S. Analog-reconstruction-for-altimeter-derived, 78 4.4.1 Patch-based state-space formulation, p.78

O. , D. , G. Ms-anda-on, . Oi, G. Ve-dineof et al., Chapter Data interpretation compared with physically-derived priors [149]. The combination of such physicallyderived parameterizations to data-driven strategies appear as a promising research direction. List of Figures 4.5 Reconstructed SLA fields using noise-free along-track observation using: from left to right, the first row shows the ground truth field, the simulated available along-tracks for that day, the ground truth gradient field. The second and third rows show each of the reconstruction and their corresponding gradient filed, from left to right The Fourier power spectrum of the competing methods is also included, Analog Spatio-Temporal Interpolation of Sea Level Anomalies from Altimeter-derived, p.85, 2012.

O. , D. , G. Ms-anda-on, G. Ve-dineof, and M. , from left to right, the first row shows the ground truth field, the simulated available along-tracks for that day, the ground truth gradient field. The second and third rows show each of the reconstruction and their corresponding gradient fields, from left to right The Fourier power spectrum of the competing methods is also included, Reconstructed SLA fields using noise-free along-track observation using, p.86, 2012.

R. Noisy-observation, 01) Daily RMSE time series of PB-AnDA SLA reconstructions using noisy along-track data for different choices of the regression variables in the locally-linear analog forecasting model: MS-AnDA-dX (light blue), MS-AnDA-dX+SST (orange) and MS-AnDA-dX + ¯ X (green), p.91

.. Anda-w.-r.-t, the groundtruthed SLA fields. See Section 4.5.1 for the corresponding parameter settings, p.83

.. Anda-w.-r.-t, the groundtruthed SLA fields. See Section 4.5.1 for the corresponding parameter settings, p.88

D. O. Brian, J. B. Anderson, and . Moore, Optimal filtering. Reprint of the, 1979.

L. Jeffrey and . Anderson, An ensemble adjustment Kalman filter for data assimilation, Monthly Weather Review, vol.129, issue.12, pp.2884-2903, 2001.

L. Jeffrey and . Anderson, Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter, Physica D: Nonlinear Phenomena, vol.230, issue.1, pp.99-111, 2007.

L. Jeffrey and . Anderson, Localization and sampling error correction in ensemble Kalman filter data assimilation, Monthly Weather Review, vol.140, issue.7, pp.2359-2371, 2012.

L. Jeffrey, . Anderson, L. Stephen, and . Anderson, A monte carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Monthly Weather Review, vol.127, issue.12, pp.2741-2758, 1999.

M. Asch, M. Bocquet, and M. Nodet, Data assimilation: methods, algorithms, and applications, Fundamentals of Algorithms. SIAM, 2016.
DOI : 10.1137/1.9781611974546

URL : https://hal.archives-ouvertes.fr/hal-01402885

D. Mohammad, . Ashkezari, N. Christopher, . Hill, N. Christopher et al., Oceanic eddy detection and lifetime forecast using machine learning methods, Geophysical Research Letters, issue.23, pp.43-2016

A. Atencia and I. Zawadzki, A Comparison of Two Techniques for Generating Nowcasting Ensembles. Part II: Analogs Selection and Comparison of Techniques, Monthly Weather Review, vol.143, issue.7, pp.2890-2908, 2015.
DOI : 10.1175/MWR-D-14-00342.1

N. Audebert, B. L. Saux, and S. Lefèvre, Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks, 2016.
DOI : 10.1127/1432-8364/2010/0041

URL : https://hal.archives-ouvertes.fr/hal-01360166

S. Ba, T. Corpetti, and R. Fablet, Multi-resolution missing data interpolation in SST image series, 2011 18th IEEE International Conference on Image Processing, 2011.
DOI : 10.1109/ICIP.2011.6115733

URL : https://hal.archives-ouvertes.fr/hal-01196960

K. Baith, R. Lindsay, G. Fu, and C. R. Mcclain, Data analysis system developed for ocean color satellite sensors, Eos, Transactions American Geophysical Union, vol.82, issue.18, pp.202-202, 2001.
DOI : 10.1029/01EO00109

URL : https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/01EO00109

T. Barnett and R. Preisendorfer, Multifield Analog Prediction of Short-Term Climate Fluctuations Using a Climate State vector, Journal of the Atmospheric Sciences, vol.35, issue.10, pp.1771-1787, 1978.
DOI : 10.1175/1520-0469(1978)035<1771:MAPOST>2.0.CO;2

J. M. Beckers and M. Rixen, EOF Calculations and Data Filling from Incomplete Oceanographic Datasets*, Journal of Atmospheric and Oceanic Technology, vol.20, issue.12, pp.1839-1856, 2003.
DOI : 10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2

M. Bertalmio, A. L. Bertozzi, and G. Sapiro, Navier-stokes, fluid dynamics, and image and video inpainting, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, pp.355-362, 2001.
DOI : 10.1109/CVPR.2001.990497

URL : http://www.ima.umn.edu/preprints/jun01/1772.pdf

E. Neill, J. Bowler, . Flowerdew, R. Stephen, and . Pring, Tests of different flavours of enkf on a simple model, Quarterly Journal of the Royal Meteorological Society, vol.139, issue.675, pp.1505-1519, 2013.

P. Francis, . Bretherton, E. Russ, C. Davis, and . Fandry, A technique for objective analysis and design of oceanographic experiments applied to mode-73, Deep Sea Research and Oceanographic Abstracts, pp.559-582, 1976.

L. Steven, J. L. Brunton, N. Proctor, and . Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proceedings of the National Academy of Sciences, vol.113, issue.15, pp.3932-3937, 2016.

A. Buades, B. Coll, and J. M. , A Non-Local Algorithm for Image Denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.60-65, 2005.
DOI : 10.1109/CVPR.2005.38

B. Buongiorno-nardelli, A. Pisano, C. Tronconi, and R. Santoleri, Evaluation of different covariance models for the operational interpolation of high resolution satellite Sea Surface Temperature data over the Mediterranean Sea, Remote Sensing of Environment, vol.164, pp.334-343, 2015.
DOI : 10.1016/j.rse.2015.04.025

G. Burgers, P. Jan-van-leeuwen, and G. Evensen, Analysis Scheme in the Ensemble Kalman Filter, Monthly Weather Review, vol.126, issue.6, pp.1719-1724, 1998.
DOI : 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2

A. Carrassi, M. Bocquet, L. Bertino, and G. Evensen, Data Assimilation in the Geosciences -An overview on methods, issues and perspectives. ArXiv e-prints, 2017.

M. Castellani, Identification of eddies from sea surface temperature maps with neural networks, International Journal of Remote Sensing, vol.42, issue.8, pp.1601-1618, 2006.
DOI : 10.1016/S0893-6080(03)00021-2

C. Chapman and A. Charantonis, Reconstruction of Subsurface Velocities From Satellite Observations Using Iterative Self-Organizing Maps, IEEE Geoscience and Remote Sensing Letters, vol.14, issue.5, pp.617-620, 2017.
DOI : 10.1109/LGRS.2017.2665603

URL : https://hal.archives-ouvertes.fr/hal-01685269

J. Anastase-alexandre-charantonis, C. Brajard, B. Moulin, S. Fouad, and . Thiria, Inverse method for the retrieval of ocean vertical profiles using self organizing maps and hidden markov models -application on ocean colour satellite image inversion, NCTA 2011 -Proceedings of the International Conference on Neural Computation Theory and Applications [part of the International Joint Conference on Computational Intelligence IJCCI 2011], pp.24-26, 2011.

D. B. Chelton and F. J. Wentz, Global Microwave Satellite Observations of Sea Surface Temperature for Numerical Weather Prediction and Climate Research -ProQuest, p.1097, 2005.

D. B. Chelton, J. C. Ries, B. J. Haines, L. Fu, and P. S. Callahan, Satellite Altimetry, International Geophysics of Satellite Altimetry and Earth SciencesA Handbook of Techniques and Applications, p.1, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00798764

B. Dudley, . Chelton, G. Michael, . Schlax, M. Roger et al., Global observations of nonlinear mesoscale eddies, Progress in Oceanography, vol.91, issue.2, pp.167-216, 2011.

B. Dudley, . Chelton, G. Michael, . Schlax, M. Roger et al., Global observations of large oceanic eddies, Geophysical Research Letters, issue.15, p.34, 2007.

Z. Chen, Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond, 2003.

T. Chin, . Mj-turmon, and . Jewell, An Ensemble-Based Smoother with Retrospectively Updated Weights for Highly Nonlinear Systems, Monthly Weather Review, vol.135, issue.1, pp.186-202, 2007.
DOI : 10.1175/MWR3353.1

URL : http://www.atmos.ucla.edu/tcd/PREPRINTS/Chin%26co-BSS-MWR%2707.pdf

T. Chonavel, Statistical signal processing: modelling and estimation, 2002.
DOI : 10.1007/978-1-4471-0139-0

S. William and . Cleveland, Robust locally weighted regression and smoothing scatterplots, Journal of the American statistical association, vol.74, issue.368, pp.829-836, 1979.

D. Comeau, D. Giannakis, Z. Zhao, J. Andrew, and . Majda, Predicting regional and pan-arctic sea ice anomalies with kernel analog forecasting, 2017.

E. Cosme, J. Verron, P. Brasseur, J. Blum, and D. Auroux, Smoothing Problems in a Bayesian Framework and Their Linear Gaussian Solutions, Monthly Weather Review, vol.140, issue.2, pp.683-695, 2012.
DOI : 10.1175/MWR-D-10-05025.1

URL : https://hal.archives-ouvertes.fr/hal-00905009

A. Criminisi, P. Perez, and K. Toyama, Region Filling and Object Removal by Exemplar-Based Image Inpainting, IEEE Transactions on Image Processing, vol.13, issue.9, pp.1200-1212, 2004.
DOI : 10.1109/TIP.2004.833105

URL : http://www.csee.wvu.edu/~xinl/courses/ee565/image_inpainting.pdf

P. De, M. Allan, and R. Robinson, Assimilation of altimeter eddy fields in a limitedarea quasi-geostrophic model, Journal of physical oceanography, vol.17, issue.12, pp.2280-2293, 1987.

C. Deledalle, J. Salmon, and A. S. Dalalyan, Image denoising with patch based PCA: local versus global, Procedings of the British Machine Vision Conference 2011, pp.25-26, 2011.
DOI : 10.5244/C.25.25

URL : https://hal.archives-ouvertes.fr/hal-00654289

I. Luca-delle-monache, J. Djalalova, and . Wilczak, Analog-based postprocessing methods for air quality forecasting, Air Pollution Modeling and its Application XXIII, pp.237-239, 2014.

T. Luca-delle-monache, Y. Nipen, G. Liu, R. Roux, and . Stull, Kalman Filter and Analog Schemes to Postprocess Numerical Weather Predictions, Monthly Weather Review, vol.139, issue.11, pp.3554-3570, 2011.
DOI : 10.1175/2011MWR3653.1

C. J. Donlon, M. Martin, J. Stark, J. Roberts-jones, E. Fiedler et al., The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system, Remote Sensing of Environment, vol.116, pp.140-158, 2012.
DOI : 10.1016/j.rse.2010.10.017

R. John, . Dormand, J. Peter, and . Prince, A family of embedded runge-kutta formulae, Journal of computational and applied mathematics, vol.6, issue.1, pp.19-26, 1980.

A. A. Efros and W. T. Freeman, Image quilting for texture synthesis and transfer, Proceedings of the 28th annual conference on Computer graphics and interactive techniques , SIGGRAPH '01, pp.341-346, 2001.
DOI : 10.1145/383259.383296

URL : http://online.cs.nps.navy.mil/DistanceEducation/online.siggraph.org/2001/Papers/09_ImagesAndTextures/../cd/papers/efros/efros.pdf

R. D. Elliott, Extended-Range Forecasting by Weather Types, pp.834-840, 1951.
DOI : 10.1175/1520-0469(1949)006<0001:OEDITA>2.0.CO;2

R. Escudier, J. Bouffard, A. Pascual, P. Poulain, and M. Pujol, Improvement of coastal and mesoscale observation from space: Application to the northwestern Mediterranean Sea, Geophysical Research Letters, vol.104, issue.C6, pp.402148-2153, 2013.
DOI : 10.1175/JPO-D-12-0106.1

URL : https://hal.archives-ouvertes.fr/hal-00808033

G. Evensen, Data Assimilation, 2009.
DOI : 10.1007/978-3-642-03711-5

URL : https://hal.archives-ouvertes.fr/hal-00229825

G. Evensen and P. J. Van-leeuwen, An Ensemble Kalman Smoother for Nonlinear Dynamics, Monthly Weather Review, vol.128, issue.6, pp.1852-1867, 2000.
DOI : 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2

R. Fablet and F. Rousseau, Missing data super-resolution using non-local and statistical priors, 2015 IEEE International Conference on Image Processing (ICIP), pp.676-680, 2015.
DOI : 10.1109/ICIP.2015.7350884

URL : https://hal.archives-ouvertes.fr/hal-01271182

R. Fablet and F. Rousseau, Joint Interpolation of Multisensor Sea Surface Temperature Fields Using Nonlocal and Statistical Priors, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.9, issue.6, pp.2665-2675, 2016.
DOI : 10.1109/JSTARS.2016.2523605

URL : https://hal.archives-ouvertes.fr/hal-01441483

R. Fablet, P. H. Viet, and R. Lguensat, Data-Driven Models for the Spatio-Temporal Interpolation of Satellite-Derived SST Fields, IEEE Transactions on Computational Imaging, vol.3, issue.4, 2017.
DOI : 10.1109/TCI.2017.2749184

URL : https://hal.archives-ouvertes.fr/hal-01656178

R. Fablet, J. Verron, B. Mourre, B. Chapron, and A. Pascual, Improving mesoscale altimetric data from a multi-tracer convolutional processing of standard satellite-derived products. working paper or preprint, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01756076

R. Fablet, P. H. Viet, and R. Lguensat, Data-driven assimilation of irregularly-sampled image time series, 2017 IEEE International Conference on Image Processing (ICIP), 2017.
DOI : 10.1109/ICIP.2017.8297094

URL : https://hal.archives-ouvertes.fr/hal-01757749

H. James, I. Faghmous, Y. Frenger, R. Yao, A. Warmka et al., A daily global mesoscale ocean eddy dataset from satellite altimetry, Scientific data, 2015.

H. James, L. Faghmous, V. Styles, S. Mithal, S. Boriah et al., Eddyscan: A physically consistent ocean eddy monitoring application, Intelligent Data Understanding (CIDU), 2012 Conference on, pp.96-103, 2012.

M. Fraccaro, U. Søren-kaae-sønderby, O. Paquet, and . Winther, Sequential neural models with stochastic layers, Advances in Neural Information Processing Systems, pp.2199-2207, 2016.

W. T. Freeman and L. , Markov Random Fields for Super-Resolution In Advances in Markov Random Fields for Vision and Image Processing, 2011.

L. Gandin, Objective analysis of meteorological fields. by L. S. Gandin. translated from the russian. jerusalem (israel program for scientific translations) figures; 28 tables. £4 1s. 0d, Quarterly Journal of the Royal Meteorological Society, vol.242, issue.393, pp.53-92447, 1965.

L. Gaultier, C. Ubelmann, and L. Fu, The Challenge of Using Future SWOT Data for Oceanic Field Reconstruction, Journal of Atmospheric and Oceanic Technology, vol.33, issue.1, pp.119-126, 2015.
DOI : 10.1175/JTECH-D-15-0160.1

L. Gaultier, J. Verron, J. Brankart, O. Titaud, and P. Brasseur, On the inversion of submesoscale tracer fields to estimate the surface ocean circulation, Journal of Marine Systems, vol.126, pp.33-42, 2013.
DOI : 10.1016/j.jmarsys.2012.02.014

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, 2016.

N. J. Gordon, D. J. Salmond, and A. F. Smith, Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEEE Proceedings F, Radar and Signal Processing, pp.107-113, 1993.
DOI : 10.1049/ip-f-2.1993.0015

A. Mbaye-babacar-gueye, S. Niang, S. Arnault, M. Thiria, and . Crépon, Neural approach to inverting complex system: Application to ocean salinity profile estimation from surface parameters, Computers & Geosciences, vol.72, pp.201-209, 2014.
DOI : 10.1016/j.cageo.2014.07.012

J. Gula, M. J. Molemaker, and J. C. Mcwilliams, Submesoscale Cold Filaments in the Gulf Stream, Journal of Physical Oceanography, vol.44, issue.10, pp.2617-2643, 2014.
DOI : 10.1175/JPO-D-14-0029.1

J. Hai, Y. Xiaomei, G. Jianming, and . Zhenyu, Automatic eddy extraction from sst imagery using artificial neural network. The international archives of the photogrammetry, remote sensing and spatial information science, pp.279-282, 2008.

F. Hamilton, T. Berry, and T. Sauer, Ensemble Kalman Filtering without a Model, Physical Review X, vol.6, issue.1, p.11021, 2016.
DOI : 10.1073/pnas.1015753108

URL : http://doi.org/10.1103/physrevx.6.011021

B. Hansen, Econometrics textbook, 2000.

N. J. Hardman-mountford, A. J. Richardson, D. C. Boyer, A. Kreiner, and H. J. Boyer, Relating sardine recruitment in the Northern Benguela to satellite-derived sea surface height using a neural network pattern recognition approach, Progress in Oceanography, vol.59, issue.2-3, p.241
DOI : 10.1016/j.pocean.2003.07.005

K. He, X. Zhang, S. Ren, and J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, 2015 IEEE International Conference on Computer Vision (ICCV), pp.1026-1034, 2015.
DOI : 10.1109/ICCV.2015.123

URL : http://arxiv.org/pdf/1502.01852

L. He-guelton, R. Fablet, B. Chapron, and J. Tournadre, Learning-based emulation of sea surface wind fields from numerical model outputs and sar data. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal, vol.8, issue.10, pp.4742-4750, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01581500

R. William and . Holland, The role of mesoscale eddies in the general circulation of the ocean?numerical experiments using a wind-driven quasi-geostrophic model, Journal of Physical Oceanography, vol.8, issue.3, pp.363-392, 1978.

S. Hong and J. Dudhia, Next-Generation Numerical Weather Prediction: Bridging Parameterization, Explicit Clouds, and Large Eddies, Bulletin of the American Meteorological Society, vol.93, issue.1, p.6, 2012.
DOI : 10.1175/2011BAMS3224.1

P. Horton, M. Jaboyedoff, and C. Obled, Global Optimization of an Analog Method by Means of Genetic Algorithms, Monthly Weather Review, vol.145, issue.4, pp.1275-1294, 2017.
DOI : 10.1175/MWR-D-16-0093.1

I. Hoteit, X. Luo, and D. Pham, Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters*, Monthly Weather Review, vol.140, issue.2, pp.528-542, 2012.
DOI : 10.1175/2011MWR3640.1

I. Hoteit, D. Pham, X. Gharamti, and . Luo, Mitigating Observation Perturbation Sampling Errors in the Stochastic EnKF, Monthly Weather Review, vol.143, issue.7, pp.2918-2936, 2015.
DOI : 10.1175/MWR-D-14-00088.1

I. Hoteit, D. Pham, G. Triantafyllou, and G. Korres, A New Approximate Solution of the Optimal Nonlinear Filter for Data Assimilation in Meteorology and Oceanography, Monthly Weather Review, vol.136, issue.1, pp.317-334, 2008.
DOI : 10.1175/2007MWR1927.1

URL : https://hal.archives-ouvertes.fr/hal-00853121

D. Huang, Y. Du, Q. He, W. Song, and A. Liotta, Deepeddy: A simple deep architecture for mesoscale oceanic eddy detection in sar images, 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), pp.673-678, 2017.

J. Isern-fontanet, B. Chapron, G. Lapeyre, and P. Klein, Potential use of microwave sea surface temperatures for the estimation of ocean currents, Geophysical Research Letters, vol.107, issue.C10, 2006.
DOI : 10.1357/002224090784988700

URL : https://hal.archives-ouvertes.fr/hal-00270261

J. Isern-fontanet, M. Shinde, and C. Andersson, On the Transfer Function between Surface Fields and the Geostrophic Stream Function in the Mediterranean Sea, Journal of Physical Oceanography, vol.44, issue.5, pp.1406-1423, 2014.
DOI : 10.1175/JPO-D-13-0186.1

J. Isern-fontanet, E. García-ladona, and J. Font, Identification of Marine Eddies from Altimetric Maps, Journal of Atmospheric and Oceanic Technology, vol.20, issue.5, pp.772-778, 2003.
DOI : 10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2

M. Jouini, M. Lévy, S. Crépon, and . Thiria, Reconstruction of satellite chlorophyll images under heavy cloud coverage using a neural classification method. Remote sensing of environment, Bibliography, vol.131, pp.232-246, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01495295

J. Simon, J. K. Julier, and . Uhlmann, A new extension of the kalman filter to nonlinear systems, pp.182-193, 1997.

E. Kalnay, Atmospheric modeling, data assimilation and predictability, 2003.
DOI : 10.1017/CBO9780511802270

P. Klein, J. Isern-fontanet, G. Lapeyre, G. Roullet, E. Danioux et al., Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height, Geophysical Research Letters, vol.35, issue.48, pp.36-12603, 2009.
DOI : 10.1029/2009GL038359

URL : https://hal.archives-ouvertes.fr/hal-00413564

V. Klemas, Remote Sensing of Sea Surface Salinity: An Overview with Case Studies, Journal of Coastal Research, vol.276, pp.830-838, 2011.
DOI : 10.2112/JCOASTRES-D-11-00060.1

G. Rahul, U. Krishnan, D. Shalit, and . Sontag, Deep kalman filters. arXiv preprint, 2015.

J. David, . Lary, H. Amir, . Alavi, H. Amir et al., Machine learning in geosciences and remote sensing, Geoscience Frontiers, vol.7, issue.1, pp.3-10, 2016.

F. X. Le-dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A: Dynamic Meteorology and Oceanography, vol.109, issue.2, pp.97-110, 1986.
DOI : 10.1175/1520-0493(1982)110<0455:OVNMI>2.0.CO;2

V. François-le-gland, V. Monbet, and . Tran, Large sample asymptotics for the ensemble Kalman filter, 2009.

J. Sommer, F. Ovidio, and G. Madec, Parameterization of subgrid stirring in eddy resolving ocean models. Part 1: Theory and diagnostics, Ocean Modelling, vol.39, issue.1-2, pp.154-169, 2011.
DOI : 10.1016/j.ocemod.2011.03.007

URL : https://hal.archives-ouvertes.fr/hal-00755145

. Py-le-traon, N. Nadal, and . Ducet, An Improved Mapping Method of Multisatellite Altimeter Data, Journal of Atmospheric and Oceanic Technology, vol.15, issue.2, pp.522-534, 1998.
DOI : 10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.9, issue.7553, pp.436-444, 2015.
DOI : 10.1007/s10994-013-5335-x

R. Lguensat, R. Fablet, P. Ailliot, and P. Tandeo, An exemplar-based hidden Markov model framework for nonlinear state-space models, 2016 24th European Signal Processing Conference (EUSIPCO), pp.2340-2344, 2016.
DOI : 10.1109/EUSIPCO.2016.7760667

URL : https://hal.archives-ouvertes.fr/hal-01444213

R. Lguensat, M. Sun, G. Chen, F. Tian, and R. Fablet, Spatio-temporal interpolation of altimeter-derived SSH fields using analog data assimilation: A case-study in the south china sea, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2017.
DOI : 10.1109/IGARSS.2017.8127625

R. Lguensat, P. Tandeo, P. Ailliot, B. Chapron, and R. Fablet, Using archived datasets for missing data interpolation in ocean remote sensing observation series, OCEANS 2016, Shanghai, pp.1-5, 2016.
DOI : 10.1109/OCEANSAP.2016.7485433

URL : https://hal.archives-ouvertes.fr/hal-01355266

R. Lguensat, P. Tandeo, P. Ailliot, M. Pulido, and R. Fablet, The Analog Data Assimilation, Monthly Weather Review, vol.145, issue.10, p.2017
DOI : 10.1175/MWR-D-16-0441.s1

URL : https://hal.archives-ouvertes.fr/hal-01609141

R. Lguensat, P. Tandeo, R. Fablet, and P. Ailliot, Non-parametric Ensemble Kalman methods for the inpainting of noisy dynamic textures, 2015 IEEE International Conference on Image Processing (ICIP), pp.4288-4292, 2015.
DOI : 10.1109/ICIP.2015.7351615

URL : https://hal.archives-ouvertes.fr/hal-01271173

J. Li and A. D. Heap, Spatial interpolation methods applied in the environmental sciences: A review, Environmental Modelling & Software, vol.53, pp.173-189, 2014.
DOI : 10.1016/j.envsoft.2013.12.008

A. Lorenc, . Ballard, . Bell, . Ingleby, . Andrews et al., The Met. Office global three-dimensional variational data assimilation scheme, Quarterly Journal of the Royal Meteorological Society, vol.119, issue.570, pp.1262991-3012, 2000.
DOI : 10.1002/qj.49712455003

C. Andrew and . Lorenc, Analysis methods for numerical weather prediction, Quarterly Journal of the Royal Meteorological Society, vol.112, issue.474, pp.1177-1194, 1986.

N. Edward and . Lorenz, Atmospheric predictability as revealed by naturally occurring analogues, Journal of the Atmospheric sciences, vol.26, issue.4, pp.636-646, 1969.

N. Edward and . Lorenz, Predictability: A problem partly solved, Proc. Seminar on predictability, 1996.

L. Lorenzi, F. Melgani, and G. Mercier, Inpainting Strategies for Reconstruction of Missing Data in VHR Images, IEEE Geoscience and Remote Sensing Letters, vol.8, issue.5, pp.914-918, 2011.
DOI : 10.1109/LGRS.2011.2141112

E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification, IEEE Transactions on Geoscience and Remote Sensing, vol.55, issue.2, pp.645-657, 2017.
DOI : 10.1109/TGRS.2016.2612821

URL : https://hal.archives-ouvertes.fr/hal-01369906

S. Mallat, A wavelet tour of signal processing, second edition, 1999.

G. Stephane and . Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE transactions on pattern analysis and machine intelligence, vol.11, issue.7, pp.674-693, 1989.

E. Mason, A. Pascual, P. Gaube, S. Ruiz, J. L. Pelegrí et al., Subregional characterization of mesoscale eddies across the Brazil-Malvinas Confluence, Journal of Geophysical Research: Oceans, vol.6, issue.6194, pp.3329-3357, 2017.
DOI : 10.1038/srep24349

E. Mason, A. Pascual, C. James, and . Mcwilliams, A New Sea Surface Height???Based Code for Oceanic Mesoscale Eddy Tracking, Journal of Atmospheric and Oceanic Technology, vol.31, issue.5, pp.311181-1188, 2014.
DOI : 10.1175/JTECH-D-14-00019.1

Y. Masumoto, H. Sasaki, T. Kagimoto, N. Komori, A. Ishida et al., A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of ofes (ogcm for the earth simulator), J. Earth Simulator, vol.1, pp.35-56, 2004.

L. Patrick, C. K. Mcdermott, and . Wikle, A model-based approach for analog spatio-temporal dynamic forecasting, Environmetrics, 2015.

C. James and . Mcwilliams, The nature and consequences of oceanic eddies. Ocean Modeling in an Eddying Regime, pp.5-15, 2008.

N. Robert, M. Miller, F. Ghil, and . Gauthiez, Advanced data assimilation in strongly nonlinear dynamical systems, Journal of the Atmospheric Sciences, vol.51, issue.8, pp.1037-1056, 1994.

F. Milletari, N. Navab, and S. Ahmadi, V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation, 2016 Fourth International Conference on 3D Vision (3DV), p.2016
DOI : 10.1109/3DV.2016.79

URL : http://arxiv.org/pdf/1606.04797

L. Badrinath-nagarajan, . Delle-monache, P. Joshua, . Hacker, L. Daran et al., An evaluation of analog-based postprocessing methods across several variables and forecast models, p.2015, 2015.

A. Okubo, Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences, Deep sea research and oceanographic abstracts, pp.445-454, 1970.
DOI : 10.1016/0011-7471(70)90059-8

M. Stephen and . Omohundro, Five balltree construction algorithms, 1989.

E. Ott, R. Brian, I. Hunt, . Szunyogh, V. Aleksey et al., A local ensemble Kalman filter for atmospheric data assimilation, Tellus A: Dynamic Meteorology and Oceanography, vol.56, issue.131, pp.415-428, 2004.
DOI : 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2

N. Papadakis, É. Mémin, A. Cuzol, and N. Gengembre, Data assimilation with the weighted ensemble Kalman filter, Tellus A: Dynamic Meteorology and Oceanography, vol.133, issue.6, pp.673-697, 2010.
DOI : 10.1175/MWR2946.1

URL : https://hal.archives-ouvertes.fr/hal-00490840

A. Pascual, Y. Faugère, G. Larnicol, and P. Traon, Improved description of the ocean mesoscale variability by combining four satellite altimeters, Geophysical Research Letters, vol.104, issue.C6, 2006.
DOI : 10.1016/S0074-6142(01)80148-0

G. Peyré, S. Bougleux, and L. D. Cohen, Non-local Regularization of Inverse Problems, Inverse Problems and Imaging, vol.52, issue.7, pp.511-530, 2011.
DOI : 10.1109/TIT.2006.871582

T. Dinh and . Pham, Stochastic methods for sequential data assimilation in strongly nonlinear systems, Monthly weather review, vol.129, issue.5, pp.1194-1207, 2001.

B. Ping, F. Su, and Y. Meng, An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature Data, PLOS ONE, vol.159, issue.4, p.155928, 2016.
DOI : 10.1371/journal.pone.0155928.t001

K. Michael, N. Pitt, and . Shephard, Filtering via simulation: Auxiliary particle filters, Journal of the American statistical association, vol.94, issue.446, pp.590-599, 1999.

P. Bui-quang, C. Musso, and F. L. Gland, An insight into the issue of dimensionality in particle filtering, 2010 13th International Conference on Information Fusion, pp.1-8, 2010.
DOI : 10.1109/ICIF.2010.5712050

URL : https://hal.archives-ouvertes.fr/hal-00911994

R. Lawrence and . Rabiner, A tutorial on hidden markov models and selected applications in speech recognition, Proceedings of the IEEE, pp.257-286, 1989.

O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.234-241, 2015.
DOI : 10.1007/978-3-319-24574-4_28

URL : http://arxiv.org/pdf/1505.04597

H. Samuel, . Rudy, L. Steven, J. L. Brunton, N. Proctor et al., Data-driven discovery of partial differential equations, Science Advances, vol.3, issue.4, p.1602614, 2017.

J. Ruiz, M. Pulido, and T. Miyoshi, Estimating Model Parameters with Ensemble-Based Data Assimilation: A Review, Journal of the Meteorological Society of Japan. Ser. II, vol.91, issue.2, pp.79-99, 2013.
DOI : 10.2151/jmsj.2013-201

I. Ari-sadarjoen, H. Frits, and . Post, Geometric Methods for Vortex Extraction, Data Visualization'99, pp.53-62, 1999.
DOI : 10.1007/978-3-7091-6803-5_6

H. Sasaki and P. Klein, SSH Wavenumber Spectra in the North Pacific from a High-Resolution Realistic Simulation, Journal of Physical Oceanography, vol.42, issue.7, pp.1233-1241, 2012.
DOI : 10.1175/JPO-D-11-0180.1

URL : https://hal.archives-ouvertes.fr/hal-00739070

H. Sasaki, M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara et al., An eddy-resolving hindcast simulation of the quasi-global ocean from, 1950.

B. Saulquin, F. Gohin, and R. Garrello, Regional Objective Analysis for Merging High-Resolution MERIS, MODIS/Aqua, and SeaWiFS Chlorophyll- a Data From 1998 to 2008 on the European Atlantic Shelf, IEEE Transactions on Geoscience and Remote Sensing, vol.49, issue.1, pp.143-154, 2011.
DOI : 10.1109/TGRS.2010.2052813

F. Schenk and E. Zorita, Reconstruction of high resolution atmospheric fields for northern europe using analog-upscaling, pp.1681-1703, 2012.

B. Schölkopf and A. J. Smola, Learning with kernels: support vector machines , regularization, optimization, and beyond, 2002.

R. Talmon, S. Mallat, H. Zaveri, R. Ronald, and . Coifman, Manifold Learning for Latent Variable Inference in Dynamical Systems, IEEE Transactions on Signal Processing, vol.63, issue.15, pp.3843-3856, 2015.
DOI : 10.1109/TSP.2015.2432731

P. Tandeo, P. Ailliot, and E. Autret, Linear Gaussian state-space model with irregular sampling: application to sea surface temperature, Stochastic Environmental Research and Risk Assessment, vol.86, issue.1, pp.793-804, 2010.
DOI : 10.1093/biomet/86.4.815

P. Tandeo, E. Autret, B. Chapron, R. Fablet, and R. Garello, SST spatial anisotropic covariances from METOP-AVHRR data, Remote Sensing of Environment, vol.141, pp.144-148, 2014.
DOI : 10.1016/j.rse.2013.10.024

URL : https://hal.archives-ouvertes.fr/hal-00946860

P. Tandeo, P. Ailliot, J. Ruiz, A. Hannart, B. Chapron et al., Combining Analog Method and Ensemble Data Assimilation: Application to the Lorenz-63 Chaotic System, Machine Learning and Data Mining Approaches to Climate Science, pp.3-12, 2015.
DOI : 10.1007/978-3-319-17220-0_1

URL : https://hal.archives-ouvertes.fr/hal-01202496

P. Tandeo, M. Pulido, and F. Lott, Offline parameter estimation using EnKF and maximum likelihood error covariance estimates: Application to a subgrid-scale orography parametrization, Quarterly Journal of the Royal Meteorological Society, vol.61, issue.687, pp.141383-395, 2015.
DOI : 10.1111/j.1600-0870.2009.00407.x

H. Tanizaki, On the nonlinear and nonnormal filter using rejection sampling, IEEE Transactions on Automatic Control, vol.44, issue.2, pp.314-319, 1999.
DOI : 10.1109/9.746257

T. Tasdizen, Principal Neighborhood Dictionaries for Nonlocal Means Image Denoising, IEEE Transactions on Image Processing, vol.18, issue.12, pp.2649-2660, 2009.
DOI : 10.1109/TIP.2009.2028259

O. Thual, Introduction to Data Assimilation for Scientists and Engineers, Open Learn. Res, INPT 0202 6h, 2013.

Z. Toth, Long-Range Weather Forecasting Using an Analog Approach, Journal of Climate, vol.2, issue.6, pp.594-607, 1989.
DOI : 10.1175/1520-0442(1989)002<0594:LRWFUA>2.0.CO;2

A. Turiel, V. Nieves, E. Garcia-ladona, J. Font, M. Rio et al., The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines, Ocean Science, vol.5, issue.4, pp.447-460, 2009.
DOI : 10.5194/os-5-447-2009

A. Turiel, J. Isern-fontanet, and E. García-ladona, Wavelet Filtering to Extract Coherent Vortices from Altimetric Data, Journal of Atmospheric and Oceanic Technology, vol.24, issue.12, pp.2103-2119, 2007.
DOI : 10.1175/2007JTECHO434.1

A. Turiel, J. Sole, V. Nieves, J. Ballabrera-poy, and E. Garcia-ladona, Tracking oceanic currents by singularity analysis of Microwave Sea Surface Temperature images, Remote Sensing of Environment, vol.112, issue.5, 2009.
DOI : 10.1016/j.rse.2007.10.007

C. Ubelmann, P. Klein, and L. Fu, Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping, Journal of Atmospheric and Oceanic Technology, vol.32, issue.1, pp.177-184, 2014.
DOI : 10.1175/JTECH-D-14-00152.1

URL : https://hal.archives-ouvertes.fr/hal-01132400

M. Umbert, N. Hoareau, A. Turiel, and J. Ballabrera-poy, New blending algorithm to synergize ocean variables: The case of SMOS sea surface salinity maps, Remote Sensing of Environment, vol.146, pp.172-187, 2014.
DOI : 10.1016/j.rse.2013.09.018

H. Van, Searching for analogues, how long must we wait? Tellus A, pp.314-324, 1994.

P. J. and V. Leeuwen, Particle Filtering in Geophysical Systems, Monthly Weather Review, vol.137, issue.12, pp.4089-4114, 2009.
DOI : 10.1175/2009MWR2835.1

P. J. and V. Leeuwen, Nonlinear data assimilation in geosciences: an extremely efficient particle filter, Quarterly Journal of the Royal Meteorological Society, vol.1, issue.653, pp.1991-1999, 2010.
DOI : 10.1007/978-1-4757-3437-9

M. Volpi and D. Tuia, Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks, IEEE Transactions on Geoscience and Remote Sensing, vol.55, issue.2, pp.881-893, 2017.
DOI : 10.1109/TGRS.2016.2616585

J. Weiss, The dynamics of enstrophy transfer in two-dimensional hydrodynamics, Physica D: Nonlinear Phenomena, vol.48, issue.2-3, pp.273-294, 1991.
DOI : 10.1016/0167-2789(91)90088-Q

S. Jeffrey, . Whitaker, M. Thomas, and . Hamill, Ensemble data assimilation without perturbed observations, Monthly Weather Review, vol.130, issue.7, pp.1913-1924, 2002.

L. Robert, T. Wilby, and . Wigley, Downscaling general circulation model output: a review of methods and limitations, Progress in Physical Geography, pp.530-548, 1997.

H. Ian, E. Witten, . Frank, A. Mark, . Hall et al., Data Mining: Practical machine learning tools and techniques, 2016.

J. Yi, Y. Du, C. He, and . Zhou, Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly, Ocean Science, vol.10, issue.1, pp.39-48, 2014.
DOI : 10.5194/os-10-39-2014

P. Yiou, AnaWEGE: a weather generator based on analogues of atmospheric circulation, Geoscientific Model Development, vol.7, issue.2, pp.531-543, 2014.
DOI : 10.5194/gmd-7-531-2014

D. Matthew, D. Zeiler, . Krishnan, W. Graham, R. Taylor et al., Deconvolutional networks, Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp.2528-2535, 2010.

L. Zhang, L. Zhang, and B. Du, Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art, IEEE Geoscience and Remote Sensing Magazine, vol.4, issue.2, pp.22-40, 2016.
DOI : 10.1109/MGRS.2016.2540798

Z. Zhao and D. Giannakis, Analog forecasting with dynamics-adapted kernels, Nonlinearity, vol.29, issue.9, 2014.
DOI : 10.1088/0951-7715/29/9/2888

URL : http://arxiv.org/pdf/1412.3831

X. X. Zhu, D. Tuia, L. Mou, G. Xia, L. Zhang et al., Deep learning in remote sensing: a review, 2017.