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Théorie de la réponse d'item dans l'analyse des données sur les maladies neurodégénératives 

Les maladies neurodégénératives, telles que la maladie d'Alzheimer (AD) et Charcot Marie Tooth (CMT), sont des maladies 
complexes. Leurs mécanismes pathologiques ne sont toujours pas bien compris et les progrès dans la recherche et le 
développement de nouvelles thérapies potentielles modifiant la maladie sont lents. Les données catégorielles, comme les 
échelles de notation et les données sur les études d'association génomique (GWAS), sont largement utilisées dans les 
maladies neurodégénératives dans le diagnostic, la prédiction et le suivi de la progression. Il est important de comprendre et 
d'interpréter ces données correctement si nous voulons améliorer la recherche sur les maladies neurodégénératives. Le but de 
cette thèse est d'utiliser la théorie psychométrique moderne: théorie de la réponse d’item pour analyser ces données 
catégoriques afin de mieux comprendre les maladies neurodégénératives et de faciliter la recherche de médicaments 
correspondante. Tout d'abord, nous avons appliqué l'analyse de Rasch afin d'évaluer la validité du score de neuropathie 
Charcot-Marie-Tooth (CMTNS), un critère important d'évaluation principal pour les essais cliniques de la maladie de CMT. 
Nous avons ensuite adapté le modèle Rasch à l'analyse des associations génétiques pour identifier les gènes associés à la 
maladie d'Alzheimer. Cette méthode résume les génotypes catégoriques de plusieurs marqueurs génétiques tels que les 
polymorphisme nucléotidique (SNPs) en un seul score génétique. Enfin, nous avons calculé l'information mutuelle basée sur 
la théorie de réponse d’item pour sélectionner les items sensibles dans ADAS-cog, une mesure de fonctionnement cognitif la 
plus utilisées dans les études de la maladie d'Alzheimer, afin de mieux évaluer le progrès de la maladie. 
 
Mots clés : Maladie neurodegenerative; echelle de notation; données categoriques; theorie de la réponse d’item;   Modèle 
Rasch; Analyse Rasch; GWAS; test d’association génétiques; Maladie d’Alzheimers; Maladie Charcot-Marie-Tooth; 
CMTNS; information mutuelle; ; ADAS-cog  
 
 

Item Response Theory in the Neurodegenerative Disease Data Analysis 

Neurodegenerative diseases, such as Alzheimer’s disease (AD) and Charcot Marie Tooth (CMT), are complex diseases. Their 
pathological mechanisms are still not well understood, and the progress in the research and development of new potential 
disease-modifying therapies is slow. Categorical data like rating scales and Genome-Wide Association Studies (GWAS) data 
are widely utilized in the neurodegenerative diseases in the diagnosis, prediction and progression monitor. It is important to 
understand and interpret these data correctly if we want to improve the disease research. The purpose of this thesis is to use 
the modern psychometric Item Response Theory to analyze these categorical data for better understanding the 
neurodegenerative diseases and facilitating the corresponding drug research. First, we applied the Rasch analysis in order to 
assess the validity of the Charcot-Marie-Tooth Neuropathy Score (CMTNS), a main endpoint for the CMT disease clinical 
trials. We then adapted the Rasch model to the analysis of genetic associations and used to identify genes associated with 
Alzheimer’s disease by summarizing the categorical genotypes of several genetic markers such as Single Nucleotide 
Polymorphisms (SNPs) into one genetic score. Finally, to select sensitive items in the most used psychometrical tests for 
Alzheimer’s disease, we calculated the mutual information based on the item response model to evaluate the sensitivity of 
each item on the ADAS-cog scale.  

Keywords : Neurodegenerative disease; Rating scale; categorical data; Item response theory; Rasch Model; Rasch analysis; 
GWAS; Gene-based association test; Alzheimer’s disease; Charcot-Marie-Tooth disease; CMTNS; mutual information; 
ADAS-cog 
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神经退行性疾病包括阿兹海默症和腓骨肌萎缩症是一类复杂疾病。它们的病理机制仍然未

被很好地理解，并且开发新疗法的研究和开发进展缓慢。分类数据如评级量表和全基因组

关联研究数据被广泛应用于神经退行性疾病的诊断，预测和进展监测。如果我们想改善疾

病研究，正确理解和解释这些数据是很重要的。本论文的目的是使用现代心理测量理论：

项目反应理论来分析这些分类数据，以更好地了解神经退行性疾病和促进相应的药物研究。

首先，我们应用 Rasch 分析，以评估腓骨肌萎缩症严重程度的主流评分量表和临床试验的

主要终点腓骨肌萎缩症神经病变量表的有效性。然后，我们将 Rasch 模型用于遗传关联分

析。这种方法中通过将一个基因中多个遗传标记如单核苷酸多态性的分类数据归纳为一个

遗传分数来鉴定与阿兹海默症相关的基因。最后，为了在阿兹海默症痴呆评定量表中选择

其中对疾病严重程度变化敏感的项目，我们基于项目响应模型计算互信息熵，以评估每个

项目的敏感性。 

 

 

 

 

 

 

关键词：神经退行性疾病;评分表; 全基因组关联分析; 分类数据; 项目反应理论;  Rasch

模型; Rasch 分析; 基因关联测试; 阿兹海默症; 腓骨肌萎缩; 腓骨肌萎缩症神经病变量表; 

互信息熵; 阿兹海默症痴呆评定量表 
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Les maladies neurodégénératives telles que la maladie de Charcot-Marie-Tooth (CMT) et la 

maladie d'Alzheimer (AD) sont un groupe hétérogène de troubles qui se caractérisent par une 

dégénérescence progressive de la structure et de la fonction du système nerveux central ou du 

système nerveux périphérique. Ces maladies causent des problèmes de mouvement ou de 

fonctionnement mental chez les patients et peuvent être graves ou mettant la vie en danger. La 

plupart d'entre eux n'ont pas de remède efficace à jour. 

L'analyse de ces maladies complexes a conduit au développement de nombreuses nouvelles 

méthodes technologiques, informatiques et analytiques qui visent à comprendre les mécanismes 

pathologiques de ces maladies. Différents types de données, tels que les SNPs et les scores des 

échelles de notation, sont utilisés dans le diagnostic, la prédiction et le suivi de la progression des 

maladies et des essais cliniques. Pour identifier les gènes qui ont un rôle dans un réseau de la 

maladie, les études d'association pangénomique (GWAS) qui scannent de grandes portions du 

génome afin de détecter les marqueurs génétiques sont nécessaires. GWAS donnent généralement 

des résultats au niveau de polymorphisme nucléotidique (SNPs). Cependant, la majorité des SNPs 

présentent des effets modestes et n'expliquent souvent qu'une petite partie de la variance ou de 

l'héritabilité du phénotype observé. Par conséquent, des modèles qui mesurent l'association 

combinée de multiples SNPs sont nécessaires. Pour évaluer la progression ou la gravité de la 

maladie, de nombreuses échelles de notation sont utilisées dans les essais cliniques des maladies 

neurodégénératives. Plusieurs questions concernant ces échelles émergent dans ce processus, y 

compris la validation et la sensibilité. 

Les données SNP et les données des échelles de notation pourraient être considérées comme des 

données catégoriques. En général, la théorie des tests classiques est appliquée pour analyser les 

échelles avec des items catégorisés par lesquels les scores des items sont additionnés pour donner 

un score total. Comme alternative à la théorie de test classique, la théorie de réponse d'item (IRT) 

a été largement appliquée à l'analyse catégorielle des données depuis des années. Au lieu d'utiliser 

les scores directement additionnés d'un test, la théorie de la réponse de l'élément évalue la 

capacité de la personne par les difficultés de l'élément et ses réponses à ces items. 

Résumé substantiel 



 

Résumé substantiel 

 

17 

 

Cette thèse a été conçue sur la base d'une CIFRE (Conventions Industrielles de Formation par le 

REcherche) en collaboration entre la société Pharnext et le Centre de Santé Publique de 

l’Université de Bordeaux. L'objectif est de fournir des solutions pratiques et de nouvelles 

méthodes utilisant l'IRT pour répondre aux questions soulevées dans les études sur les maladies 

neurodégénératives. 

 L’IRT fournissent un cadre statistique d'analyse de mesure qui peut être utilisé pour approximer 

les fonctions de densité de probabilité dans la mesure. Il pourrait être appliqué à une échelle de 

notation lorsque les éléments satisfont à l'hypothèse d'unidimensionalité et d'indépendance locale. 

La probabilité que la réponse d'une personne à un item dans une échelle de notation peut donc être 

modélisée en utilisant une fonction logistique avec les paramètres de la capacité de la personne et 

des caractères des items. 

Pour les items ayant seulement deux catégories, il existe trois principaux types de modèles IRT. 

Le modèle à un paramètre (1-PL) suppose que tous les éléments rapportent le trait latent de 

manière égale et les éléments ne varient que dans la difficulté. Le modèle à deux paramètres 

(2-PL) étend le 1-PL en estimant un paramètre de discrimination d'élément illustrant la capacité 

d'un élément à discriminer entre des traits contigus proches du point d'inflexion. Le modèle à trois 

paramètres (3-PL) étend le 2-PL en incluant un paramètre de deviner, qui ajuste pour l'impact du 

hasard sur les scores observés. Pour les articles comportant plus de deux catégories, plusieurs 

extensions IRT pourraient être adaptées, telles que le modèle d'échelle d'évaluation, le modèle de 

crédit partiel et le modèle de réponse graduée. Le modèle Rasch est un cas particulier de l'IRT. 

Bien que similaire à la 1-PL qui suppose l'égalité de la discrimination article, le modèle Rasch est 

plus une analyse confirmatoire qui met l'accent sur la primauté que le modèle corresponde aux 

données observées. Une fois que les données satisfont aux hypothèses du modèle de Rasch, une 

série de tests tels que l'ajustement et la cohérence de l'élément pourraient être appliqués pour 

évaluer l'échelle. 

Cette thèse repose sur trois grands projets utilisant l'IRT et le modèle de Rasch dans différents 

aspects de l'analyse des données sur les maladies neurodégénératives et sont présentés ci-dessous. 

Comme critère d'efficacité principal pour les essais cliniques de CMT, le score de neuropathie de 

Charcot-Marie-Tooth (CMTNS) est interrogé pour sa sensibilité au changement et ses propriétés 
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psychométriques sont encore discutées. Une méthode bien acceptée pour fournir la preuve de la 

validation de l'échelle sur la maladie est d'effectuer une analyse de modèle Rasch. Dans une 

première partie de cette thèse, nous avons utilisé l'analyse de Rasch pour évaluer les propriétés 

psychométriques du CMTNS avec une cohorte française de patient CMT1A. Nous avons d'abord 

testé les trois hypothèses de base: l'unidimensionalité, l'invariance et l'indépendance locale des 

scores de CMTNS. Une fois que ces hypothèses sont remplies, nous pourrions alors examiner la 

qualité générale de l'ajustement, la fiabilité, et la cohérence des items dans cette échelle. Les 

résultats de l’analyse nous ont permis de constater que le CMTNS est un mesure valide pour 

CMT1A. La plupart des items dans le CMTNS adaptent bien le modèle, sauf que deux items ont 

montré un overfit et 3 avaient des catégories désordonnées. Les résultats ont également souligné 

une limitation de la CMTNS est que les items sont plus adaptés pour évaluer les formes modérées 

à sévères de la maladie. Un perfectionnement plus poussé du CMTNS, comme l'ajout d'articles 

et/ou de catégories pour des évaluations de gravité modérée à modérée, est certainement à prendre 

en considération. 

La détermination des gènes associés à la maladie pourrait faciliter la compréhension du 

mécanisme pathologique et le développement du traitement. Les génotypes des SNPs peuvent être 

codés  en 0, 1 et 2 et donc ils pourraient être considérés comme une échelle de notation avec des 

items polytomes. Par conséquent, nous avons utilisé le modèle Rasch dans la deuxième partie du 

travail comme un test d'association génétique multi-marqueurs pour identifier les gènes associés à 

la maladie d'Alzheimer. Pour chaque gène, le modèle Rasch fournit une estimation de 

l'emplacement des individus sur le continuum de traits latent (dégrée d’association avec la 

maladie). En comparant ces emplacements du groupe de cas et du groupe control, nous avons pu 

évaluer l'association entre ce gène et la maladie. Nous avons conçu une série de simulations pour 

comparer cette méthode avec les quatre autres tests d'association existants. En comparant le taux 

de faux positifs et la puissance, nous avons trouvé que l'approche proposée a montré de bonnes 

performances. Ensuite, ce test d'association fondé sur le modèle Rasch a été appliqué aux données 

GWAS dans l'étude ADNI pour trouver les gènes associés à la maladie d’Alzheimer. Dans les 

gènes sélectionnés, plusieurs peuvent être fonctionnellement liés à la maladie. Une analyse de la 

voie de ces gènes met également en évidence le métabolisme du cholestérol qui joue un rôle clé 

dans la pathogenèse AD. De plus, ces éléments peuvent être intégrés dans un réseau de 
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signalisation hypothétique potentiellement ciblé par un médicament qui a montré une efficacité 

sur les modèles de maladie. 

Dans la troisième partie de la thèse, nous avons exploré la combinaison de l'IRT et la théorie de 

l'information. Un item qui est plus dépendant du trait latent estimé par l’échelle a une plus grande 

possibilité de correspondre au changement de gravité de la maladie et donc pourrais être un 

marqueur sensible pour certaine population. L'information mutuelle fournit une estimation 

générale des dépendances en quantifiant la dépendance entre la distribution conjointe de deux 

variables. La distribution de la densité de probabilité des items pourrait être estimée par l’IRT. Le 

but de cette étude est de sélectionner les items sensibles dans ADAS-cog, une mesure de 

fonctionnement cognitif la plus utilisées dans les études de la maladie d'Alzheimer, afin de mieux 

évaluer le progrès de la maladie. Dans cette étude, nous avons calculé l'information mutuelle 

basée sur l’IRT pour chaque item dans l’ADAS-cog en utilisant les données des patients en MCI 

dans l'étude ADNI et l'a comparée avec d'autres statistiques fondées sur l'IRT. L'information 

mutuelle des items est mieux corrélée à l’évolution de sévérité des patients sur les données de 

suivi de deux ans. Dans l'ADAS-cog, les items Word Recall, Word Recognition et Delayed Word 

Recall ont des informations mutuelles plus élevées. Leur score composite a montré un taux de 

changement plus élevé par rapport à des scores composites des autres sous-échelles ADAS-cog. 

Cette étude indique que l’information mutuelle basée sur l’IRT pourrait être un critère de la 

sensibilité des items. 

  



 

Preface 

 

20 

 

Neurodegenerative diseases, such as Charcot-Marie-Tooth disease and Alzheimer’s disease, are a 

heterogeneous group of disorders that are characterized by the progressive degeneration of the 

structure and function of the central nervous system or peripheral nervous system. These diseases 

cause problems with movement or mental functioning in patients and can be serious and even 

life-threatening. Most of them have no effective cure up to date.  

Neurodegenerative diseases are the major focus of Pharnext, a biopharmaceutical company 

founded in April 2007 by Professor Daniel Cohen and collaborators. Pharnext’s mission is to 

discover and develop new therapeutic solutions for the severe orphan (relative rare) and common 

neurodegenerative diseases and companion tests for unmet medical needs. 

The R&D approach of Pharnext consists in combining mini-doses of several drugs already 

approved by healthcare authorities for other diseases that are unrelated from a clinical viewpoint 

but linked in regarding the underlying biological networks. Pharnext’s core expertise is based on 

reconstructing extensive disease networks using complex and extensive genomic data to identify 

the thousands of molecules possibly involved in a disease. This type of biological information is 

considered to be the “missing link” in pharmaceutical research. From disease molecular networks, 

Pharnext deduces synergistic combinations of drugs already approved but for unrelated 

indications. These novel combinations of drugs are called Pleodrugs. The classical R&D 

approaches to find therapeutic molecules are usually based on the "one drug, one disease" 

paradigm under which a single drug is used to treat a single yet often multifactorial diseases 

which are the result of the combined effect of several genes and the environment. On the other 

hand, Pleodrugs are capable of restoring the molecular pathways perturbed in diseases and 

addressing the shortcomings of the standard R&D approach that has shown its limits in terms of 

efficacy and safety. The novel strategy of Pharnext allows targeting several molecular ‘nodes’ in a 

disease-perturbed pathway and thus helps to increase the treatment efficacy and safety. 
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Pharnext has two lead products in clinical development: PXT3003 is currently in an international 

Phase 3 trial for the treatment of Charcot-Marie-Tooth disease type 1A in Europe and the United 

States. PXT864 has generated positive Phase 2 results in Alzheimer’s disease.  

Neurodegenerative diseases are often multifactorial diseases. The analysis of such complex 

diseases has led to the development of many new technological, computational and analytical 

methods that aim to understand the underlying complex mechanisms of these diseases. Various 

types of data, such as SNPs and scores of rating scales, are employed by Pharnext in the 

neurodegenerative diseases research and the clinical trials. To ensure that the neurodegenerative 

disease studies in Pharnext could provide a proper interpretation of their findings, the 

development of statistical methods is critical.  

To identify genes which have a role in a disease network, Genome Wide Association Studies that 

screen large portions of the genome in order to detect genetic markers are necessary. GWAS 

generally yield results at the SNP-level. However, the majority of SNPs show modest effects and 

often explain only a small part of the variance or heritability of observed phenotypes. Therefore, 

models that measure the combined association of multiple SNPs are needed. To evaluate the 

progression of patients taking the medications, numerous rating scales are utilized in the 

neurodegenerative disease clinical trials. Several issues concerning these scales emerge in this 

process. First, some scales, such as the Charcot-Marie-Tooth Neuropathy Score developed as a 

man efficacy endpoint for clinical trials of Charcot-Marie-Tooth disease type 1A disease are 

suggested to be insensitive to disease progression. Second, some neurodegenerative studies have 

included multiple rating scales which measure different facets of the disease progression. It is of 

importance to examine the validation of the scale for the disease measurement and also to select 

sensitive items in existed tests to measure the disease progression in a certain group of patients.  

SNP data and rating scales data could be considered as categorical data. Typically, the Classical 

Test Theory is applied to analyze the scales with categorized items whereby the item scores are 

summed to give a total score. As an alternative to the classical test theory, Item Response Theory 

has been widely applied to categorical data analysis. Instead of using the directly summed scores 

of a test, item response theory assesses the person ability by the item difficulties and their answers 

to items. A strict model of item response theory, Rasch model, provides a framework to evaluate a 
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rating scale. The item response theory may provide valuable indications on the data analysis in 

neurodegenerative disease research and helps interpret the finding in these studies.  

To fully figure out the targeted problems and appropriately apply the item response theory, it is 

also important to collaborate with research groups and laboratories which are experienced in 

statistics and disease research.  

The Bordeaux Population Health is a research centre belonging to Bordeaux University. It is 

dedicated to developing statistical methods for analysis of cohort data. The Biostatistics team 

develops new models and methods for epidemiology. Their emphasis is placed on dynamic 

models. The spectrum goes from theoretical to applied research. The main applications are in the 

epidemiology of Alzheimer’s disease, AIDS (acquired immune deficiency syndrome), and 

cancers. The team will also develop an activity in statistical genetics. 

My PhD thesis was designed on the basis of a CIFRE (Conventions Industrielles de Formation par 

la REcherche) in collaboration between the company Pharnext and the Bordeaux Population 

Health center. This collaboration focuses on the practical research needs of Pharnext and 

methodological developments. The objective is to provide practical solutions and new methods 

that answer the questions raised in the neurodegenerative disease studies. In this thesis, Item 

Response Theory is applied to the data of Neurodegenerative diseases in different ways. After a 

comparison with classical test theory and detailed description of Item response theory in the 

introduction, the Rasch model is served as a gene-based association test to identify genes that are 

associated with Alzheimer’s disease. Then we use the Rasch analysis as a statistical framework of 

scale validation to examine a rating scale for the Charcot-Marie-Tooth Disease evaluation which 

is called CMTNS. Finally, the Item Response Theory based mutual information is applied to 

select sensitive items in the scale for the evaluation of cognitive functions in the Alzheimer’s 

disease.   
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 Neurodegenerative Disease 1.1.  

Neurodegenerative diseases are complex and often multifactorial. Main risk factors include 

certain genetic polymorphisms and aging. Other possible causes may include gender, poor 

education, endocrine conditions, oxidative stress, inflammation, stroke, hypertension, diabetes, 

smoking, head trauma, depression, infection, tumors, vitamin deficiencies, immune and metabolic 

conditions and chemical exposure (Brown et al., 2005). 

The pathological mechanisms of neurodegenerative diseases remain not well understood; their 

phenotypes are largely symptom-based and not well defined. There is considerable overlap 

between the various neurodegenerative diseases (Brown et al., 2005) which increases the 

difficulties of identifying and evaluating diseases. However, many similarities are found in 

neurodegenerative diseases to relate them on a sub-cellular level. First, many neurodegenerative 

diseases are caused by genetic mutations. Although most of these mutations locate in completely 

unrelated genes, they still share some common features, such as a repeat of the CAG nucleotide 

triplet (Thompson, 2008). Second, aggregation of misfolded proteins happens in several 

neurodegenerative diseases, such as the aggregation of hyperphosphorylated tau protein that are 

known as a primary marker of Alzheimer’s disease (Soto, 2003). These diseases also have some 

common intracellular mechanisms including the protein degradation pathways and mitochondrial 

dysfunction (Rubinsztein, 2006) as well as induced cell death (Bredesen et al., 2006). These 

relations between neurodegenerative diseases offer the hope of finding an effective treatment that 

could ameliorate many diseases simultaneously. 

Up to date, there are no therapies available to cure neurodegeneration. The existing medications 

can only alleviate symptoms and help to improve patients’ quality of life. For example, 

Chapter 1                    
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memantine (Tariot et al., 2004) and donepezil (Birks and Harvey, 2006) can slow the progression 

of dementia symptoms in some people with Alzheimer’s disease.  

 Alzheimer’s disease 1.1.1.  

Epidemiology 

Alzheimer’s disease (AD) is the most common neurodegenerative disorder. According to the 

World Alzheimer report, there are 47.5 million people having dementia and 60% to 70% of 

dementia was caused by AD, and the number is expected to reach 65.7 million in 2030 and 115.4 

million in 2050 (Weiner et al., 2012).  The most common early symptom is the difficulty in 

remembering recent events (Burns and Iliffe, 2009). As the disease advances, progressive 

deterioration of cognitive functions appears, involving memory, reason, judgment and orientation. 

This disease can be characterized by brain atrophy reflecting neuronal and synaptic loss and the 

presence of amyloid plaques and neurofibrillary tangles. According to the age at onset, two main 

types of AD are differentiated: Early-Onset AD (EOAD) which generally appears before the age 

of 65 and Late-Onset AD (LOAD) appears after the age of 65 (Rogaeva, 2002). EOAD accounts 

for less than 10% of the AD population whereas LOAD accounts fo more than 90% of the AD 

population and has a complex etiology based on genetic and environmental factors. 

The progression of Alzheimer’s disease can be divided into four stages. The stages are sometimes 

overlapped. However, the Mini–Mental State Examination (MMSE) which is a 30-point 

questionnaire is often used in clinical to measure cognitive impairment and estimate the stage of 

dementia (Detecting Dementia with the Mini-Mental State Examination (MMSE) in Highly 

Educated Individuals). 

Mild Cognitive Impairment (MCI). It is a condition in which someone has minor problems with 

their mental abilities such as short-term memory loss. MCI is a transitional stage between normal 

aging and dementia which frequently seen as a prodromal stage of Alzheimer’s disease. People 

with MCI are more likely to go on to develop dementia (Grundman et al., 2004).  

Mild stage (early stage). People who are diagnosed as AD show increasingly cognitive 

impairment. Difficulties with language, executive functions or execution of movements are more 
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prominent than memory problems. In this stage, a person may still be able to act independently, 

but their difficulties could be noticed such as Having greater difficulty performing tasks in social 

or work settings (Förstl and Kurz, 1999). 

Moderate stage (middle stage). This stage can last very long for many years. People in this stage 

lose their independence gradually. Their symptoms such as forgetfulness of events or of one’s 

personal history may be noticed by others, but patients may still remember significant details 

about their life. 

Severe stage (Late stage). In this stage, individuals lose the ability to respond to their 

environment, to carry on a conversation and, eventually, to control movement. 

There is an urgent need of disease-modifying treatments to slow or halt AD pathology progression 

on the population at risk for development of cognitive decline and dementia. Studies show that 

cognitive reserve, physical activity and exercise, midlife obesity, alcohol intake, and smoking are 

the most important modifiable risk factors for AD (Ballard et al., 2011). Nevertheless, AD 

pathogenic mechanisms are still unclear, and the disease remains a condition without cure. 

Several competing hypotheses try to explain the cause of the disease: 

the amyloid hypothesis supposes that extracellular amyloid beta (Aβ) deposits are the fundamental 

cause of the disease (Hardy and Allsop, 1991); the tau hypothesis proposes that tau 

protein abnormalities initiate the disease cascade (Mudher and Lovestone, 2002); the genetic 

heritability of AD (and memory components thereof), based on reviews of twin and family 

studies, range from 49% to 79% (Gatz et al., 2006; Wilson et al., 2011), the APOE ε4 allele is the 

strongest known genetic risk factor for AD. The risk increased a two- to three- fold in people with 

one APOE ε4 allele and about 12-fold in those with two alleles (Trzepacz et al., 2014). However, 

it is neither sufficient nor necessary to explain all occurrences of disease. The dominant mutations 

in the genes encoding amyloid precursor protein (APP) and presenilin 1 (PSEN1) and PSEN2 are 

also risk factors for AD (Ballard et al., 2011).  

Diagnosis and treatment 

A complete AD diagnosis should include different aspects. An operationalized clinical diagnosis 

with criteria such as the NINCDS-ADRDA can be employed to distinguish between patients with 
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AD and people without dementia (DE LEON et al., 2007). However, more specific biomarkers 

are needed to improve the accuracy for AD. CT or MRI (magnetic resonance imaging) can be 

used to detect intracranial lesions or disease that may cause AD (Waldemar et al., 2007). A 

combination of CSF biomarkers such as total tau has improved diagnosis accuracy cognitive 

testing (Welge et al., 2009). PET with fluorodeoxyglucose measures glucose metabolism and has 

shown good accuracy (Patwardhan et al., 2004).  

Some disease-modifying treatments for Alzheimer’s disease have been proposed. Most of them 

focus on the Aβ protein. A small part of them target tau phosphorylation or tau aggregation 

(Ballard et al., 2011). However, no therapies have demonstrated enough efficiency through 

clinical trials up to date.  

 Charcot-Marie-Tooth Disease 1.1.2.  

Epidemiology 

Charcot-Marie-Tooth disease (CMT) is the most common degenerative disorder of the peripheral 

nervous system, occurring in 1 out of 2500 people (Dyck and Lambert, 1968). It is also referred as 

“Hereditary Motor and Sensory Neuropathy” (HMSN).  

Most cases of CMT are slowly progressive disorders that usually present in the second decade. 

Typically, CMT patients display weakness of the foot and lower leg muscles, which may result in 

foot drop and a high-stepped gait with frequent tripping or fall. Foot deformities are also 

characteristic due to the weakness of small muscles. With the development of the disease, 

weakness and atrophy may occur in the hands (Tazir et al., 2014). The severity of symptoms 

varies in different patients. As the most frequent form of CMT, CMT1A leads to a mild to 

moderate disability, although some of CMT1A patients have a marked handicap and end up in 

wheelchairs. 

CMT is caused by mutations that cause defects in neuronal proteins. The different subtypes of 

CMT have various frequencies within distinct populations and can be classified by their clinical, 

neurophysiological, genetic and pathological features. Its two major subtypes, demyelinating 

(CMT1) and axonal (CMT2) are usually inherited as an autosomal dominant trait (Harding and 
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Thomas, 1980a). They can be distinguished by electrophysiological and nerve biopsy studies 

(Harding and Thomas, 1980b). The duplication of peripheral myelin protein 22 gene (PMP22) on 

the chromosome 17 is the cause of the most frequent form of CMT1 which is named CMT1A 

(Lupski et al., 1991). CMTX is an X-linked disorder and sometimes autosomal recessive CMT 

variants are classified as CMT4 (Yum et al., 2009). At present, more than 75 genes have been 

shown to be involved in a CMT phenotype.  

Diagnosis and treatment 

To develop efficient treatment, accurate diagnosis is of importance. Currently, genetic testing is 

used and recommended by clinicians and relies on nerve conduction velocity assessment, disease 

inheritance pattern and population frequency (Ekins et al., 2015). CMT can also be diagnosed 

through symptoms, through measurement of the speed of nerve impulses, through biopsy of the 

nerve, and through DNA testing. The severity of the disease can be evaluated through composite 

neurological scores such as Charcot-Marie-Tooth Neuropathy Score (CMTNS) and Overall 

Neuropathy Limitations Scale (ONLS) which include the tests of impairment, electrophysiology 

and activity limitations.  

In preclinical studies, ascorbic acid was shown to promote myelination in vitro and to decrease 

PMP22 expression (Passage et al., 2004)(Kaya et al., 2007)(Schenone et al., 2011), and its 

mechanism of action in the murine peripheral nervous system has recently started to emerge (Gess 

et al., 2011). However, no beneficial clinical effects are reported in the clinical trials targeting 

ascorbic acid. The analyses of PXT3003 in Pharnext (a low dose combination of the three already 

approved drugs baclofen, naltrexone and D-sorbitol) as a therapeutic candidate are ongoing to 

evaluate the disease progression in the patients (Attarian et al., 2014). 

 Data in Neurodegenerative Disease 1.2.  

Due to the complexity of neurodegenerative diseases, the research progress of the potential 

disease-modifying therapies is slow. To conduct cost-effective and informative clinical trials, we 

need multiple types of data to facilitate the diagnosis and evaluation of disease severities (Shaw et 

al., 2007). Taking the AD research as an example, various data help to identify those individuals 
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at greatest risk of developing AD, confirming the diagnosis of AD, predictive testing, monitoring 

disease progression and response to treatment, enriching clinical trials for specific subsets of 

patients (Weiner et al., 2012)(Bateman et al., 2012). Growing efforts were made to develop and 

analyse appropriate data in research of neurodegenerative diseases which are linked to the 

fundamental features of neuropathology and simple to use. Furthermore, on the basis of extensive 

studies to date, it is likely that a combination of data will provide greater diagnostic accuracy than 

a single analysis (Weiner et al., 2012). GWAS data are widely utilized to reveal the genetic 

contributions to the neurodegenerative diseases by the search for associations between 

quantitative traits in the form of imaging or biomarker data and genetic loci. The volumetric 

changes to brain led by the neuronal degeneration could be measured by MRI of specific regions 

such as the hippocampus. The scores of measure scales are also extensively used to evaluate the 

degeneration of cognitive ability or disability. Different types of data are explained in below. 

 Genetic data 1.2.1.  

Genome-Wide Association Studies (GWAS)  

The genetic diversity corresponds to the total amount of different genetic features of a species and 

is also called the gene pool of a species. As a matter of fact, within a species the genomes of all 

individuals are not identical. Locus is a specified position on the genome and an allele a possible 

version of the genetic text at a given locus. It is monomorphic when only one allele is possible 

(i.e. all the individuals share the same genetic text) and polymorphic when there are several 

possible alleles at the locus. A haplotype corresponds to a set of several alleles located on 

different loci of the same chromosome. In humans, for a given locus, each parent passes down one 

allele to the offspring. Each chromosome therefore carries two alleles at a given locus. Genotype 

is the combination of alleles at a locus. An individual is homozygous at the locus if the two alleles 

are the same and heterozygous otherwise. Genetic Epidemiology is a science that combines 

classical Genetics and Epidemiology, which studies the role of genetic factors in determining 

disease in families and populations. Benefiting from the advance of high-throughput sequencing 

technology, Genetic Epidemiology has fast developed. In Genetic Epidemiology, a Genome-Wide 

Association Studies (GWAS) scans the whole genome to find associations between a disease and 

many common genetic markers. Since the first successful GWAS study published in 2005 (Klein 
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et al., 2005), GWAS have successfully identified many genetic variants and facilitated the 

diagnose and treatment of several diseases. GWAS are usually case-control studies. Two groups 

of unrelated individuals are selected: patients (cases) and non-patients (controls). Their samples of 

DNA are genotyped using SNP arrays, and after quality-control, genetic markers on the whole 

genome are investigated. This process is illustrated in Figure 1. 

 

Figure 1: Illustration of the Genome-Wide Association Study (GWAS). 

Single Nucleotide Polymorphisms (SNPs) 

The most used genetic marker in GWAS is the single-nucleotide polymorphism (SNP). It is the 

variation of a single base pair of a DNA sequence. Most SNPs involve two possible alleles, which 

mean two possible versions of the genetic text at the same locus. Until now, in dbSNP 

(https://www.ncbi.nlm.nih.gov/projects/SNP/), a free public archive for genetic variation, more 

than180M of SNPs have been identified. SNPs can arise in a certain population and thus very 

useful for population differentiate.  

GWAS comprises different types of individual information and SNP information. What we would 

like to test is the association between disease (phenotype) and genotype of SNPs. Usually, there 
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are two pieces of information. The first contains the SNP annotations: the SNP identifier, the 

gene(s) and chromosome that they belong to and the position in base-pair. The second 

corresponds to a table made of the genotypes of all the markers and also includes the information 

of individual such as the phenotype and the gender. The genotype matrix can be represented as 

𝑋 = �𝑥𝑖𝑖� for the 𝑛 individuals and the p SNPs where 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑝. 

Each term 𝑥𝑖𝑖 is the genotype of individual 𝑖 for the SNP 𝑗. 

The dosage coding for genotype is under an additive genetic model: 𝑥𝑖𝑖 = 0, 1 or 2 representing 

the number of variants alleles. For a SNP with alleles a and A, the code of this SNP can be 0 

(genotype aa), 1 (genotype aA or Aa) or 2 (genotype AA). This coding of SNP data is one of the 

most used in practice. In certain settings, it corresponds to the coding for an additive model, 

which is usually assumed. The phenotype of the individuals is coded 0 (control) or 1 (case). 

For each SNP in GWAS studies, if the allele frequency is significantly altered from control group 

to case group, this SNP is associated with the disease. Typically, a P-value for the significance of 

the difference is calculated using test statistics.  

Certain features have to be investigated in the quality control process of the SNP data to 

determine which markers can be reasonably be included in the analysis without leading to 

incoherent results. The full description and discussion of the quality control process can be found 

in (Bouaziz, 2012). The main aspects of quality control can include: 1) SNP call rate: the 

proportion of genotypes per marker with non-missing data. Classically a threshold of 95% is used. 

2) Hardy-Weinberg equilibrium: SNPs are summed to follow this equilibrium in a control 

population. If 3) Minor allele frequency: the minor allele frequency (MAF) of a marker represents 

the frequency of its less frequent allele in a given population. Typically, a MAF threshold of 1-2% 

is applied in a lot of GWASs. 

GWAS data: The Alzhiemer’s Disease Neuroimaging Initiation 

(ADNI) 

In recent years, several Genome-Wide Association Studies (GWAS) were performed to detect 

genetic loci associated with LOAD (Harold et al., 2009; Potkin et al., 2009; Seshadri et al., 2010). 
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Alzheimer’s Disease Neuroimaging Initiative (ADNI) project is one of them. The goal of the 

ADNI study is to track the progression of the disease using biomarkers to assess the brain’s 

structure and function over the course of four disease states (Mueller et al., 2005a). Genetic 

factors play a important role in Alzheimer’s disease, and a key aim of this project is providing the 

opportunity to combine genetics with imaging and clinical data to help investigate mechanisms of 

the disease. The study population in initial ADANI-1 at baseline is made up of 128 with AD, 415 

with MCI, 267 controls and 8 of an uncertain diagnosis. 731 were analyzed using DNA from 

peripheral blood, and 87 were genotyped using DNA extracted from Lymphoblastoid cell lines. 

SNP are genotyped with an Illumina Human 610-Quad (= 620901 SNPs). After the quality 

control, 538830 SNPs satisfying the conditions are kept for further studies. The dataset was also 

reduced with a minimal loss of information by pruning with Plink (window size = 50 SNPs, shift 

= of 5 SNPs at each step and threshold correlation coefficient of 0.2). SNPs are considered 

attached to a gene if they are located within a distance of 20 kb around it. The curated dataset to 

analyze comprises 16514 genes.  

 Rating scales 1.2.2.  

Rating scales are widely used to measure the health outcomes of trials for the treatment of 

neurodegenerative diseases (Hobart et al., 2007). They are increasingly selected as primary or 

secondary outcome measures in clinical trials (Mandel et al. 2015; Graham and Hughes 2006) and 

therefore become the main dependent variables on which decision are made that influence patient 

care and guide future research. The patient-reported rating scales are included in the US Food and 

Drug Administration (FDA) scientific requirements in clinical trials (Revicki et al., 2007), which 

indicates their importance.  

Two types of rating scales are commonly used in neurology: single-item scales such as the EDSS 

(Kurtzke, 1983) and multi-item scales such as the ADAS-cog. The score generated by single item 

scales is easy to be interpreted but has poor reliability and validity. On the other hand, the 

multiple item scales where the scores from a set of items are combined to give a single value 

allow complex variables to be evaluated in parts. Each item in the scales has two or more ordered 

response categories that are assigned sequential integer scores. Although the scores generated by 

the multiple items scales are less clinically tangible, the validity and precision of them are 
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improved because the continuum is divided into more parts. Therefore, the multiple items scales 

are preferred in clinical trials.  

In the neurodegenerative disease process, various domains of abilities become differentially 

affected, subsequently resulting in progressive functional decline. For example, patients with AD 

typically perform poorer on tests of memory, language, executive function, and visuospatial 

ability as part of disease progression (Park et al., 2012). Since most rating scales are 

unidimensional, only one multiple items scale is not enough to evaluate these declinations 

comprehensively. In the case of complex disease research such as AD, multiple rating scales are 

employed to detect the cognitive changes more precisely. In the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), a study designed to identify biological and clinical markers of 

AD, 19 scales were included in the neuropsychological battery to measure different abilities, such 

as Boston Naming Test for memory evaluation and Trail Making Test for executive function 

evaluation (Mueller et al., 2005a). Many studies in ADNI used only summary scores from brief 

global scales (Mini-Mental State Examination and Alzheimer’s Disease Assessment 

Scale-Cognitive Subscale). However, their scores do not capture varying levels of change that can 

occur across different domains. Two rating scales are employed in most of the clinical trials to 

evaluate the impairment in the CMT disease. The Charcot-Marie-Tooth Neuropathy Score 

(CMTNS) comprises item measuring impairment such as the sensory symptoms, activity 

limitations, and electrophysiology. The Overall Neuropathy Limitations Scales (ONLS) is another 

example in peripheral neuropathies to measure limitations in the everyday activities of the upper 

limbs and the lower limbs (Graham and Hughes, 2006). 

Rating scale data I: the Charcot-Marie-Tooth Neuropathy Score 

(CMTNS) 

A typical feature of CMT1A is the weakness of the foot and lower leg muscles. With regard of this, the 

Charcot-Marie-Tooth Neuropathy Score (CMTNS) which measures the impairment such as the strength arms 

and legs was developed and has been used as the primary or main endpoint in most completed clinical trials for 

CMT1A. The CMTNS is composed of 9 items evaluating different functions related to the disease. The items 

and the score standards are listed in Figure 2:   
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Figure 2: Items and definition of scores in CMTNS. 

Each component of the CMTNS is scored on a 0-4 point scale, positively correlating with the 

respective severity of each examined item. The scores of the CMTNS range from 0 (good clinical 

performance) to 36 (severely affected). Patients are classified according to the scores as mild 

(CMTNS <=10), moderate (CMTNS 11-20), or severe (CMTNS > 20).  

However, the sensitivity of the CMTNS to change and its psychometric properties are still 

debated. Clinical trials investing the efficacy of ascorbic acid as a therapy confirmed difficulties 

in measuring the disease worsening over time. A modified version of the scale (CMTNS-v2) was 

proposed by Murphy in an attempt to reduce the aforementioned effects and to standardize patient 

assessment (Murphy et al., 2011). Certain items and score standard were modified in this version 

(Figure 3): 
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Figure 3: Items and definition of scores in CMTNS-v2. 

Another modified CMTNS called CMTNS-Mod has also been proposed by adding three 

functional measures (9-hole peg test, foot dorsiflexion and walk test) and removing four of the 

initial items (‘Ulnar SNAP’, ‘Pin Sensibility’, ‘Vibration’ and ‘Strength of Arms’) (Mannil et al., 

2014).   

Rating scale data II: The Alzheimer’s Disease Assessment Scale- 

Cognitive Subscale test (ADAS-cog) 

The Alzheimer’s Disease Assessment Scale- Cognitive Subscale test (ADAS-cog) is one of the 

most frequently used tests to measure cognition in AD. It has become the standard primary 
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outcome measure for evaluating treatments in clinical trials of mild-to-moderate Alzheimer’s 

disease (Ihl et al., 1999). It was designed specifically to evaluate the severity of cognitive and 

noncognitive behavioral dysfunctions characteristic of persons with Alzheimer’s disease. Despite 

some questioning about its sensitivity (Cano et al., 2010; Ihl et al., 1999), it has proven successful 

for its intended purpose. 

The original 11-item ADAS scale (ADAS-cog 11 or ADAS-classic) was developed by Rosen et 

al. in 1984 (Rosen et al., 1984). The names and score ranges of the items are listed as in Figure 4: 

 

Figure 4: Items and score ranges in ADAS-cog. 

The total score of ADAS-cog classic ranges from 0 to 70 indicating the dysfunction severity 

increases. These items were designed to assess three cognitive impairment in the memory, 

language, and praxis cognitive domains (Rosen et al., 1984). 

Mohs et al. modified ADAS-cog classical to broaden the scope of cognitive domains covered and 

range of symptoms consistent with mild to moderate AD. This version added the 2 items Delayed 

Word Recall and Number Cancellation on the ADAS-cog classic for a total of 85 points and is 

called ADAS-Modified or ADAS-cog 13 (Skinner et al., 2012). The purpose of these additional 

items was to increase the number of cognitive domains and the range of symptom severity without 

a substantial increase in the time required for administration. The modified version improved the 
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responsiveness to the MCI patients. ADAS-cog 13 was included in the neuropsychological battery 

of ADNI.  

 Item Response Theory  1.3.  

Like rating scales data, SNP data from GWAS data also comprise a set of “items”, each having 

three ordered response categories that are assigned sequential integer scores (0,1 and 2). 

Typically, the Classical Test Theory is applied to the treatment of items with ordered categorical 

data, whereby the item scores are summed to give a total score. However, this simple and natural 

method has its limitations (Hobart et al., 2007). As an important alternative method capable of 

overcoming the limitations, the Item Response Theory (IRT) does not suppose that each item is 

equally difficult. Instead, it assumes that the probability of a person achieving a certain score on a 

test is a consequence of that person’s ability on the latent construct and the difficulties of items.  

In recent years, IRT has been widely applied in the fields of psychometric, social sciences, 

education, business and clinical trials. IRT is a statistical framework and provides enriched 

statistics for categorical data analysis. Therefore, it can also be applied to improve the analysis of 

data involved in neurodegenerative diseases in different ways. It has been mostly used for 

evaluation of psychometric properties of the measures in the neuropsychological battery (Burns et 

al., 2012; Sadjadi et al., 2014). Nevertheless, it can be utilized in the analysis of other types of 

categorical data such as GWAS data or it be combined with other statistical methods such as 

information theory. Applying IRT to neurodegenerative diseases data has the potential to help 

clinicians and researchers to lead to advancements in screening assessments and diagnosis, the 

measurement of change with disease progression and in response to treatment. 

We present below the Item Response Theory and its extensions. 
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 Background 1.3.1.  

Latent traits 

Some variables (e.g. height and weight) in the physical world can be measured directly, where 

numbers are given to represent quantities of certain properties of some attributes. Other variables 

(e.g. disability, cognitive function, quality of life) can only be measured indirectly through 

observable indicators of the attributes that measurements can be made. These variables are often 

some concepts or notions which need clarification before measurement can take place. They are 

called “latent traits”. 

Psychometrics 

The science of measuring the latent traits is referred to as psychometrics. The latent traits 

concerned by psychometrics are not limited in the psycho-social context. Since the latent traits 

cannot be measured directly, psychometrics methods collect information on indicator variables 

associated with the latent trait and numbers are assigned to these variables, to represent the 

quantities of latent trait.  

Measurement level 

The goal of all measurement models is to arrange samples on a latent continuum. There are four 

levels of measurement for assigning numbers to indicator variables described below. 

Nominal is that the numbers assigned to objects as labels. For example, in a survey, the genders 

of respondents are assigned by number: male = 1; female = 2. The nominal numbers are not for 

comparison. 

Ordinal means the numbers assigned to objects indicate their order. For example, the responses 

to a question: disagree, agree, strongly agree are represented by numbers 1, 2, 3. 

Interval is the case when numbers are assigned to object to indicate the amount of an attribute. 

The numbers on a clock represent interval measurement of time. An absolute zero is not necessary 

for Interval measurements. 
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Ratio measurement is the interval measurement with an absolute zero. We can compare not only 

the distance between the numbers but also the ratios formed by numbers.  

These four levels of measurement provide increasing power in the meaningfulness of the 

numbers. 

Rating scale to measure latent traits 

To measure a latent trait, the psychometric methodologies are applied to establish a rating scale. 

Two types of rating scales are commonly used: single item and multiple item scales. In the 

following, we will focus on multiple item rating scales. Multiple item rating scales comprise a set 

of items, each of which has two or more ordered response categories that are assigned sequential 

integer scores. For example, a typical Likert scale provides five response options for each survey 

item: Strongly Disagree (SD), Disagree (D), Neutral (N), Agree (A), and Strongly Agree (SA). 

Each option is coded numerically like SD = 1, D = 2, N = 3, A = 4, and SA = 5. Multiple item 

scales are widely used in the fields of psychometric, social sciences, and education. 

On an ideal scale for measuring a latent trait, or ability scale, the numbers represent the highest 

level of measurement, which is the ratio of the latent trait. However, as an absolute zero does not 

exist for the latent trait, interval measurement could already provide the most information. Also, 

an ideal scale can link the examinees with the indicators. The latent trait levels of examinees are 

anchored by the hardest item that they can achieve on the scale, like a real rule. This ability scale 

can be used to tell how much ability a given person has compared to other persons. 

Measurement issues 

Some statistical issues of rating scales are concerned by many researches. 

Reliability test is to estimate the consistency of the accuracy of measurement. A rating scale is 

reliable if a measurement consistently gives the same estimate. The way is to determine how 

much of the variability in the result is due to random errors in measurement and how much is due 

variability of the true scores, which is the latent trait being measured. In another word, Reliability 

estimates the quality of the score. Reliability can indicate ways of improving measurement by 
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minimizing the errors. We have greater confidence in the higher reliable measurements which 

have a smaller amount of random errors.  

Validity is the degree to which a measure is manifestations of the latent variable. A measure does 

not necessarily result in an accurate reflection of the latent trait of interest. For example, although 

certain people under anxiety have symptoms like headaches, but headaches may be led by various 

causes. Therefore, “frequency and duration of headaches” may not be an accurate 

“representation” of anxiety and it is not a validated scale. Obtaining validity evidence is part of 

the measurement process. 

Invariance means a measure is independent of what it measures. For instance, a meter stick is not 

affected by the objects it measures, whereas a rubber rope could be stretched to adapt to the object 

that it measures. Therefore, the rubber band is not an invariant measure. Without invariance, our 

comparisons across different samples would have limited utility. 

Item analysis 

Item analysis is an essential domain in psychometrics referring to statistical methods used for 

selecting items for inclusion in a psychological test. Item analysis provides a way of measuring 

the quality of items: seeing how appropriate they are for the respondents and how well they 

measure their ability/trait. Item analysis also provides a way of re-using items in different tests 

with prior knowledge of how they are going to perform by creating a bank of questions with 

known properties. The process of item analysis varies depending on the psychometric model 

adopted; for example, Classical Test Theory or the Item Response Theory will call for different 

procedures. 

The different psychometric models for item analysis and their relations are presented in Figure 5 : 
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Figure 5: the different psychometric models for item analysis. 

In the following discussion, the two main models for establishing a correspondence between our 

observations and our latent variable will be presented. Classical Test Theory will be first briefly 

introduced, followed by the explanation of Item Response Theory and its extensions. 

 Classical Test Theory 1.3.2.  

Definition 

In Psychometrics, the main approache for items analysis has been the Classical Test Theory 

(CTT), whereby the item scores are summed to give a summed score (also called total or raw 

score) for each person. 
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The basic assumption of CTT is that a person has a summed test score and a true score, le latter 

reflecting a latent trait. The summed score 𝑌𝑠 is an estimate of the true score 𝑇𝑠 of this person 

with some unobservable measurement error 𝑒𝑠 

𝑌𝑠 = 𝑇𝑠 + 𝑒𝑠 

The variance of summed score 𝜎𝑌2 is given by 

𝜎𝑌2 = 𝜎𝑇2 + 𝜎𝑒2 

The reliability coefficient 𝜌𝑥𝑥′ is the ratio of the variance of the observed score and of the true 

score 

𝜌𝑥𝑥′ =
𝜎𝑇2

𝜎𝑌2
= 1 −

𝜎𝑒2

𝜎𝑌2
 

Limitations 

The advantage of CTT is that it relies on weak assumptions and easy to interpret and calculate. 

However, this simple and natural approach has two main limitations (Hobart et al., 2007): 

The data generated by rating scales, both item scores and summed scores, are at ordinal 

level. Scoring the items with sequential integers implies same differences at the item level 

(differences between each response category are implied to be equal) and at the summed score 

level (a change of one point implies an equal change across the range of the scale, no matter 

which item is concerned by this change). Consequently, such ordinal scores cannot provide us 

with a stable frame of reference in terms of the distance between individuals on the ability scale. 

If there are persons with different ability levels, a less or more difficult test will probably result in 

different scores.  

We do not really know what variables most rating scales are measuring. When the CTT is 

applied, the latent trait of interest is estimated by a summed score which is difficult to match to 

each single item to know what an individual can perform. Consequently, individuals with the 

same summed score may not be able to achieve the same item task. Here is an example given by 

Bond et al. (Bond and Fox, 2013): suppose the items on a phobic anxiety scale include: 
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1. I am so anxious that I have not left my house for five years; 

2. I feel uncomfortable in large crowds, though I do not avoid them. 

Presumably the first item represents much higher anxiety than the second; the responses to two 

items like these may, if verified empirically, more appropriately line up like this: 

1.    SD D N A SA 

2. SD D N A SA  

To establish a reliable rating scale, the information of the relative difficulties of items which is 

lost in the summed score, must be considered. Therefore, it is difficult to compare results of 

persons between different tests in the framework of CTT. 

 Introduction of IRT 1.3.3.  

The concept of IRT was built around the 1950s by three of the pioneers Frederic M. Lord, Georg 

Rasch and Paul Lazarsfeld (Hambleton et al., 1991). By opposition to CTT, the Item Response 

Theory (IRT), which assumes that the probability of success of a person on an item depends on 

the person’s ability and the item parameters, is one of the most important alternative theories in 

Psychometrics. Sometimes it is referred to as modern psychometrics because in large-scale 

education assessment and testing programs IRT has become a more popular choice compared to 

CTT. The person’s ability is the estimate of the latent trait of an individual; the item parameters 

refer to different characteristics of an item. For example, item difficulty is the difficulty level of 

an item to be achieved by people.  

In IRT, people at the same ability level have a certain probability that they will give a correct 

answer to an item. This probability becomes low for people with low ability and high for those 

with high ability. The relationship between the probability of a correct response and the person’s 

ability can be described as a monotonic S-shape curve. The item parameters and the person’s 

abilities can be estimated through with the responses of individuals to an item. Therefore, they can 

be anchored on the same scale and can be compared.  
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Figure 6: The subjects and items could be located on the same scale in IRT. 

Difference between CTT and IRT 

Besides providing more sophisticated information about subjects, IRT provides a framework to 

evaluate the measurement as well as the individual items. It has several advantages. First, it is an 

interval measurement: transformation preserves the order of raw scores, while the distance 

between individuals can be made, and not just rank ordering. Second, both the item difficulty and 

person ability are defined on the same scale. If a person’s ability is known, we can predict how 

that person is likely to perform on an item. The items from different tests can also be placed on 

the same scale.  

Assumptions of IRT 

The assumption of models is about the type of data that model applies, and specifies the 

relationships between observable and unobservable constructs described in the model. Unlike the 

CTT, IRT model is a falsifiable model, which means it may or may not be appropriate for a 

particular set of data. In any application of IRT, it is essential to verify if the data satisfy a set of 

strong assumptions: 

Unidimensionality is the most widely used assumption of IRT. It assumes that the response to 

each item depends on a unique latent trait. This assumption cannot be entirely met because several 

cognitive, personality and test-taking factors always affect test performance. However, what 

unidimensionality requires is the presence of one “dominant” component or factor that influences 
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the measurement. This dominant component is referred to as latent trait. Models assumming more 

than one latent trait affect the test performance are defined as multidimensional. These models are 

more complex and have limited application, therefore are not discussed in this context. 

Local independence means that, conditionally on the latent person ability, the response of a 

particular individual to an item depends neither on the responses to other items nor on the 

responses given by other people to the same item. After taking the abilities of subjects into 

account, no relationship exists between the responses of subjects to different items. When a scale 

is local independent, the latent trait is the only factor influencing the responses of a subject. 

Conditional independence can provide us with statistically independent probabilities for responses 

of item 𝑖 and 𝑖′: 

𝑃(𝑋𝑖 = 1,𝑋𝑖′ = 1) = 𝑃(𝑋𝑖 = 1)𝑃(𝑋𝑖′ = 1). 

The third assumption is that the means of the conditional distributions is connected by an S-curve 

expressing the regression of item score on ability. The curve is referred to as an item characteristic 

curve or item characteristic function which will be explained in below. There are various 

mathematic functions in IRT. It is up to the user to choose one of them to serve in the categorical 

data analysis. In doing so, an assumption is being made that can be verified later by how well the 

chosen model accounts for the test results. 

 Item Response Function 1.3.4.  

In IRT, one of the most important things is to predict the probability of responses. When a dataset 

satisfies the IRT assumptions, several desirable features are obtained. The estimated ability of a 

person is not test-dependent; the item parameters are not group-dependent. Therefore, the persons 

of the same ability have the same probability of giving a correct response to a certain item. This 

probability can be described as the association between the latent trait level of a person and the 

probability of a particular item response using a nonlinear monotonic function 𝑓: 

P(𝑋𝑖𝑖|𝜃𝑖) = 𝑓(𝜃𝑖,𝛽𝑘 , ) 
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where Xik = x ∈ {0, 1, ..., mk} is an integer random variable for item k indicating the categories and 

mk is the maximum score, 𝜃𝑖 corresponds to the ability parameter of person i ∈ {0, 1, ..., n}. βk 

corresponds the parameters of item k. This function is called the Item Response Function (IRF). 

IRF is the primary character of IRT theory. Since probability ranges from 0 to 1, a generally 

logistic function is used, which results in an S-shaped curve. The graphic presentation of IRF is 

known as the Item Characteristic Curve (ICC). When the ability parameter is high and the 

difficulty parameter is low, the probability of a correct answer to the item increases.  

There are two types of response categories for items in a scale: dichotomous and polytomous. 

Dichotomous means there are only two response categories (0 = wrong, 1 = correct) of an item. It 

is supposed that the probability of success is 0.5 when the ability equals to the item difficulty. If 

P(𝑋𝑖𝑖 = 1|𝜃𝑖)  = 0.80, then 80% of individuals with the given 𝜃𝑖 should answer the item 

correctly. An example of ICC of a dichotomous item is shown in Figure 7. 

 

Figure 7: An example of an Item Characteristic Curve (ICC) of a dichotomous item. 
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Polytomous means there are more than two responses categories. Typically they are ordered with 

increasing level. In the case of a polytomous item, in addition to the ICC, a Category 

Characteristic Curve (CCC) can be produced for each item, which displays the probability of a 

person choosing a particular response category based on their level of ability and the difficulty of 

the item (Figure 8). The point between two adjacent categories, where the probabilities of 

choosing either category are equal, is termed the threshold. 

 

Figure 8: an example of a Category Characteristic Curve of a polytomous item. 

 IRT Model parameters 1.3.5.  

A primary distinction among the most popular unidimensional IRT models is the number of 

parameters used to describe items. The choice of model is up to the user, but this choice can be 

verified later by examining how well the model fits the data. There are three main types of IRT 

models with one-, two-, and three-parameters and they are briefly described as following. For 

simplicity, we focus on the dichotomous model here as an example. 
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One-Parameter Model 

The One-Parameter Model (1-PL) assumes that all items relate the latent trait equally and items 

vary only in difficulty. In the dichotomous model, the probability that person 𝑖 gets a correct 

answer to item 𝑘 is described as: 

𝑃(𝑋𝑖𝑖 = 1|𝜃𝑖) =  𝑒𝐷(𝜃𝑖−𝛽𝑘) (1 +⁄ 𝑒𝐷(𝜃𝑖−𝛽𝑘)) 

where 𝑋𝑖𝑖 = x ∈ {0, 1}. D is a scaling factor. Typically, it can be set as 1.7 to make the logistic 

function essentially the same as the normal ogive model. 𝜃𝑖indicating that the person abilities are 

modelled as a sample from a normal distribution for estimating the item parameters. After the 

item parameters have been estimated, the abilities of individual person are estimated for reporting 

purposes.  

The item difficulty parameter 𝛽𝑘 represents the item 𝑘 location on the same logit scale as the 

latent trait. It is the location where the ICC has its maximum slope, and where the value is 

half-way between the asymptotic minimum P(−∞) and asymptotic maximum P(∞) of the ICC. 

In the case of 1-PL, P(−∞) of ICC equals to 0 and P(∞) equals to 1, thus 𝑃(𝛽) equals 

to P(−∞)+P(∞)
2

= 0.5, means that 𝛽 equals to the latent trait level 𝜃 needed to have 50% chance 

of endorsing an item. Item difficulty parameters determine the location of the ICC curve. The 

higher the item difficulty, the higher on the latent trait level that a person needs to be in order to 

endorse the item, and the ICC curve of this item would be close to right end on the logit scale. 

Two-Parameter Model 

The Two-Parameter Model (2-PL) IRT model extends the 1-PL model by estimating an item 

discrimination parameter 𝛼: 

𝑃(𝑋𝑖𝑖 = 1|𝜃𝑖) =  𝑒𝐷𝛼𝑘(𝜃𝑖−𝛽𝑘) (1 +⁄ 𝑒𝐷𝛼𝑘(𝜃𝑖−𝛽𝑘)) 

This discrimination parameter is similar to a correlation between the item and total score. It 

ranges typically from 0.5 to 2. In 2-PL, items vary both in their discrimination and difficulty level. 

The discrimination parameter illustrates the capacity of an item to discriminate between 

contiguous trait levels near the inflection point. Therefore, more discriminating items provide 

greater information about the latent trait than do less discriminating items. Discrimination 
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parameter decides the maximum slope of the ICC curve. Items with high discriminations are 

better at differentiating persons around the latent trait location point; smaller changes in the latent 

trait lead to substantial changes in probability, and the ICC curve is sharper.  

Three-Parameter Model 

The Three-Parameter Model (3-PL) model extends the 2-PL model by including a 

pseudo-guessing parameter 𝑐, which adjusts for the impact of chance on observed scores: 

𝑃(𝑋𝑖𝑖 = 1|𝜃𝑖) =  𝑐 + (1 − 𝑐) 𝑒𝐷𝛼𝑘(𝜃𝑖−𝛽𝑘) (1 +⁄ 𝑒𝐷𝛼𝑘(𝜃𝑖−𝛽𝑘)) 

This model assumes that a person with very low latent trait level may still have a small probability 

of choosing the correct answer by guessing, raising the lower asymptotic minimum P(−∞) Of 

the function to 𝑐. This model is mostly used with multiple choice testing where guessing could be 

a factor in test performance. In 3-PL, the probability of the response at 𝜃 = 𝛽 = (1 + 𝑐)/2. 

An ICC curve in a 3-PL IRT model could be represented as in Figure 9:    
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Figure 9: Illustration of the different item parameters in a 3-PL model. 

From this figure, it is seen that for a 3-PL dichotomous ICC, the item difficulty 𝛽 is the location 

where the ICC has its maximum slope; item discrimination parameter 𝛼 is the maximum slope; 

pseudo-guessing parameter 𝑐 decides the lower asymptote of the curve. 

 IRT Model extension 1.3.6.  

For polytomous items having more than two categories, several models based on dichotomous 

models are developed. Instead of being names with the number of item parameters, polytomous 

models get called different names. The main difference between these models is how they use 

multiple thresholds per item. 

1-PL extension 

Under the 1-PL IRT model which assumes the equal discrimination across items, two polytomous 

models are developed: Rating Scale Model (RSM) and Partial Credit Model (PCM). 
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Rating Scale Model (RSM)   

RSM is developed by Andrich in 1978 (Andrich, 1978). Under RSM, all items share the same 

scale structure, which means 1) the items have the same number of thresholds and 2) the 

difference between any given threshold location is equal across items. Each item is assumed to 

contain the same amount of information and have the same slope. In RSM, each item is described 

by the latent trait level, its difficulty, and thresholds that identify boundaries between the ordered 

categories. 

The probability of the person 𝑖 to endorse the 𝑙th categories for the item 𝑘 is given by 

𝑃(𝑋𝑖𝑖 = 𝑙|𝜃𝑖) =  
𝑒𝑒𝑒∑ (𝜃𝑖 − (𝛽𝑘 − δ𝑘)𝑙

𝑥=0 )
∑ 𝑒𝑒𝑒∑ (𝜃𝑖 − (𝛽𝑘 − δ𝑘)𝑗

𝑘=0 )𝑚𝑘
𝑗=0

 

Where 𝜃𝑖 is the person parameter on the latent trait scale, 𝛽𝑘 is the difficulty of item 𝑘 and δ𝑘 

is the 𝑘th threshold location of the rating scale, 𝑚𝑘  is the maximum score and is identical for 

all the items. 

Partial Credit Model (PCM) 

PCM is developed by Masters in 1982 (Masters, 1982). Compared to RSM, PCM assumes that 

each item has a unique scale structure. Items could have different thresholds and numbers of 

categories. PCM models the probability of adjacent response categories directly. δ is the threshold 

of two adjacent categories where the next category becomes more likely – not necessarily 50%. 

For example, for an item 𝑘 with 4 categories, 3 thresholds dividing the item into a series of 

binary items without order constraints beyond adjacent categories: δ𝑘1(0 𝑣𝑣. 1), 

δ𝑘2(1 𝑣𝑣. 2) 𝑎𝑎𝑎 δ𝑘3(2 𝑣𝑣. 3). 

The probability of the person 𝑖 to endorse the 𝑙th categories for the item 𝑘 is given by 

𝑃(𝑋𝑖𝑖 = 𝑙|𝜃𝑖) =  
𝑒𝑒𝑒∑ (𝜃𝑖 − δ𝑘𝑘)𝑙

𝑥=0

∑ 𝑒𝑒𝑒∑ (𝜃𝑖 − δ𝑘𝑘
𝑗
𝑙=0 )𝑚𝑘

𝑗=0

 

Where 𝛿𝑘𝑘 is the 𝑘th threshold location of the item 𝑖, 𝑚𝑖 is the maximum score for item 𝑖. The 

value of δ𝑘0 is chosen for computational convenience that is: ∑ (𝜃𝑖 − δ𝑘𝑘)0
𝑙=0 ≡ 0. 
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The different of the thresholds between RSM and PCM is illustrated in Figure 10. 

 

 

Figure 10: The thresholds of items with five categories in model RSM and PCM. 

2-PL extension 

Graded Response Model (GRM) 

For polytomous data in which the item responses are characterized into ordered categories, 

Samejima (Samejima, 1970) introduced the Graded Response Model (GRM), an extension of the 

2-PL IRT model. It is ideal for items with clear underlying response continuum. In the GRM, 

items need not have the same number of response categories. It is a cumulative logit model in 

which the probability of each response is computed by the difference between models of 

categories. For instance, for an item 𝑘 with 4 categories, there are 3 thresholds of categories 

dividing the item into a series of binary items: 𝛽𝑘1(0 𝑣𝑣. 1, 2, 3), 

𝛽𝑘2(0, 1 𝑣𝑣. 2, 3) 𝑎𝑎𝑎 𝛽𝑘3(0, 1, 2 𝑣𝑣. 3). 

In GRM, for item 𝑘, the probability that the person 𝑖 endorses the 𝑙th or higher response 

categories is given by 
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𝑃(𝑋𝑖𝑖 ≥ 𝑙|𝜃𝑖) =  
1

1 + 𝑒−𝛼𝑘(𝜃𝑖−𝛽𝑘𝑘)
 

Where the 𝑋𝑖𝑖  is the ordinal manifest variable with 𝐿𝑘  possible response categories. The 

threshold 𝛽𝑘𝑘 can be considered as the difficulty of responding with category 𝑙 or higher for 

item 𝑘 with 𝛽𝑘1 <. . . < 𝛽𝑘𝑘 < 𝛽𝑘,𝐿𝑘−1 and 𝛽𝑘,𝐿𝑘 = ∞. 𝛼𝑘  is the discrimination parameter of 

item 𝑘. 𝜃𝑖 is the person parameter. Therefore, the probability of observing 𝑙th categories is  

𝑃(𝑋𝑖𝑖 = 𝑙|𝜃𝑖) = 𝑃(𝑋𝑖𝑖 ≥ 𝑙|𝜃𝑖) − 𝑃(𝑋𝑖𝑖 ≥ 𝑙 + 1|𝜃𝑖) 

=
1

1 + 𝑒−𝛼𝑘�𝜃𝑖−𝛽𝑘𝑘�
−

1

1 + 𝑒−𝛼𝑘�𝜃𝑖−𝛽𝑘,𝑙+1�
 

where we take 𝑃(𝑋𝑖𝑖 ≥ 0|𝜃𝑖) = 1.  

In the case of 4 categories, 𝑃(𝑋𝑖𝑖 = 0) = 1 − 𝑃(𝑋𝑖𝑖 = 1), 𝑃(𝑋𝑖𝑖 = 1) = 𝑃(𝑋𝑖𝑖 = 1) −

𝑃(𝑋𝑖𝑖 = 2), (𝑋𝑖𝑖 = 2) = 𝑃(𝑋𝑖𝑖 = 2) − 𝑃(𝑋𝑖𝑖 = 3), (𝑋𝑖𝑖 = 3) = 𝑃(𝑋𝑖𝑖 = 3) − 0.  

Compared to PCM, GRM will force the categories threshold parameters to be ordered. 

 Parameters estimation 1.3.7.  

The purpose of IRT is to estimate the latent trait on the person who takes the test, as well as the 

properties of the items. Therefore, the estimation of the person’s abilities and item parameters is 

the most important task of IRT.  

Person parameter Estimation 

Take the model of dichotomous item as example, the probability of a response vector 𝑋 is given 

by 

𝑃(𝑋|𝜃𝑖) = �𝑃𝑘𝑥𝑘(1 − 𝑃𝑘)(1−𝑥𝑘)
𝐾

𝑘=1

 

Where 𝑃𝑘 is short for 𝑃(𝑋𝑖𝑖 = 𝑙|𝜃𝑖) and 𝑥𝑘 is the binary response to item 𝑘.  
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Maximum likelihood is utilized in the IRT parameter estimation. Once the response 𝑋𝑖 of person 

𝑖 is observed, this expression becomes a likelihood function 

𝐿(𝑋𝑖|𝜃𝑖) = �𝑃𝑖𝑖𝑥𝑖𝑖(1 − 𝑃𝑖𝑖)(1−𝑥𝑖𝑖)
𝐾

𝑘=1

 

The estimation is based on the assumption of local independence. Item responses are independent 

after controlling the latent trait level, which means the joint probability (likelihood) of items in a 

test is just the multiplication of the probabilities of each item. Therefore, the log likelihood 

function can be written as  

𝑙𝑙𝑙(𝑋𝑖|𝜃𝑖) = �(𝑥𝑖𝑖𝑙𝑙𝑃𝑖𝑖)
𝐾

𝑘=1

+ (1 − 𝑥𝑖𝑖)ln (1− 𝑃𝑖𝑖) 

In the following, we use lnL to represent the log likelihood function for short. 

The value of 𝜃 that makes the lnL for an individual a maximum is defined as the maximum 

likelihood estimate of 𝜃𝑖 for that individual. This equation cannot be solved directly and the most 

popular approximation methods is the Newton-Raphson procedure. It happens that the ability 

estimation procedure fails to converge when a person answers either all items in a test correctly or 

incorrectly.  

Item parameter estimation 

When the person parameters 𝜃 are known, the estimation of item parameters is straightforward 

and similar to the procedure of person parameter estimation. The difference is the lnL for an item 

is multidimensional for the item parameters. In the case of the 3-PL model, the item parameters 

include item difficulty, item discrimination and pseudo-guessing parameters. The values that 

correspond to the maximum value of a surface in three dimensions must be found. It could be 

done with the multivariate form of Newton-Raphson procedure by finding the first derivative of 

the likelihood function with respect to each of the parameters, setting their derivatives to 0 and 

solving simultaneously the nonlinear equations. 

For 1-PL IRT model, since the raw scores are the sufficient statistic, which means the estimation 

can be done without requiring any further data, we can estimate the parameters by conditional 
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maximum likelihood. For 2-PL and 3-PL, the joint maximum likelihood or the marginal 

maximum likelihood could by applied. The joint maximum likelihood estimation is currently the 

most widely used. The marginal or Bayesian estimation have the potential for solving some of the 

problems encountered with the joint maximum likelihood procedure. 

 Information function 1.3.8.  

Maximum likelihood estimators have several properties of importance. In general, as the sample 

size and number of item increase, the estimator converges to the true values and asymptotically 

normally distributed.  

Test information function 

In IRT, the precision of the ability parameters 𝜃 estimate is of concerned. In this context, the 

precision is measured by the variability of the estimates around the value of the parameter. The 

person parameter estimator  𝜃� is asymptotically normal distributed with mean 𝜃 and variance 

I(𝜃)−1 where I(𝜃) is the test information function given by 

𝐼(𝜃) = −𝐸 �
𝜕2𝑙𝑙𝑙
𝜕𝜃2 � = �𝐼𝑖(𝜃)

𝑖

= �
[𝑃𝑖′(𝜃)]²
𝑃𝑖(𝜃)𝑄𝑖(𝜃)

𝑛

𝑖=1

 

Where the 𝑃𝑖(𝜃) is the IRF of the item 𝑖 under the ability level of 𝜃, 𝑄𝑖(𝜃) = 1 − 𝑃𝑖(𝜃). 𝑃𝑖′ 

is the derivative of the 𝑃𝑖(𝜃). In IRT, the reliability of a measurement is evaluated by item 

information function. 

Therefore, the standard error of 𝜃 estimation equals to 

𝑆𝑆(𝜃�)  =  
1

�I(𝜃)
 

If the 𝑆𝑆(𝜃�) is large, the person’s ability is not estimated precisely enough. In the 2-PL model, 

the discrimination parameter would be correspondingly small.  
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Item information function 

The amount of information is influenced by the quality and number of items in a scale. The 

contribution of each item to the total information is addictive. The smaller the items variance, the 

greater the information. The item information function for item 𝑖 is given as 

𝐼𝑖(𝜃) =
[𝑃𝑖′(𝜃)]²
𝑃𝑖(𝜃)𝑄𝑖(𝜃) 

The item information functions are generally bell shaped as shown in Figure 11. It depends on the 

slope of the IRF: the greater the slope and smaller the variance. The item information function 

arrives at its maximum value at the point where the ICC has the maximum slope, which means the 

probability to have a correct response equals to 0.5. It can be deduced that the maximum value of 

the item information is 0.25. The curve of the item information decreases when the ability 

becomes either smaller or greater than the item difficulty. With this feature of item information, 

we can see the item provides most information for which ability level. 

 

Figure 11: Item Characteristic Curve (in black) and item information function (in blue) of the 1-PL. 
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The test information is more useful than item information, as the latter is relatively small. The test 

information curve could be used to diagnose the construction of scale. 

Test information curve peaks at some points on the ability scale where the test measures the 

certain ability level most precisely (Figure 12). The shape of the desired test information curve 

depends upon the purpose for which a test is designed. A test would be best for the people whose 

ability fall around the peak of the curve. Generally, a test information curve is peaked at the 

moderate ability level and decrease when the ability is low or high. When the test information 

curve is rather flat, this test estimates the ability with nearly equal precision. 

 

Figure 12: Test Characteristic Curve (in black) and item information function (in blue) of the 1-PL. 

 Implementation 1.3.9.  

Several programs are available for IRT analysis. MULTILOG (Reise and Yu, 1990) and 

PARSCALE (French and Dodd, 1999). A third program, WINSTEPS (Linacre, 2006), is also 
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noted briefly. There are some differences between these programs. For polytomous data, 

MULTILOG requires that the number of response categories across items remains the same in a 

test, whereas the PARSCALE and WINSTEPS allow different numbers of response categories in 

a test. The WINSTEPS provides figures such as the ICCs. 

However, these programs are generally not user-friendly and not easy to be implemented. An R 

package ltm (Rizopoulos, 2006) is available for the analysis of dichotomous data and polytomous 

data using IRT. It includes the 1-PL, 2-PL, 3-PL and the GRM. 

  Rasch Model 1.4.  

The Rasch model is established by a Danish mathematician Georg Rasch in 1960s (Rasch, 1960). 

It is considered as a special case of the IRT. Mathematically, Rasch models are similar to the most 

basic IRT model (1-PL): in the basic Rasch model for dichotomous data, the probability for 

person 𝑖 get a correct answer for item 𝑘 is described as: 

𝑃(𝑋𝑖𝑖 = 1|𝜃𝑖) =  𝑒𝜃𝑖−𝛽𝑘 (1 +⁄ 𝑒𝜃𝑖−𝛽𝑘) 

where 𝑋𝑖𝑖 = x ∈ {0, 1}. 

For polytomous data, the 1-PL IRT models extensions such as the RSM and PCM can be applied 

as Rasch model. 

 Assumptions 1.4.1.  

Rasch model shares the same assumptions of IRT, which are unidimensionality, local 

independence and the nature of item characteristic curve. Furthermore, Rasch model has one more 

assumption which is not shared with other IRT models. 

Invariance means that item difficulties remain the same across different groups, such as age or 

gender. Since the probability of an individual selecting a correct answer to an item depends only 

on the ability and the item characteristic parameters, this probability is independent of the 

distribution of individual ability in the population of interest.  



 

Introduction 

 

58 

 

Given the dichotomous case of Rasch model, it is easy to demonstrate that  

log �
𝑃

1 − 𝑃� = 𝜃𝑖 − 𝛽𝑘 

Where 𝑃 = 𝑃(𝑋𝑖𝑖 = 1|𝜃𝑖) 

It shows that the distance between the person’s ability and the item difficulty is expressed as the 

log odds ratios of the probability of getting a correct response for the person. For the same item, 

the difference between the log odds for two persons would be 

log �
𝑃1

1 − 𝑃1
� − log �

𝑃2
1 − 𝑃2

� = 𝜃1 −  𝛽 − (𝜃2 −  𝛽) = 𝜃1 − 𝜃2 

This indicates that the difference is item-free. Similarly, it can be demonstrated that the difference 

between the log odds of two items under the same ability level is person-free. This property 

allows us to anchor the item and person on the same ability scale which uses the log odds unit or 

logit. This logit scale is sometimes also referred to “latent continuum”. This scale has a zero 

midpoint and spreads to positive and negative infinities.  

 Difference between IRT and Rasch model 1.4.2.  

However, there are some important differences in interpretation of the result. As frameworks of 

analyzing measurement data, IRT emphasizes the primacy that the model fit the observed data, 

while in the Rasch model is superior: data which does not fit the model is discarded (Andrich, 

2004). IRT methods include additional model parameters such as the discrimination parameter to 

reflect the pattern of the observed data, whereas the Rasch model only estimates the latent trait 

under the condition that both the whole data and the person/item fit the model. Rasch model 

provides tools to diagnose the measurement and responses, misfitting items or persons may be 

excluded from the data set. To summary, IRT can be seen as an exploratory approach, on the 

contrary of the Rasch model which is more a confirmatory analysis.  

In IRT, persons are incidental parameters. The latent trait distribution of person sample is 

conceptualized as normally-distributed 𝑁(0,1). 𝑃(𝑋𝑖) is the overall probability of success by 
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person distribution on item 𝑖. Therefore, the estimation of the parameters is computationally 

simpler. In Rasch model, the latent trait of each person is parameterized individually. 𝑃(𝑋𝑖) is 

the probability that certain person to have the trait level to be correct on an item 𝑖 .                                                                                                                                                                                                                                                                                                     

Also, in Rasch model, there is no scaling parameter 𝐷. The ICC is modelled to be parallel with a 

slope of 1. 

 Parameters estimation 1.4.3.  

The main idea of the Rasch model is that the raw score is sufficient statistic for item estimation, 

and the item total is sufficient for person estimation. Like in the IRT, parameters are estimated by 

maximum likelihood. Several maximum likelihood estimation methods could be applied for item 

difficulties estimation, such as conditional maximum likelihood and marginal maximum 

likelihood. Meanwhile, person parameters are estimated by maximum likelihood. Other than 

assuming the normal distribution of person ability in the IRT, Rasch model assumes the 

independence of latent trait level of everyone. Item difficulties and person parameters are 

estimated interactively. 

 Rasch analysis 1.4.4.  

Conducting a Rasch analysis means analysing response data using the Rasch model. The analysis 

process produces a range of diagnostic information that can be used to determine how well each 

item contributes to the measurement of the latent trait and in doing so helps inform regarding 

scale validity and its possible improvement. With tests of fit between the data and the model, 

Rasch analysis can tell if it is justified to take the total score for person ability evaluation. If the 

data satisfies a set of requirement, including the basic assumptions and fit of items and persons, 

the total score could be used for the estimation of person abilities and item difficulties. These 

parameters, which are more readily than the raw score, can then be used for comparison or 

analysis. In the practical, data never fit perfectly the model. When the data does not fit well the 

model, it is important to be able to diagnose where the misfit is the worst. In this case, the use of 

total score for parameter calibration on the latent trait continuum should be considered carefully. 
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Therefore, the essential of Rasch analysis is to be in dynamic and interactive control of an 

analysis and to be able to see if the responses could be valid from the evidence. 

Rasch analysis provides an integrated framework of tests. One single statistic is not generally to 

decide whether a set of data fit the model. The three basic assumptions of the Rasch Model, that 

of local independence, unidimensionality and invariance should be examined first. Once the 

assumptions are met, it is possible to use the Rasch model to further evaluate the scale by 

investigating overall goodness-of-fit, reliability, the fitness of individuals or items, and 

consistency of items.  

Assumption validation 

Unidimensionality can be assessed by creating two subsets of items using a Principal Component 

Analysis (PCA) of the item residuals, with those loading negatively forming one set, and those 

loading positively forming the second set. Each person parameter estimated from one set of items 

is then compared to those derived from the other set of items using a t-test. If less than 5% of 

these tests are significant at the 5% level, then unidimensionality is supported (Smith, 2002). 

Another approach to examining unidimensionality is to apply a generalization of the Martin-Lof 

test to the two subsets of items defined previously (Christensen et al., 2002). A non-significant 

p-value for this test at the 5% level supports the assumption of unidimensionality. 

Local independence is examined by the residual correlations between items, which should be no 

more than 0.3 for each pair of items (Andrich, 2010). 

Invariance is assessed through an analysis of variance of the residuals where the key group of 

interest is the main factor. If the inter-person-group variance is statistically significant, the item 

bias is called Differential Item Functioning (Burns et al., 2012; Hanson, 1998). When it is present, 

the probability of an item response cannot be explained totally by the person and item parameters.  

Fitness of test 

Once the three assumptions of local independence, unidimensionality and invariance are met, it is 

possible to use the Rasch model to further evaluate the scale by investigating overall 
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goodness-of-fit, reliability, the fitness of individuals or items, and consistency of items, as 

introduced following: 

Overall goodness-of-fit. The Andersen’s likelihood-ratio test (Andersen, 1973) shows high power 

and acceptable type-I error rate in Rasch Model estimation (Suárez-Falcón and Glas, 2003). To 

perform this test, subjects are split into g = 1, . . ., G score-level subgroups in which a conditional 

likelihood is computed and compared to the total conditional likelihood computed in the complete 

sample of subjects. A non-significant p-value for this test indicates goodness-of-fit for the Rasch 

model. 

Reliability of the CMTNS scale is estimated by the Person Separation Index (PSI) given by the 

proportion of true variance relative to the true and error variance. In practice, it measures the 

internal consistency and the discrimination power of the scale, i.e. the ability of the scale to 

discriminate amongst persons with different levels of the trait. It is equivalent to the Cronbach’s 

alpha (Cronbach, 1951), but it uses the person estimates in logits instead of the raw scores. A PSI 

value greater than 0.7 is considered as acceptable. 

Item fit can be assessed by several indicators. The residual item fit statistics are expected to 

approximate a Normal distribution (mean close to 0 with an SD close to 1), which is tested using a 

chi-square test (Kersten et al., 2014). A significant chi-square test based p-value may indicate 

misfit. In parallel, a similar analysis could be performed for the test of person fit. Then, fit 

statistics can be computed and focus on two aspects: infit (means inlier-sensitive fit) and outfit 

(means outlier-sensitive fit). Infit is more sensitive to the overall pattern and less influenced by 

outliers, and thus infit problems are more of a threat to measurement than outfit ones. Infits and 

outfits are reported in both mean squares and standardized fit t-statistics. The mean squares 

indicate the amount of distortion of the measurement system whereas the t-statistics indicate how 

likely the item is misfit (Masters, 1982). Mean-squares greater than 1.3 indicates underfit to the 

Rasch model; mean-squares less than 0.7 indicate overfit to the Rasch model. High t-statistics (> 

2.0) show that the item distorts or degrades the measurement system as underfit while low 

t-statistics (< -2.0) mean data are too predictable or overfit, but not degrading. Underfit and 

overfit to the model have different implications for measurement. Underfit degrades the quality of 

the measurement and should prompt reflection on its cause. Overfit might mislead one into 
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concluding that the quality of the measure is better than it really is, and has less practical 

implication than underfit (Green and Frantom, 2002). 

The consistency of items. A particularly useful output of the Rasch analysis is the person-item 

map (also sometimes referred to as `Wright map’). This map displays the difficulty of the items on 

the same latent dimension as the impairment of the patients. For each item, a threshold of a 

category is defined as the location at which the cumulative probability of selecting this category 

versus all the other options reaches 0.5. In doing so, thresholds should follow the same order as 

categories. A disorder of categories in an item occurs when the ordinal numbering of categories is 

not in accord with their fundamental meaning or when individuals have difficulties in consistently 

discriminating categories. In this case, the disordered categories should be rearranged and Item 

Characteristic Curves representing the probability of selecting each category for one item can be 

plotted to examine whether this disorder item from under or over-selection of one category. 

 Implementation 1.4.5.  

Several programs of Rasch model analysis are available. Winsteps (Linacre, 2006) and RUMM  

are the main paid software used in the research. They can all be utilized for the dichotomous and 

polytomous Rasch model analysis. 

eRm is an R package for Rasch model and analysis (Mair and Hatzinger, 2007). It provides 

multiple Rasch models estimation, including RSM and PCM. Also, it contains a simulation 

module to generate response data matrix for different Rasch scenarios. Furthermore, it provides 

variant choices for the statistical tests of the parameters fit analysis and global fit analysis.  

 Objective and Outline 1.5.  

In this thesis, we applied Item Response Theory and its extensions in different ways to analyze the 

GWAS data and rating scales data in neurodegenerative diseases to ameliorate the severity 

evaluation and better understand mechanisms of these diseases. This manuscript is divided into 

five chapters. After this first introductory chapter, the three chapters present three principal works 

of this thesis. Each chapter begins with an introduction which introduces the context and 
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summarizes the methods and results of the article following. Here is a brief overview of each 

chapter. 

The second chapter recounts the application of the Rasch analysis on the CMTNS. Rasch analysis 

is a typical utilization of the modern psychometric theory on the rating scale. We detail an 

analysis pipeline using the Rasch model to evaluate the psychometrical properties of the CMTNS 

in a French cohort of CMT1A patients. After verification, if CMTNS satisfies the basic 

assumptions of IRT, we evaluates the validity of items on the assessment of the disease severity. 

In the third chapter, the Rasch model has been applied to a new type of data: GWAS data as a part 

of a multi-marker genetic association test. This method summarizes the categorical genotypes of 

SNPs by Rasch model into a genetic score that can be used for association analysis. Different sets 

of simulations were carried out to compare the Rasch model based association test with other 

existing methods. Then this method was applied to a GWAS dataset of Alzheimer’s disease to 

explore disease associated genes. 

The fourth chapter describes a novel method to estimate the mutual information of items in a 

rating scale using the IRT model. The purpose of this study is to select sensitive items in the 

ADAS-cog, that is the most used cognitive functioning measures in Alzheimer’s disease. Using 

the ADAS-cog scores in the ADNI study, we estimated the mutual information of each item as an 

indicator of sensitivity and compared it with other IRT-based item statistics for the item 

evaluation and the rate of change of the composite scores chosen by different methods.  

Finally, the fifth chapter is a general discussion. After a summary of the main results of this 

thesis, I will discuss the possible perspectives of the future works. 
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2.1    Introduction 

Charcot-Marie-Tooth disease is the most common inherited disorder of the peripheral nervous 

system without approved treatment. As a main efficacy endpoint for clinical trials of 

Charcot-Marie-Tooth disease, the scale Charcot-Marie-Tooth Neuropathy Score (CMTNS) is 

questioned for its sensitivity to change and its psychometric properties are still under debate. To 

improve the research on efficacious disease-modifying treatment, a clinically meaningful efficacy 

endpoint is crucial. One well-accepted way to provide such evidence of validation is to perform a 

Rasch model analysis, which has been widely employed in clinical scale construction and 

validation. In the first part of this thesis, I evaluated the psychometrical properties of the CMTNS 

using Rasch analysis. The purpose of this study is to validate the CMTNS on 

Charcot-Marie-Tooth 1A patients and propose a possible modification. 

This result was published on Plos One with the title “A Rasch Analysis of the 

Charcot-Marie-Tooth Neuropathy Score (CMTNS) in a Cohort of Charcot-Marie-Tooth Type 1A 

Patients”. 

2.2   Methods and Results 

We used the Rasch analysis to evaluate the CMTNS scale with a French cohort of 277 CMT1A 

patients. The Rasch analysis provides an integrated framework for scale evaluation. When a scale 

could satisfy the assumptions of Rasch model, Rasch analysis was able to provide a range of 

diagnostic information of this scale. First we tested the three basic assumptions: 

unidimensionality, invariance and local independence of the scores of CMTNS. Once these 

Chapter 2                          
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assumptions were met, we could investigate overall goodness-of-fit, reliability, the fitness of 

individuals or items, and consistency of items in this scale. The polytomous version of Rasch 

model: Partial Credit Model was applied to the study.  

Through the analysis, we found the CMTNS a valid measurement for CMT1A: the three main 

assumptions of the Rasch were met; the scale showed good overall fit to the Rasch model and an 

acceptable reliability. Most of items had good fitness to the model, except that two items showed 

overfit and 3 items had disordered categories. As a limitation, our results pointed out that the 

items of CMTNS were more suitable for assessing moderate to severe forms of the disease. 

Therefore, further refinement of the CMTNS such as adding items and/or categories for 

mild-to-moderate severity assessment is certainly worth consideration. 

2.3   Manuscript 
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3.1. Introduction 

In the previous chapter, Rasch model is applied to the CMTNS to evaluate the psychometric 

properties of this scale. Since GWAS data, which are widely used for neurodegenerative diseases, 

are also categorical data, we had the idea that this alternative psychometric method of the classical 

test theory may be helpful for GWAS data analysis. Alzheimer’s disease is a complex disease and 

has no efficacious treatment. Determining the genes associated with the disease can facilitate the 

understanding of the pathological mechanism and furthermore treatment development. In a 

general way, there are multiple SNPs in a gene. The main question hence is how to summarize the 

association between multiple SNPs and a trait of interest into a single statistic. In this study, we 

utilized the Rasch model as a multi-marker genetic association test to find Alzheimer’s disease 

associated genes. 

This result is published on Plos One with the title “A Multi-Marker Genetic Association Test 

Based on the Rasch Model Applied to Alzheimer’s Disease”. 

3.2. Methods and Results 

A set of SNPs which can be genotyped into 0, 1 and 2 can be considered as a rating scale with 

polytomous items. Therefore, we can apply Rasch model on each gene comprising of multiple 

SNPs. Rasch model provides an estimation of a person’s location on the latent trait continuum 

(person parameter). By comparing the person parameters of the case group and control group, we 

could assess the association between a given gene and the disease of interst. The polytomous 

Chapter 3                          
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Rasch model was implemented in R package eRm. The association was assessed by logistic 

model.  

To evaluate this multi-marker genetic association test based on the Rasch model, we simulated a 

series of SNPs data and compared this method with four existing association tests. By comparing 

false-positive rate and power, we found the proposed approach showed good performances: it has 

correct false positive rate and high power.  

This Rasch model based association test was applied to the GWAS data in the ADNI study to 

explore disease-associated genes. Among the top genes selected by the proposed method, several 

can be functionally linked to Alzheimer’s disease. A pathway analysis of these genes also 

highlights the metabolism of cholesterol that is known to play a key role in AD pathogenesis. 

Moreover, these elements can be integrated into a hypothetic signalling network potentially 

targeted by a drug that shows efficacy in disease models. 

3.3. Manuscript 
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4.1. Introduction 

In the previous two chapters, we applied the Rasch model to different categorical data: rating 

scale and GWAS data. Rasch model has demonstrated its capacity on the item evaluation and 

person ability estimation. Still, the utilization of Rasch model and Item Response Theory is not 

limited to the direct analysis of the parameters that they produced through fitting the data. These 

parameters could be employed in other statistical models to provide a more precise data 

estimation. For instance, an item which is more dependent on the latent trait has higher possibility 

to correspond to the severity change of disease and thus to be a sensitive marker for this 

population. Mutual information in the field of information theory provides a general dependency 

estimation by quantifying the dependence between the joint distribution of two variables. The 

probability density distribution of the items can be estimated by Item Response Theory. In this 

chapter, we proposed a new method of items evaluation with the mutual information based on the 

Item Response Theory. The aim was to select the sensitive items in ADAS-cog, the most used 

cognitive functioning measures in Alzheimer’s Disease, in order to better serve the disease 

progress evaluation. 

An article resulted by this study titled as “Selection of items as sensitive clinical markers for MCI 

population from the ADAS-Cog with the IRT-based mutual information” is in preparation.  

Chapter 4                          

Item Response Theory Based Mutual 
Information Test 
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4.2. Method and Results 

In this study, we calculated the IRT-based mutual information of each item in ADAS-cog using 

the baseline data of MCI patients in the ADNI study. The two-parameter IRT polytomous model 

Graded Response Model was applied to estimate the probability density function. This model was 

implemented with the R package ltm.  

To verify if the mutual information reveals the sensitivity of items, we compared it with other 

IRT-based statistics: the Fisher information and discrimination. The top items selected by the 

three methods were similar, but globally the mutual information of items is better correlated to the 

severity change in the two years follow-up data compared to other methods. 

To reduce the variability and enhance the reliability, it is of interest to select the more sensitive 

sub-items in the scale. Items Word Recall, Word Recognition and Delayed Word Recall were 

found to have higher mutual information in the ADAS-cog. Their composite score showed a 

higher rate of change compared to other composite scores of the ADAS-cog subscales. These 

studies may also indicate that the high mutual information items could be sensitive markers for 

the early stage of the disease such as MCI.  

4.3. Manuscript 
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Abstract 

Although the Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog) is the most 

used cognitive functioning measures in Alzheimer’s Disease, studies showed that its sensitivity on 

measuring disease progression in clinical trials is limited, especially in MCI patients. It is needed 

to select sensitive items in ADAS-cog for the purpose of helping to identify and to treat patients in 

the early stage of the disease. In this study, we proposed a new method to evaluate the sensitivity 

of items with the Item Response Theory (IRT) based mutual information. In comparison with 

other IRT-based statistics, the mutual information of items better corresponds to items’ rate of 

change in follow-up data. The composite score of items with high mutual information shows a 

higher rate of change compared to other subscales of ADAS-cog. In conclusion, this IRT-based 

mutual information could be a useful statistic in the sensitive item selection in measures.  

Introduction 

Alzheimer’s Disease (AD) is the most common neurodegenerative disorder and there is no 

available therapeutic treatment up to date. Recent Researches suggests that AD begins years 

mailto:wenjia.wang@pharnext.com
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before the development of symptoms (Skinner et al., 2012). Slowly, patients typically perform 

more poorly on tests of memory, language, executive function and visuospatial ability as part of 

disease progression (Koppel, 2005). Early detection of cognitive changes in the preclinical stage 

or Mild Cognitive Impairment (MCI) is crucial since many clinical trials are targeting 

modification underlying disease pathology rather than ameliorate symptoms for AD.  

Global cognitive functioning measures are essential tools for diagnosis and progression tracking 

of AD. Among numerous tests available for cognitive dysfunction, the Alzheimer’s Disease 

Assessment Scale-cognitive subscale (ADAS-cog) has been the most widely used scale in 

antidementia clinical trials in patients with mild and moderate AD. The original 11-item ADAS 

scale (ADAS-cog 11 or ADAS-classic) was developed by Rosen et al. in 1984 (Rosen, Mohs, and 

Davis 1984). Skinner et al. added items Delayed Word Recall and Number Cancellation on the 

ADAS-cog 11 and this modified version is called ADAS-cog 13 (Skinner et al., 2012).  

Although some studies have demonstrated its use as an effective measure of dementia severity 

and progression (Ihl et al., 1999; Weyer et al., 1997), ADAS-cog still has some limitations: it did 

not distinguish reliably the different cognitive impairment levels (Ihl et al., 1992); the scale is also 

not uniformly sensitive to measuring cognitive decline in AD, especially for MCI or mild AD 

patients. This may be due to the inequality of the sensitivity of items to detect cognitive deficits. 

Some items demonstrate a ceiling effect that makes them uninformative in subjects within 

predementia stage (Cano et al. 2010). The inclusion of insensitive items also brings in more 

variability, which potentially obscured the mild deficits tracking.  

Given the current state of clinical research in AD, a selection of items in ADAS-cog in MCI 

patients based on their sensitivity is desired. By eliminating less informative items, we could 

reduce variability for predementia clinical researches and the test process could also be more 

efficient. The latent trait that ADAS-cog tries to estimate is the cognitive disability led by the 

disease. The cognitive functions worsen with the disease progression. When the response to an 

item in the scale is more dependent to the latent trait based on the data of a certain population, it 

has higher possibility to correspond to the severity change of disease and thus to be a sensitive 

marker for this population. 
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The evaluation of dependency is an important issue in many problems (Karasuyama and 

Sugiyama, 2012; Steuer et al., 2002). Several measures quantify the dependency between 

observed random variables, such as the Pearson correlation coefficient and the Spearman 

correlation coefficient. Compared to these measures, mutual information provides a general 

dependency estimation by quantifying the dependence between the joint distribution of two 

variables and what the joint distribution would be if they were independent. High mutual 

information indicates a large reduction in uncertainty of one random variable due to the 

knowledge of the other. Mutual information has been widely applied in other statistical decision 

contexts finding important applications as an indicator in feature extraction (Silva and Narayanan, 

2009),  detection (Cooper, 2000),  image registration and segmentation (Thévenaz et al., 2000), 

and to characterize performance limits on pattern recognition (Westover and O’Sullivan, 2008). 

The properties of mutual information make it possible to be extended to tests where an estimate of 

the continuous latent trait is desired. The application of mutual information approaches to item 

selection have been considered mostly in the context of computerized adaptive testing (Liu, 2005; 

Wang, 2013) but has not yet been utilized for item selection of clinical scales.  

The mutual information of two random variables depends on their distributions. However, the 

distribution of the item response is unknown in most cases. In ADAS-cog, the difficulties of items 

vary and the categories increase indicating from low to high the severity of the disease. To 

estimate the mutual information between the latent trait and the items, we need to estimate the 

probability density function for each category from the sample.  

Item Response Theory (IRT) provides a statistical framework of measurement analysis that can be 

used to approximate probability density functions in measurement. Recent studies have 

demonstrated that the application of IRT increased the precision in the cognitive assessment (Ard 

et al., 2013; Balsis et al., 2012). Compared to the traditional way that uses the total scores in the 

diagnosis and assessment of a measure, IRT considers the situation that some items may be more 

difficult than others and the capacity of subjects varies (Hambleton et al., 1991). IRT assumes that 

the probability of certain response on an item is a mathematical function of the person and item 

parameters. The person parameter is the estimation of the latent trait; the item parameters are 

statistics expressing the relationship between the outcome of items and the latent trait, and they 

could be used to evaluate the psychometric properties of items. IRT models yield item and latent 
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trait estimates within a non-linear transformation of the raw score that does not vary with the 

characteristics of the population. 

When working with IRT models, it is important to determine that the latent construct measured by 

all the items is statistically unidimensional, which means all items measure only one latent trait 

(Hambleton et al., 1991). Research shows that ADAS-cog demonstrates strong unidimensionality 

through different factor analytic techniques (Benge et al., 2009). ADAS-cog also satisfies other 

assumptions of IRT such as invariance and local independence (Verma et al., 2015). Therefore, 

IRT could be applied to the analysis of ADAS-cog to approximate the probability of each 

category of items with the person parameters and item parameters estimated from the sample.  

Given the probability of responses estimated by person and item parameters in the IRT model, we 

can calculate the mutual information between each item and the latent trait in a scale. Items with 

high mutual information are supposed to be more sensitive to the disease progression. 

This work investigated the IRT-based mutual information of each item in ADAS-cog to select 

sensitive items in MCI population. To examine if the mutual information well measured the 

sensitivity to disease severity change, we estimated its correlation with the rate of change within 

two years of each items on the same population. Other IRT-based statistics, such as the Fisher 

information, were compared. A composite score based on the item of high IRT-based mutual 

information was also compared with other subscales of ADAS-cog.  

Materials and method 

Data 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as 

a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary 

goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 

emission tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment (MCI) and 
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early Alzheimer’s disease (AD) (Weiner et al., 2012). All data points available for MCI subjects 

enrolled in ADNI-1, ADNI Go and ADNI-2 were included in this analysis. 

Eight hundred and sixty-six MCI subjects were included in this study. Among them, 308 subjects 

were diagnosed as Early MCI (EMCI), 558 of them were diagnosed as Late MCI (LMCI) at 

baseline; 512 subjects were males, and 354 subjects were female. Their ages were ranged from 54 

to 91. All subjects had APOE information collected at baseline: 430 subjects do not have APOE4 

allele. 338 subjects have one APOE4 allele, and 94 subjects have two alleles.  

In this study, we evaluated the ADAS-cog measurement scale and its subscales in ADNI. The 13 

items in ADAS-cogs are Word Recall (Q1), Commands (Q2), Construction (Q3), Delayed Word 

Recall (Q4), Naming (Q5), Ideational Praxis (Q6), Orientation (Q7), Word Recognition (Q8), 

Recall Instruction (Q9), Spoken Language (Q10), Word Finding Difficulty (Q11), Comprehension 

(Q12), and Number Cancellation (Q14).  

Item Response Theory 

Item Response Theory (IRT) (Woods and Baker, 1985) comprised of mathematical models 

describing the association between a respondent’s underlying level on a continuum of the latent 

trait and the probability of a particular item response using a nonlinear function. The different IRT 

models are distinguished by the functional form specified for the relationship between latent trait 

and item response probability. Items could be dichotomous or polytomous (item with multiple 

response categories). There are three main types of dichotomous IRT models. The One 

parameter model (1-PL) or Rasch Model allows items to vary in their difficulty level (β) but 

equally discriminated. The Two parameter model (2-PL) extends the 1-PL Rasch model by 

estimating an item discrimination parameters (α) qualifying how well the item distinguishes 

subjects with different latent levels. Three parameter model (3-PL) includes a pseudo-guessing 

parameter (c). In an ability testing, subjects can get an answer by chance. This parameter adjusts 

for the impact of chance on observed scores. 

Since the items in the ADAS-cog are widely varied in terms of categories number and setting, 

they are assumed to be not equally discriminating. The responses of psychometric tests in ADNI 
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were mostly provided by examiners. Thus the impact of chance on the response is not considered. 

For these reasons, the 2-PL model could be adapted to describe the ADAS-cog data.  

The Graded Response Model (GRM) is an extension of the 2-PL model which is appropriate to 

use on polytomous items (Samejima, 1970). In the GRM, items need not have the same number of 

response categories. Each item is described by a discrimination parameter 𝛼  and between 

category threshold parameters 𝛽, which represent the trait level necessary to respond above 

threshold with 0.5 probabilities. In GRM, for item 𝑘, the probability of the person 𝑖 to endorse 

the 𝑙th or higher response categories is given by 

𝑃(𝑋𝑖𝑖 ≥ 𝑙|𝜃𝑖) =  
1

1 + 𝑒−𝛼𝑘�𝜃𝑖−𝛽𝑘𝑘�
, 

where the 𝑋𝑖𝑖  is the ordinal manifest variable with 𝐿𝑘  possible response categories. The 

threshold 𝛽𝑘𝑘 can be considered as the difficulty of responding with category 𝑙  or higher for 

item 𝑘 with 𝛽𝑘1 < ⋯ < 𝛽𝑘𝑘 < 𝛽𝑘,𝐿𝑘−1 and 𝛽𝑘,𝐿𝑘 = ∞. 𝜃𝑖 is the person parameter of the person 

𝑖. 

Therefore, the probability of observing 𝑙th categories is  

𝑃(𝑋𝑖𝑖 = 𝑙|𝜃𝑖) = 𝑃(𝑋𝑖𝑖 ≥ 𝑙|𝜃𝑖) − 𝑃(𝑋𝑖𝑖 ≥ 𝑙 + 1|𝜃𝑖) 

=
1

1 + 𝑒−𝛼𝑘�𝜃𝑖−𝛽𝑘𝑘�
−

1

1 + 𝑒−𝛼𝑘�𝜃𝑖−𝛽𝑘,𝑙+1�
 

where we take 𝑃(𝑋𝑖𝑖 ≥ 0|𝜃𝑖) = 1and  𝛼𝑘  is the discrimination parameter of the item,  

𝛽𝑘𝑘 is the  category threshold parameter. 

Mutual information 

In information theory, one of the key concepts is entropy, a measure of disorder or uncertainty 

(Commenges, 2015; Cover and Thomas, 2006). It is found to be the only appropriate function to 

measure the information for the observation of a random variable 𝑋 taking different values 𝑥 

and having a distribution 𝑓. 
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The entropy is defined as: 

𝐻(𝑋) =  �𝑓(𝑥)
𝑥∈𝑋

log
1

𝑓(𝑥) = −�𝑓(𝑥)
𝑥∈𝑋

 log𝑓(𝑥) 

For two dependent variables, the information needed to describe the outcome of a random 

variable 𝑋 given the value of another random variable 𝑌 is qualified by the conditional entropy 

𝐻(𝑋|𝑌) =  −  �𝑓(𝑦)
𝑦∈𝑌

�𝑓(𝑥|𝑦)
𝑥∈𝑋

 log𝑓(𝑥|𝑦) 

Then, the amount of information contained in one random variable 𝑋 about the other random 

variable 𝑌 can be qualified by the mutual information 

𝐼(𝑋;𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) 

Note that the mutual information is symmetric. If 𝑋  and 𝑌  are independent, the mutual 

information is null. Therefore 𝐼(𝑋;𝑌) can be considered as a measure of dependence. 

In the context of this study, the mutual information contained in item 𝑘 about the latent trait 𝜃 

is of concerned: 

𝐼(𝑋𝑘;𝜃) = 𝐻(𝑋𝑘)− 𝐻(𝑋𝑘|𝜃) 

where 

𝐻(𝑋𝑘) =  −  �𝑃(𝑋𝑘 = 𝑙)log
𝐿𝑘

𝑙=1

𝑃(𝑋𝑘 = 𝑙) 

given  

𝑃(𝑋𝑘 = 𝑙) = � 𝑃(𝑋𝑘 = 𝑙|𝜃)
∞

−∞
𝜑(𝜃)𝑑𝑑 

assuming 𝜃~𝑁(0,1) 

and 
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𝐻(𝑋𝑘|𝜃) = −� �𝑃(𝑋𝑘 = 𝑙|𝜃)
𝐿𝑘

𝑙=1

log𝑃(𝑋𝑘 = 𝑙|𝜃)
∞

−∞
 𝜑(𝜃)𝑑𝑑 

 

 

Statistical analysis 

Mutual information estimation and comparison 

The amount of IRT-based mutual information of the items in ADAS-cog was estimated using the 

baseline data of MCI patients in ADNI 1, 2 and Go.  

Then the mutual information of each item was compared with other IRT-based statistics. The 

application of IRT provides other statistics representing the characters of the item, such as the 

discrimination and Fisher information. They could also be utilized in the item selection. 

Discrimination of items (parameter 𝛼𝑘 in the GRM model for item 𝑘) illustrates the capacity of 

an item to discriminate between contiguous trait levels near the inflection point. More 

discriminating items provide greater information about the latent trait than less discriminating 

items. In the research of IRT, the Fisher information is the most used type of information. 

IRT-based Fisher information equals to the variance explained, showing how effectively a 

measure captures the latent trait. It also provides the precision of measure. For an item k with 

response 𝑋𝑘, Fisher information is defined as (Lord, 1980) 

𝐼𝑘𝐹𝐹𝐹ℎ𝑒𝑒 = −𝐸 �
𝜕2 Log𝑃(𝑋𝑘 = 𝑙|𝜃)

𝜕𝜃2 � 

where 𝑃(𝑋𝑘 = 𝑙|𝜃) is the conditional probability of  𝑋𝑖 given θ estimated by the GRM. These 

two statistics have been proposed for evaluation of the item 

Since the mutual information shows the dependence of the item to the latent trait, it is supposed 

that an item with high mutual information is more sensitive to the disease severity change. The 

discrimination and Fisher information for each item in ADAS-cog were estimated based on the 

baseline data of MCI subjects in ADNI. Then they were compared with mutual information by 
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their correlation with the rate of change of these items in follow-up data to see which statistics 

correspond better to the disease severity change in time. 

The rates of change were estimated using the two years of follow-up data of the same MCI 

patients. The longitudinal linear mixed-effects model was fitted to Z-score transformed of each 

item with the fixed effect of time and the random effect of subjects. This model used the 

following covariates: age, gender, education level and APOE4 status. Missing data were assumed 

to be missing at random, and no values were imputed for missing data. The ADAS-cog scores at 

baseline, 12 months and 24 months of the MCI patients were included in the estimation of the rate 

of change.  

Composite score  

To reduce the variability and enhance the reliability, it is of interest to select the more sensitive 

sub-items in the scale. The composite score of the items with high mutual information could be a 

sensitive measurement of disease severity change. To keep the facility of utilization, the scores of 

these high mutual information items were simply summed up to generate the composite score. 

This composite score was compared with other composite scores of ADAS-cog including the 

ADAS-cog11, ADAS-cog13 and also the composite score of the items Word Recall (Q1), 

Delayed Word Recall (Q4) and Orientation (Q7), which were selected by Huang et al. (Huang et 

al., 2014) and Raghavan et al. (Wouters et al., 2008) as sensitive items for MCI subjects 

evaluation. Their rates of change were estimated using the linear mixed-effected model on the two 

years follow-up data of the MCI patients in ADNI for the comparison. 

Implementation 

We used the R statistical computing platform version 3.02. The summary data of ADNI were 

obtained by the package adnimerge. The application of Graded Response Model, the estimation of 

discrimination and FI of each item was conducted by R package ltm. The mutual information was 

estimated with custom-made R functions. The linear mixed–effects model was applied with R 

package lme4. 
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Results 

Mutual information and comparison 

The mutual information of the 13 items in ADAS-cog was estimated using baseline data from all 

MCI subjects in ADNI 1, ADNI Go and ADNI 2. The processing time for this calculation was 

6.82 seconds with R 3.02, 64-bit operation system with 16G RAM.  

The ranking of items by the mutual information amount that they contain could be found in Table 

1. The items Delayed Word Recall, Word Recall and Word Recognition exhibited obviously 

higher IRT-based mutual information compared to other items. Orientation has slightly higher 

mutual information in the rest of items. The mutual information of the rest of items in ADAS-cog 

was very close (between 0.02 to 0.06). The ranking the items based on the Fisher information and 

Discrimination could also be found in Table 1.  

Mutual Information Fisher Information Discrimination 

Item Value Item Value Item Value 

Delayed Word Recall (Q4) 0.78 Word Recall (Q1) 16.97 Delayed Word Recall (Q4) 3.01 

Word Recall (Q1) 0.58 Delayed Word Recall (Q4) 15.18 Word Recall (Q1) 2.65 

Word Recognition (Q8) 0.29 Word Recognition (Q8) 4.68 Word Recognition (Q8) 1.26 

Orientation (Q7) 0.08 Orientation (Q7) 1.86 Recall Instruction (Q9) 0.79 

Naming (Q5) 0.06 Ideational Praxis (Q6) 1.5 Ideational Praxis (Q6) 0.77 

Number Cancellation (Q14) 0.06 Recall Instruction (Q9) 1.42 Orientation (Q7) 0.73 

Ideational Praxis (Q6) 0.05 Naming (Q5) 1.34 Naming (Q5) 0.68 

Comprehension (Q12) 0.03 Number Cancellation (Q14) 1.19 Comprehension (Q12) 0.61 

Construction (Q3) 0.03 Comprehension (Q12) 0.84 Number Cancellation (Q14) 0.55 

Recall Instruction (Q9) 0.03 Construction (Q3) 0.58 Spoken Language (Q10) 0.42 

Commands (Q2) 0.02 Spoken Language (Q10) 0.4 Construction (Q3) 0.4 

Spoken Language (Q10) 0.02 Commands (Q2) 0.39 Commands (Q2) 0.39 

Word Finding Difficulty (Q11) 0.02 Word Finding Difficulty (Q11) 0.31 Word Finding Difficulty (Q11) 0.31 

Table 1. The values of mutual information, Fisher Information and Discrimination of the 13 items in 

ADAS-cog and their ranking accordingly. 
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The estimated Fisher information presented a larger range of value (0.31 to 16.97) compared to 

Mutual Information (0.03 to 0.78) and Discrimination (0.31 to 3.01). Nevertheless, there exists 

similarity in the three statistics: items Delayed Word Recall, Word Recognition and Word Recall 

were the top three highly ranked. Word Finding Difficulty was the last for three different ranking. 

The Mutual Information, Fisher Information and Discrimination were compared with the rate of 

change (Z-score) of 13 items in ADAS-cog estimated by the longitudinal linear mixed-effects 

model using the follow-ups data (12 months, 24 months) of the baseline MCI subjects in ADNI. 

The correlations between the rate of change and different statistics of items were shown on the 

heat map of Pearson’s correlation coefficients (Figure 1). Although the three statistics estimated 

using baseline data were similar (their correlations were between 0.0.97- 0.98), the IRT-based 

mutual information of the items were more correlated with the rate of change estimated on the 

two years of follow-up data (ρ = 0.88) compared to that of the Fisher Information (ρ = 0.78) and 

the discrimination (ρ = 0.83). 
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Figure 1. The Pearson’s correlation coefficient between the mutual information, Fisher Information and 

Discrimination estimated on the baseline MCI patient sample and the rate of change estimated on the two years 

of follow-up data. 

Composite score 

The three items with the highest mutual information (Word Recall, Word Recognition and 

Delayed Word Recall) were used to develop a composite score (High mutual information). They 

were compared with the ADAS-cog11, ADAS-cog13 and also the composite score of the items 

Word Recall, Delayed Word Recall and Orientation (Composite). 

The rate of change of these five composite scores estimated by the linear mixed–effects model on 

two years of follow-ups data were illustrated in Figure 2. With the complete set of items, 

ADAS-cog13 exhibits the highest rate of change in two years (0.30). The composite score of high 

mutual information items shows a higher rate of change (0.26) compared to the rate of change of 

ADAS-cog11 (0.18) and the composite score of the sensitive items selected in other studies (0.16) 

Figure 2 The rate of change (Z-score) through two years follow-up data of the subscales of the ADAS-cog. 

ADAS 11: The subscale of ADAS-cog 13 without item Delayed Word Recall and Number Cancellation. 
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Composite: items Word Recall, Delayed Word Recall and Orientation. High mutual information: Word Recall, 

Word Recognition and Delayed Word Recall.  

Discussion 

This study is the first attempt to apply the mutual information on the item selection for the 

assessment of cognitive. Mutual information has been widely used in the telecommunication and 

the machine learning as a feature selection method, whereas the exploration of its application on 

measure scale, especially in combination with the IRT theory, is yet to start.  

In this article, we proposed to use the IRT-based mutual information to select sensitive items in 

cognitive measurement such as ADAS-cog. ADNI 1, ADNI Go and ADNI 2 baseline and two 

years of follow-ups data were used to identify items which are sensitive to disease severity change 

in the MCI population. The items Word Recall (Q4), Delayed Word Recall (Q1) and Word 

Recognition (Q8) showed high mutual information in the result. This list is highly overlapped to 

those identified in previously reported analyses. The items Word Recall, Delayed Word Recall 

were selected as most sensitive items in ADAS-cog by Huang et al. (Huang et al., 2014) using the 

signal-to-noise ratio for detecting the hypothetical treatment effect based on the longitudinal data 

and also by Ueckert et al. using the IRT-based Fisher information (Ueckert et al., 2014). 

Hannesdottir et al. proposed a subset of the ADAS-cog for prodromal AD patients as being the 

most sensitive based on ADNI including these two items (Hannesdottir and Snaedal, 2002). They 

were also found to have the largest amount of change across clinical categories in the research of 

Raghavan et al. (Raghavan et al., 2013). In a composited score proposed by Wang et al., Delayed 

Word Recall and Word Recognition were selected by a linear regression model on MCI subjects 

(Wang et al., 2016). To sum up, each item having high mutual information has been identified 

separately in several studies.  

The items with high mutual information are related to the memory impairment evaluation. The 

ADAS-cog is originally designed to assess three different cognitive domains including memory, 

language and praxis (Rosen et al., 1984). The top four items with high mutual information are 

exactly the four items measuring memory impairment: Word Recall (Q4), Delayed Word Recall 

(Q1) and Word Recognition (Q8) and Orientation (Q7). Studies suggest that impairment in the 
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memory, language and praxis cognitive domains progress differently based on the brain regions 

involved in different stages of Alzheimer’s disease (Frisoni et al., 2008; Thompson et al., 2003). 

Memory loss starts earlier in the pathology of Alzheimer’s disease and has been considered 

characteristic. The items related to the memory also showed higher sensibility in the drug effect 

evaluation (Verma et al., 2015). These studies may also indicate that the high mutual information 

items could be sensitive markers for the early stage of the disease such as MCI. 

Furthermore, previous analysis identified that items Commands, Construction, Naming, Praxis, 

Recall Instruction, Language, Word Finding Difficulty and Comprehension exhibit ceiling effects 

in virtually every cohort on MCI subjects (Raghavan et al., 2013). Nevertheless, none of these 

items are selected by this method proposed. This may show that the application of mutual 

information helps to eliminate uninformative items in a scale by only using baseline data.  

Not only coherent with previous results, but the items with high IRT-based mutual information 

also showed more sensitivity to change through different comparisons. For an individual item, 

when compared to other IRT-based statistics (Fisher information and item discrimination), their 

mutual information was better correlated to the rate of change of the two years of follow-up data. 

In the comparison of the subscales of ADAS-cog, the rate of change in two years of the composite 

scores which summed only the 3 items with high mutual information were larger than that of the 

composite score of items Q1, Q4, and Q7 selected by Wang et al. (Huang et al., 2014) and  

Ueckert et al. (Ueckert et al., 2014) and the ADAS-cog 11. This result reinforced our viewpoint 

that the IRT-based mutual information could be a good statistic for sensitivity evaluation. The 

large reduction of items number would also benefit the reduction of variability of the scale.  

This study has still some limitations that should be mentioned. Firstly, although ADNI is a quality 

study with large sample size, there still exists lacking in the data. In the 866 MCI subjects who 

have ADAS-cog score in the baseline, 785 of them have a visiting point at 12th month, 674 of 

them have a visiting point at 24th month. The reduction of sample size compared to the baseline 

would decrease the accuracy of the rate of change estimation. Merely 561 subjects have a visiting 

point at 36th month. Therefore only the two years follow-up data were included in this study. 

Secondly, we focused on ADNI data to identify sensitive items. However, validation of the result 

using another dataset is also important. Reliability of the selection of sensitive items should be 
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assessed when more data are available. Thirdly, the items with high mutual information are 

slightly different compared to the previous two studies of sensitive items selection using ADNI 

data (Huang et al., 2014; Ueckert et al., 2014): the inclusion of item Word Recognition instead of 

Orientation. The divergence of the results could be led by the different data source used in these 

analyses. For example, the ADNI 2 data is not included in these two studies. After all, Orientation 

is the item with the fourth highest mutual information in ADAS-cog. 

The selection of sensitive items to disease severity change in cognitive measurement remains an 

active topic. In this study, we proposed the IRT-based mutual information criteria to evaluate the 

sensitivity of items. The calculation is fast (0.52 second per item on 866 samples) and only 

baseline data are sufficient. This property could be of interest in the clinical researches in which 

the trial design may be adapted to the result of the baseline data. It correlates well to the long-term 

rate of change compared to other statistics and the selected items correspond to several previous 

studies.  Furthermore, this method could be extended to the item selection on other cognitive 

assessment such as the MMSE. We believe that this method could help to improve power for MCI 

trials and eventually endpoint development in different diseases research.   
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As an alternative to the classical test theory using the directly summed scores of a test, Item 

Response Theory that fully considers the difference of the item properties has been widely applied 

to categorical data analysis. Aiming to deepen our understanding to the disease and promote the 

disease-modifying therapies, categorical data such as GWAS data and rating scales scores are 

widely utilized in neurodegenerative diseases researches. In this thesis, after the studies of the 

different aspects of the IRT and its extensions, we applied the IRT models on the analysis of the 

categorical data. By a series of tests under the framework of Rasch analysis, we showed that 

except some flaws of the setting of certain items, the CMTNS scale is validated for CMT1A 

disease assessment, but more suitable for moderate to severe forms of the disease. To enhance its 

precision on mild-to-moderate severity assessment, more items and/or categories are needed. This 

study may help the endpoint selection on the clinical trials of CMT disease. Then Rasch model 

was applied on the GWAS data as a multi-marker genetic association test. This novel method has 

shown better performance compared to other association tests through simulations. Part of the 

genes found associated with the Alzheimer’s disease by the proposed methods has not been 

mentioned in other GWAS studies of AD but functionally linked to the disease pathology. The 

results of pathway and network analysis of these genes also show correspondence to the known 

AD pathology. The Rasch model based genetic association test may gain an insight into the 

mechanism of AD. Finally, the Item Response Theory was combined with the mutual information 

to evaluate the sensitivity of the items in the ADAS-cog scale. Compared to other IRT-based 

statistics, this IRT-based mutual information of items was better correlated with their rate of 

change. The composite score of the items with high mutual information showed a higher rate of 

change compared to that of other composite scores of ADAS-cog subscales. This result may help 

Chapter 5                      

Discussion 
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to reduce the variability for predementia clinical researches and increase the test procedure 

efficiency. 

The research work that I presented in this thesis also suggests some interesting research 

perspectives.  

Brain imaging data analysis 

The loss of brain neurons is a primary symptom of central nervous system neurodegenerative 

diseases, such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. Numerous 

studies suggested that the change in brain structure (detected by MRI) or brain glucose 

metabolism (detected by FDT-PET) had higher statistical power to detect progression of disease 

than clinical or cognitive measures (Weiner et al., 2010). Firstly, neuroimaging has a higher 

reliability than cognitive measures and thus greatly increases the power to detect longitudinal 

change and treatment effects. Secondly, neuroimaging has “face validity” as an index of disease 

progression, because generally it is accepted that loss of synapses and neurons is a result of 

neurodegeneration. Finally, FDG-PET and MRI imaging are validated quantitatively to some 

extent by correlation with cognitive and functional measure and neuropathology at autopsy 

(Mueller et al., 2005b). Besides GWAS data and clinical rating scales data, the brain imaging data 

can complement the information gained from clinical measures and thus is worth to be concerned. 

In a side project of collaboration with Fudan University (Shanghai, China), we have validated the 

association between a SNP on a solute carrier transporter gene and putamen volume on the sample 

from the Three City Project. The brain imaging data could be integrated into the application of the 

methods developed in this thesis. For instance, in the study of Rasch model based multi-marker 

genetic association test, the volume of certain Region Of Interest (RIO), such as hippocampus, 

can be used as a quantitative trait in the test instead of the binary trait of case and control. The 

association of the multi-marker Rasch genetic score to the disease can then simply assessed with a 

linear model. In this case, novel genes related to the brain atrophy rate of the Alzheimer’s disease 

may be discovered.  

Histogram based Mutual information estimation 
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In the study of ADAS-cog item selection previously presented in Chapter 4, we used the mutual 

information as criteria of the item sensitivity. The GRM model in the IRT was used to 

approximate the probability of density functions of each category in an item. The mutual 

information (MI) of an item is then the sum of the IRT-based mutual information for each 

category assuming a normal distribution of the person ability parameters. The IRT model provides 

a precise estimation of the category endorsement and the IRT-based MI is higher correlated to the 

disease progression. However, it is not the only way to combine the IRT and information theory. 

There are several approaches to estimating the MI from finite samples. One of the simplest 

methods is the histogram-based method (Moddemeijer, 1989), which partitions the space into 

several bins and count the number of elements in each bin. This method is very easy and efficient 

from the computational point of view. With this method, we can first estimate the ability 

parameter for each individual 𝜃 using IRT model instead of assuming that they are normal 

distributed. The space of the person ability parameters 𝜃 can be divided into multiple bins. The 

𝑃(𝑋𝑖𝑖 = x|𝜃𝑖) for each bin 𝑖 can be approximated using the 𝑃�(𝑋𝑖𝑖 = x|𝜃𝑖) according to the 

category selection of the individuals in that range of 𝜃. The 𝑃(𝑋𝑖𝑖 = x) can be estimated by the 

margin probability of 𝑃(𝑋𝑖𝑖 = x|𝜃𝑖) . Then we can calculate the MI based on this 

histogram-based probability. The result can be compared with the IRT based MI of ADAS-cog 

items and may reveal other items sensitive to disease progression.  

Other applications  

The methods proposed in this thesis can have further applications to the data analysis of 

neurodegenerative diseases and other diseases. 

In the study of Rasch analysis on the CMTNS, we developed a set of functions with R language to 

evaluate the psychometrical properties of the scale and its items comprehensively. A new R 

package of Rasch analysis can be therefore constructed afterward based on these functions. To 

facilitate the analysis for non-statisticians, an automate pipeline may also be built in this package 

to reproduce a Rasch analysis report giving the raw data of a rating scale. 

The Rasch Model based association test also opens other opportunities for GWAS data analysis. 

First, the analysis of multiple markers is not only on the gene level, but can also be applied to the 

analysis of the SNPs on the whole pathway, knowing that disease susceptibility is actually likely 
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to depend on the cumulative effect of multiple variants in several genes interacting in functional 

pathways (Lehne et al., 2011). The pathway analysis also allows the consideration of enriched 

biological information. Second, besides in the association test, the genetic score estimated by 

Rasch model could also be used as a predictor of the disease for the classification of patients using 

machine learning methods. Third, the disease risk may be determined by multiple rare mutations 

(Madsen and Browning, 2009). The Rasch model is suitable for the inclusion of rare variants, as 

most rare variants analyses focus on gene level test by collapsing the effects of all rare SNPs in a 

gene into a single test of association (Fridley and Biernacka, 2011). 

The IRT-based MI that we developed can be expanded to the item sensitivity analysis of other 

clinical scales, such as the MMSE and CDR, which are important in the disease evaluation. It 

could be eventually be applied to the whole neuropsychological battery in the study of a certain 

disease to select the most sensitive items across different tests to develop a composite score.  

 

In conclusion, understanding the pathological mechanisms of neurodegenerative disease and 

developing new treatment remain challenging.  For these purposes, the adaptation of IRT on the 

diseases data is obviously necessary to provide a thorough analysis. Through this thesis, we 

discovered several usages of the IRT. It provides us the opportunities to identify the defects of the 

CMTNS scale, discover more AD-associated genes, and select sensitive items in ADAS-cog. It 

has great potential to improve the data analysis in the health care. Still, further statistical 

developments are needed to be able to fully exploit and analyze the categorical data available in 

the disease studies.   
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