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Résumé en français

Dans les matériaux possédant un ordre magnétique, la distribution spatiale d'aimanta-

tion n'est pas toujours uniforme. Typiquement, des régions d'aimantation uniformes de

directions données sont séparées par des parois de domaine, au sein desquelles la varia-

tion spatiale d'aimantation est importante. Les outils issus de la théorie du micromagné-

tisme permettent d'interpréter et prédire ces con�gurations qui correspondent à des mi-

mimums d'énergie magnétique, en considérant l'ensemble des contributions énergétiques

pertinentes (Zeeman, anisotropie, échange etc.)

La manipulation de structures magnétiques à l'échelle micrométrique ou nanomé-

trique revêt un grand intérêt à la fois fondamental et technologique. En particulier, le

déplacement de parois de domaine est le sujet de nombreuses recherches récentes. Le dé-

veloppement rapide de la spintronique et les avancées technologiques associées laissent

envisager de nombreuses applications, notamment en microélectronique. L'application de

champs magnétiques et de courants électriques o�re des possibilités de contrôle aujour-

d'hui maîtrisées et de mieux en mieux comprises sur le plan théorique. Par exemple, des

modèles simples permettent de prédire le comportement d'une paroi de domaine soumise

par exemple à un champ magnétique. Jusqu'à un champ seuil, le mouvement est caracté-

risé par un régime stationnaire et une vitesse augmentant avec le champ appliqué. Au-delà

d'une limite communément appelée Walker breakdown, la mobilité de la paroi chute de

façon abrupte et la dynamique devient plus complexe.

D'autres méthodes moins classiques de manipulation locale de l'aimantation ont fait

l'objet de recherches exploratoires. Celles-ci sont entre autres motivées par des considéra-

tions de consommation d'énergie, puisque l'utilisation de courants électriques (que ce soit

directement ou pour générer des champs magnétiques) est relativement peu performante

de ce point de vue. En particulier, l'approche magnétoélectrique, qui consiste à contrôler

l'aimantation par des champs électriques plutôt que des courants, représente un candidat

prometteur. En utilisant des hétérostructures magnétoélastique/piézoélectrique, il est pos-

sible d'obtenir de bons couplages magnétoélectriques. Ainsi, un substrat piézoélectrique

9



pourra générer une déformation sous l'e�et d'un champ électrique et la transmettre à

une couche magnétoélastique déposée dessus, qui réagira magnétiquement. Cette oppor-

tunité a notamment inspiré le concept derrière une mémoire magnétoélectrique développée

à l'IEMN baptisée MELRAM. Un élément magnétoélastique à anisotropie uniaxiale est

soumis à un champ de biais statique perpendiculaire à la direction d'anisotropie, qui

brise la symétrie quadratique. Cette con�guration crée deux états stables. Sous l'e�et

d'une contrainte appliquée selon une bissectrice de ces deux directions (par exemple par

un substrat piézoélectrique), il est possible de favoriser l'un d'eux et ainsi de déterminer

l'état dans lequel se trouvera l'élément (voir Fig. A pour une représentation schématique.)

En considérant des paramètres réalistes, la dissipation d'énergie associée au basculement

d'aimantation peut être réduite de plusieurs ordres de grandeur.

Figure A � Principe de fonctionnement de la mémoire magnétoélectrique (MELRAM),
où une contrainte uniforme permet de passer d'un état stable à l'autre de manière non-
équivoque. Les sous-�gures a) b) et c) présentent schématiquement l'élément magnétoé-
lastique au repos et soumis à des contraintes positives (resp. négatives). Les sous-�gures
d) e) and f) sont des représentations 3D de l'énergie en fonction des angles.

En se basant sur ce concept, ce travail de thèse propose une technique innovante de

déplacement magnétoélectrique de paroi de domaine à basse énergie. Dans ce système, la

combinaison d'un champ de biais statique H0 et d'une contrainte uniaxiale uniforme σ

dans la même con�guration que pour la MELRAM permet le déplacement unidirectionnel

d'une paroi au sein d'une structure magnétoélastique à anisotropie uniaxiale de constante

Ku (voir Fig. B). Le champ de biais est un élément crucial responsable d'une brisure

de symétrie, car typiquement, une contrainte uniforme seule ne peut pas engendrer le

10



mouvement d'une paroi à 180◦. L'application d'une contrainte entraîne un écart d'énergie

volumique entre les deux domaines, ce qui pousse l'un d'entre eux à s'étendre aux dépends

du second, résultant ainsi en un déplacement de paroi unidirectionnel prévisible. Des

simulations numériques préliminaires e�ectuées à l'aide du package Nmag ont permis

d'apporter une preuve de principe de ce phénomène.

Figure B � Schéma du système considéré : une structure magnétoélastique à deux do-
maines comportant une paroi de domaine transverse.

Pour étudier le comportement statique du système, un modèle ad-hoc a été construit.

La géométrie générale choisie, représentée sur la Fig. C, est celle d'une nanostructure fer-

romagnétique (saturation Ms) et magnétoélastique (c÷�ceint λs > 0) de faible épaisseur

h ≤ 20 nm, de largeur constante ou variable ` ≤ 100 nm et de longueur L > 400 nm. Le

modèle est basé sur des hypothèses allégeant considérablement le traitement numérique :

on considère que l'aimantation ~M = Ms ~w demeure dans le plan de la couche et qu'elle ne

dépend que d'une variable d'espace x, de sorte que la seule inconnue est Φ(x).

La première étape consiste à écrire la forme de l'énergie en prenant en considération

toutes les contributions sous forme volumique : énergie d'anisotropie quadratique, énergie

Zeeman, énergie d'échange, énergie du champ de désaimantation et énergie magnétoélas-

tique. Ainsi, l'expression de l'énergie totale U peut être exprimée comme suit :

U =

L
2∫

−L
2

h`(x)

[
−Ku cos2 Φ + A

(
dΦ

dx

)2

− µ0MsH0 sin Φ +
3

2
λsσ sin Φ cos Φ

]
dx

−
∫∫
V 2

1

2
µ0M

2
s ~w(~r) ·N(~r, ~r0)~w(~r0) d~r0d~r.
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Figure C � Con�guration et géométrie de la structure ferromagnétique considérée.

Le dernier terme de cette équation est relatif au champ de désaimantation. Pour trou-

ver la con�guration magnétique correspondant à l'état d'équilibre, une méthode varia-

tionnelle a été adoptée. Celle-ci consiste à calculer l'expression de la dérivée de Gâteaux

de l'énergie, qui doit être nulle pour la con�guration d'équilibre.

Φ′′(x) + Φ′(x)
`′(x)

`(x)
− 1

2A

[
2Ku cos Φ sin Φ− µ0MsH0 cos Φ +

3

2
λsσ cos 2Φ

+µ0Ms sin Φ〈 ~Hdx〉y,z − µ0Ms cos Φ〈 ~Hdy〉y,z
]

= 0.

Il est clair qu'une telle équation intégro-di�érentielle non-linéaire aux dérivées par-

tielles ne peut être résolue analytiquement. Un traitement numérique est donc nécessaire.

L'approche choisie est basée sur une procédure itérative, ou de relaxation, où l'on cherche

le zéro d'une fonction par la méthode de la dichotomie, implémentée sous MATLAB. Une

méthode originale et très e�cace de calcul du champ de désaimantation a par ailleurs été

développée. La procédure numérique ainsi construite a été validée par une comparaison

avec des solutions analytiques connues.

Les résultats obtenus ont con�rmé la possibilité de déplacer une paroi de cette manière.

Dans un nanoruban (largeur ` constante) la paroi se déplace jusqu'à être éjectée et laisser

une con�guration monodomaine. Dans une géométrie à largeur variable, il est possible

de con�ner la paroi qui trouve une position d'équilibre. Celle-ci dépend de la contrainte

appliquée, comme illustré sur la Fig. D.
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Figure D � Position d'équilibre x∞DW de la paroi de domaine en fonction de la contrainte
appliquée pour trois pro�les de section quadratiques di�érents.

Des analyses sur les di�érentes contributions énergétiques ainsi qu'un travail sur un

second modèle encore plus simple ont permis de clari�er les mécanismes à l'origine du

mouvement de la paroi et d'interpréter la relation entre position d'équilibre et contrainte.

De plus, une adaptation de l'équation pour considérer les composantes de contraintes σ et

τ correspondant à l'actionnement par champ électrique d'un substrat piézoélectrique de

PMN-PT de coupe (011) est fournie. En�n, des calculs basés sur des paramètres réalistes

ont pu démontrer le gain énergétique associé à cette technique de déplacement de paroi

de domaine par rapports aux techniques usuelles.

Le premier modèle présenté ne traite que de l'état d'équilibre du système. Pour obtenir

des informations sur la dynamique, et ainsi caractériser correctement le mouvement de

la paroi, il est nécessaire d'adjoindre au modèle l'équation de Landau-Lifshitz-Gilbert

(LLG) qui régit la dynamique des systèmes magnétiques. Ici, on doit considérer un vecteur

d'aimantation décrit par deux angles Φ et Θ libre de s'orienter dans l'espace (voir Fig. E).

Dans le cas général, l'équation LLG donnant le comportement de l'aimantation localement

soumise à un champ magnétique ~H peut s'écrire de la sorte :

∂ ~w

∂t
= − γ0

1 + α2

(
~w × ~Heff + α~w ×

(
~w × ~Heff

))
, (1)
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Figure E � Schéma du système étudié. Le champ électrique appliqué selon ~z génére dans
le substrat piézoélectrique (type PMN-PT) une distribution de contraintes avec deux
composantes σ et τ de signes opposés.

où α est le coe�cient d'amortissement de Gilbert et γ0 est le rapport gyromagnétique

de l'électron. De manière similaire à précédemment, une méthode variationnelle est suivie

a�n de déterminer l'expression du champ magnétique e�ectif local ~Heff prenant en compte

l'e�et de toutes les contributions. L'intégration de ce champ e�ectif dans l'équation LLG

donne le système d'équation ci-dessous. Φ̇ =
1

sin Θ

γ0

1 + α2
(−s+ αr),

Θ̇ =
γ0

1 + α2
(r + αs),

(2)

où l'on a introduit les quantités r et s :

r =− sin ΦHdx + cos ΦHdy + cos ΦH0 +
2

µ0Ms

(−Ku cos Φ sin Φ sin Θ

+
3

4
λs(τ − σ) cos 2Φ sin Θ + A

(
`′

`
sin Θ Φ′ + 2 cos Θ Φ′Θ′ + sin Θ Φ′′

))
, (3)
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et

s = cos Φ cos ΘHdx + sin Φ cos ΘHdy − sin ΘHdz + sin Φ cos ΘH0

+
2

µ0Ms

(
Ku cos2 Φ sin Θ cos Θ +

3

4
λs((τ + σ) cos Θ sin Θ

+ 2(τ − σ) cos Φ sin Φ cos Θ sin Θ) + A

(
`′

`
Θ′ + Θ′′ − cos Θ sin Θ Φ′2

))
. (4)

De même que pour l'équation statique, le recours au traitement numérique est ici

obligatoire. De par les propriétés de l'équation LLG, le choix d'un algorithme implicite

est de rigueur a�n de garantir stabilité et précision du calcul. Ensuite, la méthode de

Newton a été intégrée pour la résolution. Pour véri�er la validité des résultats de ce

nouveau programme, également développé sous MATLAB, on s'est d'abord attaché à

comparer les positions d'équilibre de la paroi à l'issue de la simulation dynamique à celles

obtenues avec le programme de relaxation (cf. Fig. D). Ensuite, on a pu véri�er que la

vitesse de la paroi obtenue dans le cas d'un déplacement induit par un champ magnétique

correspond bien à la valeur prédite par un modèle analytique analogue à celui de Walker.

Figure F � (a) Angles Φ et Θ de l'aimantation au cours d'une simulation dynamiue. (b)
Représentation 3D de la distribution d'aimantation en régime stationnaire le long d'un
nanoruban (` = 100 nm et h = 10 nm), avec un champ électrique de −1 MV/m.

Les études dynamiques se sont concentrées sur l'analyse du comportement de l'aiman-

tation au sein d'une nanostructure à largeur variable identique à celle étudiée en statique,

ainsi qu'au sein d'un nanoruban à largeur constante. Elles ont pu mettre en évidence un

mouvement unidirectionnel caractérisé par une forme particulière de paroi de domaine.
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Un comportement hors plan spéci�que est notamment remarqué, et celui-ci s'évanouit

tandis que la paroi s'approche de sa position d'équilibre dans le cas d'une géométrie à

largeur variable con�nant la paroi. Au sein d'une structure à largeur constante, l'exis-

tence d'un régime stationnaire a été mis en évidence. Celui-ci con�rme une forme de paroi

présentant une composante hors plan signi�cative (voir Fig. F), dont l'ampleur varie en

fonction de l'amplitude du champ électrique appliqué et de son signe. Ce phénomène

est imputable à l'importance relative des anisotropie uniaxiale et planaire associées aux

contraintes positive et négative, respectivement.

E0 (MV/m)

vDW (m/s)

H0 (A/m)

1200

400

0

100

80

60

40

20

0
3 2.5 2 1.5 1 0.5 0

800

Figure G � Vitesse de la paroi de domaine en fonction du champ électrique appliqué et
de la valeur du champ magnétique de biais pour un coe�cient d'amortissement de 0,12.

Les di�érentes simulations ont montré que des vitesses très importantes (> 800 m/s)

peuvent être obtenues en choisissant bien les valeurs du champ électrique appliqué (et

donc des contraintes) et du champ magnétique de biais, dont la combinaison est à l'origine

du mouvement. Ces résultats sont présentés dans la Fig. G. Comme évoqué plus haut,

ces performances peuvent en principe être obtenues pour de très faibles consommations

d'énergie. Il faut également noter que le code ne fonctionne plus au-delà de certaines

valeurs du couple champ électrique - champ magnétique. On peut supposer que cela est dû

à un changement qualitatif de régime dynamique, à l'instar du Walker breakdown observé
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dans le cadre du mouvement induit par un champ magnétique longitudinal. En e�et, un

comportement similaire du code a été constaté dans ce cas classique, où le code échouait

à décrire la dynamique pour un champ magnétique supérieur au seuil du breakdown.

Ces travaux numériques ont permis de poser une base solide au concept de déplacement

de paroi induit par des contraintes uniformes, en présence d'un champ magnétique de

biais. Devant l'intérêt que présente cette technique, il serait intéressant de la mettre en

÷uvre expérimentalement. Pour cela, le choix des matériaux s'est porté vers le PMN-PT

de coupe (011) et un multicouche magnétoélastique TbCo2/FeCo. L'association des deux

phases retenue pour ce travail de thèse est un dépôt d'une couche mince magnétoélastique

sur un substrat piézoéléctrique. Ces derniers sont des produits obtenus dans le commerce

spécialisé, nécessitant au préalable un polissage pour rendre possible la nanofabrication

sur leur surface. La procédure développée a permis d'obtenir une rugosité de l'ordre du

nanomètre. Une lithographie (résine positive) a donc pu être mise au point sur ces surfaces,

permettant de développer les motifs du masque préparé, pour ensuite poursuivre avec un

dépôt par pulvérisation cathodique du matériau multicouche ( 20 nm). Après quelques

ajustements, il a été possible d'e�ectuer avec succès une procédure de lift-o�, de telle sorte

que les motifs obtenus, visibles sur la Fig. H, re�ètent �dèlement ceux du masque.

Figure H � Image au microscope électronique à balayage des nanostructures magnétoé-
lastiques obtenues par lift-o�.

La caractérisation des matériaux et structures obtenues a donné lieu à plusieurs résul-

tats. Tout d'abord, les propriétés piézoélectriques du PMN-PT ont été obtenues à l'aide
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d'une jauge de contrainte. Les mesures révèlent un comportement non-linéaire cohérent

avec ce qui se trouve dans la littérature. Les propriétés magnétiques et magnétoélastiques

des matériaux multicouches utilisés ont été respectivement obtenues par des mesures VSM

(anisotropie, aimantation à saturation) et par la méthode de la poutre encastrée �échis-

sante. Globalement, les valeurs mesurées sont cohérentes avec les paramètres choisis lors

des simulations numériques.

Figure I � Images Kerr d'un grand motif magnétoélastique soumis à un champ magnétique
et des contraintes mécaniques induites par le substrat piézoélectrique. La con�guration
multidomaine est clairement visible.

La topologie des nanostructures a été déterminée par microscopie à force atomique

(AFM), révélant des pro�ls satisfaisants. Par la suite, la con�guration magnétique au sein

des nanostructures magnétiques a pu être étudiée par microscopie à force magnétique

(MFM). Ces observations ont mis en évidence le fait que les éléments étaient quasiment

systématiquement de con�guration monodomaine, en dépit des e�orts pour induire la

création de parois de domaine. Sur des éléments plus grands, il a été possible de faire des

observations Kerr tout en appliquant champ magnétique et contraintes mécaniques. Un

e�et magnétoélectrique par déplacement de paroi a pu être observé dans ces conditions

(voir Fig. I). Par ailleurs, des travaux préliminaires pour une fabrication intégrée des

nanostructures magnétoélastiques sur substrat PMN-PT gravé permettent d'envisager

des perspectives encourageantes pour la poursuite de ces travaux.
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Introduction

Magnetism is known to everyone, if only through the widespread use of simple fridge

magnets. However, relatively few people realize how heavily all the technology essential

to our modern lifestyle relies on magnetism. From electric generators to hard-drive disks

and functional magnetic resonance imaging, the use of magnetic materials, tools and

devices is ubiquitous. Of course, all these fruitful applications of magnetism were made

possible by the work of generations of researchers dedicating their careers to these matters,

from Oersted, Ampère and Faraday onward. Only a fraction of them could foresee that

their work would lead to such spectacular developments.

Today, a coherent and comprehensive body of knowledge helps us understand the origin

of magnetism and successfully accounts for the behavior of magnetic materials. In parti-

cular, domain walls�which separate regions of uniform magnetization in ferromagnets�

have long been a subject of interest because of their importance from the fundamental

point of view as well as their relevance in magnetic devices. Their manipulation is linked

to a dynamic and competitive area of research. Magnetic �eld-driven domain wall motion

has been thoroughly investigated, and with the advent of spintronics, the various ways

of inducing domain wall motion with an electrical current have been widely studied and

reported in the literature in recent years. Motivated by potential advances on the fronts

of energy consumption, facilitated implementation or operation, innovative methods as

well as re�nements of well-known techniques allowing control of magnetization and dom-

ain walls are constantly put forward by researchers. Among the proposed candidates,

magnetoelectric materials have been recently gaining tremendous attention. The main

reason for this is that the use of an electric �eld instead of an electric current is an elegant

way to dramatically reduce the energy required to control magnetization. While mag-

netoelectric e�ects can exist in single-phase materials, the superior opportunities o�ered

by heterostructures tend to direct research e�orts in this direction.

In this thesis, we present an innovative approach to domain wall manipulation based

on a stress-mediated magnetoelectric e�ect. We build on concepts developed at IEMN,
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more speci�cally within the LEMAC/LICS International Associated Laboratory. These

previous works culminated with the development of magnetoelectric memories implemen-

ted through the mechanical coupling of a piezoelectric substrate and a magnetoelastic

layer. We contend that the combination of a uniform stress and a bias magnetic �eld

breaking the symmetry can result in the controlled motion of a transverse domain wall.

We show that such a motion is associated with unusual physical features, competitive per-

formances and low energy consumption, while its experimental implementation appears

realistic.

The �rst chapter provides the necessary background. The basics of magnetism required

are brie�y presented, followed by an account of the literature on domain wall motion.

The proposed concept is then introduced in the context of current research trends, with

a focus on magnetoelectric materials. This chapter also contains preliminary numerical

validation of the concept. The second chapter brings new evidence through an ad hoc

one dimensional model able to calculate the equilibrium magnetization distribution in

systems with nanostripe geometry. Based on variational methods, it takes into account the

relevant physical contributions. After a short presentation of the code, the results obtained

on nanostructures of variable width are described in greater detail. The third chapter

goes on to address the dynamics of the motion. The outcome of variational methods is

combined with the Landau-Lifshitz-Gilbert equation and is solved using another ad hoc

model developed over the course of the PhD. The approach chosen is brie�y explained

and results are discussed in more depth, as the dynamics happen to be characterized by

interesting features. The fourth chapter deals with experimental investigations undertaken

during the PhD. The materials chosen are described, namely the commercial piezeoelectric

substrates and the rare-earth-based multilayers routinely used at IEMN. Details are given

on the fabrication process. The subsequent e�orts to characterize the materials and

devices are reported. Finally, a general conclusion closes this manuscript. It reviews the

general approach adopted as well as its most prominent �ndings. A discussion on the

possible lines of research for future investigations is also included.
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Chapter 1

Fundamentals and context

The work that is to be presented in this thesis involves various concepts of micromagne-

tism, namely basic properties of ferromagnetic materials at the microscopic scale. They

are part of a comprehensive and consistent theoretical framework which successfully des-

cribes a wide range of physical phenomena encountered experimentally. In this chapter,

we will �rst aim at providing some physical background and description of the building

blocks on which our developments depend, including magnetic domain walls which are of

critical importance in ferromagnetism. Special attention will be paid to magnetoelasticity

(or magnetostriction), since this property is essential to the phenomena studied in this

thesis. From these fundamentals, an overview of the very dynamic research area of domain

wall motion and its applications will be given. The di�erent techniques used to manipu-

late domain walls will be discussed in terms of the physical mechanisms at play as well

as their potential and weaknesses. Emphasis will be put on magnetoelectric coupling pa-

radigms, including the emergent stress-based approaches. In this context, we will present

the idea of combining uniform stress and a symmetry-breaking magnetic �eld to control

magnetization. This combination has been proposed and successfully implemented in the

context of the magnetization switching of monodomain magnetoelastic particles. Then,

we will present the subject matter of this thesis, that is the extension of this paradigm to

two-domain magnetoelastic elements in order to drive domain wall motion. The advanta-

ges of this method will be detailed and preliminary numerical proofs of the concept will

be shown.

1.1 Brief introduction to (micro)magnetism

This �rst section consists in a short introduction to basic matters in magnetism. These de-

velopments are essential to the subsequent description of the context of the work presented
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in this thesis. After presenting the main concepts and physical quantities of magnetism in

materials, the link between macroscopic behavior in magnetism and microscopic pheno-

mena is explored and magnetic domain walls are thereby introduced. Then, some physical

details on domain walls are given.

1.1.1 Magnetization and energy contributions

The basis for the understanding of micromagnetism comes from pioneering work by Lan-

dau (most remarkably in his landmark 1935 paper with Lifshitz), Becker, Weiss, Bloch,

Néel and Brown among others. The latter provided a comprehensive account of the sub-

ject in his 1963 book entitled Micromagnetics [1], as Chikazumi later did [2]. All the

concepts and developments below can be traced to the mainstream theory of micromag-

netism described in these reference books. In this work, we will exclusively deal with

ferromagnetic materials. Other forms of magnetic behavior such as paramagnetism or

diamagnetism will therefore not be addressed.

In a ferromagnetic material, individual atoms have a spontaneous magnetic moment ~m

(unit Am2). It is mostly due to electrons, through their intrinsic property called spin (ari-

sing from the combination of relativistic and quantum e�ects [3]) and to their net orbital

angular momenta. This can confer a net magnetic moment to the atom depending of the

particular arrangement of electrons. Also, the spin of neutrons and protons means there

is also a small contribution of the nucleus to the overall magnetic moment. Ferromagnetic

materials are characterized by the fact that these moments interact with their immedi-

ate neighbors. This interaction of quantum nature is positive in ferromagnetic materials

(resp. negative in ferrimagnetic and antiferromagnetic materials), so that neighboring

atoms will tend to have the same spin orientation (resp. opposite spin orientation). A

macroscopic collection of magnetic moments oriented in the same direction can give rise

to the macroscopic phenomena everyone has witnessed in magnetic materials.

Given the length scales involved and according to the classical approach of micromag-

netics, we can de�ne a vector �eld of a quantity commensurable with a volumic magnetic

moment (A/m), i.e. a density of magnetic moment. It is called magnetization�referred

to as ~M�and is thus de�ned within the magnetic body at all points of its volume V ⊂ R3.

A basic assumption of micromagnetism is that the magnitude of ~M in a ferromagnetic

material depends only on temperature and is constant in time and uniform in space, i.e.
~M = Ms ~w(~r, t), where Ms is the magnetization at saturation and ~w = (wx, wy, wz) is a

space dependant and time varying unit vector.
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Another main aspect of micromagnetism is that at rest, the magnetization distribution

is such that the corresponding free energy of the system is minimum, at least locally in

phase space. This quantity is the sum of a set of contributions, with sometimes con�icting

in�uences. Below is a very short qualitative description of the origins and e�ects of the

contributions relevant in this work.

Zeeman energy Magnetic moments are a�ected by surrounding magnetic �elds. The

e�ect of magnetic �elds is accounted for through the Zeeman energy, which re�ects the

tendency of magnetic moments to align with applied �elds. A magnetic �eld is generally

noted ~H and its dimension is the same as magnetization (measured in A/m). Induction,

which is often noted ~B, has the same dimension as µ0H (measured in Tesla).

Demagnetization energy In addition to external �elds, the magnetization distribu-

tion is subject to the �eld that it itself generates, that will thereafter be called demagne-

tizing �eld. Its e�ects are of longer range and are not always easily predicted. Thus, they

add signi�cant complexity to the behavior of magnetic systems.

Anisotropy energy The crystalline arrangement of atoms in a magnetic material can

give rise to anisotropic behavior in ferromagnetic materials, for instance through spin-

orbit interaction. Speci�c magnetization orientations are therefore energetically favored

depending on the association of the chemical elements constituting the material, and its

cristalline/amorphous structure. The anisotropy found in materials is at the origin of some

of the hysteretic behaviors observed and of the distinction between soft (low anisotropy)

and hard (high anisotropy) magnetic materials.

Exchange energy Collective behavior in ferromagnetic materials arises from the inte-

raction between adjacent magnetic moments. This interaction is positive in ferromagnetic

materials and therefore tends to align adjacent magnetic moments. Despite its quantum

origin, it can be written in terms suitable for continuous modeling. By putting a cost

to inhomogeneous distributions, this contribution tends to align all magnetic moments in

the same direction.

Magnetoelastic energy Magnetoelastic materials are a subset of ferromagnetic ma-

terials with a signi�cant coupling between mechanical and magnetic quantities. Changes

in magnetizations in a magnetoelastic body are associated with changes in strain and
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vice-versa. This physical phenomenon is of paramount importance in this work and thus

will be discussed in further detail in subsection 1.3.2.

Additional contributions may appear and have in some cases critical in�uence on the

energy landscape of magnetic structures. For instance, interface interactions between two

materials as well as other forms of exchange energy are subjected to increasing research

interest. However, the phenomenon studied in this work only involves the contributions

listed above. Dynamic behaviors can be studied by solving the Landau-Lifshitz-Gilbert

equation, introduced in subsection 1.2.2.

1.1.2 Macroscopic behavior of ferromagnetic bodies

Ferromagnetic behavior can be observed in some materials below a critical temperature

Tc, called the Curie point. Beyond this temperature, the material becomes paramagnetic,

which means that because of thermal motion the magnetic moment is linear with respect

to any applied magnetic �eld and the magnetization drops to zero in the absence of �eld.

In other words, moments will align with a strong magnetic �eld, and will have a random

distribution at zero �eld. It is important to note that in general, the term "ferromagnetic

materials" arbitrarily refers to materials which Curie temperature happens to be above

room temperature. Leaving alloys aside, the most common chemical elements exhibiting

ferromagnetic behavior are iron, cobalt and nickel. Other forms of ordered magnetism

exist, such as in ferrimagnetic and antiferromagnetic materials, which are characterized by

distributions with opposing magnetic moments. Unlike antiferromagnets, ferrimagnetic

materials retain a spontaneous magnetization because the antiparallel magnetic moments

are unequal. The Curie temperatures of several materials are given in Fig. 1.1.

From an empirical point of view, the behavior of a macroscopic bulk ferromagnetic

material can be studied through the application of an external �eld along any given

direction. A typical sample magnetization as a function of the applied magnetic �eld

is represented in Fig1.2. From a demagnetized initial state, the progressive application

of a (for instance) positive magnetic �eld yields the curve of �rst magnetization, until

the sample reaches saturation. The amplitude of magnetization at this point is what

has been referred to as magnetization at saturation in subsection 1.1.1 and is noted Ms.

When the applied �eld is reduced to zero, one can measure the remanent magnetization

of the sample. The application of a negative magnetic �eld will reduce the magnetization

until it becomes zero, which de�nes the coercitivity of the sample. This quantity is

important in that it is the basis for the distinction between hard and soft magnets. Hard
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Figure 1.1 � Table showing the Curie point of several materials. The Néel point is the
ferrimagnetic equivalent of the Curie point (note that some elements can be ferromagnetic,
ferrimagnetic or paramagnetic, depending on temperature). Figure from [4].

(resp. soft) magnets have a strong (resp. weak) coercivity, meaning that a relatively

strong (resp. weak) magnetic �eld is required to switch most of the magnetic moments

in its direction. Of course, this all depends on the axis along which the magnetic �eld is

applied, and therefore the concept of coercitivity is related to the notion of anisotropy.

When subjected to the reverse operation (starting from a strong negative �eld) the sample

will follow a symmetrical path toward saturation. From a saturated state, a sample can

be subjected to a demagnetization loop, by performing hysteresis loops with diminishing

�eld amplitudes until the vanishing of the overall magnetization.

Depending on the nature and size of the sample subjected to the hysteresis loop, the

changes in magnetization are brought about by a combination of di�erent phenomena at

the microscopic scale. The most intuitive of them is the coherent rotation of all magnetic

moments. Other phenomena involve the local variation of magnetization, with regions of

nonuniform distribution. This leads to the notion of domain walls, introduced historically

in order to account for the above-described macroscopic behavior of ferromagnets.
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Figure 1.2 � Typical hysteresis loop plot featuring curve of �rst magnetization, saturation
and corecitivity, as described in the main text. Here, the �ux density is shown instead of
the magnetization, but the discussion is unchanged. Figure from TDK-Lambda.

1.1.3 Magnetic con�gurations and domain walls

At rest, the contributions cited in subsection 1.1.1 (as well as others like temperature,

distribution of defects etc.) in�uence the equilibrium distribution, which is associated

with a minimum value of the free energy. Taken together, the joint contributions sum

up and are then associated with an e�ective �eld, noted ~Heff . Then, the equilibrium

distribution within the volume V of the ferromagnetic body satis�es the equation:

~w × ~Heff = 0. (1.1)

This equation states that the local torque at any point vanishes when the equilibrium is

reached, so that the direction of magnetization within the material is that of the local

e�ective �eld ~Heff . On the surface ∂V of the material (if we note ~n the surface normal

vector) the boundary condition is:

∂ ~w(~r)

∂~n
= 0, (1.2)

under conditions on the materials which will apply in our case. Greater details on these

equations will be given in chapter 2.2.

Finding the equilibrium distribution of magnetization involves the resolution of these

equations, oftentimes using variational techniques. In a ferromagnetic body, a compromise

has to be found between sometimes con�icting contributions, even in the absence of

any external stimulus. As stated in subsection 1.1.1, the exchange energy will have the
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tendency to align all magnetic moments. Depending on the geometry and lengthscales

involved, however, the demagnetization energy associated with uniform magnetization can

be very large. Spatial variation of magnetization is thus bound to arise in some conditions

to avoid such magnetostatic issues. In soft ferromagnets, the reduction of demagnetization

energy can be achieved by �ux closures, i.e. forming loops to close magnetic �eld lines

created by the distribution or more generally with smooth variations throughout the

ferromagnetic body (see Fig. 1.3). This con�guration can be particularly favored in ring

geometry [5].

Figure 1.3 � When the anisotropy is low, the magnetization is free to assume any direction.
It can therefore create vortex-like patterns like on this schematic. Figure from [6].

In the presence of some form of anisotropy, the magnetization can vary more abruptly

within the ferromagnet. The overall energy of the system is thus dramatically cut by the

creation of multiple distinct domains inside which the magnetization is uniform. They are

usually called magnetic domains or Weiss domains and are separated by domain walls,

where the magnetization rapidly changes from one direction to another one and forms

peculiar patterns such as in Fig. 1.4. Their existence has been postulated by Weiss in

order to account for the macroscopic behavior of ferromagnetic materials. Indeed, the

distribution in a macroscopic ferromagnet can consist of a multitude of small domains

with uncorrelated orientations, so that the overall magnetization can be zero even though

Ms is not. As is also the case of soft magnets, the spatial variation of magnetization brings

a satisfying explanation to the absence of net magnetization generally observed in ma-

croscopic samples. More direct experimental validations began with visualizations using

magnetic powders and later magneto-optical techniques (Kerr e�ect), magnetoresistance,

magnetic force microscopy (MFM) and X-ray magnetic circular dichroism microscopy

(XMCD).
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Figure 1.4 � Magneto-optical visualization of typical brain-like patterns of magnetic dom-
ains, here with magnetic garnet. Each color correspond to one magnetization direction.
Figure from [6].

Magnetic domain walls have then been subjected to extensive theoretical and experi-

mental investigations and the physical theory of magnetic domains is a long established [7]

pillar on which modern micromagnetics is based [8].

1.1.4 Typology and physical features of domain walls

Generally speaking, a domain wall can be de�ned as the magnetic structure between

two adjacent domains of di�erent magnetization directions ~w1 and ~w2, which need not

be opposite. The spatial delimitation of a domain wall is necessarily abritrary due to

the continuous nature of the magnetization distribution in the micromagnetic formalism,

and a domain wall is not a well de�ned entity strictly speaking. This does not preclude

the use of the concept of domain wall, referring to the region of greater magnetization

gradients within the material as a magnetic object. In this thesis, we will only cover

ferromagnetic domain walls, and it is worth mentioning that the behavior of domain walls

in antiferromagnets is qualitatively di�erent [9�11].

Although it is easier to describe and depict domain walls between two domains of

opposite magnetization, this needs not be the case. The orientation of magnetization

in domains depends heavily on local anisotropy and other parameters. Domains with

antiparallel magnetizations are bound to arise in materials with strong uniaxial anisotropy,

but other con�gurations such as orthogonal domains can exist in materials with cubic

anisotropy.
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Depending on parameters, temperature, external stimuli and the geometry of the con-

sidered ferromagnetic body, a whole variety of domain walls and magnetic objects can

be observed. In particular, tremendous interest has recently been drawn on skyrmions,

which are very small topological oddities [12]. In thin and narrow layers of ferromagnetic

materials, there are two general types of domain walls�although others have been descri-

bed [13]�which can be called vortex and transverse walls (see Fig. 1.5) (the latter can be

symmetric or asymmetric [14]). In the absence of any external in�uence, exchange energy,

magnetocristalline anisotropy, and demagnetization energy are the sole players and will

determine which one of the vortex or transverse wall will be the favored. As an aside,

in many ways the in�uence of the latter is akin to a form of anisotropy. For instance,

in a very elongated nanostructure�with one of its dimensions very large with respect to

the other two�the demagnetizing �eld will create an apparent uniaxial anisotropy. Some

authors refer to this as the shape anisotropy. It can thus be considered much in the same

way as is the magnetocristalline anisotropy, as long as we keep in mind that in doing so

we focus on the form it assumes rather than on its physical origin. Many investigations

on domain wall con�gurations have thus focused on permalloy (Ni81Fe19) because of its

negligible magnetocristalline anisotropy. Therefore, the role of geometry can be studied

independently of other factors for many purposes, leading to the construction of ever more

re�ned phase diagrams to determine the most stable type of wall [14�16]. A good rule

of thumb is that the wider and thicker the layer, the more energetically favored a vortex

wall will be.

Figure 1.5 � (a) Schematic of two antiparallel domains in nanostripe geometry with in-
plane anisotropy. Top view of magnetization distribution relating to (b) transverse and
(c) vortex domain walls. Figure from [17].
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There are two subtypes of transverse domain walls, which can also be hybridized [18].

The default domain wall type and �rst to be described, is the Bloch wall. Let us for

instance consider two antiparallel domains separated by a domain wall in a macroscopic

sample. The need to reduce demagnetization energy puts a constraint on the spatial

variation of the magnetization from one domain to the other. It is best interpreted as

the tendency to avoid the creation of magnetic charges ρm within the domain wall. Since

ρm = −div(M), this condition is equivalent to dwx
dx

= 0 (if we consider the axes of Fig. 1.6).

Therefore, there is no variation of the magnetization component corresponding to the axis

perpendicular to the domain wall, as can be visualized in Fig. 1.6. In this con�guration,

the magnetization rotates around the x-axis.

In thin �lms, except in the case of perpendicular magnetic anisotropy (PMA), the

magnetization tends to remain in the plane of the �lm to minimize demagnetization

energy (cf. so-called shape anisotropy). This constraint a�ects the energetic trade-o�

of the domain wall. Indeed, there is a strong incentive for the magnetization in the

domain wall to also stay in-plane, which means in-plane rotation across the domain wall

(Fig. 1.6b) to prevent the appearance of large magnetostatic energy, as seen in Fig. 1.6a.

From here, the fact that the condition dwx
dx

= 0 cannot be respected in thin �lms is quite

straightforward. Re�ned considerations as well as subcategories within Néel and Bloch

walls can be found in [19].

Figure 1.6 � Schematic of (a) Bloch and (b) Néel wall in a ferromagnetic layer. Figure
from [6].

Given a transverse domain wall con�guration (be it of Bloch or Néel type), the combi-

ned in�uence of competing physical constraints governs the distribution within the domain
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wall, most notably the rate of spatial change from one magnetization direction to the ot-

her. On the one hand, the exchange energy tends to discourage any abrupt gradient of

magnetization and thus favors wide domain walls. One the other hand, the magnetization

has to deviate from the axis favored by the anisotropy, along which is the magnetization

within the two domains. Depending on the relative weights of these two contributions

to the domain wall energy, the width of a transverse domain wall can vary as shown in

Fig. 1.7. The exchange energy is proportional to an exchange constant A, (units: J/m)

while the uniaxial anisotropy is proportional to a constant noted Ku (units: Jm−3), or

equivalently, an anisotropy �eld Ha (so that Ku=
1
2
µ0MsHa, where µ0 is the vacuum per-

meability). The A/Ku ratio therefore plays an important role in determining the spatial

extension of a domain wall.

Figure 1.7 � Schematic of comparatively wide and thin domain walls. In a ferromagnetic
body, this is dictated by the particular local set of physical constraints to which the
domain wall is subjected. Figure from [6].

Although domain walls usually allow for a substantial reduction in overall energy,

they are nonetheless associated with a local increase of energy. Indeed, in the domain

wall vicinity, contributions of exchange, Zeeman, demagnetization and anisotropy may be

increased. Whether or not the width of the domain wall is negligible with respect to its

other dimensions, a surface energy can be de�ned and be expressed as a function of A

and Ku.

First proposed in 1932 by Bloch, the Bloch wall is treated analytically by Landau and

Lifshitz in their 1935 paper [20]. Their wall calculation has been carried out multiple times

thereafter with small changes and adaptations. They considered an in�nite ferromagnet

which magnetization only varies with one dimension (let it be called x), with only uniaxial

anisotropy and exchange involved. The in-plane magnetization unit vector ~w can be

described using one angle Φ ∈ [0, 2π]. At the boundaries (x = −∞ and x = +∞), values

of Φ are antiparallel along the x-axis: Φ(−∞) = 0 and Φ(+∞) = π. In this case, the
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calculation is relatively straightforward and can be carried out analytically. The solution

Φ function is as follows (see appendix A for derivation):

Φ = π − arccos

(√
Ku

A
x

)
, (1.3)

which can also be written

Φ = 2 arctan

(
exp

(√
Ku

A
x

))
. (1.4)

Again one can see the importance of the relative magnitude of anisotropy and exchange

through the ratio of the corresponding constants. The larger the ratio, the thinner the

domain wall, as is visible in Fig. 1.8. Domain wall thickness in this case is of the order

of π
√

A
Ku

[6]. In general, the value considered for the exchange constant A is around

9 × 10−12 J/m for all materials [21] while the strength of the anisotropy can vary from

negligible to very large values in hard ferromagnets (anisotropy �eld in the order of mag-

nitude of 106 A/m). Therefore, domain wall width typically ranges from less than a

nanometer to tens of nanometers. We have seen that the magnetic distribution in a very

soft material is often smoothly varying, so that the notion of domain wall becomes mea-

ningless in practice. There is therefore a blurry line for some materials, where it can be

di�cult to distinguish between a clearly de�ned domain wall and a large areas of slowly

varying magnetization. As already mentioned, a domain wall is not a rigorously de�ned

object but is used to help the understanding.

If the system has a �nite length, the boundary conditions at its extremities lead to

another solution involving elliptic functions, as demonstrated in appendix A. Despite the

utter simplicity of this model, the calculation above can actually be a decent approxima-

tion depending on the con�guration studied. This analytical distribution has therefore

been used extensively to this day in research dealing with domain walls in ferromagnets,

including the dynamics of domain wall motion, a subject of tremendous interest which

will be addressed below.

1.2 Domain wall motion

Domain walls are fundamental to the modern understanding of magnetism in materials.

This section begins with an account of their importance in modern technological appli-

cations, and the resulting interest in their manipulation. Before moving on to the main
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Figure 1.8 � Magnetization distributions along the x-axis as originally calculated by Lan-
dau, where each curve is associated with a given Ku/A ratio. Plot (a) shows the angle
Φ, while the magnetization vector component wx = cos Φ and wy = sin Φ can be seen
respectively in plots (b) and (c).

techniques to induce domain wall motion, a brief presentation of the equations governing

magnetization dynamics is provided.

1.2.1 Overview of technological relevance

Magnetic domain walls and their manipulation have drawn signi�cant interest and have

been widely studied both for fundamental and application-oriented purposes. Over the

last decades, domain wall motion has been a very dynamic area of research, from the-

oretical explorations to experimental investigations. Compared to ferroelectric domain

walls, magnetic domain walls are quite complex objects. They possess internal degrees of

freedom and come in a variety of types as we have shown above [22]. This complexity is

one of the reasons for the widespread interest in domain walls from a fundamental physics

point of view as well as for applications.

The starting point to understand where a large part of the technological importance

of domain walls and micromagnetism in general comes from is the fact that information

can be stored in a magnetic medium. In other words, bits of data can be written (and
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read) in the direction of local magnetization. The classical and most famous example

is the magnetic hard drive technology widely used in computers over the last decades.

While this technology has seen drastic changes in terms of performances since being �rst

introduced by IBM in the 1950s, the basic working principle remains the same. The

writing part is achieved by applying a magnetic �eld locally on a ferromagnetic material

through a small coil mounted on a ferromagnetic head, see Fig. 1.9.

Figure 1.9 � Working principle of a hard disk drive. A moving head writes and reads
using current-induced magnetic �elds applied locally on a ferromagnetic strip. Figure
from Public domain.

While this technology is now quite mature, there is still research focused on optimi-

zation, for instance illustrated by recent developments of heat-assisted recording [23�25]

and earlier, bit-patterned media [26]. Also, it has recently encountered competition, most

notably from Solid-State Drives (SSDs) which rely on non-volatile NAND-based �ash me-

mory (a technology that can also be found in USB drives). Although still signi�cantly

more expensive than HDDs per stored bit, SSDs are likely to continue gaining traction as

prices drop because of several advantages that will not be discussed here.

In any case, the study of domain walls is nowadays a dynamic research area with re-

levance in various �elds. Recent technological developments made the design, processing,
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and characterization of magnetic thin �lms and nanoscale structures increasingly conve-

nient. This turned out to be a great source of knowledge and insight into the physics of

magnetic domains and domain walls. Indeed, before the advent of nanotechnology only

the surface of bulk materials could be characterized, while precise magnetic structure pat-

terns can now be studied with more control on geometry, phase and composition [27]. In

recent years for instance, samples with perpendicular magnetic anisotropy (which enables

greater density) have been seen as very promising [28].

Because of the many advantages such as reliability, fast operation, low power con-

sumption and non-volatility, devices based on domain walls (and spin systems in general)

are widely seen as promising tools for various applications, including memory, sensing

and logic [25, 29�31]. A notorious example of such innovative proposals is the racetrack

memory [32,33]. The idea is to use magnetic domain walls in a nanowire to encode data,

with an electric current �owing through the nanowire inducing a controlled motion of

domain walls (see Fig. 1.10). Other memories based on domain walls [34, 35] have been

proposed in recent years.

Figure 1.10 � Schematic of the racetrack memory. Figure from IBM.

Another �eld of interest concerns all-magnetic logic. Indeed, logic gates and whole

architectures for logic operations and nanocomputing based on magnetic domains mani-

pulated with magnetic �elds have been proposed [36�42]. The manipulation of domain

walls has also been put forward in the context of unconventional paradigms of information

processing, including neuromophic computing systems based on memristive devices. The
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latter are seen as good candidates for arti�cial synapses, and can be based on domain

walls [43�46]. A wide variety of other related applications are considered for spin-based

devices [47, 48]. Finally, the magnetic gradient created by stray �elds in the vicinity of a

domain wall has the potential to attract magnetic beads down to the nanoscale, making

their capture, manipulation [49�53] or detection [54] possible.

1.2.2 The Landau-Lifshitz-Gilbert equation

The dynamics of DW motion is ultimately governed by a single strongly nonlinear dif-

ferential partial equation describing the time evolution of single magnetic moments in

the presence of a given e�ective magnetic �eld. First described in 1935 by Landau and

Lifshitz [20], this equation has been re�ned over time as more insight was gained into the

underlying physics. Additional terms to be included to the e�ective �eld were proposed

to account for speci�c phenomena (e.g. spin-orbit torques, Dzyaloshinskii-Moriya inte-

raction...). In its simplest form, two terms in�uence the evolution of a magnetic moment

in the presence of a magnetic �eld. The �rst one is the torque caused by that exter-

nal magnetic �eld, and the other is a phenomenological term introducing a damping, on

the basis of the observation that a magnetic moment obviously does not precess forever

around the direction of a e�ective �eld but eventually ends up aligned with it. Fig. 1.11

is a schematic of a typical damped precession. Gilbert's work on this subject led him to

propose a form of the dissipative term [55�57]. Hence, one either talks about the Landau-

Lifshitz (LL) equation or Landau-Lifshitz-Gilbert (LLG) equation. Other variants exist

for the treatment of dissipation, including the so-called LLBar equation (Landau-Lifshitz

Baryakhtar equation) [58,59] and a generalization of the Gilbert model to describe more

diverse dissipation phenomena, e.g. dry friction [60�62]. In any case, this equation exhi-

bits interesting properties and its treatment remains challenging even in the simplest

systems [63].

The original version of the equation by Landau and Lifshitz in the presence of a

magnetic �eld ~H can be written as follows:

∂ ~M

∂t
= −γ0

(
~M × ~H +

α

Ms

~M × ( ~M × ~H)

)
. (1.5)

Here, γ0 = µ0γ and γ is the gyromagnetic ratio of the electron, α is the damping coe�cient

and ~M has already been de�ned as the magnetization vector. The form of the equation
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brought by Gilbert is slightly di�erent:

∂ ~M

∂t
= −γG0 ~M × ~H +

α

Ms

~M × ∂ ~M

∂t
. (1.6)

It can be shown that the two equations are mathematically equivalent, by taking the

cross product of Eq. (1.5) with ~M . Then, one can determine the following relation between

the coe�cients by identi�cation [64,65]:

γG0 = (1 + α2)γ0. (1.7)

Hence, the Landau-Lifshitz-Gilbert equation can be written as follows:

∂ ~M

∂t
= − γG0

1 + α2

(
~M × ~H +

α

Ms

~M × ( ~M × ~H)

)
. (1.8)

Figure 1.11 � Typical damped precession of a magnetic moment in the presence of a
magnetic �eld Heff . The trajectory of magnetization is the dashed blue line, with the
terms of precession in red and the damping in blue. Figure from Public domain.

There has been substantial debate on the relative relevance of these two equations,

in particular which damping term should be used [66�71]. They are equivalent when

dealing with conservative torques, and while they may be equally valid in describing

real phenomena, the "best" version would be that which correctly separates damping

and precession terms. This could in principle be determined experimentally with RF

magnetic �elds [64]. It is not in the scope of this thesis to propose a de�nitive answer

to this question. However, primarily because it is more widespread, we chose the LLG

equation (i.e. with Gilbert damping) in this work (see chapter 3).
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1.2.3 Field-based motion

The most studied and simplest way to induce domain wall motion is to use a (usually

static) magnetic �eld that will energetically favor one of two domains of opposite magneti-

zations. The di�erence of Zeeman energy resulting from the presence of the �eld will make

one domain expand at the expense of the other. The dynamics of this phenomenon have

been extensively studied theoretically and experimentally over several decades in di�erent

materials and geometries. Initial work published in the 1960s and 1970s paved the way

for future investigations of �eld-induced domain wall motion, most notably the landmark

contribution of Schryer and Walker [72�76]. Indeed, under simple approximations, it was

shown that an analytical treatment of the LLG equation in one dimension could be car-

ried out. The behavior of a moving domain wall in the presence of an external magnetic

�eld could then be described and is quite intriguing. Under a threshold �eld, the motion

reaches a steady-state regime, with a velocity which can be determined analytically, as

well as the magnetization distribution. Indeed, the Landau solution for the resting wall

(shown in subsection 1.1.4) is also a solution of the dynamical system. An approximation

of the transient regime has also been proposed [77]. Collective coordinates approaches

introduced by Thiele in the 1970s [78] also describe the same steady-state dynamics and

have been generalized and re�ned over time [79�81]. Here is the solution of the dynamical

system as provided in [75] (see Fig. 1.12, for the geometry considered):

Figure 1.12 � Con�guration considered in Walker's original paper, with angles φ and θ.
Figure from [75].
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v(H) = −γ0H

α

√
A

Ku + µ0M2
s cos2 φ0

, (1.9)

sin 2φ0 =
H

2αMs

=
H

Hc

. (1.10)

We can see that the angle φ is uniform and assumes the value φ0 given by Eq. (1.10).

Hc is a critical �eld beyond which this equation has no solution. Contrary to what is often

stated, the relation between magnetic �eld and velocity is not linear and that is because

of the in�uence of φ0 which varies with H. The nonlinearity is barely visible if there is

a strong anisotropy [82], but otherwise, it can be signi�cant (see Fig. 1.13). Because of

the resulting demagnetizing �eld, the geometry considered also has an e�ect akin to an

anisotropy, which will in�uence the dynamics [83]. Another point that is not often stressed

is that the Walker solution is not always stable [84], depending on anisotropy parameters.

Other analytical solutions exist�including the Kolmogorov-Petrovskii-Piskunov (KPP)

solution�which have shown to match the results of numerical simulations [85, 86].

When the applied �eld is increased beyond the so-called Walker breakdown (i.e. H >

Hc), the system enters an oscillatory regime. This complex behavior requires further

approximations or the use of numerical treatment. In any case, a strong reduction of

velocity (negative mobility dv
dH

) is observed. Overall, both numerical and experimental

investigations (see Fig. 1.14) have supported the existence of an abrupt transition around a

critical magnetic �eld [87�89]. The motion beyond the breakdown �eld is characterized by

an oscillating velocity�to the point of sometimes causing retrograde motion�as well as

internal dynamics of the domain wall [76,88,90,91]. They are also reports that oscillations

may even occur before breakdown [92] and in the case of spin wave emissions [93].

Apart from the two regimes described above (steady-state �ow regime and oscillatory

regime), experimental investigations have shown the existence of another regime at low

�elds. Labeled creep regime, it is characterized by very small velocities and a stochastic

process of step by step domain wall motion [94], see Fig. 1.15. At the microscopic scale,

this is interpreted by the pinning of the domain wall on local defects or inhomogeneities of

various origins in materials. From here, models have been developed [95] describing this

phenomenon, yielding a velocity proportional to exp(−Cf−µ/T ) where f is the external

force and µ is the critical exponent. The motion is thus a thermally activated process:

velocity is decreased with lower temperature in thin �lms [96]. The mechanism behind

depinning has also been studied [97] and there appears to be a linear relationship between
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Figure 1.13 � Set of curves representing the velocity as a function of the applied magnetic

�eld for several values of the ratio M2
s

Ku
. With relatively weak anisotropy, the nonlinearity

yields a concave shape which can exhibit a maximum below Hc. Figure from [75].

depinning �eld and edge roughness [98]. While it is often modeled by elastic interfaces [99],

this is valid only for domain walls in 2D con�gurations. In con�ned geometries such as

narrow ferromagnetic stripes, the creep regime turns linear: considering the domain wall

as a rigid or point-like entity propagating in a one dimensional disordered medium shows

good agreement with experimental data while the regular scaling law breaks down [100].

Although most of the research focuses on domain wall motion in thin �lms or nanowire

geometries with constant sections, deliberate engineering of patterns to in�uence domain

walls is also present in the literature. First, it is interesting to note that a widespread

technique used to generate domain walls in nanowires is to use special shapes in the design

of the extremities [101]. Once created, domain walls can be pinned at local constrictions

or notches along the nanowire, as has been shown experimentally [102�105], which is an

example of shape-induced potential landscape engineering. In the case of real pinning

(i.e. with a trapped domain wall), the depinning �eld increases with the size of the
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Figure 1.14 � Experimental results showing the complex dynamics of �eld-driven domain
wall motion, as a function of a magnetic �eld. One can clearly identify the breakdown
�eld around 10 Oe. Figure from [89].

notch, and depends on the chirality of the domain wall [106], although the particular

shape of the notch does not seem to matter systematically [107, 108]. A collection of

notches can be used to arrange stability at multiple locations [109]. As will be explained

in subsection 1.4.1, engineering of the cross section can also be used in cat-eye-shaped

elements in order to break the symmetry [110]. Edge roughness and pinning e�ects in

general do a�ect the dynamics beyong the creep regime [111, 112], but does not seem to

change the breakdown �eld [98] (although it has been reported that this can be achieved

by the deliberate engineering of cross section [113,114]). However, there is evidence that a

transverse �eld has an in�uence on the value of the Walker breakdown �eld [115], allowing

signi�cant increases of the domain wall velocity [116]. The same can be said of domain

wall motion in materials with strong Dzyaloshinskii-Moriya interaction [117].

1.2.4 Current-based motion

With discoveries such as giant magnetoresistance [118] and spin-polarized currents, cou-

pled to new opportunities provided by nanotechnology, the �eld of spintronics has been

growing very rapidly. A major research area of spintronics deals with current-induced

domain wall motion, �rst proposed in 1978 [119]. In this subsection, we will give a very
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Figure 1.15 � Typical dependance of velocity on the applied �eld, showing the creep regime
at low �elds (breakdown �eld not shown). Figure from [97].

brief account on this subject. For more detailed information on theoretical matters, see

Refs. [81, 120], and for an experimental review Ref. [121].

The research for a full understanding of the physical mechanisms behind current-

induced motion is still ongoing, but a lot has been explored nonetheless through micromag-

netic studies [122, 123], theoretical [124�126] and experimental investigations [127, 128],

in particular in thin �lms and nanostripes. The motion is induced by torques applied to

the domain wall by the current �owing through it (be in-plane or out-of-plane). Indeed, a

current �owing in a ferromagnet tends to be polarized along the local magnetization, and

will exert a torque on local magnetization in case it is not parallel to its spin polarization.

Two types of torques have been well identi�ed: an adiabatic torque and a nonadiabatic

torque, which relative importance depends on the values of parameters such as domain

wall width and typical lengths describing spin transfer. The adiabatic torque dominates

in the case of wide domain walls, while nonadiabatic torques are notably involved with

thin domain walls and strong pinning [125].

Relatively high velocities (hundreds of m/s) have been achieved experimentally in

current-driven motion [128, 129], especially in ultrathin nanostripes [130]. The velocity

will also depend on domain wall con�guration (i.e. the type of domain wall) and current

injection scheme [131]. There are indeed di�erent ways to inject a current to move a

domain wall: in a nanostripe, the current can �ow along the nanostripe but also perpen-

dicularly to it, be it in-plane or out-of-plane (vertically) [46]. On this matter, it is also

worth mentioning that while the motion can be induced by a local electric current �owing
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through the domain wall, it can also be done remotely with spin-current injection [132]

(also knwon as non-local spin injection). Indeed, a conversion between electric and spin

current through the spin-Hall e�ect is possible, and the use of a pure spin current has the

advantage of dramatically reducing local heating. As an aside, thermal gradients�for in-

stance generated by Joule heating�have also been used to manipulate domain walls [133].

Figure 1.16 � Typical velocity-current relationship, from a one dimensional model by
Thiaville et al. Figure from [123].

In any case, the dynamics of current-driven domain wall motion have many features

in common with �eld-driven motion (see Fig. 1.16). The current dependance of velocity

exhibits a Walker-like delineation (current density limit) beyond which the velocity is

signi�cantly reduced [123,134,135]. The steady-state regime is replaced by an oscillatory

behavior [136]. Below a threshold current, one can also notice a creep regime similar

to what can be observed with �eld-driven motion [137], where the nonadiabatic torque

seems to play a major role [138]. There has been substantial debate over the universality

of creep regime and thermal activation [139�143]. The question is about whether or not

the stochastic process governing creep motion in current-driven motion is the same as

with �eld-driven motion.
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1.3 Magnetoelectric materials

Domain wall motion and control of magnetization at small scales in general is thus a

very active area of research. In this thesis, the main goal is to explore the possibilities

regarding domain wall motion and a magnetoelectric e�ect mediated by mechanical stress

in arti�cial multiferroic structures. Indeed, this approach o�ers signi�cant advantages

over standard methods, such as enhanced functionality and lower power consumption.

Because it relies on the magnetoelastic coupling, a subsection is dedicated to a short

description of magnetostriction.

1.3.1 Instrinsic magnetoelectric materials

The magnetoelectric e�ect was �rst proposed by P. Curie in 1894 [144] and later observed

experimentally by Astrov [145,146] in chromium oxide Cr2O3, also following the prediction

of Landau and Lifshitz [147] that this material should exhibit a magnetoelectric e�ect in its

antiferromagnetic phase [148]. This phenomenon deals with the coupling between electric

and magnetic quantities. The adjective direct or inverse is sometimes used to identify if

the stimulus is magnetic or electric. The application of a magnetic �eld (resp. electric

�eld) will result in an electric (resp. magnetic) e�ect. This coupling can be found in some

materials where it arises spontaneously. While the term magnetoelectric is often confused

with multiferroic, they refer to distinct properties. Indeed, magnetoelectric materials are

thus sensitive to both magnetic and electric �eld, but need not show any magnetic or

electric order (see Fig. 1.17).

Figure 1.17 � Schematic showing the relationship between classes of materials. Figure
from [149].

44



There are two reasons why, despite the interesting potential of intrinsic magnetoelectric

materials, these have not yet encountered much success. One of them is the fact that

in any case the intrinsic magnetoelectric e�ect is relatively weak, with a fundamental

upper bound for the components of the magnetoelectric susceptibility tensor [150], as is

predicted for speci�c materials [151]. Furthermore, most materials only exhibit interesting

properties at low temperatures, which is for example the case of Cr2O3 [152] or BiFeO3

[153]. One way of getting a strong magnetoelectric response is to work in the vicinity

of phase transitions. The application of a magnetic or electric �eld can then induce a

large magnetoelectric e�ect, including at room temperature [154, 155]. While it does

not involve the magnetoelectric e�ect per se, another quite recent activity deals with

ultrathin �lms [156] and materials with perpendicular magnetic anisotropy, where it is

possible to in�uence anisotropy and magnetization [157�164] through subtle interface

e�ects. Electric �elds pave the way for a control of magnetic properties�including the

phase�without resorting to annealing or other kinds of temperature-based procedures

[165]. In the case of domain wall motion, nucleation and pinning have been obtained or

in�uenced by electric �elds [164,166,167], as well as modulations of domain wall dynamics

in the creep [168] and �ow [164, 169, 170] regimes. These e�ects are sometimes called

charge-mediated magnetoelectric e�ects. Finally, interesting developments concern the

voltage-control magnetic anisotropy in magnetic tunnel junctions. Tunnel junctions are

a crucial element of spintronics and the fact that electric �elds can to some extent a�ect

their behavior has not gone unnoticed by the research community [171�173].

Interestingly, the possibility to induce domain wall motion in intrinsic magnetoelectric

antiferromagnets (such as Cr2O3) using an electric �eld has been theoretically investigated

[174]. As in magnetic �eld-driven motion, there seems to be a Walker-like breakdown and

a maximum velocity achieved at or before this point. The authors also describe how the

situation can be improved by adding an in-plane stress or, for that matter, any kind of

in-plane anisotropy in order to hinder precession.

Several reviews have covered the subject of magnetoelectric materials. They acknow-

ledge the weaknesses of the intrinsic e�ect, but also present the opportunities and potential

applications of more recent research, especially in thin �lms [149,175]. Some even mention

a revival of the magnetoelectric e�ect [176], in light of all the applications considered. In

particular, various opportunities come from the use of antiferromagnets and the rapid

development of arti�cial magnetoelectric materials.
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1.3.2 Magnetostriction

Before discussing arti�cial magnetoelectric materials, it is important that we have a short

description of magnetostriction and its modeling. Indeed, arti�cial magnetoelectric ma-

terials often involve magnetostriction because they rely on the mechanical coupling of

ferroelectric and ferromagnetic phases. This is also the case in this thesis.

Magnetostriction has numerous applications, most notably in sensing and actuation,

and is also a responsible for the typical "humming" noise heard near electrical power

transformers. Basically, magnetostriction is the process by which a magnetic material

will undergo a deformation following the modi�cation of its magnetization (for example

by the application of a magnetic �eld). The converse e�ect, sometimes called inverse

magnetostriction or Villari e�ect, deals with the change of the magnetic susceptibility

of a material on which a given mechanical stress is applied. It is important to point

out that the transformation caused by magnetostriction is associated with anisotropic

deformations but is isovolumic. While magnetostriction was �rst described by Joule in

the 19th century [177], its physical origin is still a subject of theoretical investigations.

The phenomenon is better understood for rare-earth elements (from Ce to Lu), alt-

hough most of them have Curie temperatures below room temperature. Their magne-

tostrictive properties stem from the angular distribution of orbitals in their un�lled 4f

subshell, which is partly responsible for the overall atomic magnetic moment. These or-

bitals are signi�cantly aspherical (see Fig. 1.18). Therefore when the magnetic moment is

rotated, the strong spin-orbit coupling will tend to also reorient the orbitals. This results

in a change of charge distributions and, because of the documented asphericity of the or-

bitals, this will have a direct in�uence on electrostatic forces and strong magnetostrictive

strains [178]. Given the oblate (as in e.g. terbium) or prolate (as in e.g. samarium) aspect

of the orbitals, a positive and negative magnetostriction will be respectively measured.

Of all elements, terbium has the largest magnetostriction known today, which leads to an

elongation of nearly 1% at 0 K [179].

While there are still some unknowns on the physical workings of magnetostriction,

especially in alloys with transition metals, one could argue that e�orts to formalize [147,

181, 182] this phenomenon have been quite successful. A �rst level of description deals

with the interaction energy of neighboring magnetic moments, for instance as proposed

by Néel [183] based on the cosines of the angle between magnetization and the direction

between two atoms. A Taylor expansion of this expression will yield familiar forms of the

magnetoelastic interaction, depending on the symmetry considered [6, 184]. Other, more
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Figure 1.18 � 4f electron charge density in rare-earth elements. Figure from [180].

phenomenological, approaches focus on the constitutive laws considered in the behavior

of magnetoelastic materials. This leads to the following expression of the energy density:

ume = −Tikεµik, (1.11)

where T̂ refers to the local Cauchy stress tensor, and ε̂µ is the free strain of the material

(i.e. the strain measured if the body is perfectly free to deform itself). From there, it

follows that in an isotropic material and in the presence of a uniaxial stress, the energy

density associated with the magnetoelastic interaction is often written (see chapter 2 for

a detailed derivation of this expression from Eq. (1.11)):

ume = −3

2
λsσ cos2 Φ, (1.12)

where Φ is the angle between the magnetization and the direction of the stress σ. This

expression will be used throughout the work presented in this thesis. Here, one can see

that mathematically, it is tantamount to the creation of an induced quadratic anisotropy.

The end physical result will depend on the sign of λs: if positive (resp. negative), the

magnetization will tend to align along (resp. perpendicular to) the direction of the stress.

1.3.3 Piezoelectricity

In a stress-based magnetoelectric coupling, the most straightforward counterpart of mag-

netostriction is piezoelectricity. Contrary to magnetic materials, where piezomagnetism

is in principle possible [147] but in practice con�ned to antiferromagnets [185], it is quite

common to �nd materials with a linear relation between electric �eld and polarization.

The origin of this e�ect is due to cristallography and the existence of polar axes in the
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material (amorphous materials cannot be piezeoelectric). The total number of symmetry

types has been somewhat debated, but recent works concluded that there was 15 irredu-

cible symmetry types [186]. As a way of turning mechanical signals into electrical signals

or the reverse, the piezoelectric e�ect is found to have multiple applications today, such

as sensing, transducing, generation of voltage and so forth.

Figure 1.19 � Schematic of the piezoelectric e�ect in quartz. A compression or a tension
creates charges due to the crystalline arrangement. Figure from dev.nsta.org.

The coe�cients dij which we will have use of in the following work are de�ned in this

way:

Di = dijkTjk + εijEj, (1.13)

where D is the electric induction, T is the local Cauchy stress tensor and ε is the local

strain. In principle, the piezoelectric tensor dijk can have a maximum of 18 components,

although this number is often dramatically reduced depending on the particular symme-

tries exhibited by the material considered.

1.3.4 Arti�cial magnetoelectric materials

One way to lift the two constraints mentioned above in intrinsic magnetoelectric materials�

namely, weakness of coupling and low temperature requirements�is to arrange an in-

direct coupling in heterostructures (usually with two phases, but three-phase systems

also exist [187, 188]). Possible ways of achieving the coupling are shown in Fig. 1.20.

The intermediate between electric �elds and magnetism is most often mechanical, alt-

hough exchange-bias and charge-mediated e�ects are also studied [189]. The association
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of a piezeoelectric material�which will convert an electric �eld in mechanical stress�

and a magnetoelastic material�which will be magnetically sensitive to the transmitted

stress�gives rise to well-known heterostructures. Basically, a piezoelectric phase and a

magnetoelastic phase are elastically coupled, so that the strain generated by an applied

electric �eld in the former will be transmitted to the latter, prompting a magnetic e�ect.

Essentially, this e�ect is tantamount to an induced anisotropy. In practice, this elastic

coupling can for instance be implemented in laminates, in which theoretical investigations

of the magneto-electro-elastic coupling in such systems covered the linear [190, 191] and

nonlinear [192] regimes. For more information on the di�erent arti�cial magnetoelectric

materials proposed in the literature, see reviews [188,189,193].

Experimental research on stress-mediated magnetoelectric e�ects go back to the pro-

position of two-phase materials [194] and subsequent work in the 1970s with composite

materials made of melted [195] and sintered [196] ferroelectric and ferromagnetic phases.

Later, progress in thin �lm technologies made possible the stacking of piezoelectric and

magnetoelastic layers to form laminates. The development of new materials, including

the search for better piezoelectric properties, contributed to the optimization of the mag-

netoelectric coupling [197]. As a result, the magnetoelectric coupling, often measured in

Vcm−1Oe−1, has dramatically increased over the years [198�200]. Several examples are

shown in Fig. 1.21.

The basic e�ect of an induced stress is a modi�cation of anisotropy and has been

observed repeatedly, including in Pt/Co [201] and in (Ga,Mn)As [202]. Similar e�ects

(inversion of anisotropy) have been noticed in nickel [203]. These changes can then result

in reversible modi�cations of domain wall con�gurations [204] as well as magnetization

switching [205�213] at room temperature, including at the nanoscale [214]. Also, sig-

ni�cant change to domain wall mobility and other kinds of in�uence on domain wall

dynamics [201, 215�218] have been mentioned in the literature and will be further des-

cribed in subsection 1.4.1. Dynamic strains associated with the propagation of acoustic

waves have also been shown to in�uence magnetic structures [219]. Manipulation of dom-

ain walls in more speci�c systems exhibiting mis�t strains between di�erent layers has

also been reported [220,221]. Another quite remarkable phenomenon involves changes in

the value of magnetization (saturation), with the possibility that the Curie temperature

would depend on strain [222].

Arti�cial magnetoelectric materials are thus linked to a very dynamic area of research

of current interest [153]. For a more comprehensive account of the technological outlook

of magnetoelectric materials, one can consider several reviews [153, 188, 189, 193, 197].
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Figure 1.20 � Schematic showing the possible arrangements of magnetoelectric hete-
rostructures and examples of their practical implements. Figure from [197].

Figure 1.21 � Overview of the values of magnetoelectric coupling obtained and reported
in the literature with the associated materials in (a) bulk and (b) �lm structures. Figure
from [197].
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Much like domain wall-based devices, the integration of stress-mediated devices in mi-

croelectronics has been proposed in the context of several practical applications in the

literature. Some have coined and used the term straintronics to refer to strain-based

systems [214, 223]. A �rst application often considered is memory. Mentioned as early

as 2000 [224], the potential of magnetoelectric materials in memory applications have

been repeatedly put forward [225�228]. Beside information storage, there are also pos-

sibilities in information processing, with Bennett-clocking and magnetic logic devices in

general [229�232] paving the way for all spin logic [233]. Proponents of magnetoelectric

materials have even mentioned their use as recovery devices for nonclassical information

processing systems [234]. Other, more speci�c uses have also been proposed, such as

electrically assisted magnetic recording [235].

1.4 Motion induced by uniform stress in magnetoelas-

tic materials

This section contains a presentation of the system proposed and studied in this thesis,

which deals with domain wall motion driven by a uniform stress in a magnetoelastic

ferromagnet. Before it is addressed, the necessity of breaking the magnetic symmetry will

be illustrated. The solution adopted here comes from earlier work, which will be detailed.

Finally, preliminary studies showing the validity of the concept will be discussed.

1.4.1 The need for symmetry breaking

Regarding domain wall motion induced by an electric �eld, several methods have been

presented in the literature. Again, the interest generally mentioned here lies in the pro-

spects of improved convenience of operation as well as reduced energy consumption [236].

However, due to symmetry reasons linked to the fact that the magnetoelastic energy has

a quadratic form, a uniform stress typically cannot discriminate between two antiparallel

magnetization states. It follows that it cannot induce unidirectional motion of 180◦ walls

(while to be fair, it could do so for 90◦ domain walls in principle, for instance in materials

with cubic anisotropy [221]).

However, an applied stress can certainly have an in�uence on the dynamics of motion

induced by other means. This should not come as a surprise: as mentioned above, the

e�ect of the magnetoelastic interaction is essentially the creation of a new anisotropy. It

is quite obvious from Eq. (1.9) giving the steady-state velocity, that a change in the aniso-

tropy will result in a change of velocity. This phenomenon has been veri�ed experimentally
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with magnetic �eld-driven domain wall motion in amorphous microwires [216�218]. One

can conclude from the experimental evidence available that the in�uence of a mechanical

stress through the magnetoelastic interaction has the general e�ect of decreasing domain

wall velocity in the con�gurations studied. This result is corroborated by other reports

that the application of a stress can increase the coercivity (or propagation threshold �elds)

and therefore block domain wall motion [237]. Similar e�ects have been observed in the

case of electric current pulses in materials with perpendicular anisotropy, with mobility

variations up to 500% reported by researchers [215]. Analytical treatments have also been

proposed in recent works to describe the in�uence of a mechanical stress on the dynamics

of spin current-driven motion [238]. Another related and intriguing proposition deals with

domain wall motion induced by the propagation of polarized elastic waves, which exert a

torque and a force on domain walls [239].

The fundamental hurdle of symmetry has led researchers to propose alternatives for

stress-induced domain wall motion. The most obvious idea is to use non-uniform stress

distributions, i.e. stress gradients. Indeed, the spatial variation of stress distribution

o�ers the possibility to create potential wells in which a domain wall can be trapped (see

Fig. 1.22). Again, this amounts to the creation of local variations of anisotropy that will

a�ect the energy landscape seen by the domain wall. In the �rst account on this idea

published in the literature, micromagnetic simulations have shown that stress gradients

can indeed induce domain wall motion in the absence of any magnetic �eld or electric

current [240]. A later analysis based on a simpli�ed model gives support to original

micromagnetic simulations [241].

As mentioned in the beginning of this subsection, a uniform stress cannot induce

unidirectional domain wall motion. However, in a ring geometry, it can force a domain

wall to move toward a given position determined by the particular stress directions, in

combination with particular shapes [53] (see Fig. 1.23). Further modi�cations can be

brought to the geometry to actually break the symmetry [110]. Here, a particular shape of

the magnetoelastic element will allow the displacement of the domain wall, achieving 180 ◦

"switching" after each application of the stress. For continous domain wall motion in ring

geometry, one can also resort to the use of an arrangement with multiple electrodes along

with the necessary time actuation signals, a possibility already explored numerically [242].

A completely di�erent approach is to take advantage of the strong pinning that mag-

netic domain walls can have on ferroelectric domain walls [243]. This pinning is again

linked to local stress-induced anisotropy caused by the presence of a ferroelectric domain

wall between orthogonal domains. The result is a patterning of the magnetic material
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Figure 1.22 � Schematic of the systems based on stress-gradients considered by Dean et al.
Localized stress generated by separate electrodes create potential wells. Figure from [240].

Figure 1.23 � Results of micromagnetic simulations showing the behavior of domain walls
in so-called cat eye-shaped magnetoelastic magnets subjected to in-plane stress. The
width is variable but is typically around 100 nm. The outer diameter is 500 nm. Figure
from [110].

domain con�guration on that of the ferroelectric on which it is deposited as illustra-

ted in Fig. 1.24. The application of an electric �eld will have the e�ect of changing

the domain con�guration and therefore induce domain wall motion, as shown experi-
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mentally [236, 244]. Micromagnetic simulations showed that distinct dynamical regimes

existed, and mentioned the absence of breakdown [245] although researchers later claimed

that depinning was possible and somehow linked to the Walker breakdown [246].

Figure 1.24 � Ferroelectric domain pattern can be imprinted on magnetic materials. Figure
from [236].

The same symmetry problem can be found in the context of magnetization switching

of monodomain magnetic particles using a uniaxial stress. Indeed, if a stress is applied

on a monodomain magnet so that the magnetization goes from one state along the easy

axis to a state along the hard axis, the subsequent disappearing of the stress will force

the magnetization to choose between two stable states along two equally favorable paths.

As a consequence, various solutions have been put forward in the literature. One of them

is to �ne-tune the electric �eld pulse to ensure that the magnetization does end up in the

desired state [209, 223, 247] (also described for intrinsic magnetoelectric materials [248]).

Here, pulse duration, magnitude and orientation have to be tightly controlled, otherwise

there are high risks that such systems would be unreliable. In addition, any imperfection

in shape or within the material will tend to induce a bias toward one position or the

other, which would make this scheme even more di�cult to implement successfully. More

importantly, this system can only function as a toggle, which can be a serious limitation

in the context of memory applications. Indeed, any stimulation will change the state

regardless of its previous state, so that writing always has to be preceded by a non-

destructive readout in order to know if the system is already in the desired state. Another

idea is to use multiple electrodes, again with a more complex operation but with reduced

energy requirements [227, 249]. Like with domain wall motion, geometry can also be

used to break the symmetry and trigger 180◦ switching of magnetization with an applied

stress [110].
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1.4.2 Symmetry breaking based on bias magnetic �eld

To break the symmetry in stress-mediated systems, an interesting alternative to what

has been heretofore mentioned is the use of a static magnetic �eld bias. This idea was

implemented in a concept baptized MELRAM because of its potential use as a magnetoe-

lectric memory. Here, a uniaxial magnetoelastic element is subjected to an in-plane static

magnetic �eld ~H0 perpendicular to its easy axis, tilting toward its direction the two stable

states of equal energy. The subsequent application of a uniaxial stress 45 ◦ from its easy

axis can energetically favor one of these states, and therefore determine unequivocally the

�nal state of magnetization regardless of its initial state (see Fig. 1.25). A basic under-

standing can be obtained by an energetic analysis, taking into account anisotropy energy,

Zeeman energy and magnetoelastic energy.

Figure 1.25 � Principle of operation of MELRAM, where a uniform stress can unequivo-
cally discriminate between two states A and B. Sub�gures a) b) and c) show a schematic
of the magnetoelastic element at rest and subject to tensile resp. compressive stress, while
sub�gures d) e) and f) is a 3D plot of the corresponding free energy showing the energy
landscape as a function of the azimuthal φ and polar angle θ.

MELRAM has been the object of a patent [250], a PhD thesis [251], a book chapter

[252] as well as several publications [226, 253�257]. Experimental validation of stress-

mediated switching was carried out at IEMN and showed its non-volatility. This concept

was also implemented at the nanoscale by independent authors [214]. This shows the

feasibility of a stress-mediated control of magnetization with non-volatile operation. For

memory applications, this system has several advantages detailed below:
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• Non-toggle: the symmetry breaking allows for unequivocal operation, which ensures

that knowledge of the prior magnetization state of the memory is not required for

writing.

• Fast operation: studies of its dynamical behavior showed subnanosecond switching

[251,257].

• Non-volatility: once the stress has disappeared, the information written in the di-

rection of magnetization is not lost. Besides, if appropriate structural design is

carried out, a signi�cant energy barrier can be arranged between the two stable sta-

tes so that the system can retain information for a chosen (to some extent) period

of time.

• Non-destructive readout: in MELRAM, reading by electrical means can be achieved

if coupled to a giant magnetoresistance or tunnel magnetoresistance structure [258].

These techniques can work with low voltages so as not to disrupt the system. The-

refore, it is possible to read the state of a cell without altering it. Also, an all

magnetoelectric non-destructive readout can be adopted to avoid the use of additi-

onal structures allowing magnetoresistance measurements [259].

• Energy consumption: the main advantage of MELRAM and indeed stress-mediated

memories in general lies in the low-power operation that they require. Most of

the energy dissipated corresponds to the charge and discharge of the piezoelectric

phase, which is a dielectric. The gap is substantial: proponents of magnetoelectric

memories claim that the power requirements can be reduced by several orders of

magnitude. Various estimates have put the total energy consumption for writing

one bit at less than 103kBT while a �ash memory based on NAND logic gates needs

10 nJ, or 1013kBT [260].

For the system to work, there are important constraints on the value of the applied

magnetic �eld which must stay within a certain range. If it is too large, the Zeeman e�ect

become strong enough to sideline anisotropy (i.e. H0 > Ha), and only one stable state

remain for the magnetization. If it is too small, the operation does not work properly

as the magnetization will not switch to the desired states [251]. The threshold value for

the �eld here is Ha√
2
, which corresponds to stable states which are 90◦ apart from each

other, symmetrically with respect to the magnetic �eld. Therefore we have the following

constraint: Ha√
2
< H0 < Ha.
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1.4.3 Description of the proposed system

The functionality of MELRAM rests on the possibility to favor energetically one magne-

tization direction over another, which is possible because of the bias magnetic �eld. In a

one-domain nanomagnet, this can lead to the control of magnetization and magnetization

reversal as previously shown. The question we raise in this work is about the opportuni-

ties o�ered by this mechanism in the context of a two-domain magnetoelastic element, i.e.

the e�ect of the combination of a bias magnetic �eld and a uniform stress on a domain

wall.

Figure 1.26 � Schematic of the general system considered: a two-domain magnetoelastic
ferromagnet with a transverse domain wall.

We therefore consider a uniaxial ferromagnet with magnetoelastic properties elongated

in the direction of its easy axis (let us call it x), within which the magnetization is

distributed in two distinct domains separated by a transverse domain wall, as shown in

Fig. 1.26. A bias magnetic �eld is applied perpendicular to the easy axis, i.e. along the

y-axis. A uniform stress σ corresponding to the tension or compression of the direction

de�ned by the vector 1√
2
(~y − ~x) is then transmitted to the magnetoelastic layer by a

piezoelectric substrate subjected to an appropriate electric �eld. The rationale behind

the proposition of such a system to achieve domain wall motion�although less amenable

to qualitative description�is close to the mechanism implemented in MELRAM and

involves making one state more energetically favorable than the other. The result of

the interplay of competing energetic contribution on the stable states of magnetization

are illustrated in Fig. 1.27. The overall di�erence in volumic energy is at the origin of

motion: the domain with lower volumic energy will expand at the expense of the other.
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Presumably, the amplitude of the energy gap should have an in�uence on the motion, this

will be explored in later developments.
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Figure 1.27 � Stable magnetization states within the nanostripe. The uniaxial anisotropy
without ~H0 and the stress σ induces two opposite states ~M1 and ~M2. When ~H0 is applied,
we have ~M ′

1 and ~M ′
2, still symmetric. Further, the mechanical stress leads to the tilted

states ~M ′′
1 and ~M ′′

2 , which are asymmetric for both positive and negative stress.

One way to expose the mechanism behind motion in a more intuitive fashion is to

detail sequentially the e�ect of the stress and only then that of the bias magnetic �eld,

instead of the reverse. Fig. 1.28 shows how the two-domain magnet reacts, and helps

grasp the crucial role of the bias magnet �eld as a symmetry-breaker. The combined

e�ect of uniaxial anisotropy and magnetoelastic interaction is an equivalent anisotropy

tilted with respect to the x-axis. This tilt�better explored in chapter 2�allows for the

discrimination between the two states based on their Zeeman energy, see subsection 2.2.2.

As such, the phenomenon is stress-triggered, because the tilt is induced by the stress, but

�eld-driven because the Zeeman energy gap is responsible for the motion. Again, these

matters are detailed in the following chapter.

The reason for considering a uniform stress stems from the fact that a setup with

multiple electrodes somewhat limits the downscaling of the whole device. Furthermore,

if a large piezoelectric substrate is used (commercial or grown), the hypothesis of a uni-

form stress is reasonable. Stress gradients can indeed exist in patterned nanostructures

depending on the properties of the materials used and the dimensions of the layers. True

enough, moderate stress gradients would certainly a�ect the behavior of the domain wall

and its dynamics, but would not necessarily preclude operation and therefore do not di-

minish the relevance of the mechanism proposed. Admittedly, considering the e�ect of

stress gradients would be useful in terms of representing a real device in the context of

an engineering endeavor. However, it would add unnecessary complexity in the pursuit of

physical insight because there would be a risk of distinct phenomena being confounded.

As for the bias magnetic �eld, it can be generated by neighboring burrowed permanent
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Figure 1.28 � Schematic of a two-domain ferromagnet (a) at rest, (b) with the application
of a stress, (c) with the application of a stress and a magnetic �eld (c) where the symmetry
is broken, inducing domain wall motion as a result (d-e).

magnets [261] (and thus does not contribute to the overall energy consumption). However,

it is important to keep in mind that resorting to in situ structures is not essential to the

practical implementation, and macroscopic structures can be used, as the magnetic �eld

is simply a static bias breaking the symmetry. The substrate can indeed be placed in the

air gap of a surrounding magnetic circuit which includes an arrangement of permanent

magnets. Given the lengthscales involved (micrometers at most) one can expects that the

homogeneity of the magnetic �eld generated by such a device would be secured over the

spatial extent of the system.
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Because this system is essentially based on the same concept, there are several features

in common with MELRAM, including the advantage in terms of energy consumption

compared to other domain wall motion techniques (see chapters 2 and 3 for details), as

well as the unequivocal operation (the direction of motion can be fully predicted from

the stress applied on the magnetoelastic stripe). However, there are some important

details on which the two systems di�er. In particular, the constraints on the value of

the magnetic �eld mentioned for the case of MELRAM are somewhat lifted. Indeed, a

consequence of the shape anisotropy arising from the stripe geometry is to strengthen the

uniaxial anisotropy, so that the existence of two stable states is ensured well beyond what

would be predicted if only anisotropy and Zeeman energy are taken into account (see

subsection 2.2.4 of chapter 2). Besides, the lower magnetic �eld limit for the MELRAM

system to work does not exist here, as the movement of the domain wall does not rely on

the trajectory of magnetization but ultimately depends only on the di�erence in volumic

energy of the two domains.

1.4.4 Engineering of cross section

As mentioned in subsection 1.2.3, the patterning or engineering of the edges in a na-

nostructure has an in�uence of domain wall motion. This work includes the study of

systems with variable cross section (through a variable width) on the behavior of a dom-

ain wall moved by uniform stress, as depicted in Fig. 1.29. To the best of our knowledge,

discrete pinning sites have been investigated theoretically and experimentally, but no sy-

stematic study of the generic e�ect of altering the potential landscape of the domain wall

through engineering of the cross section actually exists (including in the case of �eld- and

current- driven motion, for that matter).

Simply put, a magnetic domain wall will have the tendency to shift toward regions of

lower width (constrictions) because of the energy pay-o� related to reduced exchange and

anisotropy energy. Indeed, as explained in subsection 1.1.4, a domain wall is associated

with a local increase of volumic energy. Therefore, the larger the domain wall, the larger

the increase of energy. It follows that any local minimum of width will represent a potential

well�and hence a stable location�for a domain wall. Conversely, any local maximum

will represent a potential barrier. As a result, complex potential landscape can in principle

be designed. This leads to many interesting lines of investigation in relation to domain

wall motion in nanostripes of variable width. With regard to applications, one can think

of devices with multiple local minima in which domain walls will be trapped, a concept

of possible interest for logic tasks. Besides, on more theoretical considerations, many
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Figure 1.29 � In this work, we consider a nanostripe with a width free to vary with x.

unanswered questions lie in the in�uence of a variable width in the dynamics of domain

wall motion. Indeed, it is established that the dimensions of the medium in which the

domain wall travels do a�ect the dynamics (steady-state velocity, Walker breakdown

�eld...). What happens in the di�erent dynamic regimes with a variable width, for instance

considering low and high spatial periodicity, remains an open question.

In this work, we focus on two cases: constant section and parabolic section (symmetri-

cal with respect to the middle of the stripe). Under some conditions, the latter can ensure

con�nement, with a stable position in the middle and potential barriers to the ejection

of the domain wall, i.e. its disappearance from the stripe. As an aside, we considered

pro�les which were perfectly smooth, and we did not investigate the in�uence of rough

edges. Presumably, the �ndings of such an analysis would be similar to what is observed

for �eld- and current-driven motion (see subsections 1.2.3 and 1.2.4).

1.4.5 Proof of concept through micromagnetic simulations

The Nmag free and open-source package [262] based on �nite elements was used to provide

a proof of the concept proposed above. The software allows the user to perform micromag-

netic simulations with a wide range of material parameters and information describing the

problem, all speci�ed in a Python script located in a dedicated �le. Information about

the geometry and the mesh is provided by a mesh�le generated for instance using the

gmsh software [263].
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The minimum length of the mesh elements in all our simulations was 5 nm. Since the

goal was not to perform detailed analyses but to gain insight in the validity of the concept,

no computations with better resolution than this were carried out. Anyway, the result of

simulations showed that the typical width of domain walls in this context was several times

the size of elements, so that domain walls could be described correctly. Several geometries

have been considered (mainly the two cases mentioned in subsection 1.4.4), all with their

largest dimension along x, and their smallest along z (vectors contained in the xy-plane

are called in-plane). In the Python script, one can specify an arbitrary anisotropy. In

the present case, we study the behavior of materials with uniaxial anisotropy along x

(quadratic anisotropy energy proportional to w2
x). An external magnetic �eld of a given

amplitude and along a given direction can be easily implemented in Nmag, in our case it

was introduced along the y-axis. As for the magnetoelastic energy, there is no dedicated

tool in Nmag to take it into account. However, it can easily be integrated into the arbitrary

anisotropy de�ned by the user: as we have shown in subsection 1.3.2, the magnetoelastic

energy can be written as a simple quadratic anisotropy. Below is an excerpt of the Python

input �le to Nmag, showing the de�nition of the arbitrary anisotropy.

# de f i n e an i so t ropy

xx = [ 1 , 0 , 0 ] # The ( normal ized ) x a x i s

yy = [ 0 , 1 , 0 ] # The ( normal ized ) y a x i s

zz = [ 0 , 0 , 1 ] # The ( normal ized ) z a x i s

def my_anisotropy (m) :
ax = sca lar_product ( xx , m)
ay = sca lar_product ( yy , m)
az = sca lar_product ( zz , m)
return −K_u∗ax ∗∗2−3.0/2.0∗ lambda_S∗ sigma ∗( ax∗∗2+ay∗∗2−ax∗ay )

The various parameters chosen (anisotropy constant, magnetization at saturation etc)

correspond to the well-known magnetoelastic material Terfenol-D. These will be detailed

in the following chapter. A Gilbert damping of 0.1 was used. Here, one needs to work

with an initial situation where a domain wall is present. This is fairly straightforward

with Nmag since the user can decide what the initial distribution of magnetization will be.

Typically, specifying two regions of opposite magnetization (along +~x and −~x) separated
by a small area of intermediate magnetization (along ±~y) and allowing the system to

relax will secure the desired outcome. Another option backed by experimental data [264]

is to apply a strong magnetic �eld along ±~y and then reducing it to a small value. Once

the initial magnetization is obtained, the dynamical study can begin with the application

of a stress. Dedicated routines help save relevant data at �xed time intervals.
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Figure 1.30 � The combination of a static magnetic �eld in the y direction and in plane
uniform stress is able to induce the motion of a domain wall in a predictable direction.
The �rst image shows the distribution of wx at rest with a static magnetic �eld, the second
image shows the distribution of wx 1 ns after applying a constant negative stress. Here,
the nanostripe is 2 µm-long, 10 nm-thick and 100 nm-wide.

Visualization of the data was done using ParaView which is an open source software

supporting interactive visualization of vtk �les. The �elds that are of primary interest here

are the three components of magnetization. The simulations showed that the application

of a stress in the presence of a transverse magnetic �eld does indeed result in domain wall

motion. In the case of a constant section, the domain wall moves toward the end of the

nanostripe until there is only one domain left (see Fig. 1.30). In the case of a parabolic

pro�le of cross section, the domain wall moves until it reaches an equilibrium position (see

Fig. 1.31). If relaxed, the domain will go back to its initial position in the middle of the

simulated magnetic element. However, another behavior is observed if the magnetic �eld

and/or the applied stress is too large: the domain wall shift leftward or rightward until it

reaches the extremity of the simulated magnet, much like in the case of constant section.

The intuitive interpretative of these two di�erent situations is that if the "driving force"

behind the motion of the domain wall is too strong, it will go past the exchange-related

energy barrier formed by the geometry.

This is all that can be said here on this subject, as these time consuming preliminary

studies were not performed to address any other matter than the validity of the concept.

Indeed, since Nmag simulations work like a black box to a large extent, it is often di�cult

to get an understanding of the physical phenomena involved. In order to better grasp the

underlying physics and to ensure that all parameters are within control, simpli�ed models

were built and will be presented in the following chapters.
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Figure 1.31 � With a parabolic pro�le, the domain wall can be con�ned in a region. With
the application of a stress, the domain wall will reach an equilibrium position.

1.5 Conclusion

In this chapter, we saw that domain walls are prominent elements of modern research

in areas such as micromagnetism, microelectronics and nanotechnology. Their manipula-

tion is a subject of great interest, most notably in relation to their potential in various

applications. While domain wall motion and control of magnetization is most often me-

diated by magnetic �elds or electric currents, there is a wide interest in the search for

alternatives. Among what has been put forward, stress-mediated arti�cial magnetoelec-

tric materials appear promising. Indeed, the convenience of an electrical control�that is,

using voltage�over magnetization is often highlighted. More importantly, the ultra-low-

power requirements of such systems make them good candidates for future technological

and commercial developments.

In this context, the present thesis proposes a new paradigmatic system involving the

application of a uniform stress on a two-domain magnetoelastic nanostructure. However,

a uniform stress alone cannot induce motion of 180◦ domain walls, hence the need to break

the symmetry. A way of doing that was introduced by the AIMAN-FILMS group at IEMN

several years ago in the context of magnetization switching of uniaxial magnetoelastic

magnets. It involves the application of a static magnetic �eld perpendicular to the easy

axis, which enables a subsequent uniform stress to create an energy gap between the two
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stable states. In a two-domain ferromagnet, this would amount to domain wall motion,

since one domain will expand at the expense of the other. This is the idea proposed here,

and it has been shown how preliminary 3D simulations showed that this idea seemed valid.

The following chapter will detail how we studied this phenomena with ad hoc theoretical

and numerical procedures.
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Chapter 2

Static behavior in magnetoelastic

nanostructures

In chapter 1, we made an innovative proposal for domain wall motion. Preliminary results

based on standard numerical simulations suggest that the idea presented in the previous

chapter might lead to new ways of moving domain walls. However, while micromagnetic

simulations are interesting in that they are an easy way to study complex systems in

3D geometry, there are two signi�cant downsides to their systematic use. First, the

computational e�ort necessary to carry out those simulations is enormous, especially for

time-resolved computations [265]. Second, although these softwares are easy to handle,

there are necessarily used as black boxes to some extent. The user usually speci�es

inputs and collects outputs with only limited control on the computation itself. For these

reasons, another approach based on a new numerical tool has been devised and will hereby

be presented. Tailored to match the requirements of nanostripe geometry, this 1D model

yields satisfying results with moderate computational e�ort. Moreover, the total control

over the calculation helps understand the underlying physical mechanisms at play.

The work presented in this chapter was the subject of two publications [266,267].

2.1 Variational approach to micromagnetism

In this section we present a brief introduction of the classical equations derived from a

variational approach [1, 147, 182]. While the following development does not introduce

anything that has not been previously reported, it is an attempt to present a proper

synthetic derivation of Brown's equation from a mathematical point of view. In particular,

an emphasis is put on the requirements of the variational procedure regarding the magnetic

�eld in appendix C.
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2.1.1 Overview

In a standard micromagnetic software such as nmag, a 3D object is divided into a �nite

number of small elements with a chosen geometry (oftentimes tetrahedra). Then when

prompted to �nd an equilibrium distribution, an algorithm usually based on variational

methods is used to determine an approximated solution to a boundary value problem.

The equations solved involve a quantity that can be called the energy of the system,

which will be minimum�at least locally�when the system has reached its equilibrium

state.

The calculus of variations provides a set of techniques aimed at �nding the extrema

of a functional [268]. In our case we want to �nd the minimum of a quantity which

can be equated with the total energy of the ferromagnetic region (which includes the

relevant contributions such as anisotropy, Zeeman etc). The �rst step is therefore to

de�ne rigorously what is the energy, which corresponds to our functional. This is not as

straightforward as it seems, and sometimes the logic of the subtle choices made in the

expression of the contributions is not fully explained. Here in particular we give a detailed

description of how the problem concerning the demagnetization vector �eld is addressed.

Once the energy of the system is determined, appropriate constraints have to be taken

into account. The outcome of the variational procedure (minimization process) yields an

equation of which the equilibrium magnetization distribution is a solution.

V ⊂ ℜ3

∂V

~n

~M(~r) = Ms~w(~r)

ferromagnetic material

vacuum
µ0

Figure 2.1 � Geometry of the ferromagnetic material occupying a region V with external
surface ∂V and normal unit vector ~n.

The system taken into consideration is a region V ⊂ R3 with external surface ∂V

and normal unit vector ~n (see Fig. 2.1). We suppose that the region V is �lled with a
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ferromagnetic material with magnetoelastic (or magnetostrictive) properties, while the

external region R3 \V is composed of a linear magnetic material characterized by the

vacuum permeability µ0. As described in the previous chapter, the ferromagnetic material

is described by a magnetization vector ~M , de�ned within the region V by its space varying

direction ~w(~r). It means that ~M(~r) = Ms ~w(~r), where Ms represents the magnetization

at saturation.

2.1.2 De�nition of the energy functional

The functional to be minimized here is the total energy of the system. In the following, the

di�erent energetic contributions relevant to our problem are de�ned. The energy density

is the sum of these terms written in their most general form, as follows:

u = uan + uex + ume + uZe. (2.1)

Let us now de�ne these contributions and give general expressions.

• uan represents the anisotropy energy density and takes into consideration speci�c

directions where the magnetization is preferably oriented. This term is due to

the crystalline structure of the ferromagnetic material [20]. We consider here an

arbitrary form

uan = fan(~w). (2.2)

• uex takes into consideration the exchange interaction among magnetic dipoles of the

magnetization distribution. Using the Einstein notation, its general form follows

[147]

uex =
1

2
βij
∂wl
∂xi

∂wl
∂xj

, (2.3)

where ~w is the magnetization direction and βij is a symmetric tensor.

• ume is the energy associated to the magnetoelastic e�ect. Its general form can be

written as [1, 147,182]

ume = −aiklmTikwlwm = −Tikεµik. (2.4)

Here, Tik is the Cauchy stress tensor, which is considered known and imposed to

the structure. The problem of determining the actual stress distribution in V ,

taking into account the coupling between magnetostriction and elastic quantities

when the body is embedded in a di�erent elastic environment is treated elsewhere
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and not considered in the present development (see e.g., Ref. [255]). aiklm is a

tensor with the symmetry properties aiklm = akilm and aiklm = aikml. The quantity

εµik (~w) = aiklmwlwm is the so-called eigenstrain characterizing the magnetoelastic

e�ect. It means that the constitutive equation from the elastic point of view is

given by T = L
(
ε− εµ

)
, where T and ε are the actual stress and strain tensors,

and L is the elastic sti�ness tensor (satisfying the same symmetries as a plus the

additional property Liklm = Llmik). This constitutive equation must be interpreted

as follows. If the stress is zero (elastically free body), then we �nd ε = ε
µ
, i.e. the

real strain corresponds to the eigenstrain, which assumes the character of strain

imposed by the magnetization. It means that, when ~w is �xed in a given region,

then ε will tend to be equal to ε
µ
(~w). In the situation where T is not zero (region

V constrained or embedded in a given elastic matrix), the actual strain ε cannot

assume the value ε
µ
, and the system �nds a compromise between the e�ects of

magnetization and elastic interactions with the matrix.

• uZe is the energy corresponding to the local interaction between magnetization and

magnetic �eld. It is called the Zeeman term and its general expression is [269]

uZe = −µ0MS
~Hl · ~w. (2.5)

It is important to underline that ~Hl is the local magnetic �eld that one can measure

at any given point ~r. Typically, it is composed of two contributions: an externally

applied �eld ~H0 and a magnetic �eld ~Hd generated by the magnetization distribution
~M (~r) itself. The latter is referred to as the demagnetizing �eld. Therefore, we have
~Hl = ~H0 + ~Hd, where ~Hd directly depends on ~w (~r). As a �rst step, the choice is

made of joining demagnetization and external �eld in the same Zeeman energy term

to better introduce a necessary discussion proposed in the next subsection.

We can �nally introduce the total energy stored within the region V :

U =

∫
V

u d~r

U =

∫
V

[
fan(~w) +

1

2
βij
∂wl
∂xi

∂wl
∂xj
− Tikεµik − µ0MsHliwi

]
d~r. (2.6)

2.1.3 Derivation of classical equations

Written as such, U depends on the function ~w = ~w (~r), while T and ~Hl are imposed

quantities. The behavior of the ferromagnetic material in the region V can be summarized
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through the following statement: at equilibrium, the magnetization distribution within V

is found by minimizing U with respect to ~w (~r), with T (~r) and ~Hl (~r) �xed beforehand.

From the mathematical point of view, this is a problem of the calculus of variations.

However, the minimization as formulated above is hardly applicable to real situations,

and therefore it is not the problem we have to solve. While it is possible to �x the

external �eld ~H0, it is typically not the case for the total �eld ~Hl. The reason for this

is that the demagnetizing �eld ~Hd itself depends on ~w = ~w (~r), being the sum of all

contributions generated by the elementary dipoles of the overall distribution [269]:

~Hd (~r) = Ms

∫
V

N (~r, ~r0) ~w (~r, ~r0) d~r0, (2.7)

with

N (~r, ~r0) =
1

4π

[
3 (~r − ~r0)⊗ (~r − ~r0)

‖~r − ~r0‖5
− I

‖~r − ~r0‖3

]
. (2.8)

In Eq. (2.8), ~a ⊗ ~b represents the tensor product between two vectors ~a and ~b, i.e. we

have
(
~a⊗~b

)
ij

= aibj, and I is the identity operator. The notation ‖ · ‖ is used for

the euclidian norm. From this expression, one can prove that N exhibits the following

symmetry properties:

N (~r, ~r0) = N
T

(~r, ~r0) , (2.9a)

N (~r, ~r0) = N (~r0, ~r) . (2.9b)

The principle described above suggests to minimize U with T and ~Hl �xed. Since this

is not suitable for our physical problem, we have to �nd an equivalent result based on a

di�erent functional Ũ minimized with a stress tensor T and an external �eld ~H0 (instead

of local �eld ~Hd) �xed. Besides, there is a constraint on the norm of the unit vector ~w.

In other words, we have to �nd another functional Ũ satisfying the following equivalence

min
~w : ‖~w‖=1

U

∣∣∣∣
~Hl fixed

⇔ min
~w : ‖~w‖=1

Ũ

∣∣∣∣
~H0 fixed

. (2.10)

We prove in appendix B that the exact mathematical form of Ũ is the following

Ũ =

∫
V

[
fan(~w) +

1

2
βij
∂wl
∂xi

∂wl
∂xj
− Tikεµik − µ0MsH0iwi

]
d~r

−
∫∫
V 2

1

2
µ0M

2
s ~w(~r) ·N(~r, ~r0)~w(~r0)d~r0d~r, (2.11)

70



where the last term represents the demagnetization energy, with the noteworthy presence

of a factor 1
2
. The minimization of Ũ with respect to the direction ~w, with T and ~H0

imposed, leads to an equation giving actual equilibrium magnetization distribution within

the ferromagnetic body. Incidentally, it is interesting to point out that this mathemati-

cal problem completely describes the emergence of the domains structure typical of the

ferromagnetic materials. The result of this minimization, proved in appendix B, follows

~w × ~Heff = 0, (2.12)

where

~Heff = ~H0 + ~Hd −
1

µ0Ms

∂fan
∂ ~w

+
βij
µ0Ms

∂2 ~w

∂xi∂xj
+

2

µ0Ms

a : T ~w. (2.13)

What this equation means is that at equilibrium, the torque generated by all local e�ective

�elds is zero. These results are in perfect agreement with classical developments [1, 147,

182, 270, 271]. One can also consider the last three terms as e�ective �elds�which all

depend on ~w�and label them with the energy from which they derive ( ~Han, ~Hex and
~Hme).

To complete the discussion, boundary conditions must be imposed on the external

surface of the region V (see again appendix B for details):

βijεlstwt
∂wl
∂xj

ni = 0 ∀s on ∂V. (2.14)

In particular, with isotropic exchange (βij ∝ δij, the Kronecker delta) this can be further

simpli�ed. As ~w is always perpendicular to ∂ ~w
∂~n

(conservation of magnetization amplitude),

the boundary conditions simplify to

∂ ~w

∂~n
= 0 on ∂V. (2.15)

To conclude, the behavior of the ferromagnetic region V can be summarized by observing

that Eq. (2.12) must be satis�ed within V with boundary conditions stated in Eq. (2.14)

for the general case, or in Eq. (2.15) for isotropic exchange.

2.2 Equilibrium distribution in nanostructures

We now use an adapted version of the above general procedure to demonstrate the pos-

sibility to induce the motion of a domain wall through a uniform mechanical stress in
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uniaxial ferromagnets. The same variational method is used, but with the speci�cs of the

geometry and hypotheses integrated from the start. The equation obtained is that on

which the numerical work presented in the rest of this chapter is based.

2.2.1 De�nition of the energy functional

The geometry of the ferromagnetic region V considered is as shown on Fig. 2.2. It is

constituted by a nanostructure of thickness h, length L and variable width `(x). To

simplify, the geometry is considered symmetrical with respect to the yz-plane so that the

region V �lled by the magnetoelastic material is de�ned by

V =

{
−L

2
≤ x ≤ +

L

2
,−`(x)

2
≤ y ≤ +

`(x)

2
,−h

2
≤ z ≤ +

h

2

}
. (2.16)

Two major hypotheses will be assumed for our analysis: (i) the magnetization ~M = Ms ~w

lies in the xy-plane, and (ii) the magnetization depends only on x. Hence, we have

~w = ~w(x) = (cos Φ(x), sin Φ(x), 0) , (2.17)

where Φ(x) is the angle between ~w and the x-axis. Therefore, our hypothesis implies that
~M is considered constant within yz cross sections at x constant. This is reasonable as long

as the thickness and width of the nanomagnet are relatively small compared to its length

(nanostripe geometry). However, it is worth keeping this strong assumption in mind: this

model cannot describe vortex walls, or for that matter the tilt of transverse walls, as can

be seen for instance in the micromagnetic results obtained with nmag in chapter 1. As

for hypothesis (i), it is justi�ed by the fact that the geometry that we plan to study is

such that the dimensions along the z-axis is much smaller than the others. Therefore, at

equilibrium it is unlikely that the magnetization will exhibit a �nite component wz.

From the point of view of the physical response of the ferromagnetic material, we

assume a uniaxial behavior with an easy axis along ~x described by the energy density:

uan = −Kuw
2
x = −Ku cos2 Φ. (2.18)

Because of the uniaxial symmetry of the ferromagnet, the exchange energy described in

Eq. (2.3) simpli�es by considering two di�erent constants: β11 = A ; β22 = β33 = B and

βij = 0, ∀ i 6= j. More explicitely, we have

uex = A

(
∂ ~w

∂x

)2

+B

[(
∂ ~w

∂y

)2

+

(
∂ ~w

∂z

)2
]
. (2.19)
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σ

σ

y(HA)

x(EA)

~H0

~M

Φ(x)

z

ℓ(x)

h

L

Figure 2.2 � Ferromagnetic nanostructure characterized by a a variable width `(x) (here,
a parabola is shown as an example). The ferromagnetic easy-axis (EA) is aligned with

the x-axis, while the hard-axis (HA) corresponds to the y-axis. The magnetization ~M

is described by the angle Φ(x) (measured anticlockwise) and the magnetic �eld ~H0 and
mechanical action σ are applied to the system.

With the assumption in Eq. (2.17), we easily get

uex = A

[(
∂ cos Φ

∂x

)2

+

(
∂ sin Φ

∂x

)2
]

= A

[(
− sin Φ

∂Φ

∂x

)2

+

(
cos Φ

∂Φ

∂x

)2
]

uex = A

(
∂Φ

∂x

)2

. (2.20)

The applied magnetic �eld considered is along the y-axis, leading to the contribution:

uZe = −µ0Ms
~H0 · ~w = −µ0MsH0 sin Φ. (2.21)

Attention must be paid to the fact that this energy only covers the interaction with the

applied �eld. As described in chapter 1, this �eld is able to break the symmetry and to

modify the two stable positions of the magnetization induced by the anisotropy. Indeed,

with the sole in�uence of the anisotropy, we have the couple of positions (0, π). Adding

the magnetic �eld, we obtain the tilt of the stable states toward the magnetic �eld (here,

along +~y).
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We now introduce the magnetoelastic interaction. First of all we de�ne the mathema-

tical form of the magnetostriction. ε
µ
(~w) corresponds to the strain tensor associated with

the magnetization direction ~w for a free body (no stress). We point out that the displace-

ment �eld describing a uniform deformation along ~w can be written as ~ul(~x) = εl(~x · ~w)~w,

where εl is the so-called longitudinal deformation. On the other hand, a displacement �eld

corresponding to a uniform transversal deformation εt is given by ~ut(~x) = εt [~x− ~w(~x · ~w)].

The sum of the two contributions leads to a strain tensor εij = εlwiwj + εt(δij − wiwj).
It is a well established fact that magnetostriction is isovolumic, and thus we have

Trε
µ

= 0, i.e. εµii = εl + 2εt = 0, from which we can derive that εt = − εl
2
. By de�ning

λs = εl, typically referred to as the magnetostriction coe�cient, we have

εµij =
λs
2

(3wiwj − δij), (2.22)

and, introducing a positive magnetostriction coe�cient λs the general from of the mag-

netoelastic energy is

ume = −T : ε
µ

= −Tijεµij
= −λs

2
(3wiwj − δij)Tij

ume = −λs
2

(3wiwjTij − Tii) . (2.23)

In our case, we apply a unidirectional stress along the direction identi�ed by Φσ = 3π
4
. It

is thus convenient to work with axes (x′, y′) tilted with respect to the (x, y) frame by an

angle of π
4
(see �gure) in which we write ~w = (wx′ , wy′). Then, if Ty′y′ = σ and all of its

other components are zero, we obtain

ume = −λs
2

(3σw2
y′ − σ) = −3

2
λsσw

2
y′ + const. (2.24)

In order to obtain the corresponding energy density, we have to come back to the original

(x, y) system of axes. We have

~w = cos Φ ~ex + sin Φ ~ey = cos(Φ− π

4
) ~ex′ + sin(Φ− π

4
) ~ey′ . (2.25)

Now, in the (x′, y′) frame we have a unidirectional stress along the second axis (y′) and,

therefore, the energy density is given by Eq. (2.24), with

w2
y′ = sin2(Φ− π

4
)

= (sin Φ cos
π

4
− sin

π

4
cos Φ)2

=
1

2
sin2 Φ +

1

2
cos2 Φ− sin Φ cos Φ

w2
y′ = − sin Φ cos Φ + const. (2.26)
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Finally, we have proved that

ume =
3

2
λsσ sin Φ cos Φ. (2.27)

It is straightforward to check that a positive stress will tend to favor a magnetization along

a direction de�ned by an angle 3π
4

+kπ, and a negative stress will favor any magnetization

perpendicular to this axis.

In summary, the energy density of the system is:

u = −Ku cos2 Φ + A

(
dΦ

dx

)2

− µ0MsH0 sin Φ +
3

2
λsσ sin Φ cos Φ− 1

2
µ0Ms

~Hd · ~w, (2.28)

where the last term represents the demagnetization energy density, as shown in Eq. (2.11).

We determine the total energy U =
∫
V

ud~r by integrating Eq. (2.28) in the region V . For

the �rst four terms, one can note that they depend only on x.

U =

L
2∫

−L
2

h`(x)

[
−Ku cos2 Φ + A

(
dΦ

dx

)2

− µ0MsH0 sin Φ +
3

2
λsσ sin Φ cos Φ

]
dx

−
∫∫
V 2

1

2
µ0M

2
s ~w(~r) ·N(~r, ~r0)~w(~r0) d~r0d~r. (2.29)

2.2.2 E�ective anisotropy

Before getting to the derivation of the equation, it is appropriate to re�ect on the physics

behind some of the energy terms. It is key to understand the reason for domain wall

shift in a simple way. If we consider only the magnetic anisotropy and the magnetoelastic

energy terms above, it is clear that it is equivalent to an e�ective anisotropy, since both

are quadratic quantities (see Fig. 1.28). Therefore we can go further by actually writing

this e�ective anisotropy ueff comprising the combined e�ect of magnetic anisotropy and

magnetoelastic energy: ueff ≡ uan + ume. Let us de�ne an angle Φeff characterizing the

direction of this new anisotropy, and Keff its constant (unit: Jm−3). Their form can be

found by writing the following:

−Keff cos2 (Φ− Φeff) = −Ku cos2 Φ +
3

2
λsσ cos Φ sin Φ. (2.30)

A few lines of basic trigonometry calculation yields to the expression of Keff and Φeff

by identi�cation:
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Keff =

√
K2
u +

(
3

2
λsσ

)2

, (2.31)

Φeff = −1

2
arctan

(
3

2

λsσ

Ku

)
. (2.32)

The direction of the e�ective anisotropy thus depends on σ. While it is along the

x-axis when σ = 0, it can vary and is part of the interval ] − π
4
,+π

4
[. The two bounds

correspond to values of σ for which the magnetoelastic energy dominates the uniaxial

anisotropy (3
2
λs|σ| � Ku).

Now it is obvious that applying a uniform stress has the e�ect of generating a tilted

anisotropy. The two stable states with respect to this anisotropy are not equivalent in

terms of Zeeman energy, hence the symmetry-breaking role of the external magnetic �eld

along ~y. As an aside, it is interesting to notice that in principle, if we apply a stress with

an angle closer to π
2
instead of the value 3π

4
chosen here, the Zeeman energy gap would

be even greater and the system more e�cient.

2.2.3 Derivation of the main equation

We follow the same approach as in subsection 2.1.3 to derive the equation that the mag-

netization distribution should satisfy at equilibrium. Here, we will explicitly give the

developments that lead to the desired equation. Let us consider U as a functional of

Φ(x). We can apply the Gâteaux derivative, by introducing a perturbation function k

and a constant β as follows

d

dβ
U (Φ(x) + βk(x))

∣∣∣∣
β=0

=

L
2∫

−L
2

h`(x)

[
+ 2Ku cos Φ sin Φk(x)

− µ0MsH0 cos Φk(x) +
3

2
λsσ cos(2Φ)k(x) + 2A

dΦ

dx

dk

dx

]
dx

− 1

2
µ0M

2
s

∫∫
V 2

∂ ~w

∂Φ
(x) ·N(~r, ~r0)~w(x0)k(x)d~r0d~r

+

∫∫
V 2

~w(x)N(~r, ~r0)
∂ ~w

∂Φ
(x0)k(x0)d~r0d~r

 . (2.33)
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To continue, the exchange term is integrated by part, giving

L
2∫

−L
2

h`(x)2A
dΦ

dx

dk

dx
dx =

[
2h`(x)A

dΦ

dx
k(x)

]L
2

−L
2

−

L
2∫

−L
2

2hA
d

dx

(
`(x)

dΦ

dx

)
k(x)dx. (2.34)

The demagnetization term is non-local in that its value for each point depends on the

magnetization distribution in the whole region. Symmetries of the tensor N , as shown

previously in Eq. (2.9a) and Eq. (2.9b), allow to equate the last two integrals of Eq. (2.33)

involving N .∫∫
V 2

∂ ~w

∂Φ
(x) ·N(~r, ~r0)~w(x0)k(x)d~r0d~r +

∫∫
V 2

~w(x)N(~r, ~r0)
∂ ~w

∂Φ
(x0)k(x0)d~r0d~r


= 2

∫∫
V 2

∂w

∂Φ
(x) ·N(~r, ~r0)~w(x0)k(x)d~r0d~r. (2.35)

This can be rewritten with explicit integration domains, for the magnetic �eld integrals.

Since ~Hd = Ms

∫
V

N(~r, ~r0)~w(~r0)d~r, we eventually obtain

∫∫
V 2

Ms
∂ ~w

∂Φ
(x) ·N(~r, ~r0)~w(x0)k(x)d~r0d~r =

+L
2∫

−L
2

+
`(x)
2∫

− `(x)
2

+h
2∫

−h
2

∂ ~w

∂Φ
(x) · ~Hd k(x) dxdydz

=

+L
2∫

−L
2

h`(x)
∂ ~w

∂Φ
(x) · 〈 ~Hd〉y,z k(x) dx, (2.36)

where 〈 ~Hd〉yz = 1
h`

+
`(x)
2∫

− `(x)
2

+h
2∫

−h
2

~Hd(~r)dzdy (a function of x), is the average value of the �eld

~Hd over sections at x constant. By substituting Eqs. (2.34) and (2.36) in Eq. (2.33) we
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eventually get

d

dβ
U (Φ(x) + βk(x))

∣∣∣∣
β=0

=

+L
2∫

−L
2

h`(x)k(x)

[
2Ku cos Φ sin Φ− µ0MsH0 cos Φ +

3

2
λsσ cos 2Φ

]
dx

−
+L

2∫
−L

2

2hA

(
d`

dx

dΦ

dx
+ `(x)

d2Φ

d2x

)
k(x) dx+

[
2hA`(x)

dΦ

dx
k(x)

]+L
2

−L
2

− µ0Ms

+L
2∫

−L
2

h`(x)
∂ ~w

∂Φ
(x) · 〈 ~Hd〉y,z k(x) dx. (2.37)

Since we wish to study the motion of a domain wall in the interval
[
−L

2
,+L

2

]
, we �x

the value of Φ
(
−L

2

)
and Φ

(
+L

2

)
in order to have a domain wall at x = 0 when σ = 0.

How these conditions are chosen will be explained in subsection 2.2.4. The perturbation

function k must vanish at the interval end-points x = ±L
2
. Hence, Eq. (2.37) appears

with a single integral and it is zero for any real function k when

h`(x)

[
2Ku cos Φ sin Φ− µ0MsH0 cos Φ +

3

2
λsσ cos 2Φ

]
− 2hA

(
d`

dx

dΦ

dx
+ `(x)

d2Φ

d2x

)
− µ0Msh`(x)

∂ ~w

∂Φ
(x) · 〈 ~Hd〉y,z = 0, (2.38)

or, dividing by −2Ah`(x)

Φ′′(x) + Φ′(x)
`′(x)

`(x)
− 1

2A

[
2Ku cos Φ sin Φ− µ0MsH0 cos Φ +

3

2
λsσ cos 2Φ

]
+

1

2A
µ0Ms

∂ ~w

∂Φ
(x) · 〈 ~Hd〉y,z = 0. (2.39)

Now, ~w being equal to (cos Φ, sin Φ, 0), we can �nally write

Φ′′(x) + Φ′(x)
`′(x)

`(x)
− 1

2A

[
2Ku cos Φ sin Φ− µ0MsH0 cos Φ +

3

2
λsσ cos 2Φ

+µ0Ms sin Φ〈 ~Hdx〉y,z − µ0Ms cos Φ〈 ~Hdy〉y,z
]

= 0. (2.40)

This is the main equation governing the equilibrium behavior of the magnetization orien-

tation within the considered structure. From a mathematical point of view it is a second
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order integro-di�erential equation with �xed boundary conditions (〈 ~Hd〉y,z depends on Φ

through an integral operation). The original character of this equation can be underli-

ned by observing that it describes a one-dimensional model but, at the same time, its

second term in Eq. (2.40) takes into account the actual shape of the ferromagnetic region

(through the variable width ` and its derivative `′). This point also represents a crucial

modi�cation introduced with respect to the classical development summarized in section

2.1. Therefore, this approach, speci�cally elaborated for the study of a two-domain na-

nostructure, allows for the analysis of domain wall con�gurations with a strong reduction

of the necessary computational e�ort with respect to, e.g., a standard �nite element mi-

cromagnetic approach. The latter, while allowing to tackle a wide variety of magnetic

problems, is less computationally e�cient for such a simple system.

Having introduced a variable width, it is interesting to notice that it acts through

the ratio `′

`
on one of the exchange terms. In order to clearly highlight its in�uence, let

us write the equation in the absence of any other contributions apart from the exchange

energy, the equation can be written:

`(x)Φ′′(x) + `′(x)Φ′(x) = 0

⇔ d

dx
(`(x)Φ′) = 0

∃C0 Φ′(x) =
C0

`(x)
(2.41)

With this relationship between Φ′ and `, one can see that if the function ` is not con-

stant, the regions of greater spatial change of magnetization (for instance a domain wall)

will tend to be concentrated in constrictions. A region of lower width is thus tantamount

to a local stable position for a domain wall.

To complete the description of the model, we need to specify the boundary conditions,

and to describe the numerical approach used to solve the problem.

2.2.4 Boundary conditions and stable states

Consistently with the variational procedure followed, the boundary conditions, i.e. the

values of the magnetization assigned to both ends of the region, are �xed quantities.

Therefore, they will not change throughout the simulations, and as a result, the choice of

their values will be arbitrary to some degree. In order to put relevant values with regard

to the expected behavior of the system, we chose to have the boundary values equal to
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the angles Φs (s ∈ 1, 2) of the two stable states. Indeed, in the situation simulated, we

can expect a distribution with a domain wall between two "plateau" regions with angles

close to those of the stable states. This is corroborated by the result of our preliminary

numerical investigations presented in chapter 1.

H0 (103 Am−1)

Φs

Φ1 (no demag)
Φ2 (no demag)
Φ1 = Φ2

Φ1 (with demag)
Φ2 (with demag)

0 50 100 150 200

0

π

4

3π
4

π

π

2

Figure 2.3 � E�ect of the magnetic �eld on the stable states of the system (with σ = 0).
The two angles get closer as H0 increases until only one stable position remains (Φ =
π
2
) for H0 ≥ Ha. In dashed lines are represented the stable states when a simpli�ed

demagnetizing �eld is taken into account (Ny = 0.225).

Let us now calculate those two values: we have to �nd the solutions to the minimization

of the energy density in the simple case of a uniformly magnetized system, that is with

Φ′(x) = 0 and Φ′′(x) = 0. Moreover, we �rst neglect the demagnetizing �eld in order to

simplify the calculation. The equation for Φ becomes

2Ku cos Φ sin Φ− µ0MsH0 cos Φ +
3

2
λsσ cos 2Φ = 0. (2.42)

The solutions of this equation are the angles of two magnetization directions generated

by the combination of anisotropy, externally applied �eld and mechanical stress. To solve

for Φ we use the representations cos Φ = 1−t2
1+t2

and sin Φ = 2t
1+t2

, where t = tan Φ
2
. The

�nal result is the following fourth-degree algebraic equation:(
−µ0MsH0 +

3

2
λsσ

)
+ 4Kut− 9λsσt

2 − 4Kut
3 +

(
µ0MsH0 +

3

2
λsσ

)
t4 = 0. (2.43)
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Because it is a fourth-degree equation, and given the choice of parameters, there are

potentially four distinct solutions, only two of which are relevant to our physical problem.

However, it is not di�cult to identify the correct solution from the numerical point of

view.

Φ1 (no demag)
Φ1 (with demag)
Φ2 (no demag)
Φ2 (with demag)

π

5π
4

3π
4

π

2

π

4

0

- π
4
-200 -100 0

σ (MPa)

100 200

Φs

Figure 2.4 � Angles Φ1 and Φ2 of stable magnetization orientations as a function of the
mechanical stress σ, with and without demagnetization.

To begin, let us look at the particular case where σ = 0:

4Kut− µ0MsH0

(
1 + t2

)
= 0. (2.44)

This equation gives two symmetric solutions with respect to Φ = π
2
that are distinct

provided that the magnetic �eld is not too strong (see chapter 1). Indeed, beyond H0 =

Ha, the only stable equilibrium state is de�ned by Φ = π
2
. Solutions Φs are plotted in

Fig. 2.3, with the transition at H0 = 93 × 103 A/m. Also mentioned in the previous

chapter is the fact that the demagnetizing �eld in a nanostripe geometry will add a shape

anisotropy that will increase the uniaxial anisotropy. This e�ect is highly signi�cant, as

it appears from our calculations that it can increase the apparent anisotropy �eld more

than twofold from the calculated value Ha. This can be seen in Fig. 2.3 where a simpli�ed

demagnetizing �eld has been introduced in the calculation of the stable states (hypothesis
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of a uniformly magnetized ellipsoid of in�nite length: ~Hd = N ~w with the diagonal tensor

N).

Figure 2.5 � Energy landscape as a function of the magnetization angle Φ and applied
magnetic �eld H0. The application of a stress modi�es the stable magnetization states
and their energy densities, favoring a given state over the other one. In the �rst panel we
considered σ = 0, in the second one σ > 0 and in the third one σ < 0.

As for the case where σ 6= 0 withH0 belowHa, there are also two stable states. Fig. 2.4

shows these angles for |σ| < 200 MPa and H0 = 20× 103 A/m, with and without demag-

netization (same approximation as in Fig. 2.3). As the stress increases, there is a shift of

the stable state angles and a saturation that is quicker in the absence of demagnetization.

In this chapter, in order to simplify the simulations we chose to ignore demagnetization

in the calculation of the boundary conditions, as it is geometry-dependent. In any case,

a small mismatch between the plateau angle and the boundary conditions do not seem to

alter signi�cantly the behavior of the system (see subsection 2.4.1).

To understand the interplay between �eld and stress, we can look at the energy lands-

cape represented in Fig. 2.5. The three sub�gures correspond to di�erent values of stress
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(one is zero, the other two are ±20 MPa). We can observe the intrinsic bistability of the

system under the threshold Ha of magnetic �eld and the e�ect of the mechanical stress,

which generates an energy gap between the stable states (only when H0 6= 0).

2.3 Numerical procedure

This section describes the numerical approach for solving the equation Eq. (2.40) since it

cannot be treated analytically. It includes a quick description of the technique as well as

the way it was checked for convergence and accuracy.

2.3.1 Presentation

The aim of this section is to describe the ad hoc numerical method proposed to solve

Eq. (2.40). This is a second order nonlinear integro-di�erential equation with boundary

conditions. Therefore, the standard Euler method or the more advanced Runge-Kutta

techniques, which are relevant for problems with initial conditions, are not suited to this

problem. Rather, the knowledge of the boundary conditions�see Eq. (2.43)�suggests

the that a nonlinear relaxation, or iterative, method would be appropriate [272]. The

implementation was done with the MATLAB software (2014b version).

To introduce this technique, we consider a discretization of the interval
[
−L

2
,+L

2

]
in

N points and N −1 intervals. All quantities will therefore be discretized and de�ned over

uniform regions [xi, xi+1]× [− l(xi)
2
,+ l(xi)

2
]× [−h

2
,+h

2
] for i ∈ {1, . . . , N − 1}. The quantity

∆x will be taken equal to L
N−1

. Eq. (2.40) can be written in a discretized way:

Φm(xi+1)− 2Φm+1(xi) + Φm(xi−1)

(∆x)2
+

Φm(xi+1)− Φm(xi−1)

2∆x
× `′(xi)

`(xi)

− 1

2A

[
Ku sin 2Φm+1(xi)− µ0MsH0 cos Φm+1(xi) +

3

2
λsσ cos 2Φm+1(xi)

+µ0Ms sin Φm+1(xi)〈Hdx〉y,z − µ0Ms cos Φm+1(xi)〈Hdy〉y,z
]

= 0. (2.45)

The unknown is Φm+1, whereas quantities with the m index are given by the previous

iteration. One can see that in order to compute the value of Φm+1 at location i, knowledge

of the previous values at neighboring points is required. To solve this equation we can

use an iterative procedure based on the bisection method, which allows for both fast

convergence and arbitrarily high precision [273].
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Figure 2.6 � Two-pass scheme used in the procedure with N = 8. A �rst pass performs
the bisection for even indices (in blue) using values at odd indices (in orange) from the
previous step, and the second pass performs the bisection for odd indices using values at
even indices that have just been computed. Values at the extremities do not change since
they are �xed boundary conditions (see dashed arrows). Solid line arrows indicate the
inputs for the calculation. Both passes use demagnetization data from the previous step.

We can start the procedure with a given guess function Φ0(xi) (e.g., the linear function

imposed by Φ(x1) and Φ(xN)), and then proceed by iterations. A possible scheme to go

from m to m + 1 is represented in Fig. 2.6 and was used in the procedure. As Φ(x1) =

Φ(−L
2
) and Φ(xN) = Φ(+L

2
) are �xed, vertical dashed arrows corresponding to Φ1 and ΦN

represent the �xed boundary conditions which are the same for any step of the procedure.

As for other values, odd and even indices are computed separately in two successive

substeps. For each even (resp. odd) point, Φm+1(xi) is computed using the values of its

odd (resp. even) neighbors. Below is an excerpt of the MATLAB routine showing the

classical bisection method, where r is the unkwown and err is the threshold value for

convergence (based on the absolute-value norm).
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% de f i n i t i o n o f the func t i on

function f = f1 ( r )
f=(Phi ( i +1)−2∗ r+Phi ( i −1))/dx^2−1/(2∗A)∗(−mu0∗H0∗Ms∗cos ( r )
+2∗K_u∗cos ( r )∗ sin ( r )+3/2∗ lambda_s∗ sigma∗cos (2∗ r ) )
+ld ( i )/ lx ( i )∗ ( Phi ( i+1)−Phi ( i −1))/(2∗dx )
+1/(2∗A)∗mu0∗Ms∗(−sin ( r )∗Hdx+cos ( r )∗Hdy ) ;

end

% b i s e c t i o n procedure

i f f 1 ( a )∗ f 1 (b)>0
disp ( ' Problem :  f ( a )∗ f (b)>0 ' )

else

c = ( a + b )/2 ;
e r r = 1 ;
while e r r > 1e−15

i f f 1 ( a )∗ f 1 ( c)<0
b = c ;

else

a = c ;
end

e r r = abs ( a−b ) ;
c = ( a + b )/2 ;
end

end

The only non-trivial term to compute is the demagnetization contribution. Indeed, alt-

hough tools have been proposed [274,275] for the purpose of simplifying the computation

of the demagnetization, it often remains the least straightforward part. The numerical

determination of the exact demagnetizing �eld is achieved through a scheme explained

in appendix C. As a matter of fact, the demagnetizing �eld at each point depends on

the magnetization of the whole ferromagnetic body, which, in addition, changes at each

iteration. Therefore, a naive implementation is likely to be computationally intensive.

Here, we consider the contributions of the N − 1 parallelepipedal regions, which can be

calculated through closed form expressions, as demonstrated in appendix C. Then, the

total demagnetizing �eld, measured at any given point, is simply the sum of all contributi-

ons generated by all parallepepipedal regions. Of course, we introduce a small systematic

error due to the fact that the system with variable width can be only approximately re-

presented by the juxtaposition of all the parallelepipeds. However, the approximation is

very good for a low derivative `′(x) relatively to the discretization. The terms 〈Hdx〉y,z
and 〈Hdy〉y,z can then be computed with the magnetization distribution at the m-th step,

which by and large represent the most computation-intensive elements from a numerical

point of view. From a computational point of view, the key thing to notice is that in
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Eqs. (C.19) and (C.20) geometry (derivatives of F function) and physics (magnetization)

can be decoupled. The former can be computed once and for all o�ine before the itera-

tion procedure actually begins, and then components of the demagnetizing �eld can be

computed from the current magnetization distribution. The result is a simple product

between a matrix with (�xed) geometry-dependent factors and the magnetization, which

represent an enormous bene�t in terms of computation time. To compute the mean value

of the demagnetizing �eld on the cross section plane of each point, in this chapter we

considered the demagnetizing �eld calculated on the x-axis. This approximation requires

to calculate the �eld at only one point per location i, which can be interesting depen-

ding on the time constraints of the o�ine calculation. Alternatively, one could also try

to map more precisely the parallelepipedal region, for instance using adequate Gaussian

quadratures.

2.3.2 Convergence and test against analytical solution

Numerical calculations have been carried out with a given set of physical properties

corresponding to the magnetoelastic material Terfenol. Accordingly, we used a mag-

netization saturation Ms = 64 × 104 A/m [255], an exchange interaction coe�cient

A = 9 × 10−12 J/m [21]. We also adopt an anisotropy constant Ku = 37.5 × 103 J/m3

corresponding to an anisotropy �eld Ha = 92× 103 A/m (de�ned through the expression

Ku = 1
2
µ0MsHa), which can be easily obtained in real ferromagnetic layers [253]. We

emphasize that Ha represents the bifurcation threshold shown in Fig. 2.3. The strong

magnetostriction in Terfenol is characterized by a coe�cient λs = 1× 10−3 [276]. Moreo-

ver, an applied �eld H0 = 20× 103 A/m is used throughout all simulations.

Within the code, convergence can be controlled using two stopping criterias. One

will control the residual error in the bisection method, that is an upper bound for the

distance between the solution found and the actual solution. The other is for the iterative

procedure itself, it is the euclidian norm between values at steps m and m+ 1, written δ.

First, it seemed clear that for reasonable input parameters, the code did not crash or

give absurd results for the angle Φ. In particular, the application of a stress results in the

motion of a region of high spatial variation (domain wall) in a predictable direction, while

in the absence of stress, the distribution remains symmetric. In order to check that the

result obtained is correct, we can compare it to a solution that can be handled analytically

in a simple case. For that purpose, we consider a region with anisotropy and exchange
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only, other terms being neglected and the width supposed constant. The total energy can

be derived from Eq. (2.29)

U =

+L
2∫

−L
2

h`(x)

[
−Ku cos2 Φ + A

(
∂Φ

∂x

)2
]

dx. (2.46)
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Figure 2.7 � Magnetization angle distribution Φ(x) converging toward the analytical so-
lution (red curve) for the simple system with only exchange and anisotropy contributions.
The iteration process starts from a linear guess. The inset shows the relative error versus
the number of iterations.

In this case the solution is given by the following closed form expressions√
Ku

A

(
x+

L

2

)
=

1

ξ
F

(
arcsin

ξ sin Φ√
ξ2 − cos2 Φ

,
1

ξ

)
, (2.47)

1

ξ
K

(
1

ξ

)
=
L

2

√
Ku

A
, (2.48)

which are proved in appendix A (where we also de�ne the elliptic functions F and K).

The second equation must be solved with respect to the parameter ξ and then the �rst

one gives the relation between x and Φ characterizing the speci�c domain wall under

investigation (for details see appendix A). We underline that this result is consistent with
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classical expressions obtained considering L → +∞ [20] already discussed in chapter 1.

This solution is now used to check the numerical technique by direct comparison. We

consider a uniform nanostripe with a constant thickness h = 20 nm, a constant width

` = 40 nm and a length L = 400 nm. As one can see in Fig. 2.7, the numerical procedure

correctly converges toward the expected solution, from an initial linear guess between two

boundary conditions (here, 0 and π). In the inset of Fig. 2.7 we have also shown the

relative error δ (the di�erence in norm between steps m and m + 1) which approaches

zero, proving the convergence of the sequence [277]. The stopping criterion of the iterative

process is based on a threshold value of δ, referred to as δmin (here we used δmin = 10−20).

Number of points

ǫ

200 400300 500 600100
10−10
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Figure 2.8 � Absolute error ε between numerical and theoretical solutions versus the
number N of points used in the discretization (all simulations have been performed with
the same stopping criterion based on δmin = 10−20)

The convergence of the procedure can be more closely monitored by quantifying the

absolute error ε de�ned as the di�erence between the numerical and the theoretical solu-

tion. We ran simulations with di�erent levels of discretization but with the same stopping

criterion δmin = 10−20. In Fig. 2.8 we show ε as a function of the number of points N used

in the discretization. The relationship between the two is clearly represented by a power

law, the exponent being about −4. It appears that this value of the exponent remains

constant by varying the parameters A and Ku of the problem, thereby proving a universal
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and fast convergence. In Fig. 2.9, we show the compromise between accuracy and com-

putational load, which should come as no surprise. To do so, we look at the relative error

δ versus the number of iterations for di�erent levels of discretization. By increasing the

number of points we improve the accuracy but we slow down the convergence, as is visible

from the slopes in the �gure. The cost of accuracy here is twofold: �rst, with more points

each iteration does take more time to compute and second, the convergence is obtained

after a larger number of iterations.
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Figure 2.9 � Relative error δ as a function of the number of iterations for di�erent values
of N . In all cases, the convergence is de�nitively exponential. Moreover, for a larger
number of points the convergence is slower.

From these results, the proposed method appears to be reliable, e�cient, and suita-

ble for our purposes. In the simulations presented below, the number of points N was

systematically taken equal to 400, which means that ∆x ≈ 1 nm.

2.4 Results

Once some con�dence could be placed in the output of this numerical procedure, a cam-

paign of tests was carried out. The main results from the operation of the code will hereby
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be presented. First, the possibility to induce motion is demonstrated. Depending on the

geometry studied, the continued application of a stress can lead to the ejection of domain

wall from the simulated ferromagnet (leaving a single domain), or to an equilibrium po-

sition. In the latter case, an exploration of the relationship between equilibrium position

and applied stress will be presented. The section ends with an energy-based interpretation

of this relationship, and a discussion on the piezeoelectric option for the implementation

of stress-mediated domain wall control.

2.4.1 Motion, con�nement and ejection

In the previous section, it was shown how the procedure converged toward the correct

domain wall shape in the absence of �eld or stress. When a bias magnetic �eld is applied

along ~y, the con�guration is slightly changed (the gap between the plateau regions is more

narrow) and the domain wall remains stable at x = 0. This solution can be used as an

initial guess. As the simulation is carried out in material of positive magnetostriction and

with a positive (resp. negative) applied stress, the domain wall shifts to the left (resp.

right). Another important aspect is the quick adaptation of the plateau values when the

system is subjected to a stress. We can verify here that the choice of boundary conditions

is appropriate.

In a parallelepipedic geometry (constant width nanostripe), the sustained application

of a constant stress leads to a single-domain con�guration. Indeed, as long as the stress

is applied, there is an incentive for domain wall shift, only eventually stopped by the

�xed boundary condition. An example of such an "ejection" is shown in Fig. 2.10 where

we considered a uniform nanostripe with h = 20 nm, ` = 40 nm and L = 400 nm.

We adopted the boundary conditions described by Eq. (2.42). The symmetrical curve

between −L/2 and +L/2 represents the solution with σ = 0, used as initial guess for the

iterative procedure when σ = −100 MPa. All the dashed lines represent iterations of the

relaxation method. We plotted a curve every 1000 iterations to better show the evolution

of the process and we used δmin = 10−10 for the stopping criterion. The domain wall

arrives at the right extremity, eliminating the second magnetic domain. In the inset we

also show the relative error δ versus the iteration number. We can identify two relaxation

regimes: in the �rst one the relative error decreases and the magnetization distribution

assumes the correct shape (e.g., in terms of the values in the plateau regions as well as

the slope of the domain wall); in the second one the relative error is quite constant and

the wall moves until ejection, corresponding to the �nal error drop. Additionally, we can
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Figure 2.10 � Iterative process showing the ejection of the domain wall in a ferromagnet
with constant rectangular section (h = 20 nm and ` = 40 nm). In the inset the relative
error δ is plotted versus the iterations number. We used δmin = 10−10 and σ = −100 MPa.

notice that the gap between the plateau values and boundary conditions (due to the e�ect

of demagnetization) is consistent with what was found in Fig. 2.4 in that regard.

Although there may be a coincidental relationship between the speed at which the

equilibrium distribution is reached and the intensity of the stress applied, the code is

not able to provide any information about motion dynamics, which will be covered in

chapter 3. Because this relaxation procedure is only made to �nd the magnetization

distribution of the equilibrium state, the intermediate magnetization distributions as the

simulations proceeds have no physical reality. As a result, simulations such as those with

a constant section�which inevitably lead to the ejection of a domain wall�are of limited

interest apart from showing that the numerical procedure devised to solve the equation

appear to work and that its results support the conclusions of preliminary investigations

of chapter 1. The end result will always be a single-domain con�guration in this case.

However, the possibility to introduce a variable width in the model paves the way for

interesting analyses. As described in chapter 1, an increased width at the extremities

creates a barrier for the domain wall. With an appriopriate shape, it is therefore possible
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to manipulate a con�ned domain wall. In the rest of this chapter, we focus on the study

of con�ned domain walls.
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Figure 2.11 � Iterative process showing the path toward the equilibrium position of the
domain wall for a hourglass-shaped nanostructure with central width `(0) = 40 nm and
width at extremities `(±L/2) = 70 nm (h = 20 nm). In the inset the relative error
δ is plotted versus the iterations number (log scale). We used δmin = 10−10 and σ =
−100 MPa.

In Fig. 2.11 we observe an equilibrium position obtained in a nanostructure with

variable width (parabola-shaped). We considered a nanostructure with a thickness h =

20 nm and a width `(x) = `(0) + 4 `(±L/2)−`(0)
L2 x2 where `(0) = 40 nm (central width),

`(±L/2) = 70 nm (width at extremities) and L = 400 nm. Starting with the same

initial guess used in Fig. 2.10, we apply σ = −100 MPa and we obtain a �nal position

at about 60 nm. As before, we note two scaling regimes for the relative error, namely

(i) modi�cation of the shape and (ii) displacement of the wall. The following section

explores the in�uence of the stress value on the equilibrium position. It is important to

point out that the distribution obtained at equilibrium is di�erent from classical domain

wall shapes, due to the in�uence of both the magnetoelastic energy and the variable width

of the nanostructure.

As an aside, our simulations showed that this behavior (con�nement) can also be

observed with a magnetic �eld ~H1 along the ~x direction in the absence of a transverse
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magnetic �eld and mechanical stress: below a threshold �eld the domain wall can move

while remaining con�ned. The results allow to talk about an equivalent magnetic �eld,

de�ned as the magnetic �eld along ~x necessary to result in the same domain wall displa-

cement. This shows the universality of the potential barrier-generating phenomenon of a

variable width.

2.4.2 Stress-position relationship

The knowledge of the magnetization distribution for several values of σ allows us to

determine the relationship between position of the domain wall x∞DW and applied stress.

Admittedly, the determination of the exact location of the domain is somewhat arbitrary,

especially here where the width of the wall is signi�cant with respect to the extent of the

nanostructure. Here, we chose to consider the location where the slope is maximum to be

the position of the wall. In other words, its position x∞DW is determined with max
(

dΦ
dx

)
.

σ (MPa)

x
∞ D
W

(n
m
)

ℓ1(x)
ℓ2(x)
ℓ3(x)

8040 120-40-80-120

-50

50

100

0
-100

0

Figure 2.12 � Domain wall displacement at equilibrium x∞DW as a function of the applied
stress for three di�erent parabolic pro�les `1, `2 and `3 (`1(0) = `2(0) = `3(0) = 40 nm,
`1(±L/2) = `2(±L/2) = 70 nm, `3(±L/2) = 80 nm, h1 = 10 nm, h2 = h3 = 20 nm). After
a quite linear region for low values of σ, the response saturates, exhibiting a displacement
range depending on the geometry. Also visible is the (anti)symmetry of the equilibrium
position, such that x∞DW (−E0) = −x∞DW (E0).

We performed this analysis for three slightly di�erent geometries as shown in Fig. 2.12.
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As a reminder, the important quantity which will in�uence the behavior of the domain

wall is the ratio `′

`
. In all cases we used a parabolic pro�le `(x) de�ned in the caption.

Between `1 and `2, the thickness is changed, while between `2 and `3, the slope of the

variable width is changed. The response exhibits a quite linear behavior for small values

of σ and a saturation of the displacement for high values of σ. We underline that a

larger section at the extremities of the nanostructure reduces the slope of the x∞DW − σ
curve and maximum displacement of the domain wall (it can be deduced by comparing

the results for `2 and `3). This is due to the total exchange energy associated with the

domain wall. Similarly, a larger thickness of the nanostructure reduces the slope of the

curve and maximum displacement of the domain wall (it can be deduced by comparing

the results for `1 and `2). This is due to the demagnetization energy, which is lower with

thinner nanostructures (for additional information see subsection 2.4.3).
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Figure 2.13 � (a) Magnetization distributions Φ(x) for several values of the applied stress σ
(a: σ = 60 MPa; b: σ = 20 MPa; c: σ = 0 MPa; d: σ = −20 MPa; and e: σ = −60 MPa).
Solid lines correspond to solutions with boundary conditions calculated as in Eq. (2.42),
whereas dashed lines represent the solutions with Φ(−L/2) = 0 and Φ(+L/2) = π as
boundary conditions. One can notice that the in�uence of the di�erence between the
two sets of boundary conditions is barely visible here. (b) Corresponding energy density
pro�les u(x): the energy gap between the two plateau regions is clearly visible. Also, the
region of increased energy marks the presence of the domain wall, which is thinner when
a stress is applied.

The magnetization distributions corresponding to di�erent values of the applied stress

are shown in Fig. 2.13 together with the related energy density distributions within the

nanostructure. These results have been obtained with the pro�le `1(x). The �rst plot deals

with the magnetization distributions, with solid lines corresponding to solutions obtained
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with the boundary conditions in Eq. (2.42) and dashed lines to the boundary conditions

Φ(−L/2) = 0 and Φ(+L/2) = π. We can observe that the boundary conditions do not

in�uence the overall behavior of the domain wall in a dramatic fashion, although the e�ect

is noticeable, especially for large stress values. The absence of signi�cant e�ect will be

especially true for long stripes with two large and clearly de�ned domains. The di�erences

can indeed be only observed in the regions close to the extremities, and those far from

them are hardly a�ected. The second plot shows the corresponding energy density pro�les

u(x) de�ned in subsection 2.2.1, such that U =
∫ +L/2

−L/2 u(x)h`(x)dx. It is not di�cult to

identify the regions corresponding to the two domains (with di�erent energy densities)

and the region related to the wall between them (peaks). It is interesting to note that an

applied stress σ has the e�ect of making the domain wall thinner.

2.4.3 Energetic interpretation

It is clear that the motion is driven by the gap in energy density between the two domains.

However, it is not straightforward to identify the role of each energy contribution. In order

to better understand the interplay between all contributions, it is useful to look at their

dependance on σ. Here, we used once again the boundary conditions as a proxy for the

stable states of the system. As shown in subsection 2.2.4, the di�erence between the

two sets of angles stems from the introduction of the geometry-dependant e�ect of the

demagnetizing �eld and, while signi�cant, does not change the overall behavior of the

system. The quantities u′ are de�ned as uZe + uan + ume.

In the �rst four sub�gures in Fig. 2.14, individual contributions are plotted against

σ, as well as the energy density. Whereas both anistropy and magnetoelastic energy

densities exhibit similar trends for Φ1 and Φ2, this is absolutely not the case for the

Zeeman energy. Indeed, it is increased for Φ1 and decreased for Φ2. This is highlighted

in the �fth sub�gure, where the di�erence in energy density for those same contributions

is plotted against σ. A striking observation is that the anisotropy and magnetoelastic

gaps almost balance each other for any value of σ (they both reach their extremum when
3
2
λsσ = Ku, which corresponds to σ = 25 MPa). As a result, the sum of these four terms is

almost equal to the Zeeman energy gap. Therefore, as this gap is the cause of the motion,

one could here talk about stress-triggered �eld-driven domain wall motion. Also, as the

stable states get close to {−π
4
, 3π

4
}, the saturation is associated with vanishing anisotropy

and magnetoelastic energy gaps as those two states have the same energy density values

for those two contributions.

95



Figure 2.14 � (a) Magnetoelastic energy, (b) anisotropy energy, (c) Zeeman energy and
(d) the sum of those three contributions associated with angles Φ1 and Φ2, plotted against
σ for H0 = 20 × 103 A/m. (e) Di�erence in energy density u′2 − u′1 = u′(Φ2) − u′(Φ1),
and individual contributions, as functions of σ. In order to better appreciate the overall
behavior, σ is taken between 0 and 300 MPa (there is complete antisymmetry for negative
values).
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In order to try to understand the link between the energy gap to the equilibrium

position x∞DW , we can develop an even simpler model. Let us consider a ferromagnet with

variable width and two-domains characterized by the angles Φ1 and Φ2, neglecting the

demagnetization and with a magnetization distribution such that

θ(x) =

{
Φ1 ∀x ∈

[
−L

2
, x0

[
Φ2 ∀x ∈

[
x0,+

L
2

]
This means that there is an in�nitely thin domain wall at the location x = x0. The-

refore the total energy of the system can be written as the sum of three terms:

U =

∫ L
2

−L
2

u(x)S(x) dx (2.49)

U =

∫ x0

−L
2

u′1S(x) dx+

∫ L
2

x0

u′2S(x) dx+

∫ +L
2

−L
2

ud dx+ UDW (x0). (2.50)

Obviously, the naive hypothesis of a wall with no width would yield an in�nite exchange

energy, which is not physical. The quantity UDW introduced here is �nite and represents

the energy cost of the wall region (exchange, anisotropy and so forth). Moreover, we

introduced the demagnetization energy density ud = −1
2
µ0Ms

~Hd · ~w. To continue, let us

recall that u′1 and u
′
2 do not depend on x because the magnetization is considered uniform.

The equilibrium position for the domain wall is found when U is minimum. This can be

written as follows:

d

dx0

[
u′1

∫ x0

−L
2

S(x) dx+ u′2

∫ L
2

x0

S(x) dx+

∫ +L
2

−L
2

ud dx+ UDW

] ∣∣∣∣
x0=x∞DW

= 0

⇔ (u′1 − u′2)S(x∞DW ) +
dUd
dx0

(x∞DW ) +
dUDW

dx0

(x∞DW ) = 0.

Introducing the surface energy of the domain wall eDW , then UDW = S(x0)eDW , we can

write the equation giving the value of x∞DW :

S ′(x∞DW )

S(x∞DW )
+

∆u′

eDW
+

1

S(x∞DW )eDW

dUd
dx0

∣∣∣∣
x0=x∞DW

= 0. (2.51)

Again, one can see that the relevant quantity regarding the variable cross section is the

ratio S′

S
= `′

`
. The only free parameter here is eDW which can be estimated experimentally,

theoretically, or even numerically for instance by using the relaxation-based numerical
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procedure presented in this chapter (by �nding the value of eDW for which the solution

of Eq. (2.51) matches the x∞DW − σ relationship obtained using the relaxation method).

In principle, this tremendously simple model could help design the cross section for a

desired static response at minimal computational cost. For that purpose, it is necessary

to have a good estimate of the demagnetizing term dUd
dx0

. Indeed, without taking into

account the demagnetizing �eld, it appears that a parabolic pro�le (hourglass-shaped)

such as those we chose in subsection 2.4.2 is not able to con�ne the domain wall for

reasonable values of eDW . In a classical domain wall with only exchange and anisotropy,

the surface energy can be written 4
√
AKu [6], which in our case gives is 2 × 10−3 Jm−2.

With this order of magnitude, the pro�le required to prevent a single-domain outcome

exchange alone is so sti� that overall the geometry cannot reasonably be considered akin

to a nanostripe. This fact is important from the physical point of view here, as it means

that the demagnetization is critical for the con�nement. Without demagnetization, there

can be no con�nement for the geometries presented in this chapter, which means that

there is no solution to Eq. (2.51) for |x0| < L
2
(a fact con�rmed by independent testing

with the relaxation procedure stripped of the in�uence of demagnetization).
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Figure 2.15 � Domain wall displacement as a function of the applied stress obtained
by solving Eq. (2.51). Physical parameters are the same of those used previously, the
geometry corresponds to the `1 width pro�le and eDW = 5× 10−3 Jm−2.
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Solving Eq. (2.51) for x0 yields the equilibrium position of the domain wall for a given

value of σ. The result correctly predicts rightward motion for σ < 0 and leftward motion

for σ > 0, as well as the saturation as σ increases if eDW is larger than a threshold value.

The order of magnitude required happens to be very much consistent with basic theoretical

predictions (≈ 10−3 Jm−2). However, the crude assumption regarding the magnetization

distribution (two uniform regions) yields a rather poor quantitative agreement between

these results (see Fig. 2.15) and those previously obtained (see for instance Fig. 2.12).

In particular, the saturation is not established as quickly. Nevertheless, this small model

shows the relevance of considering the energy density gap between the two domains as

the main drive for domain wall displacement.

2.4.4 Piezoelectric generation of stress

In these simulations, we supposed that a uniform stress is applied to the system. For

technological considerations, it is interesting to actually consider the possible ways to ap-

ply a uniform stress on a nanostructure. Depositing the magnetoelastic layers on piezoelec-

tric substrates is an obvious option (see Fig. 2.16). For that purpose, ceramic materials

such as lead magnesium niobate-lead titanate solid solution [Pb(Mg
f rac13Nb 2

3
)O3](1−x)-

[PbTiO3]x (0 < x < 1)�often abbreviated PMN-PT�has been drawing much attention.

The reason for this is that its dielectric and piezoelectric properties are very interesting.

σ

σ

PE

ME

y(HA)

x(EA)

~H0

~M

Φ(x)

z

~E0
τ

τ

Figure 2.16 � Schematic of a magnetoelastic nanostructure (ME) mechanically coupled to
a piezoelectric substrate (PE).

Because of these piezoelectric properties, the stress tensor applied to the magnetoe-

lastic nanostructure will not be as simple as what was considered before. Let us re-
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write the magnetoelastic term so that this is correctly taken into account. As in sub-

section 2.2.3, the general form of the energy density describing the magnetoelastic inte-

raction is ume = −Tijεµij. Its mathematical form is εµij = λs
2

(3wiwj − δij). If we consider
a (011)-cut PMN-PT substrate, we have Tx′x′ = τ and Ty′y′ = σ. Therefore, we obtain

ume = −3
2
λs(σ−τ)w2

y′+const. Now, within the piezoelectric material we suppose that the

relationship between the strains and the electric �eld is linear. Admittedly, while most

piezoelectric materials do exhibit a region where this assumption is valid, nonlinear beha-

vior should be expected in experimental works and is reported in chapter 4. In any cae,

as a result of this hypothesis, one can write ε11 = d31E0 and ε22 = d32E0. In a PMN-PT

ceramic substrate, d32 = 600 pC/N and d31 = −1900 pC/N [278]. On the other hand,

in the magnetoelastic material we have Tij = 2µεij + λεkk, where λ and µ are the Lamé

coe�cients (the strain within the substrate is supposed to be completely transmitted to

the magnetoelastic layer which is very thin). By considering T33 = 0 and ε11 and ε22

imposed by the piezoelectric substrate, we easily obtain T11 = τ = 2µ2(λ+µ)d31+λd32
2µ+λ

E0 and

T22 = σ = 2µ2(λ+µ)d32+λd31
2µ+λ

E0. The corresponding energy density is therefore given by

ume = −3λsµE0(d32− d31)w2
y′ + const. The rotated frame de�ned by the directions noted

1 and 2 is identical to what was used in subsection 2.2.1. Therefore, we must substitute

w2
y′ = sin2(Φ− π

4
) = − sin Φ cos Φ + const., to eventually obtain

ume = 3λsµE0(d32 − d31) sin Φ cos Φ. (2.52)

Instead of dealing directly with the applied stress, we have the electric �eld which

generates two orthogonal stress components of opposites signs, σ and τ . This is linked

to the fact that d31 and d32 are negative and positive, respectively. We can now see the

potential of such a substrate for technological applications. Here, while a tensile stress

favors one dimension, an orthogonal compressive stress favors a plane containing this

dimension. With this modi�cation, Eq. (2.40) becomes:

Φ′′(x) + Φ′(x)
`′(x)

`(x)

− 1

2A
[2Ku cos Φ sin Φ− µ0MsH0 cos Φ + 3λsµ(d32 − d31)E0 cos 2Φ

+µ0Ms sin Φ〈 ~Hdx〉y,z − µ0Ms cos Φ〈 ~Hdy〉y,z
]

= 0. (2.53)

It is clear from this equation that a stress σ′ = σ− τ would then have the exact same

e�ect on the static behavior of the system. For this reason and because of the linear

hypothesis, it should come as no surprise that the relationship between electric �eld and
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Figure 2.17 � Magnetization angle distributions θ(x) within the nanostructure for a �xed
magnetic �eld (H0 = 20×103 A/m) and several values of electric �eld (17 values uniformly
distributed in −3.5 MV/m ≤ E0 ≤ +1.1 MV/m). We observe that the domain wall moves
to the left for E0 > 0 and to the right for E0 < 0.

displacement is the same as that between applied stress and displacement already obtained

and shown in Fig. 2.12. For instance, Fig. 2.17 shows the angle Φ of the magnetization

distribution at equilibrium for several values of applied the electric �eld applied to the

system. This approach, based on the electric �eld and a PMN-PT substrate is adopted

in the work presented in chapter 3.

Introducing piezoelectric quantities allows the estimate of the energy consumption

associated with the proposed technique. We can then draw a comparison with other

methods based on the application of an external electric current and show that stress-based

systems are promising from an energetic perspective, as stated in chapter 1. The total

energy for moving the domain wall between two positions is the sum of the electrostatic

energy stored within the piezoelectric substrate (CV 2) and the magnetic energy dissipated

within the magnetoelastic nanostructure. Nevertheless, the latter is typically negligible

and the total energy is approximately equal to the electrostatic contribution [252,257]. If

we consider a piezoelectric PMN-PT substrate (length L = 400 nm, width b = 80 nm, and

thickness d = 1 µm) with relative dielectric constant εr = 5500 for the structure described

by `1(x), we obtain an energy ∆E = εrε0LbdE
2
0 = 1.5 fJ = 3.6× 105 kBT for moving the
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wall between the maximum values of ±x∞DW (we used E0 = ±106 V/m generated by an

electric potential di�erence of ±1 V). For comparison, we can cite the energy dissipation

∆E = 104 fJ for one logic operation in a current-driven gate based on the domain wall

motion [40]. In this case we numerically proved that the magnetic dissipation (v 10−17 J)

is two order of magnitude smaller than the electrostatic contribution (v 10−15 J).

2.5 Conclusion

In this chapter, we presented a complete model describing the static behavior of magne-

tization in magnetoelastic nanostructures with variable width subjected to an external

magnetic �eld and a mechanical stress, using an ad hoc numerical procedure.

In particular, we wrote the equation governing the magnetization distribution by ta-

king into account anisotropy, exchange, demagnetization, magnetostriction and Zeeman

e�ects. The approach chosen consisted in writing the total energy of the system in terms

of the direction of the magnetization and then in applying the techniques of the calculus

of variations in order to minimize the total energy itself. The end result is a nonlinear

integro-di�erential partial equation which solution corresponds to the equilibrium state of

the magnetic system. To solve this equation, we proposed an e�cient numerical techni-

que in order to solve the main nonlinear integro-di�erential equation with a relaxation, or

iterative, method. We studied the convergence properties of this algorithm by applying

it to a particular case, which can be handled analytically. With this convenient tool, we

demonstrated the possibility to induce domain wall motion: in a constant section nanos-

tripe, applying a uniform stress in time leads to the ejection of the domain wall so that

the magnetization distribution becomes uniform. With an appropriate design of the cross

section pro�le, we also demonstrated that it is possible to control a magnetic domain wall

position in a ferromagnetic nanostructure with external mechanical actions. We showed

that the origin of motion lies in the gap in Zeeman energy of the two domains induced

by an e�ective anisotropy �eld modulated by the stress. This stress can be generated in

multiferroic heterostructures (composed of piezoelectric and magnetoelastic subsystems).

One of the key advantages of such a technique of domain wall motion is its relevance from

the energetic point of view.
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Chapter 3

Dynamics of stress-induced domain

wall motion

In the previous chapter we presented a model which gives the equilibrium magnetic con-

�guration of a 1D nanomagnet subjected to a magnetic �eld and mechanical action.

However, all intermediate magnetization distributions taken from these simulations do

not possess any physical reality nor do they represent actual magnetization states of the

nanomagnet. This is because the path followed by the system as the simulation is car-

ried out cannot be equated with a temporal evolution. For this reason, it is interesting

to consider the possibility to devise a model which includes the Landau-Lifshitz-Gilbert

equation that governs magnetization dynamics. This is the subject matter of this chapter,

which includes the method followed to �nd the adequate equation, the numerical appro-

ach chosen to solve it, as well as the main results. Important physical insights pertaining

to stress-induced magnetization dynamics are also presented.

The work of this chapter is the subject of one publication [279].

3.1 Equations governing domain wall dynamics

This section contains the path toward �nding the right dynamical equation for the problem

we chose to study. After the choice of notation are explained and energy contributions

de�ned, the expression of the e�ective �eld is sought. From there, the corresponding

Landau-Lifshitz-Gilbert equation is written.

3.1.1 Overview

The logic behind the approach is similar to what was described in chapter 2, in that a

variational procedure is followed to obtain the e�ective �eld. However, this is not the
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Figure 3.1 � Schematic of the system studied. The electric �eld applied along ~z generates
in the piezoelectric substrate a stress distribution with two components σ and τ of opposite
sign.

end result as the equation ~w × ~Heff = ~0 only describes the equilibrium state. Here, the

expression of the e�ective �eld has to be taken as an input to the Landau-Lifshitz-Gilbert

(LLG) equation that governs magnetization dynamics. The version of the equation used

is as follows

∂ ~w

∂t
= +

γ0

1 + α2

(
~w × ~Heff − α~w ×

(
~w × ~Heff

))
, (3.1)

where α is the Gilbert damping coe�cient, and γ0 = µ0γ, γ being the gyromagnetic ratio

of the test particle (both quantities should be negative to describe the electron precession).

The e�ective �eld ~Heff already appeared in the previous developments and gathers within

a single vector all the physical contributions involved. The same hypothesis of a one-

dimensional system is assumed here, i.e. quantities depend only on x. One important

change with respect to the previous study is that it is now compulsory to consider a

magnetization �eld which direction is not bound to the xy-plane, de�ning a new angle

Θ ∈ [0, π] allowing the representation of out-of-plane magnetization components (see

Fig. 3.1). However the approximation stating that ~M depends only on x is preserved. As

a result, one can write ~w = (cos Φ sin Θ, sin Φ sin Θ, cos Θ). Obviously, these two angular

variables Φ and Θ now depend on x and t.

A minimization procedure similar to the previous example has to be carried out.

However, the variable of interest in the function will be ~w = (wx, wy, wz) instead of Φ. In
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this context it is thus useful to rewrite all contributions in terms of this variable, with more

speci�c forms for each term in relation to the con�guration studied. Also, we considered

the mechanical coupling of a magnetoelastic layer with PMN-PT, already mentioned in

chapter 2.

3.1.2 De�nition of the energy functional

Several of the energy terms are quite straightforward to write from prior expressions.

The uniaxial anisotropy is simply uan = −Kuw
2
x, while the Zeeman contribution be-

comes uZe = −µ0MsH0wy. The exchange energy can be written uex = A
(
∂ ~w
∂x

)2
=

A

((
∂wx
∂x

)2
+
(
∂wy
∂x

)2

+
(
∂wz
∂x

)2
)
. A minor adaptation has to be made for the develop-

ment of the magnetoelastic energy. Indeed, as ~w is not restricted to the xy-plane, the

expression is slightly di�erent:

ume = −3

2
λS
(
τw2

x′ + σw2
y′

)
,

ume = −3

4
λS
(
(τ + σ)

(
w2
x + w2

y

)
+ 2(τ − σ)wxwy

)
. (3.2)

with the same notations as used previously (wx′ = ~w·~ex′ = (~ex+~ey)/
√

2 and wy′ = ~w·~ey′ =

(~ey − ~ex)/
√

2). While
(
w2
x + w2

y

)
was a constant in chapter 2, since we had Θ = π

2
, here

this term will contribute to the Gâteaux derivative and thus to the dynamics.

The demagnetization contribution being unchanged, U is the functional of ~w and reads

U =

∫ +L
2

−L
2

h`(x)

(
−Kuw

2
x + A

(
∂ ~w

∂x

)2

− µ0MsH0wy

−3

4
λS
(
(τ + σ)

(
w2
x + w2

y

)
+ 2(τ − σ)wxwy

))
dx

−1

2
µ0M

2
s

∫∫
V 2

~w(~r0) ·N(~r, ~r0)~w(~r0)d~rd~r0, (3.3)

where the factor 1
2
in the demagnetization term is still present for the reasons described

in subsection 2.1.2.
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3.1.3 Determination of e�ective �eld

As previously, this quantity has to be minimized with the constraint ‖~w‖ = 1 (see appen-

dix B):

min
~w : ‖~w‖=1

U

∣∣∣∣
~H0 fixed

⇔ min
~w

U +

∫
V

λ(~w · ~w − 1)d~r

∣∣∣∣
~H0 fixed

, (3.4)

where we introduced the Lagrange multiplier λ(x) already mentioned in appendix B.

Let us consider an arbitrary real vector ~k = (kx, ky, kz) and continue with the Gâteaux

derivative, using the same properties and simpli�cations as previously:

d

dβ
U
(
~w(x) + β~k(x)

) ∣∣∣∣
β=0

=

+L
2∫

−L
2

h`(x)

(
−2Kukxwx + 2A

∂ ~w

∂x
· d~k

dx
− µ0MsH0ky

− 3

2
λs((τ + σ)(kxwx + kywy) + (τ − σ)(kxwy + kywx))

+ 2λ(x)~w · ~kdx

)
− µ0M

2
s

∫∫
V 2

~k ·N(~r, ~r0)~w(r0)d~rd~r0. (3.5)

Using integration by part again on the exchange term, and introducing the quantity

〈 ~Hd〉yz as in subsection 2.2.3, one is left with a single integral

d

dβ
U
(
~w(x) + β~k(x)

) ∣∣∣∣
β=0

=

+L
2∫

−L
2

h`(x)~k ·
(
−2Kuwx~x− 2A

(
∂2 ~w

∂x2
+
`′(x)

`(x)

∂ ~w

∂x

)

− 3

2
λs((τ + σ)(wx~x+ wy~y) + (τ − σ)(wy~x+ wx~y))

− µ0Ms
~H0 − µ0Ms〈 ~Hd〉yz + 2λ~w

)
dx. (3.6)

This has to be true for any vector ~k. Therefore we can write the following equation:

− 2Kuwx~x− 2A

(
∂2 ~w

∂x2
+
`′(x)

`(x)

∂ ~w

∂x

)
− µ0Ms

(
~H0 + 〈 ~Hd〉yz

)
− 3

2
λs((τ + σ)(wx~x+ wy~y) + (τ − σ)(wy~x+ wx~y)) + 2λ(~r)~w = 0. (3.7)
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By taking the cross-product of Eq. (3.7) with ~w, the Lagrange multiplier term can be

deleted and one obtains

~w × ~Heff = 0, (3.8)

with

~Heff = ~H0 + 〈 ~Hd〉yz +
2

µ0Ms

(
Kuwx~x+

A

`(x)

∂

∂x

(
`(x)

∂ ~w

∂x

)
+

3

4
λs((τ + σ)(wx~x+ wy~y) + (τ − σ)(wy~x+ wx~y))

)
. (3.9)

This is the e�ective �eld which has to be used in the Landau-Lifshitz-Gilbert equation.

3.1.4 Derivation of dynamical equations

The expression of the e�ective �eld in Eq. (3.9) has to be substituted in Eq. (3.1). The

latter can be decomposed into the following three equations:

∂wx
∂t

= − γ0

1 + α2
((wyHz − wzHy) + α(wy(wxHy − wyHx)− wz(wzHx − wxHz))) ,

(3.10.1)

∂wy
∂t

= − γ0

1 + α2
((wzHx − wxHz) + α(wz(wyHz − wzHy)− wx(wxHy − wyHx))) ,

(3.10.2)

∂wz
∂t

= − γ0

1 + α2
((wxHy − wyHx) + α(wx(wzHx − wxHz)− wy(wyHz − wzHy))) ,

(3.10.3)

where we used ~H instead of ~Heff to simplify expressions. To proceed from here, it is useful

to develop the derivatives of the left side into explicit forms, using the expressions of ~w

components given in subsection 3.1.1. We adopt the common notation �̇ ≡ ∂�
∂t
.

∂wx
∂t

=
∂ (cos Φ sin Θ)

∂t
= − sin Θ sin Φ Φ̇ + cos Φ cos Θ Θ̇, (3.11.1)

∂wy
∂t

=
∂ (sin Φ sin Θ)

∂t
= sin Θ cos Φ Φ̇ + sin Φ cos Θ Θ̇, (3.11.2)

∂wz
∂t

=
∂ (cos Θ)

∂t
= − sin Θ Θ̇. (3.11.3)

Substituting Eq. (3.11.3) in Eq. (3.10.3), as well as Eq. (3.11.1) and Eq. (3.11.2) in

Eq. (3.10.1) and Eq. (3.10.2), respectively, we can write
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sin Θ Φ̇ =
γ0

1 + α2
(− cos Φ cos ΘHx − sin Φ cos ΘHy + sin ΘHz

+ α(− sin ΦHx + cos ΦHy)), (3.12)

Θ̇ =
γ0

1 + α2
(− sin ΦHx + cos ΦHy

+ α(cos Φ cos ΘHx + sin Φ cos ΘHy − sin ΘHz)), (3.13)

where Eq. (3.12) is obtained by calculating cos Φ∂wy
∂t
− sin Φ∂wx

∂t
. As an aside, consi-

dering that 1
sin Θ

∂ ~w
∂Φ

= (− sin Φ, cos Φ, 0) and ∂ ~w
∂Θ

= (cos Φ cos Θ, sin Φ cos Θ,− sin Θ), the

equations can be rewritten as
sin ΘΦ̇ =

γ0

1 + α2

(
−∂ ~w
∂Θ
· ~H + α

1

sin Θ

∂ ~w

∂Φ
· ~H
)

Θ̇ =
γ0

1 + α2

(
1

sin Θ

∂ ~w

∂Φ
· ~H + α

∂ ~w

∂Θ
· ~H
) . (3.14)

A more explicit form of this equation requires the expressions of the three components

of ~H. Basic calculations not worth showing here give the following:

Hx = Hdx +
2

µ0Ms

(
Ku cos Φ sin Θ +

3

4
λs((τ + σ) cos Φ sin Θ + (τ − σ) sin Φ sin Θ)

+A

(
`′

`

(
− sin Φ sin Θ

∂Φ

∂x
+ cos Φ cos Θ

∂Θ

∂x

)
− cos Φ sin Θ

((
∂Φ

∂x

)2

+

(
∂Θ

∂x

)2
)

−2 sin Φ cos Θ
∂Φ

∂x

∂Θ

∂x
− sin Φ sin Θ

∂2Φ

∂x2
+ cos Φ cos Θ

∂2Θ

∂x2

))
, (3.15.1)

Hy = H0 +Hdy +
2

µ0Ms

(
3

4
λs((τ + σ) sin Φ sin Θ + (τ − σ) cos Φ sin Θ)

+A

(
`′

`

(
cos Φ sin Θ

∂Φ

∂x
+ sin Φ cos Θ

∂Θ

∂x

)
− sin Φ sin Θ

((
∂Φ

∂x

)2

+

(
∂Θ

∂x

)2
)

+ 2 cos Φ cos Θ
∂Φ

∂x

∂Θ

∂x
+ cos Φ sin Θ

∂2Φ

∂x2
+ sin Φ cos Θ

∂2Θ

∂x2

))
, (3.15.2)

Hz = Hdz +
2A

µ0Ms

(
`′

`
sin Θ

∂Θ

∂x
− cos Θ

(
∂Θ

∂x

)2

− sin Θ
∂2Θ

∂x2

)
. (3.15.3)
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After simpli�cations, Eq. (3.14) can be rewritten Φ̇ =
1

sin Θ

γ0

1 + α2
(−s+ αr),

Θ̇ =
γ0

1 + α2
(r + αs),

(3.16)

where we introduced the two quantities r and s such that

r =− sin ΦHdx + cos ΦHdy + cos ΦH0 +
2

µ0Ms

(−Ku cos Φ sin Φ sin Θ

+
3

4
λs(τ − σ) cos 2Φ sin Θ + A

(
`′

`
sin Θ Φ′ + 2 cos Θ Φ′Θ′ + sin Θ Φ′′

))
, (3.17)

and

s = cos Φ cos ΘHdx + sin Φ cos ΘHdy − sin ΘHdz + sin Φ cos ΘH0

+
2

µ0Ms

(
Ku cos2 Φ sin Θ cos Θ +

3

4
λs((τ + σ) cos Θ sin Θ

+ 2(τ − σ) cos Φ sin Φ cos Θ sin Θ) + A

(
`′

`
Θ′ + Θ′′ − cos Θ sin Θ Φ′2

))
. (3.18)

In Eq. (3.17) and (3.18), we used the notation �′ ≡ ∂�
∂x

for Φ and Θ as was hitherto the

case for `.

Incidentally, it is interesting to point out that the equations that dictate the equili-

brium state are given by r = 0 and s = 0 (taking Φ̇ = Θ̇ = 0). In the particular case

where Θ = π
2
, we are left with r = 0 which is equivalent to Eq. (2.40). Indeed, those as-

sumptions are implicit in the hypotheses chosen in the beginning of section 2.2. Similarly

to Eq. (2.40), Eq. (3.16) is such that theoretical insights on steady-state solutions akin to

Walker-like calculations appear out of reach. Therefore, the numerical approach remains

the only way to investigate the physics of stress-induced domain wall motion. In fact, we

can identify the reason why the problem does not lend itself to analytical treatment, con-

trary to �eld-driven motion in the case explored by Schryer and Walker [75]. The problem

lies with the tilted anisotropy introduced by the stress which prevents from obtaining the

same kind of simple result of �eld-driven motion as in appendix D. Meanwhile, this fea-

ture has far-reaching consequences on the physical di�erences in the dynamics that will

be explained in sections 3.3 and 3.4.

3.2 Numerical procedure

This section describes the numerical approach for solving equation Eq. (3.16) since it

cannot be treated analytically. It includes a quick description of the technique as well as
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the way it was checked for convergence and accuracy.

3.2.1 Presentation

The most obvious scheme that comes to mind in the context of the numerical treatment

of di�erential equations is the explicit Euler method. However, implicit schemes are far

superior to explicit schemes, which often appear insu�cient in solving nonlinear problems.

The reason for this is that the propagation of errors leads to strong constraints in terms of

temporal discretization in order to prevent physically and numerically aberrant evoluti-

ons. Typically, in the case of the heat equation for instance�which shares some features

with the Landau-Lifshitz-Gilbert equation, namely the order of the derivatives with re-

spect to space and time�the time step dt should not be greater than a threshold value

proportional to dx2 (spatial discretization) [273]. The computational cost of these con-

straints make convergence hard to achieve in practice. The choice was to use an implicit

�nite di�erence scheme, or backward Euler method. As for the solver chosen, despite our

early attempts it appears that this system of two non-linear integro-di�erential equations

cannot be solved using the built-in tools in Matlab. This led us to develop a dedicated

algorithm, and we chose to implement Newton's method which proved to work quite well.

A general introduction to Newton's method is followed by some details about our ad hoc

implementation.

Newton's method is routinely used in numerical analysis to �nd the root of a di�eren-

tiable real-valued function. Let us de�ne F : Rk → Rk a vector function of real variables

x = [x1, . . . , xk]
ᵀ for which we have to �nd the root:

F (x) = 0. (3.19)

A �rst estimate of the solution is found from a guess x0, by calculating the value x1

where the �rst-order approximation to F at point x0 is zero. This involves the calculation

of the Jacobian J of the F function:

J(x0)(x1 − x0) = −F (x0), (3.20)

where Jij = ∂Fi
∂xj

is a k-by-k square matrix of which all elements are calculated at the guess

values x0. The process is iterative: the solution x1 obtained is a better approximation of

the root, and is used to �nd a new solution x2, etc. For an arbitrary step m in this loop:

J(xm)(xm+1 − xm) = −F (xm). (3.21)
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The procedure is stopped after a number of steps when su�cient precision is obtained,

i.e. when the norm of F (xm) is less than a predetermined value, and the solution xnew is

thus assigned the value xm.

In our case k = 2N , since we have two variables Φ and Θ of size N . Let us concatenate

them and de�ne the following variable:

X =


Φ1

Θ1
...

ΦN

ΘN

 . (3.22)

At any time step, the previous state is used as an input guess for �nding the next,

and there are 2N equations to be solved,

F (Xnew) = 0, (3.23)

with

F (Xnew) = Xnew −Xold −∆tG(Xnew). (3.24)

Here, Xnew is the unknown, and this equation shows that the procedure chosen is implicit.

The vector function G corresponds to the right-hand side of Eq. (3.16). For each index i

in {1, . . . , 2N}, Gi depends on the variable Xi, but also on neighboring variables (such

as Xi−1 and Xi+1) because of the presence of spatial derivatives X
′ and X ′′ in Eq. (3.16)

(expressions of discretized derivatives are identical to what is shown in Eq. (2.45)).

The procedure followed is iterative and includes a convergence check based on the

comparison of the euclidian norm of F with a convergence parameter arbitrarily taken

equal to 2 × 10−30. We introduced here an exponent m as in Eq. (3.21) to refer to the

steps in the Newton iterative loop. For any step m:

J(Xm)Xm+1 = J(Xm)Xm − F (Xm), (3.25)

where J is the Jacobian matrix. The right hand side can be expanded:

J(Xm)Xm − F (Xm) = Xold + ∆t

(
G(Xm)− dG

dX
Xm

)
(3.26)

The derivative is de�ned as the sum
∑
i

∂G
∂Xi

. In practice, it is typically composed of six

terms (since it depends on Θi, Θi−1, Θi+1, Φi, Φi−1 and Φi+1). Attention should also be

brought on the fact that the �rst term of the right-hand side in Eq. (3.26) (Xold
i ) is a mere
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parameter in the equation. In any case, the solution can then be found by calculating

Xm+1 = J(Xm)−1B(Xm), with the vector B is as follows:

B(Xm) = Xold + ∆t

(
G(Xm)− dG

dX
(Xm)Xm

)
. (3.27)

Below is an excerpt of the MATLAB code, which is the content of one step (from m

to m+ 1) in the Newton procedure for a given time step. The �rst loop is the de�nition

of the Jacobian matrix. It should be noted that the �rst two and last two elements of

the diagonal are treated separately as Φ1 Θ1, ΦN and ΘN are unchanged through the

simulation (boundary conditions). Names of variables are the same as above, except for

dsrphi, drstheta and the like which refer to speci�c partial derivatives of G.

% the Jacobian matrix

J (1 ,1)=1; J (2 ,2)=1;
for i = 3 : 2 : 2∗ Npoints−3

% odd i nd i c e s : dot phi equa t i ons

J ( i , i )=1−dt∗gamma0/(1+alpha ^2)∗ dsrph i ( f loor ( i / 2 ) ) ;
J ( i , i+1)=−dt∗gamma0/(1+alpha ^2)∗( d s r the ta ( f loor ( i / 2 ) ) . . .

−((−s ( f loor ( i /2))+ alpha∗ r ( f loor ( i / 2 ) ) ) . . .
.∗ cos (ph( f loor ( i / 2 ) ) ) ) . / sin (ph( f loor ( i / 2 ) ) ) . ^ 2 ) ;

J ( i , i+2)=−dt∗gamma0/(1+alpha ^2)∗ dsrphip ( f loor ( i / 2 ) ) ;
J ( i , i+3)=−dt∗gamma0/(1+alpha ^2)∗ dsrthetap ( f loor ( i / 2 ) ) ;
J ( i , i−1)=−dt∗gamma0/(1+alpha ^2)∗ dsrthetam ( f loor ( i / 2 ) ) ;
J ( i , i−2)=−dt∗gamma0/(1+alpha ^2)∗dsrphim ( f loor ( i / 2 ) ) ;
% even i nd i c e s : dot t h e t a equa t i ons

J ( i +1, i+1)=1−dt∗gamma0/(1+alpha ^2)∗ dr s the ta ( f loor ( i / 2 ) ) ;
J ( i +1, i+2)=−dt∗gamma0/(1+alpha ^2)∗ drsphip ( f loor ( i / 2 ) ) ;
J ( i +1, i+3)=−dt∗gamma0/(1+alpha ^2)∗ drsthetap ( f loor ( i / 2 ) ) ;
J ( i +1, i )=−dt∗gamma0/(1+alpha ^2)∗ drsph i ( f loor ( i / 2 ) ) ;
J ( i +1, i−1)=−dt∗gamma0/(1+alpha ^2)∗ drsthetam ( f loor ( i / 2 ) ) ;
J ( i +1, i−2)=−dt∗gamma0/(1+alpha ^2)∗drsphim ( f loor ( i / 2 ) ) ;

end

J (2∗Npoints −1 ,2∗Npoints−1)=1;
J (2∗Npoints , 2∗ Npoints )=1;

% r i g h t s i d e

B(1)=phi ( 1 ) ; B(2)= theta ( 1 ) ;
B(2∗Npoints−1)=phi ( Npoints ) ;
B(2∗Npoints)=theta ( Npoints ) ;
B( 3 : 2 : 2 ∗ Npoints−3)=phi_old ( 2 : Npoints−1)+dt∗gamma0/(1+alpha ^ 2 ) . . .

∗((− s+alpha∗ r ) . / sin (ph)−(( dsrtheta−(−s+alpha∗ r ) . ∗ cos (ph ) . . .
. / sin (ph ) . ^ 2 ) . ∗ ph+dsrthetam .∗ theta ( 1 : Npoints−2)+dsrthetap . . .
.∗ theta ( 3 : Npoints)+dsrph i .∗ th+dsrphim .∗ phi ( 1 : Npoints − 2 ) . . .
+dsrphip .∗ phi ( 3 : Npoints ) ) ) ;
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B(4 : 2 : 2 ∗ Npoints−2)=theta_old ( 2 : Npoints−1)+dt∗gamma0/(1+alpha ^ 2 ) . . .
∗( r+alpha∗s−(d r s the ta .∗ ph+drsthetam .∗ theta ( 1 : Npoints − 2 ) . . .
+drsthetap .∗ theta ( 3 : Npoints)+drsph i .∗ th+drsphim . . .
.∗ phi ( 1 : Npoints−2)+drsphip .∗ phi ( 3 : Npoints ) ) ) ;

% so l v i n g equa t ion

X=J\B ' ;

The end result is then used to compute the value of F and check it against the

convergence parameter. We should also mention that the demagnetizing �eld is held

constant within the Newton's method procedure of a time step. It is recalculated before

entering the procedure, hence it is not fully implicit. The code can be stopped either

after a given amount of time, when the domain wall has reached a given position, or when

the system has reached equilibrium (from a criteria similar to that used in the relaxation

code).

3.2.2 Convergence and test against analytical solution

Using this computational scheme, convergence is achieved at each time step for reasonable

inputs of parameters. It is intriguing to note that any attempt to remove demagnetization

or introduce a simpli�ed demagnetization in the presence of a stress entails the eventual

failure of the code. However when convergence is achieved, it is very quick, demonstrating

the e�ciency of Newton's method. This allowed us to use a very small internal convergence

parameter (2× 10−30).

The physical parameters considered here are the same than in chapter 2, except for λs

which is taken equal to 2×10−4 here. As a matter of fact, it is this way closer to the value

of magnetic multilayers such as those used in our laboratory and described in chapter 4.

In any case, this change amounts to a simple rescaling of stress values. Furthermore,

we chose to use the electric �eld as the variable dictating the mechanical stress applied

to the system. Thus, the values of σ and τ in Eq. (3.16) are given by expressions in

subsection 2.4.4. One additional parameter that was not present in the previous study

is the Gilbert damping constant. Its value is known to be typically higher in thin �lms

than in bulk materials [280]. In all our simulations, it assumes four di�erent values, from

0.12 to 0.06. A higher damping constant means less pronounced precession and smaller

domain wall velocities for a given stimulus (see Eq. (1.9)). It should also be noted that

throughout these simulations, the gyromagnetic ratio γ was taken equal to the opposite

of its real value (≈ −1.76 × 1011 s−1T−1), and is thus positive instead of negative. It

results from this that the precession is carried out in the other direction, and that we are
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looking at magnetism for a positive charge. While this mistake a�ects all the results, the

dynamics will be una�ected. The consequences of a reversed precession will be mentioned

as we go along in the discussion, every aspect of which will remain valid.

In chapter 2 we compared the result of the code to a known analytical solution for the

magnetization distribution. We can check that this numerical tool dealing with magne-

tization dynamics also passes this test, and that it converges to the correct distribution

with the application of a stress (as compared to the result of the previous code). While

this turns out to be the case, it is not su�cient in itself. As a matter of fact, even if the

code is able to �nd an equilibrium distribution, it only shows that the procedure is able to

relax to a distribution given by r = 0 and s = 0 but it does not guarantee that the path

followed is correct from the dynamical point of view. Therefore, there is a crucial need to

check the procedure against a case where an analytical solution is known. As shown in

subsection 1.2.3, the case of a �eld-driven motion can be handled analytically. Therefore,

we chose to compare the output of the code with the velocity of the �eld-driven motion of

a head-to-head domain wall. This case is di�erent from what had been treated by Schryer

and Walker who considered an easy axis perpendicular to the direction of motion. Here,

the anisotropy is along the x-axis, as is the direction of motion. Contrary to the account

given in Eqs. (1.9) and (1.10), this situation requires the contribution of demagnetization,

introduced here in the simpli�ed form ~Hd = −N ~M , as if it were generated by an in�nitely

long ellipsoid. N is diagonal (with tr(N) = 1) and the elements of the diagonal are noted

Nx, Ny and Nz. This point is addressed further in appendix D. The result is the following:

v(H1) = −γ0H1

α

√
A

Ku − µ0M2
s /2(Nz − cos2 φ0Nx − sin2 φ0Ny)

, (3.28)

sin 2φ0 =
2H1

αMs(Ny −Nx)
=
H1

Hc

. (3.29)

In Fig. 3.2 we show two sets of comparisons that have been made. The code is also

suited to the computation of �eld-driven dynamics, when E0 = 0, H0 = 0, and a magnetic

�eld ~H1 = H1~y is introduced. For di�erent values of H1 we compared the output of the

code with the analytical expressions in Eqs. (3.28) and (3.29). A damping coe�cient α

of 0.1 is assumed and Ms is taken equal to 5 × 105 A/m. The two values of anisotropy

considered are Ku = 103 Jm−3 and Ku = 105 Jm−3. As for the demagnetization, we chose

Ny = 0.995 and Nz = 1 − Ny = 0.005 (the hypothesis being that of an in�nitely long

ellipsoid we have Nx = 0). The resulting breakdown �eld is 24.75× 103 A/m.

114



H1 (103 A/m)

v
D
W

(m
/
s)

analytical
numerical

15 205 10

200

400

600

800

0

Ku = 103 J/m3

Ku = 105 J/m3

Figure 3.2 � Direct comparison of the output of the code with Walker's analytical solu-
tion in the case of �eld-driven motion. The agreement is very good for both values of
anisotropy. Ms is changed here compared to other simulations and is equal to 5×105 A/m.

As visible in Fig. 3.2, there is an excellent agreement for both values of Ku between

the numerical and analytical velocities. This gives con�dence in the capacity of this

numerical procedure to correctly represent the dynamical trajectories of domain walls.

However, it should be noted that the code systematically crashes for H1 becomes superior

to Hc = 24.75 A/m, even only slightly superior. This indicates that there is a fundamental

change in the dynamics beyond the Walker breakdown which cannot be accounted for by

our numerical implementation.

3.3 Dynamics in hourglass geometry

This section deals with the results obtained concerning the dynamics of the system with

variable width studied in chapter 2. The trajectory and shape of domain walls in such

structures are explored. Then, the dependence on the electric �eld of domain wall velocity

is studied and discussed. Also, the asymmetry that appears in the dynamics with respect

to the electric �eld is explained in terms of the balance between compressive and tensile

components of the corresponding applied stress.
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3.3.1 Shape of domain walls

Figure 3.3 � Schematic of the parabolic geometry considered in the dynamical study.

Before getting to the analysis of the dynamics, it is reassuring to note that the equili-

brium magnetization distribution given by this dynamical code is the same as the relaxa-

tion code for a given value of electric �eld. This fact also strongly substantiates hypothesis

(i) in the model presented in subsection 2.2.1: as expected, there is no out-of-plane com-

ponent in the equilibrium distribution (i.e. Θ = π
2
). This is not true of the magnetization

during the whole dynamics, however. There is indeed a noticeable out-of-plane behavior,

and this phenomenon is transient: from a completely in-plane initial distribution at the

beginnig of the simulation, wz increases steadily in the vicinity of the domain wall (i.e.

Θ deviates from π
2
) and vanishes as the domain wall reaches its �nal position x∞DW . This

out-of-plane excursion is upward or downward depending on the sign of E0. Speci�cally,

when the motion is rightward, the out-of-plane behavior is downward, and vice-versa.

At this stage, it is important to note that the opposite outcome is obtained when the

sign of γ is changed to describe electron-based magnetism instead of a positive charge-

based magnetism: rightward motion is associated with upward out-of-plane behavior, and

vice-versa. Apart from this change, there is no di�erence to mention.

These out-of-plane excursions look like a manifestation of a distinctive aspect of the

di�erential equations solved, which di�ers from standard domain wall motion equations

in a fundamental way. Indeed, in the case of �eld-driven motion, all the magnetization

distribution is contained in a single plane (see appendix D or Ref. [75]). This means

that, while the magnetization can be out of the plane of the simulated ferromagnet,

there is always a tilted plane that contains all the magnetization vectors along the x-axis
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Figure 3.4 � The two angles describing the magnetization vector (a) and the out-of-plane
magnetization component (b) are plotted every tenth of nanosecond while an electric
�eld E0 of ±0.8 MV/m and a magnetic �eld H0 of 20× 103 A/m are applied. There is a
noticeable deviation of Θ from π

2
, which translates into a non-zero out-of-plane component.

This behavior has no equivalent in the steady-state regime described by Schryer and
Walker.

(de�ned by φ0 in Eq. (1.10) or Eq. (3.29)). However, at this point it is not possible,

strictly speaking, to assign this peculiar behavior to an intrinsic e�ect of the particular

combination of �eld and stress studied here. It may be caused by the variable width,

which is another di�erence with classical developments such as those of Schryer and

Walker. Further analyses on constant-section nanostripes will help settle this question in

section 3.4.

There is nonetheless another key �nding that constitutes strong evidence that these

out-of-plane excursions are somehow linked to the application of a mechanical stress. In

Fig. 3.4, the asymmetry with respect to the electric �eld is quite conspicuous. One can

observe that the out-of-plane excursion is more pronounced with positive electric �elds

than negative electric �elds, although it is present in both cases. The di�erence between

those two cases is the balance between compressive and tensile components of the stress

tensor. This intriguing behavior explored in subsection 3.3.3 stems from the disparity

d32 6= −d31 and hence the relation |τ | > |σ| (and they are always of opposite sign). It

means that if E0 > 0, the domain wall moves to the left (x < 0) with a compression

|τ | larger than the tension σ; conversely, if E0 < 0, the domain wall moves to the right
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(x > 0) with a tension τ larger than the compression |σ|. Since a compression induces

a planar anisotropy from the magnetic point of view (perpendicularly to its direction)

and a traction induces an axial anisotropy for the magnetization (along its direction), the

motions to the left and to the right are not dynamically equivalent. A stronger planar

anisotropy facilitates the excursion of magnetization out of the xy-plane.

3.3.2 Trajectory of domain walls
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Figure 3.5 � The trajectory of the domain wall for several values of applied electric �elds
and Gilbert damping is plotted. The equilibrium position depends on E0 but not on α.
However, the dynamics is in�uenced by both. In these simulations and throughout this
work, the values of damping coe�cient are as follows: α1 = 0.06, α2 = 0.08, α3 = 0.10
and α4 = 0.12.

As stated in subsection 3.3.1, the equilibrium distribution coincides with that of the

relaxation code for the same set of inputs. What is new here though is the description of

the real time-resolved evolution of the magnetization distribution toward this equilibrium.

The general procedure chosen to study the dynamics was as follows. First, the initial

distribution for Φ is taken from the relaxation code with E0 = 0. Θ is taken uniform and

equal to π
2
. Then, the dynamics are computed from this state following the instantaneous

application of an electric �eld of �nite value, and the position of the domain wall is

considered to coincide with the location where Φ′ is maximum.
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As shown in Fig. 3.5, what is observed after a short period of time due to precession is

the motion of the domain wall toward its equilibrium position. The equilibrium position of

the domain wall depends on the amplitude of the applied electric �eld and the relationship

is antisymmetrical as already shown in chapter 2 (meaning x∞DW (−E0) = −x∞DW (E0)). As

an aside, it does not depend on α, and this was expected since this coe�cient is only

involved in the dynamics (for instance, it does not appear in Eq. (2.40)). However, the

dynamics are a�ected by both the electric �eld and the strength of the damping. The

in�uence of α is indeed quite clear. For instance at low damping coe�cients, there is a

tendency to "overshoot" before the domain wall reaches its �nal position with increasing

electric �elds. A large coe�cient is associated with larger damping, and therefore less

precession. Roughly speaking, it means that the magnetic system is more "rigid" and

will exhibit only moderate oscillations. On the contrary, a weak damping will result in

more dramatic variations of magnetization in time and, potentially, a longer time to reach

equilibrium when the electric �eld is suddenly applied. This is clearly the case here with

larger overshoots observed when the damping is weak. Also, the di�erence between the

dynamics induced by a positive and negative electric �eld is clearly visible. The question

of the origin of this di�erence has already been addressed in subsection 3.3.1 and will be

explored further in subsection 3.3.3.

3.3.3 Velocity and applied electric �eld

When dealing with the dynamics of domain wall motion, it is only fair to mention domain

wall velocity. Since the velocity is not constant in this system (see trajectory in Fig. 3.5),

we chose to de�ne the quantity 〈vDW 〉 as the average velocity over the path from the origin

to the position 2
3
x∞DW . It is plotted against E0 in Fig. 3.6 for several damping coe�cients.

Here, a lower damping is associated with larger velocities. In the four curves, when the

electric �eld is increased from 0, the value of | 〈vDW 〉 | is increased. This increase is quite
linear at the beginning, until the velocity reaches a maximum. Then, while for E0 < 0

a slight rate of decrease is observed, for E0 > 0 the minimum of 〈vDW 〉 is immediately

followed by a strong velocity reduction. Also, the maximum velocity is reached at lower

electric �elds for E0 > 0 compared to E0 < 0. These remarks are additional signs of the

asymmetry of the system regarding the electric �eld.

An explanation of the observed asymmetry based on the relative in�uence of compres-

sion and tension was put forward in subsection 3.3.1. When the compression is larger

than the tension (E0 > 0), the prevailing planar anisotropy induces out-of-plane excursi-

ons with considerable deviation of Θ from π/2, and domain wall propagation is sensibly

119



E0 (MV/m)

α1

α2

α3

α4

100

0

-100

0-1-2 1

< vDW > (m/s)

Figure 3.6 � Velocity is plotted against E0 for the same four values of α as in Fig. 3.5.

hindered. On the other hand, when the tension is larger than the compression (E0 < 0),

the out-of-plane excursions are comparatively reduced, and domain wall motion is faci-

litated. In order to test this hypothesis further, an investigation was carried out with

di�erent piezoelectric parameters. The original coe�cients were d31 = −1900 pC/N and

d32 = 600 pC/N, corresponding to (011)-cut PMN-PT ceramic substrate [278]. Four ad-

ditional sets of inputs were chosen, keeping the sum |d31|+ |d32| constant: one completely

asymmetrical case with d31 = −2000 pC/N and d32 = 500 (such that σ = 0), one com-

pletely symmetrical case with d31 = −d32 = −1250 pC/N (such that σ = −τ), as well
as two intermediate con�gurations. Results are shown in Fig. 3.7. One important fact is

that all curves coincide in the linear portion (for low values of E0). Then, it is clear that

the larger the gap between the amplitude of the stress components, the larger the asym-

metry in the dynamics for large values of E0. In particular, total symmetry is obtained

when |d32| = |d31|. It is also apparent that the PMN-PT substrate is close to the fully

asymmetrical piezoelectric material, so that in fact |τ | is always much larger than |σ|.

In the end, these results lend more support to the interpretation based on the relative

importance of mechanical compression and tension in the dynamics.
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Figure 3.7 � Velocity as a function of the electric �eld for di�erent values of the piezeoelec-
tric coe�cients d31 and d32. This enables to explore the various degrees of symmetry in the
dynamics induced by the relative in�uence of compressive and tensile stress components.

3.4 Dynamics in an in�nite nanostripe

In the previous section we explored the dynamics in a geometry with variable width.

Another interesting case from a fundamental point of view is the �lm with uniform width.

Indeed, if the e�ects of variable section are removed, one can focus on the speci�c features

of stress-induced domain wall motion. This is especially the case in a nanostripe geometry,

which is characterized by high aspect-ratios and thus vanishing edge e�ects. This section

presents the way we simulated the evolution of a domain wall in in�nite nanostripes.

In these conditions, the study of steady-states is conceivable and is of great interest.

In particular, the relationship between domain wall velocity and applied electric and

magnetic �eld is a matter that demands investigation. A discussion on the instances

where the code crashes closes the section.

3.4.1 Simulating in�nite nanostripes

The study of an in�nitely long nanostripe with a constant width�as in Fig. 3.8�is inte-

resting from the physical point of view. Considering such a geometry in Eq. (3.16) can

be done by simplifying demagnetization (to model an in�nitely long ellipsoid of compa-
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rable dimensions) and removing terms related to the variable width. This was already

done in subsection 3.2.2. Unfortunately, even then the equation obtained is still such

that no analytical investigation seems possible. Again, one must rely only on numerical

treatment.

Figure 3.8 � Schematic of the constant section geometry considered in the dynamical
study.

Obviously, the numerical approach entails the use of �nite geometries. However, we

can devise a way to simulate an in�nite nanostripe with the existing code. If we consider

a real system with in�nite length, it is safe to assume that, far from the domain wall,

magnetization will be �xed and equal to the stable magnetization states (including the

in�uence of demagnetization). Therefore we can focus on computing the evolution of

magnetization in a region around the domain wall, and consider the contribution to the

demagnetizing �eld of two large parallelepipeds beyond ±L
2
. In practice, this was done

by simulating the demagnetizing �eld generated by two regions of 1 mm length on each

side in the calculation of the demagnetization factors.

Having done this, it is suitable to adapt the boundary conditions Φ1 and Φ2 which,

until now, were calculated only by taking into account anisotropy, external magnetic �eld

and applied stress. The goal is to �nd boundary conditions that closely match the value

of the clearly identi�ed plateau regions. To compute the stable states, we deal with

a uniform magnetization and thus the simpli�ed demagnetization ~Hd = −N ~M (as in

subsection 3.2.2) is suitable. The appropriate terms are introduced in the calculation of

the boundary conditions, giving a modi�ed version of Eq. (2.42):
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Figure 3.9 � Magnetization distribution exhibiting the di�erence between the boundary
conditions with and without the simpli�ed contribution of demagnetization. The width
of the nanostripe is `(±L/2) = 40 nm and the corresponding demagnetization tensor
component is Ny = 0.225.
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For an in�nite ellipsoid of semi-major axis length `2 and semi-minor axis h/2, the demag-

netization factor Ny is equal to e/(e + 1) where e = `/h. In practice, the value of Ny

was determined by trial and error from the guess e/(e + 1), so that there is no visible

di�erence between the boundary conditions and the value of the plateau regions. The

di�erence between this adjusted boundary condition and the regular boundary condition

excluding demagnetization is shown in Fig. 3.9, with the distribution of magnetization at

rest (E0 = 0) as an example. More information on the in�uence of demagnetization on

the boundary conditions can be found in subsection 2.2.4, in particular through Fig. 2.3.

Importantly, since the Ny factor is purely geometrical, its value will be the same whatever

the electric �eld or magnetic �eld applied to the system.

We should mention here that the number of points on the yz-plane used to compute

the mean value of demagnetization at each point was the same for all geometries. As

the width is changed between the three geometries, the precision is a�ected because the

123



resulting discretization is di�erent. In principle, it may be a cause for concern as it is

now clear that the demagnetization has a signi�cant in�uence on the system. However

we veri�ed that the change in outcome was very limited: an overestimation of only a few

percents on the value of the velocity is to be expected.

3.4.2 Steady-states in in�nite nanostripes

The study of in�nite nanostripes with constant width was carried out by �rst taking the

domain wall shape associated with a moving domain wall from the relaxation code as

the initial distribution. To do this, the relaxation code is run for a very short period of

time so that the domain wall assumes its shape without travelling far from the center of

the simulated ferromagnet. This distribution is used as the input of the dynamical code

which will compute the dynamics from that initial state. Of course, the relaxation code

only covers the distribution of Φ, therefore the angle Θ is initially set to the value π
2
over

the whole nanostripe.
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Figure 3.10 � Panel (a) features the distribution of angle Φ as a function of time. One
can clearly observe the onset of a steady-state. Panel (b) shows the trajectories of the
domain wall for several electric �elds E0 and Gilbert damping α. The position of the
domain wall tend to be linear as the steady-state is established. The applied �eld is still
H0 = 20× 103 A/m.

Fig. 3.10 shows examples of the time evolution of magnetization from the initial state

described above. One can see that Θ has to assume a particular distribution with a
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deviation from π
2
, which is consistent with previous �ndings. Then, once magnetization

has reached a given distribution, it appears that a steady-state is established. The motion

is akin to the shift of a rigid domain wall structure. The presence of out-of-plane excursions

is con�rmed with these simulations, proving that they are a fundamental feature of the

equations solved.

Figure 3.11 � Visualization of the steady-state shape of the travelling domain wall using
the Paraview visualization software for two values of electric �eld E0. The color corre-
sponds to the value of wx. The simulated ferromagnet has a 10 nm thickness and a 100
nm width.

Regarding the electric �eld, we can also con�rm here that its in�uence on the shape of

the domain wall is twofold: strength and sign of E0 play a major role in determining the

steady-state shape adopted by the domain wall. When the amplitude of E0 is increased,

the width of the domain wall decreases and the values of wz is increased. This is illustrated

on Fig. 3.11, which shows the magnetization distribution in the domain wall region using

3D vectors. One can see the peculiar shape of the domain wall with more clarity, as

well as the e�ect of an increased amplitude of electric �eld on the out-of-plane excursion.

The second important aspect of the electric �eld dependence of the domain wall is that

a positive electric �eld is associated with more pronounced out-of-plane excursions. This

is shown on Fig. 3.12 for an electric �eld of ±0.8 MV/m. Here again we can con�rm the

observation made in subsection 3.3.1.
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Figure 3.12 � Transverse view of the magnetization distribution for a positive and negative
electric �eld. The di�erence in out-of-plane behavior is clearly visible.

Other parameters in�uencing domain wall shape include the Gilbert damping coe�-

cient α (the larger the damping, the smaller the deviation of Θ from π
2
) and the external

magnetic �eld (the larger the magnetic �eld, the larger the deviation). Of course, material

parameters such as anisotropy must play a role too, but this was not investigated because

the in�uence was either predictable or deemed of lesser interest.

3.4.3 Electric and magnetic �eld dependence of velocity

The existence of a steady-state in the dynamics means that for each couple (E0, H0),

there will be a corresponding domain wall shape but also a velocity associated with the

motion. To numerically "measure" the velocity, we take advantage of the fact that the

shape assumed by the domain wall is �xed when the steady-state is reached. Indeed,

if we make the simple hypothesis that during the motion we have Φ(x, t) = Φ̃(ξ), with

ξ = x− vDW t (introducing vDW the velocity of the domain wall), we can then write:
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As a result, a precise estimate of the velocity can be determined numerically by simply

calculating the average value of Φ as the simulation is running and taking its variation in

time:

vDW =
L

(Φ1 − Φ2)

∂

∂t
〈Φ(x, t)〉x. (3.32)

In order to let the steady-state develop, the simulation is stopped only when the domain

wall has reached a point close to the edge of the simulated nanostripe. Then the velocity

at the end of the trajectory is computed using Eq. (3.32).

The dependence of the velocity with the electric �eld happens to be very similar to

what is obtained with the variable width in Fig. 3.6, although all values are higher since

the steady-state regime has time to fully develop. What can be explored further here is

the in�uence of the magnetic �eld. It has been shown in Fig. 2.14 that the energy gap

between the two stable states of magnetization is dominated by the Zeeman energy, hence

it is reasonable to think that modifying the magnetic bias will necessarily in�uence the

dynamics. Fig. 3.13 shows the velocity as a function of the magnetic �eld, for several

values of electric �elds. The relationship is not simple, as we can see. While there is a

general upward trend, the concavity is highly dependant on the damping coe�cient and

the electric �eld. Also, depending on the magnetic �eld, it appears that a lower damping

is not systematically associated with higher velocities, especially at high magnetic �elds.
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Figure 3.13 � Dependence of the velocity of the domain wall on the magnetic �eld, for
several electric �elds and damping coe�cients. Insets represent the rescaling of the x-axis,
showing a universal response at low �elds. The width of the nanostripe is 40 nm.

We can conclude that the mechanically induced steady-state regime yields propagation

velocities larger than 500 m/s, which are comparable to those obtained by current-driven

domain wall motion [128, 129]. In the classical �eld-induced Walker propagation the

dependence of the domain wall velocity on H0 and α is mediated by the single variable

H0/α (see Eq. (1.9)). Hence, we plot vDW versus the ratio H0/α in the insets of Fig. 3.13.

We observe that the curves corresponding to di�erent α collapse to a single universal

response in the linear region. We also note that ∂vDW/∂ρ (for low values of ρ = H0/α)

is an increasing function of E0, which is not surprising. However, for higher values of the

magnetic �eld, vDW depends on both H0/α and α and the curves do not coincide, proving

once again the essential di�erence between the mechanically-induced and the �eld-induced

domain wall dynamics.

To get a more systematic view of the combined in�uence of the magnetic and electric

�elds on the velocity of the domain wall, a 2D scan was performed on a (H0,E0) grid, for

all four damping coe�cients αi. In order to remove the necessity to compute the dynamics

for positive and negative values of E0, a symmetric piezoelectric substrate was simulated

(d31 = −d32 so that σ = −τ). Results for a large damping are shown in Fig. 3.14, where

the velocity is plotted as a surface over the (H0,E0) grid. Results for a width of 40 nm
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Figure 3.14 � 3D representation of the velocity of the domain wallas a function of the
magnetic and electric �elds for α = α4 = 0.12. The width of the nanostripe is 100 nm.

are very similar qualitatively, although the values of velocity obtained are signi�cantly

smaller. At low magnetic �elds, the variation of the electric �eld has a minimal in�uence

on the velocity. At higher �elds, the gradients are much higher. We can con�rm here that

the value of the magnetic �eld has a huge impact on the velocity reached by the domain

wall. This observation�combined with the remark that the energy density gap between

the two domains is equal to the Zeeman gap�really vindicates the view that the motion

of the domain wall is stress-triggered and �eld-driven.

The fact that the surface does not cover the whole grid is due to the failure of the

code in some instances (depending on the values of the �elds used as inputs). It is

also the reason why some of the curves in previous �gures stopped at some point. This

phenomenon is discussed in the following subsection.

3.4.4 Code failure and breakdown phenomenon

In some instances, the dynamical code fails to describe the steady-state corresponding to

the inputs given. These crashes also happen with the variable width, as the code fails
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to describe the motion of the domain wall toward its equilibrium position. No solution

could be found to prevent this from happening (fourfold increase of spatial discretization,

as well as the reduction of time step ∆t have been tried). Fig. 3.15 shows the area where

the code runs normally (colored regions) and the limits after which there is a crash. The

di�erent colors refer to the di�erent damping coe�cients.

Figure 3.15 � Colored areas correspond to instances where the code successfully describes
the steady-state associated with the corresponding inputs. The surfaces for the four values
of α are superimposed.

We already encountered limitations of the numerical procedure in classical �eld-driven

motion (see subsection 3.2.2), where the code was unable to carry out the simulation for

a longitudinal magnetic �eld H1 larger than the Walker breakdown �eld. The similarity

in the symptoms are intriguing. Although it would still be speculation to say that this

numerical phenomenon is an actual sign of a real physical breakdown in the system stu-

died, we have to acknowledge the hypothesis is quite probable. For a start, it bears many

of its apparent features. The errors that accumulate and eventually lead to the failure

are reminiscent of what is observed beyond the Walker �eld in the context of regular

�eld-driven motion. Also, there are small signs of oscillatory behavior which could be

associated with the onset of a new regime of motion. The fact that the failure happens

at lower �elds when the damping is weak is also quite telling. As an aside, the numerical
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failure happens irrespectively of the actual value of the velocity, and so it is not due to

large rate of magnetization variation. Besides, we can argue on physical grounds that the

existence of a phenomenon similar to the classical Walker breakdown should be expected

here. In chapter 1, we saw that the breakdown was quite universal, since it is present

in both �eld- and current-driven motion. Here, we deal with a motion that is essenti-

ally �eld-driven, this implies that the existence of a sudden transition in the dynamical

behavior is plausible.

In any case, in the absence of analytical results, more in-depth analysis of the observed

phenomenon is needed in order to rule out the hypothesis of a numerical artefact.

3.5 Conclusion

In this chapter, we numerically studied the motion of domain walls subjected to the com-

bination of a bias magnetic �eld and an applied stress in magnetoelastic nanostructures.

We devised a 1D model combining the e�ective �eld derived from variational methods

with the Landau-Lifshitz-Gilbert equation. The outcome was implemented numerically

using a implicit scheme based on Newton's method. Through the example of the parabo-

lic geometry, we explored how the tailoring of the variable width allows one to precisely

design static and dynamic features. The study of steady-state regimes in nanostripes of

constant width con�rmed that even though it is ultimately driven by a magnetic �eld, the

resulting moving magnetic structure is fundamentally di�erent from usual domain walls

in nanostripes. In particular, the motion is characterized by speci�c out-of-plane phe-

nomena which do not exist in �eld-driven domain wall motion. The in�uence of several

parameters on the extent of these out-of-plane excursions has been reviewed. Besides,

this new type of domain wall motion is associated with competitive velocities (hundreds

of m/s). The numerical study, as well as physical considerations also brought several

hints that a phenomenon akin to a Walker breakdown may be involved in the dynamics,

although more research is needed to settle this question.

Many lines of investigation remain open in the study of such a system. For instance,

it is possible to look at dynamical input �elds (variable E0(t) or H0(t) signals). Also,

new types of geometries can be considered, such as elements with two minima or more,

exhibiting hysteretic behavior. Domain wall pinning as well as edge roughness or patter-

ning may also in�uence the dynamics of this system as it is the case for standard �eld- or

current-driven domain wall motion.
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Chapter 4

Experimental investigations

After having established a strong theoretical and numerical basis to stress-triggered dom-

ain wall motion, it is worth investigating this phenomenon experimentally. This chapter

includes a description of the di�erent materials considered for the magnetoelastic and

piezoelectric phases. It also gives an account of the preparation in the clean room of thin

�lms made of magnetoelastic materials with appropriate size and geometry, as well as the

preparation of suitable piezoelectric substrates. Finally, the techniques used to characte-

rize both phases, the corresponding results and some of the prospects are discussed.

4.1 Materials

This section covers the characteristics of the materials chosen in the implementation of the

magnetoelectric coupling involved in the physical phenomenon investigated. On one hand,

terbium-based alloys are arranged in multilayers to constitute the magnetoelastic phase.

On the other hand, commercial PMN-PT substrates with a speci�c growth orientation

constitutes the piezoelectric phase.

4.1.1 Magnetoelastic multilayers

The AIMAN-FILMS group at IEMN has extensive experience with the use of rare-

earth-based magnetoelastic materials. In particular, TbFex (Terfenol) and TbCox alloys

(x ≈ 2) are routinely used and exhibit strong magnetoelastic properties (positive mag-

netostriction). They are usually made by sputtering. However, because of the presence

of terbium, the anisotropy in the resulting layer is often very large [281], hindering the

manipulation of magnetization. Besides, in the case of TbCo2, the value of the satu-

ration is quite weak because of the ferrimagnetic order. To reduce the anisotropy and

guarantee a substantial magnetization at saturation, these alloys are accompanied by
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layers of ferromagnetic alloys based on metals such as Fe and Co in multilayered structu-

res (see Fig. 4.1). Individual deposited layers are very thin (typically less than 10 nm).

The magnetic coupling of such structures can be studied, with key insights that, for in-

stance, led to the design of exchange-spring magnets [282]. The magnetic behavior can

be complicated (with di�erent layers switching at di�erent applied �elds). In previous

chapters, we assumed that they behaved like a single equivalent homogeneous material,

which is likely to be the case with very thin and thus strongly coupled layers. Such a

mixing allows a satisfying compromise between anisotropy, magnetization at saturation

and magnetostriction, to ensure facilitated manipulation and interesting performances.

Figure 4.1 � Transmission Electron Microscope image showing a 110 nm-thick deposition
of multilayers obtained at IEMN.

One of the interesting features of this multilayered material is the possibility to control

the direction and�to some extent�the strength of the anisotropy [283]. In any case, the

layers obtained by sputtering are typically amorphous. This is associated with a reduced

anisotropy, already smaller in thin �lms than in bulk materials, which is helpful in our case.

Despite the amorphous structure and the thin �lm geometry, signi�cant magnetostriction

is achieved.
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4.1.2 PMN-PT piezoelectric substrate

Piezoelectric materials have found multiple applications, for instance in sensing and actu-

ation. This led to signi�cant advances in the preparation of highly e�cient piezoelectric

materials. In particular, perovskite ceramics such as lead zirconate titanate (PZT) have

drawn tremendous interest. In our case, we need to �nd a piezoelectric substrate gene-

rating strong in-plane strains. For them to induce a magnetoelastic anisotropy in the

ferromagnetic material, the two in-plane directions should not be characterized by equal

strains (see Eq. (2.52)). In other words, the in-plane piezoelectric response should be

anisotropic.

Figure 4.2 � (a) Axes and sample con�guration showing the direction of the electric
�eld (between Ti/Pt electrodes) and the plane in which the relevant strains appear. (b)
Representation of a rhombohedral unit cell which appears to be present in PMN-PT, along
with the di�erent directions (the z-axis corresponds to the (011) direction of growth that
is of interest here). Possible polarization directions are along the red and blue dot-dashed
arrows. Figure from [284].

Very good candidates from this perspective are relaxor single crystals of (011)-cut

[Pb(Mg
f rac13Nb 2

3
)O3](1−x)-[PbTiO3]x (orientation shown in Fig. 4.2). Their properties are

especially impressive near the Morphotropic Phase Boundary (MPB), that is with the

value of x in a given range (0.3 < x < 0.4). PMN-PT single crystals of varying compositi-

ons, growing methods (�ux-grown or melt-grown) and orientations have been investigated

for a wide range of excitation frequencies [285�289]. Also, the properties of single [290]

and multidomain [291] PMN-PT have been studied and compared. The very strong pie-

zoelectric properties exhibited by PMN-PT are best understood as a consequence of the

morphotropic phase boundary (MPB) which happens for given compositions of the solid
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solution. The origin of this phenomenon is the subject of more general investigations [292].

In particular, it seems that around the MPB, di�erent phases can simultaneously be pre-

sent, namely rhombohedral, monoclinic, orthorhombic, tetragonal phases [284]. A fairly

comprehensive set of measurements was carried out [278] and shows the promising po-

tential of (011)-cut PMN-PT in the context of the magnetoelectric coupling sought here.

Indeed, the piezoelectric coe�cients d32 and d31 are of opposite signs and therefore a

substrate can generate simultaneous compressive and tensile stress components along ort-

hogonal directions. In addition, its hysteretic behavior is such that it is possible to bene�t

from two distinct permanent strain states. This point is addressed in greater detail in

subsection 4.3.1.

One should mention that while commercial bulk PMN-PT is readily available in the

form of single-crystal substrates, research has also shown the possibility to manufacture

PMN-PT thin �lms [293�296].

4.1.3 Mechanical coupling

Figure 4.3 � Two di�erent strategies�(a) longitudinal and (b) transversal�for the loca-
tion of electrodes creating the electric �eld within the piezoelectric substrate.

As shown in previous chapters, the magnetoelastic and piezoelectric phases have to be

coupled mechanically. While a magnetoelastic particle embedded in a piezoelectric matrix

likely represents the most e�cient mechanical coupling, its technological implementation

is not straightforward. A more feasible alternative is to deposit the magnetoelastic layer on

the piezoelectric material. As for the positions of the electrodes actuating the piezoelectric

substrate, there are two obvious possibilities. The �rst solution is to place the electrodes

next to the magnetoelastic element, so that the electric �eld is in-plane (see image (a) of
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Fig. 4.3). In the context of bulk substrates, the main advantage of such an arrangement

is the proximity of the two electrodes, meaning weaker voltages are needed to induce the

desired electric �eld within the piezoelectric material. Although this option is sometimes

considered, there is a major issue with regard to the path of the electric �eld. Since the

multilayer in our case is metallic while the piezeoelectric substrate is a dielectric, there

is an incentive for the electric �eld to go through the ferromagnetic metal instead of the

substrate beneath it. There is as a result a signi�cant risk of having a weak strain. The

other option is therefore to have electrodes on both sides of the piezoelectric substrate,

creating an electric �eld along the vertical direction (see image (b) of Fig. 4.3) along the

whole thickness of the substrate.

Figure 4.4 � Third option for the arrangement of the electrodes involving some structuring
(etching) of the piezoelectric substrate.

Another issue relates to the possibility of the piezoelectric substrate to be free of

actually generating the strain, especially in the context of strong piezeoelectric response.

If electric �eld lines are con�ned to a small portion of a piezoelectric material surrounded

by the gist of the substrate where the electric �eld is zero, then there is a risk that it

will prevent the creation of the expected strain. Worse, where strains are negative it can

lead to fractures and mechanical damage of the material. A solution to this problem

is to ease the portion of PMN-PT by engineering the surface of the substrate to create

parallelepipedic studs (for instance with square cross section), as illustrated on Fig. 4.4.

Note that this solution is also a good idea in the prospect of integration and low-power

operation, as it considerably reduces the electrostatic energy CV 2 that is proportional to

the volume of dielectric involved.

This will be explored in subsection 4.4.3. In the following, we adopted solution (b) of

Fig. 4.3, as concerns of integration and energy were secondary.
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4.2 Fabrication

This section covers the process of fabrication, from the preparation of commercially-

obtained piezoelectric substrates to the design and lithography, deposition and lift-o� of

magnetoelastic elements, including the relevant experimental parameters involved. All

steps of the fabrication were performed within IEMN, and in particular using the clean

room facilities.

4.2.1 Polishing of the PMN-PT substrate

Over the course of the PhD, we worked with two di�erent sets of PMN-PT substrates.

Figure 4.5 � Individual PMN-PT substrates obtained from CTG Advanced materials,
delivered with Au/Cr electrodes.

The �rst set of 20 PMN-PT substrates was obtained from CTG Advanced Materials,

formerly known as H.C. Materials. Fig. 4.5 shows the substrates in their individual

packaging. Each sample had a small red point intended as an indication of the direction

of initial poling (through the thickness). The small dimensions (10x10x0.3 in millimeters)

made their manipulation quite di�cult and made them very fragile. Both faces of the

samples were already covered with Au/Cr electrodes. However, the substrates were not

polished and the surface roughness was very poor (Ra ≈ 50 nm). The image in Fig. 4.6

gives an idea of the initial surface quality. Given the layer thicknesses involved in future

steps, it was obvious that some polishing process was necessary before proceeding any

further.
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Figure 4.6 � Atomic Force Microscopy (AFM) image showing the poor surface quality of
the samples. The linear pattern of irregular relief was visible at the naked eye.

Wet etching of the Au/Cr electrodes is quite straightforward and fortunately does not

seem to etch or a�ect the ceramic. Also, a standard cleaning of 15 minutes at 70◦C in

EKC was done before any polishing. This step was routinely used at various points of

the fabrication process. Again, the ceramic was seemingly una�ected by this strongly

basic environment. Once both sides of the samples were free from metal, an e�ective

polishing method was developed using the Logitech PM5 system at IEMN. The �rst step

is to bond the sample to a 3 inch or 4 inch glass plate using a special paste and heat them

in a dedicated Logitech machine during approximately one hour. Then, the glass plate is

placed at the bottom of a cylindrical structure that can modulate the weight put on the

sample. It is then put on a large rotating felt plate, with an additional sweeping achieved

by a roller arm. In our case, the rotation speed is increased until the maximum value

(70 rpm) for a total polishing time of 5 minutes. Throughout the process, small quantities

of SF1 "slurry" are poured on the felt plate. Experiments with the Chemlox slurry were

not conclusive, and the poor results obtained with water showed the important polishing

role of the SF1 slurry. The results obtained after polishing are quite impressive, over a

10x10 µm window, a roughness of approximately 2 nm is ensured, with subnanometer

roughness reached on smaller areas (see Fig. 4.8).
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Figure 4.7 � Photographs of the equipment used to polish the PMN-PT substrates.

The second set of 10 substrates was obtained from another company called TRS

Technologies, with 15x10x0.3 dimensions (mm). The slightly di�erent color and transpa-

rency for the same thickness, as compared to CTG Materials samples hints at possible

small di�erences in composition. These substrates are already polished by the manufac-

turer, and hence signi�cantly more expensive. However, the surface quality was not as

good as our home-polished samples to the point that we re-polished some of them.

With clean and polished substrates, new electrodes could be deposited on both sides

of the samples. Because the goal is eventually to transmit the strain generated by the

substrate to the magnetoelastic layer located above the electrode, it is important to have

a thin electrode (≤ 100 nm). Also, choosing sti� metals is important to ensure strong

mechanical coupling (Young modulus between those of the ceramic and the multilayers),

so we mainly considered Pt/Ti or Ru/Ti electrodes and avoided Au.

4.2.2 Lithography

The need to design magnetoelastic structures of variable size and geometry pointed at the

use of lithography instead of focused ion-beam (FIB) techniques which are sometimes used

to create nanostripe geometries. Another reason for not using FIB is that it is oftentimes

di�cult to control the depth of etching and the extent to which the integrity of local

material is maintained. This is a problem since we deal with thin �lms and that electrode

beneath the magnetoelastic material should not be damaged. The two alternatives were

lift-o� and dry-etching (or plasma etching), which were both explored. In any case it

is necessary to use an electron-beam mask, given the lengthscales involved, as well as a
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Figure 4.8 � AFM image of the polished surface. Attention should be brought to the
range of the colorbar compared to Fig. 4.6.

positive resist. The lithography was initially tried on silicon wafers in order to �nd the

appropriate parameters.

The LayoutEditor software was used to design electron beam mask �les. Several versi-

ons were made and we will go on to brie�y describe the shapes considered. First, ellipses

were included, the goal being to look at the behavior of single-domain elements. Of course,

the mask also contained elongated structures (rectangular or hourglass-shaped) correspon-

ding to the geometries studied theoretically. Rings of constant and variable width (area

between concentric or non-concentric circles), as well as long "pier"-like nanostripe and

other shapes were drawn. Individual elements are placed su�ciently far from each other

(several microns or tens of microns) to prevent magnetostatic interaction. The dimensions

(length and width) of the nanostructures were variable, but in an e�ort to increase the

likelihood of observing con�guration with magnetic domains, all were signi�cantly greater

than what was simulated, from 200 nm to 2 µm in width, and ten times these values in

length.

By the end of the testing, the writing part of the fabrication was well mastered and

yielded completely satisfying results. The di�erent steps are listed below:
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• Dehydration of the sample

• Spin-coating with closed lid (single layer) - Resist: PMMA 950K 4% and pre-bake

• Electron-beam lithography

• Post-exposure bake

• Development - Developer 1 MIBK and 2 ethanol

Figure 4.9 � Resist patterns observed at the optical microscope featuring (a) ellipses,
hourglass-shaped and rectangular nanostripes, as well as (b) curves nanostructures and
'pier-like' structures (see inset).

Following these steps, the end result is of very high quality and reproduces accurately

what is on the mask. Because of the obvious impact of electrons on the resist before

development, we do not have SEM images showing the developed patterns. However,

Fig. 4.9 shows screenshots taken from optical microscope observations.

4.2.3 Deposition of multilayers

The technique chosen to create multilayers of magnetoelastic materials is sputtering. It

is widely used for the preparation of thin �lms as it provides nanometer precision on the

obtained thickness. Sputtering refers to the process of ejection of atoms from a target

using energetic gas ions (plasma), see Fig. 4.10. The plasma may or may not be chemi-

cally reactive. The plasma is created by applying a strong static or RF electric �eld that

will ionize some of the gas particles. Using an oscillating �eld has the advantage of in-

creasing the number of collisions between charged and neutral particles in the gas so that
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Figure 4.10 � Schematic view of sputter deposition. Public domain.

it increases the proportion of charged particles and therefore speeds up the deposition.

Also, it reduces the accumulation of charges on the targets made of insulating materials.

In the case of magnetron sputtering, magnetic �elds are introduced to create helicoidal

motion of charged particles around magnetic �eld lines at the Larmor frequency, thereby

increasing the number of collisions. However, relying on magnetron sputtering may sig-

ni�cantly decrease the lifespan of the target because of non-uniform wear on its surface

due to the distribution of magnetic �eld lines.

Figure 4.11 � Photograph of the Leybold Z550.

At IEMN, di�erent equipments exist for sputter deposition. The equipment used for

the multilayers in our case is a Leybold Z550, with RF Argon plasma deposition (sputter
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Figure 4.12 � 4 inch targets of (a) terbium and cobalt and (b) iron and cobalt used.

down) shown on Fig. 4.11. Several targets are included in the system, and each one that

we used is composed of parts made of di�erent metals (for instance pieces of Fe glued

on a Co disk) in order to obtain the desired alloys (see Fig. 4.12). The compounds of

di�erent targets can be subsequently deposited on a substrate during a run, in a pattern

of deposition programmed beforehand. The plasma is created near the targets which are

�xed, whereas the plate on which the substrate is placed is mobile. 'Recipes' are prepared

and consist of series of oscillations of the plate beneath the targets. Obviously, prior

calibrations are required to know with satisfying precision how much is deposited in a

given number of oscillations through the plasma.

For any deposition, fragments of silicon wafer are placed near the substrate for sub-

sequent analyses (measurement of thickness actually deposited using a pro�lometer, cha-

racterization in Vibrating Sample Magnetometer and measurements of magnetostriction).

These are visible in Fig. 4.13. During deposition, the establishment of an easy-axis is en-

sured by the presence of a static in-plane magnetic �eld created by macroscopic magnets

placed around the substrate, also present on Fig. 4.13. The physical explanation of this

phenomenon is still elusive to some extent. Due to the absence of airlock, a long period

of time has to elapse before su�cient vacuum is achieved in the chamber. In order to

improve the secondary vacuum, titanium is sputtered and liquid nitrogen is used in a

cryogenic trap, as they respectively help reduce the amount of oxygen and water in the

chamber. Also, an idle run on terbium-containing targets is necessary to remove the

super�cial oxidized material, as terbium is very much prone to oxidization.

During the PhD, we worked with 20 to 26 nm-thick multilayers of TbCo2/FeCo. The

layer put on top is always FeCo to limit oxidization, so that the structures were always
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Figure 4.13 � Sample put in the chamber of the Leybold Z550 for sputter deposition.

constituted of 3 layers of TbCo2 and 4 layers of FeCo. The deposition process itself takes

approximately ten to �fteen minutes overall.

4.2.4 Lift-o� and dry-etching methods

Having independently developed successful lithography and sputter deposition, it is worth

pausing to re�ect on the most convenient and e�cient way to get the magnetoelastic

patterns on the PMN-PT substrate. The two alternatives mentioned in 4.2.2 are lift-o�

and dry-etching. In the former case, the lithography is performed �rst on the substrate

and the magnetoelastic alloy is sputtered on the resist. The lift-o� consists in removing the

resist and the multilayers on its surface so that only areas open during development remain

covered with magnetoelastic material. In the latter case, the magnetoelastic material is

sputtered directly on the substrate. Then, the lithography is performed on the multilayer

and is followed by the deposition of a solid mask (usually metallic). This mask is removed

by lift-o� and the sample is subjected to dry-etching of the magnetoelastic material.

The mask is subsequently removed and the expected patterns are apparent. Fig. 4.14

illustrates these two approaches step by step.

Since the lift-o� solution is more straightforward and required less testing, it was

tried �rst. The procedure described in the previous subsections was followed, although
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Figure 4.14 � Steps corresponding to the methods of lift-o� and plasma etching. Step (a)
is spin-coating, (b) is electron-beam exposure, (c) is development, (d) is sputter deposition
and (e) is the lift-o� of the multilayers per se. For etching, note that step (b)' corresponds
to steps (a), (b) and (c) combined.

initially the spin-coating speed was lower, resulting in a 150 nm-thick coating. Lift-o� was

performed by placing the sample in SVC-14 solvent at 70◦C for several hours. Smooth

ultrasound treatment was also helpful, while stronger excitations proved harmful to the

magnetoelastic structures (smaller elements are destroyed). A SEM image of a rectangular

magnetoelastic element is shown on Fig. 4.15. While the shape is recognizable, the contour

is far from smooth. In fact, the lighter contour hints at strong 'wall-like' bumps on the

edges of every magnetoelastic element. The likely explanation for these irregularities is

quite straightforward. Contrary to evaporation, the motion of the incoming particles

in sputtering is isotropic: the direction of motion of ejected material is not directed at

the substrate. Besides, the deposited thickness of resist is 150 nm, while only 20 nm
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Figure 4.15 � (a) SEM image of a magnetoelastic element obtained by lift-o�. (b) Inter-
pretation of the presence of strong irregularities on the edges.

of magnetoelastic material is deposited. As a result, there is signi�cant deposition of

material on the vertical side of the resist, and these irregularities remain once the resist

is removed (see Fig. 4.15).

Figure 4.16 � SEM image of the magnetoelastic structures obtained by lift-o� with updated
parameters.

Several solutions to this problem may be put forward, the most obvious of which

is to spin a thinner resist. This can be achieved by setting a higher rotation velocity.

Reducing the thickness from 150 to 50 nm as well as other minor �ne-tuning of the lift-o�

process helped signi�cantly improve the results, as Fig. 4.16 shows. This was repeated

several times, so that there is some con�dence that the process developed is appropriate.
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However, results proved less satisfying on PMN-PT, probably because of the sample size

compared to larger fragments of wafers.

Figure 4.17 � SEM image showing the result of etching using Cl2/Ar.

In parallel, we attempted to achieve the formation of magnetoelastic structures using

dry-etching. Admittedly, these e�orts did not yield similar success. The dry-etching was

performed in a ICP-RIE (Inductively Coupled Plasma - Reactive-Ion Etching) Sentech

system. Samples with full-surface deposition of 120 nm-thick multilayers were prepared to

test plasma etching. Two di�erent gases were considered: CHF3 and Cl2/Ar. Surprisingly,

the former seemingly failed to etch anything, as no e�ect was noticed after 10 minutes of

etching. With Cl2/Ar, which has a reactive component due to the presence of chlorine, the

multilayer was successfully etched. Besides, the optical signal used for end point detection

exhibited oscillation attributable to the successive etching of individual layers, which is

very interesting in itself and for precise control over the etching process. A test was then

carried out to etch the multilayer deposited under a pattern metallic mask. Nickel is

most often used for the protective mask in dry-etching. However in our case this was not

an option as the metallic multilayers are also etched by the nitric acid-based wet-etching

solution used to remove nickel. The same goes for chrome. As a result, aluminum was

chosen instead. After etching and lift-o�, we obtained mixed results. First, the etching

seemed to have adversely a�ected the multilayers and the mask in the sense that it was

impossible to remove both by wet-etching. This may be due to impurities from reactive

etching of the mask and the multilayer. Also, these impurities were scattered on the
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surrounding surface and did not disappear after standard cleaning. As rather satisfying

results were obtained by lift-o�, there was no incentive to spend much more time trying

to �gure out why this happened and how to prevent it.

4.3 Characterization

This section covers the various measurements carried out on the materials. The piezoelec-

tric substrate response to an electric �eld was obtained using strain-gauge measurements,

and compared to data available in the literature. As for the magnetoelastic layers, their

magnetic properties are extracted from experiments in a Vibrating Sample Magnetome-

ter. Detailed information about the topography and local magnetism are obtained by

Atomic and Magnetic Force Microscopy, respectively. Kerr microscopy was used to gain

direct insight on the behavior of the magnetoelastic material subjected to magnetic �eld

and mechanical stress.

4.3.1 Strain gauge measurements

The piezeoelectric characterization of our PMN-PT substrate was performed using strain

gauges. Basically, a strain gauge consists in a long and thin metallic stripe which resistance

changes with its elongation in a linear fashion through the gauge factor k: ∆l
l
k = ∆R

R
.

Therefore, the change in resistance provides precise information on the actual strain that

causes the elongation of the metallic wire. A Wheatstone bridge is often used to allow

the detection of minute variations of resistance and turns them into voltage signals.

The strain gauges used were bought from HBM and can measure the strain in two

perpendicular directions simultaneously (XY setup). Each direction is characterized by a

given gauge factor. We used cyanoacrylate to attach the strain gauges to PMN-PT sub-

strates on which full-surface electrodes were deposited on both sides (see Fig. 4.18a). To

facilitate the establishment of contact points on the surface as well as the connection with

the strain gauge electrical output, a mount was specially fabricated to �x the substrate

as part of an internship. It is shown on Fig. 4.18b.

The experiment set up �rst involves the calibration of the Wheatstone bridge and

all the required electrical apparatus, in order to know how to quantitatively translate

variations of voltage into variations of resistance. In principle, the strain is then easily

calculated using the gauge factors that were approximately equal to 1.7. Here however,

we only know the value of the strain within an additive constant. Indeed, when the strain

gauge is attached to the substrate the actual strain at that moment (corresponding to
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Figure 4.18 � (a) Photograph of a strain gauge attached to a sample. (b) Sample with
strain gauge attached placed on the mount enabling easy �xing and convenient contact
points.

zero elongation of the gauge) is unknown. In any case, since the magnetoelastic layer

is also deposited on a pre-strained substrate, it is the variation measured that matters.

During preliminary tests it was noticed that at some points that appeared like sharp

transitions, a dynamical behavior of the system could be observed and it took time for

the measured values to settle to an equilibrium. The general protocol for the experiment

was that for each measurement, we waited for an equilibrium to be reached. In this sense,

the approach chosen could be considered quasi-static. The applied voltage went from

-200 V to +200 V, and then came back to -200 V (since the substrate are 300 nm-thick,

the corresponding range for the electric �eld is ±0.67 MV/m). Depending on the local

steepness of the curve, points were taken every 10 V or 5 V.

Samples from both vendors were characterized. The actual relationship between esti-

mated strain (within an additive constant) and electric �eld is shown in Fig. 4.19. The

obtained response is quite complex and requires some description. While linear portions

do exist, the overall behavior is highly nonlinear. From one poled state and decreasing

the amplitude of the applied electric, a linear region is described. It is worth mentioning

that in accordance with prior discussion the variation of the strain is of opposite signs for

the orthogonal directions X and Y (the piezoelectric coe�cients are indeed of opposite

signs locally). Going to negative (resp. positive) electric �eld on an initially positively

(resp. negatively) poled substrate, there is a �rst critical �eld where the y strain varies

abruptly to reach an extremum. In the context of a rhombohedral phase as shown in

Fig. 4.2, this can be interpreted as the �eld at which the polarization switches from di-

rections with a positive or negative z component (red resp. violet dot-dashed arrows),
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Figure 4.19 � Relationship between applied electric �eld and measured strain in both
directions for samples from (a) CTG Advanced Materials and (b) TRS Technologies. The
fact that the loop does not close in (b) may be attributable to history-dependent behavior
or changes in experimental conditions over the course of the experiment.

to polarization directions in the xy-plane (blue dot-dashed arrows). When the amplitude

of the �eld is further increased, the y strain suddenly jumps back to values similar to

a normal poled response. This new transition constitutes the poling of the substrate in

the other direction (polarization direction along the violet resp. red dot-dashed arrows).

Another linear region is then described. The x strain also shows unusual but more com-

plex behavior around these critical �elds. It should be noted that within these transitions,

the dynamics of the measured strains are such that several minutes are at times necessary

for the system to reach equilibrium.

Admittedly, the modeling presented in previous chapters, in which a linear behavior

was assumed, is insu�cient to really describe the behavior of PMN-PT substrate. The

piezoelectric coe�cients used in the simulations correspond to the response at high fre-

quencies [278], and do not correspond to what is measured in the linear regions at low

frequencies [284]. In any case, this aspect only a�ects technological matters and from

the physical point of view, the more interesting content is the behavior of the magnetic

system considering a given strain or stress.

Similar measurements are reported in the literature. In Ref. [284], the authors applied

an electric �eld with triangular waveform at a frequency of 0.01 Hz and the data was col-

lected by a digital acquisition system. This point makes their approach slightly di�erent

from ours, where each measurement was made after the system reached equilibrium. It is

di�cult to comment beyond mere speculation on the impact of such a di�erence. In any

150



Figure 4.20 � Electric �eld-strain relationship reported in the literature. Black and red
curves correspond to a measurement loop similar to what we did. Green and blue curves
correspond to unipolar mesurements. Figure from [284].

case, the results (black and red curves included in Fig. 4.20) are nonetheless qualitatively

as well as�to some extent�quantitatively similar and con�rm the strongly nonlinear be-

havior of (011)-cut PMN-PT. The di�erences with our measurements may be attributable

to the protocol followed and normal variations between samples. Their investigations also

included cycles with electric �elds in a certain range so that the substrate is never fully

poled in the opposite direction. In this way, they showed that it is possible to switch be-

tween two states of the substrate that are associated with very di�erent strain values, as

illustrated by the green and blue curves on Fig. 4.20. Besides, additional analyses in this

paper suggest that the substrates do not seem prone to fatigue and that the permanent

strains states are very stable in time. All these properties are interesting in the prospect

of memory applications, for instance.

4.3.2 Magnetic characterization of sputtered layers

The layers deposited with the recipe described above can be characterized magnetically

using the Vibrating Sample Magnetometer (VSM) set up at IEMN (EV9 model from

ADE shown on Fig. 4.21). In a VSM, the sample is attached to an oscillating rod in the

air gap of a magnetic circuit. The response of the sample to a magnetic �eld generated

is then detected by additional coils using synchronous detection, given the small amount

of magnetic material involved. In this manner, the di�erent components of the magnetic
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Figure 4.21 � Photograph of the Vibrating Sample Magnetometer.

moment can be estimated. In our case, a hysteresis loop between 2 T and -2 T is performed

on the square silicon sample on which the deposition was made (see Fig. 4.13). The

frequency of the vertical oscillations to which the sample is subjected is 75 Hz. The

amplitude of magnetization is inferred by estimating the volume of material from the

known surface of the square and the thickness deposited.

Fig. 4.22 shows an example of the hysteresis loops along the easy and hard axis for

the typical multilayers deposited. From the data at high �elds in these plots, one can

deduce that the magnetization is about 930 × 103 A/m. These two graphs clearly show

the presence of a clear-cut uniaxial anisotropy through typical easy and hard axis curves.

The points at which the magnetization reaches the magnetization at saturation on both

plots de�nes the anisotropy �eld, which happens to be between 40 and 50 ×103 A/m.

We can also use de�ectometry tools available at IEMN to measure magnetostriction in

these samples [283, 297]. During sputter deposition, a long and narrow fragment (beam)

of silicon wafer is put in the chamber for that purpose (see Fig. 4.13). To measure

magnetostriction, the beam is �xed at one of its extremities in a dedicated setup enabling

the application of magnetic �elds in order to measure the corresponding displacement

using a de�ected laser beam. For that purpose, the shape of the beam subjected to the

strain induced by the magnetoelastic material is supposed to be parabolic. Knowing the

amount of magnetic material as well as the dimensions and elastic parameters of the silicon

substrate, it is possible to estimate the magnetostriction coe�cient b (in MPa) and thus
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Figure 4.22 � VSM hysteresis loops performed on the test sample containing a thin �lm
of the magnetoelastic multilayers deposited.

Figure 4.23 � Hard axis magnetostriction data for the test sample containing a thin �lm
of the magnetoelastic multilayers deposited.

bγ,2 = bsat‖ − bsat⊥ . Given the amorphous structure of the material, this physical quantity

can be related to the maximum relative displacement λs in a simple way, involving elastic

parameters of the thin �lm [2]: λs = −2
3

(1+ν)bγ,2

E
. The values assumed are respectively
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E = 80 GPa and ν = 0.25 of the Young's modulus and Poisson's ratio.

Despite the weakness of the signal associated with such thin multilayers, it was possible

to perform a precise measurement of magnetostriction. The result of a �eld scan along

the hard axis is shown on Fig. 4.23. In these multilayers, the larger proportion of FeCo

reduces magnetostriction, with bγ,2 ≈ 6.6 MPa (λs ≈ 0.7×10−4). Typically, measurements

on multilayers with layers of FeCo and TbCo2 of equal thickness yield a magnetostriction

coe�cient λs ≈ 1× 10−4, i.e. around 100 ppm).

4.3.3 Atomic and Magnetic Force Microscopy

The technique referred to as Magnetic Force Microscopy (MFM) is a variant of Atomic

Force Microscopy (AFM), which has to be succinctly described before introducing MFM.

An atomic force microscope is essentially a type of scanning probe, in which a piezoelectric

element is used to control the position or actuate the motion of a cantilever placed near

the surface of the sample. The proximity between the tip of the cantilever (probe) and

the sample induces a de�ection of the cantilever due to interaction forces, in which various

phenomena are involved (electrostatic force, van der Waals force...). This de�ection can

be measured with a detector using a re�ected laser beam (see Fig. 4.24) or through the

feedback signal of the piezoelectric element. There are three main modes of imaging, with

the tip either in constant contact with the surface, in intermittent contact (tapping mode)

or without any contact. The �rst of these three modes is now rarely used because of the

superior performances of the other two. In these cases, the cantilever is made to oscillate

around its resonance frequency.

With MFM, the tip used has a magnetic coating (oftentimes made of cobalt), and is

hence subject to magnetic interactions that can be detected and yield information about

the local state of magnetization. Let us consider a uniform magnetization of the tip and

the corresponding magnetic moment noted ~m. Under some assumptions (relatively hard

materials, uniformity of magnetization and of magnetic �eld across the magnetic tip), the

force exerted on the tip is the following:

Fi = µ0mj
∂Hj

∂xi
. (4.1)

In most cases, as in ours, the tip is initially magnetized along z (m = mz), that is

perpendicularly to the surface of the sample. The expression above can simply be written
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Figure 4.24 � Working principle of AFM. A cantilever interacts with the sample surface
with the tip. The position of the cantilever is measured using a re�ected laser beam.
Figure from freesbi.ch.

as:

~F = Fz~z = µ0m
∂Hz

∂z
~z. (4.2)

Figure 4.25 � Illustration of the Lift Mode. The second pass traces the topography, adding
an o�set height. Figure from Bruker.

The force is proportional to the vertical �eld gradient. What we are looking at is
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therefore related to the out-of-plane components of the stray �eld, and simple domain

con�gurations can readily be inferred from this information. It is worth noting that it

is the phase data that contains magnetic information. In the case where MFM images

is ambiguous or can be tied to several di�erent solutions of micromagnetic equations,

re�ned techniques that have been described to help reconstruct magnetic distributions

from MFM data [298]. More details about MFM and its applications in general can be

found in dedicated book chapters [299,300].

Figure 4.26 � Photograph of the AFM used.

During any operation, the image is formed by scanning the sample. In the case of

MFM, there are two passes for each line (that is, two traces and two retraces). The �rst

pass extracts topographic information in tapping mode. In the second pass the tip is raised

to a given height and is maintained to a predetermined distance from the surface. This is

called the Lift Mode and ensures that there is only a minimal in�uence of topography on

magnetic imaging (see Fig. 4.25). In the case of the Linear Mode, the probe is kept at a

constant altitude. One of its advantage is its relative insensitivity to artefacts related to

strongly uneven surfaces, which will matter to our situation as explained later.

The AFM we used at IEMN is a Dimension Icon made by Bruker. It is shown on

Fig. 4.26. The �rst AFM tests yielded information about the local topography on the

multilayers patterns. In particular, much of the discussion of subsection 4.2.4 revolved

around the pro�les on the edges of the magnetoelastic structures obtained after lift-o�.

AFM data was collected on the samples obtained after lithography of di�erent resist
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Figure 4.27 � 3D images allowing the comparison of the lift-o� obtained before and af-
ter updating the parameters to spin a thinner resist layer. The pro�le is dramatically
improved.

thicknesses in order to test the explanation for the presence of these wall-like bumps.

Fig. 4.27 contains 3D images that turn out to be typical of the two samples. It is quite

obvious that decreasing the thickness of the resist had a dramatic e�ect on the pro�le.

This supports the interpretation developed in subsection 4.2.4.

Figure 4.28 � (a) Topographical and (b) MFM data over an elliptical magnetoelastic
element. The well-de�ned dipole con�guration is synonymous with a monodomain distri-
bution. Note that the contrast obtained correspond to about 1◦ in phase shift.

For magnetic imaging, several tips with di�erent magnetization and coercivity are

available. We used the MESP-V2 that has medium coercivity and magnetic moment,

with which very clear magnetic signals are easily detected (for instance on the test mag-

netic tape provided by Bruker). Before any AFM measurement, the samples are saturated

roughly along the hard axis 90◦ in the VSM in the hope of inducing non-uniform mag-

netization distributions and hence domain walls in the nanostructures. Looking at the
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elliptical structures, good magnetic signal is obtained. Fig. 4.28 shows MFM data for

a typical element. It seems clear that the magnetization is uniform, with two clear and

distinct magnetic poles. It is interesting to note that the ellipses that we looked at all had

the same left-right pattern of light and dark patches, suggesting parallel magnetization

among them.

Figure 4.29 � MFM data of hourglass-shaped magnetoelastic nanostructures in (a) Lift
Mode in which strong topography-related artefacts are observed and (b) and (c) Linear
Mode, which prevents such artefacts. In (c), the contrast is concentrated on the extremi-
ties. Colorbar legends have been removed for clarity on this qualitative discussion.

MFM observations of the multilayers of elongated shape (hourglass and constant

section nanostripes) lead to more complex results. First, it was found that the topography

had tremendous e�ects on the phase signal observed as visible in Fig. 4.29a, despite the

use of Lift Mode. This turned out to be an artefact linked to the topography: while

the tip always stays at the same distance from the point of the surface located directly

beneath it, it may get closer or farther from other nearby points of the surface. Problems

of this kind are to be expected especially when the relief is steep, which is clearly the case
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in our �rst samples (see subsection 4.2.4). It appeared that switching to Linear Mode

signi�cantly reduced these unwanted e�ects (see Fig. 4.29b). Another striking feature of

preliminary measurements was the presence of four clearly de�ned high and low patches

in signal contrast, visible on the �rst two scans of Fig. 4.29. This was initially considered

evidence of a two-domain magnetic con�guration. However, upon re�ection the observed

patterns was not compatible with this hypothesis, and the resulting skepticism motivated

further scrutiny. Additional measurements showed instances where the contrast in the

middle of the magnetoelastic element was strongly diminished (see Fig. 4.29c), so that

these phenomena are now suspected of also being artefacts of built-in �lters and averaging.

In the end, the most probable hypothesis is that magnetization in the nanostructures is

in fact uniform like in the ellipses, or that at least there are no domain walls.

Figure 4.30 � (a) Topographical and (b) MFM data in a portion of a 1 µm-wide ring. The
patterns observed may be due to the presence of a domain wall.

The only instance where we really think that MFM data hinted at the possible presence

of a domain wall was in a ring of 1 µm width. Fig. 4.30 shows the topographical and

phase data. In this particular instance, the pro�le on the edges was quite poor. However,

the pattern within the surface of the magnetic material is reminiscent of what can be

observed in the vicinity of domain walls in similar structures [17].

We did not have the opportunity to look at the samples while a magnetic �eld and

a mechanical stress are applied. Possible options for improvement on this aspect are

addressed in subsection 4.4.2. However, further measurements were carried out using

Kerr microscope, as explained in the following subsection.
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4.3.4 Magneto-optic Kerr microscopy

Figure 4.31 � Schematic of the setup needed to observe a magneto-optic Kerr e�ect. Note
that the presence of a photoelastic modulator (PEM) and compensator is optional. Figure
from [301]

Information about local magnetism can also be obtained using magneto-optical techni-

ques, including the magneto-optic Kerr e�ect (MOKE). When light is re�ected on a mag-

netized surface, it undergoes some change in intensity and polarization due to interaction

with local magnetization. This change depends on the orientation of the magnetization,

so that in the presence of multiple magnetic domains or inhomogeneous magnetization

distributions, there is a contrast in the re�ected signal. This allows for the direct observa-

tion of the magnetization distribution of samples. The general setup required for a Kerr

microscope is shown on Fig. 4.31. The light is polarized (usually linearly, which is equiva-

lent to the sum of two circularly polarized signals) before getting to the magnetic surface.

In the general case, the re�ection will rotate the axis of polarization (due to di�erent phase

velocities) and induce a small ellipticity (due to a di�erence of absorption). The variation

of the polarization of the re�ected light is then measured using an analyzer placed before

the detector. For maximum sensitivity, the analyzer direction should be roughly orthogo-

nal to that of the polarizer, which necessarily implies low-intensity signals. Depending on

the relative orientation of the incident light with respect to local magnetization, one deals

with polar (out-of-plane magnetization), longitudinal (magnetization along the incidence

direction) or transverse (magnetization orthogonal to the incidence direction) MOKE. Of

course, the strength of the magneto-optical response depends on the materials.

A Kerr microscope was set up at IEMN over the course of the PhD. It uses a M455L3

Thorlabs mounted LED of short wavelength (455 nm), which is interesting from the reso-

lution point of view. However, it appears that green happens to be the best when it comes

to strength of magneto-optical response for Fe and Co (which constitutes the uppermost
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Figure 4.32 � Photograph of the Kerr microscope set up at IEMN.

layer in our samples) [302]. As for the detector, a ORCA-Flash4.0 V3 Hamamatsu ca-

mera was used. As Kerr imaging involves light of low intensity, the properties relevant

for Kerr imaging include low-noise operation, high sensitivity and large dynamic range.

The performance of the software associated with the camera is also crucial as it is often

necessary to perform signi�cant image processing in order to get clear results.

It appeared that some contrast linked to magnetization could be achieved using ma-

terials similar to the multilayers we used, although it was di�cult to stabilize an image

with a non-uniform magnetization distribution using an applied magnetic �eld. Besides,

mechanical vibrations from the table added signi�cant noise to the images, although there

were successful e�orts to reduce it. Since these materials did exhibit a magneto-optical

response, we tried to look at our samples with this new microscope, using the mount

shown in Fig. 4.18.

Because it is essentially an optical microscope, only elements that were microns across

length and width put on the mask were visible. While small nanostructures were recogni-
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Figure 4.33 � Kerr images of a multilayer subjected to a magnetic �eld and mechanical
stress induced by the piezoelectric substrate. The di�erent magnetic domains are clearly
visible.

zable, their size was too small for the microscope to give valuable insight on their internal

magnetic structure, especially considering the noise induced by vibrations on the setup.

However, large marks of isosceles triangles shape (hypotenuse: 80 µm and therefore alti-

tude of 40 µm) were large enough to look at their magnetic domain con�guration. Even

then, during cycles of applied magnetic �eld between saturating values, they mere most

of the time monodomain, although the magnetization switching was clearly achieved by

domain wall propagation. The procedure followed was the following. First, a saturating

(for instance negative) magnetic �eld is applied along the easy axis, so that the magne-

tization of the triangle is uniform. The amplitude of this magnetic �eld is then reduced

until it reached a positive value close to the coercivity. In this region, the magnetic �eld

is increased very slowly until nucleation of a small domain. At this point the magnetic

�eld is kept at its value, and an electric �eld is applied on the PMN-PT substrate to gene-

rate stress components. We showed that it resulted in domain wall propagation because

of the observable increase in area of the domain, with pinned domain walls. While this

experiment does not involve the same geometry and magnetic domain structure as what

was intended, it does show a magnetoelectric e�ect inducing domain wall propagation

through a modi�cation of anisotropy induced by mechanical stress.
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4.4 Prospects

This section contains a discussion dealing with the ways in which the experimental state

of a�airs can be improved. Various considerations on how to �nd the optimal parameters

pertaining to the quality of the lithography, lift-o� and etching are put forward. Some

thoughts on the failure to precisely manipulate domain walls in the proposed con�guration

follow. Finally, parallel work that we have been involved in on PMN-PT etching in the

prospect of integration and e�cient operation is presented.

4.4.1 Optimization of fabrication process

Although signi�cant progress has been made on the lift-o� process since the �rst tests, the

pro�les obtained still exhibit steep relief on the edges of the magnetoelastic structures.

The approach chosen here was to reduce the thickness of the resist. This turned out to

work quite well, although results were less satisfying on PMN-PT than on silicon wafers,

probably due to the size of the substrate. Only limited progress is to be expected in this

direction, since the spin-coating rotation speed is already close to the maximum available.

Moreover, the thinner the layer of resist, the more di�cult the lifto� will be. Using another

resist is an option, although the lithography process would have to be overhauled. In this

context, many would also consider usual bilayer e-beam structures (for instance spinning

PMMA on top of copolymer), with signi�cant undercut [303]. An even simpler idea is

to deposit thicker multilayers in order to reduce the gap between the thickness of the

multilayer and that of the resist. For wide nanostripes, this would probably not be a

problem from the magnetic point of view. Other, more complicated options include the

use of smooth anisotropic etching with a tilted angle to break the bumps and spikes on

the edges after lift-o�, for instance using Reactive Ion Beam Etching (RIBE).

Another problem was the damage caused by the necessary ultrasonic cleaning used

during lift-o�. Even at minimum power, there are signi�cant risks that smaller elements

get detached while long nanowires tend to break. It is possible that �ne-tuning the

cleaning parameters (mode of operation, power, time, temperature) may yield better

results. Also, the choice of another metal for the electrode on which the multilayers are

deposited may help increase their adherence.

Let us not forget that these issues disappear if we consider etching instead of lift-o�

(see Fig. 4.14). However, other problems need to be solved to obtain smooth pro�les as

well as clean samples. Here again a lot of parameters come into play (gas, �ow rate,

power, metal used for mask and so on). Also, the RIBE tool at IEMN is specially suited
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for etching very thin �lms. This solution was tried once, with mixed results so that more

time would be necessary to optimize the process. However, it remains an interesting

option as this tool is able to remove in real-time the impurities generated by etching.

Finally, the combination of materials chosen in this thesis (TbCo2/FeCo sputtered

multilayers on (011) PMN-PT bulk substrate) should not be seen as the only pair worth

considering to achieve stress-induced domain wall motion as presented here. First, using

PMN-PT thin �lms could be an opportunity with regard to integration and scaling, under

the assumption that appropriate crystalline phase and orientation as well as good surface

quality can be obtained on silicon wafers. Besides, other materials may exhibit superior

intrinsic properties, better coupling, or allow more convenient processing or operation.

We should also bear in mind that the research is not done in the vacuum but within a

regulatory and social framework that tend to re�ect economic, strategic and ecological

concerns. Public health risks associated with the use of lead in commercial products

resulted in a stringent worlwide regulation of lead-based products. As a result, there is

a strong incentive for researchers to �nd lead-free alternatives, especially in the industry

[304, 305]. Unfortunately, a lead-free candidate with competitive properties has yet to

be found. We can make a similar point on the use of a rare-earth based material for

the magnetoelastic phase. It remains to be seen how more abundant magnetostrictive

elements�such as nickel�could replace them. The key issue here lies with the possibility

to e�ciently tailor the magnetic anisotropy as it is currently done in nanostructured

terbium-based multilayers sputtered in the presence of a magnetic �eld.

4.4.2 Control of domain walls in nanostructures

The failure to obtain an experimental validation of the phenomenon studied numerically

should not shed doubt on the possibility of successfully observing domain wall motion

induced by the combination of a uniform stress and a bias magnetic �eld. The basic phy-

sical mechanism involved�stress-triggered variation of e�ective anisotropy generating a

Zeeman energy gap between adjacent domains�is quite simple and completely consistent

with existing knowledge. Combining this strong a priori plausibility with the numerical

evidence presented in this thesis, it would be surprising that such a phenomenon could

not be observed experimentally.

It is possible that the phenomenon would not be easily observed because of the relative

weakness of the energy gap that could fail to overcome domain wall pinning strength at

room temperature, but this seems rather unlikely. First, with modern techniques and
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know-how, it is possible to achieve very limited roughness in nanostructures. Second, the

energy gap depends heavily on the strength of the magnetic �eld, which can be increased

as high as the e�ective anisotropy along ~x (uniaxial anisotropy + shape anisotropy) to

force the depinning of the domain wall.

One important issue we faced relates to the creation of domain walls, which is a matter

seldom covered in papers dealing with domain wall motion. First, it is probable that the

patterns chosen for the nanostructures do not lend themselves to domain wall generation

in such materials. Second, the process by which we thought domain walls could appear

(saturation with orthogonal magnetic �eld and relaxation) may not be suited to such

con�gurations, and in any case was implemented with poor precision over the saturation

angle. Realizing this, we fabricated an electromagnet �xed on a Thorlabs mount that can

rotate with a precision of less than 1◦. However, to be of any use, such a device would have

to be set up in the MFM so that after each saturation it would be possible to check for

the presence of a domain wall in the examined nanostripe. Unfortunately this could not

be achieved, and there were doubts that the �eld generated by the magnetic circuit would

be strong enough to overcome the e�ective anisotropy of individual elements. Besides,

the consequences of the proximity of the magnetic tip and variable magnetic �eld in the

xy-plane remains an unsettled matter. Magnetic �elds up to 3 T can be applied in ultra-

high vacuum equipments at IEMN, but only perpendicularly to the sample and for the

time being, there are no adequate magnetic tips available.

4.4.3 PMN-PT studs

In parallel with the work on magnetoelastic structures, there were e�orts directed at more

application-oriented matters. More precisely, investigations have looked at the conditions

in which the control of individual magnetoelastic structures could be implemented in an

array of such elements from an integration perspective. As discussed in subsection 4.1.3,

the risk of inhibiting piezoelectrically-induced displacement as well as locally damaging

the substrate suggests that some processing of the PMN-PT substrate may be useful.

This is the reasoning behind the proposed patterning shown in Fig. 4.4, in which a stud

of substrate is created. We should also note that this solution dramatically reduces the

dissipated energy as the volume of dielectric involved is reduced. In any case, the deve-

lopment of an etching process of PMN-PT is necessary. In practice, given the small size

of the stud (only microns across), it is necessary to arrange a "bridge" to ensure electri-

cal contact of the surface of the stud. Prior multiphysics studies using the COMSOL R©

software showed that an aspect ratio of 1 (width to thickness) was a good compromise to
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allow the piezoelectric material to e�ectively deform itself on its upper part. Therefore,

quite deep etching is necessary.

Figure 4.34 � (a) FIB an (b) plasma etching of the PMN-PT substrates to create 5x5 µm
studs.

A �rst step consisted in depositing appropriate electrodes on a PMN-PT substrate.

Then, preliminary tests involved Focused Ion Beam (FIB) to etch the substrate (see

Fig. 4.34a). However, since etching in this fashion can only be done one site at a time, it

is not suited to the eventual purpose of having arrays of studs. Plasma etching appears like

a better option, and proved possible although the etching pro�le on PMN-PT substrates

turned out to be much less straight than on silicon wafers. Crystalline orientations may be

to blame on this issue. An example of a 1 µm deep etching is shown on Fig. 4.34b, made

possible by a nickel mask. Signi�cant wear of the bridge was observed, and concern over its

eventual disappearance because of the longer periods of etching necessary eventually led

to a modi�cation of the design. A simple parallelepipedic 'pier-like' structure of constant

width is now considered. Given the depth of etching sought (several microns), a thick

nickel protective mask is required. The most convenient technique to use in such cases is

electrolysis.

Various scenarii have been put forward for the whole process, and one currently re-

mains under consideration. They are summed up in 4.35. Other candidates were elimina-

ted because they proved too complicated from an experimental point of view or that they

yielded poor results. In the agreed-upon view, electrodes would have to be deposited �rst,

before the lift-o� of magnetoelastic elements is done. For the electrolysis, it is necessary

to have a full-surface deposition of metal (so that the sample surface is conducting and

acts as the cathode). Since it will be on top of the multilayers, gold was chosen as it can

be wet-etched without damage to the multilayers. A negative resist is then spun to cover
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Figure 4.35 � Entire process broken down into simple steps, from bare substrate to etched
surface with electrodes and magnetoelastic structures on studs.

the areas where the substrate is supposed to be etched. 2 µm of nickel are deposited

during the electrolysis. After lift-o�, areas of the substrate to be dry-etched are open.

Finally, after the deep etching of PMN-PT, the nickel and gold can be wet-etched one

after the other.

4.5 Conclusion

In this chapter, we presented the various investigations pertaining to the attempt to

experimentally observe the phenomenon studied numerically in previous chapters. The

materials chosen for the implementation of the magnetoelectric coupling are (011)-cut

PMN-PT for its particular piezoelectric properties, and rare-earth-based magnetoelastic

multilayers routinely used at IEMN. On the fabrication process, few obstacles have been

encountered, and at this point, a satisfying process has been developed. The successful
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polishing of PMN-PT substrates allowed great surface quality on which lithography could

be performed easily. TbCo2/FeCo multilayers were deposited by sputtering. The choice

of lift-o� of the multilayers yielded high-quality patterns with only limited abnormalities.

To begin on the characterization front, the piezoelectric properties of PMN-PT sub-

strates were measured. The successful measurements hinted at a complex, nonlinear

behavior that turned out to be consistent with data reported in the literature. The

characterization of the multilayers deposited was done in the VSM, and con�rmed the

presence of a clearly de�ned uniaxial anisptropy. As for the magnetoelastic structures,

AFM and MFM observations were carried out and we concluded that for the most part

magnetoelastic elements had uniform magnetization. The use of a newly assembled Kerr

microscope provided information about the magnetization distribution of larger elements.

It was possible to observe a magnetoelectric e�ect on a sample subjected to a magnetic

�eld and an electric �eld. Finally, several ideas on the possible opportunities for impro-

vement on all these matters are discussed. The path toward integration, including work

on deep-etching of PMN-PT substrates was also addressed.
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Conclusion

In this thesis we have proposed and studied in detail an innovative technique to induce

the motion of transverse domain walls in nanostripes of constant and variable width.

As shown in chapter 1, this endeavor �ts very well into current research trends in

magnetism pertaining to the manipulation of magnetization and domain walls at the

nanoscale. Magnetic �elds and electric currents are routinely used to induce domain wall

motion experimentally, and the study of the dynamics unveiled the complex behavior

of magnetic domain walls, including the well-known Walker breakdown. The need to

reduce energy consumption associated with device operation has led to e�orts to �nd low-

energy alternatives. Magnetoelectric materials are a promising example, since the use

of an electric �eld o�ers advantages over electric currents. In particular, the mechanical

coupling of a piezoelectric substrate and a magnetoelastic layer provides an interesting

implementation of the magnetoelectric e�ect. Generally speaking, the application of a

stress on a magnetic system is tantamount to the creation of an additional anisotropy.

Among other works, previous investigations at IEMN showed the possibility to reversibly

switch the magnetization of a magnetoelastic element with uniaxial anisotropy using a

uniform stress and a static bias magnetic �eld arranged so that it breaks the quadratic

symmetry. More precisely, if the easy axis is along ~x, the magnetic �eld is generated along

~y while the directions of uniaxial in-plane stress are given by the angle bisector. Several

features conferred to this system relevant properties in the context of memory applications.

The concept presented in this work capitalized on this previous experience to describe how

the same combination of stress and magnetic �eld can give rise to controlled transverse

domain wall motion in two-domain nanostructures. Further, another key idea in this work

is the engineering of the potential landscape through a variable width.

While standard micromagnetic simulations were carried out and supported the propo-

sition made, a simpler, ad hoc 1D model able to determine the magnetization distribution

of minimal energy was developed and presented in chapter 2. This choice was motivated

by two concerns: reducing the computational load involved, and providing to the user
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full control on the parameters and algorithms used. As a �rst step, we gave a remin-

der of the classical micromagnetism equation governing the behavior of magnetization in

the general case derived from variational methods. Then, the same approach was follo-

wed with more speci�c terms re�ecting the geometry and con�guration considered. The

obtained equation was introduced into a relaxation procedure including a bisection-based

solver, allowing both fast convergence and high accuracy as con�rmed by the comparison

against known analytical solutions. With an input geometry with a constant width, the

numerical procedure described inde�nite domain wall motion, leaving only one domain of

lower energy. However, it was shown that if we consider a variable width (for instance

hourglass-shaped), the domain wall can reach an equilibrium position, and returns to

its original position at rest when the stress disappears. From this reversible behavior, a

relationship between domain wall position and stress was established. Overall, energetic

analyses showed that the phenomenon is caused by the action of the static magnetic �eld

on two domains under the in�uence of an e�ective anisotropy resulting from the interplay

between magnetocristalline anostropy and the applied stress. As such, the motion can be

characterized as stress-triggered but �eld-driven. Looking at a piezoelectric generation

of stress, we showed that such a system dissipates very small amounts of energy, mainly

from Joule heating dissipation due to the charge and discharge cycle of the piezoelectric

substrate.

The determination of equilibrium magnetization distributions does not yield infor-

mation about the path followed by the magnetic system. The dynamics were therefore

explored in chapter 3 through a second ad hoc 1D code. The outcome of the variational

procedure was combined with the Landau-Lifshitz-Gilbert equation to obtain the desired

dynamical system of equations. An implicit Euler algorithm based on the Newton method

was used to solve this system, and was validated by its successful predictions on �eld-

driven motion. The dynamics are in�uenced by the values of the applied stress and bias

magnetic �eld, and it was shown that in a nanostripe with constant width, a steady-state

motion is reached. From the physical point of view, stress-triggered motion stands apart

from classical domain wall motion in that the corresponding domain wall shape features

notable out-of-plane excursions in the vicinity of the domain wall. These excursions wane

as the domain reaches its equilibrium position in a hourglass-shaped nanostructure. The

extent of the out-of-plane component depends on the relative strength of compressive and

tensile stress components, since they are associated with planar and uniaxial anisotropy,

respectively. This is the reason why with the piezoelectric parameters considered the

application of a negative and positive electric �eld does not result in the same dynamics
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and domain wall shape. In any case, the values of velocities measured (up to 800 m/s and

beyond, depending on parameters) compare favorably to those of more standard domain

wall motion techniques. The plausibility that the failure of the code at high �elds hinted

at the existence of a phenomenon akin to a Walker breakdown was discussed.

Given the strong theoretical and numerical evidence presented, it seems likely that the

phenomenon described can be observed in a real system. Chapter 4 covered experimen-

tal work carried out during the PhD. The choice of materials re�ects the requirements

of an e�cient magnetoelectric coupling mediated by mechanical stress. When subjected

to a vertical electric �eld, (011)-cut [Pb(Mg 1
3
Nb 2

3
)O3]1−x-[PbTiO3]x (PMN-PT) around

the morphotropic phase boundary generates large in-plane stress components of oppo-

site signs. We saw how using rare-earth-based alloys in sputtered multilayers enables an

interesting compromise between magnetization at saturation, magnetostriction and ani-

sotropy. The fabrication process of magnetoelastic nanostructures on PMN-PT began by

polishing the substrates to obtain surfaces of good quality. Both dry-etching and lift-o�

were tested, although only the latter yielded satisfying results. For that, positive resist

lithography was successfully developed on PMN-PT, so that magnetoelastic multilayers

could be deposited by sputtering before the lift-o� was performed. As for characterization,

piezoelectric measurements unveiled the strongly nonlinear nature of (011)-cut PMN-PT,

with its hysteretic behavior that may prove useful for some applications. The magnetic

properties of multilayers were measured by a vibrating sample magnetometer. The topo-

graphy obtained by lift-o� was probed by atomic force microscopy, while magnetic force

microscopy provided information about the local magnetization of individual elements

which happened to be mostly monodomain. A newly set up Kerr microscope allowed the

magneto-optical observation of the system under magnetic �eld and electrically-induced

stress, and a magnetoelectric e�ect was noticed. The potential ways forward and more

application-oriented matters were discussed, including e�orts put into the etching of PMN-

PT to produce studs facilitating the piezoelectric actuation of individual devices.

Building on this work, there are both room for improvement and new lines of research

to explore. On the numerical front, e�orts could be put into analyzing the failure of the

dynamical code further in order to bring support or dismiss the idea that there is indeed

a Walker-like breakdown in the system studied. Such a �nding might be signi�cant from

the physical point of view. Re�ned analyses using standard micromagnetic simulations

could also help on this matter. On the experimental front, a collaboration with teams

possessing complementary know-how on domain wall manipulation could very well result

in the proper experimental observation of the phenomenon predicted, with the conditions
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and geometry considered. Maybe other materials may prove more suitable. If successfully

implemented, stress-triggered �eld-driven motion may prove both competitive and conve-

nient. Further, the concept proposed paves the way for interesting variants. In particular,

piezoelectrically actuated multistable systems may be of interest for some applications.

Besides, the in�uence of a variable width on domain wall motion in general is also an

interesting lead that may bring new insight on both fundamental and applied matters.

172



Appendix A

Domain wall with exchange and

anisotropy energy

We analyze a speci�c domain wall con�guration, which is important from both the the-

oretical and numerical points of view. We consider the simple case of a ferromagnetic

stripe with only exchange and anisotropy energy contributions. The calculation is �rst

carried out in the general case of a bounded geometry, and then extended to an in�nite

domain wall. Accordingly, the total energy can be deduced from Eq. (2.29), eventually

obtaining

U = h`

+L
2∫

−L
2

[
−Ku cos2 Φ + A

(
dΦ

dx

)2
]

dx. (A.1)

The Lagrangian function of the variational problem is therefore

L = −Ku cos2 Φ + AΦ′2, (A.2)

where Φ′ ≡ dΦ
dx
. The associated Hamiltonian function is

H =
∂L
∂Φ′

Φ′ − L = AΦ′2 +Ku cos2 Φ. (A.3)

Since ∂L
∂x

= 0, we have the conservation ofH, leading to the simpli�ed di�erential equation

Φ′ =

√
−Ku

A
cos2 Φ + C1, (A.4)

where C1 is an integration constant. The boundary conditions

Φ(−L
2

) = 0 , Φ(+
L

2
) = π, (A.5)
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adopted to analyze the problem, guarantee the existence of the ferromagnetic domain

wall. Separating the variables in Eq. (A.4), we obtain

Φ∫
0

dΦ√
C2 + sin2 Φ

=

(
x+

L

2

)√
Ku

A
, (A.6)

where we used the �rst boundary condition and we introduced C2 = AC1/Ku − 1. The

coe�cient C2 can be calculated by considering the second boundary condition. We get

π∫
0

dΦ√
C2 + sin2 Φ

= 2

π
2∫

0

dΦ√
C2 + sin2 Φ

= L

√
Ku

A
. (A.7)

We now introduce the integral [306]∫
dx√

1 + p2 sin2 x
=

1√
1 + p2

F

(
α,

p√
1 + p2

)
, (A.8)

where α = arcsin

√
1+p2 sinx√
1+p2 sinx

and F (ν, q) is the incomplete elliptic integral of the �rst kind,

de�ned as [307,308]

F (ν, q) =

ν∫
0

du√
1− q2 sin2 u

=

sin ν∫
0

dx√
(1− x2) (1− q2x2)

. (A.9)

We therefore obtain the equation for C2 in the form

1√
1 + C2

K

(
1√

1 + C2

)
=
L

2

√
Ku

A
, (A.10)

where we also used the complete elliptic integral of the �rst kind K(q) [307,308]

K(q) = F (
π

2
, q) =

π
2∫

0

du√
1− q2 sin2 u

(A.11)

Similarly, we can rewrite Eq. (A.6) in terms of elliptic integrals√
Ku

A

(
x+

L

2

)
=

1√
1 + C2

F

(
αΦ,

1√
1 + C2

)
(A.12)

where

αΦ = arcsin

√
1 + C2 sin Φ√
C2 + sin2 Φ

. (A.13)
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Equations (A.10) and (A.12), although in implicit form, solve the problem of the �nite-

length stripe with exchange and anisotropy energies. We �nally observe that by de�ning

ξ =
√

1 + C2, these equations can be further simpli�ed as follows√
Ku

A

(
x+

L

2

)
=

1

ξ
F

(
arcsin

ξ sin Φ√
ξ2 − cos2 Φ

,
1

ξ

)
, (A.14)

1

ξ
K

(
1

ξ

)
=

L

2

√
Ku

A
. (A.15)

It is interesting to prove that, for L → ∞, we obtain the classical wall calculation as

found in [20]. To begin, we note that ξ → 1+ and therefore η ≡ 1/ξ → 1− when L→∞.

Equation (A.14), in terms of η, becomes√
Ku

A
x+ ηK(η) = ηF

(
arcsin

sin Φ√
1− η2 cos2 Φ

, η

)
. (A.16)

Hence, the limiting case for L → ∞ is not trivial since both arguments of the elliptic

function F in Eq. (A.16) depends on η → 1−. To cope with with this problem, we use

the following property of the function F [307,308]

F (ϕ, sinα) + F (ψ, sinα) = K(sinα)

if cosα tanϕ tanψ = 1, (A.17)

with sinα = η and ϕ = arcsin sin Φ√
1−η2 cos2 Φ

. Then Eq. (A.16) can be eventually rewritten

as √
Ku

A
x+ ηF (ψ, η) = 0, (A.18)

where ψ can be found through the relation

tanψ =
1

cosα tanϕ
=

√
1− η2 cos2 Φ− sin2 Φ

sin Φ
√

1− η2
, (A.19)

leading to sinψ = cos Φ.

Consequently, substituting the expression of ψ into Eq. (A.18), we have
√

Ku
A
x +

ηF (arcsin cos Φ, η) = 0. Therefore, for L → ∞ (i.e. η → 1), we have that
√

Ku
A
x +

ηF (arcsin cos Φ, 1) = 0. Now, we use the property [307,308]

F (ψ, 1) = ln(secψ + tanψ), (A.20)
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and we can easily obtain the result

Φ(x) = 2 arctan

(
exp

(√
Ku

A
x

))

= π − arccos

[
tanh

(√
Ku

A
x

)]
, (A.21)

which is the well-known solution for the in�nitely long stripe with exchange and anisotropy

energies [20].

176



Appendix B

Variational procedure

The minimization of the functional U de�ned in Eq. (2.6) can be performed as follows

min
~w : ‖~w‖=1

U → min
~w

U +

∫
V

λ (~w · ~w − 1) d~r

 , (B.1)

where λ = λ (~r) is a Lagrange multiplier introduced to �x the norm of the unit vector ~w.

Therefore, we have to minimize

U ′ =

∫
V

uan + uex + ume + λ(~w · ~w − 1)−µ0Ms
~HL · ~w︸ ︷︷ ︸

uZe

 d~r, (B.2)

with ~Hl �xed. This functional assumes its extremal value when

d

dβ
U ′
[
~w (~r) + β~k (~r)

] ∣∣∣∣
β=0

= 0 ∀~k (~r) , (B.3)

where the left-hand side represents the Gâteaux derivative of the functional U ′ [277]. If

we de�ne the quantity U ′′ (~w) = U ′ (~w)−
∫
V

uZed~r, Eq. (B.3) can be rewritten as

d

dβ
U ′′
[
~w + β~k

] ∣∣∣∣
β=0

− d

dβ

∫
V

µ0Ms
~Hl ·

(
~w + β~k

)
d~r

∣∣∣∣
β=0

= 0, (B.4)

or, equivalently, as

d

dβ
U ′′
[
~w + β~k

] ∣∣∣∣
β=0

−
∫
V

µ0Ms
~Hl · ~k d~r = 0. (B.5)

Although in implicit form, this is the equation giving ~w(~r) in V . At this point, we can

combine it with ~Hl = ~H0 + ~Hd. It is important to note that this substitution cannot be

177



made in U or U ′, before the minimization, since ~Hd is a function of ~w. In Then, Eq. (B.5)

becomes

d

dβ
U ′′
[
~w + β~k

] ∣∣∣∣
β=0

−
∫
V

µ0Ms
~H0 · ~k d~r

−
∫∫
V 2

µ0M
2
s
~k(~r) ·N(~r, ~r0)~w(~r0) d~r0d~r = 0, (B.6)

where we used Eq. (2.7) for the demagnetization �eld. Equivalently, we can also write

d

dβ
U ′′
[
~w + β~k

] ∣∣∣∣
β=0

− d

dβ

∫
V

µ0Ms
~H0 ·

(
~w + β~k

)
d~r

∣∣∣∣
β=0

+

∫∫
V 2

1

2
µ0M

2
s

[
~w(~r) + β~k(~r)

]
·N(~r, ~r0)

[
~w(~r0) + β~k(~r0)

]
d~r0d~r

∣∣∣∣
β=0


= 0. (B.7)

where we used the symmetries described in Eqs.(2.9a) and (2.9b). We can then de�ne an

auxiliary function Ũ ′

Ũ ′ = U ′′(~w)−
∫
V

µ0Ms
~H0 · ~w d~r −

∫∫
V 2

1

2
µ0M

2
s ~w(~r) ·N(~r, ~r0)~w(~r0) d~r0d~r, (B.8)

which can be minimized with ~H0 �xed. We have therefore proved this series of equivalences

min
~w : ‖~w‖=1

U

∣∣∣∣
~HL fixed

⇔ min
~w

U ′
∣∣∣∣
~HL fixed

⇔ min
~w
Ũ ′
∣∣∣∣
~H0 fixed

⇔ min
~w : ‖~w‖=1

Ũ

∣∣∣∣
~H0 fixed

, (B.9)

where Ũ is de�ned in Eq. (2.11). Finally, the minimization of Ũ with respect to the

direction ~w, with T and ~H0 imposed, leads to the actual magnetization of the ferromag-

netic body. We can therefore apply the methods of the calculus of variations to obtain

the equation for ~w. As before, we work with the Gâteaux derivative

d

dβ
Ũ ′
(
~w + β~k

) ∣∣∣∣
β=0

= 0, (B.10)

where

Ũ ′(~w) = Ũ +

∫
V

λ(~r)(~w · ~w − 1) d~r. (B.11)
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We obtain∫
V

∂fan
∂ ~w
· ~k − 1

2
βij

(
∂kl
∂xi

∂wl
∂xj

+
∂wl
∂xi

∂kl
∂xj

)
+ 2λklwl − µ0MsH0iki

− aiklmTik(klwm + wlkm)− µ0M
2
s

∫
V

Nij(~r, ~r0)ki(~r)wj(~r0)d~r0

 d~r = 0, (B.12)

where we used again both symmetries of tensor N . To proceed from here, we use the

divergence theorem in the form ∫
V

∂h

∂xi
d~r =

∫
∂V

hni dS. (B.13)

Now, if h = fg, we have ∫
V

f
∂g

∂xi
d~r =

∫
∂V

fg ni dS −
∫
V

g
∂f

∂xi
d~r. (B.14)

This property can be used on the exchange terms to further elaborate Eq. (B.12), as

follows∫
V

∂fan
∂ ~w
· ~k − βijkl

∂2wl
∂xi∂xj

+ 2λklwl − µ0MsH0lkl − 2aiklmTikklwm

− µ0M
2
s

∫
V

Nij(~r, ~r0)ki(~r)wj(~r0)d~r0

 d~r +

∫
∂V

βijkl
∂wl
∂xj

ni dS = 0, (B.15)

where we exploited the symmetry of tensor βij. The �rst integral of Eq. (B.15) being true

for any smooth function k ∈ R3, we can write

∂fan
∂ ~w
− βij

∂2 ~w

∂xi∂xj
− µ0Ms

~H0 + 2λ~w − µ0Ms
~Hd − 2a : T ~w = 0, (B.16)

where
(
a : T ~w

)
l

= aiklmTikwm. The Lagrange multiplier λ can be �nally eliminated by

applying a cross-product with ~w, which yields Eqs. (2.12) and (2.13).

From Eq. (B.15), we can also deduce the boundary conditions which can be applied

to minimize the energy functional: βijkl
∂wl
∂xj
ni = 0 on ∂V , where the perturbation vector

~k is not free since it must verify the condition
(
~w + β~k

)
·
(
~w + β~k

)
= 1 when ~w · ~w =

‖‖~w‖‖2 = 1. To the �rst order in β this translates to ~w ·~k = 0 and, therefore, we can say
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that ~k = ~w× ~w for an arbitrary vector ~w. Then, ~k is not arbitrary but ~w is completely free.

By considering kl = εlstwswt, we have βijεlstwswt
∂wl
∂xj
ni = 0 ∀ws, or βijεlstwt ∂wl∂xj

ni = 0 ∀s
on ∂V (εlst being the Levi-Civita permutation symbol). This condition can be strongly

simpli�ed when βij ∝ δij (isotropic exchange). In this case we have εlstwt
∂wl
∂xi
ni = 0 ∀s,

where ∂wl
∂xi
ni is the directional derivative of wl along ~n. So, it corresponds to ~w × ∂ ~w

∂~n
= 0.

We also observe that ~w is always perpendicular to ∂ ~w
∂~n

since ‖~w‖ = 1. Therefore, in order

to impose ~w × ∂ ~w
∂~n

= 0, it is su�cient to have ∂ ~w
∂~n

= 0 on ∂V .
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Appendix C

Calculation of the demagnetization �eld

We provide here a technique to numerically evaluate the demagnetization �eld in our

system. A similar approach can be found in the literature [309]. To begin, we consider

Eq. (2.7) giving the demagnetization �eld for an arbitrary region V . In analogy with the

theory of the electric dipole [269], we may introduce a magnetic scalar potential φ such

that
~Hd(~r) = −~∇φ, (C.1)

where

φ(~r) =

∫
V

1

4π

~M(~r0) · (~r − ~r0)

‖~r − ~r0‖3
d~r0. (C.2)

A useful development can be performed when the magnetization ~M is uniform in a given

region. In this case we can apply the divergence theorem∫
V

div ~w d~r =

∫
∂V

~w · ~n dS, (C.3)

where we consider ~w =
~M

‖~r−~r0‖ , with a constant �eld ~M . Indeed, we obtain

div ~w = ~M · ~∇ 1
‖~r−~r0‖ = ~M · ~r−~r0

‖~r−~r0‖3 , (C.4)

and therefore Eq. (C.3) reads∫
V

~M · ~r − ~r0

‖~r − ~r0‖3
d~r =

∫
∂V

~M · ~n
‖~r − ~r0‖

dS. (C.5)

As a conclusion, for a uniform magnetization ~M , the scalar potential is given by

φ(~r) =
1

4π
~M ·
∫
∂V

~n dS

‖~r − ~r0‖
, (C.6)
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where ~n is the unit vector normal to the external surface ∂V with area element dS. To

calculate the total demagnetization �eld in a given point, we can partition the whole region

in a given number of parallelepipedal layers. As discussed below, the parallelepipedal

geometry allows for quick and simple computation of the demagnetization �eld through

the scalar potential φ. Then, we can add all the contributions to obtain the �nal result.

Hence, we suppose ~M uniform within the arbitrary parallelepiped [x1, x2]×[y1, y2]×[z1, z2],

and we calculate φ through Eq. (C.6). We de�ne the integral ~I =
∫
∂V

~ndS
‖~r−~r0‖ and we write

the x component as

Ix =

z2∫
z1

y2∫
y1

dy0 dz0√
(x− x2)2 + (y − y0)2 + (z − z0)2

−
z2∫
z1

y2∫
y1

dy0 dz0√
(x− x1)2 + (y − y0)2 + (z − z0)2

. (C.7)

A change of variables leads to

Ix =

z−z2∫
z−z1

y−y2∫
y−y1

(
1√

(x− x2)2 + ξ2 + η2
− 1√

(x− x1)2 + ξ2 + η2

)
dξdη. (C.8)

Now, let us de�ne the function F (A,B,C,D,E, F ) as

F =

B∫
A

D∫
C

[
1√

E2 + ξ2 + η2
− 1√

F 2 + ξ2 + η2

]
dξdη, (C.9)

and we obtain the demagnetization potential in the form

φ(~r) =
1

4π
[MxIx +MyIy +MzIz] , (C.10)

where

Ix = F(z − z1, z − z2, y − y1, y − y2, x− x1, x− x2), (C.11)

Iy = F(x− x1, x− x2, z − z1, z − z2, y − y1, y − y2), (C.12)

Iz = F(y − y1, y − y2, x− x1, x− x2, z − z1, z − z2). (C.13)

To lighten the notation, we chose to write it in more concise form

φ(~r) =
1

4π

[
MxF

∣∣∣∣
321

+MyF
∣∣∣∣
132

+MzF
∣∣∣∣
213

]
. (C.14)
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where the symbol F
∣∣∣∣
ijk

means that the function F is calculated with variables speci�ed

in Eqs. (C.11), (C.12) and (C.13). Finally, the components of the demagnetization �eld

can be derived as

Hdx = −∂φ
∂x

=− 1

4π

[
Mx

(
∂F
∂E

∣∣∣∣
321

+
∂F
∂F

∣∣∣∣
321

)
+My

(
∂F
∂A

∣∣∣∣
132

+
∂F
∂B

∣∣∣∣
132

)
+ Mz

(
∂F
∂C

∣∣∣∣
213

+
∂F
∂D

∣∣∣∣
213

)]
,

(C.15)

Hdy = −∂φ
∂y

=− 1

4π

[
Mx

(
∂F
∂C

∣∣∣∣
321

+
∂F
∂D

∣∣∣∣
321

)
+My

(
∂F
∂E

∣∣∣∣
132

+
∂F
∂F

∣∣∣∣
132

)
+ Mz

(
∂F
∂A

∣∣∣∣
213

+
∂F
∂B

∣∣∣∣
213

)]
,

(C.16)

Hdz = −∂φ
∂z

=− 1

4π

[
Mx

(
∂F
∂A

∣∣∣∣
321

+
∂F
∂B

∣∣∣∣
321

)
+My

(
∂F
∂C

∣∣∣∣
132

+
∂F
∂D

∣∣∣∣
132

)
+ Mz

(
∂F
∂E

∣∣∣∣
213

+
∂F
∂F

∣∣∣∣
213

)]
.

(C.17)

In Eq. (2.40), we are working with a two-dimensional problem where Mz = 0 and,

therefore, the number of necessary components to compute ~Hd is reduced. Moreover, the

symmetry in Eq. (2.9a) allows us to prove that the operator relating ~Hd and ~M is always

symmetric. As a result, we have

∂F
∂A

∣∣∣∣
132

+
∂F
∂B

∣∣∣∣
132

=
∂F
∂C

∣∣∣∣
321

+
∂F
∂D

∣∣∣∣
321

, (C.18)

a property which further reduces the complexity of Eqs.(C.15) and (C.16)

Hdx =− 1

4π

[
Mx

(
∂F
∂E

∣∣∣∣
321

+
∂F
∂F

∣∣∣∣
321

)
+ My

(
∂F
∂A

∣∣∣∣
132

+
∂F
∂B

∣∣∣∣
132

)]
,

(C.19)
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Hdy =− 1

4π

[
Mx

(
∂F
∂A

∣∣∣∣
132

+
∂F
∂B

∣∣∣∣
132

)
+ My

(
∂F
∂E

∣∣∣∣
132

+
∂F
∂F

∣∣∣∣
132

)]
.

(C.20)

To complete this discussion, one can observe that the integral in Eq. (C.9) can be

calculated in closed form. This is very useful for the numerical implementation of the

proposed procedure

F =A ln

√
E2 + A2 +D2 +D√
F 2 + A2 +D2 +D

√
F 2 + A2 + C2 + C√
E2 + A2 + C2 + C

+B ln

√
E2 +B2 + C2 + C√
F 2 +B2 + C2 + C

√
F 2 +B2 +D2 +D√
E2 +B2 +D2 +D

+ C ln

√
E2 + A2 + C2 − A√
F 2 + A2 + C2 − A

√
F 2 +B2 + C2 −B√
E2 +B2 + C2 −B

+D ln

√
E2 +B2 +D2 −B√
F 2 +B2 +D2 −B

√
F 2 + A2 +D2 − A√
E2 + A2 +D2 − A

+ E arctan

(
E2 + A2 − A

√
E2 + A2 +D2

DE

)

− E arctan

(
E2 + A2 − A

√
E2 + A2 + C2

C E

)

− E arctan

(
E2 +B2 −B

√
E2 +B2 +D2

DE

)

+ E arctan

(
E2 +B2 −B

√
E2 +B2 + C2

C E

)

− F arctan

(
F 2 + A2 − A

√
F 2 + A2 +D2

DF

)

+ F arctan

(
F 2 + A2 − A

√
F 2 + A2 + C2

C F

)

+ F arctan

(
F 2 +B2 −B

√
F 2 +B2 +D2

DF

)

− F arctan

(
F 2 +B2 −B

√
F 2 +B2 + C2

C F

)
. (C.21)

Moreover, all its derivatives can be computed in order to implement Eqs.(C.15), (C.16)

and (C.17). This can be easily done in a symbolic environment.
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Appendix D

Analytical treatment of domain wall

motion

This appendix contains a short derivation of the classical Walker solution for the motion

of a 180◦ domain wall in a slightly adapted version. Indeed, since in this thesis we

work with head-to-head domain walls in thin �lms, this is the con�guration chosen here

instead of the original domain wall studied by Schryer and Walker, in which the easy

axis is perpendicular to the direction of motion [75]. In order to guarantee simplicity

in the derivation, we adopt the convention of spherical coordinates used by Schryer and

Walker for the angles describing the direction of magnetization. Therefore, there will be

some key di�erences between the convention used here (angles noted φ and θ) - which

mirrors that of Schryer and Walker - and what is used in chapters 2 and 3 (angles noted

Φ and Θ). The direction of motion is along ~z so that the magnetization ~w can be written

(cosφ cos θ, cosφ sin θ, cos θ).

We consider a ferromagnetic material with uniaxial anisotropy along the z-axis (con-

stant Ku), forming two domains with antiparallel magnetization along the direction of

motion. A uniform magnetic �eld ~H1 = H1~z is applied. The exchange interaction is also

taken into account. As for the demagnetization, a simpli�ed form is introduced, corre-

sponding to the demagnetization of a uniformly magnetized ellipsoid. At any point, its

direction is opposed to local magnetization so that ~Hd = −MsN ~w, with N a diagonal

tensor with unit trace.

By analogy with Eq. (3.9), we can easily write the corresponding e�ective �eld:

~Heff = ~H1 −MsN ~w +
2

µ0Ms

(
−Kuwz~z + A

∂ ~w

∂z

)
. (D.1)
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Following the same path as in subsection 3.1.4, we obtain the dynamical equations:{
φ̇ = − 1

sin θ
γ0

1+α2 (−sw + αrw),

θ̇ = − γ0
1+α2 (rw + αsw),

(D.2)

The quantities rw and sw are as follows:

rw =
2A

µ0Ms

(sin θφ′′ + 2 cos θφ′θ′) +Ms cosφ sinφ sin θ(Nx −Ny), (D.3)

sw =− sin θH1 +
2

µ0Ms

(
−Ku sin θ cos θ + A

(
θ′′ − sin θ cos θφ′2

))
+Ms sin θ cos θ(Nz − cos2 φNx − sin2 φNy). (D.4)

In the case of an in�nite ellipsoid along the z-axis, the element Nz of tensor N is zero.

Now, two assumptions will be made on the shape of the domain wall, which allow us

to �nd a solution of the dynamical system above. The �rst assumption is that φ = φ0 is

constant and uniform, this brings some simpli�cation to the equation, since as a result

φ′, φ′′ and φ̇ are all equal to 0. The second assumption is that θ assumes the classical

domain wall shape derived in appendix A and travels at a constant velocity v:

θ(x, t) = θ∞(ξ(x− vt)) = 2 arctan(exp ξ), (D.5)

where we introduced K̃u = Ku + µ0M2
s

2
(cosφ0Nx + sin2 φ0Ny) and ξ =

√
K̃u
A

(x − vt).
These assumptions lead to signi�cant simpli�cations of the dynamical equations, due to

the relationship between θ and its derivatives:

dθ∞

dξ
=

2 exp ξ

1 + (exp ξ)2 = sin θ∞, (D.6)

since exp ξ = tan θ∞

2
. Therefore it follows that

∂θ

∂t
=
∂ξ

∂t

dθ∞

dξ
= −

√
K̃u

A
v sin θ∞. (D.7)

Likewise,

∂θ

∂x
=

√
K̃u

A
sin θ∞, (D.8)

and
∂2θ

∂x2
=
K̃u

A
sin θ∞ cos θ∞. (D.9)
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The �rst part of Eq. (D.2) reads

αMs cosφ0 sinφ0 sin θ∞(Nx −Ny) + sin θ∞H1 −
2

µ0Ms

(
K̃u sin θ∞ cos θ∞ − Aθ′′

)
= 0,

(D.10)

and then using Eq. (D.9)

αMs cosφ0 sinφ0 sin θ∞(Nx −Ny) = − sin θ∞H1. (D.11)

This equation yields the desired relationship giving the angle φ0:

sin 2φ0 =
2H1

αMs(Ny −Nx)
=
H1

Hc

, (D.12)

where Hc = αMs(Ny−Nx)

2
is the so-called Walker breakdown �eld. As the value of sin 2φ0

cannot exceed 1, there is a solution to this equation only when H1 < Hc. As for the

second part of Eq. (D.2),

θ̇ = −

√
K̃u

A
v sin θ∞ = − γ0

1 + α2
(α(− sin θ∞) +Ms cosφ0 sinφ0 sin θ∞(Nx −Ny)) .

(D.13)

Using Eq. (D.12) (sinφ0 cosφ0 = 1
2

sin 2φ0) and dividing by − sin θ∞:

v = −K̃u

A

γ0

1 + α2

(
αH1 +

H1

α

)
. (D.14)

In the end, the Walker solution is given by the following system:

v = −γ0H1

α

√
A

Ku + µ0M2
s /2(cos2 φ0Nx + sin2 φ0Ny)

, (D.15)

sin 2φ0 =
2H1

αMs(Ny −Nx)
=
H1

Hc

. (D.16)
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Magnetoelectric manipulation of transverse domain walls in magnetoelastic na-

nostructures

The manipulation of magnetic domain walls�that separate regions of uniform magnetization�is as-

sociated with both fundamental and technological research interests. A large part of the literature

on domain wall motion deals with the use of magnetic �elds and electric currents. However, several

concerns�most notably energy dissipation�motivates the search for alternatives. Among potential

candidates, the mechanical stress-mediated magnetoelectric coupling in magnetoelastic/piezoelectric

heterostructures seems promising. In this thesis, it is shown that the combination of a bias magnetic

�eld and uniform mechanical stress can induce unidirectional domain wall motion in nanostructures

with uniaxial anisotropy. Static and dynamic aspects of this phenomenon are studied by means of

ad hoc numerical procedures simulating the mechanical coupling of 011-cut PMN-PT generating the

stress, and TbCo2/FeCo multilayers magnetoelastic nanostructures. The design of the cross section

pro�le in nanostructures allows to tailor the response of the system, enabling for instance the control

of domain wall position in con�ned geometries. The associated dynamics stands apart from known

regimes because of the shape of the domain wall. The existence of steady-state regimes in nanostripes

of constant width shows that velocities comparable to those of other techniques can be obtained, for a

fraction of the energy required. Experimental investigations resulted in the development of a successful

fabrication process on PMN-PT and the exploration of the magnetoelectric e�ect.

Keywords domain wall, magnetoelastic, magnetoelectric, mechanical stress, piezeoelectric, spint-

ronic, nanostructures, nanotechnology

Manipulation magnétoélectrique de parois de domaine transverses dans des na-

nostructures magnétoélastiques

La manipulation de parois de domaine magnétique, qui séparent des régions d'aimantation uniforme

dans les matériaux, est associée à des enjeux à la fois fondamentaux et technologiques. De nombreux

travaux portent sur le déplacement de parois par champs magnétiques et courants électriques. Cepen-

dant certaines préoccupations, notamment la dissipation d'énergie, motivent la recherche d'alternatives.

Parmi les solutions potentielles, le couplage magnétoélectrique par l'intermédiaire de contraintes mé-

caniques dans des hétérostructures magnétoélastique/piézoélectrique paraît prometteur. Dans cette

thèse, il est montré que l'association d'un champ magnétique de biais et de contraintes mécaniques

uniformes peut engendrer le déplacement unidirectionnel d'une paroi de domaine transverse dans des

nanostructures à anisotropie uniaxiale. Les considérations statiques et dynamiques de ce phénomène

sont étudiées par le biais de procédures numériques ad hoc simulant le couplage mécanique entre

substrat de PMN-PT de coupe 011 générant des contraintes, et nanostructures multicouches magné-

toélastiques TbCo2/FeCo. Le design du pro�l de section des nanostructures permet de moduler la

réponse du système, par exemple pour contrôler la position de parois con�nées. La dynamique du

système se distingue des régimes habituels de par la forme de la paroi de domaine. L'atteinte de régi-

mes permanents dans des nanorubans montre que des vitesses comparables aux autres techniques sont

obtenues, pour une dissipation d'énergie beaucoup plus faible. Des travaux expérimentaux ont permis

de mettre au point une procédure de fabrication sur PMN-PT et d'explorer l'e�et magnétoélectrique.

Mots-clés paroi de domaine, magnétoélastique, magnétoélectrique, contrainte mécanique, piézoé-

lectrique, spintronique, nanostructures, nanotechnologie
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