in the WV distribution is not straightforward. The dominating paradigm
used to tackle this problem is linear smoothing; convolution using a kernel function K

Cx(t, f) =

∫ ∞
−∞

∫ ∞
−∞

Wx(u, v)K(t− u, f − v) dudv.

The resulting smoothed WD distributions form the so-called Cohen’s class [Cohen, 1989]. Such linear
denoising techniques often lead to over-smoothing with the result that some of the original signal components

1In opposition to the Fourier transform which diagonlize shit-invariant operators.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI123/these.pdf 
© [Y. Farouj], [2016], INSA Lyon, tous droits réservés
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might be suppressed. This motivated the use of non-linear techniques such as the one proposed by Baraniuk
[1994]. Such techniques use the simple process of thresholding (Soft or Hard) in the wavelet domain to
suppress the noise component. However, these methods are justified when the noise is white Gaussian, which
is clearly not the case here; the heteroscedastic nature of the noise require an adaptation of the denoising
technique. To enhance the relationship between this problem noise and the wavelet-Fisz methodology, we
derive the noise:

In the sequel z will refer to a Gaussian white noise z ∼ N (0, σ) with σ ∈ (0,∞). The noise component in
the WV distribution is then given by Wz(t, f) + 2Re{Wx,z(t, f)}. The first term Wz(t, f) is the L2-product
of two random variables, while the second term is the L2-product of a Gaussian white random variable and
a deterministic function. One expect that the variance of Wz(t, f) is of the order of σ2, while the variance
of Re{Wx,z(t, f)} is of the order of σ2x2. When the signal-to-noise ratio (SNR) is higher than 1 everywhere,
the second term is always dominating. Hence, an alternative noise model is given by

Wx(t, f) = Wx(t, f) + 2Re{Wx,z(t, f)}. (9.6)

Applying the wavelet-Fisz methodology to the model (9.6) is not straightforward because of the ambiguous
relationship between Wx(t, f) and Re{Wx,z(t, f)}. This however deserves more investigation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI123/these.pdf 
© [Y. Farouj], [2016], INSA Lyon, tous droits réservés



96 BIBLIOGRAPHY

Bibliography

Richard G Baraniuk. Wigner-ville spectrum estimation via wavelet soft-thresholding. In IEEE-SP Interna-
tional Symposium on Time-frequency and Time-scale Analysis, pages 452–455, 1994.

Gregory Beylkin, Ronald Coifman, and Vladimir Rokhlin. Fast wavelet transforms and numerical algorithms
i. Communications on pure and applied mathematics, 44(2):141–183, 1991.

Ee-Chien Chang, Stephane Mallat, and Chee Yap. Wavelet foveation. Applied and Computational Harmonic
Analysis, 9(3):312–335, 2000.

Albert Cohen, Marc Hoffmann, and Markus Reiss. Adaptive wavelet galerkin methods for linear inverse
problems. SIAM Journal on Numerical Analysis, 42(4):1479–1501, 2004.

Leon Cohen. Time-frequency distributions-a review. Proceedings of the IEEE, 77(7):941–981, 1989.

P. Fryzlewicz. Data-driven wavelet-Fisz methodology for nonparametric function estimation. Electronic
journal of statistics, 2:863–896, 2008.

Irène Gannaz and Olivier Wintenberger. Adaptive density estimation under weak dependence. ESAIM:
Probability and Statistics, 14:151–172, 2010.

François Malgouyres. A framework for image deblurring using wavelet packet bases. Applied and Computa-
tional Harmonic Analysis, 12(3):309–331, 2002.

Wolfgang Martin and Patrick Flandrin. Wigner-ville spectral analysis of nonstationary processes. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 33(6):1461–1470, 1985.

Michael H Neumann. A central limit theorem for triangular arrays of weakly dependent random variables,
with applications in statistics. ESAIM: Probability and Statistics, 17:120–134, 2013.

Nils Reich. Wavelet compression of anisotropic integrodifferential operators on sparse tensor product spaces.
ESAIM: Mathematical Modelling and Numerical Analysis, 44(1):33–73, 2010.

Ho-Chul Shin, Richard Prager, James Ng, Henry Gomersall, Nick Kingsbury, Graham Treece, and Andrew
Gee. Sensitivity to point-spread function parameters in medical ultrasound image deconvolution. Ultra-
sonics, 49(3):344–357, 2009.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI123/these.pdf 
© [Y. Farouj], [2016], INSA Lyon, tous droits réservés



Part III

Towards Fully Data-driven fMRI
spatio-temporal deconvolution

97
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI123/these.pdf 
© [Y. Farouj], [2016], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI123/these.pdf 
© [Y. Farouj], [2016], INSA Lyon, tous droits réservés



CHAPTER 10
fMRI: Review on Data analysis techniques & statement of the

deconvolution problem

Abstract

fMRI offers the possibility to retrieve brain activity through the BOLD signal.
Analyzing such signals is, however, carried out in challenging conditions as one
has to deal with highly noisy time courses. While traditional BOLD signal
processing is based on linear regressors that need a pre-modeling of the signal
dynamics, the quest for exploring spontaneous activity gave rise to spatio-
temporal deconvolution techniques which are free of timing or duration priors
on the activity. On the other hand, with the increasing interest in the study of
resting state networks and the high variability of the anatomical brain structure
across subjects, it is also natural to develop methods that are not promoting
particular spatial partitioning in the brain and to keep these methods as data-
driven as possible. In this chapter, We put in review some of the fundamental
works on fMRI data analysis before stating the problem of fMRI deconvolution
we will consider in the next chapter.

10.1 Introduction

Since its appearance in early 1990’s, functional magnetic resonance imaging (fMRI) has remained the key tool
for the understanding of human brain by giving new insights on its functioning when responding to certain
tasks or during rest. This technique measures, in a non-invasive way, the fluctuations in blood oxygenation.
This results in the so-called blood oxygenation level-dependent (BOLD) signals; the concentrations of blood
oxygenation are expected to increase in regions evolving in the neuronal activity. The aim of fMRI analysis
is to detect sufficient evidence of the presence of activation in the BOLD signal. Traditional detection
algorithms are conceived to fit the time courses of each voxel to the experimental paradigm. The voxels
are supposed to be active when the corresponding time courses demonstrate significant correlation with the
timing and the duration of the stimuli. A familiar strategy in this sense is the use of the general linear
model (GLM) [Friston et al., 1998] for the regression. Here, the BOLD signal is modeled as the response of
a linear shift-invariant system - having the hemodynamic response function (HRF) as an impulse response -
to the experimental excitation. The obtained statistical parametric map (SPM) is then thresholded, using a
multiple hypothesis testing procedure, in order to decide which tests (i.e voxels) are task related. Although
such regression techniques have been predominating in fMRI analysis schemes, they are limited when it
comes to studying spontaneous activity (e.g resting state activity). In fact, the absence of explicit tasks
makes it hard to find meaningful inputs to drive the fitting. This has motivated the introduction of new
techniques that do not require an explicit modeling of the BOLD signal dynamics. Methods such as the fuzzy
clustering algorithms [Baumgartner et al., 2000, Fadili et al., 2000], wavelet filtering [Wink and Roerdink,
2004], seed correlation analysis [Biswal et al., 1995], principal component analysis PCA, or independent
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component analysis (ICA) [Beckmann et al., 2005] aim at retrieving the main signal components from the
corrupted BOLD signal. On the other hand, temporal correlation analysis (TCA) [Liu et al., 2000] and its
extensions [Morgan et al., 2008] are inspired from dimension reduction. However, these methods have two
main drawbacks: (1) they do not incorporate the prior knowledge about the hemodynamics or about the
regularity of the activity-driven signal, (2) they rely either on spatial or temporal coherence and do not take
into account the whole the spatio-temporal structure of the data. The first issue can be handled, naturally,
by thinking of the activity-inducing signal reconstruction as a temporal deconvolution problem. A seminal
work in this sense is due to Glover [1999] who introduced Wiener deconvolution filtering for task-related
fMRI. Recently, this was customized for resting-state fMRI by Wu et al. [2013]. Still, these methods are not
optimized for the specific fMRI application. Countering this limitation has been following general trends in
signal processing. First, the emergence of variational techniques inspired spatial regularization terms for the
activation maps with techniques such as the regularised GLM of Flandin and Penny [2007]. This techniques
are still, however, task-related as it relies on a GLM. Then, the fuss about l1 regularization in the 2000’s also
had its influence on this problem. Gaudes et al. [2011] and Gaudes et al. [2013] use l1 regularization terms
directly on the signal to promote spikes of activation. Khalidov et al. [2007, 2011] use a nice generalization
of wavelets called ”activelets" which acts like a differential operator and thus enables to take the HRF
into account when sparsifying the signal. Following this tendency, Karahanoğlu et al. [2013] presented total
activation, an attractive combination of the Generalized Total Variation of Karahanoğlu et al. [2011] allowing
hemodynamic modelling and smoothness priors inside brain anatomical regions. Although, this work is a big
step towards data driven deconvolution while leveraging information on the spatio-temporal structure and
the hemodynamics of fMRI data, it still uses anatomical atlases as priors for the spatial coherence of the
activation. This prior can be misleading for three main reasons. First, there is no conventional functional
atlasing for the human brain; a bewildering variety of conventions on anatomical atlases in available in
the literature. Second, these anatomical atlases are, anyway, created with the philosophy that they cluster
regions that have the same functional behavior. This might be a pessimistic constraint for capturing the
richness and complexity of brain activity, particular in resting-state fMRI. Finally, anatomical atlases are
still generic and are far from being subject specific. Pursuing this reasoning, we suggest in the present work
the use of strategies that are not driven by anatomical priors. More precisely, we show the merit of using
a spatial regularization based on a weighted total variation. The weights can be either a binary matrix
having non-zero entries for voxels that are likely to belong to the gray matter, or can be computed from a
similarity measure derived from a posterior probability map [Friston and Penny, 2003]. Combining this with
the generalized total variation for temporal deconvolution results in a minimization problem evolving the
sum of two `1-norms. We tackle this problem by using the generalized forward-backward algorithm to find
a global minima. Besides the fact that the proposed method does not require any information on timing,
duration or pre-defined spatial structure, it also has a lower complexity than the original TA thanks to the
global definition of total variation. In fact, there is no need it for a loop on anatomical regions and TV
minimization algorithms can be performed with simple vector-wise operations.

The rest of the chapter is organized as follows. In the next section we recall the BOLD signal modeling
for the sake of having a self-contained presentation which motivates the methodological part. Section II is
devoted to the description of the AfTA algorithm; we write the variational problem to be solved and we
describe the associated GFB algorithm and how it can be accelerated using FISTA. Finally, we test the
algorithm on a both a synthetic phantom and real data from a visual stimuli experiment.

10.2 fMRI modeling

10.2.1 BOLD Signal modeling

The purpose here is to retrieve underlying activation patterns from corrupted fMRI time courses. Such time
courses are given, for each voxel i = {i1, i2, i3} at the time t, as a noisy version y of the measured blood
oxygen level dependent (BOLD) response x (activity related signal)

y(i, t) = x(i, t) + ε(i, t)
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where {ε(i, t)}(i,t) are random noise and nuisance components (fluctuations , signal drift, residual errors
from motion correction, etc · · · ). On the other hand, the BOLD response describes the neural activation
under the action of a causal linear (linearized) system S. If s denotes the activity inducing signal, we have

x(i, t) = S (s(i, t)) ;

The system S can be fully characterized by its impulse response function-here the so called hemodynamic
response function (HRF)- and can be written:

x (i, t) = s (i, t) ∗ h(t)

In the sequel, we consider that the following assumptions are verified:

(i) The neural activation is assumed to follow a boxcar model.

(ii) The neural activation turns instantly on when stimulus is presented.

(iii) The HRF is obtained directly through biophysical equations.

The assumptions (i) and (ii) guarantees that the activity inducing signal can be modeled as spikes or
blocks. The assumption (iii) insures the possibility to derive a linear differential operator which inverts the
HRF.

10.2.2 HRF modeling

Many modes for the HRF have been proposed in the literature. For example, The classical canonical
HRF [Friston et al., 1998], given in Figure 10.1, is derived mathematically using a combination of two
gamma functions. The first-order Volterra series approximation of the Balloon model [Friston et al., 2000] is
an alternative description which is based on biophysical equations. In this last description, the convolution
with the function h can be characterized by a transfer function with a gain G ∈ R, one zero γ ∈ C and four
poles (α1, α2, α3, α4) ∈ C4 (cf. [Khalidov et al., 2011])

HRF(s) = G
s− γ

4∏
i=1

(s− αi)
, . (10.1)

This also equivalent to applying a differential operator H verifying

H{s} = s ∗ h, (10.2)

with

H = G
D − γI

4∏
i=1

(D − αiI)

, (10.3)

where D and I are, respectively, the derivative and the identity operators.

10.2.3 Spatial modeling

The human brain has a very complex and impressive structure. Billions of neurons are exhibiting activations
while interacting with each other. The main neuronal activity is presumed to occur in the gray matter. It
has been early understood that the brain activity has a macroscale behaviour; groups of neighbour neurons
are activating at the same time and are related to the same tasks. This triggered an entire branch of research
aiming at mapping the human brain by providing structural or functional atlases. This atlases are in general
found using task-related fMRI. As we mentioned before, we want to develop a fMRI deconvolution method
which requires a minimal knowledge on the structural behaviour in activation. We will use only deterministic
and probabilistic membership to gray matter as a prior.
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Figure 10.1: Canonical HRF.
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CHAPTER 11
fMRI deconvolution without functional priors

Abstract

The work presented in this chapter introduces new strategies for fMRI spatio-
temporal deconvolution without anatomical priors. That is, only the member-
ship of the contributing voxels to the gray matter and the global homogeneity of
the activation are taken into account. The presented Atlas free Total Activation
(AfTA) technique is an extension of the Total Activation (TA) framework; we
formulate a variational denoising problem involving two regularization terms.
These terms express sparsity along variables by taking the temporal and the
spatial characteristics. The first term uses a generalized total variation which
promotes a block-type structure on the the underlying activity-inducing sig-
nal by inverting the hemodynamic response function. The second term is
a weighted total variation which favors globally coherent activation patterns
within the gray matter while preserving strong discontinuities. Evaluation on
synthetic data demonstrated the potential of AfTA at recovering brain activity-
like signals. Furthermore, we applied this techniques to a real task-evoked fMRI
data from an experiment with prolonged resting state periods disturbed by vi-
sual stimuli. The results show the ability of proposed technique at retrieving
both spontaneous and task-related activities without prior knowledge of the
timing of the experimental paradigm nor the triggered regions.

11.1 Generalized Total Variation (GTV) of Karahanoğlu et al. [2011]

We start by introducing the concept of Generalized total variation (GTV).

11.1.1 Concept

Karahanoğlu et al. [2011] gave a new version of the definition (3.10) from Chapter 3 which generalize the TV
concept to a larger class of operator beyond finite differences. Consider a N -th order differential operator L
which can be characterized by its poles and zeros γi ∈ C, with i = {0, · · · ,M} and αi ∈ C with i = {1, · · · , N}

L =

N∏
i=1

(D − αiI)

(
M∏
i=1

(D − γiI)

)−1

(11.1)

where I is the identity operator and D is the continuous derivation operator. Note that this definition
includes, as a special case, the classical TV when N = 1, α1 = 0 and M = 0. Let ∆L denotes the discrete
version of L, the discrete GTV is given by
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106 CHAPTER 11. FMRI DECONVOLUTION WITHOUT FUNCTIONAL PRIORS

GTVL (s) =
∑
t∈Z
|∆L{s}[t]|. (11.2)

Remarks on the discrete construction ∆L can be found in [Karahanoğlu et al., 2011]. Denoising an
observation g using the GTV consists in finding

f̂ = arg min
f

{
||g − f ||22 + λGTVL(f)

}
. (11.3)

11.1.2 Forward-backward algorithm for GTV denoising

The FISTA algorithm given in Algorithm 3 can be customized for (11.3), by choosing µ such as µ > ||∆T
L||22

where ∆T
L[t] = ∆∗L[−t] is the adjoint of ∆L. The algorithm reads

Algorithm 5 FISTA for GTV

Input: g, λ, µ, kmax, f (1), r1

Output: Estimate f̂
1: f̃ (0) = f̃ (1) = f (1) ; h(1) = f (1)

2: for k = 1 : kmax do
3: f̃ (k) = f̃ (k) − µ∆L

{
g −∆T

L

{
h(k)

}}
4: f (k+1) = f̃ (k) − Tλ

(
f̃ (k)

)
5: rk+1 =

1 +
√

1 + 4r2
k

2

6: h(k+1) = f̃ (k) +
rk − 1

rk+1

(
f̃ (k) − f̃ (k−1)

)
7: end for
8: f̂ = g −∆T

L

{
f (k+1)

}
Note that by the isometry of the Fourier transform, an estimation of a lower bound of µ can be obtained

from the z-transform of ∆L given by F (∆L) (z) :=
∑
t

∆L[n]z−n

µ >
1

sup
w
|F (∆L) (ejω)|2

= sup
w

∏M
i=1 |1− eγie−jω|2∏N
i=1 |1− eαie−jω|2

(11.4)

We describe, now, the AfTA method for fMRI deconvolution.

11.2 Atlas-free Total Activation

Given a fMRI time courses, AfTA aims at recovering the activity related signal x from the observation y via
a spatio-temporal regularization. In the sequel RT and RS will refer respectively to the the temporal and
spatial regularization terms. Similarly to the work of Karahanoğlu et al. [2013], the variational formulation
of AfTA reads

x̂ = arg min
x

{
1

2
||y− x||22 +RT (x) +RS(x)

}
. (11.5)

11.2.1 Temporal regularization RT

As explained in the previous chapter, the unknown activity related signal x is under the action of the
operator H given in (11.6). The temporal regularization exploits the GTV to invert H. Let H−1 denotes the
pseudo-inverse of H. Under some assumptions, H−1 can have a closed form expression. In fact

H{s} = s ∗ h = x.
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11.2. ATLAS-FREE TOTAL ACTIVATION 107

where s and h denote respectively the activity inducing signal and the HRF. Thus, H−1 = g ∗ x, where ĝ(ω) =
1

ĥ(ω)
if ĥ(ω) 6= 0

0 if ĥ(ω) = 0

One expect that the effect of H−1 cancels the effect of H

H−1{x} = H−1{H{s}}
= H−1{h ∗ s}

= g ∗ h ∗ s
= s + snull

with snull ∈ Null(H), the null space set of the operator H. Moreover, from the expression of the transfer
function (10.1), we have the Fourier-domain counterpart of h

ĥ(ω) =
jω − γ

4∏
i=1

(jω − αi)
, .

Whenever1 γ 6= jω, one can guarantee a stable inversion

ĝ(ω) =

4∏
i=1

(jω − αi)

jω − γ
.

We conclude that

H−1 = G

4∏
i=1

(D − αiI)

D − γI
. (11.6)

We are now able to use H−1 within the GTV framework to invert the effect of the HRF.

Block-type priors

As mentioned in the previous chapter, we consider that the activity-inducing signal s follows a box-car model
(block-type); its derivative is a sparse innovation signal composed of Dirac pulses

D{s}[t] =
K∑
k=1

αkδ[t− τk], (11.7)

with K > 1, αk ∈ C and τk > 0. The term RT uses the GTV framework to promote the sparsity
prior (11.7) by controlling its `1-norm. Notice that

D{s} = DH−1{x},

and so, the operator L of (11.2) can be constructed here by adding a pole in the expression of H−1

L = DH−1 = G

4∏
i=1

(D − αiI)

(D − γI)(D − I)
(11.8)

Finally, the temporal regularization is given by

1Whenever the zero of the system lies within the unit circle in the z (Z-transform) plane. This is the case for the HRF [Khali-
dov et al., 2011, Karahanoğlu et al., 2013]
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108 CHAPTER 11. FMRI DECONVOLUTION WITHOUT FUNCTIONAL PRIORS

RT (x) =
∑
v∈Z3

λT (v)
∑
t∈Z
|∆L{x}[v, t]|, (11.9)

with L given by (11.8) and λT (v) is the regularization parameter for voxel v.

11.2.2 Spatial regularization RS

TV can be used to tackle other tasks besides signal and image restoration. In particular, classical TV has
shown to be very effective for segmentation and clustering tasks. It seems valuable to use such a regularization
as a spatial prior for our problem since we expect local coherence inside evoked regions with possibly sharp
variations between these regions. In fact, TV regularization might identify atlas-like clusters of activations
without any functional priors. Therefore, we propose the following spatial regularization term

RS(x) =
∑
t∈Z

λS(t)
∑
v∈Z3

( ∑
u∈Nv

wuv

(
x[v, t]− x[u, t]

)2
)1/2

, (11.10)

where λS(t) is the spatial regularization parameter at timepoint t, Nv is the set of voxels which contributes
to the finite differences around v and W = {wuv} is the weight matrix. The expression in 11.10 is simply
a multivariate weighted TV. This general definition allows more flexibility on the contributing voxels. In
particular, Nv will refer to voxels belonging to the gray matter that are neighbors to v within a three-
dimensional Cartesian lattice. That is #(Nv) is not constant (min

v
#(Nv) = 0 and max

v
#(Nv) = 6). On the

other hand, we propose two choices for the weight matrixW . The first one is simply an identity matrix; voxels
have the same importance. The second choice tends to imposing a fading effect. In fact, it is often observed
in fMRI data that evoked regions show higher activation in the center with vanishing effects towards the
edge [Logan and Rowe, 2004]. We would like to take this feature into account. We use grey matter probability
maps (GM-PM): A map P giving for each voxel v the probability P(v) that v belongs to the gray matter.
This maps will drive the coherence of the activation. If two voxels v and u have probabilities which are
close to each other the weight wuv should be large and vice-versa. We construct the weight matrix via the
following similarity measure

wuv = exp

(
− |P(v)− P(u)|2

σ

)
, (11.11)

where σ controls the tolerance to the similarity.

11.2.3 Dedicated minimization algorithm

Both RT and RS are non-differentiable, but simple; their proximal operators are easy to compute. The
Forward-Backward proximal splitting of Raguet et al. [2013] can be applied here to find a solution to (11.5).
As explained in Chapter 3 this consists of a weighted average of the couple (x̂t, x̂s) solutions to the two
following variational problems x̂t = arg min

x

{
1
2 ||y− x||22 +RT (x)

}
,

x̂s = arg min
x

{
1
2 ||y− x||22 +RS(x)

}
.

(11.12)

11.3 Experiments

This section illustrates experimentally the performances of the AfTA algorithm. First, we start with synthetic
data then we show results on real fMRI series. The spatial and temporal regularization parameters should
provide a compromise between the data-fidelity and the regularization costs. As in [Karahanoğlu et al., 2013],
the temporal regularization parameter was estimated, for each voxel, from the median absolute deviation of
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Algorithm 6 Generalized Forward-Backward algorithm for solving (11.5)

Input: Corrupted data y, (ωt, ωs) ∈ [0, 1]2 with ω1 + ω2 = 1 and the operator L of (11.8)
Output: Estimate x̃
1: for k = 1 : kmax do
2: xkt = arg min

x

{
1
2 ||y− x||22 +RT (x)

}
, by the FISTA for GTV (cf. Section 11.1.2)

3: xks = arg min
x

{
1
2 ||y− x||22 +RS(x)

}
, by the FISTA for TV (cf. Section 3.4)

4: xk = ωtxkt + ωsxks
5: end for
6: x̃ = xkmax

Figure 11.1: Software phantom: Courtesy of Karahanoğlu et al. [2013].

fine-scale wavelet coefficients (Daubechies with 3 vanishing moments). For each iteration n of the FISTA
algorithm, the temporal regularization parameter λT is updated as proposed by Chambolle [2004]

λ
(n+1)
T =

Nε̂

||y − x||22
λ

(n)
T

Where N is the number of time points and ε̂ is the estimated noise. For the spatial regularization term,
the parameter was estimated empirically. We give the values we used depending on the experiment.

11.3.1 Synthetic data experiment

We used the software phantom from [Karahanoğlu et al., 2013] to evaluate the AfTA algorithm with no
weights. The phantom, given in Figure 11.1, contains 4 regions in a 10 × 10 × 10 cube. The noisy data
was generated by convolving the 103 signals with the HRF and adding a i.i.d Gaussian noise such that the
signal-to-noise (SNR) ratio is 1 dB.

We show, now, some of the results we obtained using AfTA without weights. The spatial regularization
was empirically fixed at 5 and gives a good compromise between the two regularization terms. Figure 11.2 and
Figure 11.3 show an example of reconstruction from a voxel in region 4 of the phantom. The activation blocks
are nicely recovered. Moreover the innovation signal is very sparse as it is expected. Such innovation signals
have been used, recently, for the development of innovation co-activation patterns (iCAP’s) [Karahanoğlu
and Van De Ville, 2015] aiming at discovering spatially and temporally overlapping networks in the brain.
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110 CHAPTER 11. FMRI DECONVOLUTION WITHOUT FUNCTIONAL PRIORS

Figure 11.4 highlights the spatial structure of the noisy and the recovered cube of signals at different time
points. Note that the TV regularization enables to retrieve the different regions without any prior on their
positioning.

Activity inducing signal H−1{x}

Activity related signal x

Figure 11.2: Example of reconstruction (Region 4); the activity inducing and activity related signals.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI123/these.pdf 
© [Y. Farouj], [2016], INSA Lyon, tous droits réservés



11.3. EXPERIMENTS 111

Activity inducing signal H−1{x}

innovation signal DH−1{x}

Figure 11.3: Example of reconstruction (Region 4); activity inducing signal ans its derivative.
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Noisy

Recovered

Figure 11.4: Noisy & recovered activity related signal x at different time points.
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11.3.2 Real data

Let us describe the experimental setup used in this subsection. The experimental data was acquired on a
subject during resting state periods disturbed by 10 visual stimulation of flickering checkerboard of duration
1s. Figure 11.5 highlights the position of the primary visual cortex in the brain. We expect this area to show
activation whenever the visual stimulation is on. We wish to show the difference between the regularization
without weights and the one using the probability map.

(Credits: Mike Murtaugh). (Credits: Tom Kinniburgh / Nottingham)

Figure 11.5: Primary visual cortex

In Figure 11.6, we can see an fMRI image from the data we used along with a gray matter mask and
the corresponding probability map. When no weights are used a conventional TV is computed on the graph
given by the gray matter mask. When the probability map is used, weights are computed for each finite
difference component of TV as given in (11.11). In our experiments we found a value of σ = 2 gives a
sufficient control of the tolerance to the similarity between voxels. The spatial regularization parameter λS
was also empericcaly fixed at 4 for the Gray matter driven strategy and 5 for the probability map driven
strategy.

T1 MRI image GM mask Probability map of GM

Figure 11.6: MRI data

We start by highlighting the difference that one can expect between the two strategies. Figure 11.7 shows
the spatial structure of the retrieved signal in a given time-course. When only the gray matter mask is used,
the results are piece-wise constant as expected from TV. This is one of the drawbacks of TV which made
it not very desirable in image processing. On the other hand, the weights provided by the probability map
give more smoothness and spatial coherence to the solution. As expected in fMRI the activation is higher in
the center and vanishes when getting closer to the edges.
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Gray matter mask Probability map

Figure 11.7: Structure of the retrieved activity related signals with and without probability maps.

We concentrate now on the probability map driven regularization. Figure 11.8 represents the 10 activa-
tions due to the visual stimuli. We can note that activations in the primary visual cortex are found without
any prior information about the experimental paradigm. Figure 11.9 shows the mean of the reconstructed
temporal time courses (activity related signal) in a small window of 12mm× 12mm× 12mm which is likely
to be in the primary visual cortex. We can see the 10 activations of the visual stimuli.

11.3.3 Discussion

The work of Karahanoğlu et al. [2013] offered a new technique for reliable fMRI deconvolution without any
priors on the experimental paradigm. Here, we went further by proposing a method which does impose any
spatial structure. A nice application would be to retrieve new functional atlases by applying the AfTA to
large sets of data and learning structures and networks that appear often. In the next chapter, we describe
one of our perspectives on the subject which aims at making the method more data-driven by adapting it to
the studied subject.
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Figure 11.8: Activations referring to the visual stimuli at 10 different time points: recovered activity related signal using probability maps.
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The position of the window (in red.

0 50 100 150 200 250 300 350 400

−0.5

0

0.5

1

Seconds

The mean activity related signal inside the window. The
red line distinguish the upper 10 activations.

Figure 11.9: Mean of activation x in a small window.
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CHAPTER 12
Perspectives: Joint Signal-HRF estimation

Abstract

This chapter is devoted to a discussion on a possible extension of the deconvo-
lution method presented in the previous chapter. We consider the problem of
estimating both the fMRI signal and the HRF.

The AfTA technique provides a new tool for fMRI deconvolution without spatial nor temporal priors.
Still, although this techniques is data-driven, it is not model-free. For instance, the HRF is predefined in
advance. This is a strong assumptions which is violated in real data. The shape and magnitude of HRFs vary
across subjects and brain regions [Handwerker et al., 2004]. The variation across subject is due to neural
activity differences. The differences across brain regions are, presumably, due to variations in the vasculature
of different regions. This affects the amplitude, the time-to-peak and the width of the HRF [Lindquist et al.,
2009]. Many authors have considered the problem of estimating the HRF directly from the data [Seghouane
and Shah, 2012] or joint detection estimation as in [Chaari et al., 2012, Pedregosa et al., 2015] and [Vincent
et al., 2010]. We would like to use the relation between the time-to-peak/width of the HRF and its first
and second derivative (cf. Figure 12.1). We propose to use a second-order Taylor expansion of the HRF
as a model and estimate the expansion’s coefficients. This can be done easily and elegantly for differential
operators defined by impulse responses.

12.1 Taylor-Expansion correction

The K-th order Taylor expansions of a R ≥ K times differentiable function f is given by

fTaylor(z) =
K∑
k=1

tkf
(k)(z),

Figure 12.1: Canonical HRF and its first (temporal) and second (dispersion) derivative. Courtesy: [Tachtsidis
et al., 2010].
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where {tk} are Taylor coefficients. Thus, its Laplace transform reads

LfTaylor(z) = Lf(z)

(
L∑
`=1

t`z
`

)
,

= Lf(z)

(
L∏
i=1

(s− βi)

)
,

(12.1)

where {βi}Li=1 are the roots of the polynomial
L∑̀
=1

t`z
`. Now, consider f to be the rational response of a

given operator

f =

N∏
i=1

(s− αi)(
M∏
i=1

(s− γi)
)

Then, we conclude

fTaylor =

N∏
i=1

(s− αi)
N∏
i=1

(s− βi)(
M∏
i=1

(s− γi)
) .

This means that the differential operator counterpart of the Taylor expansion is given by

LTaylor =

N∏
i=1

(D − αi)
N∏
i=1

(D − βi)(
M∏
i=1

(D − γi)
) . (12.2)

12.1.1 Application to the HRF

This can be applied to the HRF operator H defined in the previous chapter

H = G
D − γI

4∏
i=1

(D − αiI)

,

The second-order Taylor expansion can be derived as in (12.2)

HTaylor = G

(D − γI)
2∏
i=1

(D − βi)

4∏
i=1

(D − αiI)

,

where (β1, β2) ∈ C2 are zeros of α1 + α2 s+ α3 s
2 and (α1, α2, α3) ∈ C3 are the Taylor coefficients.

12.2 HRF Taylor coefficients estimation

Once an the activity related signal x is estimated by AfTA, the Taylor coefficients (α1, α2, α3) ∈ C3 can be
estimated by solving a dictionary learning-like problem

(α̂1, α̂2, α̂3) = arg min
(α1,α2,α3)

{
1

2
||HTaylor{x̂t} − y||22

}
,
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where x̂t is the solution to the AfTA algorithm. One can also think of adding a regularity term to force
spatial coherency.

12.3 Joint-estimation

The joint estimation perspective will consist in solving the following problem

(x, α, β) =

{
AfTA with HTaylor

(α̂1, α̂2, α̂3) = arg min
(α1,α2,α3)

{
1
2 ||HTaylor{x̂t} − y||22

}
,

This problem can be solved by alternating the two problems. The convexity is clearly lost. One expect,
however, that the solution will be stabilized when an accurate estimation of the HRF is obtained.
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CHAPTER 13
Concluding remarks

Consider the following statistical problem: we want to recover a multivariate function f from a noisy obser-
vation g such as

g = f + ε

where ε is the noise component. The main objective of the present PhD thesis was to construct sparsity
priors that fits the best the behavior of the unknown function f on each variable or group of variables using
two main ingredients which are sparsity and anisotropy.

For this concluding remarks, instead of giving a (probably) redundant summary of each of the three
contributions, we present the main results in their real chronological order (part II, part I then part III)
showing how the different ideas came to perspective.

The hyperbolic wavelet construction imposed itself as a potential guiding principle for the present dis-
sertation. Recent theoretical results by J-M Freyermuth and his colleagues on the statistical performances
of hyperbolic wavelets were convincing and we wanted to demonstrate their potential in (medical) image
processing even if it is not always a good idea to define a tool and then try to make it useful. This theoretical
results mainly concern the convergence rates of thresholding wavelet estimators. They stipulate that hyper-
bolic wavelet thresholding estimators achieve the best possible (minimax) convergence rates on anisotropic
functional spaces. Moreover, because of the fact that isotropy is a particular case of aniotropy and thanks
to the the adaptive nature of wavelet thresholding techniques, the hyperbolic construction should also give
minimax convergence rates in isotropic functional spaces analogously to the isotopic wavelet construction.
However, our first experiments on natural images were disheartening. In the absence of strong anisotropy
and/or axis-aligned discontinuities, classical wavelets still outperform the hyperbolic wavelets in contradic-
tion with the theoretical results. A possible explanation for this phenomenon is the biased definition of
anisotropic functional spaces which consider only axis-aligned regularities, and the fact that, in general,
natural images do not have strong differences in terms of smoothness along the vertical and the horizontal
directions.

The work presented in part II was a first attempt to find an appropriate use of hyperbolic wavelets through
a particular application which is ultrasound image denoising. Here, we were triggered by two observations

• Ultrasound images are more anisotropic than natural images because of the presence of features such
as vessels and skin layers.

• The noise model in ultrasound differs from the traditional Gaussian noise model for which the classical
wavelet thresholding procedures were conceived.

The second point raised also a question about the possibility of lifting the minimax results to cases where
the variance of the noise is a function of the unknown image. The answer to this question is positive and was
studied in chapter 7. The minimax convergence rate was obtained for hyperbolic wavelet-Fisz procedures
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in two-dimensional anisotropic functional spaces. This result is a generalization of a theorem by Fryzlewicz
that was obtained for the one-dimensional case. The application to ultrasound images also motivated the
conception of the data-driven hyperbolic wavelet-Fisz methodology. This extension obviates the need for any
prior knowledge of the noise model parameters by estimating the noise variance using an isotonic Nadaraya-
Watson estimator. We also believe that a method free of tuning requirements is highly desirable, especially
for physicians. Empirical results were beyond our expectations. In fact, experiments on real and synthetic
images presented in chapter 8 revealed a major advantage of the hyperbolic construction; the artifacts due
to the variance stabilization step were less visible resulting in better performances. This artifacts appear
as the supports of the scaling functions that give the local means estimations used to perform wavelet-Fisz
thresholding. When considering a hyperbolic wavelet construction, different values of the scaling parameter
along the directions are allowed. As result, with the result that the supports of the scaling functions do
not accumulate from scale to scale. For the particular ultrasound application, the proposed algorithm is
competitive with the state-of-the-art techniques.

In many theoretical studies concerning the performances of hyperbolic wavelets, authors used images with
predefined oriented patterns along one of the two directions. The same patterns can also be seen in a tempo-
ral slice of an image sequence (when one of the spatial dimension is fixed). This observation was behind the
work presented in part I. A natural construction of wavelet atoms comes to mind; if the wavelet is isotropic
in spatial dimensions and hyperbolic on each of the space-time planes, we should be able to benefit from
the empirical performances of the two constructions. This lead to the generalized hyperbolic construction of
wavelets introduced in chapter 4. The study of the theoretical performances of these wavelets motivated the
introduction of some functional spaces which are isotropic not on the entire dimension but only within groups
of variable. The convergence rate of hard-thresholding estimators using the new construction was obtained
in chapter 4. This rate breaks "partially" the curse of dimensionality. The rate is not driven by the number
of all variables but by the cardinality of the group with the largest number of variables. Many examples of
application of these wavelets were presented in chapter 5. Though the two straightforward applications were
image sequence and spectral/hyperspectral data denoising, we rapidly figured out that the advantages of the
presented construction go beyond regularity features. One can easily construct atoms that are imposing null
divergence on a group of variables. It is also possible to stabilize wavelet coefficients as in the wavelet-Fisz
methodology before considering variables on which the stabilization is not needed.

In contrast to the first two parts, part III was meant to address a specific problem. We wanted to recover
the brain activity, from functional magnetic resonance imaging data, without using spatial priors on the
regularity of the activation. This works subscribe as an extension of the total activation (TA) methodology
pioneered by I. Kaharanoglu, D. Van de Ville and their colleagues. Surprisingly1, this problem turned out
to have a common feature with the problems studied in part I. The characteristics of the data are different
along the spatial and temporal dimensions. In particular, the signals are blurred in time. This, actually,
brought to our minds another situation where the construction given in part I is useful, which is when we
want the wavelet to act as an differential operator on some variables and not on others. Following the TA
methodology, the sparsity prior, here, was on the spatial and temporal gradients through the notion of total
variation (TV). In chapter 11, we introduced new strategies for fMRI spatio-temporal deconvolution using
an anisotropic TV regularization which also allows to invert the effect of the temporal blur operator. The
results demonstrated that this construction retrieves a spatially coherent activity and reveals networks in the
brain without any prior. This is another step towards data-driven fMRI deconvolution which is promising
for the retrieval of spontaneous activity and resting-state networks in the brain.

Through the different parts of the thesis, we presented many perspectives that are interesting from our
point of view. We recall some of them

• The minimax results of part I were obtained assuming that the same regularity parameter along he
different groups of variables. It would be also interesting to consider the different regularity parameters.

1Also luckily.
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This is, actually, more appealing when considering problems with different regularities such as the
experiments presented in chapter 5.

• As mentioned in chapter 5, many of our experiments are motivated by real applications. Trying the
proposed wavelet construction on real data still the ultimate goal. Applications such as Phase-contrast
MRI velocity enhancement and US Doppler imaging denoising are of great interest and enjoyed a lot
of attention, recently.

• A natural extensions of the theoretical results about the hyperbolic wavelet-Fisz methodology is the
derivation of rates of convergences for the data-driven extension. We expect that, as in the one
dimensional case, the rate of convergence will remain optimal.

• It is also possible to use wavelets to represent faithfully some classes of spatially varying operators
while solving inverse problems. This is known as Galerkin wavelet method. Hyperbolic wavelets
are expected to outperform classical wavelets when the studied operator is anisotropic. A Galerkin
wavelet-Fisz framework can be derived for solving problems requiring both variance stabilization and
the inversion of an linear operator.

• Using the wavelet-Fisz methodology for Wigner-Ville distribution smoothing remains a challenge. well
suited for the hyperbolic framework because of the different regularities along the two (space/time)
dimensions.

• The main perspective of part III is to perform joint estimation of the activity and the hemodynamic
response function. This is can be done through the Taylor expansion of the latter.
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