Etudes descriptive, épidémiologique, moléculaire et spatiale des souches Mycobacterium tuberculosis circulant à Antananarivo, Madagascar

Thèse de doctorat de l'Université Paris-Saclay et de l'Université d’Antananarivo, préparée à l'Université Paris Sud 11

École doctorale n°577, Structure et dynamique des systèmes vivants
Spécialité de doctorat: Sciences de la vie et de la santé

Thèse présentée et soutenue à Antananarivo, le 11 décembre 2017, par

Mr Noël Harijaona RATOVONIRINA

Composition du Jury :

M. V. Jeannoda
Professeur émérite, Université d'Antananarivo (DBFA) Président

Mme. D. Rakoto
Professeur, Université d'Antananarivo (DBFA) Rapporteur

M. P. Supply
Professeur, Université Catholique de Louvain Rapporteur

Mme B. Andrianarisoa
Professeur titulaire, Université d’Antananarivo (DBFA) Examinatrice

M. J. L. Pernodet, Professeur
Professeur, Université Paris-Saclay (équipe MMA) Examinateur

Mme. V. Rasolofo
Professeur, Institut Pasteur de Madagascar (Directrice scientifique) Directeur de thèse

M. C. Sola
Professeur, Université Paris-Saclay (IGEPE team) Co-Directeur de thèse

NNT : 2017SACL527
TABLE DES MATIERES :

LISTE DES TABLEAUX .. V

LISTE DES FIGURES... VI

I GENERALITES .. 1

I.1 GENERALITES SUR LA TUBERCULOSE .. 1
 I.1.1 QU’EST-CE QUE LA TUBERCULOSE ? ... 1
 I.1.2 HISTOIRE ET DATES MARQUANTES DE LA TB .. 1
 I.1.3 EPIDEMIOLOGIE DE LA TB DANS LE MONDE ... 3
 I.1.3.1 DISTRIBUTION MONDIALE DES CAS DE TB .. 3
 I.1.3.2 EMERGENCE DES CAS DE RESISTANCE .. 4
 I.1.3.3 EVOLUTION DE LA TB MONDIALE .. 5
 I.1.4 L’OMS ET LES MOYENS ET STRATEGIES DE LUTTE CONTRE LA TB 6

I.2 LE DIAGNOSTIC DE LA TB ET L’IDENTIFICATION DES MYCOBACTERIES 6
 I.2.1 LES TESTS DE DIAGNOSTIC ... 7
 I.2.1.1 L’EXAMEN DIRECT PAR MICROSCOPIE .. 7
 I.2.1.2 LA RADIOGRAPHIE .. 8
 I.2.1.3 L’INTRADERMO-REACTION A LA TUBERCULINE 8
 I.2.1.4 AUTRES TESTS IMMUNOLOGIQUES .. 9
 I.2.1.5 LES TESTS MOLECULAIRES ... 9
 I.2.1.6 LA CULTURE .. 10

I.3 LES MYCOBACTERIES ET LE COMPLEXE M. TUBERCULOSIS 10
 I.3.1 SYSTEMATIQUE ... 10
 I.3.2 CARACTERISTIQUES DU GENRE Mycobacterium 13
 I.3.3 CARACTERISTIQUES DU GENOME DE M. tuberculosis 13
 I.3.4 LES MARQUEURS GENETIQUES DE M. tuberculosis 14
 I.3.4.1 LES ELEMENTS D’INSERTION (IS) .. 15
 I.3.4.2 LES MOTIFS PE ET PPE .. 16
 I.3.4.3 LES PROPHAGES PhiRv1 ET PhiRv2 ... 17
 I.3.4.4 LES SEQUENCES REPETES .. 18
 a. Les elements REP13E12 ... 18
 b. Le locus DR ... 18
 I.3.4.5 Les minisatellites .. 20
 I.3.5 LES METHODES DE GENOTYPAGE ... 21
 I.3.5.1 LE SPOLIGOTYPAGE .. 21
 I.3.5.2 LES MIRU-VNTR .. 23
 I.3.5.3 LA RFLP(IS6110) ... 25
 I.3.5.4 LA GENOMIQUE COMPARATIVE : LSPs, SNPs, WGS/NGS 26
 a. Les LSPs ... 26
 b. Les SNPs .. 27

I.4 TRANSMISSION ET DEVELOPPEMENT DE LA TB .. 28

I.5 LE TRAITEMENT DE LA TB .. 30
 I.5.1 TRAITEMENT DES CAS DE TB RESISTANTS ET MULTiresistantS aux
 ANTITUBERCULEX .. 32
 I.5.2 LA PREVENTION CONTRE LA TB ET LE VACCIN BCG 32

I.6 LA RESISTANCE DE M. TUBERCULOSIS AUX ANTITUBERCULEX 33
 I.6.1 LA RESISTANCE NATURELLE AUX ANTITUBERCULEX 33
 I.6.2 LA RESISTANCE ACQUISE AUX ANTITUBERCULEX 33
 I.6.2.1 SELECTION DES MUTANTS RESISTANTS .. 34
I. INTRODUCTION GENERALE

I.7 EPIDEMIOLOGIE DE LA TB

I.7.1 EPIDEMIOLOGIE MOLECULAIRE DE LA TB

I.7.1.1 PRINCIPE DE L’EPIDEMIOLOGIE MOLECULAIRE

I.7.1.2 EXEMPLES D’APPLICATION DE L’EPIDEMIOLOGIE MOLECULAIRE POUR LA TB

I.7.1.3 UTILITE DE L’EPIDEMIOLOGIE MOLECULAIRE

I.7.2 ASSOCIATION EPIDEMIOLOGIE MOLECULAIRE ET CLASSIQUE DE LA TB

I.7.3 LES METHODES EPIDEMIOLOGIQUES UTILISANT LE SIG

I.7.4 ASSOCIATION EPIDEMIOLOGIE MOLECULAIRE ET SIG

I.8 LA PHYLOGEOGRAPHIE ET LA CLASSIFICATION DES SOUCHES M. TUBERCULOSIS

I.9 HISTOIRE EVOLUTIVE DES SOUCHES M. TUBERCULOSIS

I.10 LA TB A MADAGASCAR

II ETUDE 1 : DIVERSITE ET DISTRIBUTION DES SOUCHES M. TUBERCULOSIS CIRCULANT A MADAGASCAR

III ETUDE 1 (en préparation)

III.1 PRESENTATION DE L’ETUDE

III.2 ARTICLE 1 (en préparation)

III.2.1 OBJECTIF

III.2.2 MATERIELS ET METHODES

III.2.2.1 DESCRIPTION DE LA ZONE D’ETUDE

III.2.2.2 ECHANTILLONNAGE

III.2.2.3 TRAITEMENT DES PRELEVEMENTS BIOLOGIQUES

III.2.2.4 DESACTIVATION DES SOUCHES ET EXTRACTION D’ADN

III.2.2.5 SPOLIGOTYPAGE

III.2.2.6 ANALYSE

III.2.2.7 CARTOGRAPHIE

III.2.3 RESULTATS

III.2.3.1 DESCRIPTION DES PATIENTS

III.2.3.2 SPOLIGOTYPAGE

III.2.3.3 DISTRIBUTION DES LIGNEES ET SOUS LIGNEES OBTENUES

III.2.3.4 COMPARAISON STATISTIQUE

III.2.4 DISCUSSION

III.3 CONCLUSION DE L’ETUDE

IV ETUDE 2 : DISTRIBUTION, DIVERSITE ET TRANSMISSION DE LA SOUCHE M. TUBERCULOSIS ENDEMIQUE MALGACHE : LE SIT109 (ARTICLE 2)

IV.1 PRESENTATION DE L’ETUDE
DEDICACE

Je dédie cette thèse :

À mes parents : Aucun hommage ne saurait être à la hauteur de l'amour dont vous n'avez jamais cessé de me combler par vos éductions spirituelle et pédagogique. Ce modeste travail est le fruit de tant d'années d'efforts et de sacrifices. Sans la personnalité et la force intérieure que vous avez forgées en moi, il aurait été impossible d'arriver aussi loin. Maman, je te souhaite vivement de retrouver la pleine santé et Papa, je te souhaite de reposer en paix!

À ma femme : Reçois mes sincères remerciements, pour les aides, le soutien que tu m'as offerts avec amour au cours de ces années passées. Que le fruit de ce travail nous apporte une meilleure vie pleine de joie et remplace le vide et les sacrifices pour la confection de notre avenir.

À mes enfants : Mes sources de joie et de courage. Veuillez trouver dans ce travail le fruit des sacrifices et des absences dont vous aviez dû subir pour son accomplissement. Que l'avenir vous réserve une vie pleine de joie et de réussite. Qu'elle ne vous soit pas avare de sagesse, de savoir, de force, de santé et de plénitude.

À tous ce qui me sont chers : Je n'ai pas les mots pour exprimer ma gratitude. Mon entourage, familles, amis et collègues ont toujours été pour moi une source d'aide et de support incomparable. Sans vos mains qui m'ont été tendues, vos sourires, il a été difficile de trouver la force de travailler. Puisse Dieu vous garder, éclairer votre route et vous aider à réaliser à votre tour vos rêves les plus chers.
REMERCIEMENTS

La présente étude n’aurait pas vu le jour sans l’aide bienveillante, le dévouement d’un certain nombre de personnes qui par leur présence, leurs conseils et leurs aides, m’ont apporté leur soutien. Je les en remercie et m’excuse d’avance de ne pas pouvoir les citer exhaustivement.

Je suis profondément reconnaissant à la Direction de l’Institut Pasteur de Madagascar (IPM) et à la Direction de l’Institut de Biologie Intégrative de la Cellule (I2BC), et antérieurement de l’Institut de Génétique et de Microbiologie (IGM) UMR8621 de l’Université de Paris Sud 11 d’avoir bien voulu m’accueillir dans leurs établissements respectifs.

Je tiens à exprimer toute ma reconnaissance et toute ma gratitude à mes deux co-directeurs de thèse :

Le Docteur Voahangy RASOLOFO RAZANAMPARANY, Chef de l’unité des Mycobactéries de l’Institut Pasteur de Madagascar, qui m’a accueillie avec bienveillance et amabilité à l’Unité des Mycobactéries de l’IPM et m’a accordé sa confiance et son soutien pour mener ce travail de recherche. Je la remercie aussi pour sa persévérance, ses conseils et ses encouragements.

Le Professeur Christophe SOLA, Chef de l’équipe « Infection, Génétique, Evolution des Pathogènes Emergents » (IGEPE), qui m’a aussi accueilli dans son laboratoire, m’a donné aides et conseils pour mener à bien ce travail. Je le remercie également pour sa disponibilité, sa persévérance, sa patience et son dévouement.

J’adresse également mes sincères remerciements aux membres du jury :

Au Pr. Victor JEANNODA, qui m’a fait l’honneur de présider le jury de cette thèse.

Au Pr. Doll RAKOTO et au Pr. Philip SUPPLY, qui m’ont fait l’honneur d’être les rapporteurs de cette thèse.

Au Pr. Blandine ANDRIANARISOA et au Pr. Jean Luc PERNODET, qui m’ont fait l’honneur d’accepter de juger cette thèse.
Ma reconnaissance va aussi à la Direction de l’IPM et l’équipe IGEPE pour le financement des projets de la thèse ainsi qu’aux responsables de l’attribution des différentes bourses (Bourse Girard de l’IPM, Bourse du Gouvernement français, Bourse d’aide aux thèses en cotutelle de l’Université Paris-Sud 11 et Bourse de Réseau International de l’Institut Pasteur) pour différents financements au cours de la thèse.

Ma reconnaissance va aussi au Ministère de la Santé malgache, à l’Unité d’épidémiologie de l’IPM, au PNLT (Programme National de Lutte contre la Tuberculose) ainsi qu’aux différents Centre de Diagnostic de de Traitement de la Tuberculose pour leurs collaborations et participation aux différentes études.

Mes plus vifs remerciements s’adressent également : au Docteur Niaina RAKOTOSAMIMANANA, au Docteur Guislaine REFREGIER, au Docteur Michel GOMGNIMBOU, au Docteur Fanjasoa RAKOTOMANANA, au Docteur Mamy Serge RAHERISON et au Docteur Andrianirina RAKOTOSON pour leurs précieuses aides.

Ma gratitude particulière à toute l’équipe de l’Unité des Mycobactéries de l’IPM et l’équipe de l'IGEPE pour leur soutien technique, collaboration, échanges fructueux et les relations sociales incomparables qui ont fait de ce travail une réussite.

Ma reconnaissance va aussi :

A Madame Muriel DECRAENE qui n’a pas ménagé d’effort pour les parties administratives à l’I2BC, ainsi que les personnels administratifs de l’IPM et de l’Université d’Antananarivo.

Je remercie également tous les enseignants de la Faculté des Sciences et tous les enseignants des classes antérieures pour m’avoir transmis leurs connaissances et expériences tout au long de mes études.

A tous ce qui ont contribué de près ou de loin à la réalisation de la thèse.

Et surtout à Ma famille qui m’a toujours soutenu tout au long de mes études.

Un grand Merci à tous !
<table>
<thead>
<tr>
<th>Abreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adénine</td>
<td>A</td>
</tr>
<tr>
<td>Acyl carrier protein</td>
<td>ACP</td>
</tr>
<tr>
<td>Acide désoxyribonucléique</td>
<td>ADN</td>
</tr>
<tr>
<td>Acide ribonucléique</td>
<td>ARN</td>
</tr>
<tr>
<td>Acide ribonucléique ribosomal</td>
<td>ARNr</td>
</tr>
<tr>
<td>Acide ribonucléique de transfert</td>
<td>ARNt</td>
</tr>
<tr>
<td>Bacille Acido-Alcool Résistant</td>
<td>BAAR</td>
</tr>
<tr>
<td>Bacille de Calmette et Guérin</td>
<td>BCG</td>
</tr>
<tr>
<td>Bacille de Koch</td>
<td>BK</td>
</tr>
<tr>
<td>Cytosine</td>
<td>C</td>
</tr>
<tr>
<td>CRISPR-associated</td>
<td>CAS</td>
</tr>
<tr>
<td>Charge coupled device</td>
<td>CCD</td>
</tr>
<tr>
<td>Centre de Diagnostic et de Traitement de la Tuberculose</td>
<td>CDT</td>
</tr>
<tr>
<td>Concentration Minimale Inhibitrice</td>
<td>CMI</td>
</tr>
<tr>
<td>Centre national de référence des Mycobactéries</td>
<td>CNRM</td>
</tr>
<tr>
<td>Commune Urbaine d’Antananarivo</td>
<td>CUA</td>
</tr>
<tr>
<td>Complexe Mycobacterium tuberculosis</td>
<td>MTBC</td>
</tr>
<tr>
<td>Dioxyde de carbone</td>
<td>CO₂</td>
</tr>
<tr>
<td>Clustered regularly interspaced short palindromic repeats</td>
<td>CRISPR</td>
</tr>
<tr>
<td>Directly Observed Therapy Short-course</td>
<td>DOTS</td>
</tr>
<tr>
<td>Dual Priming oligonucléotide</td>
<td>DPO</td>
</tr>
<tr>
<td>Direct repeat region</td>
<td>DR</td>
</tr>
<tr>
<td>Deletion sequence 6</td>
<td>DS6</td>
</tr>
<tr>
<td>Désoxythymidine mono phosphate</td>
<td>dTMP</td>
</tr>
<tr>
<td>Enhanced Chemo-Luminescence Detection kit</td>
<td>ECL</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>EMB</td>
</tr>
<tr>
<td>et al.</td>
<td>et al.</td>
</tr>
<tr>
<td>Ethionamide</td>
<td>ETH</td>
</tr>
<tr>
<td>Exact tandem repeat</td>
<td>ETR</td>
</tr>
<tr>
<td>Flavine Adénine Dinucléotide</td>
<td>FAD</td>
</tr>
<tr>
<td>Guanine-Thyrosine-Guanine</td>
<td>GTG</td>
</tr>
<tr>
<td>Heure</td>
<td>H</td>
</tr>
<tr>
<td>Indice de Gaston et Hunter</td>
<td>HGDI</td>
</tr>
<tr>
<td>Histidine</td>
<td>His</td>
</tr>
<tr>
<td>id est (c’est-à-dire)</td>
<td>i.e.</td>
</tr>
<tr>
<td>Intradermoréaction</td>
<td>IDR</td>
</tr>
<tr>
<td>Interféron gamma</td>
<td>IFN-γ</td>
</tr>
<tr>
<td>Isoniazide</td>
<td>INH</td>
</tr>
<tr>
<td>Institut Pasteur de Madagascar</td>
<td>IPM</td>
</tr>
<tr>
<td>Insertion Sequence</td>
<td>IS</td>
</tr>
</tbody>
</table>
kb kilobase
LAMP PCR Loop mediated isothermal amplification
LJ Lohenstein Jensen
LSP Large sequence polymorphism
MGIT Mycobacteria Growth Indicator Tube (Tube indicateur de croissance mycobactérienne)
MIRU Mycobacterial Interspersed Repetitive Unit (unité répétitive dispersée dans le génome mycobactérien)
MOTT Mycobacteria other than tuberculosis
MR Multi-résistante
MTCB Complexe Mycobacterium tuberculosis
NAD(P) Nicotinamide Adénine Dinucléotide (Phosphate)
NTM Non tuberculosis mycobacteria
OMS Organisation Mondiale de la Santé
PAS Acide p-aminosalicylique
pb Paire de bases
PCR Polymerase Chain Reaction (Réaction de Polymérisation en Chaîne)
PE Proline-glutamine
PGG Principal Genetic Group (Groupe Génétique Principal)
PGRS Polymorphic GC rich sequences
PIT Primo-infection tuberculeuse
pmol picomoles
PNLT Programme National de Lutte contre la Tuberculose
POA Acide pirazinoïque
PPD Purified Protein Derivative
PPE Proline-proline-glutamine
PZA Pyrazinamide
QGis Quantum GIS
QUB Queen's university Belfast
RASA Rapport d'activité sur la riposte contre le SIDA à Madagascar
RD Region deleted
RFLP Restriction fragment length polymorphism (Polymorphisme de la longueur de fragments de restriction)
RIF Rifampicine
RRDR Rifampin Resistance Determining Region
SCC Short Course Chemotherapy (Thérapie médicamenteuse de courte durée)
SDS Sodium dodecyl sulfate
Ser Serine
SIDA Syndrome d'Immuno-Déficience Acquise
SIG Système d'information géographique
SM Streptomycine
SNP Single Nucleotide Polymorphism (Polymorphisme au niveau d’un seul nucléotide)
Spoligo-RIF Spoligotyping and rifampicin sensibility test
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>Shared-type</td>
</tr>
<tr>
<td>SIT</td>
<td>Spoligo-international type</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculose</td>
</tr>
<tr>
<td>TBD1</td>
<td>Tuberculosis deletion region 1</td>
</tr>
<tr>
<td>TB-MR</td>
<td>Tuberculose multi-résistante aux antibiotiques</td>
</tr>
<tr>
<td>TB-SPRINT</td>
<td>tuberculosis-spoligotyping/rifampicin and isoniazid sensibility test</td>
</tr>
<tr>
<td>TB-TDR</td>
<td>Tuberculose totalement résistante aux antibiotiques</td>
</tr>
<tr>
<td>TB-UR</td>
<td>Tuberculose à ultra résistante aux antibiotiques</td>
</tr>
<tr>
<td>TCH</td>
<td>Acide thiophène-2-carboxylique</td>
</tr>
<tr>
<td>TDR</td>
<td>Totally Drug résistant – Résistant à tous les antituberculeux disponibles actuellement</td>
</tr>
<tr>
<td>THF</td>
<td>cofacteur tetrahydrofolate</td>
</tr>
<tr>
<td>UR</td>
<td>Ultra résistante</td>
</tr>
<tr>
<td>VIH</td>
<td>Virus de l’Immunodéficience Humaine</td>
</tr>
<tr>
<td>VNTR</td>
<td>Variable Number of Tandem Repeat (Nombre variable de répétition en tandem)</td>
</tr>
<tr>
<td>WGS/NGS</td>
<td>Whole Genome Sequencing/Next Generation Sequencing : séquencage du génome de troisième génération</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization (Organisation Mondiale de la Santé - OMS)</td>
</tr>
</tbody>
</table>
LISTE DES TABLEAUX

Tableau 1: Liste des 104 oligonucléotides utilisés en spoligotypage correspondant aux espaceurs connus chez MTBC ... 19
Tableau 2: Liste des 24 locus VNTR standards utilisés actuellement pour la technique MIRU-VNTR ... 24
Tableau 3: Liste des antituberculeux disponibles actuellement ... 31
Tableau 4: Les régions génomiques associées à une diminution ou une perte de la sensibilité aux agents antituberculeux .. 37
Tableau 5: Les différentes classifications des souches M. tuberculosis 48
Tableau 6: Les familles et sous-familles de spoligotypes décrites dans SITVITWEB et leur règles d’identification .. 50
Tableau 7: Diversité des spoligotypes circulant à Madagascar ... 55
Tableau 8: Composition du mélange réactionnel pour l’amplification de la région DR pour le spoligotypage .. 65
Tableau 9: Cycle de température utilisé pour l’amplification de la région DR pour le spoligotypage .. 65
Tableau 10 : Stratification par âge des patients inclus dans l’étude ... 68
Tableau 11: Répartition des 1014 patients dans les 19 régions de Madagascar 68
Tableau 12 : Liste des spoligotypes les plus communs de l’étude .. 70
Tableau 13: Comparaison de la distribution des différentes lignées de spoligotypes entre les 6 provinces de Madagascar .. 74
Tableau 14: Comparaison de la distribution des souches EAI et des non EAI entre Antananarivo et les autres provinces .. 74
Tableau 15: Comparaison de la distribution des souches T et des non T entre Antananarivo et les autres provinces .. 74
LISTE DES FIGURES

Figure 1: Découverte des antituberculeux et évolution du traitement de la TB au cours du temps .. 2
Figure 2: Incidence de la TB dans le monde en 2014 .. 4
Figure 3: Distribution des nouveau cas de TB MR en 2014 ... 5
Figure 4: Observation microscopique de frottis faisant apparaître des BAARs par la coloration de Ziehl-Nelsen (A) et par la coloration à l’Auramine O (B) .. 7
Figure 5: Radiographie d’un tuberculeux pulmonaire .. 8
Figure 6: Systématique des espèces du genre Mycobacterium ... 11
Figure 7: Arbre phylogénétique des mycobactéries à croissance lente selon la séquence du gène ARNr 16S. M. fortuitum a été utilisé comme « outgroup ». 12
Figure 8: Représentation du génome de M. tuberculosis H37Rv ... 14
Figure 9: Distribution des 29 IS, des 2 prophages PhiRv1 et PhiRv2 et des 7 éléments REP13E12 sur le génome de la souche H37rv .. 16
Figure 10: Structure de la région DR .. 18
Figure 11: Distribution des 41 locus MIRU sur le génome de H37rv 21
Figure 12: Le spoligotypage ... 22
Figure 13: Les sites de restriction IS6110 chez M. bovis .. 25
Figure 14: Formation et progression du granulome lors d’une infection à M. tuberculosis 29
Figure 15: A- le Magpix; B- le Luminex 200 ... 39
Figure 16: Distribution des lignées de spoligotype dans SITVITWEB 51
Figure 17: Modèle de schéma évolutif des espèces du MTBC selon Brosch et al. 2002 52
Figure 18: Relation évolutive entre les membres du CMTB et les autres espèces de mycobactéries .. 53
Figure 19: Description et distribution des principaux spoligotypes trouvés à Madagascar 56
Figure 20: Les clusters spatiaux de cas de TB à Antananarivo, de 2005 à 2011 56
Figure 21: Description de la zone d’étude et distribution des CDTs inclus dans l’étude 63
Figure 22: Distribution des lignées et des sous-lignées de spoligotypes obtenus 72
Figure 23: Distribution des lignées de spoligotypes dans les 6 provinces de Madagascar 73
I GENERALITES

1 GENERALITES SUR LA TUBERCULOSE

1.1 QU’EST-CE QUE LA TUBERCULOSE ?

La tuberculose (TB) est une maladie infectieuse contagieuse dont la transmission est interhumaine et se fait par voie aérienne. La TB est une maladie mortelle mais curable qui constitue jusqu’à nos jours l’une des maladies les plus meurtrières dans le monde et particulièrement dans les pays en voie de développement (WHO, 2015). La TB humaine est due principalement à un nombre limité de variants d’une espèce de Mycobactéries regroupés sous l’appellation de « Complexe Mycobacterium tuberculosis » (MTBC) dont la plus importante est Mycobacterium tuberculosis connue aussi sous l’appellation de BK pour « Bacille de Koch ». Cette dernière cause la majorité des cas de TB humaine. L’homme demeure actuellement le principal réservoir naturel de M. tuberculosis (Van Soolingen et al., 1997), mais la maladie touche également de nombreuses espèces animales. Les poumons sont à la fois la porte d’entrée des bacilles tuberculeux et l’organe de prédilection pour le développement de la maladie.

1.1.2 HISTOIRE ET DATES MARQUANTES DE LA TB

Trois formes principales de maux ont été désignées par les historiens comme étant de la TB : le « mal de Pott » défini par des séquelles caractéristiques au niveau des vertèbres (Crubézy et al., 1998), les scrofules correspondant à des ganglions infectés au niveau du cou avec écoulement de pus et la TB pulmonaire dont des épidémies à grande échelle ont été identifiées au XVIIème siècle. La maladie portait au XVIIème et XVIIIème siècle les noms de « phtisie pulmonaire » ou de « consomption » qui signifient respectivement amaigrissement excessif et décharnement (Aronowitz, 2004).
En 1865, le médecin Jean-Antoine Villemin démontra expérimentalement le caractère contagieux de la TB. Il démontra la transmission de la maladie à des lapins inoculés avec des broyats de lésions tuberculeuses humaines et bovines (Major, 1945).

Plus tard, en 1882, le microbiologiste allemand Heinrich Hermann Robert Koch a mis en évidence le lien existant entre la TB humaine et l’agent pathogène *M. tuberculosis* aussi dénommé Bacille de Koch (Major, 1945).

![Figure 1: Découverte des antituberculeux et évolution du traitement de la TB au cours du temps](image)

Figure 1: Découverte des antituberculeux et évolution du traitement de la TB au cours du temps

I.1.3 EPIDEMIOLOGIE DE LA TB DANS LE MONDE (WHO, 2015)

Malgré les progrès de la lutte contre la TB et le potentiel de guérison de tous les cas de TB, la maladie figure désormais au même titre que le VIH-SIDA parmi les principales causes de décès dans le monde (WHO, 2015). D’après les estimations de l’OMS, la TB a tué 1,5 millions de personnes dont 400000 VIH-positives en 2014. 9,6 millions de personnes auraient contracté la TB en 2014 dont 12% de VIH-positives (WHO, 2015).

I.1.3.1 DISTRIBUTION MONDIALE DES CAS DE TB

Sur les 9,6 millions de nouveaux cas enregistrés en 2014, 58% proviennent des régions de l’Asie du Sud-Est et du Pacifique occidental. La région africaine comptabilisait 28% des cas avec la plus lourde charge par rapport à sa population (281 cas pour 100000 habitants), soit plus du double de la moyenne mondiale de 133 cas pour 100000 habitants. L’Inde, l’Indonésie et la Chine comptaient le plus grand nombre de cas : 23%, 10% et 10% respectivement du total mondial (figure 2). Un quart de la population mondiale est estimé être infecté par *M. tuberculosis*.
I.1.3.2 EMERGENCE DES CAS DE RESISTANCE

Les facteurs pouvant expliquer l’émergence et la propagation des souches pharmaco-résistantes sont l’utilisation de traitements inappropriés, la mauvaise observance de ces traitements ou encore l’utilisation de médicaments de mauvaise qualité (WHO, 2001). Les souches MR définies comme des souches résistantes à au moins l’INH et à la RIF, sont plus complexes à traiter et nécessitent des traitements plus longs (jusqu’à 2 ans) et plus onéreux (jusqu’à 100 fois le prix d’un traitement d’une souche sensible) avec une efficacité réduite. (http://www.who.int/mediacentre/factsheets/fs104/fr/print.html).

En 2014, 480000 cas de TB ont été estimés MR dont un quart seulement ont été détectés et notifiés. 3,3% des nouveaux cas de TB (figure 3) et 20% des patients traités précédemment sont atteints de la TB-MR. 190000 décès ont été estimés dus à la TB-MR. Plus de la moitié des cas de TB-MR (54%) provient de l’Inde, de la Chine et de la Fédération de Russie.

Figure 2: Incidence de la TB dans le monde en 2014
*Incidence estimée en nombre de nouveaux cas par 100000 habitants par année
La TB Ultrarésistante (TB-UR), définie comme à la fois MR et résistante aux fluoroquinolones et à un antibiotique de seconde ligne injectable (aminoglycoside ou capréomycine) (CDC, 2006; Jassal et Bishai, 2009) a été signalée dans 105 pays en 2015. 9,7% des cas de TB-MR sont UR.

I.1.3.3 EVOLUTION DE LA TB MONDIALE

L’incidence mondiale de la TB a diminué en moyenne de 1,5% par an depuis l’an 2000 et est estimée à 18% inférieure à son niveau depuis cette année. La prévalence mondiale de la TB en 2015 était de 42% inférieure à son niveau de 1990. La prévalence réduite de moitié comparée aux données de 1990 a été atteinte pour 3 régions de l’OMS : Amériques, Asie du Sud-Est et Pacifique occidental ; ainsi que dans 9 pays à forte charge : Brésil, Cambodge, Chine, Ethiopie, Inde, Myanmar, Ouganda, Philippines et Viet Nam.
I.1.4 L’OMS ET LES MOYENS ET STRATEGIES DE LUTTE CONTRE LA TB

En 2001, l’OMS décide de renforcer la stratégie DOTS et lance le plan mondial « Halte à la TB » visant « un monde sans TB » et dont l’objectif principal est de réduire drastiquement l’incidence de la maladie dans le monde d’ici 2015. La TB sera considérée comme éradiquée lorsque son incidence passera en dessous du seuil de un cas pour 100 000 habitants par an (WHO, 2010).

À partir de 2016, le but de l’OMS est de mettre un terme à l’épidémie mondiale de la TB. Adoptée par l’Assemblée mondiale de la Santé en mai 2014 et assortie de cibles liées aux nouveaux objectifs de développement durable, la Stratégie propose aux pays des pistes pour réduire le nombre de décès par TB de 90 % d’ici à 2030 (par rapport au niveau de 2015), réduire le nombre de nouveaux cas de 80 % et faire en sorte qu’aucune famille ne supporte de coûts catastrophiques liés à la TB (WHO, 2015).

I.2 LE DIAGNOSTIC DE LA TB ET L’IDENTIFICATION DES MYCOBACTERIES

Plusieurs méthodes de diagnostic de la TB et d’identification des mycobactéries avec différents niveaux de sensibilité et spécificité sont utilisées actuellement. Les méthodes de diagnostic reposent sur l’examen microscopique direct à partir de prélèvements biologiques, sur la mise en évidence de bacilles dans ces prélèvements par la culture ou par des tests utilisant la biologie moléculaire à partir d’ADN ou encore des tests immunologiques. Les méthodes d’identification reposent sur l’aspect morphologique des colonies à partir de la culture ou sur des tests biochimiques ou encore des tests moléculaires. Certains tests
moléculaires servent à la fois de test de diagnostic de la TB et de test d’identification des mycobactéries. Quelques tests les plus fréquemment utilisés ainsi que les tests de références sont cités ci-après :

I.2.1 LES TESTS DE DIAGNOSTIC

I.2.1.1 L’EXAMEN DIRECT PAR MICROSCOPIE

En cas de suspicion de TB pulmonaire, à partir des signes cliniques d’un patient, des examens bactériologiques sont pratiqués sur l’expectoration du malade. Ils peuvent aussi être pratiqués sur des tubages gastriques (sécrétions bronchiques dégluties) ou des aspirations bronchiques. Pour les patients tuberculeux avec une localisation extra-pulmonaire soupçonnée, les prélèvements (biopsie) sont faits en fonction de la localisation de la maladie.

Un frottis, ou étalement du prélèvement biologique sur lame mince est effectué, puis coloré afin de mettre en évidence la propriété d’acido-alcoolo résistance spécifique des mycobactéries. Deux méthodes de coloration sont utilisées : la coloration de Ziehl-Neelsen, ou la coloration à l’auramine (fluorochrome) (figure 4). L’examen direct ne permet de détecter la présence des bacilles acido-alcoolo résistants (BAAR) dans un prélèvement biologique qu’à partir de 0,5 à 1,1 bactéries par microlitre de prélèvement biologique (Saltini, 2006).

Figure 4: Observation microscopique de frottis faisant apparaître des BAARs par la coloration de Ziehl-Neelsen (A) et par la coloration à l’Auramine O (B)
Source : http://ntcc.ucsd.edu (Margaret A. Barlet, Ph. D, MT (ASCP) SM, Diplomat A.B.M.M., Medical Technology Program, University of Arkansas for Medical Sciences). Modification sur adobe Photoshop CS6
I.2.1.2 LA RADIOGRAPHIE

La radiographie pulmonaire permet d’établir un bilan initial des lésions thoraciques de forme, de siège et de taille variable. L’aspect des lésions est sans rapport avec l’intensité de la maladie. La spécificité de la radiographie pour la tuberculose pulmonaire varie beaucoup selon différentes études (27% à 81%). Il existe quatre types de lésions : le nodule, le tuberculome, l’infiltrat et la caverne (figure 5).

![Figure 5: Radiographie d’un tuberculeux pulmonaire](source: http://www.asnom.org/fr/428_tuberculose.html, Modification sur Adobe Photoshop CS6)

- **L’infiltrat** se traduit comme des lésions débutantes de l’infection. Il se manifeste comme une partie peu opaque, hétérogène et étendue de l’imagerie radiographique.
- **Le nodule** est un granulome de taille variable, isolé ou groupé.
- **Le tuberculome** est un nodule isolé pseudo-tumoral.
- **La caverne** est une région vide due à une perte de substance au sein d’un infiltrat à paroi épaisse.

Dans sa forme pulmonaire, la TB se manifeste par la présence d’infiltrats et de nodules principalement localisés aux sommets des poumons et parfois associés à des cavernes.

I.2.1.3 L’INTRADERMO-REACTION A LA TUBERCULINE

L’intradermo-réaction (IDR) à la tuberculine ou test de Mantoux est un test de diagnostic de la TB basé sur l’observation d’une réaction cutanée d’hypersensibilité retardée après injection intradermique de tuberculine (antigènes mycobactériens composés de mélange de protéines extraites de culture de MTBC et purifiées appelé PPD / « Purified Protein Derivative »). Cette réaction témoigne chez le patient de l’existence d’une immunité à
médiation cellulaire vis-à-vis des mycobactéries, réaction induite soit par une vaccination préalable par le BCG, soit par un contact antérieur avec le BK ou certaines mycobactéries atypiques. Le test IDR est utilisé aussi bien pour le diagnostic de la TB active que pour le diagnostic de la TB latente.

On parle de virage tuberculinique, si sur quelques mois d’intervalle, le résultat de l’IDR initialement négatif (<5 mm) ou faiblement positif (entre 5 et 9 mm) devient positif (>10 mm).

I.2.1.4 AUTRES TESTS IMMUNOLOGIQUES

Des tests immunologiques comme le test QuantiFERON-TB-Gold® et le test TSPOT-TB® ont été développés récemment pour le diagnostic de l’infection tuberculeuse latente (L’Hadj et al., 2006; Lalvani, 2007). Ces tests présentent comme avantage de ne pas être perturbés par une vaccination antérieure au BCG ou par une infection causée par une autre mycobactérie (Al-Orainey, 2009; Bocchino et al., 2009; Richeldi, 2006).

I.2.1.5 LES TESTS MOLECULAIRES

Aujourd’hui, de nombreuses techniques moléculaires adaptées au diagnostic de la TB utilisant l’ADN des mycobactéries sont utilisées. Ces tests sont basés sur l’amplification génique par la classique réaction de PCR (« Polymerase Chain Reaction ») sur des séquences spécifiques des souches *M. tuberculosis* (D’Amato et al., 1995), par la PCR en temps réel comme pour le cas du Xpert MTB/RIF (§ I.6.4.2-c) (Blakemore et al., 2010; Broccolo et al., 2003; Helb et al., 2010), ou aussi par la LAMP-PCR (Loop-mediated isothermal amplification) (Boehme et al., 2007; Cao et al., 2015) permettant la détection de séquences nucléiques spécifiques des bacilles tuberculeux ; cette PCR peut être suivie ou non de l’hybridation des produits d’amplification sur des sondes spécifiques. Cependant, ces techniques présentent, actuellement, une sensibilité insuffisante lorsqu’elles sont appliquées directement sur des échantillons biologiques (Kim et al., 2009). Elles présentent par contre une sensibilité et une spécificité excellentes lors de leur utilisation à partir d’extraits de culture.
I.2.1.6 LA CULTURE

La culture est la méthode de référence pour le diagnostic de la TB. Seule une culture positive à *M. tuberculosis* constitue une preuve formelle du diagnostic d’une TB. Elle est plus sensible que la microscopie. Sa sensibilité varie de 80% à 85% alors que la sensibilité varie de 50% à 80% pour la microscopie. Elle s’effectue sur milieu de culture enrichi, solide (milieu de Löwenstein-Jensen ou milieu de Colestos) où les résultats s’obtiennent entre 4 à 8 semaines ; ou sur milieu liquide (Middlebrook 7H11, 7H10, 7H9, MGIT/Mycobacteria Growth Indicator Tube ou Dubos) où les résultats s’obtiennent plus rapidement (environ 15 jours).

I.3 LES MYCOBACTERIES ET LE COMPLEXE *M. TUBERCULOSIS*

I.3.1 SYSTEMATIQUE

Le genre *Mycobacterium* appartient à la famille des MYCOBACTERIACEAE et à l’ordre des ACTINOMYCETALES (Garrity *et al.*, 2004). Ce genre regroupe actuellement plus de 120 espèces différentes (Shinnick et Good, 1994; Tortoli, 2006), classées en :

- *mycobactéries atypiques* qui regroupent les mycobactéries non tuberculeuses (NTM) connus aussi sous l’appellation de « *Mycobacteria other than tuberculosis* » – MOTT ou encore « Mycobactéries autres que *Mycobacterium tuberculosis* » - MAMT.

- *mycobactéries du complexe* *M. tuberculosis* (MTBC) qui regroupent les agents de la TB humaine :
 - et une distinction particulière faite pour *M. leprae*, et *M. ulcerans*, agents responsables respectivement de la lèpre et de l’ulcère de Buruli.

La systématique des espèces du genre *Mycobacterium* est représentée sur la figure 6.
Les mycobactéries atypiques généralement non pathogènes pour l’homme (MAMT), peuvent être sources d’infections chez les personnes immunodéprimées. Elles se diffèrent du MTBC par leur moindre virulence et par l’absence de transmission inter-humaine. Ce sont des mycobactéries omniprésentes dans l’environnement. On peut citer parmi ces mycobactéries atypiques : M. avium-intracellulare, M. marinum (avec un * sur la figure 7) ou encore M. abscessus (Bryant et al., 2013).
I.3.2 CARACTERISTIQUES DU GENRE *Mycobacterium*

Les bactéries du genre *Mycobacterium* sont des bactéries aérobies strictes, généralement non sporulantes, non mobiles, et en forme de fin bâtonnet d’environ 4µm de long et 0,4µm de large ou légèrement incurvées et dépouvrues de capsule.

Elles se caractérisent par leur acido-alcoolo-résistance c’est-à-dire leur capacité à résister à la décoloration par les acides et les alcools et leur croissance particulièrement lente avec un temps de dédoublement de 12h à 24h (Harshey et Ramakrishnan, 1977). Ces bactéries se caractérisent également par la composition en acides mycoliques (acides gras à longue chaine) de leur paroi cellulaire conférant une haute imperméabilité de cette dernière et un faible niveau de fixation de la coloration de Gram qui leur donne la considération par défaut de bactéries Gram positives, ainsi que la résistance naturelle à certains antibiotiques usuels.

La non-sporulation des mycobactéries est admise par la majorité des chercheurs (Traag et al., 2010).

I.3.3 CARACTERISTIQUES DU GENOME DE *M. tuberculosis*

Le génome d’une souche *M. tuberculosis* de référence utilisée jusqu’à nos jours, la souche H37Rv a été séquencé et annoté en 1998 (Cole et al., 1998). Il s’agit d’un génome constitué d’un chromosome unique et circulaire de 4.411.532 paires de bases, comprenant 3995 phases de lecture et formant environ 4000 gènes (figure 8). L’ADN de *M. tuberculosis* présente un taux élevé en guanine et en cytosine (65,6%) sauf dans quelques régions particulières telles que les gènes qui codent pour les protéines transmembranaires. Une grande partie des gènes (6% du génome) semble coder pour des enzymes impliqués dans la synthèse et la dégradation de lipides. Plus de 50% des protéines codées ont des fonctions connues actuellement. L’homologie entre les ADN des différentes sous-espèces du MTBC est très élevée (>99,9%) (Garnier et al., 2003; Smith et al., 2009) ce qui fait qu’il s’agit stricto sensu d’une seule espèce bactérienne. Cette restriction de la diversité nucléotidique peut être expliquée soit par une fidélité de réplication inhabituelle, soit par un système de réparation des erreurs très efficace, soit par une origine évolutive très récente, soit encore par un taux de mutation très faible compte tenu du style de vie de ce bacille (intracellulaire), aucune de ces raisons n’étant exclusive. Le génome est aussi caractérisé par l’utilisation du codon Guanine-Tyrosine-Guanine (GTG) comme codon d’initiation dans plus de 35% des gènes.
Figure 8: Représentation du génome de *M. tuberculosis* H37Rv

Le cercle extérieur indique l'échelle en megabases, 0 représente l'origine de réplication. Le premier cercle de l'extérieur représente les positions des gènes codant des ARN stables (ARNt en bleu, les autres en rose) et la région « Direct Repeat » (carré rose); le second cercle de l'intérieur montre les séquences codantes par brin (dans le sens horaire, vert foncé; antihoraire, vert clair); le troisième cercle représente les séquences répétées (les séquences d'insertion en orange; la famille REP13E12 en rose foncé; les prophages en bleu); le quatrième cercle montre les positions des membres de la famille des PPE (en vert); le cinquième cercle montre les membres de la famille des PE (en violets, à l'exclusion des PGRS); et le sixième cercle montre les positions des séquences PGRS (en rouge foncé). L'histogramme du centre représente le contenu en G+C, avec <65% G+C en jaune, et > 65% G+C en rouge. La figure a été générée avec le logiciel DNASTAR®. (Cole *et al.*, 1998)

1.3.4 LES MARQUEURS GENETIQUES DE *M. tuberculosis*

Le génome de *M. tuberculosis* est aussi caractérisé par des séquences nucléotidiques particulières polymorphes utilisées comme des marqueurs génétiques d'évolution et/ou d'épidémiologie. Ces marqueurs sont utilisés pour des études d'épidémiologie moléculaire, de classification ou de phylogénie. Parmi ces marqueurs génétiques, on trouve des séquences répétées (les CRISPR, les mini satellites ou les éléments d'insertion), des délétions ou insertions de courts ou de longs fragments d'ADN, des régions PE (Proline – Acide Glutamique) et PPE (Proline – Proline - Acide Glutamique) ou tout simplement des variations nucléotidiques individuelles ou SNPs.
Des techniques de typage spécifiques du MTBC conçues pour la détermination de ces variations au niveau de ces marqueurs ont été développées telles que : la RFLP IS6110 (Van Embden et al., 1993), qui fut longtemps la méthodes de référence, le spoligotypage (Kamerbeek et al., 1997; Zhang et al., 2010), les MIRU-VNTR (« Mycobacterial Interspersed Repetitive Units – Variable Number of Tandem Repeat ») (Supply et al., 2000; Supply et al., 2006), et depuis peu la génomique comparative par séquençage de nouvelle génération (« Whole Genome Sequencing » - WGS / « Next Generation Sequencing » - NGS : séquencage du génome de nouvelle génération). Ces techniques vont être décrites dans le paragraphe § 1.3.5. à la page 21.

I.3.4.1 Les éléments d’insertion (IS)

Le génome des mycobactéries présente 29 différentes séquences d’insertion transposables de taille de l’ordre de 1,4-2,5kb pouvant s’insérer dans de multiples sites du génome (Gordon et al., 1999). Des régions « Hotspot » d’intégration de ces IS sont retrouvées au niveau d’autres familles de séquences telles que la région « Direct Repeat » (DR), les PE/PPE (Proline-Acide Glutamique / Proline-Proline-Acide Glutamique) ou des gènes codant pour des antigènes potentiels (Cole et al., 1998; Warren et al., 2000). L’IS le plus étudié chez les MTBC est l’IS6110 de taille égale à 1361 paires de bases (Thierry et al., 1990). Le polymorphisme du nombre et de la position des IS6110 dans le génome des souches du MTBC a été utilisé pour leur génotypage (Van Embden et al., 1993). Les IS6110 sont conservées et très répandues dans les bactéries MTBC. Le génome de H37rv possède 16 copies IS6110 réparties de manière inéquitable sur tout le génome (figure 9) (Cole et al., 1998). Les rôles biologiques des IS ou la conséquence de leur insertion dans le génome de M. tuberculosis ne sont pas encore bien connus même si l’insertion de IS6610 peut avoir des conséquences sur l’expression de certains gènes (Soto et al., 2004). Une compensation de la perte de fitness a été observée chez une souche M. bovis provenant d’Espagne après insertion d’un IS6110 en amont du locus phoPR (Gonzalo-Asensio et al., 2014).
I.3.4.2 Les motifs PE et PPE

Les régions PE/PPE représentent environ 10% du génome de la souche H37Rv. Les gènes de ces séquences PE/PPE sont regroupés en clusters et répartis en multiples copies polymorphes sur tout le génome. Dans le génome de H37Rv, une centaine de régions PE/PPE ont été identifiées. Celles-ci ont été classées en 3 sous-familles, selon la nature et la présence ou non de motifs répétés associés aux PE/PPE : les PE-PGRS, les PPE-MPTR et les PE ou PPE.

La sous-famille des PGRS ou « polymorphic GC-rich sequences » particulièrement riche en G+C sont organisées en microsatellites dont les motifs varient d’une souche de
mycobactérie à une autre. La classe PE_PGRS comporte 61 membres. Elle est caractérisée par des motifs répétés en tandem, c'est-à-dire en unité monomérique associées aux PE ou aux PPE. Les PE_PGRS sont retrouvées exclusivement dans les bactéries MTBC.

Les fonctions de tous les gènes PE/PPE n’ont pas été précisées, il semble qu’ils soient impliqués dans des facteurs de virulence de la bactérie tels que la persistance des mycobactéries (Camacho et al., 1999; Talarico et al., 2005).

I.3.4.3 Les prophages PhiRv1 et PhiRv2

Deux régions du génome de H37Rv possèdent des organisations similaires avec des gènes phagiques adjacents situés dans un même locus et ont été considérées comme des prophages dénommés PhiRv1 et PhiRv2 respectivement (Cole et al., 1998). La présence et/ou la localisation des gènes de PhiRv1 semble être assez variable d’une souche à une autre. Une étude comparative des régions de différences entre quelques mycobactéries a en effet montré que le prophage PhiRv1 est absent dans 16% des souches cliniques étudiées et aussi absent chez la souche vaccinale BCG (Mahairas et al., 1996). Les gènes du prophage PhiRv2 sont généralement toujours présents et sont relativement plus stables. La position des 2 prophages dans le génome de H37rv est représentée dans la figure 16. Le prophage PhiRv1 possède 7 sites d’attache potentiels (ATT) dans le génome de H37Rv (Bibb et Hatfull, 2002; Bibb et al., 2005; Hendrix et al., 1999).

Le prophage PhiRv1 est par ailleurs flanqué de séquences REP13E12 (§ 1.3.4.4-a). Il a été suggéré que l’opéron biotine de la souche H37Rv a d’abord été interrompu par des séquences REP13E12 suite à un stress. Cette séquence REP13E12 aurait ensuite servi de site d’insertion du prophage PhiRv1 dans le génome de H37Rv (Gordon et al., 1999).

Le rôle biologique de ces prophages dans les bactéries MTBC n’est pas encore clairement établi. Leur présence semble cependant indiquer leur contribution dans des transferts horizontaux impliqués dans la dynamique et la structure du génome des bactéries MTBC.
I.3.4.4 Les séquences répétées

a. Les éléments REP13E12

Il s’agit de séquences répétées, de la famille des séquences entrecoupées ou « Interspersed sequences », de 1,3 kb à 1,5 kb. Leur dénomination vient des répétitions (REP) mises en évidence dans le cosmide MTCY13E12. On retrouve 7 éléments REP13E12 dans le génome de la souche H37Rv. Les protéines REP13E12 n’ont aucune homologie de séquences avec des protéines connues. Ces REP13E12 semblent être uniquement observées dans les bactéries MTBC. Le rôle des REP13E12 n’est pas encore connu. Leur expression serait induite en réponse à une altération de l’ADN. Dans le génome de H37Rv, 4 régions REP13E12 possèdent des sites d’attachement potentiels pour le prophage PhiRv1 (Bibb et al., 2005; Cole et al., 1998; Gordon et al., 1999).

b. Le locus DR

Le locus DR (« Direct Repeat ») fait partie des séquences de la famille des CRISPR (« Clustered Regularly Interspersed Short Palindromic Repeats ») (Marraffini et Sontheimer, 2010a). Le locus DR chez *M. tuberculosis* est formé par des séquences nucléotidiques identiques répétées (les DR) de 36 pb entrecoupées par de courtes séquences uniques, non variables, de 35 à 41 pb appelées espaceurs. La structure de la région DR qui est unique chez *M. tuberculosis* est montrée sur la figure 10.

Figure 10: Structure de la région DR (Marraffini et Sontheimer, 2010b)

L’ordre des espaceurs est identique chez toutes les souches mais leur présence/absence varie d’un isolat à l’autre. Quatre-vingt-quatorze espaceurs ont été retrouvés jusqu’à maintenant dans toutes les souches du MTBC dont certains espaceurs spécifiques de certaines espèces (tableau 1) (Caimi et al., 2001; Van der Zanden et al., 2002).

18
Tableau 1: Liste des 104 oligonucléotides utilisés en spoligotypage correspondant aux espaces connus chez MTBC (Van der Zanden et al., 2002)

Les espaceurs dans les cellules bleues correspondent aux 43 espaces utilisées par Kamerberck et al. en 1997 pour le spoligotypage classique.

Sequences données dans le sens 3' → 5'

<table>
<thead>
<tr>
<th>Numéro</th>
<th>Numéro espaceur en spoligotypage</th>
<th>Numéro espaceur dans le génome</th>
<th>séquence des oligonucléotides (5' → 3')</th>
<th>Numéro</th>
<th>Numéro espaceur en spoligotypage</th>
<th>Numéro espaceur dans le génome</th>
<th>séquence des oligonucléotides (5' → 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>16</td>
<td>ACGTTAGGGGACGAGCGAATTCGCGT</td>
<td>66</td>
<td>21</td>
<td>61</td>
<td>TGTTCGCATGCGGCTGGTC</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>GATCACAACACCAACTAATG</td>
<td>53</td>
<td>18</td>
<td>56</td>
<td>TCCGATTTGCTTGCCTGCC</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>46</td>
<td>GCGTCGTGCCATCAGACGCGGTCG</td>
<td>44</td>
<td>17</td>
<td>47</td>
<td>TTTCGGTGTGATGCGGCGTGC</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>42</td>
<td>GATCACCACCGATGCTGCG</td>
<td>41</td>
<td>16</td>
<td>43</td>
<td>CCACTTACGGCGACGG</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>36</td>
<td>GCCGGACAGCGTCCGACAGCG</td>
<td>35</td>
<td>15</td>
<td>34</td>
<td>GATCACCACCGACGACG</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>30</td>
<td>GCCGCGGGTTTCGTTG</td>
<td>29</td>
<td>14</td>
<td>28</td>
<td>TTTCGGTGTGATGCGGCGTGC</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>25</td>
<td>GCCGCGGGTTTCGTTG</td>
<td>24</td>
<td>13</td>
<td>23</td>
<td>CCACTTACGGCGACGG</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>20</td>
<td>GCCGCGGGTTTCGTTG</td>
<td>19</td>
<td>12</td>
<td>18</td>
<td>TTTCGGTGTGATGCGGCGTGC</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>17</td>
<td>GCCGCGGGTTTCGTTG</td>
<td>16</td>
<td>11</td>
<td>16</td>
<td>CCACTTACGGCGACGG</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>12</td>
<td>GCCGCGGGTTTCGTTG</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>CCACTTACGGCGACGG</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>9</td>
<td>GCCGCGGGTTTCGTTG</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>GCCGCGGGTTTCGTTG</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>8</td>
<td>GCCGCGGGTTTCGTTG</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>GCCGCGGGTTTCGTTG</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>7</td>
<td>GCCGCGGGTTTCGTTG</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>GCCGCGGGTTTCGTTG</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>6</td>
<td>GCCGCGGGTTTCGTTG</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>GCCGCGGGTTTCGTTG</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>5</td>
<td>GCCGCGGGTTTCGTTG</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>GCCGCGGGTTTCGTTG</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>4</td>
<td>GCCGCGGGTTTCGTTG</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>GCCGCGGGTTTCGTTG</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>3</td>
<td>GCCGCGGGTTTCGTTG</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>GCCGCGGGTTTCGTTG</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>2</td>
<td>GCCGCGGGTTTCGTTG</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>GCCGCGGGTTTCGTTG</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>1</td>
<td>GCCGCGGGTTTCGTTG</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>GCCGCGGGTTTCGTTG</td>
</tr>
</tbody>
</table>

GENERALITES

19
L’évolution actuelle des espaceurs se fait de façon unidirectionnelle par délétion. Un espaceur perdu est enlevé en même temps que la région répétée qui lui est adjacente. Un bloc d’espaceurs peut être perdu au cours d’un seul ou de plusieurs événements évolutifs. L’acquisition hypothétique de la région DR des MTBC aurait été faite par transfert horizontal (Bhya et al., 2011).

Des études *in silico* sur cette famille de séquences ont montré la présence des gènes *cas* pour « CRISPR-associated » associés aux séquences CRISPR (figure 17). On peut retrouver de nombreux gènes *cas* selon les génomes (Haft et al., 2005; Jansen et al., 2002). Ces gènes CAS ont des homologies de séquence avec des gènes impliqués dans la recombinaison et la réparation d’ADN, et ont différentes fonctions dans la mécanique des CRISPR.

De récentes découvertes ont montré que les séquences des espaceurs composant les CRISPR correspondent à des portions d’éléments mobiles, comme des ADN de bactériophages ou de plasmides. Le rôle hypothétique de la région DR est la prévention de l’invasions par des éléments exogènes, ce qui implique aussi probablement un rôle dans le maintien de l’intégrité du génome bactérien (Barrangou et al., 2007; Comas et al., 2009; Van der Oost et al., 2009).

La région DR présente un niveau de polymorphisme suffisant pour pouvoir classer phylogéographiquement les souches du MTBC. Ce polymorphisme est à la base du spoligotypage (§ 1.3.5.1.) (Kamerbeek et al., 1997), une technique de génotypage spécifique du MTBC. Quarante-trois espaceurs les plus polymorphes ont été utilisés pour le typage classique des mycobactéries (Kamerbeek et al., 1997). Des études pour augmenter le niveau de discrimination du spoligotypage ont été faites plus tard utilisant 25 espaceurs de plus en même temps que le développement d’une technologie sur microbilles qui remplace progressivement la technique classique sur membrane (Brudey et al., 2004; Cowan et al., 2004; Van der Zanden et al., 2002; Zhang et al., 2010).

I.3.4.5 Les minisatellites

Des séquences classées parmi les minisatellites et localisées sur différents locus dans le génome sont nommées MIRU (« Mycobacterial Interspersed Repetitive Units ») et sont présentes dans le génome des MTBC. Ce sont des séquences nucléotidiques répétées en tandem avec des unités de taille comprise entre 46pb et 111pb. Ces séquences sont retrouvées généralement dans les régions intergéniques (Supply et al., 2000). 41 locus ont été décrits...
dans le génome de H37Rv (figure 11). Les rôles des MIRU sont méconnus. Le nombre de copies des motifs entre les différentes souches de MTBC est très variable. Ce polymorphisme de niveau très élevé est à la base de la méthode de typage spécifique du MTBC décrite dans le paragraphe § 1.3.5.2.

Figure 11: Distribution des 41 locus MIRU sur le génome de H37rv

I.3.5 LES METHODES DE GENOTYPAGE
Les méthodes de génotypage du MTBC ont beaucoup évolué en 20 ans. Les plus fréquemment utilisées pour différents types d’études sont décrites ci-dessous.

I.3.5.1 Le spoligotyping
C’est une méthode de génotypage spécifique du MTBC qui repose sur le polymorphisme de la région DR (§ 1.3.4.4-b).

La technique consiste à amplifier les espaces de la région DR et à les identifier par hybridation inverse à un set de 43 oligonucléotides complémentaires de 43 espaces de référence (les plus polymorphes) préalablement fixés sur une membrane ou sur microbille. La
méthode est résumée sur la figure 12. Les spoligotypes obtenus sont sous la forme d’un code binaire de 43 caractères où les carrés blancs représentent les espaceurs absents et les carrés noirs représentent les espaceurs présents (figure 35-C). D’autres moyens de représentation comme des combinaisons de chiffres (8 ou 6) ont été aussi établis pour la représentation des spoligotypes (Dale et al., 2001).

Figure 12: Le spoligotypage
A, L’amplification de la région DR ; B, Montage du système d’hybridation inverse ; C, Exemples de spoligotypes.
La technique nécessite une quantité moindre d’ADN que le typage par RFLP, car elle est basée sur une amplification de la région DR. Des études ont montré la faisabilité de la technique à partir de crachats de patients tuberculeux positifs à l’examen direct et même à partir d’extrait de lames de diagnostic microscopique positives de TB (Mallard et al., 2010; Suresh et al., 2007).

Une variante du spoligotypage utilisant 25 espaceurs en plus des 43 espaceurs a été développée plus tard (Brudey et al., 2004; Van der Zanden et al., 2002). Une version spoligotypage sur la plateforme Luminex® a été développée en 2004 au CDC et en 2010 en Europe (Zhang et al., 2010) avec des combinaisons de 43 et 68 espaceurs. Le Spoligo-RIF, le TB-SPRINT et le TB-SPRINTplus (Gomgnimbou et al., 2015; Gomgnimbou et al., 2012; Gomgnimbou et al., 2013) ont aussi été développées dernièrement pour combiner ce test avec des tests moléculaires de sensibilité aux antituberculeux. Entre autre, un outil disponible en ligne nommé « Spolpred » a été développé pour générer des spoligotypes in silico à partir des « reads » (mélange de courtes séquences oligonucléotidiques de 20 à 200 pb généré par les séquenceurs de nouvelle génération) du séquençage de la région DR (Coll et al., 2012). D’autres études ont aussi développé des méthodes de détermination in silico des spoligotypes (Xia et al., 2016).

Malgré son niveau de discrimination relativement faible par rapport à d’autres techniques et le niveau plus élevé d’homoplasie au niveau des espaceurs observé (Comas et al., 2009; Warren et al., 2002), le spoligotypage constitue aujourd’hui une des techniques les plus utilisées dans le monde. C’est une technique moins chère, moins lourde que les autres méthodes de typage et qui a surtout l’avantage d’être standardisée et reproductible dans tous les laboratoires de biologie moléculaire travaillant sur la TB (Sola et al., 1999). Des recommandations de contrôle de qualité ont été également proposées récemment pour les laboratoires travaillant encore sur membrane (Abadia et al., 2011).

I.3.5.2 Les MIRU-VNTR

La méthode du MIRU-VNTR repose sur l’identification du nombre de copies des unités répétées en tandem des locus VNTR. Pour cela, chaque locus MIRU est amplifié par des amorces flanquantes. Les produits de PCR sont mis à migrer sur électrophorèse sur gel d’agarose pour déterminer la taille des amplicons. Le nombre de copies des éléments répétés
est identifié à partir de références de tailles déjà connues (Supply et al., 2000; Supply et al., 2006). Les profils MIRU obtenus sont formés de la suite des chiffres concaténés correspondant chacun aux nombres de copies des unités répétées de chaque locus étudié.

Une sélection de 12 locus a été choisie au tout début du typage de *M. tuberculosis* par les MIRU-VNTR (Supply et al., 2000). Mais plus tard des combinaisons de 15 et de 24 locus ont été adoptées pour optimiser le niveau de discrimination de la méthode (Supply et al., 2006). D’autres études ont proposé diverses combinaisons de locus (Kam et al., 2006; Kremer et al., 2005; Smittipat et al., 2005) mais après des soucis de standardisation inter-laboratoire, Les combinaisons de Supply et al. en 2006 sont actuellement retenues (tableau 2).

Tableau 2: Liste des 24 locus VNTR standards utilisés actuellement pour la technique MIRU-VNTR selon leur position chromosomique (Supply et al., 2006)

<table>
<thead>
<tr>
<th>Numéro</th>
<th>Locus</th>
<th>Taille de chaque unité</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MIRU 4; ETR D</td>
<td>77</td>
</tr>
<tr>
<td>2</td>
<td>MIRU 26</td>
<td>51</td>
</tr>
<tr>
<td>3</td>
<td>MIRU 40</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>MIRU 10</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>MIRU 16</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>MIRU 31; ETR E</td>
<td>53</td>
</tr>
<tr>
<td>7</td>
<td>Mtub04</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>ETR C</td>
<td>58</td>
</tr>
<tr>
<td>9</td>
<td>ETR A</td>
<td>75</td>
</tr>
<tr>
<td>10</td>
<td>Mtub30</td>
<td>58</td>
</tr>
<tr>
<td>11</td>
<td>Mtub39</td>
<td>58</td>
</tr>
<tr>
<td>12</td>
<td>QUB-4156</td>
<td>59</td>
</tr>
<tr>
<td>13</td>
<td>QUB-11b</td>
<td>69</td>
</tr>
<tr>
<td>14</td>
<td>Mtub21</td>
<td>57</td>
</tr>
<tr>
<td>15</td>
<td>QUB-26</td>
<td>111</td>
</tr>
<tr>
<td>16</td>
<td>MIRU 2</td>
<td>53</td>
</tr>
<tr>
<td>17</td>
<td>MIRU 23</td>
<td>53</td>
</tr>
<tr>
<td>18</td>
<td>MIRU 39</td>
<td>53</td>
</tr>
<tr>
<td>19</td>
<td>MIRU 20</td>
<td>77</td>
</tr>
<tr>
<td>20</td>
<td>MIRU 24</td>
<td>54</td>
</tr>
<tr>
<td>21</td>
<td>MIRU 27; QUB-5</td>
<td>53</td>
</tr>
<tr>
<td>22</td>
<td>Mtub29</td>
<td>57</td>
</tr>
<tr>
<td>23</td>
<td>ETR B</td>
<td>57</td>
</tr>
<tr>
<td>24</td>
<td>Mtub34</td>
<td>54</td>
</tr>
</tbody>
</table>

Des études ont mis au point des amplifications multiplexées des locus (Allix-Béguec et al., 2008; Supply et al., 2014; Supply et al., 2001; Supply et al., 2006; Yasmin et al., 2014) ainsi que des détermination de taille d’amplicons sur des appareils de séquençage (ABI 377
automated sequencer® ou autre) afin de réduire la lourdeur de la méthode (Chin et Jou, 2005; Supply et al., 2001).

La méthode des MIRU-VNTR a un niveau de discrimination très élevé (Mazars et al., 2001). La technique est surtout utilisée dans les études d’épidémiologie moléculaire et moins dans des études d’évolution et de phylogénie de *M. tuberculosis*, même si elle donne aussi d’excellents résultats.

I.3.5.3 La RFLP-IS6110

La RFLP-IS6110 (« Restriction Fragment Length Polymorphism – Insertion sequence 6110 ») repose sur l’analyse du nombre et de la position des copies d’IS6110. Pour cela, l’ADN purifié des souches est clivé par une enzyme de restriction *PvuII*, puis mis à migrer par électrophorèse sur gel d’agarose pour déterminer le nombre et la taille des fragments de restriction puis les IS6110 sont identifiés par des sondes spécifiques (figure 13). Cette technique a permis de classer *M. tuberculosis* en une trentaine de familles selon le nombre de copies de IS6110 (Van Embden et al., 1993; Yeh et al., 1998).

Figure 13: Les sites de restriction IS6110 chez M. bovis
A. Représentation du chromosome de *M. bovis* avec la région IS6110, les sites de restriction et le sonde de l’IS6110 utilisé pour le génotypage. B. Exemples de profils RFLP-IS6110
Malgré son niveau de discrimination très élevé, cette technique présente des inconvénients tels que l’utilisation d’une grande quantité d’ADN nécessitant donc de passer par la culture des mycobactéries nécessitant jusqu’à plusieurs semaines et la complexité de la technique. Une très difficile standardisation inter-laboratoire a aussi été observée (Sola et al., 2003).

I.3.5.4 La génomique comparative : LSPs, SNPs, WGS/NGS.

a. Les LSPs

Des délétions de fragments de génome de différentes tailles appelées aussi régions de différence ou LSPs (« Large Sequence Polymorphisms ») ont été observées chez *M. tuberculosis* (Fleischmann et al., 2002; Hirsh et al., 2004; Tsolaki et al., 2004). La survenue de la majorité de ces LSPs serait due à des événements uniques et irréversibles dans l’évolution des espèces du MTBC (Hirsh et al., 2004) ce qui élimine totalement le risque d’homoplasie. Quelques LSPs sont cependant phylogénétiquement non informatives. Des études de comparaison ont aussi montré que généralement, la majorité de ces LSPs ne sont pas liées à des différences fonctionnelles et phénotypiques entre les souches. De ce fait, ces marqueurs seraient plus appropriés pour des études phylogénétiques et de classification (Gagneux et al., 2006b).

Le principe de ces techniques repose sur l’analyse PCR en utilisant des couples d’amorces dirigés respectivement contre les régions déletées et leurs séquences flanquantes, suivie éventuellement de séquençage des portions de génome d’intérêt.

Les premières régions de différences étudiées chez les MTBC et identifiées via la comparaison avec la souche *M. bovis* et les autres souches du MTBC sont les régions RD1, RD2 et RD3. RD1 correspond à une délétion spécifique de *M. bovis* BCG. Cette région contient les gènes codant pour un antigène secrété des MTBC, l’ESAT-6 (« Early Secreted Antigenic target 6 ») jouant un rôle majeur dans la pathogénicité des souches du MTBC (Brosch et al., 2002; Gordon et al., 1999). RD2 correspond à des délétions de séquences répétées. RD3 correspond au prophage PhiRv1. D’autres régions de différences ont été étudiées plus tard.

Malgré le niveau de discrimination très faible de ces techniques de typage, ce sont des techniques qui permettent d’identifier avec certitude les branches phylogénétiques principales.
du complexe de *M. tuberculosis*. Elles ne permettent pas cependant de retracer l’évolution de toutes les souches actuelles (Baker et al., 2004; Filliol et al., 2006; Gutacker et al., 2006).

b. Les SNPs

Les SNPs (« Single Nucleotide Polymorphism ») sont des variations au niveau nucléotidique entre les différentes souches. Ce sont des modifications qui se produisent spontanément à des fréquences plus ou moins connues. Il existe deux types de SNPs : les SNPs synonymes ou sSNPs qui sont considérés comme neutre ou presque d’un point de vue fonctionnel pour la bactérie et les SNPs non synonymes ou nsSNPs qui se traduisent par une modification de la séquence en acides aminés de la protéine induite. Les nsSNPs soumettent les bactéries à une pression de sélection interne et environnementale. De telles modifications sont à l’origine de la résistance acquise des bacilles tuberculeux aux antibiotiques utilisés contre la TB. Les sSNPs par contre lorsqu’ils sont situés au niveau des gènes structuraux ou « gènes de ménage » permettent de mieux suivre les liens évolutifs entre les souches.

Les SNPs sont peu sujettes à des phénomènes d’homoplasie et sont de ce fait utilisés pour des études phylogénétiques et de classification. Les techniques reposaient principalement sur le séquençage des gènes d’intérêt suivi d’analyse par comparaison de plusieurs séquences *in silico*. Actuellement, avec l’essor grandissant des outils de séquençage de nouvelle génération (NGS), de séquençage du génome complet (WGS) et d’outils bioinformatiques, il est très commun aujourd’hui de faire des études d’épidémiologie moléculaire, de comparaison, de classification ou de phylogénie avec les SNPs du génome entier de *M. tuberculosis*. Les études de transmission de TB par les SNPs permettent d’identifier plus précisément les sources primaires d’infections et de retracer un schéma de transmission de la TB (Gardy et al., 2011; Schurch et al., 2010; Walker et al., 2013) mais aussi ont permis d’identifier ce qu’on appelle des « superspreader » qui sont des sujets ayant transmis massivement leurs souches tuberculeuses à d’autres cas (Schurch et al., 2010). L’utilisation des SNPs semble avoir un maximum de discrimination dans les études épidémiologiques et dans des études de classification (Gardy et al., 2011).
I.4 TRANSMISSION ET DEVELOPPEMENT DE LA TB

La TB se transmet par voie aérienne. La contamination se fait par inhalation de gouttelettes infectantes ou « gouttelettes de Flügge » de taille inférieure à 5 μm émises sous forme d’aérosol par un patient avec une TB pulmonaire en phase active, en toussant, en crachant, en parlant ou en éternuant. Les lieux mal aérés favorisent la transmission de la maladie mais des transmissions nosocomiales peuvent aussi avoir lieu au cours des manipulations des matériels biologiques tuberculeux et les ustensiles souillés (Kao et al., 1997). Dans la majorité des cas, les bacilles tuberculeux sont arrêtés au niveau du nez et des bronches et bronchioles. Ils sont par la suite entraînés par les mucus vers le pharynx puis déglutis et détruits par l’acidité de l’estomac. Si quelques bacilles contenus dans ces gouttelettes parviennent au niveau des alvéoles pulmonaires, ils peuvent se multiplier et être à l’origine de ce qu’on appelle une primo-infection tuberculeuse (PIT).

Lors d’une PIT, les bacilles tuberculeux ayant atteint les alvéoles pulmonaires sont phagocytés par des macrophages dans lesquels ils vont survivre et se multiplier. Ou dans un cas plus favorable pour l’hôte, ils sont éliminés. Dans le premier cas, après quelques jours de multiplication, les macrophages migrent passivement vers les ganglions satellites du foyer primaire par les vaisseaux lymphatiques. Il y a alors activation des lymphocytes T suivie du développement d’une immunité cellulaire retardée. Au niveau des alvéoles pulmonaires, il se forme alors ce qu’on appelle un granulome ou tubercule constitué d’un noyau de macrophages infectés dégénérés (épithélioïdes) ou fusionnés, entouré de lymphocytes T et d’une couronne fibroblastique (Domingues et al., 2016) (figure 14).
Figure 14: Formation et progression du granulome lors d’une infection à *M. tuberculosis*

Pour les patients immunocompétents, on estime que dans 5% des cas, la PIT peut évoluer en TB maladie dans les 2 ans qui suivent la primo-infection et que dans 5%, cette évolution ne se fera que plusieurs années plus tard (Dye *et al.*, 1999; Society, 2000). De nombreux facteurs tels que l’âge du patient infecté influencent aussi cette transition (enfants de moins de 15 ans et personnes âgées) (Moyo *et al.*, 2010). Dans 90% des cas, la maladie ne se développe pas. Le granulome se calcifie et les bacilles emprisonnés restent sous contrôle à l’état quiescent, on parle d’infection tuberculeuse latente (ITL) (Smith, 2003). Ces patients ne sont pas contagieux et peuvent être infectés plusieurs années sans tomber malade.

Pour des patients immunodéprimés, l’évolution en TB maladie est beaucoup plus fréquente. 50 % des patients immunodéprimés infectés par *M. tuberculosis* sont estimés développer une TB maladie dans les deux ans suivant leur infection (Society, 2000). De plus, il a été montré qu’un taux de 5 à 10% des patients porteurs d’une TB latente et contractant le VIH développent une TB maladie (Clark-Curtiss et Haydel, 2003; Dye *et al.*, 1999) soulignant ainsi la complexité de l’association existant entre le VIH et *M. tuberculosis*.

Certains autres facteurs liés aux conditions et mode de vie des patients infectés peuvent aussi favoriser cette transition, tels que la malnutrition, l’alcoolisme, le tabagisme, la précarité, la toxicomanie, ou le diabète (Society, 2000). Enfin, la charge bactérienne, la
pathogénicité et la virulence de la population bactérienne ainsi que les facteurs génétiques de susceptibilité de l’hôte pourraient aussi intervenir dans l’évolution de la PIT à la TB maladie (Kritski et Melo, 2007; Underner et Meurice, 1999).

Les cas de TB latente peuvent évoluer en TB maladie pulmonaire. On parle dans ce cas de réactivation de l’infection tuberculeuse latente (Flynn et Chan, 2001). Il y a transformation du granulome par liquéfaction du caséum et création d’une cavité très riche en bacilles tuberculeux viables. Les bacilles retrouvent des conditions favorables à leur évolution (présence d’oxygène), et reprennent leur multiplication. Ils envahissent alors l’ensemble des bronches entraînant une réaction inflammatoire intense provoquant toux et expectoration chronique. C’est à ce stade que le patient est le plus contagieux (Korbel et al., 2008). Ce foyer infectieux du poumon provoque la formation de lésion ou chancre d’inoculation. On parle ici de cas de TB pulmonaire active. Cette TB active ne se développe que chez environ 10% des personnes infectées par M. tuberculosis (Kaufmann, 2002). La TB active s’accompagne de signes cliniques et/ou radiologiques. Les signes cliniques de la TB pulmonaire sont une toux persistante avec des expectorations parfois accompagnées de sang, une douleur thoracique et des symptômes plus généraux comme fièvre, sudation nocturne, fatigue, perte d’appétit, et amaigrissement. Un diagnostic peut être proposé par radiographie ou scanner du thorax du patient.

Après dissémination via la circulation sanguine et lymphatique de bacilles tuberculeux, ceux-ci peuvent se développer et provoquer des lésions dans de nombreux autres organes tels que les os (mal de Pott), les méninges (méningite tuberculeuse), les reins, etc... On parle alors de TB extra-pulmonaire. La TB extra-pulmonaire est moins fréquente que la TB pulmonaire (moins de 15% des cas) (Hopewell et Jasmer, 2005). Pour la TB extra-pulmonaire, les symptômes peuvent varier en fonction de la région corporelle atteinte.

1.5 LE TRAITEMENT DE LA TB

La TB est une maladie mortelle mais guérissable avec un traitement approprié et scrupuleusement respecté par le malade (WHO, 2015). La chimiothérapie antituberculeuse préconisée par l’OMS repose sur l’association de plusieurs antibiotiques antituberculeux. Les principaux antituberculeux sont : l’isoniazide (INH), la rifampicine (RIF), la pyrazinamide (PZA), l’éthambutol (EMB), et la streptomycine (SM). La multithérapie consiste à associer
plusieurs antituberculeux, ce qui permet de réunir 3 propriétés essentielles au traitement : un effet bactéricide (INH, RIF, PZA), un effet stérilisant (RIF et PZA) et un effet préventif pour l’apparition des formes de résistance aux antituberculeux (WHO, 2003). Les antituberculeux sont classés en antibiotique de première ligne *i.e.* antibiotiques utilisés en première intention chez les tuberculeux et antituberculeux de seconde ligne *i.e.* antibiotiques utilisés en seconde intention (tableau 3).

Tableau 3: Liste des antituberculeux disponibles actuellement (NCCLS, 2003)

<table>
<thead>
<tr>
<th>Antituberculeux de première ligne</th>
<th>Antituberculeux de seconde ligne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazide</td>
<td>Acide p-aminosalicylique</td>
</tr>
<tr>
<td>Rifampicine</td>
<td>Ethionamide</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>Cyclosérine</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>Amikacine</td>
</tr>
<tr>
<td>Streptomycine</td>
<td>Kanamycine</td>
</tr>
<tr>
<td></td>
<td>Capréomycine</td>
</tr>
<tr>
<td></td>
<td>Fluoroquinolones</td>
</tr>
<tr>
<td></td>
<td>Bedaquiline</td>
</tr>
<tr>
<td></td>
<td>Linezolide</td>
</tr>
</tbody>
</table>

Le traitement standardisé de la TB maladie (pulmonaire ou extra-pulmonaire) appelé aussi « Short Course Chemotherapy – SCC » est d’une durée de six mois et comporte deux phases : deux mois de quadrithérapie associant INH, RIF, PZA, et EMB suivie d’une bithérapie de quatre mois associant RIF et INH.

L’OMS a par ailleurs défini des schémas thérapeutiques adaptés en fonction des formes de la TB (TB maladie ou TB latente), de sa localisation, de son degré de gravité, des antécédents de traitement du patient, de la coïnfection avec d’autres maladies telles que le VIH-SIDA et aussi en fonction des systèmes de santé des pays qui auront à les appliquer et de leurs moyens financiers disponibles (WHO, 2009).

Pour les cas de co-infection avec le VIH-SIDA, des interactions médicamenteuses entre les traitements utilisés contre le VIH-SIDA et la TB, notamment entre la RIF, antituberculeux majeur, et de nombreux antirétroviraux, viennent compliquer le traitement des patients co-infectés (Spigelman, 2007).

Un traitement préventif ou chimio-prophylaxie existe pour les patients ne présentant pas les symptômes d’une TB mais répondant positivement à l’IDR ainsi que pour les patients à
risque tels que les immunodéprimés (Silva et Ainsa, 2007). Le traitement préventif consiste en une prise quotidienne d’INH pendant six à neuf mois. Ce traitement a montré un taux de protection supérieur à 90% mais reste cependant associé aux effets indésirables de la prise à long terme de l’INH tels que l’hépatotoxicité (Lobue et Menzies, 2010).

I.5.1 TRAITEMENT DES CAS DE TB RESISTANTS ET MULTIRESISTANTS AUX ANTITUBERCULEUX

Dans des cas de résistance ou de multirésistance aux antituberculeux, le traitement change et on a recours à des antituberculeux de seconde ligne qui sont moins efficaces et plus toxiques que les antituberculeux de première ligne. De plus, la durée du traitement est rallongée. Les antituberculeux de seconde ligne les plus utilisés sont : les aminoglycosides, les fluoroquinolones, l’acide p-aminosalicylique, les thioamides (Caminero et al., 2010; Zhang et al., 2006). Des schémas thérapeutiques normalisés spécialement conçus ou des schémas thérapeutiques personnalisés existent pour les patients avec une TB-MR (WHO, 2009).

I.5.2 LA PREVENTION CONTRE LA TB ET LE VACCIN BCG

Le vaccin antituberculeux préparé à partir du Bacille de Calmette et Guérin (BCG) a été mis au point entre les années 1908 et 1921 à l’Institut Pasteur de Lille. Il est encore actuellement le seul vaccin antituberculeux disponible, reste le vaccin le plus utilisé contre la TB humaine dans le monde (Locht, 2008) et demeure encore le vaccin le plus utilisé dans le monde (tous vaccin confondus). Le vaccin BCG est constitué de bacilles tuberculeux bovins atténués obtenu par 230 transferts successifs de la bactérie pathogène sur un milieu de culture à base de pomme de terre glycérinée mélangé avec de la bile. Son injection se fait par voie intradermique. C’est un vaccin stimulant une réaction immunitaire à médiation cellulaire et humorale du sujet ne provoquant pas de pathologie (Ait-Khaled et al., 1999). Le vaccin BCG confère une protection chez les enfants contre les formes graves de TB (milliaire, extrapulmonaire ou méningée) mais est moins efficace pour les formes pulmonaires qui sont les plus fréquentes (Colditz et al., 1994). Le vaccin n’empêche pas la survenue d’une primo-infection tuberculeuse ou la réactivation d’une TB pulmonaire latente (WHO, 2004).
I.6 LA RESISTANCE DE *M. TUBERCULOSIS* AUX ANTITUBERCULEUX

La « résistance à un antibiotique » est un caractère phénotypique caractérisant la capacité d’une bactérie à survivre (et à se multiplier), en présence de cet antibiotique, à une concentration qui est habituellement bactéricide ou bactériostatique. La résistance d’une bactérie à un antibiotique entraîne la perte d’efficacité de ce médicament lors du traitement d’une infection causée par cette bactérie.

I.6.1 LA RESISTANCE NATURELLE AUX ANTITUBERCULEUX

Les membres du complexe *M. tuberculosis* sont naturellement résistants à la plupart des antibiotiques usuels (β-lactamines, les macrolides, les cyclines, les sulfamides et les glycopeptides) (Veziris *et al.*, 2005). En effet, ils ne sont sensibles qu’à un petit nombre d’antibiotiques dits « antibiotiques antituberculeux ». Les mycobactéries non tuberculeuses présentent également une résistance naturelle à ces antibiotiques usuels. De plus, elles sont naturellement résistantes à la plupart des antibiotiques efficaces sur *M. tuberculosis* tels que l’INH, la PZA, l’EMB, le PAS… (Veziris *et al.*, 2005).

La faible perméabilité de la paroi mycobactérienne est la cause la plus évidente expliquant le niveau de résistance naturelle des mycobactéries aux antibiotoques (Jarlier et Nikaido, 1994). La paroi mycobactérienne est formée d’une architecture caractéristique et particulièrement complexe. Il a été estimé que la paroi des mycobactéries est 1000 fois moins perméable au β-lactamines que la paroi d’*E. coli* (Jarlier *et al.*, 1991). D’autres facteurs tels que la production d’enzymes modifiant les antibiotiques et leur activité ont également été décrits chez *M. tuberculosis* comme, la β-lactamase responsable de la résistance naturelle aux β-lactamines (Voladri *et al.*, 1998) ou l’aminoglycoside 2’-N-acetyltransferase impliquée dans la résistance aux aminoglycosides (Ainsa *et al.*, 1997).

I.6.2 LA RESISTANCE ACQUISE AUX ANTITUBERCULEUX

A la différence des autres bactéries pathogènes qui acquièrent en général leur résistance aux antibiotiques par transfert horizontal de plasmides ou transposons portant des gènes de résistance, l’acquisition de la résistance aux antituberculeux chez *M. tuberculosis* provient
généralement d’altérations spontanées de gènes chromosomiques spécifiques sous la forme de mutations ponctuelles non-synonymes, de délétions ou insertions (Davies, 1998). Jusqu’à présent, aucun plasmide ou transposon de résistance n’a encore été décrit chez les mycobactéries (Veziris et al., 2005). Par conséquent, la résistance ne se transfère pas entre les mycobactéries présentes chez un même patient autrement que par multiplication, elle se transmet donc à la descendance de la bactérie mutée.

Actuellement, les mutations impliquées dans la résistance de *M. tuberculosis* aux antituberculeux ont été mises en évidence :

- dans des gènes codant les protéines cibles de l’antibiotique, diminuant l’affinité de la cible pour cet antibiotique ;
- dans des gènes codant une enzyme impliquée dans l’activation de l’antibiotique, empêchant son passage de la forme pro-drogue à la forme active ;
- ou dans une région génomique régulatrice provoquant la surexpression de la cible de l’antibiotique. C’est le cas de la résistance des souches tuberculeuses à l’INH ou on retrouve des mutations dans la région régulatrice du gène *ahpC* provoquant une surproduction de l’alkyl hydroperoxyde réductase AhpC impliquée dans la détoxicification des peroxydes organiques.

Malgré ces avancées majeures, certains mécanismes de résistance aux antituberculeux ne sont pas encore élucidés. Certaines souches résistantes ne présentent pas de mutation(s) dans le(s) gène(s) identifié(s) comme impliqué(s) dans la résistance aux antibiotiques concernés. Dans certaines études, des souches sensibles ont aussi montré des mutations décrites impliqués dans la résistance à l’antibiotique concerné (Hazbôn *et al.*, 2005).

I.6.2.1 SELECTION DES MUTANTS RESISTANTS

L’apparition des bactéries résistantes aux antibiotiques suit la théorie de Darwin sur l’évolution. En effet, la bactérie ayant acquis spontanément une mutation lui conférant une résistance à un antibiotique, présente un avantage sélectif par rapport aux autres bactéries. Dans ces circonstances, elle peut survivre et se diviser chez le patient traité avec l’antibiotique en question (Zhang et Yew, 2009).

Diverses études ont montré que M. tuberculosis a acquis les mutations conférant les différentes résistances aux antibiotiques de façon spontanée et au hasard. La fréquence de ces mutations varie d’un antibiotique à l’autre. Quelques études ont essayé de déterminer cette fréquence malgré des résultats peu reproductibles d’une expérience à une autre (David, 1970; Tsukamura, 1972). La survenue de chaque mutant étant indépendante, la probabilité de développer un double mutant résistant à une bithérapie est égale au produit des fréquences de chaque mutant pris isolément, ce qui en fait un événement peu probable. La thérapie combinée apparaît donc très avantageuse pour le traitement de la TB (Iseman et Madsen, 1989; Veziris et al., 2005).

Une situation alarmante et potentiellement très dangereuse pour la santé publique réside dans l’émergence de souches résistantes à plusieurs antibiotiques (Chan et Iseman, 2008). Aucune mutation spécifique conférant une multirésistance n’a été encore décrite. Les souches multirésistantes sont le résultat d’une accumulation séquentielle de mutations indépendantes, conférant chacune une résistance à un antibiotique différent (Ramaswamy et Musser, 1998).

I.6.2.2 COUT BIOLOGIQUE LIE A L’ACQUISITION D’UNE RESISTANCE A UN ANTIBIOTIQUE

La valeur sélective ou « fitness » d’une bactérie est une mesure de la capacité de celle-ci à survivre, se reproduire et être transmise (Cohen et al., 2003; Toungoussova et al., 2004). Des études antérieures ont démontré et ont proposé une théorie selon laquelle les mutations qui mènent au développement de la résistance à un antibiotique s’accompagnent d’une réduction de « fitness » car elles compromettent des fonctions vitales de la bactérie (Gillespie, 2001; Maisnier-Patin et Andersson, 2004). De ce fait, en absence de la pression de sélection des antituberculeux, les souches résistantes ne sont pas compétitives par rapport aux souches sensibles (Andersson, 2003; Cohen et Murray, 2004; Toungoussova et al., 2004). On sait néanmoins actuellement que chez M. tuberculosis certaines mutations ne sont pas associées à une perte de fitness, on parle dans ce cas de mutation « no-cost » (Cohen et Murray, 2004;
Gagneux et al., 2006a; Sander et al., 2002). Des mutations de compensation de perte de fitness existent aussi.

I.6.3 LA RESISTANCE PRIMAIRE ET SECONDAIRE

Une bactérie tuberculeuse résistante isolée d’un patient qui n’a jamais été traité pour une TB auparavant, est considérée comme une souche de « résistance primaire ». Par contre, une bactérie tuberculeuse résistante provenant d’un patient traité précédemment pour une TB (pendant au moins un mois), est probablement une mycobactérie mutante résistante apparue chez ce patient et est alors considérée comme une souche de « résistance secondaire ou acquise » (WHO, 1997). Plutôt que ces deux termes on préfère utiliser aujourd’hui respectivement les termes de « résistance initiale » et de « résistance acquise au traitement ».

I.6.4 LES METHODES DE DIAGNOSTIC DE LA RESISTANCE AUX ANTITUBERCULEUX

I.6.4.1 LES ANTIBIOGRAMMES SUR MILIEU DE CULTURE SOLIDE ET LIQUIDE

Les tests d’antibiogramme consistent à tester la sensibilité des bactéries aux antibiotiques par base de tests de croissance sur le milieu Löwenstein Jensen, en présence de concentration critique d’antibiotique par la méthode des proportions décrite par Canetti (Canetti et al., 1969; Canetti et al., 1963). Pour les mycobactéries, les résultats ne s’obtiennent qu’après 4 à 6 semaines mais l’antibiogramme demeure le test de référence pour la détermination de la résistance aux antituberculeux. Sur MGIT 960, il est également possible et en moins de temps que sur milieu solide, d’obtenir un antibiogramme à tous les antituberculeux (Siddiqi et al., 2012).

I.6.4.2 LES METHODES MOLECULAIRES

Les tests moléculaires ont été développés plus récemment et les résultats s’obtiennent en quelques heures ou quelques jours. Ces tests sont basés sur l’amplification des gènes impliqués dans la résistance à l’antibiotique concerné et à l’identification des mutations identifiées responsables de la résistance. Le tableau 04 récapitule les gènes connus actuellement impliqués dans la résistance de *M. tuberculosis* aux antibiotiques utilisés dans la thérapie anti-tuberculeuse.
Tableau 4: Les régions génomiques associées à une diminution ou une perte de la sensibilité aux agents antituberculeux
(Mathema et al., 2006; Mathys, 2010; Wong et al., 2011)

<table>
<thead>
<tr>
<th>Antituberculeux</th>
<th>Gène</th>
<th>Produit du gène</th>
<th>Fréquence des mutations parmi les souches cliniques résistantes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptomycine</td>
<td>rpsL</td>
<td>Protéine ribosomale S12</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>rrs</td>
<td>rRNA 16S</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td>gidB</td>
<td>rRNA 16S méthyl transferase</td>
<td>Non disponible</td>
</tr>
<tr>
<td>Rifampine</td>
<td>rpoB</td>
<td>Sous unité β de la RNA polymérase</td>
<td>>95</td>
</tr>
<tr>
<td>Isoniazide</td>
<td>katG</td>
<td>Catalase-péroxidase</td>
<td>60-70</td>
</tr>
<tr>
<td></td>
<td>oxyR-ahpC</td>
<td>Alkylhydroréductase</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>inhA</td>
<td>Enoyl-ACP réductase</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td>kasA</td>
<td>β-Ketoacyl-ACP synthétase</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td>ndh</td>
<td>NADH déhydrogénase</td>
<td>Non disponible</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>embCAB</td>
<td>Arabinosyltransféras</td>
<td>70</td>
</tr>
<tr>
<td>Pyrazinamidide</td>
<td>pncA</td>
<td>Amidase</td>
<td>70-100</td>
</tr>
<tr>
<td>Ethionamide</td>
<td>inhA</td>
<td>Enoyl-ACP réductase</td>
<td><10</td>
</tr>
<tr>
<td></td>
<td>ethA</td>
<td>Flavoproteine monooxygénase</td>
<td>42</td>
</tr>
<tr>
<td>Kanamycine</td>
<td>rrs et son promoteur</td>
<td>rRNA 16S</td>
<td>65</td>
</tr>
<tr>
<td>Amikacine</td>
<td>rrs et son promoteur</td>
<td>rRNA16S</td>
<td>Non disponible</td>
</tr>
<tr>
<td>Fluoroquinolone</td>
<td>gyrA</td>
<td>Sous unité de la DNA gyrase</td>
<td>>90</td>
</tr>
<tr>
<td></td>
<td>gyrB</td>
<td>Sous unité β de la DNA gyrase</td>
<td>Non disponible</td>
</tr>
<tr>
<td>Capréomycine</td>
<td>tlyA</td>
<td>rRNA méthyltransférase</td>
<td>Non disponible</td>
</tr>
<tr>
<td>Acide para-aminosalicylique</td>
<td>thyA</td>
<td>Thymidylate synthétase</td>
<td>37</td>
</tr>
</tbody>
</table>

Ci-après quelques tests les plus utilisés et recommandés par l’OMS pour le diagnostic de la résistance de *M. tuberculosis* aux antituberculeux :

a. **Le test GenoType® MTBDRplus** (Hillemann et al., 2007)

Le test GenoType® MTBDRplus (Hain Lifesciences, Nehren, Germany) est un test de détection rapide de mutations associées à la résistance aux 2 antituberculeux de première ligne, l’INH et la RIF (Hillemann et al., 2007). Le test repose sur l’hybridation des produits PCR des gènes *rpoB*, *katG* et *inhA* sur une bandelette de nitrocellulose préalablement recouverte avec des sondes nucléotidiques complémentaires des principaux allèles mutés et
non mutés connus comme étant impliqués à la résistance à la RIF et à l’INH. Le test montre une sensibilité et une spécificité très élevées sur des extraits de cultures mais montre certaines limites sur des prélèvements directs auprès des patients diagnostiqués positifs par la microscopie (Somoskovi et al., 2006) malgré des tests initiaux prometteurs (Hillemann et al., 2006).

Plus tard, une version améliorée, le Genotype® MTBDRplus V.2.0 a été développée (Causse et al., 2008). Cette version permet d’augmenter la sensibilité et la spécificité des tests à partir de prélèvements biologiques directs. Mais des études récentes ont encore montré les limites du test dans la détection des mutations associées à la résistance à la RIF et à l’INH (Rahman et al., 2016).

b. **Le test Genotype® MTBDRsl** (Hillemann et al., 2009; Kiet et al., 2010)

Le test Genotype® MTBDRsl (Hain Lifesciences, Nehren, Germany) est un test de détection rapide des mutations associées aux antituberculeux de seconde ligne qui repose exactement sur le même principe que le Genotype® MTBDRplus. Le test amplifie des régions des gènes gyrA, rrs et embB associés respectivement à la résistance à la fluoroquinolone, à la capréomycine/kanamycine/Amikacine et à l’éthambutol (EMB).

c. **Le Xpert® MTB/RIF** (Blakemore et al., 2010; Helb et al., 2010)

Le Xpert® MTB/RIF (Cepheid, Sunnyvale, CA, USA) est une plateforme de tests de diagnostic moléculaire de la TB et de détection moléculaire de la sensibilité à la RIF (figure 16). Le Xpert® MTB/RIF se base sur l’amplification en temps réel de la région RRDR «Rifampicin Resistance Determining Region» et sur la détection des mutations dans cette région via l’hybridation de différentes sondes. La non-détection de mutations sur cette région s’interprète comme la sensibilité à la RIF de la souche et réciproquement. La région RRDR est une courte séquence de 81 pb du gène rpoB présentant la majorité des mutations décrites actuellement responsables de la résistance à la RIF chez *M. tuberculosis*. Le Xpert® MTB/RIF fonctionne comme un système utilisant des cartouches uniques en vase clos avec des réactifs lyophilisés disponibles directement dans la cartouche. L’obtention des résultats est rapide (2h30). Les tests se font directement à partir de crachats de patients. La sensibilité et la spécificité sont élevées. L’excellente capacité du Xpert® MTB/RIF à identifier les
mutations responsables de la résistance à la rifampicine a été démontrée à plusieurs reprises par différentes études (Blakemore *et al.*, 2010; Helb *et al.*, 2010).

d. **Le SpoligoRIF** (Gomgnimbou *et al.*, 2012)

Le SpoligoRIF est une méthode qui associe à la fois le spoligotypage et un test moléculaire de sensibilité à la RIF. La méthode repose sur l’amplification simultanée en parallèle de la région DR (pour le spoligotypage) et de la région RRDR (pour les tests de sensibilité à la RIF) suivie d’une hybridation des produits de PCR sur des jeux de microbilles couplés au préalable avec des sondes complémentaires des 43 espaceurs du spoligotypage, des séquences sauvages de la région RRDR (*i.e.* non mutées) ainsi que des séquences de la région avec les mutations les plus fréquentes connus conférant la résistance à la RIF, et l’identification des microbilles hybridées sur la plateforme Luminex 200 ou Magpix (figure 15). La lecture se fait automatiquement par la machine et les valeurs obtenues sont enregistrées par le logiciel associé. L’identification des billes et des produits de PCR couplés se fait par émission de différentes fluorescences identifiant d’une part chaque microbille, et d’autre part, mesurant la quantité d’oligonucléotides hybridés spécifiquement sur ces billes.

Deux sortes de billes sont utilisées selon l’appareil de lecture choisi : les billes en polystyrène pour le Luminex 200 et les billes magnétiques pour le Magpix. Le Luminex 200 repose sur la technique de cytométrie de flux tandis que le Magpix repose sur une technique d’imagerie CCD (« Charge Coupled Device »).

![Figure 15: A- le Magpix; B- le Luminex 200](image)

La détermination des hybridations positives se fait à partir de valeurs seuil délimitant les bruits de fond et les valeurs positives. La détermination du spoligotype de chaque souche suit les règles du spoligotypage classique (*Kamerbeek et al.*, 1997) et la détermination de la résistance à la RIF se fait par observation de la non hybridation d’une sonde sauvage.
complémentaire de la région RRDR et/ou hybridation sur une sonde complémentaire de la région RRDR avec l’une des mutations les plus fréquentes associée à la résistance à la RIF.

e. **Le TB-SPRINT** (Gomgnimbou *et al.*, 2013)

Le TB-SPRINT est une évolution du test précédent (SpoligoRIF). Le TB-SPRINT reste sur le même principe de typer à la fois les souches par spoligotypage mais peut tester la sensibilité à deux antibiotiques de première ligne qui sont la RIF et l’INH. Deux autres cibles à amplifier ont été rajoutées, le gène *katG* et le promoteur du gène *inhA* qui sont les deux régions impliquées dans la majorité de la résistance à l’INH des souches *M. tuberculosis*. Une version « ULTRA » permettant la détection des résistances aux antibiotiques de deuxième ligne et à l’éthambutol est en développement (Klotoe *et al.* manuscrit en préparation).

I.7 EPIDEMIOLOGIE DE LA TB

Plusieurs définitions de l’épidémiologie plus ou moins généralistes existent. Par exemple, l’épidémiologie est définie comme l’étude des facteurs influant sur la santé et les maladies des populations. Il s’agit d’une discipline qui se rapporte à la distribution, à la fréquence, à la gravité des états pathologiques, et à la recherche de facteurs de risque (Friis, 2010). Un autre point de vue définit l’épidémiologie comme étant une science quantitative étudiant le comportement des maladies à l’intérieur d’une population d’hôtes. Elle vise à l’interprétation de la distribution et des déterminants de l’infection à travers des mesures des paramètres de la maladie, et à la recherche des méthodes d’intervention les plus efficaces (Anderson, 1998). C’est cette dernière définition qui nous intéresse particulièrement dans notre étude qui se rapporte surtout sur l’épidémiologie de la TB.

L’épidémiologie de la TB a surtout aidé à comprendre les facteurs de risques associés à la TB. Une étude a par exemple trouvé que le faible niveau de scolarisation, la non possession de cuisine séparée et l’atteinte par le diabète sont les facteurs associés à la TB en Inde en 2006 (Shetty *et al.*, 2006). Une autre étude démontre que les mauvaises conditions de vie et de travail, la malnutrition, la co-infection avec le VIH-SIDA, l’abus d’alcool et de tabac, le diabète et la pollution de l’air sont associés à la transmission de la maladie (Lönnroth *et al.*, 2009). Une revue recensant une quarantaine de publications confirme que la multirésistance
aux antituberculeux est très fortement liée à un précédent traitement anti-TB (Faustini et al., 2006).

Les études de transmission de la TB sont complexes. Les patients peuvent être infectés depuis longtemps et la TB peut rester à l’état latent et asymptomatique pendant plusieurs mois ou plusieurs années. Les patients ne peuvent donc pas situer exactement où et quand ils ont été infectés par le bacille de la TB. De ce fait, l’épidémiologie se contente d’essayer d’évaluer les risques mais ne peut pas confirmer avec certitude une chaine de transmission de TB. Pour pallier ces limites, les scientifiques ont eu recours aux associations de différentes approches comme l’épidémiologie moléculaire, les analyses spatiales, les enquêtes autour des cas.

I.7.1 EPIDEMIOLOGIE MOLECULAIRE DE LA TB

Cette discipline est née du développement des outils moléculaires et génétiques de typage (Burgos et Pym, 2002). Il existe actuellement plusieurs types de méthode de génotypage pour le MTBC. Les plus utilisées ont été décrites dans le paragraphe I.3.3.2. Ces différentes méthodes de typage présentent différents niveau de discrimination et de spécificité. Elles ont aussi été utilisées pour d’autres disciplines comme des études phylogénétiques ou phylogéographiques des souches M. tuberculosis.

I.7.1.1 PRINCIPE DE L’EPIDEMIOLOGIE MOLECULAIRE

La reproduction du bacille tuberculeux est de type clonal, asexué et monoparental ; les souches donnent après division des souches strictement identiques sur le plan génétique, mises à part quelques variations liées aux taux de mutations (Sola et al., 2000). Le typage moléculaire consiste à analyser et identifier des souches à partir de leurs matériels génétiques et de retracer l’histoire de ces souches clonales. L’importance de ces identifications est de pouvoir faire du suivi de transmission de souches entre des patients ou même à l’échelle d’une épidémie (Hunter, 1990). Ce sont ces identifications et suivis de transmission qui constituent l’épidémiologie moléculaire. Une chaine de transmission de TB est donc constituée de patients portant les mêmes souches. L’ensemble des souches ayant le même génotype constituent ce qu’on appelle un « cluster » (grappe). Ces clusters sont constitués par au moins deux isolats avec des profils génétiques identiques ou très proches (Barnes et al., 1997). Ces clusters permettent de faire des suivis de l’évolution statistique des cas associés à un génotype.
donné, de faire des estimations sur la diversité des souches dans un territoire donné, d’évaluer le taux de transmission récente, de déterminer les spécificités géographiques de certaines souches mais aussi d’identifier des souches associées à des particularités comme la résistance aux antituberculeux ou encore d’autres facteurs de virulence.

Les mycobactéries font partie des bactéries les mieux caractérisées sur le plan génétique, en particulier M. tuberculosis qui a fait l’objet de très nombreux travaux génétiques et génomiques. Plusieurs séquences de génomes de plusieurs mycobactéries sont disponibles actuellement (Camus et al., 2002; Cole et al., 1998). Cela explique le nombre très élevé d’études d’épidémiologie moléculaire appliqué à la TB. Plusieurs bases de données sont disponibles en ligne actuellement fournissant des données WGS de plusieurs milliers de souches. Une des plus importantes nommée « PolyTB » contient les données de WGS de 1627 isolats recueillis dans plusieurs régions du monde (Coll et al., 2014). Des milliers de SNPs, de délétions et d’insertions nucléotidiques par comparaison avec H37rv sont disponibles ainsi que les probables effets sur la protéine codée par le gène concerné par la modification dont particulièrement la résistance aux antituberculeux (Coll et al., 2014). D’autres bases de données telles que GMTV (Chernyaeva et al., 2014), The tbvar database (Joshi et al., 2014), the M. tuberculosis Clinical Isolates Genetic Polymorphism Database (Bharti et al., 2014) sont aussi disponibles. Une revue sortie en 2015 a démontré l’innovation apportée par le WGS et le NGS sur l’épidémiologie moléculaire de la TB dans le monde (Takiff et Feo, 2015).

I.7.1.2 EXEMPLES D’APPLICATION DE L’ÉPIDÉMILOGIE MOLECULAIRE POUR LA TB

L’épidémiologie moléculaire a permis de comprendre et d’élucider divers phénomènes importants dans la transmission de la TB :

La transmission récente est une notion faite pour désigner une ou des chaînes de transmission de TB localisées spatio-temporellement. Des isolats avec des génotypes identiques sont supposés provenir probablement d’une chaîne de transmission spatio-temporellement localisée alors que des isolats avec des profils génétiques uniques pourraient provenir soit d’une transmission récente mais de deux patients spatialement très éloignés, soit d’une réactivation de TB acquise depuis longtemps. L’épidémiologie dans ce domaine peut donc distinguer plus ou moins relativement ces cas de TB associés à une chaîne de
transmission récente et les cas de TB non associés à ces dernières. Ceci a une importance pour un programme de lutte contre la TB afin de localiser les cibles potentielles pour des dépistages actifs de cas de TB ou par l’identification des facteurs associés à l’épidémie. Ces méthodologies doivent cependant être associées à des données épidémiologiques, c’est-à-dire des données sur les lieux de travaux, les déplacements des patients, les liens entre les patients etc.… Des études ont montré que des patients avec des isolats de même génotype appartenaient à des chaines de transmission récente en zone urbaine (Barnes et al., 1997; Telenti et al., 1997) tandis que des patients avec des isolats de même génotype n’appartenaient pas à des chaines de transmission récente en zone rurale (Braden et al., 1997).

Des transmissions nosocomiales de souches *M. tuberculosis* et d’autres mycobactéries MR et UR ont été identifiées dans plusieurs hôpitaux dans le monde entier (Agerton et al., 1997; Basu et al., 2007; Coronado et al., 1993; Pearson et al., 1992). Une de ces transmissions aux USA a été causée par l’intermédiaire d’un endoscope mal nettoyé et contaminé par une même souche multirésistante (Agerton et al., 1997). Ces transmissions ont lieu entre patients en convalescence dans les hôpitaux mais aussi entre patients et agents de santé travaillant dans ces hôpitaux (Pearson et al., 1992).

Dans les cas de TB récurrente, il est important de connaître la proportion de ceux correspondant à une réactivation endogène pour une meilleure prise en charge des patients. En effet, une rechute survient la plupart du temps après l’échec d’un traitement médicamenteux (Manabe et Bishai, 2000; Stead, 1967). La plupart du temps, cela confère une résistance ou une multirésistance des souches tuberculeuses. Cela est crucial pour pouvoir orienter et adapter le traitement du patient.

Une étude menée dans une prison à Antananarivo, la capitale de Madagascar, a pu déterminer que malgré l’existence de quelques cas de transmissions de TB confirmés dans cette prison, une grande part des cas de TB est due à la réactivation de TB latente (Rasolofo-Razanamparany et al., 2000). Ceci démontre que la TB dans cette prison est due non seulement à des cas de transmission directe de souches entre les personnes incarcérés mais aussi à de mauvaises conditions de vie dans la prison favorisant la réactivation de TB latente. Une autre étude a démontré la facilité de la transmission de souches *M. tuberculosis* résistantes dans une prison publique (Chaves et al., 1997).
D’autres études ont démontré l’association de certaines souches de *M. tuberculosis* avec des facteurs de virulence. Les souches présentant les spoligotypes Beijing, par exemple, ont été trouvées comme étant associées à une augmentation de la fréquence de multirésistance aux antituberculeux (Botelho *et al.*, 2014; Buu *et al.*, 2009; Hanekom *et al.*, 2011; Otlu *et al.*, 2009; Theus *et al.*, 2007; Wada *et al.*, 2009).

I.7.1.3 **UTILITE DE L’EPIDEMIOLOGIE MOLECULAIRE**

L’épidémiologie moléculaire permet de fournir une preuve de l’identité génotypique des souches transmises au cours des chaînes de transmission. Elle n’est pas soumise aux biais engendrés par la subjectivité des enquêtes entre patients et enquêteurs lors des méthodologies d’épidémiologie classique.

Les méthodes de typage moléculaire des souches tuberculeuses sont de plus en plus rapides et ne nécessitent pas forcément la culture des mycobactéries qui peut durer plusieurs semaines. La plupart de ces techniques est basée sur l’amplification d’une portion de l’ADN mycobactérien.

Toutefois, le génome en entier n’étant pas typé par les méthodes de génotypage classiques de MTBC le lien épidémiologique entre patient ayant les mêmes profils moléculaires n’est que potentiel (Pfyffer *et al.*, 1998). En effet, des souches s’avérant être éloignées phylogénétiquement peuvent avoir un même profil génotypique pour un même marqueur. Ce biais peut cependant être atténué par le choix de marqueurs génétiques plus discriminants ou par l’utilisation de plusieurs marqueurs simultanément (Filliol *et al.*, 2000).

I.7.2 ASSOCIATION EPIDEMIOLOGIE MOLECULAIRE ET CLASSIQUE DE LA TB

Pour pallier aux limites des méthodologies de détermination des chaînes de transmission de la TB prises individuellement, plusieurs approches méthodologiques peuvent être combinées. Ainsi beaucoup d’études associent l’épidémiologie moléculaire avec des méthodologies classiques utilisant des enquêtes directes auprès des patients (Alland *et al.*, 1994; Small *et al.*, 1994; Yeo *et al.*, 2006). Ces études ont pour concept de faire des investigations auprès des patients et/ou des contacts des patients afin de récolter les informations relatives à la TB. Le génotypage permet de faire le lien entre les souches, et les
informations permettent de confirmer les liens épidémiologiques. Ces types d’études ont beaucoup contribué à la compréhension des facteurs associés à la TB ou à sa transmission. Dans certains cas, c’est l’épidémiologie moléculaire qui suggère des chaînes de transmission retrouvées à l’enquête, dans d’autres cas, la suspicion de liens épidémiologiques au cours de l’enquête épidémiologique est confirmée par les résultats d’épidémiologie moléculaire. Cette fertilisation croisée est nécessaire pour améliorer les résultats.

Une première étude d’épidémiologie génomique a été menée aux Pays Bas, sur un clone circulant depuis 1993, le clone « Harlingen ». Cette étude a permis de mettre en évidence le peu de SNPs identifiées par WGS sur 3 souches connues comme étant épidémiologiquement liées. Elle a ensuite permis, sur la base de ces SNPs, de mieux mettre en évidence les liens épidémiologiques entre des souches clonales identifiées à partir du RFLP/IS6110 et a pu mettre en évidence 5 chaines de transmissions distinctes à partir de ces SNPs (Schurch et al., 2010).

Une deuxième étude menée à Vancouver, au Canada par exemple, en utilisant les méthodes de traçage des contacts entre patients associés au typage avec les données du WGS, a pu démontrer que des souches identifiées auparavant comme clonales par les MIRU-VNTR et suspectées d’appartenir à une même chaine de transmission de TB étaient plutôt composées de 2 lignées distinctes de souches (Gardy et al., 2011). Cette étude a permis aussi de mieux préciser la vraie dynamique de transmission de la TB dans la zone d’étude, d’identifier l’ancêtre commun de ces souches ainsi que ce qui est dénommé « superspreader » qui est un patient hautement infectieux ayant transmis sa souche à plusieurs personnes (Gardy et al., 2011).

1.7.3 LES METHODES EPIDEMIOLOGIQUES UTILISANT LE SIG

La géographie de la santé, avec l’utilisation grandissante d’outils de statistique spatiale et l’utilisation des Systèmes d’Information Géographique (SIG), est une discipline qui se généralise pour identifier les zones à forte incidence de maladie. Cette approche permet de vérifier s’il existe des signatures spatiales particulières d’une maladie dans une zone donnée (Guernier, 2006) et peut également être utilisée pour identifier les zones favorables à une maladie (zones de contact entre hôte et vecteur par exemple) (Dale et al., 1998) ou des facteurs liés à une maladie. Ainsi, on a pu démontrer le lien entre la déforestation et l’échinococcose (zoonose provoqué par un vers plat, l’échinocoque) (Craig et al., 2000) ; le
lien entre la culture de cacao et la transmission de l’onchocercose (filariose cutanée due à *Onchocerca volvulus*) (Cadot *et al.*, 1999); la perturbation bioclimatique et le choléra (Reeves *et al.*, 1994) ou encore le paludisme et les résidences approchant les rizières (Dossou-Yovo *et al.*, 1998) constituent d’autres exemples. C’est avec ces méthodes que sont nées les notions de zones de transmission récente d’une maladie, de clusters spatiaux de cas de maladies ou encore de zones à risques de maladie qui sont des zones associées aux facteurs de risques mais qui ne présentent pas forcément des taux élevés de cas (Guernier, 2006).

Un cluster spatial peut se définir comme un groupement de cas de malades géographiquement proches, de taille et de concentration suffisante pour qu’il y ait peu de chances qu’il soit uniquement dû au hasard. Cet agrégat peut être référencé dans le temps pour détecter des pics épidémiques (Kulldorff et Nagarwalla, 1995).

Ces méthodes ont déjà été utilisées pour étudier la distribution spatiale de cas de TB humaine (Kistemann *et al.*, 2002; Moonan *et al.*, 2004; Munch *et al.*, 2003; Rakotosamimanana *et al.*, 2014; Randremanana *et al.*, 2009; Randremanana *et al.*, 2010). La méthodologie permet d’ajouter la dimension spatiale aux études épidémiologiques et aider ainsi les autorités compétentes à mieux cibler les zones prioritaires pour la lutte contre la TB. Ces méthodes ont pu par ailleurs, déterminer des zones à risques de transmission de TB qui n’ont pas pu être déterminées par les méthodes d’épidémiologie classique (Guernier, 2006). Des méthodes statistiques spatiales telles que le balayage spatial de Kulldorff (Kulldorff, 1997) ou l’analyse de l’autocorrélation spatiale de Moran (Moran, 1950) sont utilisées pour ces analyses spatiales.

Le logiciel SaTScan (Kulldorff, 2005) développé pour l’application de la méthode « spatial scan statistic » aux études épidémiologiques permet d’identifier les clusters spatiaux de cas d’une maladie sous l’hypothèse nulle (H₀) que l’excès de cas observés dans une certaine zone géographique est uniquement dû au hasard. Un balayage de toute la zone d’étude est réalisé grâce à une fenêtre circulaire dont le diamètre varie de façon continue entre zéro et une valeur limite fixée par l’utilisateur. La fenêtre étant placée successivement au centre de chaque unité spatiale, la variation de taille de fenêtre permet d’inclure des unités spatiales voisines à plus ou moins longue distance, les agrégats pouvant donc apparaître à différentes échelles.
Ainsi on a pu déterminer des clusters spatiaux de cas de TB à Cape Town en Afrique du Sud (Munch et al., 2003), en Gambie (Touray et al., 2010), et au Portugal (Couceiro et al., 2011). Une étude menée dans la capitale de Madagascar a pu démontrer que ces clusters spatiaux de cas de TB changeaient de place en l’espace d’une année (Randremanana et al., 2009). Cela suggèrerait que les zones à risques de TB sont susceptibles de changer en peu de temps et qu’il s’avère nécessaire de faire des suivis périodiques de ces zones.

Ces méthodes ont également pu permettre de déterminer les facteurs associés à ces clusters spatiaux de cas de TB. Ainsi l’état de santé des patients et des facteurs socio-économiques ont été démontrés comme étant liés à la formation des clusters spatiaux de cas de TB à Antananarivo, Madagascar (Randremanana et al., 2009).

1.7.4 ASSOCIATION EPIDEMIOLOGIE MOLECULAIRE ET SIG

Très récemment, la méthode spatiale utilisant les SIG pour les analyses épidémiologiques de la TB a été associée aux méthodes de typage moléculaire pour des études de surveillance de la maladie. Cette association permet non seulement de localiser les zones d’agglomération de maladie mais a permis d’identifier avec plus de précision les zones de transmission active de BK. De telles études ont été menées aux USA (Moonan et al., 2012), au Brésil (Ribeiro et al., 2015), en Floride (Séraphin et al., 2016), au Japon (Izumi et al., 2015), au Pérou (Zelner et al., 2015) ou en Australie (Gurjav et al., 2015). Cette association révolutionne les études de suivi de la TB car elle permet le suivi de souches particulières telles que les souches MR ou UR (Zelner et al., 2015) mais aussi de mieux cibler les zones prioritaires dans la lutte contre la TB. Ces études ont permis d’évaluer que les lieux d’activités des patients sont les lieux les plus probables de transmission de la TB au Japon (Izumi et al., 2015) et que ces lieux de transmission de la TB ne sont pas forcément les lieux où on a le plus d’agglomération de cas de TB (Ribeiro et al., 2015).

1.8 LA PHYLOGEOGRAPHIE ET LA CLASSIFICATION DES SOUCHES M. TUBERCULOSIS

La phylogéographie est l’étude des principes et processus qui gouvernent la distribution spatiale des lignées généalogiques, spécialement celle de niveau intra-spécifique (Avise,
Les différents spoligotypes de souches tuberculeuses mondiales ont été classés selon leur zone d’isolement et/ou d’endémicité (Brudey et al., 2006; Filliol et al., 2002). Cependant, l’évolution grandissante des méthodes de typage moléculaire du MTBC a généré plusieurs classifications selon les marqueurs utilisés et selon les auteurs, généralement convergentes (tableau 5) (Gagneux et Small, 2007). Les différences de niveau de discrimination entre les différentes méthodes de typage ont généré des regroupements dans certaines cellules, comme pour la lignée 4 où au moins 4 profils de spoligotypes sont regroupés en une seule lignée dans d’autres classifications.

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Marqueur utilisé</th>
<th>Lignée 1</th>
<th>Lignée 2</th>
<th>Lignée 3</th>
<th>Lignée 4</th>
<th>Lignée 5</th>
<th>Lignée 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Sreevatsan et al., 1997)</td>
<td>SNP</td>
<td>*PGG1</td>
<td>*PGG1</td>
<td>*PGG1</td>
<td>*PGG2 et *PGG3</td>
<td>*PGG1</td>
<td>*PGG1</td>
</tr>
<tr>
<td>(Baker et al., 2004)</td>
<td>SNP</td>
<td>Lignée IV</td>
<td>Lignée I</td>
<td>Lignée III</td>
<td>Lignée II</td>
<td>**SC</td>
<td>**SC</td>
</tr>
<tr>
<td>(Gagneux et Small, 2007)</td>
<td>LSP</td>
<td>Indo-Oceanic</td>
<td>East Asian</td>
<td>East African-Indian</td>
<td>Euro-American</td>
<td>West African I</td>
<td>West African II</td>
</tr>
<tr>
<td>(Gutacker et al., 2006)</td>
<td>SNP</td>
<td>Cluster I</td>
<td>Cluster II</td>
<td>Cluster Iia</td>
<td>Clusters III-VII</td>
<td>**SC</td>
<td>**SC</td>
</tr>
<tr>
<td>(Filliol et al., 2006)</td>
<td>SNP</td>
<td>Cluster group 1</td>
<td>Cluster group 2</td>
<td>Cluster group 3a</td>
<td>Cluster group 3b-6b</td>
<td>**SC</td>
<td>**SC</td>
</tr>
<tr>
<td>(Brudey et al., 2006)</td>
<td>CRISPR</td>
<td>EAI</td>
<td>Beijing</td>
<td>CAS</td>
<td>Haarlem, LAM, T, X</td>
<td>Africanum 2</td>
<td>Africanum 1</td>
</tr>
</tbody>
</table>

Des bases de données mondiales répertoriant les souches de M. tuberculosis ont été créées dès 1999 et développées depuis. Une des plus utilisées nommée SITVITWEB (Demay et al., 2012) contient actuellement 7105 spoligotypes provenant de 105 pays et correspondant à 58180 isolats de souches M. tuberculosis. Elle inclut également les profils MIRU-VNTR-12 marqueurs d’une partie des souches. Les spoligotypes sont répertoriés selon une numérotation conventionnelle appelée aussi Spoligo-International Type (SIT) ou Shared-type (ST) (Brudey et al., 2006). La classification des spoligotypes a été faite selon observation des signatures de génotypes spécifiques associées à des régions géographiques précises (Filliol et al., 2002; Filliol et al., 2003). Les souches ont été classées en familles et en sous-familles selon ces...
signatures (Dale et al., 2001; Sola et al., 2001). Actuellement, 10 familles de spoligotypes et 53 sous familles de *M. tuberculosis* ont été décrite dans la base de données en ligne. Les règles de classification sont décrites dans le tableau 6 (Brudey et al., 2006; Demay et al., 2012). La distribution des différentes lignées spoligotypes est représentée dans la figure 16.
Tableau 6: Les familles et sous familles de spoligotypes décrites dans SITVITWEB et leur règles d’identification

<table>
<thead>
<tr>
<th>ST prototype</th>
<th>Sous-famille</th>
<th>Règles de détermination des spoligotypes</th>
<th>Code octal</th>
</tr>
</thead>
<tbody>
<tr>
<td>181</td>
<td>AFR1</td>
<td></td>
<td>7707177777777777</td>
</tr>
<tr>
<td>331</td>
<td></td>
<td></td>
<td>7707177777777777</td>
</tr>
<tr>
<td>428</td>
<td>AFR1</td>
<td></td>
<td>7707177777777777</td>
</tr>
<tr>
<td>ND</td>
<td>AFR1</td>
<td></td>
<td>7707177777777777</td>
</tr>
<tr>
<td>490</td>
<td>RV1</td>
<td></td>
<td>6707177777777777</td>
</tr>
<tr>
<td>688</td>
<td>BOY2</td>
<td></td>
<td>6607177777777777</td>
</tr>
<tr>
<td>479</td>
<td>BOY2</td>
<td></td>
<td>6407177777777777</td>
</tr>
<tr>
<td>647</td>
<td>BOY1-Capri</td>
<td></td>
<td>2777177777777777</td>
</tr>
<tr>
<td>ND</td>
<td>BOY</td>
<td></td>
<td>6707177777777777</td>
</tr>
<tr>
<td>592</td>
<td>Canetti</td>
<td></td>
<td>0000000001010000</td>
</tr>
<tr>
<td>27</td>
<td>CAS1Dori</td>
<td></td>
<td>7003717400000000</td>
</tr>
<tr>
<td>21</td>
<td>CAS1Ish</td>
<td></td>
<td>7003717400000000</td>
</tr>
<tr>
<td>288</td>
<td>CAS2</td>
<td></td>
<td>7003717400000000</td>
</tr>
<tr>
<td>ND</td>
<td>CAS</td>
<td></td>
<td>7003717400000000</td>
</tr>
<tr>
<td>40</td>
<td>EAP1-SON1</td>
<td></td>
<td>6707177777777777</td>
</tr>
<tr>
<td>19</td>
<td>EAP2-Mada</td>
<td></td>
<td>6707177777777777</td>
</tr>
<tr>
<td>89</td>
<td>EAP2-Northub</td>
<td></td>
<td>6400000000000000</td>
</tr>
<tr>
<td>ND</td>
<td>EAP2</td>
<td></td>
<td>6707177777777777</td>
</tr>
<tr>
<td>11</td>
<td>EAP1-ND</td>
<td></td>
<td>6707177777777777</td>
</tr>
<tr>
<td>139</td>
<td>EAP1-VNM</td>
<td></td>
<td>7707177777777777</td>
</tr>
<tr>
<td>206</td>
<td>EAP2</td>
<td></td>
<td>7707177777777777</td>
</tr>
<tr>
<td>591</td>
<td>EAP1-BOCD1</td>
<td></td>
<td>7707177777777777</td>
</tr>
<tr>
<td>1808</td>
<td>EAP1-BOCD2</td>
<td></td>
<td>7707177777777777</td>
</tr>
<tr>
<td>109</td>
<td>EAP1-BOCD3</td>
<td></td>
<td>7707177777777777</td>
</tr>
<tr>
<td>47</td>
<td>H1</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>50</td>
<td>H2</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>127</td>
<td>H3</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>451</td>
<td>T (H3Tivar)</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>20</td>
<td>LAM1</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>17</td>
<td>LAM2</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>33</td>
<td>LAM3</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>50</td>
<td>LAM4</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>93</td>
<td>LAM5</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>64</td>
<td>LAM6</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>41</td>
<td>LAM7-Tiib</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>290</td>
<td>LAM8</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>42</td>
<td>LAM9</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>61</td>
<td>LAM9-CAM4</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>58</td>
<td>LAM9-Zwe</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>209</td>
<td>LAM9-Marvd</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>100</td>
<td>MANU1</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>54</td>
<td>MANU2</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>1378</td>
<td>MANU3</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>539</td>
<td>MicroDr</td>
<td></td>
<td>0000000000000000</td>
</tr>
<tr>
<td>583</td>
<td>PINI1</td>
<td></td>
<td>0700000000000000</td>
</tr>
<tr>
<td>627</td>
<td>PINI2</td>
<td></td>
<td>0000000000000000</td>
</tr>
<tr>
<td>ND</td>
<td>PINI</td>
<td></td>
<td>0700000000000000</td>
</tr>
<tr>
<td>34</td>
<td>SYN</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>1737</td>
<td>T-Tuscany</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>260</td>
<td>T1-Tusc2</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>52</td>
<td>T2</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>135</td>
<td>T2-Uganda</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>37</td>
<td>T3</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>149</td>
<td>T3-ETH</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>627</td>
<td>T3-OA</td>
<td></td>
<td>7417777777777777</td>
</tr>
<tr>
<td>40</td>
<td>T4</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>39</td>
<td>T4-CEEU1</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>44</td>
<td>T5</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>58</td>
<td>T5-Med1</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>254</td>
<td>T5-Med2</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>119</td>
<td>X1</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>137</td>
<td>X2</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>92</td>
<td>X3</td>
<td></td>
<td>7777777777777777</td>
</tr>
<tr>
<td>405</td>
<td>ZERHO</td>
<td></td>
<td>7777777777777777</td>
</tr>
</tbody>
</table>

Des études ont démontré la circulation de souches particulières dans des zones précises. Le SIT109 est une souche endémique à Madagascar (Brudey et al., 2006; Ferdinand et al., 2005). Des études récentes ont suggéré que ces souches ont pu être importées en Arabie Saoudite par des malgaches lors des pèlerinages musulmans (Al-Hajoj et al., 2007). D’autres souches de *M. tuberculosis* endémiques comme les souches portant la délétion DS6 ont été retrouvées au Québec, Canada (Nguyen et al., 2004).

1.9 HISTOIRE EVOLUTIVE DES SOUCHES *M. TUBERCULOSIS*

A part les études d’épidémiologie moléculaire et de phylogéographie, les méthodes de gènotypage servent aussi à faire des études de l’évolution de souches tuberculeuses.

Plusieurs scénarios de modèle d’évolution ont été proposés pour retracer l’histoire évolutive des souches du MTBC. Pour cela divers marqueurs moléculaires ont été utilisés.
La première étude, qui fait référence est celle de Brosch et al. en 2002 (figure 17). Le modèle a été élaboré à partir de 20 régions variables correspondant à des insertions et des délétions observées sur 100 souches de MTBC représentant 5 espèces (Brosch et al., 2002).

Figure 17: Modèle de schéma évolutif des espèces du MTBC selon Brosch et al. 2002
Schéma basé sur la présence ou l’absence de régions de délétion et de séquences polymorphes dans une sélection de 5 gènes. Les distances entre les branches ne correspondent pas à la phylogénie actuelle calculée par d’autres méthodes.

Le modèle d’évolution décrit que les souches *M. bovis* seraient apparues plus récemment que les souches *M. tuberculosis*. Ceci suggère que la TB humaine serait plus ancienne que la TB bovine (Brosch et al., 2002). Le modèle décrit aussi la divergence des souches *M. tuberculosis* avec les 3 autres sous-espèces que sont *M. africanum*, *M. microti* et *M. bovis* par la délétion de la région RD9.

Parmi les souches de *M. tuberculosis*, la présence ou l’absence de la région TbD1 a permis de les classer soit dans une lignée ancienne (TbD1 présente) qui sont représentées par les souches avec la signature de spoligotypes « East African Indian » ou dans des lignées modernes (TbD1 absente) qui incluent tout le reste (Brosch et al., 2002).

Une autre étude des souches du MTBC, analysant les spoligotypes, les profils MIRU-VNTR et des SNPs au niveau des gènes *katG* et *gyrA* montre que *M. tuberculosis* et des *M.*
africanum classés « type 1 » auraient eu un ancêtre commun et que *M. microti* et *M. bovis* dériveraient de *M. africanum* (Arnold, 2007). La revue de Galagan reprend les relations évolutives supposées entre les membres du complexe (non du genre) de *M. tuberculosis*, ainsi que les relations avec les autres mycobactéries (Figure 18) (Galagan, 2014).

Figure 18: Relation évolution entre les membres du CMTB et les autres espèces de mycobactéries

Plusieurs études de datation phylogénétique ont été menées pour le genre *M. tuberculosis* pour estimer les périodes d’apparition, d’évolution ou de divergence des souches tuberculeuses (Kay et al., 2015; Refrégier et al., 2016). Cependant les méthodologies et les approches n’aboutissent pas à des résultats concordants. Le manque de souches bien datées ainsi que la calibration des méthodes de datations sont à la base de déficit dans ces études de datation (Bos et al., 2014; Refrégier et al., 2016; Wirth et al., 2008).
I.10 LA TB À MADAGASCAR

Madagascar est une île située au large de l’Océan Indien comptant 23 millions d’habitants en 2013 pour 590 000 km2. D’après les estimations de l’OMS en 2013, la prévalence de la TB à Madagascar était de 413 cas de TB pour 100 000 habitants. Les nouveaux cas se compuntaient à 233 cas pour 100 000 habitants et 12 000 seraient décédés de la TB cette année (PNLT, 2013; WHO, 2014). La prévalence du VIH-SIDA à Madagascar est estimée à 0,37% en 2010 (RASA, 2012) le taux de co-infection VIH-SIDA parmi les cas de TB est estimé à 2% (WHO, 2014). Le taux de guérison des nouveaux cas diagnostiqués par la microscopie est à 82%. En 2013, le taux de TB-MR parmi les nouveaux cas est de 0,5% 100 000 et le taux parmi les cas ayant déjà été traités auparavant est de 3,9% (WHO, 2014).

Antananarivo, la capitale de Madagascar compte plus de 1,1 millions d’habitants pour une superficie de 90 km2. La densité de population y est la plus élevée dans toute l’île (8687 habitants/km2). L’incidence de la TB pulmonaire dans la ville d’Antananarivo en 2004 serait la plus élevée de tout le pays avec 141 cas pour 100 000 personnes (données du Ministère de la Santé Malgache).

Le gouvernement malgache a mis en place en 1992 un nouveau Programme National de Lutte contre la TB (PNLT). Le but de ce plan est de fournir à tout acteur de la lutte contre la TB et aux différents partenaires, des stratégies efficaces, des objectifs clairs et des indicateurs pour le suivi et l’évaluation afin de faciliter la planification, la mise en œuvre, la coordination, le suivi et l’évaluation des activités de la lutte contre la TB à tous les niveaux du système à Madagascar. Deux-cent vingt centres spécialisés dans le diagnostic et de traitement de la TB (CDT) sont dispersés dans toute l’île (PNLT, 2013).

Des études avec des souches représentatives de Madagascar datant de 1994 à 2000 ont montré une grande diversité des souches circulant dans le pays (tableau 7) ainsi que des spoligotypes spécifiques tels que le SIT109, les SIT1514 à SIT1525 (Ferdinand et al., 2005; Rasolofo-Razanamparany et al., 1994).
Tableau 7: Diversité des spoligotypes circulant à Madagascar (Ferdinand et al., 2005)

<table>
<thead>
<tr>
<th>N°</th>
<th>ST</th>
<th>Spoligotypes</th>
<th>famille</th>
<th>Lignée</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>13214</td>
<td>BEIJING</td>
<td>Beijing</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>13214</td>
<td>EA15 / EA13</td>
<td>EAI</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>13214</td>
<td>CAS1 KILI</td>
<td>cas</td>
</tr>
<tr>
<td>4</td>
<td>31</td>
<td>13214</td>
<td>T1</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>13214</td>
<td>LAM3</td>
<td>LAM</td>
</tr>
<tr>
<td>6</td>
<td>34</td>
<td>13214</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>13214</td>
<td>T3</td>
<td>T</td>
</tr>
<tr>
<td>8</td>
<td>42</td>
<td>13214</td>
<td>LAM9</td>
<td>LAM</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>13214</td>
<td>H1</td>
<td>H</td>
</tr>
<tr>
<td>10</td>
<td>46</td>
<td>13214</td>
<td>U LIKELY H</td>
<td>U</td>
</tr>
<tr>
<td>11</td>
<td>47</td>
<td>13214</td>
<td>H1</td>
<td>H</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
<td>13214</td>
<td>H3</td>
<td>H</td>
</tr>
<tr>
<td>13</td>
<td>51</td>
<td>13214</td>
<td>T1</td>
<td>T</td>
</tr>
<tr>
<td>14</td>
<td>52</td>
<td>13214</td>
<td>T2</td>
<td>T</td>
</tr>
<tr>
<td>15</td>
<td>53</td>
<td>13214</td>
<td>T1</td>
<td>T</td>
</tr>
<tr>
<td>16</td>
<td>54</td>
<td>13214</td>
<td>MANU2</td>
<td>manu</td>
</tr>
<tr>
<td>17</td>
<td>59</td>
<td>13214</td>
<td>LAM11_ZWE</td>
<td>LAM</td>
</tr>
<tr>
<td>18</td>
<td>60</td>
<td>13214</td>
<td>LAM4</td>
<td>LAM</td>
</tr>
<tr>
<td>19</td>
<td>61</td>
<td>13214</td>
<td>LAM10_CAM</td>
<td>LAM</td>
</tr>
<tr>
<td>20</td>
<td>62</td>
<td>13214</td>
<td>H1</td>
<td>H</td>
</tr>
<tr>
<td>21</td>
<td>64</td>
<td>13214</td>
<td>LAM6</td>
<td>LAM</td>
</tr>
<tr>
<td>22</td>
<td>73</td>
<td>13214</td>
<td>T2-T3</td>
<td>T</td>
</tr>
<tr>
<td>23</td>
<td>74</td>
<td>13214</td>
<td>T1</td>
<td>T</td>
</tr>
<tr>
<td>24</td>
<td>78</td>
<td>13214</td>
<td>T1-T2</td>
<td>T</td>
</tr>
<tr>
<td>25</td>
<td>86</td>
<td>13214</td>
<td>T1</td>
<td>T</td>
</tr>
<tr>
<td>26</td>
<td>99</td>
<td>13214</td>
<td>H3</td>
<td>H</td>
</tr>
<tr>
<td>27</td>
<td>109</td>
<td>13214</td>
<td>EA18_MDG</td>
<td>EAI</td>
</tr>
<tr>
<td>28</td>
<td>129</td>
<td>13214</td>
<td>EA15</td>
<td>EAI</td>
</tr>
<tr>
<td>29</td>
<td>130</td>
<td>13214</td>
<td>LAM3</td>
<td>LAM</td>
</tr>
<tr>
<td>30</td>
<td>156</td>
<td>13214</td>
<td>T1</td>
<td>T</td>
</tr>
<tr>
<td>31</td>
<td>164</td>
<td>13214</td>
<td>(H7)T1</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>187</td>
<td>13214</td>
<td>AFRI 1</td>
<td>africanum</td>
</tr>
<tr>
<td>33</td>
<td>196</td>
<td>13214</td>
<td>T1</td>
<td>T</td>
</tr>
<tr>
<td>34</td>
<td>211</td>
<td>13214</td>
<td>LAM3</td>
<td>LAM</td>
</tr>
<tr>
<td>35</td>
<td>237</td>
<td>13214</td>
<td>U LIKELY H3</td>
<td>U</td>
</tr>
<tr>
<td>36</td>
<td>291</td>
<td>13214</td>
<td>T1</td>
<td>T</td>
</tr>
<tr>
<td>37</td>
<td>315</td>
<td>13214</td>
<td>H1</td>
<td>H</td>
</tr>
<tr>
<td>38</td>
<td>316</td>
<td>13214</td>
<td>H3</td>
<td>H</td>
</tr>
<tr>
<td>39</td>
<td>336</td>
<td>13214</td>
<td>X1</td>
<td>X</td>
</tr>
<tr>
<td>40</td>
<td>816</td>
<td>13214</td>
<td>LAM11_ZWE</td>
<td>LAM</td>
</tr>
<tr>
<td>41</td>
<td>1061</td>
<td>13214</td>
<td>X1</td>
<td>X</td>
</tr>
<tr>
<td>42</td>
<td>1062</td>
<td>13214</td>
<td>EA15</td>
<td>EAI</td>
</tr>
<tr>
<td>43</td>
<td>1176</td>
<td>13214</td>
<td>LAM9</td>
<td>LAM</td>
</tr>
<tr>
<td>44</td>
<td>1192</td>
<td>13214</td>
<td>MANU2</td>
<td>manu</td>
</tr>
<tr>
<td>45</td>
<td>1262</td>
<td>13214</td>
<td>T1</td>
<td>T</td>
</tr>
<tr>
<td>46</td>
<td>1214</td>
<td>13214</td>
<td>T1</td>
<td>T</td>
</tr>
<tr>
<td>47</td>
<td>1223</td>
<td>13214</td>
<td>T1</td>
<td>T</td>
</tr>
<tr>
<td>48</td>
<td>1332</td>
<td>13214</td>
<td>T2</td>
<td>T</td>
</tr>
<tr>
<td>49</td>
<td>1514</td>
<td>13214</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>50</td>
<td>1515</td>
<td>13214</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>51</td>
<td>1516</td>
<td>13214</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>52</td>
<td>1517</td>
<td>13214</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>53</td>
<td>1518</td>
<td>13214</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>54</td>
<td>1519</td>
<td>13214</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>55</td>
<td>1520</td>
<td>13214</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>56</td>
<td>1521</td>
<td>13214</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>57</td>
<td>1522</td>
<td>13214</td>
<td>MANU2</td>
<td>manu</td>
</tr>
<tr>
<td>58</td>
<td>1523</td>
<td>13214</td>
<td>MANU2</td>
<td>manu</td>
</tr>
<tr>
<td>59</td>
<td>1524</td>
<td>13214</td>
<td>MANU2</td>
<td>manu</td>
</tr>
<tr>
<td>60</td>
<td>1525</td>
<td>13214</td>
<td>LAM3</td>
<td>LAM</td>
</tr>
</tbody>
</table>
Cette même étude a montré la distribution des familles de spoligotypes circulant dans quatre grandes villes de Madagascar avec des associations significatives (Ferdinand et al., 2005) (Figure 19).

Figure 19: Description et distribution des principaux spoligotypes trouvés à Madagascar (Ferdinand et al., 2005)

Des études ont montré l’existence de clusters spatiaux de cas de TB dans la capitale de Madagascar (figure 20) (Rakotosamimanana et al., 2014; Randremanana et al., 2009; Randremanana et al., 2010). Ces clusters spatiaux changent d’emplacement et de taille au cours du temps. De 2005 à 2006, l’unique cluster spatial de cas de TB s’étendant sur le 1er et le 4ème arrondissement d’Antananarivo, se déplaçait vers le sud et laissait place à un 2ème petit cluster dans le 1er arrondissement.

Figure 20: Les clusters spatiaux de cas de TB à Antananarivo, de 2005 à 2011
II INTRODUCTION GENERALE

La TB, dont l’agent étiologique principal chez l’homme est *M. tuberculosis*, demeure actuellement la principale cause de décès dans le monde au même rang que le VIH-SIDA (WHO, 2015). Un quart de la population mondiale est estimé infecté par *M. tuberculosis* et le nombre de cas de TB ne cesse d’augmenter chaque année (WHO, 2015). D’après les estimations de l’OMS, la TB a tué 1,4 millions de personnes dont 400 000 VIH-positives en 2015 et 10,4 millions de personnes auraient contracté la TB (nouveaux cas) dont 12% de VIH-positives.

L’émergence des souches MR et UR, l’apparition des souches TDR, ainsi que la co-infection par le VIH/SIDA compliquent la lutte contre la TB. Quatre cent vingt mille cas de TB étaient estimés MR en 2014 dont 3,3% parmi les nouveaux cas de TB et 20% parmi les cas de TB déjà traités.

A Madagascar, pour environ 23 millions d’habitants en 2013, on compte environ 413 cas de TB pour 100000 habitants, 233 nouveaux cas de TB pour 100000 habitants et 12000 décès par la TB. La prévalence du VIH-SIDA est de 0,37% en 2010 (RASA, 2012) et le taux de co-infection de TB-VIH SIDA est de 2% parmi les cas de TB. Le taux de TB-MR parmi les nouveaux cas est de 0,5% et le taux parmi les cas ayant déjà été traités auparavant est de 3,9% (WHO, 2015).

L’OMS recommande un régime composé de plusieurs antibiotiques dont la prise par le patient est directement observée (DOTS) pour le traitement de la TB. Selon l’état de sensibilité des souches tuberculeuses ou de l’état des patients, ce traitement peut varier. Une forte proportion des nouveaux cas de TB sensible aux antituberculeux sont guéri par ce traitement.

Des études utilisant des outils d’analyse spatiale intégrant le Système d’Information Géographique (SIG) ont démontré que les cas de TB étaient regroupés spatio-temporellement dans certains pays et certaines régions du monde (Kistemann *et al.*, 2002; Moonan *et al.*, 2004; Munch *et al.*, 2003) et aussi particulièrement à Antananarivo, la capitale de Madagascar (Rakotosamimanana *et al.*, 2014; Randremanana *et al.*, 2009; Randremanana *et al.*, 2010). Ces agrégations sont aussi connues sous l’appellation de clusters spatiaux de cas de TB. Ces
clusters spatiaux de cas de TB suggèrent que les zones touchées par ces fortes concentrations de cas de tuberculeux peuvent aussi être des zones à forte transmission de TB.

De son côté, l’épidémiologie moléculaire s’est révélée utile pour la surveillance de la TB. Le développement et l’essor d’outils de génotypage ont révolutionné ces types d’études mais aussi l’identification et la classification des souches tuberculeuses. Ces études ont démontré la grande diversité des souches de BK circulant dans le monde mais aussi la circulation de toutes les familles de souches existantes à Madagascar (Demay et al., 2012; Ferdinand et al., 2005; Rasolofo-Razanamparany et al., 1994).

Des études associant analyses spatiales et génotypage ont aussi été menées pour identifier les zones de transmission active de la TB (Gurjav et al., 2015; Izumi et al., 2015; Moonan et al., 2012; Ribeiro et al., 2015; Séraphin et al., 2016; Zelner et al., 2015).

Par ailleurs, les outils de diagnostic de la TB et de la sensibilité aux antituberculeux ont beaucoup évolué en passant des techniques classiques (microscopie et culture) aux techniques moléculaires, beaucoup plus rapides et pratiques avec des sensibilités et spécificités appréciables.

Toutefois, malgré l’essor des outils en matière de lutte contre la TB, ainsi que l’existence d’une thérapie efficace, le nombre de cas de TB et le taux de mortalité par la TB demeure encore inacceptablement élevé surtout dans les pays en voie de développement comme Madagascar. Ceci est dû en partie à plusieurs facteurs :

- L’efficacité partielle du seul vaccin disponible actuellement contre la TB, le bacille de BCG (Bacille de Calmette et Guérin). Le vaccin peut prévenir des complications graves de la TB chez les enfants mais son efficacité dans la prévention de la TB pulmonaire chez les adultes est très controversée ;

- L’infection avec le VIH/SIDA favorise le développement de la TB. L’épidémie de VIH/SIDA a été à l’origine de la réémergence de la TB dans les années 80 dans les pays africains. De plus, l’existence d’interactions médicamenteuses entre le traitement utilisé contre les deux maladies, notamment entre la RIF et de nombreux retroviraux complique le traitement des patients ;
INTRODUCTION GENERALE

- Le niveau de vie de la population et le manque d’accès aux soins favorisent le développement ainsi que la transmission des maladies infectieuses ;

- La non identification des souches circulantes dans certaines zones ne permet pas de déterminer le niveau de transmission des souches tuberculeuses et l’échelle à laquelle se font les transmissions de TB (entre voisins ou entre des personnes de résidence éloignées). Cela ne permet également pas l’identification des infections avec les souches reconnues relativement plus virulentes que d’autres telles que les souches avec les spoligotypes « Beijing » ainsi que les sources de transmission de la TB.

- L’inexistence ou la non performance des systèmes de surveillance de la TB qui ne permet pas d’identifier les zones clefs pour la lutte contre la TB. La surveillance de la TB dans la plupart des pays du monde repose encore actuellement sur des méthodes d’épidémiologie classique basée sur la récolte des données épidémiologique sur les patients. Ces méthodes sont lourdes, longues et sont biaisés par la subjectivité de réponses fournies pendant les enquêtes. Ce type de surveillance est efficace pour retrouver dans la majorité des cas, et en rétrospective, les facteurs liées à l’émergence de la maladie. Cependant, ces systèmes ne permettent pas de faire de ces méthodes des outils d’alerte à l’épidémie due à la lenteur de leur exécution. Elles ne permettent donc pas non plus de constituer des outils d’aide à la décision pour les priorités et les urgences en matière de lutte contre la TB.

Devant ces deux derniers facteurs non négligeables limitant la lutte contre la TB, la présente étude s’est proposé comme objectif principal : d’étudier la distribution et la dynamique de la TB ainsi que des BK au cours du temps et dans l’espace afin d’avoir un aperçu de l’état actuel de la TB dans le pays, du niveau de la transmission de la TB à Madagascar, du niveau d’évolution de la TB et des BK malgaches ainsi que l’identification les sources potentielles de la TB en commençant par la capitale.

Pour cela, différentes étapes et approches ont été faites :

2. Etudier la diversité d’une souche caractéristique et endémique de Madagascar, le SIT109. Cela permet d’estimer plus précisément l’échelle à laquelle se fait la transmission
de la TB au niveau d’une souche ainsi que le niveau et la vitesse d’évolution des souches tuberculeuses à Madagascar.

3. Développer un outil d’identification des zones à fort risque de transmission de la TB à Antananarivo, la capitale de Madagascar, en associant des méthodes d’analyse spatiale et des méthodes de génotypage. Cet outil pourrait servir de système de surveillance rapide, plus facile, plus accessible de la TB et un outil d’aide à la décision en matière de lutte contre la TB à Madagascar.
III ETUDE 1 : DIVERSITE ET DISTRIBUTION DES SOUCHES

M. tuberculosis CIRCULANT A MADAGASCAR

III.1 PRESENTATION DE L’ETUDE

Toutefois ces études ont été faites sur un échantillon restreint de souches *M. tuberculosis* isolées seulement à partir de patients résidant dans 4 villes de Madagascar.

Par ailleurs, ces études ultérieures ont permis de suggérer que la majorité des souches avaient des similitudes génétiques avec les souches asiatiques. Il semblerait donc intéressant de voir si les souches circulant dans tout le pays possèdent ces mêmes caractéristiques ou s’il existe des variabilités selon les régions.

L’objectif principal de cette étude est de décrire la diversité des souches ayant circulé actuellement dans le pays, d’analyser leur distribution et d’essayer d’identifier l’origine de ces souches par comparaison des génotypes avec ceux des souches circulant dans les pays avoisinant ou en relation avec Madagascar.

III.2 ARTICLE 1 (en préparation)

Titre : La Distribution et la Diversité des Souches *M. tuberculosis*
Décrit la Dynamique de la Tuberculose et Démontre les Origines
Potentielles de la Maladie à Madagascar

III.2.1 OBJECTIF

L’objectif de l’étude est de décrire la distribution et la diversité des souches *M. tuberculosis* afin de décrire le mode de transmission de la TB et d’identifier les origines potentielles de la maladie à Madagascar.

III.2.2 MATERIELS ET METHODES

III.2.2.1 DESCRIPTION DE LA ZONE D’ETUDE

L’étude a été menée à Madagascar, la quatrième plus grande île au monde située au large de l’Océan Indien. Le pays compte 23 millions d’habitants en 2013 pour 590 000 km². Madagascar est considéré comme un pays en voie de développement et est classé parmi les pays les plus pauvres au monde. Le pays est divisé en 22 régions regroupées en 6 provinces. Sa capitale qui est la Commune Urbaine d’Antananarivo (CUA ; 90km² ; 1,1 million d’habitants) se situe en plein centre, dans les Hauts Plateaux. La population y est la plus dense et on y retrouve le maximum d’activités commerciales et d’échanges inter-population. Il existe plus de 200 Centres de Diagnostic et de Traitement de la TB (CDT) répartis dans toute l’île qui traitent et prennent en charge la TB à Madagascar.

III.2.2.2 ECHANTILLONNAGE

répartis partout dans Madagascar et représentant 19 des 22 régions de l’île (Figure 21). L’échantillonnage s’est fait en grappe proportionnel. Trente patients remplissant les critères de sélection, pris au hasard par CDT (n=35) ont été inclus dans l’étude (total=1050). Les patients recrutés étaient ceux qui n’ont jamais reçu de traitement anti tuberculeux ou ceux ayant reçu le traitement en moins d’un mois. Pendant la période d’inclusion dans chaque CDT, les patients ayant déjà reçu un traitement avaient été recrutés pour la surveillance de la résistance acquise.

Figure 21: Description de la zone d’étude et distribution des CDTs inclus dans l’étude
Les CDTs inclus dans l’étude sont représentés par des points sur la carte

Pour chaque patient inclus dans l’étude, deux prélèvements de crachat ont été récoltés, et mis en culture à l’Institut Pasteur de Madagascar. Les informations concernant le patient (âge, sexe, adresse de résidence, profession, antécédent de TB…) ont aussi été prises.
Les prélèvements biologiques ont été transportés depuis les CDTs concernés vers le Centre national de Référence des Mycobactéries (CNRM) à L’Institut Pasteur de Madagascar (IPM) dans des glacières isothermiques en respectant les chaînes de froid et en utilisant les moyens de transport les plus rapides (transport de 1 à 5 jours). Les échantillons ont été transportés sans ajouts de réactifs de conservation.

III.2.2.3 TRAITEMENT DES PRELEVEMENTS BIOLOGIQUES

Les tests biochimiques d’identification ainsi que les antibiogrammes pour la sensibilité à la streptomycine, l’isoniazide la rifampicine et l’ethambutol a été faits comme décrit auparavant (Canetti et al., 1963) pour tous les échantillons.

III.2.2.4 DESACTIVATION DES SOUCHES ET EXTRACTION D’ADN

Les colonies obtenues après la culture ont été resuspendues dans du tampon TE1X (composition en annexe) et ont été désactivés à 95°C pendant 20 min.

L’ADN génomique a été extrait selon la méthode décrite par Van Embden (Van Embden et al., 1993) et conservé à -30°C. Les extraits d’ADN ont été utilisés pour la première étude portant sur la surveillance de la résistance à Madagascar (Ramarakoto et al., 2005). Seuls les ADN disponibles au moment de l’étude ont été inclus dans l’étude (n=1014 parmi les 1050). Le reste a été épuisé lors de la première étude.

III.2.2.5 SPOLIGOTYPAGE

a) Amplification :

L’amplification utilise deux amorces complémentaires de la partie conservée de la région DR, Dra (5’-GGTTTTGGGTCTGACGAC-3’) et Drb (5’-CCGAGAGGGGACGGAAAAC-3’), dirigées vers l’extérieur, qui amplifient les séquences Inter-DR ou espaceurs (Figure 12 - A). L’amorce Dra est marquée à la biotine. La biotine se
lie à la streptavidine qui, couplée à la peroxydase, permet la détection des produits d’amplification après leur hybridation avec les sondes fixées sur la membrane. Pour l’amplification de chaque échantillon, 48 μl du mélange réactionnel a été préparé auxquel ont été ajoutés 20 à 200ng d’ADN dans un microtube pour PCR. La composition du mélange réactionnel est récapitulée dans le tableau 8. Un échantillon par patient a été amplifié pour le spoligotypage.

Tableau 8: Composition du mélange réactionnel pour l’amplification de la région DR pour le spoligotypage

<table>
<thead>
<tr>
<th>Solution</th>
<th>Concentration initiale</th>
<th>Concentration finale</th>
<th>Volume par tube (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tampon Tth</td>
<td>5X</td>
<td>1X</td>
<td>10</td>
</tr>
<tr>
<td>Dra</td>
<td>5pmol/μl</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Drb</td>
<td>5pmol/μl</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>dNTP</td>
<td>10mM</td>
<td>0,2mM</td>
<td>1</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>50mM</td>
<td>7mM</td>
<td>7</td>
</tr>
<tr>
<td>Tth ADN polymerase</td>
<td>5U/μl</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Eau distillée</td>
<td></td>
<td></td>
<td>21,9</td>
</tr>
<tr>
<td>ADN</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Le mélange est ensuite inséré dans un thermocycleur (Labnet). Les cycles de température utilisés pour l’amplification sont récapitulés dans le tableau 9:

Tableau 9: Cycle de température utilisé pour l’amplification de la région DR pour le spoligotypage

<table>
<thead>
<tr>
<th>Nombre de cycle</th>
<th>Temps en min.</th>
<th>Température en °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>96</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>72</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>72</td>
</tr>
</tbody>
</table>
b) **Hybridation**

Pour chaque série d'hybridation, un témoin négatif fait avec de l’eau distillée et deux témoins positifs fait avec deux souches de référence avec des spoligotypes bien connus, H37rv et *M. bovis*, ont été utilisés avec les échantillons à typer (n=40). L’hybridation suit le protocole standard de Kamerbeek *et al.* (Kamerbeek *et al.*, 1997). La préparation de la membrane pour l’hybridation est présentée en annexe 1.

Pour chaque échantillon, vingt-cinq microlitres de produits de PCR ont été dilués dans 145 μl de tampon de 2XSSPE – 0,1% SDS. Les dilutions ainsi obtenues ont été chauffées à 100°C pendant 10 minutes dans un bain marie bouillant, afin de séparer les dimères de produits de PCR puis refroidies brutalement dans de la glace et déposées sur la membrane préalablement lavée dans 2 bains successifs (5 min par bain) de 2XSSPE – 0,1 % SDS à 60°C et mise en place dans le blotter (figure 12 – page 22). Une fois les produits de PCR en contact avec la membrane, celle-ci a été incubée à 60°C pendant 3h pour l’hybridation. Au terme de cette phase, le reste des produits de PCR a été aspiré et la membrane rincée dans 2 bains successifs (5 min par bain) de 2XSSPE – 0,5 % SDS à 60°C sous agitation. Afin de pouvoir détecter la présence de produits de PCR fixés à la membrane, 14 μl d’une solution de 2XSSPE – 0,5% SDS contenant 3 μl de streptavidine peroxydase ont été préparés et incubés à 42°C avec la membrane pendant environ 1 heure. La streptavidinepéroxydase se liant aux fonctions amine des produits de PCR permet de révéler la présence de produits d’amplification après interaction de la peroxydase avec de l’ECL (Enhanced Chemo-Luminescence Detection kit ; Amersham). La chimioluminescence générée est détectée par exposition d’Hyperfilms ECL (Amersham) avec la membrane à température ambiante pendant 15 à 30 min. et la révélation du film obtenu a été faite par des produits standards de photographie (révélateur, fixateur, KODAK).

c) **Saisie des résultats et création d’une base de données**

Les spoligotypes obtenus ont été saisis sous format binaire dans Microsoft Excel (un spoligotype = une série de 43 caractères). Les espaceurs présents sont identifiés par un caractère alphabétique « n » et les espaceurs absents par « o ». Les informations concernant chaque patient ont été intégrées dans la base de données. L’identité des patients a été codée pour la confidentialité de données obtenues.
d) Identification des ST, des lignées et des sous lignées des souches

Les SIT, les lignées et les sous lignées des souches ont été identifiés à partir de la plateforme en ligne SITVITWEB (Demay et al., 2012). Les différentes régions du monde où on a pu identifier les SIT ont été récoltées dans la base de données en ligne SITVITWEB. Pour les profils non reconnus dans la base de données de SITVITWEB, une numérotation arbitraire a été attribuée pour chaque spoligotype (NC, NC2, NC3…). La lignée et la sous lignée d’appartenance de ces dernières ont été identifiées selon les règles établies par Demay et al. (Demay et al., 2012) dans le tableau 6.

Les souches ayant les mêmes profils constituent ce qu’on appelle un « cluster génotypique ».

III.2.2.6 ANALYSE

La distribution des lignées par province a été comparée. Les tests statistiques de comparaison utilisée sont le test Chi² et le test de Fischer.

La distribution des lignées majoritaires entre Antananarivo et les provinces a aussi été comparée.

L’identification des pays où on a pu identifier les même ST (pour seulement ceux qui ont plus de 4 souches dans un même cluster génotypique) dans le monde entier a été faite à partir de la base de données en ligne SITVITWEB.

Les tests ont été faits avec le logiciel GraphPADPrism version 6. Pour toutes les comparaisons statistiques, une valeur de p inférieure à 0,05 est considérée comme significative.

III.2.2.7 CARTOGRAPHIE

La carte de distribution des génotypes des souches a été faite sur le logiciel QuantumGis 2.8 © (QGIS Development Team, 2013).
III.2.3 RESULTATS

III.2.3.1 DESCRIPTION DES PATIENTS

Parmi les 1050 ADNs des 1050 patients recrutés lors de la surveillance de la résistance à Madagascar, seulement 1014 étaient disponibles pour le typage pour cette seconde étude. Les 36 autres extraits d’ADN ont été épuisés lors de cette première étude.

Parmi les 1014 patients inclus dans l’étude, 397 étaient des femmes, 598 étaient des hommes et 19 n’avaient pas d’informations disponibles. La stratification par âge est décrite dans le tableau 10.

Tableau 10 : Stratification par âge des patients inclus dans l’étude

<table>
<thead>
<tr>
<th>Tranche d’âge</th>
<th>Nombre des cas</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 à 19</td>
<td>82</td>
</tr>
<tr>
<td>20 à 29</td>
<td>255</td>
</tr>
<tr>
<td>30 à 39</td>
<td>271</td>
</tr>
<tr>
<td>40 à 49</td>
<td>221</td>
</tr>
<tr>
<td>50 à 59</td>
<td>112</td>
</tr>
<tr>
<td>60 à 69</td>
<td>43</td>
</tr>
<tr>
<td>70 et plus</td>
<td>12</td>
</tr>
<tr>
<td>ND</td>
<td>18</td>
</tr>
<tr>
<td>Total général</td>
<td>1014</td>
</tr>
</tbody>
</table>

La répartition des patients par région de provenance est récapitulée dans le tableau 11.

Tableau 11: Répartition des 1014 patients dans les 19 régions de Madagascar

<table>
<thead>
<tr>
<th>Région</th>
<th>nombre</th>
<th>Région (suite)</th>
<th>nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALAOTRA MANGORO</td>
<td>25</td>
<td>BONGOLAVA</td>
<td>21</td>
</tr>
<tr>
<td>ANALAMANGA</td>
<td>219</td>
<td>DIANA</td>
<td>30</td>
</tr>
<tr>
<td>ANALANJIROFO</td>
<td>34</td>
<td>HAUTE MAHATSIATRA</td>
<td>64</td>
</tr>
<tr>
<td>ANDROY</td>
<td>65</td>
<td>IHOROMBE</td>
<td>50</td>
</tr>
<tr>
<td>ANOSY</td>
<td>18</td>
<td>MENABE</td>
<td>28</td>
</tr>
<tr>
<td>ATSIMO ANDREFANA</td>
<td>127</td>
<td>SAVA</td>
<td>33</td>
</tr>
<tr>
<td>ATSIMO ATSINANANA</td>
<td>30</td>
<td>SOFIA</td>
<td>49</td>
</tr>
<tr>
<td>ATSINANANA</td>
<td>66</td>
<td>VAKINANKARATRA</td>
<td>31</td>
</tr>
<tr>
<td>BETSIBOKA</td>
<td>22</td>
<td>VATOVAVY FITOVINANY</td>
<td>50</td>
</tr>
<tr>
<td>BOENY</td>
<td>52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III.2.3.2 SPOLIGOTYPAGE

Mille onze ADN ont pu être typés. Le typage a généré 217 spoligotypes dont 126 profils uniques et 91 clusters génotypiques de 2 à 271 souches (formés de 885 souches). Le taux de clusterisation génotypique est de : \((885/1011)*100 = 87,5\%\). Les SIT les plus fréquents sont : le SIT109 (271 ; 26,81\% de toutes les souches), Le SIT 21 (82 ; 8,11\% de toutes les souches), le SIT 1 (43 ; 4,25\% de toutes les souches), le SIT 53 (39 ; 3,85\% de toutes les souches) et le SIT 86 (35 ; 3,46\% de toutes les souches) (Tableau 12). La totalité de ces 5 souches forment à elles seules 46,5\% de toutes les souches. Les 35 spoligotypes les plus répétés sont répertoriés dans le tableau 12 ainsi que les régions dans le monde où on retrouve des souches portant ces spoligotypes.
Tableau 12 : Liste des spoligotypes les plus communs de l'étude

<table>
<thead>
<tr>
<th>Lignée</th>
<th>Sous-lignée</th>
<th>SIT</th>
<th>nb</th>
<th>profil spoligotype</th>
<th>Distribution dans le monde du SIT dans la base de données SITVITWEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAI</td>
<td>EAI8_MDG</td>
<td>109</td>
<td>271</td>
<td></td>
<td>MDG 46 / NED 1 / MDG 1 / GRC 1 / FXX 2 / FRA 2 / DNK 1 / SAU ind</td>
</tr>
<tr>
<td>EAI</td>
<td>EAI5</td>
<td>NC102</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAI</td>
<td>EAI5</td>
<td>126</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAI</td>
<td>EAI8MDG</td>
<td>10</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAI</td>
<td>EAI5</td>
<td>8</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAI</td>
<td>EAI8_MDG</td>
<td>NC110</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAI</td>
<td>EAI8_MDG</td>
<td>76</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAI</td>
<td>EAI8_MDG</td>
<td>NC39</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAI</td>
<td>EAI8_MDG</td>
<td>NC119</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAI</td>
<td>EAI8_MDG</td>
<td>NC98</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAI</td>
<td>EAI8_MDG</td>
<td>NC116</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAI</td>
<td>EAI8_MDG</td>
<td>1881</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAI</td>
<td>EAI5</td>
<td>129</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAS</td>
<td>CAS1_KILI</td>
<td>21</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAS</td>
<td>CAS1_DELHI</td>
<td>26</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAS</td>
<td>CAS1_DELHI</td>
<td>25</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T1</td>
<td>53</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T1</td>
<td>86</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>H37RV</td>
<td>451</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T1</td>
<td>156</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T1</td>
<td>74</td>
<td>9</td>
<td>BRA 2 / CUB 3 / MDG 3</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>--</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T2</td>
<td>78</td>
<td>6</td>
<td>AUT / CZE 2 / GBR 3 / GUIF 2 / NGR 7 / MDG 13 / SAU 4 / SA 8</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T1</td>
<td>65</td>
<td>5</td>
<td>BRA 41 / FRA 5 / HAI 5 / HTI 12 / ITA 20</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T2</td>
<td>52</td>
<td>5</td>
<td>AUT 23 / BEL 63 / CMR 2A / CZE 33 / DNK 6 / ESP 40 / FRA 40 / GBR 97 / NGR 15 / ITA 36 / MDG 7 / UK 34 / USA 13</td>
<td></td>
</tr>
</tbody>
</table>

LAM

<table>
<thead>
<tr>
<th>LAM</th>
<th>LAM1_ZWE</th>
<th>59</th>
<th>13</th>
<th>WE 8 / BRA 7 / NGR 3 / MDG 7 / MWI 16 / ZAF 24 / ZAF 24 / ZAF 73 / ZMB 106</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAM</td>
<td>LAM9</td>
<td>42</td>
<td>6</td>
<td>AUT 25 / CMR 19 / CZE 30 / ESP 74 / FIN 25 / ITA 45 / MEX 45 / GNB 22 / GUIF 17 / HTI 27 / MDG 9 / PK 155 / MAR 27 / MDG 4 / MEX 25 / MDG 42 / NZL 26 / PRT 44 / PRT 40 / RUS 30 / SEN 18 / SWE 12 / TUN 69 / TUR 31 / USA 521 / VEN 100 / ZAF 179 / ZWE 26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H3</td>
<td>50</td>
<td>13</td>
<td>AUT 26 / AUT 206 / BEL 93 / BRA 209 / CMR 48 / CZE 165 / ESP 10 / FRA 67 / XX 67 / GBR 78 / ITA 132 / NGR 56 / SAU 25 / TUN 64 / TUR 52 / USA 771 / ZAF 93</td>
</tr>
</tbody>
</table>

| H | H1 | 47 | 7 | AUT 126 / BEL 38 / BRA 99 / CAF 37 / CZE 80 / DEU 24 / ESP 37 / FIN 29 / FRA 33 / XX 33 / GBR 7 / ITA 117 / MDG 9 / MEX 10 / NGR 42 / POL 20 / PRT 19 / SAU 17 / TUN 41 / USA 331 |

Beijing

| Beijing | 1 | 43 | Distributed in the world mainly in China and Asia |

U

| U | U | 450 | 6 | CMR 19 / CZE 7 / ITA 3 / MEX 5 / TZA 46 |

S

| S | S | 827 | 5 | **BRA 3 / ITA 4 / ITA 5** |

CODE PAYS

<table>
<thead>
<tr>
<th>1</th>
<th>ARG Argentine</th>
<th>11</th>
<th>CZE République Tchèque</th>
<th>21</th>
<th>GNB Gambie</th>
<th>31</th>
<th>LVA Lettonie</th>
<th>41</th>
<th>PRT Portugal</th>
<th>53</th>
<th>VEN Venezuela</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AUS Australie</td>
<td>12</td>
<td>DEU Allemagne</td>
<td>22</td>
<td>GNB Gambie</td>
<td>32</td>
<td>MAR Maroc</td>
<td>42</td>
<td>PRT Portugal</td>
<td>52</td>
<td>ZAF Afrique du Sud</td>
</tr>
<tr>
<td>3</td>
<td>AUT Autriche</td>
<td>13</td>
<td>DNK Danemark</td>
<td>23</td>
<td>GRC Grèce</td>
<td>33</td>
<td>MDG Madagascar</td>
<td>43</td>
<td>RUS Russie</td>
<td>53</td>
<td>ZMB Zambie</td>
</tr>
<tr>
<td>4</td>
<td>BEL Belgique</td>
<td>14</td>
<td>DZA Algérie</td>
<td>24</td>
<td>GUF Guyane</td>
<td>34</td>
<td>MEX Mexique</td>
<td>44</td>
<td>SAU Arabie Saoudite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BGD Bangladesh</td>
<td>15</td>
<td>ESP Espagne</td>
<td>25</td>
<td>HTI Haiti</td>
<td>35</td>
<td>MOZ Mozambique</td>
<td>45</td>
<td>SUD Soudan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BRA Brésil</td>
<td>16</td>
<td>FIN Finlande</td>
<td>26</td>
<td>IN Inde</td>
<td>36</td>
<td>MWI Malawi</td>
<td>46</td>
<td>SWE Suisse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CAF Centres Afrique</td>
<td>17</td>
<td>FRA France</td>
<td>27</td>
<td>ITA Italie</td>
<td>37</td>
<td>PAY Pays Bas</td>
<td>47</td>
<td>TUN Tunisie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CMR Cameroun</td>
<td>18</td>
<td>FXX France métropolitaine</td>
<td>28</td>
<td>JPN Japon</td>
<td>38</td>
<td>NZL Nouvelle Zélande</td>
<td>48</td>
<td>TUR Turquie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>COM Comores</td>
<td>19</td>
<td>CMR Royaume Uni</td>
<td>29</td>
<td>KEN Kenya</td>
<td>39</td>
<td>PKP Pakistan</td>
<td>49</td>
<td>TZA Tanzanie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CUB Cuba</td>
<td>20</td>
<td>GLP Guadeloupe</td>
<td>30</td>
<td>LIB Libye</td>
<td>40</td>
<td>POL Pologne</td>
<td>50</td>
<td>USA Etats Unis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III.2.3.3 DISTRIBUTION DES LIGNEES ET SOUS LIGNEES OBTENUES

Les lignées et sous lignées des souches ont été définies via la base de données en ligne SITVITWEB. Pour celles qui n’y sont pas présentes, les attributions se sont faites selon les règles établis par Demay et al. (Demay et al., 2012).

La distribution des lignées montre la circulation à Madagascar des lignées principales existantes dans le monde. Une prédominance des souches de la lignée EAI (n=471 ; 46,6%) suivies des souches de la lignée T (Tuscan, n=220 ; 21,7%) a été observée. Les autres souches présentes sont : les souches de la lignée CAS (Central Asian, n=115 ; 11,4%), les souches H (Haarlem, n=63 ; 6,2%), les souches LAM (Latino American, n=46 ; 4,5%), les souches Beijing (n=46 ; 4,5%), les souches U (n=19 ; 1,9%), les souches S (n=10 ; 1%) et le reste des souches de la lignée Manu, X ainsi que d’autres mycobactéries du CMTB comme *M. bovis* (n=2) et *M. Africanum* (n=1)(figure 22).

![Figure 22: Distribution des lignées et des sous-lignées de spoligotypes obtenus](image)

A : Distribution des lignées de toutes les souches. B : Distribution des sous lignées à l’intérieur des sous lignées. Seules les 5 lignées représentées par différents sous lignées (LAM, H, EAI, CAS et T) ont été mis sur la figure B, les autres lignées (Beijing, U, S, X, MANU) n’avaient qu’un seul sous lignée les représentants et n’ont donc pas besoin d’être détaillée. LAM= Latino American; EAI = East african Indian ; T = Tuscan ; CAS = Central asian ; H = Haarlem ; Afri = Africanum ; IND = indéfini

BOVIS= *Mycobacterium bovis* ; AFRI= *Mycobacterium africanum*

La distribution des souches de spoligotypes entre les 6 provinces de Madagascar (figure 23) montre une prédomination des souches EAI dans les provinces suivie des souches T tandis que dans la capitale (Antananarivo), ce sont les souches T qui prédominent suivies des
souches EAI. Toutes les autres lignées semblent être représentées dans tous les provinces de Madagascar avec des proportions plus ou moins égales.

Figure 23: Distribution des lignées de spoligotypes dans les 6 provinces de Madagascar

III.2.3.4 COMPARAISON STATISTIQUE

La distribution des lignées entre les différentes provinces a été comparée (tableau 13). Les tests statistiques montrent une différence significative entre la distribution des différentes lignées entre les 6 provinces de Madagascar ($p < 0.0001$).
Tableau 13: Comparaison de la distribution des différentes lignées de spoligotypes entre les 6 provinces de Madagascar

<table>
<thead>
<tr>
<th>Province</th>
<th>AFRI</th>
<th>Beijing</th>
<th>BOVIS</th>
<th>CAS</th>
<th>EAI</th>
<th>H</th>
<th>IND</th>
<th>LAM</th>
<th>MANU</th>
<th>S</th>
<th>T</th>
<th>U</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antananarivo</td>
<td>11</td>
<td>1</td>
<td>39</td>
<td>69</td>
<td>22</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>2</td>
<td>97</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Diego</td>
<td>1</td>
<td>5</td>
<td>14</td>
<td>30</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>43</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fianarantsoa</td>
<td>7</td>
<td>21</td>
<td>104</td>
<td>11</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>43</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mahajanga</td>
<td>5</td>
<td>14</td>
<td>76</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>13</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toamasina</td>
<td>12</td>
<td>13</td>
<td>56</td>
<td>6</td>
<td>3</td>
<td>13</td>
<td>1</td>
<td>19</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tulear</td>
<td>6</td>
<td>14</td>
<td>136</td>
<td>16</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>42</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p value < 0,0001

Les distributions des EAI et des souches T entre la capitale et les provinces ont aussi été comparées (Tableau 14 et 15). La comparaison des souches EAI montre une différence significative ($p < 0,0001$). La comparaison des souches T montrent également une différence significative ($p < 0,0001$).

Tableau 14: Comparaison de la distribution des souches EAI et des non EAI entre Antananarivo et les autres provinces

<table>
<thead>
<tr>
<th></th>
<th>EAI</th>
<th>Non EAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antananarivo</td>
<td>69</td>
<td>199</td>
</tr>
<tr>
<td>Les autres provinces</td>
<td>402</td>
<td>341</td>
</tr>
</tbody>
</table>

$p < 0,0001$

Tableau 15: Comparaison de la distribution des souches T et des non T entre Antananarivo et les autres provinces

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>non T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antananarivo</td>
<td>97</td>
<td>171</td>
</tr>
<tr>
<td>Les autres provinces</td>
<td>123</td>
<td>620</td>
</tr>
</tbody>
</table>

$p <0,0001$
III.2.4 DISCUSSION

L’objectif principal de l’étude était d’étudier la distribution et la diversité des souches *M. tuberculosis* à Madagascar afin d’avoir une idée du mode de transmission de la TB dans l’île et d’essayer d’identifier les sources potentielles de la TB.

Les résultats nous ont montré que la TB existe dans toutes les provinces et régions de l’île. Les tests statistiques de comparaison du taux d’incidence et de prévalence de la TB entre les différentes provinces n’ont pas été faits car notre échantillonnage n’a pas pris en compte la proportion entre les populations des différentes provinces. L’analyse des génotypes démontrant des clusters génétiques très grands (jusqu’à 271 souches) suggère une transmission assez récente de la TB dans l’île et appuie cette hypothèse de la transmission à grande échelle de la TB à Madagascar. Avec le niveau de discrimination du spoligotypage, on ne peut savoir avec précision si ces souches appartiennent vraiment à des chaines récentes de transmission de la TB et on ne peut pas, de ce fait, calculer le taux de transmission récente. On sait actuellement que ce taux est largement surestimé en utilisant seul le spoligotypage. Cependant, il est certain que ces souches appartiennent toutes à une même descendance et pourraient provenir de la transmission d’une seule souche depuis longtemps. L’analyse via des marqueurs génétiques plus discriminants tels que les VNTR permettrait d’avoir plus de précision dans ce genre d’analyse.

Les résultats nous ont aussi montré que toutes les lignées principales existantes dans le monde circulent à Madagascar avec des proportions plus ou moins différentes dans les différentes provinces. Cela signifie que des échanges de souches se sont faits entre Madagascar et toutes les régions du monde. Sachant que Madagascar peut servir d’escale pour une grande majorité des voyages dans l’Océan Indien, le fort taux d’échange inter-humains dans l’île pourrait expliquer en partie cette grande diversité des souches circulant à Madagascar.

La souche SIT109 est une souche endémique malgache (Brudey et al., 2004 ; Ferdinand et al., 2005). La présence de cette souche au Pays Bas, au Danemark, en Inde et en Grèce témoigne de l’exportation de ces souches dans ces pays. Cependant, beaucoup d’autres souches sont partagées avec les Pays Bas et le Danemark. Cela suggèrerait des échanges plus fréquents de TB entre ces pays et Madagascar et l’identification de quelques origines potentielles et récentes d’une part de la TB malgache.

La prédominance des souches EAI, qui sont des souches majoritairement asiatiques (Inde/Thaïland/Malaisie/Indonésie) surtout dans les provinces côtières pourrait s’expliquer par le nombre élevé d’asiatiques dans les provinces côtières de Madagascar. On peut émettre l’hypothèse que ces souches ont été importées d’Asie, mais ont ensuite été transmises massivement dans le territoire malgache. Pour savoir si cette importation est assez récente ou éloignée dans le temps, des analyses par les SNPs ainsi que des études de datation sont indispensables. La similitude des génotypes (SNPs) avec les pays concernés dans ce cas suggèreraient que ces souches ont été importées récemment tandis qu’une plus grande différence suggèreraient une plus ancienne importation de ces souches via ces pays.

La prédominance des souches T à Antananarivo suggère une importation plus importante de ces souches dans la capitale. C’est-à-dire que ce sont les échanges avec les européens et les africains qui favoriserait la forte proportion de souches T dans la capitale. Cependant, une forte transmission non contrôlée de ces souches dans la capitale pourrait aussi expliquer cette disproportion des souches T.

On sait que la population malgache est constituée principalement de mélange d’africains bantous et d’indonésiens (Tofanelli et al., 2009), des populations associées respectivement avec les souches T et les souches EAI. Le taux élevé de souches T et EAI à Madagascar suggère ainsi que la structuration des souches TB qui circulent actuellement a été apportée par les anciennes populations colonisatrices et pionnières au fil des siècles et/ou par des échanges récents vu que ce sont des régions avoisinant géographiquement Madagascar. Cependant Madagascar et l’Indonésie ne partagent aucune souche (zéro spoligotype en commun) des lignées EAI, ce qui est en contradiction avec l’hypothèse de l’importation ancienne ou récente de la TB via l’Indonésie.

Selon le schéma évolutif des souches M. tuberculosis du point de vue de la région DR, seule les délétions d’espaceurs sont possibles. En regardant le spoligotype de la souche
typique de Madagascar, le SIT109, le plus plausible est de dire que son ancêtre le plus proche est le SIT126 par délétion de l’espaceur numéro 19. Ce SIT ne circule pas non plus en Indonésie mais en Inde. Cela suggère que cette souche mère de la majorité des souches malgaches (plus de 45%) ne provient pas d’Indonésie et donc ne peut avoir été apportée par les Indonésiens colonisant Madagascar au second siècle de notre ère.

On sait que les souches EAI8 sont des souches endémiques malgaches. Ces souches constituent plus de 45% des souches circulantes. Ces souches proviendraient forcément de l’évolution d’une seule souche EAI circulant antérieurement à Madagascar même. La distribution de ces souches dans toutes les provinces témoigne donc de la transmission à très grande échelle spatiale de la TB à Madagascar. La distribution phylogéographique des souches *M. tuberculosis* dans le monde est dite associée avec les populations hôtes (Gagneux et Small, 2007). Cela s’explique par la transmission de la TB spatio-temporellement rapprochée et expliquerait l’endémicité des souches EAI8 à Madagascar.

Les souches Beijing sont réputées être les plus virulentes et les plus transmissibles (Botelho *et al.*, 2014; Hanekom *et al.*, 2011; Otlu *et al.*, 2009). La distribution des souches montre que les souches Beijing sont les troisièmes à être plus nombreuses dans le pays mais encore loin derrière les souches EAI. Cette contradiction remet en cause la transmissibilité des souches Beijing à coté des souches EAI réputées être les moins transmissibles. Cela pourrait aussi s’expliquer par des facteurs écologiques plus importants que les facteurs génétiques qui ont favorisé une transmission non contrôlée et plus importante des souches EAI dans l’île.

Cette étude constitue la première qui décrit la distribution des souches *M. tuberculosis* circulant à Madagascar. Malgré le niveau de discrimination relativement faible du spoligotypage utilisé, cette méthode permet une classification reconnue des souches *M. tuberculosis* dans le monde, une classification en concordance avec toutes les autres classifications faites avec les autres marqueurs génétiques. Cette limite n’a donc pas d’impact sur les objectifs de cette étude. Le spoligotypage a un rapport qualité prix raisonnable et les résultats générés ont une très bonne reproductibilité et peuvent bien se comparer entre différents laboratoires.
Cette étude est cependant limitée par l’utilisation d’un seul marqueur génétique pour le typage des souches, du manque de données écologiques pour pouvoir identifier les facteurs associés à la distribution des souches et finalement la représentation non exhaustive de toutes les régions de Madagascar.

III.3 CONCLUSION DE L’ETUDE 1

Cette étude nous a permis de démontrer la grande diversité des souches _M. tuberculosis_ circulant à Madagascar. Toutes les lignées de spoligotypes circulant dans le monde y sont présentes avec une prédominance des souches _T_ et des souches _EAI_. L’importation de la TB à Madagascar est suggérée provenir de tous les pays du monde entier. Des importations de souches peuvent être faites depuis la colonisation de l’île mais des importations plus récentes semblent être plus importantes. Ces importations ont été suivies de l’évolution des souches et la transmission de la TB partout dans l’île à très grande échelle. La TB continue à se transmettre d’une façon plutôt homogène. Quelques pays en particuliers tels que les États Unis, la France, l’Italie, le Pays Bas, l’Inde et le Danemark semblent échanger plus de souches _M. tuberculosis_ que d’autres avec Madagascar et pourraient être suggérés comme des sources potentielles récentes ou anciennes de cas de TB malgache.

Ce premier volet nous a permis de réponse partiellement aux questions :

D’où et comment se transmet la TB à Madagascar ? La TB semble ne pas avoir de préférence car toutes les zones malgaches sans exception sont touchées par elle. La circulation de la TB est encore d’actualité dans le pays. Des points comme la distribution de la prévalence de la TB dans chaque zone semblent être pertinents à approfondir, mais ce qui nous intéresse surtout c’est que toutes les régions de Madagascar sont des zones à risque de TB. Comme dans la plupart des pays en voie de développement dans le monde, la TB est en recrudescence. Le niveau de vie relativement précaire a été démontré être associé à la recrudescence et la transmission de la TB.

Comment est le niveau de la transmission de la TB à Madagascar ? On a pu voir que la transmission peut se faire entre patients résidant dans des zones très éloignées de Madagascar.

Ces réponses nous ont apporté généralement des éclaircissements sur le mode de transmission de la TB à Madagascar. Malgré que cette étape soit obligatoire pour pouvoir
faire des investigations plus précises, cela n’apporte pas cependant des informations plus utiles pour pouvoir cibler la lutte contre la TB à Madagascar.

Cela nous incite à poser la question suivante : Comment se fait la transmission au niveau d’un type de souche ? Pour répondre à cela, nous avons mené une seconde étude avec des souches du spoligotype endémique de Madagascar, le SIT109.
IV ETUDE 2 : DISTRIBUTION, DIVERSITE ET TRANSMISSION DE LA SOUCHE M. tuberculosis ENDEMIQUE MALGACHE : LE SIT109 (Article 2)

IV.1 PRESENTATION DE L’ETUDE

IV.2 ARTICLE 2
Genetic Diversity and Hypothetical Origin of the L1/SIT 109 Malagasy *Mycobacterium tuberculosis* Clinical Isolates

Noël H. Ratovonirina *,2, Guislaine Refregier2, Voahangy Rasolofo-Razanamparany1, Christophe Sola*2

1 Institut Pasteur de Madagascar, Unité des Mycobactéries
2 Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université
Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.

Corresponding authors:

e-mail:, harijaona@pasteur.mg, christophe.sola@i2bc.paris-saclay.fr

Short title: *M. tuberculosis* L1/SIT109 in Madagascar
ABSTRACT (249 words)

Previous studies demonstrated the presence of an endemic Lineage 1 *Mycobacterium tuberculosis* (MTB) strain circulating predominantly in Madagascar, the spoligo-international-type 109 (L1/SIT109). Until now, very little knowledge about the L1/SIT109 genetic diversity and the origin of this genotype was available. The aim of this study was to evaluate the genetic diversity level of the L1/SIT109 sublineage using more discriminant *M. tuberculosis* genotyping methods, and try to hypothesize on its origin.

To achieve this goal, a first sample of 53 L1/SIT109 isolates available at the Institut Pasteur of Madagascar were typed by the extended 68 spacers spoligotyping method using a high throughput method and using complementary 24 MIRU-VNTR typing. In parallel, a selection of the 10 most discriminant MIRU-VNTR loci among the 24 was chosen to assess a MIRU-VNTR genotyping method to evaluate the genetic diversity on a larger collection of clinical isolates (n=103). Results showed that spoligotypes with 68 spacers did not discriminate L1/SIT109 clinical isolates (HGDI=0.097). Only 4 spoligotypes were discriminated with 1 single cluster of 50 isolates and 3 unique spoligotypes, whereas 24 MIRU-VNTR showed a larger genetic diversity of the L1/SIT109 (41 profiles of which 36 unique patterns and 5 clusters of 2 to 7 isolates) with an HGDI of 0.978. The result of the 24 MIRU-VNTR typing showed 9 invariable loci (MIRU03, MIRU20, MIRU24, MIRU26, Mtub04, Mtub29, Mtu30, Mtub34 and Qub4156). The selection of the 10 most discriminant loci (ETRA, ETRB, ETRD, MIRU10, ETRE, MIRU40, Mtub21, Mtub39, Qub11b and Qub26; HGDI values: 0.142 to 0.610) was used to subtype all of the L1/SIT109 isolates (n=156) with a similar discrimination level (HGDI=0.981). Finally we genotyped a panel of L1-specific SNPs to try to characterize the phylogenetic position of L1/SIT109.
The L1/SIT109 sublineage is a clonal complex that is likely to have been introduced in Madagascar long time ago, in relation to peopling. Thus, the transmission of the L1/SIT109 clonal complex occurred in a broad spatial and temporal genetic landscape in Madagascar that remains difficult to decipher, and will tentatively be reconstituted by further WGS studies.

Key words: *Mycobacterium tuberculosis* complex, Lineage 1, East-African Indian, MIRU-VNTR, spoligotyping, SNPs, Indian Ocean Trade
INTRODUCTION

Tuberculosis (TB), caused by *Mycobacterium tuberculosis* complex (MTC), remains one of the infectious diseases causing the most deaths worldwide. One third of the world population is infected with *M. tuberculosis*. In 2014, according to WHO, 9.6 million people contracted TB and 1.5 million people died (of which 360,000 HIV-positive) [1].

Actually, molecular genotyping tests have been gradually used in TB transmission studies. This facilitates the identification of the scale of TB transmission (between closely patients or even in a population) [2-4]. These methods also allow to distinguish recent transmission cases, reactivation, latent, or exogenous reinfecion cases [5, 6]. Genetic typing techniques such as spoligotyping [7], MIRU-VNTR [8], IS6110-RFLP [9] have been developed for TB genotyping. Associated with the geographical distribution data, these methods have been used to classify clinical isolates according to their biogeographical origin [10, 11].

Spoligotyping, Region of Deletions, Whole genome analysis and SNPs, were used to classify *M. tuberculosis* in 7 lineages and many sublineages (L1/EA1, L2/Beijing, L3/CAS, L4/Euro-American, L5/africanum WA1, L6/africanum WA2 and bovis, L7/Ethiopia) [10, 12-14, 15, 16].

A previous study in Madagascar showed a large genetic diversity of *M. tuberculosis* clinical isolates circulating, a high percentage of the L1/EA1 (14%) globally, and a component linked to East Africa (L3/CAS, L4.6.4.2/LAM_ZWE) [17]. The prevalence of L1 was especially high in the coastal provinces of Madagascar and reciprocally L4 clinical isolates seems to predominate in the capital [17]. One predominant and endemic spoligotype, L1/SIT109 and its derivatives, also designated as L1/EAI8_MDG was observed to represent up to 40% on the west coast of Madagascar [17, 18]. The L1/SIT109 is characterized with a spoligotype where spacers 2, 3, 19, 29, 30, 31, 32 and 34 are absent. The L1/SIT109 is found mainly but not
ETUDE 2

exclusively in Madagascar (it is found in Saudi Arabia) and no deeper characterization study
was performed on this genotype.

The aim of this study was to analyze the genetic diversity of the Malagasy strain
L1/SIT109 using more discriminant genotyping methods and to try to decipher the origin of
this MTC genotype in relation to peopling origin, migration and trading routes in the Indian
Ocean.

METHODS

Samples:
A total of 156 M. tuberculosis clinical isolates previously typed by classical
spoligotyping with 43 spacers and harboring the spoligotype L1/SIT109, available in the
Mycobacteria unit of the Institut Pasteur de Madagascar, were used in the study. Clinical
isolates were cultured and identified from Malagasy patients consulting for diagnosis in
treatment centers (CDTs) around Madagascar between 1995 and 2010. Clinical isolates were
cultured in Löwenstein-Jensen solid medium [19] and DNA was extracted from fresh sub-
cultures using the cetyl-trimethyl ammonium bromide (CTAB) method [20].

Study flow:
A first sample of 53 L1/SIT109 clinical isolates were typed with the high throughput
spoligotyping method with 68 spacers on a Luminex® 200 system (Luminex Corp. Austin, TX)
and by the 24 MIRU-VNTR method for identification of the most discriminant loci [8]. The
rest of L1/SIT109 isolates (n=103) were typed using a selection of the 10 most discriminant
MIRU-VNTR loci, and finally the diversity of the totality of isolates was analyzed with the
selection of loci (Fig.1). The discrimination level of each method and each VNTR locus was

5
computed with the Hunter and Gaston Discriminatory Index (HGDI) method [21] and using online the “Discriminatory Power Calculator” site (http://insilico.ehu.es/mini tools/discriminatory_power). A cluster was defined by two or more clinical isolates with identical spoligotypes and the genotypic clusterization rate was defined as the proportion of the sum of clinical isolates with the same profiles. Phylogenetic tree was built online in (www.miru-vntrplus.org) using the maximum likelihood method.

Spoligotyping:

Amplification:

High-throughput Spoligotyping with 68 spacers on a Luminex 200® was done as described previously on a first sample of 53 L1/SIT109 DNAs [22]. Classical primers designed for spoligotyping described in 1997 were used for amplification of the DR region [7]. The reaction mixture contained 2 μl of a DNA sample (20 to 40 ng), 0.2 mM each deoxynucleoside triphosphate (dNTP), 1 μM of each primer, PCR buffer (10 mM Tris-HCl, pH8.3, 50 mM KCl), and 1.0U of Taq polymerase. The following PCR program was used: 3 min at 95°C, followed by 25 cycles of 30s at 95°C, 30 s at 55°C, and 30 s at 72°C, and a final elongation step at 72°C for 5 min.

Hybridization:

Oligonucleotide-precoupled MicroPlex beads (polystyrene microbeads) were used for hybridization. These reagents (research use only) are available from Beamedex® SAS (www.beamedex.com, Orsay, France).

Hybridization of 2μl of the PCR products with a minimal numbers of 1,800 beads per analyte in 50μl of tetramethylammonium chloride buffer (1X TMAC) was performed after
denaturation for 10 min at 95°C and then 20 min at 50°C. After centrifugation at 4,000 rpm and replacement of 35 μl of supernatant by 1X TMAC, streptavidin-phycoerythrin Lumigrate solution (Roche Biochemicals, Meylan, France) prepared in 1X TMAC was added to a final concentration of 2 μg/ml, to reach a final volume of 75 μl. We allowed 5 min of incubation in the system (Luminex® 200 or Magpix) at 50°C before reading the samples.

The Luminex® 200 high-throughput system was used for reading and the xPonent® software (version 3.1.871) was used to analyze the results. Interpretation of results and determination of cut-off were made as in previous study [22].

MIRU-VNTR:

The standard 24 MIRU-VNTR loci method [8] was performed based on agarose gel electrophoresis. The simplex PCR product size was determined as previously reported [23].

L1-Specific Multiplex SNP Analysis

A specific Lineage 1 high-throughput Single Nucleotide Polymorphism (SNP) Typing method was developed by E. Costa Conceicao et al. (results to be published elsewhere). Briefly, this method is a 24-Plex method using 12 DPO primers (dual-priming oligonucleotide) that targets 12 polymorphic SNPs in 12 genes previously shown to be polymorphic [14, 15]. The targeted SNPs are: hemL_1104_GA, ftsX_303_GA, moaC1_375_CA, dinP_700_GT, polA_1629_GC, dnaG_51_CG, rv0944_205_CT, rimM_339_CT, rv2707_711_GA, rv3915_1056_GA, glgB_1038_CT, alkA_595_GC.

RESULTS:

Sampling
The Table 1 summarizes the geographic distribution of the collection analyzed in this study. This table shows that L1/SIT109 isolates are present in all provinces of Madagascar. The majority of isolates are found in the capital and in the province of Tulear and the highest proportion of isolates was recovered between 2005 and 2007.

Spoligotyping with 68 spacers:

The genotyping results of a first collection of 53 L1/SIT109 are summarized in Table 2. Four different patterns only were obtained by spoligotyping using 68 spacers. The genotypic clusterisation rate was 94.34%. Three unique profiles and one cluster with 50 isolates were obtained. The HGDI value of a spoligotyping with 68 spacers in this case was 0.111.

24 MIRU-VNTR:

Among the 53 L1/SIT109 clinical isolates, 41 patterns were obtained (Table 2). 36 unique patterns and 5 genotypic clusters with 2 to 7 clinical isolates were identified. The genotypic clusterisation rate was 32.07%. The HGDI value of a 24 MIRU-VNTR is 0.978. The HGDI values of each locus varied from 0 to 0.6103 (Table 2). Nine loci were shown to be invariants within the L1/SIT109 clinical isolates: MIRU02, MIRU20, MIRU24, MIRU26, Mtub04, Mtub29, Mtub30, Mtub34 and Qub4156.

10 MIRU-VNTR:

The ten most discriminant loci observed within the first sample of L1/SIT109 clinical isolates were: ETRA, ETRB, ETRD, MIRU10, ETRE, MIRU40, Mtub21, Mtub39, Qub11b and Qub26. The HGDI values were respectively: 0.2663, 0.5247, 0.4724, 0.2083, 0.2765, 0.3041, 0.4231, 0.6103, 0.1422 and 0.4057. Analysis of all L1/SIT109 clinical isolates (n=156) showed 93
profiles with a clusterization rate of 54.48% (71 single profiles and 22 clusters containing
from 2 to 13 isolates). Phylogenetic tree of the 156 L1/SIT109 clinical isolates with this 10
MIRU-VNTR set is shown in Figure 2. The Phylogenetic tree showed a large diversity of
clinical isolates in each cluster despite some geographically and temporally clustered cases
that were not investigated more deeply.

If we focus on the largest genetic clusters (i.e. with more than two isolates, n=6), the
first cluster designated as cluster A (Figure 2) showed 8 isolates recruited from 2005 to 2009.
Five of these 8 isolates were from Antananarivo and the remainder cases were found in the
3 provinces of Fianarantsoa, Mahajanga and Tulear. The second genetic cluster (named B)
gathers 8 isolates recruited in 2005 and 2006. Two isolates are from Majunga, two from
Toamasina, 2 from Tulear and 2 from Fianarantsoa. The third genetic cluster (named C)
comprises 9 isolates from 2005 to 2006. Two are from Toamasina, 2 from Tulear, 1 from
Antananarivo, 2 from Antsiranana, 1 from Fianarantsoa and 1 from Mahajanga. The fourth
genetic cluster (named D) comprised 5 isolates from 2006. Only one of these isolates comes
from Antananarivo and 4 come from Tulear. Two isolates very close genotypically to these
isolates were also isolated from Tulear at the same period. The fifth genotypic cluster
(named E) comprises 13 isolates collected between 2000 and 2010. Eight of these isolates
came from Antananarivo, 3 from Fianarantsoa and 2 from Tulear. The sixth genotypic cluster
(named F) comprised 7 isolates among which 2 were from Tulear, 2 from Toamasina, 1 from
Mahajanga, 1 from Antananarivo and 1 from Fianarantsoa.

The HGDI values of a selection of 10 loci MIRU-VNTR for the totality of clinical isolates
was 0.982.
Comparison between spoligotyping 43 spacers, spoligotyping 68 spacers and 24 MIRU-VNTR:

The comparison of HGDI of the different *M. tuberculosis* genotyping methods for SIT109 clinical isolates is reported in the Table 3. Result showed a very less discriminatory power of the spoligotyping with 68 spacers among the SIT109 clinical isolates. The HGDI of the 24 MIRU-VNTR and the selection of 10 MIRU-VNTR is relatively close (respectively 0.978 and 0.970) for the first sample of 61 clinical isolates and demonstrated a high level of diversity.

L1-Specific Multiplex SNPs analysis

During the course of the development of a L1-specific SNPs assay that would be used to distinguish L1 sublineages (E. Costa Conceição, manuscript in preparation), we genotyped a total of 105 SIT109 clinical isolates to assess their genotype on a panel of 12 L1-specific SNPs. We used as positive controls a set of DNAs belonging to L1.1 (SIT11/EAI3_IND, (India) SIT139/EAI4_VNM (Vietnam), SIT591/EAI6_BGD (Bengladesh), or to L1.2 (SIT48/EAI1_SOM (Somalia, or to SIT19/EAI2_PHL (Philippines, Manila type). Even if not all of the 12 genes did allow to get a positive answer on the allelic status of each sample for the time-being, we got robust positive results for 8 genes for most of the samples. The Table 4 summarizes these results. As observed in this table, SIT109 would be a sublineage inside L1.1, since it show to be closer to L1.1/EAI3_IND than to any other sublineage, since we observed only one SNP difference with typical L1.1/EAI3/SIT11, the most frequent L1 type in Tamil Nadu, South India [27], whereas there were at least 2 SNPs difference with the two other positive controls we used inside L1.2, i.e. EAI2_PHL/SIT19 and EAI1_SOM/SIT48, both typical from L1.2. For the time-being, it is impossible to assign more precisely SIT109 within a more
precise phylogenetic position in the L1 phylogeentic tree, and to find the most recent
common ancestor to the other L1.1. sublineages; only WGS of this clonal complex will allow
to find a likely ancestor and allow to compute the date of divergence with the most recent
common ancestor of all L1.1.

Phylogeography and Evolution of L1/SIT109 in Madagascar

In the world-wide TB spoligo-database SITVITWEB, SIT109 is found mainly but not exclusively
in Madagascar (56%, n=46), since many identical patterns are found in Saudi Arabia (35%,
n=29) and elsewhere (9%, n=7) (See S1_Table). The first description of SIT109 goes back to
1994 in Madagascar. In Saudi Arabia, the origin of patients was mainly saoudian but also
found with Indonesian, Afghanistan, and Ethiopian origins. The molecular evolution
understanding of SIT109 will deserve whole genome sequencing of various SIT109 samples,
however we already performed some hypothesis as suggested by spoligotyping evolution in
Figure 3. Figure 3 suggests that L1/SIT236 is the most likely spoligotyping ancestor that
allows to get, in two steps, the L1/SIT109 signature. Both L1/SIT126 and L1/SIT2671 are
found as likely hypothetical step 1 ancestors in the SITVITWEB database if we hypothesize
that loss of spacers 2-3 and loss of spacer 19 are independent events (Figure 3). The
phylogeographical specificity of L1/SIT126 (n=77 in SITVITWEB) points to India (41%), Saudi
Arabia (11%), Bangladesh (6%), Tanzania (6%), and this genotype is also anecdotally found in
Malaysia, Senegal and Uganda (S1_Table). This observation may be refined by considering
that SIT126 is the second most prevalent spoligotype cluster in Tamil Nadu, South India
(n=80), just after SIT11 (n=336) in a three year study [27]. Thus, SIT11 and SIT109 might be
two independent unique evolutionary events of SIT126. The phylogeographical specificity of
the second less likely ancestor, SIT2671 (n=2 in SITVITWEB), is restricted to Saudi Arabia and
to one immigrant of unknown origin in the USA.

DISCUSSION

The aim of this study was to evaluate the intra-SIT109 genetic diversity of an
historically highly prevalent Lineage 1 subtype in Madagascar, designated as “Malagasy *M.
tuberculosis* clonal complex L1/SIT109 or L1/EA18-MDG, using complementary genotyping
methods. Addition of the 25 spacers to the classical 43 spacers in spoligotyping was
previously shown to increase the discriminatory level of spoligotyping in L1 and L5-L6 of *M.
tuberculosis* complex [24, 25]. We thus decided to use this method. However results were
disappointing and showed that the SIT109 remained quite homogeneous with only slight
variations. Conversely, as expected, a high level of genetic diversity by the MIRU-VNTR
method was observed. The MIRU-VNTR method is known to be more discriminant than
spoligotyping when applied to potentially epidemiologically-linked clinical isolates, also
providing interesting phylogenetical information [26]. A quite high diversity within the
SIT109 clinical isolates was observed in this study. The high level of genetic diversity
observed by MIRU-VNTR suggests the historical spread of either a single founding clone
(founding effect) or of a limited amount of similar founders clones. It also suggests that
SIT109 has been circulating since a long time in Madagascar and had time to evolve.

The geographical distribution of isolates shows that the SIT109 strain is present
throughout Madagascar. Assuming that these isolates are derived from a single clone, it may
also suggest that the transmission of TB in Madagascar spread on a global scale during
Madagascar TB outbreak history. Patients from very remote areas share apparently the
same isolates using our methods than patients found in Antananarivo. This also suggests
ongoing transmission chains within this clonal complex. TB in Madagascar can therefore be
easily transmitted through rapid contacts between tuberculosis patients and healthy people.

Concerning the distribution of clinical isolates inside each genotypic cluster, despite
some clinical isolates isolated in the same period and the same region suggesting their
recent transmission (5 isolates in Antananarivo inside the cluster A; 2 isolates in Toamasina,
in Mahajanga, in Fianarantsoa et in Tulear inside the cluster B; 2 isolates from Antsiranana,
Tulear an Toamasina in the cluster C; 4 isolates from Tulear in the cluster D; 8 isolates from
Antananarivo, 3 from Fianarantsoa and 2 from Tulear inside the cluster E; And 2 isolates
from Tulear and 2 isolates from Toamasina inside the cluster F), a large diversity of clinical
isolates isolated from different periods and different settings inside each genotypic cluster
was observed. This support our hypothesis that the transmission of SIT109 clinical isolates
was performed historically with progressive spatial and temporal transmission in some
remote regions of Madagascar. This also suggests an homogenous transmission of this strain
and probably the same transmission mode of TB in Madagascar.

However, the high prevalence of SIT109 clinical isolates in Madagascar compared to
others clinical isolates relatively more virulent such as Beijing clinical isolates suggests that
L1/SIT109 isolates are adapted to Malagasy populations, either since these isolates were
more transmissible than other clinical isolates due to specific characteristics, or were
introduced the most early in TB outbreak history in Madagascar and thus had time to spread
and diversify. The co-evolution hypothesis is likely to favor since L1/EAI clinical isolates are
known to be less virulent than other M. tuberculosis clinical isolates [18, 27, 28].

Previous studies showed characteristic MIRU-VNTR profiles for the EAI family with
more than 4 copy number of MIRU23 and more than 1 copy of the MIRU 24 [29]. One strain
however had 2 copies of MIRU23 which is in contradiction with this characteristic.
Previous study using 24 MIRU-VNTR showed that all of the 24 loci are variable by considering all of the lineages of *M. tuberculosis* clinical isolates. Except the MIRU02 with a HGDI value of 0.0518, other locus have HGDI values superior to 0.250 [30]. The 9 invariable loci (MIRU03, MIRU20, MIRU24, MIRU26, Mtub04, Mtub29, Mtub30, Mtub34 and Qub4156) are therefore characteristic of the SIT109 clinical isolates.

This study allows to better understand SIT109 strain characteristics circulating in Madagascar and to understand their evolution and their transmission mode. It is also the first subtyping study of one subfamily of *M. tuberculosis* clinical isolates within the EAI lineage.

Even if the Austronesian component is important and could be at the origin of L1/SIT109 in Madagascar, the Bantu component in also ancient and inherent of Madagascar historical peopling, in particular on the West coast of the island [31]. This component was already discussed by Lusitanian sailors during the XVIth century [31]. Thus, the Bantu peopling could equally be responsible of L1/SIT109 introduction in Madagascar. Another variant type of L1/EAI, SIT129 is found to be very prevalent in Mozambique and Malawi, and looks as being more prevalent on the coasts, and could represent a passed common history between Mozambique and Madagascar and could be linked to the historical Indo-Ocean trade (Figure 4) [32]. Arab scholars also showed their important role in population movements in the Mozambique channel, long before European colonization, i.e. with an Arab presence in Comoro islands as early as the Xth century [31].

The linguistic approach, pioneered by Otto Ch. Dahl in 1951 shows that Malagasy language and Maanjane have a common origin [33], and that this language points to South-East Kalimantan Barito ethnic group [31]. These people are indigenous ethnic group; in the 2000
census they made up 2.8% of the Central Kalimantan population [34]. These people are
supposed to have migrated to Madagascar island around 945 to 946 AD, sailing through the
Indian Ocean on 1,000 leeboard sailboats [31, 35].

The recent human genetic study by Hurles et al. in 2005 confirms the historical and
archeological sources: maternal and paternal heritages are broadly 50-50 between South-
East Asian (Borneo) and African components in the Malagasy population. This results does
not however facilitate our hypothesis to link L1/SIT109 to Asian or African origins. Based on
an hypothetical South Indian L1/SIT126 phylogeographical specificity of L1/SIT109 ancestor,
a more recent (XIXth) Indian immigration from South India could also explain the
introduction of TB in Madagascar even though it seems that, given the demographical
history of Indian communities in Madagascar, and the previous peopling history of the
island, such a recent introduction history is less likely than the more ancient south-east Asian
or African hypothesis [36].

Timing of migration estimation in relation to SNPs diversity once WGS data will be made
available could ultimately shed more light on the African or Asian (Indian or South-East
Asian) origin of L1/SIT109. Alternatively, specific geographic microsampling of both
Mycobacterium tuberculosis and *Homo sapiens* in Mozambique, Borneo and in Madagascar
could help to find the link between ancestral Y chromosome - Mt DNA haplotypes and
genotypes of MTC that could be at the origin of tuberculosis introduction in Madagascar
and more largely on the East African Indian shores.

Some limitation of this study are the lack of more precise clinical epidemiology data
and the lack of any estimation time for the introduction of the studied clinical isolates in
Madagascar. The second limitation is the poor representativity of samples of the different
provinces of Madagascar to analyze more precisely the distribution of the different
frequencies of L1/
L1/SIT109 clinical isolates in all regions in Madagascar. And finally a true phylogeny
using whole-genome sequencing data is needed to confirm phylogenetic relation between
these clinical isolates and try to infer a more precise history of their evolution.

CONCLUSION

Addition of 25 supplementary spacers in spoligotyping was not sufficient to efficiently
subtype the L1/SIT109 M. tuberculosis clinical isolates. The MIRU-VNTR method was able to
discriminate different historically linked and may be epidemiologically linked clusters within
L1/SIT109 clinical isolates however VNTR typing with 24 loci is not necessary. Typing with a
selection of the 10 most discriminant loci is sufficient to discriminating different clusters
within L1/SIT109 clinical isolates with the same discrimination level.
Malagasy L1/SIT109 clinical isolates appear to be quite diverse and can be considered
as clinical isolates circulating in Madagascar since many centuries, either in relation to an
introduction linked to south-east Asian (Kalimantan) Mannyan population migration during
the Xth century or to a Bantu-linked, East-African introduction. Even it seems less likely, we
cannot eliminate the introduction of a more recent Indian-linked migration introduction of
L1/SIT109 or its ancestor during modern history.

ACKNOWLEDGEMENT

I am grateful to the “Infection Genetics Emerging Pathogens Evolution team” of the
Institute of Integrative Cell Biology, UMR9198, CEA-CNRS-University Paris Saclay, France and
the Mycobacteria unit of the Institut Pasteur de Madagascar for allowing this project to be run, for samples collection, and for financing this project.
ETUDE 2

BIBLIOGRAPHY

ETUDE 2

442 Maltof A, Lahlou O et al: Molecular Typing of Mycobacterium Tuberculosis Complex by 24-Locus
443 Based MIRU-VNTR Typing in Conjunction with Spoligotyping to Assess Genetic Diversity of Strains

445 27. Narayanan S, Gagneux S, Hari L, Tsolaki AG, Rajasekhar S, Narayanan PR, Small PM, Holmes S,
446 Deriemer K: Genomic interrogation of ancestral Mycobacterium tuberculosis from south India. Infect

448 28. Theus S, Eisenach K, Fomukong N, Silver RF, Cave MD: Beijing family Mycobacterium tuberculosis

452 genotyping results using mycobacterial interspersed repetitive units validates the clonal structure of

455 Mycobacterium tuberculosis Isolates from Assam, India: Dominance of Beijing Family and Discovery
456 of Two New Clades Related to CAS1_Delhi and EAI Family Based on Spoligotyping and MIRU-VNTR

458 31. Allibert C: Migration austronésienne et mise en place de la civilisation malgache. Lectures

460 32. Sola C, Anselmo LMP, Klotoe B, Panaiotov S, Feliciano C, Costa-Conceição E, Namburete EI, Ferro
461 JJ, Bollela VR: On the origin of L1/SIT129 in Beira, Sofala, and on the phylogeography and molecular

21
evolution of *Mycobacterium tuberculosis* complex in Mozambique and in South-East Africa. *Infection Genetics Evolution* submitted.

34. Ma'anyan people https://en.wikipedia.org/wiki/Ma%27anyan_people

Legend of Figures:

Figure 1: Study flow

Figure 2: Dendrogram of genetic relationships among the 156 L1/SIT109 clinical isolates based on the selection of the 10th most discriminant VNTR loci. The tree was built using neighbor-joining distance algorithm as described previously.

Figure 3: Hypothetical L1/SIT236 and L1/SIT126-based, evolutionary scenario of L1/SIT109 emergence based on two consecutive spacers events; in parallel, other phylogeographical events appeared on other Asian or African countries.

Figure 4: Geographical map built using QGIS (www.qgis.org) showing the prevalence of L1-L7 in Madagascar and Mozambique (cf. S2_Table for data source)
Table 1: geographic distribution of the 156 SIT109 clinical isolates within the 6 provinces of Madagascar during the study period

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antananarivo</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>17</td>
<td>4</td>
<td>6</td>
<td>59</td>
</tr>
<tr>
<td>Antsiranana</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fianarantsoa</td>
<td>13</td>
<td>10</td>
<td>4</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>Mahajanga</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Toamasina</td>
<td>13</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Tulear</td>
<td>1</td>
<td>10</td>
<td>22</td>
<td>3</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>total</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>43</td>
<td>53</td>
<td>12</td>
<td>17</td>
<td>4</td>
<td>6</td>
<td>156</td>
</tr>
</tbody>
</table>
Table 2: Genotyping Results (spoligotyping 68 spacers + 24 MIRU-VNTR). (n=53). The 10 loci colored in blue represent the 10^th most discriminant loci within L1/SIT109 clinical isolates.
Table 3: Comparison of HGDI of different *M. tuberculosis* genotyping methods for L1/SIT109 clinical isolates

<table>
<thead>
<tr>
<th>Method</th>
<th>Spoligotyping with 68 spacers</th>
<th>24 MIRU-VNTR</th>
<th>Selection of 10 MIRU-VNTR</th>
<th>Selection of 10 MIRU-VNTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples</td>
<td>1<sup>st</sup> sample 53 L1/SIT109</td>
<td>1<sup>st</sup> sample 53 L1/SIT109</td>
<td>1<sup>st</sup> sample 53 L1/SIT109</td>
<td>2<sup>nd</sup> sample 156 L1/SIT109</td>
</tr>
<tr>
<td>HGDI</td>
<td>0.111</td>
<td>0.978</td>
<td>0.970</td>
<td>0.981</td>
</tr>
</tbody>
</table>
Fig. 1

53 ST 109

- Spoligotyping 68 spacers
- MIRU VNTR 24 loci
 - Selection of the 10 most discriminant loci
 - Genotyping of the rest of M.tb strains (n=103) with the selection of 10 loci
 - L1_Specific SNP typing
IV.3 CONCLUSION DE L’ETUDE 2

Cette étude nous a permis de voir la grande diversité des souches SIT109 après leur sous typage par les MIRU-VNTR. Cette étude a aussi montré que ces souches sont présentes dans toutes les provinces de Madagascar pendant toute la période de l’étude. Ceci nous amène à conclure que ces souches ont circulé depuis longtemps à Madagascar, un temps où elles ont pu évoluer longuement. Leur distribution dans toute l’île, démontrant leur large transmission, nous permet de conclure que la transmission de la TB à Madagascar se fait à très grande échelle spatiale et qu’une souche donnée a le potentiel de se transmettre partout dans l’île.
V ETUDE 3 : EVALUATION DES ZONES HOTSPOTS DE TUBERCULOSE A ANTANANARIVO, MADAGASCAR PAR COMBINAISON D’ANALYSE SPATIALE ET DE GENOTYPAGE (Article 3)

V.1 PRESENTATION DE L’ETUDE

Différentes méthodologies ont été utilisées antérieurement pour faire des études de surveillance de la TB. Des études basées sur l’épidémiologie classique par des enquêtes directes auprès des patients ont permis de mieux comprendre les facteurs de risques liées à la tuberculose malgré la lourdeur des méthodes utilisées ainsi que les biais engendrés. D’autres études basées sur l’épidémiologie moléculaire ont permis de retracer les infections, de mesurer le niveau de transmission de la TB et l’échelle à laquelle se fait la transmission. D’autres études basées sur des analyses spatiales intégrant le SIG ont permis d’identifier des signatures spatio-temporelles particulières de la distribution des maladies, des patients ou des facteurs de risque. Cependant, utilisées seules, ces méthodes ne permettent pas de constituer un véritable outil de surveillance de la TB.

De récentes études combinant analyses spatiales et épidémiologie moléculaire ont permis d’identifier des zones à fort risque de transmission de la TB dans le monde (Ribeiro et al., 2015 ; Moonan et al., 2012 ; Izumi et al., 2012). Ces approches combinées semblent révolutionner la surveillance des maladies transmissibles. Premièrement, les méthodologies sont relativement moins lourdes, et deuxièmement, ces outils servent d’aide à la décision pour la lutte contre la TB. En effet, la détermination des zones à forte risque de transmission de la TB serait un atout majeur pour la détermination des zones clefs pour les actions de lutte contre la TB.

Récemment, des études ont démontré l’existence d’agglomération significative de cas de TB (clusters spatiaux de cas de TB) à Antananarivo, la capitale de Madagascar. Ces agglomérations constituerait des zones à forte charge de TB. Cependant, ces types d’étude ne distinguent pas les cas de TB transmis récemment et les cas de réactivation de TB latente acquis plus ou moins loin dans le temps. Ce qui est intéressant en matière de santé publique c’est de pouvoir identifier là où il y a de la transmission non contrôlée, Donc de la transmission de TB active et récente. L’hypothèse serait que les souches ayant des génotypes...
communes auraient plus de chance d’appartenir à une chaine récente de transmission tandis que les souches avec des génotypes uniques auraient plus de chance de ressurgir de la réactivation de TB latente. Cela signifie que les éventuelles zones d’agglomération significative de ces souches appartenant à une chaine de transmission récente de TB seraient potentiellement des zones à forte transmission de TB.

C’est ce qui nous a mené à notre objectif de monter un outil de surveillance de la TB à Madagascar en combinant des méthodes d’analyse spatiale et des méthodes d’épidémiologie moléculaire en particulier la technique du spoligotypage. La méthodologie consiste à identifier les souches susceptibles de provenir d’une chaine de transmission récente, c’est-à-dire les souches ayant les mêmes génotypes. L’étude pilote se fera dans la commune urbaine d’Antananarivo (CUA), la capitale de Madagascar. Cette méthode pourrait servir pour la recherche des zones de transmission active de la TB à Madagascar mais aidera également le PNLT pour le choix des zones prioritaires pour les actions de lutte contre la TB.

Pour cela, les nouveaux cas de TB résidant dans la CUA et consultant les centres de diagnostic et de traitement de la TB (CDT) à Antananarivo ont été recrutés pendant une période de 9 mois. Leurs crachats ont été mis en culture et typés par le spoligotypage sur la plateforme Luminex 200. Les cas ont été localisés selon le quartier de résidence des patients correspondants. Ces cas ayant des souches clusterisées génotypiquement avec d’autres (PRS / « Patients associated with strains with Repeated Spoligotype ») sont scannés par la méthode de balayage spatial de Kulldorff afin de déterminer des tendances d’agglomération significative (clusters spatiaux). Les quartiers (Fokontany) touchés par les clusters spatiaux constituerait les zones à risque de transmission de la TB.
Assessment of tuberculosis spatial hotspot areas in Antananarivo, Madagascar, by combining spatial analysis and genotyping

Noël Harijaona Ratovonirina1,2, Niaina Rakotosamimanana1, Solohery Lalaina Razafimahatratra1, Mamy Serge Raherison1,2,3, Guislaine Refrégier2, Christophe Sola2, Fanjasa Rakotomanana1 and Voahangy Rasolofo Razanamparany1*

Abstract
Background: Tuberculosis (TB) remains a public health problem in Madagascar. A crucial element of TB control is the development of an easy and rapid method for the orientation of TB control strategies in the country. Our main objective was to develop a TB spatial hotspot identification method by combining spatial analysis and TB genotyping method in Antananarivo.

Methods: Sputa of new pulmonary TB cases from 20 TB diagnosis and treatment centers (DTCs) in Antananarivo were collected from August 2013 to May 2014 for culture. Mycobacterium tuberculosis complex (MTBC) clinical isolates were typed by spoligotyping on a Linneut® 200 platform. All TB patients were respectively localized according to their neighborhood residence and the spatial distribution of all pulmonary TB patients and patients with genotypic clustered isolates were scanned respectively by the Kulldorff spatial scanning method for identification of significant spatial clustering. Areas exhibiting spatial clustering of patients with genotypic clustered isolates were considered as hotspot TB areas for transmission.

Results: Overall, 467 new cases were included in the study, and 394 spoligotypes were obtained (84.4%). New TB cases were distributed in 133 of the 192 Fokontany (administrative neighborhoods) of Antananarivo (1 to 15 clinical patients per Fokontany) and patients with genotypic clustered isolates were distributed in 127 of the 192 Fokontany (1 to 13 per Fokontany). A single spatial focal point of epidemics was detected when ignoring genotypic data (p = 0.039). One Fokontany of this focal point and three additional ones were detected to be spatially clustered when taking genotypes into account (p < 0.05). These four areas were declared potential TB transmission hotspots in Antananarivo and will be considered as priority targets for surveillance in the future.

Conclusion: This method, combining spatial analysis and TB genotyping will now be used for further focused clinical and epidemiological studies in Madagascar and will allow better TB control strategies by public health authorities.

Keywords: Mycobacterium tuberculosis, Geographic Information System, Genotyping, Spatial cluster, Antananarivo

* Correspondence: viasolofo@pasteur.mg
1Unité des Mycobactérie, Institut Pasteur de Madagascar, Antananarivo, Madagascar
Full list of author information is available at the end of the article

© The Author(s), 2017 Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
Tuberculosis (TB), caused by Mycobacterium tuberculosis complex (M. tuberculosis), remains one of the deadliest infectious diseases worldwide. In 2014, 9.6 million people contracted TB and 1.5 million died from the disease [1]. The number of deaths due to TB slowly declined between 2000 and 2013 due to effective diagnosis and treatment, but remains unacceptably high [2].

Spoligotyping is a method investigating the diversity at a highly variable CRISPR locus evolving by deletion in M. tuberculosis complex [3]. Spoligotyping has been widely used to classify M. tuberculosis clinical isolates by family and subfamily [4, 5] that were later found to be largely concordant with lineages as defined by an whole genome sequencing (WGS) approach, allowing single nucleotide polymorphisms (SNPs) to be identified [6]. In addition and despite a relatively low discrimination level of spoligotyping [7, 8] it can be used for first genetic identification of patient’s clinical isolates and suggest or exclude recent transmission cases which should be investigated further using more discriminatory methods [7, 9, 10]. Previous studies demonstrated that spatial clustering of TB data when associated to genetic clustering of TB cases more easily allows to focus on adequate settings to distinguish most vulnerable populations and reactivate versus recent transmission cases [10–13].

Hence, geospatial tools may be helpful to study the TB dynamics of urban areas with high prevalence of TB. Geospatial tools incorporating Geographic Information Systems (GIS) enable the identification and mapping of spatiotemporal clustering of disease or patients [14]. The GIS method has been used to study the spatial distribution of human TB cases and has identified the heterogeneity of epidemic areas [10, 15]. To confirm recent TB transmission, isolates must be found to be clonal. Clonality must then be investigated by more discriminatory genotyping methods. In Antananarivo, an exhaustive thorough genomic characterization of clinical isolates either by 24 MIRU-VNTR or by WGS remains out of reach for economic reasons for the time-being. For this reason, we chose a classical spoligotyping approach, which remains a first-line method to characterize clinical isolates in resource-limited countries. Such a combination of approaches (spatial and genetic clustering) is interesting to locate spatial clusters of TB and attempt to assess where recent TB transmission cases may occur.

In Madagascar, the incidence of TB in 2013 was estimated to be approximately 233/100,000 inhabitants [16]. TB prevalence distribution in Madagascar is likely heterogeneous with particularly high rates in specific areas driven by uncontrolled transmission, as in most resource-limited countries with either remote or isolated settings [15, 17, 18]. A crucial element of TB control efforts is the identification of “TB Hotspot areas” for the orientation of TB control strategies given the lack of resources. Therefore it would be beneficial for the TB program to have a tool for targeting areas of high transmission risk where interventions should be concentrated. Previous studies using genotyping techniques on clinical isolates have shown a large diversity of circulating M. tuberculosis genotypes in Madagascar [19–21]. A preliminary study based on TB notification rates identified spatial aggregation of TB cases in Antananarivo [15, 17]. This aggregation could be due either to actual transmission and/or to reactivation cases. Our aim here was to accumulate evidence concerning the possibility that previously identified TB hotspot areas in Antananarivo could be linked to transmission events.

We used a combination of spatial tools and genotyping to identify potential high-prevalence and likely higher recent transmission risk, TB areas in Antananarivo, Madagascar, as done recently in Brazil and Japan [11, 12]. These methods will be used in Madagascar for further understanding of the TB epidemiology in Antananarivo and the identification of priority targets for TB control strategies.

Methods
Study area
The study was carried out in Antananarivo, the capital of Madagascar (surface area = 90 km²; 1.1 million inhabitants). Antananarivo is divided into six districts and sub-divided into 192 “Fokontany” that are administrative neighborhoods. Population density per Fokontany and population size is highly heterogeneous, as in many large cities (Fig. 1a and b); the poorest neighborhoods were classified by average household income the 25% of all neighborhoods with the lowest average income were assigned as “poorest neighborhoods”; the most populous and poorest neighborhoods are localized in the periphery (Fig. 1a and b) [22]. Some public markets are distributed in the densest zones (Fig. 1a). There is circulation of poorest and most vulnerable populations in these public markets. The first district is among the poorest and most populous in Antananarivo. Cases were diagnosed and treated in TB diagnosis and treatment centers (DTCs) indicated in Fig. 1c.

Fokontany were identified by conventional alphanumeric codes and were geolocalized by their centroid. Data of the population census of the 192 Fokontany were provided by the Development Office of Antananarivo (DOA) and poorest neighborhoods were described previously [22].

Study population
New confirmed TB cases for individuals were included without age limitation between August 2013 and May 2014 (n = 523). Only patients living in Antananarivo for at least one year have been recruited since they are more
likely to have got TB in this study area. All 17 DTCs in the study area and three reference DTCs in the suburban zone of Antananarivo (Fenoarivo, Ambohidina, and Itaosy), totaling 20 DTCs were included in the study. The DTC of the central jail was excluded because of the potential transmission bias associated with this last area. For each recruited patient, the objectives and nature of the study were explained by a DTC agent. Information written in Malagasy language was given to any patient or parents for children under 18 years. He/she was then asked if he/she agrees to participate in the study. Study subjects were allowed to participate in the study or withdraw from the study at any time without prior justification. When the subject agreed to participate in the study, he/she signed the informed consent form. An interview was conducted and the information was collected on a form. The residence address and Fokontany were recorded for every patient. The residence address provided by the patients in the questionnaire was confirmed by the DTC registers.

Genotyping
Fresh sputa were collected, stored, and cultured on Lowenstein Jansen (LJ) solid medium. Raw DNA was obtained from the clinical isolates by heating and killing a suspension of a culture colony in a hot dry bath at 80 °C for 30 min. After centrifugation at 13,000 * G for 5 min, supernatant was transferred in a new tube and conserved at −20 °C. Raw DNA was shipped at −20 °C to Orsay, France where the spoligotyping was performed directly using a Lumines 200 platform as described by Zhang [23]. The spoligotype profiles were identified by their Shared-type (SIT – Spoligotyping International Types) and lineage designation by using the SpolDB4/SITVITWEB rules and classification [4]. Moreover, to fit with current genome-based lineage designations, L1-L7 lineage labels were added to spoligotype families [24, 25]. Given the modest benefit of spoligotyping value when used alone in molecular epidemiological studies, we did not infer any recent transmission rate based on spoligotyping-based clustering, but used the genotyping information to correlate spatial and genetic clustering as a clue to define “Hot Spot TB area”.

Spatial analysis
TB patients were localized according to their Fokontany of residence. All data on the population denominators per Fokontany and metadata used for mapping were provided by the DOA. All TB patients and patients with genotypic clustered isolates (patients associated with isolates with repeated spoligotype or PRRs) were scanned separately using the Kulldorf spatial scanning method. The populations per Fokontany with SatScan as considered for the spatial analyses (http://www.satscan.org) [26]. For SatScan parameters, a maximum radius of 1 km was defined for the spatial scanning. A p-value <0.05 determined by conducting Monte Carlo replications was considered to be statistically significant. We assumed that the number of TB patients in each Fokontany fits with the Poisson distribution. The identified Fokontany associated with spatial clusters representing TB focal points of epidemics were mapped using QuantumGis 2.8 (QGIS Development Team, 2013). Areas representing focal points of epidemics with highly genetically related isolates (clustered by spoligotyping) were considered to be potential TB hotspot transmission areas.
Results
Study participants
A total of 523 TB patients were recruited from 14 of the 20 DTCs included in the study. The recruited patients were localized to 142 of the 192 Fokontany of Antananarivo (1–15 patients/Fokontany). Fifty-six patients were excluded (the addresses of 46 patients were confirmed outside the study area and residence’s Fokontany of 10 patients could not be identified). Among the 467 remaining included patients, 427 (91.4%) had positive bacterial cultures identified from the LJ-growth media (Fig. 2).

Genotypic diversity of the clinical isolates
We obtained 88 individual spoligotype profiles from 394 clinical isolates (84.4% of the 467 recruited patients). We could not type 73 (16%) clinical isolates as 40 cultures were negative and 33 spoligotypes were non-interpretable. Of the individual 88 spoligotype profiles, 47 were unique and 41 were clustered, totaling 347 clustered isolates, found in clusters of 2 to 39 clinical isolates (Additional file 1: Table S1).

Clinical isolates belonging to the Euro-American/T spoligotyping family (included in Lineage 4; 43.1%) predominated, followed by the EA1 lineage (Lineage 1; 12.7%), and the CAS lineage (Lineage 3; 10.4%), whereas the Beijing lineage (Lineage 2), the LAM, and the H sublineages (both belonging to Lineage 4) did not exceed 10% of the studied clinical isolates (Fig. 3).

The 14 most prevalent SITs constituted 70.0% of all spoligotypes (276/394). Most prevalent SITs (more than 30 cases) were: SIT86 (T family), SIT1 (Beijing lineage), SIT156 (T family), SIT109 (EA1 lineage), SIT21 (CAS lineage) (Additional file 1: Table S1).

Spatial analysis
Residences of the included patients (n = 467) were distributed in 133 of the 192 Fokontany (Fig. 1c). Spatial observations showed that the highest number of TB cases was observed in Fokontany Andohatananaka II in the 1st district (n = 15) whereas the district with the highest number of TB cases was the 5th district (112/467; 24.0%). The relatively most populous Fokontany at the periphery of Antananarivo had the higher TB cases number compared to the center of the city (3rd district) (Fig. 1b, c).

With the spatial scanning method of Kulldorff, we observed one significant spatial cluster of TB cases (p = 0.039) formed by 6 Fokontany (localized in the 1st and the 6th neighboring districts) (Fig. 4a). The 394 patients with genotyped clinical isolates were distributed in 133 Fokontany. The patients with genotypic clustered isolates (n = 347) were distributed in 127 of these 133 Fokontany (1 to 13 isolates per Fokontany); and when scanning these 347 patients, four significant spatial clusters were observed (Fig. 4a): a first cluster formed by one Fokontany (Antohomadinika Afovo) in the 1st District (p = 0.001), a second formed by eight Fokontany of the 4th District (p = 0.001), a third cluster in one Fokontany (Andohatananaka II) in the 1st district (p = 0.002) which overlapped with the spatial cluster of all TB cases (Fig. 4a), and a 4th cluster formed by three Fokontany in the 2nd district (p = 0.043). These spatial clusters represent potential areas of TB transmission. The spoligotype diversity in each spatial clustering is presented in Fig. 4b. The first area with potential TB transmission included two SIT21 isolates. There were seven SIT156 isolates in the second area, followed by SIT21 (n = 5) and SIT109 (n = 5). SIT156 (n = 4) and
Fig. 3a Distribution of spoligotyping-defined lineages obtained on 394 spoligotypes: spoligotyping nomenclature according to Brudewey et al. [5], followed by genome-based (L1 to L4) lineage and sublineage nomenclature according to Coll et al. [24]. b Spatial distribution of M. tuberculosis spoligotyping-defined lineages within the 192 Fokontany of Antananarivo. (size of circle is proportional to cases number, cf. Figure)

Fig. 4 Spatial signatures of TB identified by the Kulldorff spatial scan method. a Spatial clustering of TB cases and patients with genotypic clustered isolate. b Distribution of isolates families in each spatial clustering of patients with genotypic clustered isolates
SIT109 \((n = 2)\) predominated in the 3rd area with potential TB transmission and SIT78 \((n = 3)\) and SIT59 \((n = 3)\) predominated in the 4th area (Fig. 4b). These TB hotspots could not be detected on the spatial distribution of the 11 lineages (Fig. 3b).

Discussion

This study aimed to determine the spatial signature of TB by using a combination of genotyping and geospatial tools across the urban city of Antananarivo, Madagascar. The complementarity of both the genotyping and spatial analyses approaches has been used for the determination of TB transmission areas and risk studies in Brazil and Japan \([11, 12]\). These two methods are not new but they had never been combined for the detection of potential high risk areas of TB transmission in Antananarivo.

The combination of GIS and spoligotype data identified four hotspots with potential TB transmission in the city of Antananarivo. Analysis of all TB cases (without distinction of genotypic clustering of strains) identified a TB disease focal point overlapping with one of the potential transmission area (constituted by the Fokontany of Andohatapena II). TB hotspots such as that detected by the analysis taking only spatial data into account is likely constituted simultaneously by patients linked by indirect and relatively ancient TB transmission and by patients linked by local and recent TB transmission. Spatial clustering of patients with genotypically clustered isolates may therefore concern more patients associated with local and recent transmission. Additionally, our combination of approaches permitted the detection of spatial clusters of TB patients which were not detected with only the spatial scan of TB cases. TB transmissions might have occurred in these areas. For definitive proof of TB transmission, more discriminatory genotyping tools should however be used.

While previous studies determined risk factors associated with spatial clustering of TB cases in Antananarivo \([15, 18]\), risk factors associated with transmission were poorly investigated. The first potential transmission hotspot is constituted by the Fokontany of Antohomadimika Afovoany that is localized in one of the poorest neighborhood in the 1st urban district of Antananarivo. Most of the houses in this area are made of precarious wooden hovels and the majority of the local population does not have standard health care access. While life under fragile conditions and environmental factors \([14, 19]\) are known factors that contribute to TB reactivation \([16]\), they could also foster local transmission as suggested by this study. The relatively high diversity of SITs seen in this poor area supports the previous findings that environmental factors also favor reactivation of latent TB. This area, containing the highest rate of TB, constitutes the first high risk area of TB transmission in Antananarivo.

The three other areas of potential TB transmission (#2, #3 and #4) host or lie close to three public markets (Anosibe, Isotry and Ambanidina market) where there is an important flow of people. Similar studies have shown that a flow of persons promotes TB transmission \([11, 12]\). This study further adds evidence for potential transmission in markets.

The discriminatory level of spoligotyping is relatively low, and the genotypic clustering cannot be used to estimate TB recent transmission rates. Thus isolates with the same spoligotype may be coming from different chains of transmission. However, when compared with isolates with single genotype, that might represent reactivation or relatively far recent transmission, these clustered isolates are more likely to have originated from recent spatially localized transmission. The aim of the study was to identify high risk areas, this limitation does therefore not invalidate this study and should be taken as a first step towards identification of real TB transmission hotspots.

From 1994 until 2000, studies of the *M. tuberculosis* genotypes present in Antananarivo reported six lineages and sub-lineages of *M. tuberculosis* clinical isolates: T, LAM, and H (Lineage 4), EAI (Lineage 1), CAS (Lineage 3), and Beijing (Lineage 2) \([19]\). The 6 lineages were shown to be present in the capital of Madagascar in 2004/2005, with the appearance of other minor sub-lineages such as S and X along with some unknowns \(U\) \([27]\). The distribution of the major circulating clinical isolates observed in these studies may have evolved slightly, but we noted no significant change since then, suggesting that all the lineages were being continuously transmitted in this area.

In this study, the population density in every studied Fokontany was taken into account, increasing the accuracy of spatial clustering identification. The use of spoligotyping as a first screen is a relatively simple and inexpensive method. It allowed us to identify clusters that were overlooked using only spatial information. We thus plan to keep this strategy as a first-line detection of potential transmission areas. A possible improvement in our approach would be the use of methods providing both spoligotyping and resistance data such as TB-SPRINT \([28]\). This high-throughput assay tests for rifampicin and isoniazid resistance simultaneously with spoligotyping on Luminex. It could be a useful strategy in the near future to survey and prevent the spread of MDR-TB cases.

Another limit of this study was the short recruitment time (9 months). However, this recruitment period was sufficient to achieve a large sample size, and given the stability of the population, such duration should not have created too much bias. Some of the enrolled patients did not agree to give consent to participate in the study, those residing in Antananarivo Renvohitra consulting with DTCs outside Antananarivo, and those not consulting with a DTC had to be removed from the inclusion. Finally, we
chose the patient residence to perform the spatial analysis although the patient residence is clearly not the unique site of possible TB transmission. Activity areas have been linked to transmission in other studies [11, 12]. We still chose to locate TB cases according to the residential Fokontany since people with most poor living condition and without work circulate most of their time in the same Fokontany in Antananarivo. A further investigation using the combined spatial methods on both working and residential areas could still be useful for TB epidemiological surveillance.

Conclusion
Areas of high risk of TB transmission were suggested by the combination of M. tuberculosis spoligotyping and spatial analysis in the Urban District of Antananarivo. This method may be helpful for TB epidemiological surveillance in Madagascar and developing countries for guiding TB control strategies by the identification of priority target areas. Massive active diagnosis for children and susceptible persons can be suggested in these areas, as well as intense of TB awareness.

Additional file

Additional file 1: Table S1. Distribution of the 88 spoligotypes obtained with the 394 typed patients. (DOCX 38 kb)

Acknowledgements
The “Projet interne” of the Institut Pasteur de Madagascar funded the work. Our thanks go to the “Programme National de Lutte Contre la Tuberculose” represented by the Dr. Andrianantantiana RAKOTOSON for the authorization to conduct this study, the officials and staff of the various “Centre de Diagnostic et de Traitement de la Tuberculose”, the Mycobacteria Unit of the IPM, the SIG cell of the Epidemiology Unit of IPM, and the IGEPE team of the Institute of Integrative Cell Biology, UMR9198, CEA-CNRS-University Paris Saclay, France, for their collaboration. We are also grateful to the TB patients who accepted to participate and provided biological samples to perform this study and the Development Office of Antananarivo (DOA) for the different datas used for the study.

Availability of data and materials
All data generated or analyzed during this study are included in this published article and in the Additional file 1: Table S1.

Authors’ contributions
NHRI initiated the research, wrote the study design, conducted the research, did data entry and analysis and wrote the manuscript. NR: Was involved in the data analysis and in the write up of the manuscript. SR: Conducted a part of the research and participated in data analysis. MSN: Participated in the study design and in the conducting of the research. GR: Initiated the research. CS: Served as co-supervisor, initiated the research and write up the manuscript. FR: Served as co-supervisor, initiated the research involved in data analysis and write up the manuscript. VR: Served as main supervisor, initiated the research, involved in data analysis and wrote up the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The study was approved by the ethics committee of the Malagasy Ministry of Public Health (Authorization No. 057/MSANP/EC – 04th July 2013).

Consent for publication
Not applicable.

Competing Interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 Unite des Mycobacteries, Institut Pasteur de Madagascar, Antananarivo, Madagascar. 2 Institute for Integrative Biology of the Cell (IOCB), CEA, CNRS, Univ. Paris-Sud, Universite Paris-Saclay, 91198 Gif-sur-Yvette cedex, France. 3 Programme National de Lutte contre la Tuberculose (PNLT), Ministere de la Sante, Antananarivo, Madagascar. *Unite d’Epidemiologie, Institut Pasteur de Madagascar, Antananarivo, Madagascar.

Received: 24 March 2017 Accepted: 30 July 2017
Published online: 14 August 2017

References

V.3 CONCLUSION DE L’ETUDE 3

Cette dernière étude nous a permis de développer un outil associant génotypage et analyse spatiale pour identifier les zones à fort risque de transmission de la TB. Cet outil nous a permis d’identifier 4 zones potentiellement à risque de transmission de la TB dans la commune urbaine d’Antananarivo. Ces 4 zones doivent être prises en compte dans l’identification des zones prioritaires dans la lutte contre la TB à Antananarivo. Cet outil pourrait servir aux autorités compétentes pour rechercher les Hotspots de transmission de la TB dans tout Madagascar.
VI DISCUSSION GENERALE

L’objectif principal de la thèse était de décrire le mode de transmission des souches *M. tuberculosis* à Madagascar afin de comprendre la dynamique de la TB et proposer un outil d’aide à la décision efficace permettant de cibler les actions de lutte contre la TB dans le pays. Les quelques questions d’où, où, comment et quand se transmet la TB ont pu trouver réponse même partiellement dans ces études. Il a été démontré ainsi par diverses approches que :

- Il existe une grande diversité de souches *M. tuberculosis* circulant dans toute l’île, toutes les lignées de souches existantes dans le monde sont présentes dans les 6 provinces avec des proportions plus ou moins différentes ;
- La transmission active de la TB est toujours d’actualité et se fait à très grande échelle à Madagascar ;
- les souches réputées les plus virulentes telles que les génotypes Beijing circulent à Madagascar ;
- la distribution des souches est différente entre la capitale et les provinces de l’île ;
- la souche SIT109 et beaucoup de souches de la sous lignée EAI8 endémiques et caractéristiques de Madagascar sont distribuées dans toute l’île, ce sont des souches qui ont évolué à l’intérieur de l’île depuis longtemps ;
- et enfin, il existe des zones à haut risque de transmission de la TB dans la capitale de Madagascar.

Du point de vue de la lutte contre la TB, cette étude nous a donc permis d’aborder les problématiques tels que la mise à jour et l’amélioration des connaissances sur les souches *M. tuberculosis* circulant à Madagascar, le mode et l’état actuel de la transmission de la TB et ainsi que l’échelle à laquelle se fait la transmission. Elle a également pu aider à identifier des zones clés dans la lutte contre la TB même si ces résultats concernent la capitale seulement.

Par rapport aux données disponibles de caractérisation des BK à Madagascar, des mises à jour et améliorations ont été faites en utilisant des échantillons plus récents et plus nombreux. Pour la description des souches, l’échantillonnage est représentatif de toute l’île en représentant 19 des 22 régions du pays. C’est la première étude à décrire les souches des 4 provinces de Madagascar qui sont : Diego, Toamasina, Tuléar et Fianarantsoa. Cette étude a
été faite avec plus d’un millier de souches pendant une période de 2 ans et demi. Ce qui est correct et assez puissant pour une étude de description des BK circulant dans un pays.

Les méthodologies utilisées dans toutes ces études reposent toutes sur le spoligotypage, un outil de typage de *M. tuberculosis*. C’est un outil dont le niveau de discrimination n’est pas approprié pour des études de transmission de TB mais largement suffisant pour l’identification des souches ainsi que leur classification. Le spoligotypage est rapide, peu cher et est très reproductible. Ce qui fait que c’est la méthode la plus utilisée dans le monde jusqu’à maintenant pour le typage des souches *M. tuberculosis*. Plusieurs bases de données recueillent aujourd’hui des dizaines de milliers de spoligotypes obtenues à partir de souches isolées dans les quatre coins du monde (Demay *et al.*, 2012; Weniger *et al.*, 2010). Cependant sa réalisation dans notre cas a nécessité la culture des BK qui peut durer jusqu’à plusieurs semaines et le transport des crachats potentiellement infectieux des différents CDT vers le laboratoire de référence à l’Institut Pasteur de Madagascar. Une alternative serait d’utiliser les lames de diagnostic microscopique de la TB ou encore le papier buvard, comme source d’ADN, à la place des échantillons de crachat. Beaucoup d’études ont démontré des résultats prometteurs utilisant des extraits de lames pour le diagnostic de la TB (Cauwelaert *et al.*, 2011; Silva *et al.*, 2011; Suresh *et al.*, 2007). Cela diminue le risque infectieux et facilite également le transport en évitant les conditions de température rugueuses requises. Couplé avec la méthode MIRU-VNTR, le spoligotypage est encore aujourd’hui un outil incontournable pour les études d’épidémiologie moléculaire de *M. tuberculosis*.

L’étude sur le SIT109 constitue la première caractérisation de ces souches malgaches. Elle a permis d’obtenir des informations sur sa grande diversité et sur sa large distribution à Madagascar, mais également a permis d’avoir un aperçu du niveau d’évolution de ces souches ainsi que de connaître les souches qui leur sont rapprochées phylogénétiquement. L’étude a utilisé les méthodes de typage hautement discriminantes reconnues pour *M. tuberculosis* et a permis de développer une méthode de typage minimisée mais hautement discriminante de ces souches SIT109.

L’étude de l’identification des zones de transmission de TB comparée aux études d’épidémiologie classique basées sur les enquêtes directes auprès des patients tuberculeux a l’avantage de la rapidité. Les méthodes choisies ne sont pas nouvelles mais leur applications sont innovantes et passe par une approche multidisciplinaire. Elle ne nécessite pas de faire des enquêtes répétitives auprès des patients. De plus, elle n’est pas biaisée par la subjectivité et la
non précision des données fournies par les enquêtes. La méthode de typage des souches *M. tuberculosis* choisie est une méthode rapide et moins coûteuse comparée aux autres méthodes utilisées par les autres études utilisant la combinaison analyse spatiale et génotypage (Izumi *et al.*, 2015; Ribeiro *et al.*, 2015; Zhang *et al.*, 2010). L’étude combinant analyse spatiale et biologie moléculaire a permis d’identifier des clusters spatiaux de cas de TB non identifiables par les analyses spatiales seules. En appliquant le Scan spatial de kulldorff sur nos échantillons, nous avons identifié un seul cluster spatial de cas de TB à côté des 4 clusters spatiaux identifiés quand on a distingué par la biologie moléculaire les cas appartenant probablement à des chaînes de transmission récente. En outre, des légères changements de la taille et de l’emplacement périodiques des clusters spatiaux de cas de TB à Antananarivo ont été démontrés par des études antérieures (Rakotosamimanana *et al.*, 2014; Randremanana *et al.*, 2009; Randremanana *et al.*, 2010). Nos données qui datent de 2013 constituent donc une mise à jour plus récente de la connaissance de ces clusters spatiaux de cas de TB à Antananarivo.

Toutefois des améliorations peuvent encore être apportées :

1. La durée de l’étude peut encore être réduite considérablement en remplaçant l’utilisation des crachats pour les tests par les lames de diagnostic microscopique de la TB. Des études antérieures ont montré la possibilité de faire des tests moléculaires à partir d’extraits de ces lames (Cauwelaert *et al.*, 2011; Van Der Zanden *et al.*, 2003). Cette alternative présente l’avantage de ne pas travailler sur des échantillons biologiques potentiellement infectieux et non conservables, et permettant la réduction du nombre de récolte dans chaque centre de Diagnostic de la TB en un seul voyage. Cela évite également de passer par la culture qui nécessite des attentes de plusieurs mois pour *M. tuberculosis* (Pfyffer *et al.*, 1997).

2. Le spoligotypage peut être remplacé par le TB-SPRINT*plus*, une méthode de typage des mycobactéries encore plus rapide et donnant à la fois les résultats du spoligotyping mais aussi teste la sensibilité de chaque souche à la rifampicine, l’isoniazide et à des antituberculeux de seconde ligne.

Des actions comme la détection active de la TB dans ces zones devraient être menées. La détection active a été prouvée pouvoir réduire considérablement la mortalité liée à la TB (Murray et Salomon, 1998) malgré des études antérieures pas très convaincantes menées en Europe et au Japon (Krivinka *et al.*, 1973) ainsi que le coût exorbitant de ce type
d’investigation (Murray et Salomon, 1998; Taylor et O’Brien, 2001). Pour améliorer le rapport cout efficacité de cette intervention dans ces zones potentiellement dangereuses, les populations les plus vulnérables (les enfants, les personnes âgées, les plus démunis ou les VIH-SIDA positives diagnostiqués) qui seront les premières cibles de la TB peuvent aussi être traitées spécialement.

Des études combinant génotypage et analyse spatiale ont aussi été faites dans quelques endroits du monde récemment (Izumi et al., 2015; Ribeiro et al., 2015; Zhang et al., 2010). À côté de ces études, en utilisant des outils relativement plus simples (spoligotypage + scan spatial), on est arrivé au même résultat de pouvoir identifier des zones à risque de transmission de la TB. Certaines de ces études ont pu démontrer des chaines concrètes de transmission de la TB, mais dans le domaine de la santé publique, identifier ces cas concrets de transmission n’est pas si pertinent du fait que c’est tardif. L’explication est que les patients identifiés appartenant à la chaine sont soit guéris (s’ils prennent la thérapie appropriée au moment de découvrir qu’ils sont malade de la TB) soit morts après l’identification de ces chaines de transmission. Ils ont déjà aussi pu transmettre la TB à de nouveaux patients qui ne seront pas identifiés dans l’étude. Ce qui fait qu’aucune intervention n’est plus possible sur ces patients après avoir identifié qui les ont transmis la TB. Cependant à côté de ces autres études combinant analyse spatiale et génotypage, notre étude n’a pas pu étudier les facteurs de risques par manque de données sur l’environnement et les facteurs écologiques à Madagascar.

D’autres points très importants dans la lutte contre la TB n’ont pas été évoqués tels que:

la lutte contre la résistance aux antituberculeux. Pouvoir retracer spatialement les cas de résistance comme nous l’avons fait avec des génotypes serait fortement intéressant. Cela identifierait les zones de transmission de TB résistantes ou multi résistantes et de pouvoir y prendre des mesures. Le taux des souches avec le génotype Beijing, réputées pour être associées à la multirésistance aux antituberculeux, trouvées dans nos études est de 4,5%. Ce taux est relativement faible par rapport à d’autres pays avec une forte prévalence de la TB telle qu’en Russie (66,6%) (Drobniewski et al., 2005) ou au Vietnam (An et al., 2009). Ceci pourrait expliquer en partie le faible taux de résistance dans le pays (Taux de résistance primaire:0.2% et taux de résistance secondaire de 3.4%) (PNLT, 2013; Ramarokoto et al., 2010a). La course aux nouveaux antibiotiques sont en cours actuellement (Koul et al., 2011), de nouveaux antibiotiques ont été trouvés et seront validées bientôt pour permettre de
nouvelles thérapies plus efficaces et pour surmonter le problème de la résistance aux antituberculeux.

De même, la recherche de nouveaux vaccins est toujours d’actualité. Avoir à disposition un nouveau vaccin avec une efficacité continue chez les adultes serait un bond dans la lutte contre la TB. Seule une vaccination efficace peut freiner la transmission de la TB surtout dans les pays en voie de développement. L’immunité maintenue chez l’adulte peut également diminuer significativement la réactivation de la TB latente.

D’autres points importants sont aussi non négligeables pour l’amélioration de la lutte contre la TB à Madagascar comme :

Le dépistage des cas de TB non identifiés. Plusieurs cas de TB ne sont pas déclarés dans les CDTs. Ces cas cependant constituent des sources potentielles de nouveaux cas de transmission de la TB car en restant un certain temps sans traitement, ces personnes demeureront des cracheurs potentiels de BK.

L’éducation de la population sur la TB, sur le traitement et la prise en charge des cas de TB, sur le mode de vie à prendre pour se défendre de la maladie doit être améliorée. La non connaissance des moyens de prévention de la TB favorise la transmission de la maladie. La non connaissance de la prise en charge de la TB et des traitements laisse certains cas sans traitements et transforme aussi ces derniers en cracheurs de BK.

Le diagnostic de la TB latente. Une partie des cas de TB provient de la réactivation de la TB latente. Pouvoir traiter ces cas latents avant l’expression de la maladie diminuerait donc le nombre de cas mais élimine aussi des réservoirs potentiels de BK.

Le diagnostic de la sensibilité aux antituberculeux pour tous nouveaux cas de TB confirmés. Ces tests permettent de donner un traitement approprié aux nouveaux cas, évitent une reprise de nouvelle thérapie après plusieurs mois de thérapie non adaptée et améliore donc l’espérance de guérison des cas de TB en cour de traitement. L’amélioration du suivi des patients pour éviter les pertes de vue augmente aussi les chances de guérison des patients de TB.

Et dernièrement, l’identification des facteurs favorisant la transmission de la TB à Madagascar et la réémergence des cas de TB latente est essentielle. La connaissance des facteurs de risque permet d’orienter les stratégies de lutte contre la TB. Cela permet d’agir sur
les facteurs écologiques ou anthropologiques favorisant la transmission de la TB ou la réémergence de la TB latente.
VII CONCLUSION GENERALE ET PERSPECTIVES

La TB est une maladie encore endémique à Madagascar. Malgré l’existence de dépistage et un traitement disponible de la TB suivant les normes de l’OMS, le taux de prévalence et d’incidence de la TB reste encore élevé.

Une part de la TB malgache a pu être importée par le peuplement d’origine malgache mais la majorité des cas actuels semblent être importés assez récemment de partout dans le monde. La TB se transmet encore continuellement dans tout Madagascar à grande échelle jusqu’à nos jours. Certaines zones présentent des agglomérations de cas de TB dû à des facteurs de risque encore mal connus.

La TB actuelle à Madagascar est due surtout à des cas de transmissions récentes incontrôlées, mais aussi à la réactivation de TB latente acquise depuis plus longtemps.

L’association de techniques moléculaires de typage et d’analyses spatiales pourrait permettre de mieux identifier les zones à risque de transmission de TB à Madagascar et de mieux cibler les zones clefs dans la lutte contre la TB à Madagascar.

Perspectives :

Pour compléter ces résultats il serait aussi intéressant :

De typer les souches tuberculeuses avec des marqueurs plus discriminants tels que les MIRU VNTR ou par WGS. Les marqueurs utilisés dans nos études possèdent un niveau de discrimination relativement faible. Augmenter le niveau de discrimination des méthodes de typage utilisées améliorerait la résolution des analyses.
De faire des études d’évolution des souches malgaches. Des études évolutives et de datation permettraient d’estimer les périodes d’apparition des souches malgaches ou encore les périodes d’importation de certaines souches circulant dans le pays.

D’identifier les zones de transmission des souches résistantes. Pouvoir identifier les zones de transmission des souches résistantes aux antituberculeux pourrait diminuer considérablement les cas de résistance primaire.

Et de valider l’utilisation des lames de diagnostic microscopique de la TB pour les méthodes de typage des souches *M. tuberculosis*. Cela améliorerait nos méthodes en évitant les contraintes de transport des crachats lors de la période de recrutement et la culture des mycobactéries.
REFERENCES BIBLIOGRAPHIQUES

REFERENCES

REFERENCES BIBLIOGRAPHIQUES

139. Kulldorff, M.

141. Information Management Services.

ANNEXES
Annexe 1

Réactifs et tampons pour l’hybridation lors du spoligotyping

1- **20XSSPE pH 7,4 qui va nous servir de solution mère**

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantité</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>87,66g</td>
</tr>
<tr>
<td>NAH2PO4</td>
<td>15,60g</td>
</tr>
<tr>
<td>EDTA</td>
<td>3,722g</td>
</tr>
<tr>
<td>Eau distillée</td>
<td>400ml</td>
</tr>
</tbody>
</table>

Ajuster le pH avec NaOH 10N

Eau distillée qsp........500ml

Autoclaver et garder à température ambiante

2- **2XSSPE** :

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantité</th>
</tr>
</thead>
<tbody>
<tr>
<td>20XSSPE</td>
<td>50ml</td>
</tr>
<tr>
<td>Eau distillée</td>
<td>500ml</td>
</tr>
</tbody>
</table>

3- **2XSSPE/0,1% SDS : 2XSSPE/0,5% SDS (x2)** :

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantité</th>
</tr>
</thead>
<tbody>
<tr>
<td>20XSSPE</td>
<td>50ml</td>
</tr>
<tr>
<td>20XSSP</td>
<td>50ml</td>
</tr>
<tr>
<td>SDS 10%</td>
<td>5ml</td>
</tr>
<tr>
<td>SDS 10%</td>
<td>25ml</td>
</tr>
<tr>
<td>ED qsp</td>
<td>500ml</td>
</tr>
</tbody>
</table>

4- **EDTA 20 Mm : pH8**

<table>
<thead>
<tr>
<th>Substance</th>
<th>Quantité</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA</td>
<td>3,725g</td>
</tr>
<tr>
<td>ED</td>
<td>400ml</td>
</tr>
</tbody>
</table>

Ajustement du pH avec NaOH 10N

Ed qsp500ml

Autoclaver et garder à température ambiante
Annexe 2

Préparation de la membrane

Grâce à leur terminaison 5'-amine, les oligonucléotides ont été fixées de manière covalente à une membrane de nylon Biodyne C (Pall Biosupppport, Portsmouth, England) préalablement activée par incubation dans de l’EDAC (N-Ethyl-N'- (3-dimethylaminopropyl) carbodiimide) à 16% (poids/volume). Par ce procédé, la membrane a pu ainsi être hybridée, deshybridée et réhybridée plusieurs fois (plus de 10 fois). Après activation de la membrane, celle-ci a été rincée et placée dans un miniblotter (système Miniblotter 45, Immunetics, Cambridge, USA). Les 43 puits ont été remplis avec 150 μl d’oligonucléotides dilués dans du NaHCO₃ (500 mM, pH 8,4). Après le dépôt, la membrane a été rincée et inactivée à la soude 100 mM pendant 10 minutes puis lavée sous agitation à 60 °C dans 250 ml de tampon SSPE (Standard Sodium Phosphate – EDTA) 2X – 10% SDS (Sodium Dodecyl Sulfate) pendant 10 minutes (2 fois) et rincée dans 250 ml d’EDTA à 20 mM (pH 8,0) pendant 15 minutes (2 fois) pour finalement être stockée à +4°C dans un emballage évitant son dessèchement.
LISTE DES PUBLICATIONS ECRITES ET AFFICHEES

ARTICLES SCIENTIFIQUES:

5. “TB SPRINT and DST of 930 Mycobacterium tuberculosis strains” Noël Harijaona RATOVONIRINA, Leen Rigouts, Voahangy Rasolofo, Christophe Sola (en cours de préparation- PlosOne)
POSTERS:

1. Poster pour le symposium du RIIP du 10 au 13 Septembre 2014:
 Spoligotype profile analyses of *M. tuberculosis* clinical strains isolated from the six different provinces of Madagascar
 Niaina Rakotosamimanana, Noël Harijaona RATOVONIRINA, Anja Ratsiferana, Josuah RABEMIARANA, Herimanana RAMAROKOTO, Christophe Sola, Nalin Rastogi, Voahangy Rasolofo

2. Poster pour le symposium du RIIP du 10 au 13 Septembre 2014:
 Spatial distribution of *Mycobacterium tuberculosis* clinical strain genotypes in Antananarivo: a pilot study
 Noël H. RATOVONIRINA, Mamy S. Raherison, Solohery L. RAZAFIMAHATRATRA, Niaina RAKOTOSAMIMANANA, Sahondra J. RAMBELOARISON, Andrianantenaina RAKOTOSON, Fanjasoa RAKOTOMANANA, Voahangy RASOLOFO

3. Poster pour le Congrès de la faculté de médecine d’Antananarivo du 30 Septembre au 02 Octobre 2014
 Distribution spatiale des génotypes des souches cliniques *Mycobacterium tuberculosis* à Antananarivo: étude pilote
 Noël H. RATOVONIRINA, Mamy S. Raherison, Solohery L. RAZAFIMAHATRATRA, Niaina RAKOTOSAMIMANANA, Sahondra J. RAMBELOARISON, Andrianantenaina RAKOTOSON, Fanjasoa RAKOTOMANANA, Voahangy RASOLOFO
Pour l’amélioration de la lutte contre la tuberculose à Madagascar, nous avons décidé de mener des études sur l’analyse de la diversité et la distribution des génotypes de BK y circulant au cours du temps et dans l’espace afin de connaître le mode de transmission de la TB et les sources potentielles de la TB malgache. Plus spécifiquement il s’agit premièrement, d’étudier la diversité génétique et la distribution des génotypes des BK dans le pays pour évaluer le niveau de transmission de la maladie et d’essayer de retracer les sources potentielles d’importation de la TB malgache ; deuxièmement, étudier la diversité de la souche endémique de Madagascar, le SIT109, afin de voir le niveau de transmission d’une souche à l’intérieur de l’île ainsi que son niveau d’évolution ; et troisièmement, identifier les zones de transmission de la TB par combinaison d’analyse spatiale et de génotypage en commençant par une étude pilote dans la capitale.

Pour réaliser cela, 1014 souches représentatives de Madagascar isolées de 2005 à 2007 ont été typées par le spoliotypage. Les génotypes définis ont servi pour l’estimation de la transmission de la TB et l’identification des sources potentielles de la TB ; ensuite, 156 BK endémiques de Madagascar portant l’identité SIT109 ont été typés par la méthode des MIRU-VNTR (« Mycobacterial Interspersed Repetitive Units – Variable Number of Tandem Repeat ») afin d’étudier leur diversité, leur niveau d’évolution et le niveau de distribution de la TB au niveau d’une seule souche et enfin, 523 patients ont été recrutés à Antananarivo en 2013 afin de typer par le spoliotypage leur BK, d’identifier à partir de leur génotype ceux qui sont potentiellement associés à des cas de transmission récente et d’analyser leur clustering spatial par la méthode de Kulldorff.

Les résultats nous ont montré une grande diversité génétique des BK circulant dans le pays avec une prédominance de deux lignées de BK qui sont les souches « East African Indian » et « Tuscan » ; une distribution particulière des BK dans la capitale par rapport aux autres provinces ; des similitudes particulières des BK circulant avec des pays comme les USA, la France, l’Italie, le Danemark, l’Arabie Saoudite ou encore le Pays Bas ; une grande diversité des souches SIT109 ainsi que leur distribution dans tout le pays ; ainsi que quatre clusters spatiaux de cas de TB associé à la transmission récente dans la capitale.

Cette étude nous a permis de déterminer que la transmission de la TB à Madagascar est toujours très active et se fait à très grande échelle, une petite part de la TB à Madagascar a pu être importée par les populations d’origine mais la majorité des cas actuels provient d’importation assez récente de BK de plusieurs régions du monde. Douze Fokontany de la capitale correspondent à des zones à risque de transmission de la TB et mènent une attention particulière aux responsables de la lutte contre la TB à Madagascar et enfin la méthode combinant génotypage et analyse spatiale permet la détection de ces zones à risque et pourrait servir pour le « Programme National de Lutte contre la Tuberculose » d’outil d’aide à la décision pour les stratégies de lutte contre la TB dans tout Madagascar.

Mots clés : *M. tuberculosis*, génotypage, épidémiologie, Antananarivo, Cluster spatial, ST 109

Title : Descriptive, epidemiological, molecular and spatial studies of *Mycobacterium tuberculosis* strains circulating in Antananarivo, Madagascar

Keywords : *M. tuberculosis*, genotyping, epidemiology, Antananarivo, Spatial cluster, L1/SIT 109

For improving the fight against tuberculosis in Madagascar, we decided to conduct studies on the analysis of the diversity and spatio-temporal distribution of BK genotypes circulating in Madagascar for analyzing the TB transmission mode and the potential origins of Malagasy TB. More specifically, it is to study the genetic diversity and distribution of genotypes of *M. tuberculosis* strains in the country to assess the transmission level of the disease and to identify the potential sources of Malagasy TB; secondly, to study the diversity of the endemic strain of Madagascar, SIT109, in order to assess the transmission level of the strain inside the island and its level of evolution; and third, to identify TB transmission areas by combining spatial analysis and genotyping, starting with a pilot study in the capital.

To achieve this, 1014 BK representative of Madagascar isolated in 2005 to 2007 were typed by the spoliotyping. Defined genotypes were used to estimate the TB transmission level and the identification of potential sources of malagasy TB; after, 156 endemic BK from Madagascar bearing the identity SIT109 were typed by the MIRU-VNTR (Mycobacterial Interspersed Repetitive Units – Variable Number of Tandem Repeat) method to study their diversity, their evolution level and the level of TB transmission at a single strain; and finally, 523 patients were recruited in Antananarivo in 2013 in order to type by spoliotyping their BK, to identify from their genotype those that are potentially associated with recent transmission cases and to analyze their spatial clustering by the Kulldorff method.

The results showed a high genetic diversity of BK circulating in the country with a predominance of two strains, “East African Indian and “Tuscan”; a particular distribution of BK genotypes in the capital compared to the other provinces and particular similarities of the BK circulating with countries such as the USA, France, Italy, Denmark, Saudi Arabia or the Netherlands; a high variety of SIT109 strains and their distribution throughout the country; as well as four TB cases associated with recent transmission spatial clusters in the capital.

This study allowed us to determine that the TB transmission in Madagascar is still very active and it is done on a very large scale, a small part of TB in Madagascar could be imported by the origin populations but the majority of cases is due to relatively recent importations of BK from several regions of the world. Twelve Fokontany in the capital corresponds to TB high risk transmission areas and need special attention to those responsible for the control of TB in Madagascar and finally the method combining genotyping and spatial analysis allows the detection of these high risk areas and could be used for the “Programme National de Lutte contre la TB” as a decision tool for orientation of the TB fight strategies throughout Madagascar.