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Résumé

Les codes correcteurs d’erreurs sont une composante essentielle de tout systéme de com-
munication, capables d’assurer le transport fiable de l’information sur un canal de com-
munication bruitè. Les systémes de communication de nouvelle génération devront faire
face à une demande sans cesse croissante en termes de débit binaire, pouvant aller de 1
à plusieurs centaines de gigabits par seconde. Dans ce contexte, les codes LDPC (pour
Low-Density Parity-Check, en anglais), sont reconnus comme une des solutions les mieux
adaptées, en raison de la possibilité de paralléliser massivement leurs algorithmes de dé-
codage et les architectures matérielles associées. Cependant, si l’utilisation d’architectures
massivement parallèles permet en effet d’atteindre des débits très élevés, cette solution
entraine également une augmentation significative du coût matériel.

L’objectif de cette thèse est de proposer des implémentations matérielles de décodeurs
LDPC très haut débit, en exploitant la robustesse des algorithmes de décodage par pas-
sage de messages aux imprécisions de calcul. L’intégration dans le décodage itératif de
mécanismes de calcul imprécis, s’accompagne du développement de nouvelles approches
d’optimisation du design en termes de coût, débit et capacité de correction.

Pour ce faire, nous avons considéré l’optimisation conjointe de (i) le bloc de quantifica-
tion qui fournit l’information à précision finie au décodeur, et (ii) les unités de traitement
imprécis des données, pour la mise à jour des messages échangés pendant de processus de
décodage. Ainsi, nous avons tout d’abord proposé un quantificateur à faible complexité,
qui peut être optimisé par évolution de densité en fonction du code LDPC utilisé et capable
d’approcher de très près les performances d’un quantificateur optimal. Le quantificateur
proposé a été en outre optimisé et utilisé pour chacun des décodeurs imprécis proposés
ensuite dans cette thèse.

Nous avons ensuite proposé, analysé et implémenté plusieurs décodeurs LDPC imprécis.
Les deux premiers décodeurs sont des versions imprécises du décodeur « Offset Min-Sum »
(OMS) : la surestimation des messages des noeuds de contrôle est d’abord compensée par
un simple effacement du bit de poids faible (« Partially OMS »), ensuite le coût matériel
est d’avantage réduit en supprimant un signal spécifique (« Imprecise Partially OMS »).
Les résultats d’implémentation sur cible FPGA montrent une réduction importante du
coût matériel, tout en assurant une performance de décodage très proche du OMS, malgré
l’imprécision introduite dans les unités de traitement.

Nous avons ensuite introduit les décodeurs à alphabet fini non-surjectifs (NS-FAIDs,
pour «Non-Surjective Finite Alphabet Iterative Decoders », en anglais), qui étendent le
concept d’« imprécision » au bloc mémoire du décodeur LDPC. Les décodeurs NS-FAIDs
ont été optimisés par évolution de densité pour des codes LDPC réguliers et irréguliers.
Les résultats d’optimisation révèlent différents compromis possibles entre la performance
de décodage et l’efficacité de la mise en oeuvre matérielle. Nous avons également proposé
trois architectures matérielles haut débit, intégrant les noyaux de décodage NS-FAID. Les
résultats d’implémentation sur cible FPGA et ASIC montrent que les NS-FAIDs permettent
d’obtenir des améliorations significatives en termes de coût matériel et de débit, par rapport
au décodeur Min-Sum, avec des performances de décodage meilleures ou très légèrement
dégradées.
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Abstract

The increasing demand of massive data rates in wireless communication systems will require
significantly higher processing speed of the baseband signal, as compared to conventional
solutions. This is especially challenging for Forward Error Correction (FEC) mechanisms,
since FEC decoding is one of the most computationally intensive baseband processing tasks,
consuming a large amount of hardware resources and energy. The conventional approach to
increase throughput is to use massively parallel architectures. In this context, Low-Density
Parity-Check (LDPC) codes are recognized as the foremost solution, due to the intrinsic
capacity of their decoders to accommodate various degrees of parallelism. They have found
extensive applications in modern communication systems, due to their excellent decoding
performance, high throughput capabilities, and power efficiency, and have been adopted in
several recent communication standards.

This thesis focuses on cost-effective, high-throughput hardware implementations of
LDPC decoders, through exploiting the robustness of message-passing decoding algorithms
to computing inaccuracies. It aims at providing new approaches to cost/throughput op-
timizations, through the use of imprecise computing and storage mechanisms, without
jeopardizing the error correction performance of the LDPC code. To do so, imprecise pro-
cessing within the iterative message-passing decoder is considered in conjunction with the
quantization process that provides the finite-precision information to the decoder. Thus,
we first investigate a low complexity code and decoder aware quantizer, which is shown to
closely approach the performance of the quantizer with decision levels optimized through
exhaustive search, and then propose several imprecise designs of Min-Sum (MS)-based
decoders. Proposed imprecise designs are aimed at reducing the size of the memory and
interconnect blocks, which are known to dominate the overall area/delay performance of
the hardware design. Several approaches are proposed, which allow storing the exchanged
messages using a lower precision than that used by the processing units, thus facilitating
significant reductions of the memory and interconnect blocks, with even better or only
slight degradation of the error correction performance.

We propose two new decoding algorithms and hardware implementations, obtained
by introducing two levels of impreciseness in the Offset MS (OMS) decoding: the Par-
tially OMS (POMS), which performs only partially the offset correction, and the Imprecise
Partially OMS (I-POMS), which introduces a further level of impreciseness in the check-
node processing unit. FPGA implementation results show that they can achieve significant
throughput increase with respect to the OMS, while providing very close decoding perfor-
mance, despite the impreciseness introduced in the processing units.

We further introduce a new approach for hardware efficient LDPC decoder design,
referred to as Non-Surjective Finite-Alphabet Iterative Decoders (FAIDs). NS-FAIDs are
optimized by Density Evolution for regular and irregular LDPC codes. Optimization results
reveal different possible trade-offs between decoding performance and hardware implemen-
tation efficiency. To validate the promises of optimized NS-FAIDs in terms of hardware
implementation benefits, we propose three high-throughput hardware architectures, in-
tegrating NS-FAIDs decoding kernels. Implementation results on both FPGA and ASIC
technology show that NS-FAIDs allow significant improvements in terms of both through-
put and hardware resources consumption, as compared to the Min-Sum decoder, with even
better or only slightly degraded decoding performance.
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Notation

[Related to parity-check matrix and Tanner graphs]

H: parity-check matrix

M : number of rows of H

N : number of columns of H

K = N − rank(H): dimension of H

r =
K

N
: coding rate

B: base matrix (used for QC-LDPC codes)

R: number of rows of B

C: number of columns of B

rpl: number of rows per layer

L = R/rpl: number of decoding layers

z: expansion factor of B

Z = z × rpl: number of parity checks within one decoding layer, and reffered to
as the parallelism degree (of the hardware architecture)

H: Tanner graph associated with H

n ∈ {1, 2, . . . , N}: a variable-node of H

m ∈ {1, 2, . . . ,M}: a check-node of H

H(n):a set of check-nodes connected to the variable-node n, also referred to as the
set of neighbor check-nodes of n

H(m): a set of variable-nodes connected to the check-node m, also referred to as
the set of neighbor variable-nodes of m

dn = |H(n)|: number of check-nodes connected to n also referred to as the degree
of the variable-node n
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dm = |H(m)|: number of variable-nodes connected to m also referred to as the
degree of the check-node m

[Related to channel and transmitted/received words]

σ2: noise variance (BI-AWGN model)

X : channel input alphabet

Y : channel output alphabet

x = (x1, . . . , xN) ∈ XN : transmitted

x̂ = (x̂1, . . . , x̂N): estimated codeword

y = (y1, . . . , yN) ∈ YN : received word

Pn = Pr(xn = 1 | yn): probability of the transmitted bit xn being equal to 1,
conditional on the received value yn

Ln = log
Pr(xn = 0 | yn)

Pr(xn = 1 | yn)
= log

1−Pn

Pn

: LLR of the transmitted bit xn, conditional

on the received value yn

[Related to message-passing decoding]

γn: a priori information of the decoder concerning variable-node n

γ̃n: a posteriori information provided by the decoder, concerning variable node n

αm,n: message sent from variable-node n to check-node m

βm,n: message sent from check-node m to variable-node n

ν ∈]0, 1[: normalization (scaling) factor used for Normalized Min-Sum decoding

δ > 0: offset factor used for Offset Min-Sum decoding

[Related to quantization]

ϕ: quantization map

µ > 0: gain factor used to scale the received signal

q: number of bits for representation of a priori information and exchanged messages

q̃: number of bits for representation of a posteriori information

M = {−Q, . . . ,−1, 0,+1, . . . ,+Q}, where Q = 2q−1 − 1, is the alphabet of the a
priori information and exchanged messages.

M̃ = {−Q̃, . . . ,−1, 0,+1, . . . ,+Q̃}, where Q̃ = 2q̃−1 − 1, is the alphabet of the a
posteriori information.
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F : framing function used for NS-FAIDs decoding

W : weight of F , i.e., the number of distinct entries in the vector [|F (0)|, F (1), . . . , F (Q)]

w = dlog2(W )e+ 1: framing bit-length
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Chapter 1

Introduction

1.1 Context and Motivations

There has been a significant growth in the volume of mobile data traffic in recent
years. This is due to proliferation of smart phones and other mobile devices that
support a wide range of broadband applications and services. It is projected in [23]
that the volume of the so called smart traffic will be 96% of the global data traffic
by 2018, and among this more than 50% data will be routed using the WiFi access
points or femtocells, while the remaining will be covered by the cellular networks.
This tendency is confirmed by the multi-Gigabit/s data rate target of the current
evolution of WLAN standards (IEEE802.11ac/ad), or of the 5th generation of cel-
lular networks (5G). Moreover, short range communications in the extremely high
frequency spectrum (from 30 to 300 Gigahertz) are expected to reach throughput
from 100 Gigabit/s to 1 Terabit/s (Figure 1.1).

Figure 1.1: Wireless roadmap [32]
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2 Chapter 1. Introduction

The increasing demand of massive data rates in wireless communications, sup-
ported by the use of very large bandwidths, will result in stringent, application-
specific, requirements in terms of both throughput and latency. They will necessitate
significantly higher processing speed of the baseband signal, as compared to conven-
tional solutions, which is especially challenging for the Forward Error Correction
(FEC) mechanism. Indeed, due to the erroneous nature of communication channels,
FEC mechanisms are essential to any communication system, no matter the way
the information is transported, for instance using a point-to-point, multicast, or
broadcast technology, a wired or wireless link, and a terrestrial, satellite-based or
hybrid infrastructure. However, these error-correction mechanisms require intensive
computing tasks, consuming a large amount of hardware resources and energy.

The conventional approach to increase throughput is to use massively parallel
architectures. In this context, Low-Density Parity-Check (LDPC) codes are recog-
nized as the foremost solution, due to the intrinsic capacity of their decoders to ac-
commodate various degrees of parallelism. They have found extensive applications
in modern communication systems, due to their excellent decoding performance,
high throughput capabilities, and power efficiency, and have been adopted in several
communication standards, such as IEEE 802.11n (WiFi), IEEE 802.16e (WiMAX),
IEEE 802.15.3c (WPAN), ETSI DVB-S2/T2/C2. More recently, to support increas-
ing throughput requirements in wireless standards, LDPC codes have been adopted
by IEEE 802.11ac (WiFi evolution) and IEEE 802.11ad (WiGig), as well as by
the 3rd Generation Partnership Project (3GPP) for enhanced Mobile BroadBand
(eMBB) 5G data channels [2].

In this context, the main objective of this thesis is to contribute to the develop-
ment of very high-throughput, yet cost-effective, LDPC decoder designs, so that to
address in the most suitable way the new generation of communication systems, re-
quiring increased data rates and reduced energy footprint. The approach proposed
in this thesis, is to exploit the robustness of message-passing LDPC decoders to
computing inaccuracies. The idea is actually inspired by the approximate comput-
ing paradigm: the computation returns a possibly inaccurate result, for a situation
where an approximate result is sufficient for a specific purpose [70]. Another closely
related parading is the one of approximate storage: instead of storing data values
exactly, they are stored approximately, e.g., by truncating the lowest significant
bits. In this thesis, the use of approximate computing and storage in message pass-
ing LDPC decoders is seen as an enabler for throughput and cost optimization. By
modeling such approximations in a specific way, we are actually able to address the
multi-objective optimization of the design, with respect to cost, throughput, and
error correction performance. The main contributions of the thesis will be outlined
in the next section.
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1.2 Main Contributions and Thesis Outline

This thesis targets the design of cost-effective, high-throughput LDPC decoders,
so as to enable a smooth transition towards the new generation of multi-Gigabit/s
communication systems. The main novelty of the research comes from the expansion
of the design space, so as to harness the potential of approximate computing and
storage. In this line of research, the thesis is aimed at (i) designing novel decoder
architectures based on the integration of approximate computing and storage units,
while still providing reliable error protection, and (ii) providing new approaches for
the multi-objective optimization of the design with respect to cost, throughput, and
error correction performance.

Typical LDPC decoder architectures consist of three main building blocks: mem-
ory, interconnects, and processing units. One important characteristic of LDPC de-
coders is that the memory and interconnect blocks usually dominate the overall
area/power/delay performance of the hardware design. This emphasizes the poten-
tial benefits of approximate storage techniques, as they may significantly reduce the
memory size requirements. Besides, as a side benefit, such mechanisms may also re-
duce the footprint of the routing network, which carries messages from the memory
to the processing units.

To avoid degrading the error correction performance of the decoder, approximate
storage techniques should be investigated along with the use of novel processing
units, capable to compensate the information loss due to approximate storage. Such
processing units are necessarily “approximate versions” of the conventional ones, but
they can be subject to further circuit-level approximations, e.g., by removing some
specific signals from the implementing circuit.

Finally, it appears clear that approximate computing and storage techniques
must be investigated in conjunction with the quantization rules for computing the
finite-alphabet information supplied to the decoder, which actually determines the
starting point of the iterative decoding process.

The main contributions of this thesis are summarized below, along with the thesis
outline.

Chapter 2: Low-Density Parity-Check Codes and Message-Passing De-
coders

Chapter 2 provides a brief introduction to LDPC codes and Message-Passing (MP)
decoders. We first introduce the bipartite graph representation of LDPC codes and
the principle of iterative MP decoding algorithms. Then we focus on some specific
decoding algorithms that will be used in this thesis, namely the Min-Sum (MS)
and several MS-based algorithms. The asymptotic analysis of finite alphabet MS
decoders, based on the density evolution method, is also discussed.

We further investigate the main algorithmic and architectural choices that im-
pact the decoding performance and the hardware complexity of LDPC decoders.
In particular, we discuss different scheduling strategies for MP decoders and their
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impact on the hardware architecture. Finally, several state-of-the-art approaches
on low-cost, high-throughput hardware implementations are also reviewed in this
chapter.

Chapter 3: Code-Aware Quantizer Design for Finite-Alphabet Min-Sum
Decoders

Classically, the quantization of the soft information supplied to a finite-alphabet
decoder is chosen to optimize a certain criterion which does not depend on the char-
acteristics of the existing code. Chapter 3 investigates quantizers that are both code
and decoder aware: such quantizers optimize the density evolution noise threshold
of a given decoder and a given ensemble of LDPC codes. Throughout this chapter
the LDPC decoder under consideration is the finite-alphabet MS decoder, and thus
we shall simply refer to such quantizers as code-aware quantizers.

We propose a code-aware quantizer with lower complexity than that obtained by
optimizing all decision levels and approaching its performance, for few quantization
bits. We show that code-aware quantizers outperform code-independent quantizers
in terms of noise threshold for both regular and irregular LDPC codes. To overcome
the error floor behavior of LDPC codes, we propose the design of the quantizer for a
target error probability at the decoder output. The results show that the quantizer
optimized to get a zero error probability could lead to a very bad performance for
practical range of signal to noise ratios.

We further propose to design jointly irregular LDPC codes and code-aware quan-
tizers for the finite-alphabet MS decoder. We show that they achieve significant
decoding gains with respect to LDPC codes designed for infinite-alphabet belief
propagation decoding, but decoded by finite-alphabet MS.

Finally, we note that the proposed code-aware quantizer can easily be adapted
to the MS-based decoders investigated in the next chapters of this thesis. This will
allow the optimization of the code-aware quantizer jointly with the integration of
approximate computing and storage techniques into the MS decoder.

Chapter 4: Design of High Throughput LDPC Decoder based on Impre-
cise Offset MS Decoding

Chapter 4 proposes two new decoding algorithms and hardware implementations,
obtained by introducing two levels of impreciseness in the Offset MS (OMS) decod-
ing: the Partially OMS (POMS), which performs only partially the offset correction,
and the Imprecise Partially OMS (I-POMS), which introduces a further level of im-
preciseness in the check-node processing unit. We show that they allow significant
reduction in the memory (25% with respect to the conventional OMS) and intercon-
nect, and we further propose a cost-efficient check-node unit (CNU) architecture,
yielding a cost reduction of 56% with respect to the conventional CNU architecture.

We further implement FPGA-based layered decoder architectures using the pro-
posed algorithms as decoding kernels, for a (3,6)-regular Quasi-Cyclic LDPC code of
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length 1296 bits, and evaluate them in terms of cost, throughput and decoding per-
formance. Implementation results on Xilinx Virtex 6 FPGA device show that they
can achieve a throughput between 1.95 and 2.41Gbps for 20 decoding iterations
(48% to 83% increase with respect to OMS), while providing decoding performance
close to the OMS decoder, despite the impreciseness introduced in the processing
units.

Chapter 5: Non-Surjective Finite Alphabet Iterative Decoders

Chapter 5 introduces a new family of Non-Surjective Finite Alphabet Iterative De-
coders (NS-FAIDs), characterized by specific processing rules, which can be theo-
retically analyzed and optimized for different trade-offs between hardware cost and
error correction performance. The proposed approach builds upon the approximate
storage technique, and allows storing the exchanged messages using a smaller pre-
cision than the processing units. It is also shown to provide a unified approach for
several designs previously proposed in the literature.

NS-FAIDs are optimized by density evolution for regular and irregular LDPC
codes, and are shown to provide different trade-offs between hardware complexity
and decoding performance. In particular, we show that optimized NS-FAIDs may
yield significant reductions of the memory size requirements, while providing even
better or only slightly degraded error correction performance with respect to other
MS-based decoders.

Chapter 6: Low-Cost, High-Throughput Hardware Architectures

Chapter 6 proposes three Quasi-Cyclic (QC)-LDPC decoder architectures targeting
low-cost, high-throughput and efficient use of the hardware resources. All of the
proposed architectures implement layered scheduled decoding with fully parallel
processing units.

The first architecture is an enhanced version of the architecture introduced in
Chapter 4. It is based on a specific design of the datapath processing units (VNUs,
CNUs, and AP-LLR units) that allow an efficient reuse of the hardware resources,
thus yielding significant cost reduction.

In the second architecture, efficient use of the hardware resources is ensured by
pipelining the datapath, which also allows increasing the operating frequency, thus
increasing the achieved throughput. However, the use of pipelining imposes specific
constraints on the decoding layers, in order to ensure proper execution of the layered
decoding process. Finally, the third architecture does not make use of pipelining, but
allows maximum parallelism to be exploited through the use of full decoding layers,
thus resulting in significant increase in throughput.

The second and third architectures may accommodate both MS and NS-FAID
decoding kernels. Thus, to validate the promises of the NS-FAID approach, both
MS and NS-FAID decoding kernels are integrated into each of these architectures,
and compared in terms of throughput and resources consumption. Implementation
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results on both FPGA and ASIC platforms show that regular and irregular NS-
FAIDs allow significant improvements in terms of both throughput and hardware
resources consumption, as compared to the conventional MS solution, with even
better or only slightly degraded decoding performance.

We use the Throughput to the Area Ratio (TAR) metric, expressed in Gbps/mm2,
to capture the performance of the proposed designs in terms of both throughput and
cost. ASIC synthesis results targeting a 65nm CMOS technology, for our designs
achieving the highest TAR performance, are summarized below:

• For irregular QC-LDPC codes, with rate 1/2 and code-length 2304 bits, spec-
ified by the IEEE 802.16e (WiMAX) standard, proposed designs achieve a
TAR metric up to 2.7 Gbps/mm2 at 20 decoding iterations, corresponding to
a Normalized TAR of 54 Gbps/mm2/iteration (Normalized TAR corresponds
to the TAR value for one decoding iteration).

• For (3, 6)-regular QC-LDPC codes, with rate 1/2 and code-length 1296 bits,
proposed designs achieve a TAR metric up to 6.1 Gbps/mm2 at 20 decoding
iterations, corresponding to a Normalized TAR of 122 Gbps/mm2/iteration.

Chapter 7: Conclusion and Perspectives

Chapter 7 summarizes the results obtained in this thesis, and provides perspectives
for future works.



Chapter 2

Low-Density Parity-Check Codes
and Message-Passing Decoders

This chapter provides a brief introduction to Low Density Parity Check
(LDPC) codes and Message-Passing (MP) decoders. We first introduce the
bipartite graph representation of LDPC codes and the principle of iterative
MP decoding algorithms. Then we focus on some specific decoding algorithms
that will be used in this thesis, namely the Min-Sum (MS) and several MS-
based algorithms. The asymptotic analysis of finite alphabet MS decoders,
based on the density evolution method, is also discussed.
We further investigate the main algorithmic and architectural choices that
impact the decoding performance and the hardware complexity of LDPC de-
coders. In particular, we discuss different scheduling strategies for MP de-
coders and their impact on the hardware architecture. Finally, several state-
of-the-art approaches on low-cost, high-throughput hardware implementa-
tions are also reviewed in this chapter.
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2.1 Introduction
This chapter aims to answer three main questions such as What are LDPC codes?,
Why are we interested in them? and How do they work?. LDPC codes have been
introduced by Gallager in his doctoral thesis in 1962 [35, 36], as a class of linear
Forward Error Correction (FEC) codes defined by sparse parity-check matrices,
which can be advantageously decoded by iterative message-passing (MP) decoders.
Unlike other linear codes introduced at that time (e.g., Hamming, BCH, Reed-
Solomon, etc.), which are short codes, based on algebraic constructions and with
known error correction capacity, LDPC codes are usually long and often constructed
pseudo-randomly, with only a probabilistic notion of their expected error correction
performance [50]. Because of the computational effort in implementing encoder and
decoder at that time, LDPC codes were mostly ignored for a long time. In 1996, they
were rediscovered by Mackay [65], after the power of iterative decoding techniques
had been also confirmed by the discovery of Turbo codes [6]. Since then, they have
been developed rapidly and attracted a lot of research interest, especially focused
on the analysis of iterative decoding algorithms [20, 22, 28, 58, 82, 83], as well as
techniques developed for code construction and optimization [34, 42, 53].

Nowadays, LDPC codes have found extensive applications in modern communi-
cation systems due to their excellent decoding performance [21, 82, 83], as well as
their advantages related to hardware implementations, such as low-cost [8, 10, 29],
high-throughput capabilities [49, 52, 110, 111], and power efficiency [66, 75, 103].
Thus, LDPC codes are gradually replacing other well-established FEC schemes
[84]. For instance, they have been adopted in several recent communication stan-
dards, such as 802.11n (Wi-Fi) [44], 802.11ad (WiGig) [43], 802.16e (WiMAX) [46],
802.15.3c (WPAN) [45], and DVB-S2 [31], and are being considered for a range of
application areas, from optical networks to digital storage [50]. Moreover, LDPC
codes have been proposed as a potential candidate for 5G cellular system [68].
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2.2 LDPC Codes

2.2.1 Definition, Tanner graphs

An LDPC code is a linear block code defined by a (M,N) sparse parity-check matrix
denoted by H. As their name suggests, sparse or low-density means that the parity-
check matrix contains only a few 1’s in comparison to the amount of 0’s. This
sparseness of H is essential for an iterative decoding complexity that increases only
linearly with the code length. Figure 2.1(a) illustrates an example of parity-check
matrix. Of course, the matrix in this example cannot be really called low-density. In
order to satisfy low-density property, the size of parity-check matrix should usually
be very large, of several hundreds of thousands of columns.

𝐇 =

1 1 0 1 0 0 1 0 0 0
1 0 1 0 1 0 0 1 0 0
0 1 1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 1 1 1 1
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Figure 2.1: Example of parity-check matrix and corresponding Tanner graph

The N columns of the parity-check matrix H correspond to coded bits, and the
M rows correspond to parity-check equations. A vector x = (x1, . . . , xN) ∈ {0, 1}N
is a codeword if and only if:

HxT = 0 (mod 2) (2.1)

where 0 is the length-M all zeros vector and xT denotes the transpose of x.

Assuming that the parity-check matrix H is full rank (i.e., rank(H) = M) and
the code is systematic, then any length-N codeword is comprised of K = N −M
information bits and M parity bits. The fraction r = K/N is called the coding rate
of the code. In other words, it characterizes the amount of redundancy added by the
error correction code.
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𝜌 𝑥 = 𝜌𝑖

𝑑𝑐

𝑖=2
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variable nodes 

1 2 n-1 n N-1 N 

1 m M-1 M 

Figure 2.2: Example of irregular Tanner graph

The parity-check matrix can also be represented by a bipartite graph, denoted
by H, introduced by Tanner [94], and therefore usually referred to as Tanner graph
of the code. The bipartite graph consists of two sets of nodes, namely the set of
variable-nodes, corresponding to coded bits (or columns of H), and the set of check-
nodes correspond to parity-check equations (or rows of H). The edges connecting
variable and check nodes correspond to the 1’s entries of H. This bipartite graph
representation is very useful for describing the message-passing decoding algorithms
(see Section 2.3). Figure 2.1(b) shows the bipartite Tanner graph representation of
the parity-check matrix from Figure 2.1(a).

Now, we will answer the question why we are interested in LDPC codes. The
main reason comes from the fact that they are able to achieve excellent decoding
performance. In 2001, Richardson and co-authors showed that irregular LDPC codes
can be optimized such that to approach the Shannon limit [82, 83]. They showed
that it is possible to construct irregular LDPC codes, with decoding performance at
only 0.0045 dB from the Shannon limit [21].

It is worth noting that LDPC codes can be regular and irregular, depending on
their variable and check node degrees. The node degree is defined as the number
of adjacent edges connected to that node. Variable-node degrees will be denoted by
dv(n), and check-node degrees by dc(m). An example is shown in Figure 2.2. It can
be easily seen that variable node-1 has 4 edges connected to, so it is of degree 4.
Similarly, variable node-(n − 1) and variable node-(N − 1) have degrees equal to 3
and 2, respectively. In the same manner, for check-nodes, it can be observed that
check node-1 is of degree 5, and check node-(M − 1) is of degree 4.

An LDPC code is said to be regular if all variable-nodes have the same degree
dv, and all check-nodes have the same degree dc. Otherwise, the code is said to be
irregular. It is worth noticing that most of the practical constructions of irregular
LDPC codes are actually irregular on variable-node degrees, but regular or semi-
regular in check-node degrees (semi-regular means that all check-node degrees take
on two consecutive values). The irregularity of an LDPC code can be defined by the
edge perspective degree-distributions polynomials, given in Eq. (2.2).
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λ(x) =
∑
d>1

λdx
d−1, ρ(x) =

∑
d>1

ρdx
d−1 (2.2)

where λd denotes the fraction of edges connected to variable-nodes of degree d, and
ρd denotes the fraction of edges connected to check-node of degree d.

Finally, it is important to mention that irregularity allows more degree of freedom
for code design, and carefully designed irregular LDPC codes have better decoding
performance than their regular counterparts, as long as the decoding performance
in the waterfall region is concerned (assuming the same codeword length). How-
ever, they also exhibit higher error floors compared to regular LDPC codes, usually
attributed to fact that irregular graphs are more prone to the occurrence of small
topological structures, discussed below, and known to be responsible for the failures
of iterative message passing decoders.

The waterfall region corresponds to the Signal to Noise Ratio (SNR) region
where the Bit Error Rate (BER) curve steadily decreases with increasing SNR.
However, graph-based iteratively decodable codes, such as LDPC codes, there is a
point after which the BER curve does not fall as quickly as before, in other words,
there is a region in which the BER performance flattens. This region is referred
to as the error floor region. The error floor phenomenon is directly attributed to
small topological structures in the bipartite graph, such as stopping sets [28] (BEC
channel) or trapping sets [80], near codewords [64], pseudo codewords [97] (BSC and
AWGN channel). Irregular LDPC codes are more prone to such structures, mainly
due variable-nodes of low degree. Besides, quantization effects also cause the error
floor [113].

2.2.2 Quasi-Cyclic LDPC codes

Quasi-cyclic (QC) LDPC codes [34] are a class of structured LDPC codes, widely
used in practical applications. They are defined by a base matrix B of size R × C,
with integer entries bi,j ≥ −1, where i ∈ {1, . . . , R} and j ∈ {1, . . . , C}, as shown in
Figure 2.3. The parity-check matrix H is obtained by expanding the base matrix B
by an expansion factor z. Thus, each entry of B is replaced by a square matrix of
size z × z, defined as follows:

• entries bi,j = −1 are replaced by the all-zero matrix,

• entries bi,j ≥ 0 are replaced by a circulant matrix, obtained by right-shifting
the identity matrix by bi,j positions.

It follows that the parity-check matrix H is of size M × N , with M = z × R rows
and N = z × C columns.

Figure 2.4 gives an example of base matrix of size R×C = 12×24, and expansion
factor z = 96 for WiMAX QC-LDPC code with rate of 1/2.
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𝐁 =
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⋮ ⋮

𝑏𝑅,1 𝑏𝑅,2

⋱ ⋮
⋯ 𝑏𝑅,𝐶

 

Figure 2.3: Base matrix of QC-LDPC code

• Parity-check matrix H of size 1152 x 2304 

• Quasi-Cyclic code: H is obtained by expanding a base matrix B of size 12 x 24 

– each entry of B is expanded to a square matrix of size 96 x 96  

– a non-negative entry b is replaced by a cyclic permutation matrix = identity right-shifted by b columns 

-1 94 73 -1 -1 -1 -1 -1 55 83 -1 -1 7 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
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61 -1 47 -1 -1 -1 -1 -1 65 25 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 

-1 -1 39 -1 -1 -1 84 -1 -1 41 72 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 46 40 -1 82 -1 -1 -1 79 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 

-1 -1 95 53 -1 -1 -1 -1 -1 14 18 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 

-1 11 73 -1 -1 -1 2 -1 -1 47 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 

12 -1 -1 -1 83 24 -1 43 -1 -1 -1 51 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 

-1 -1 -1 -1 -1 94 -1 59 -1 -1 70 72 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 

-1 -1 7 65 -1 -1 -1 -1 39 49 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 

43 -1 -1 -1 -1 66 -1 41 -1 -1 -1 26 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 

73 

96 

96 

identity matrix 

96 

96 

all-zero matrix 

96 

96 

𝐁 = 

Figure 2.4: Base matrix of WiMAX QC-LDPC code with rate of 1/2

The main advantages of the quasi-cyclic structure are as follows:

• QC-LDPC codes can provide comparable error correction performance com-
pared with random-LDPC codes, while allowing simple and structured con-
struction [34],

• QC-LDPC codes are well-suited to hardware implementations, with paral-
lelizable architecture and simple interconnection network, due to the specific
structure of the parity-check matrix [98, 110],

• QC-LDPC codes can support for flexible block lengths, by considering different
expansion factors z [10, 111]

Due aforementioned advantages, QC-LDPC codes have been selected by sev-
eral advanced communication standards, such as IEEE 802.11n (Wi-Fi) and IEEE
802.16e (WiMAX).
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2.3 Decoding algorithms
In the previous sections of this chapter, we discussed about What are LDPC codes?
and Why are we interested in them?. In this section we discuss several decoding
algorithms, in order to answer the last question How do LDPC codes work?

2.3.1 Message-Passing algorithms

The class of algorithms used to decode LDPC codes are collectively termed as
Message-Passing (MP) iterative algorithm. In MP iterative decoding, messages are
passed between variable and check-nodes along the edges of the bipartite Tanner
graph. This process takes place in several rounds, or iterations. At each new itera-
tion, new messages are computed in an extrinsic manner, meaning that a message
that is sent on an edge does not depend on the message just received on the same
edge. The computation of the exchanged messages and of the a posteriori informa-
tion is illustrated in Figure 2.5.

In the following, we denote by H the Tanner graph of the code, by H(m) the
set of variable-nodes connected to the check-node m, and by H(n) the set of check-
nodes connected to the variable-node n. The main steps of an MP decoder can be
summarized as follows:

Initialization: The a priori information (γn) is computed for each variable-node n,
and variable-to-check messages (αm,n) are initialized accordingly.

Iteration Loop: Each decoding iteration consists of the following steps:

• CN-processing (check-node processing): check-to-variable messages (βm,n)
are updated according to the current value of αm,n′ messages, with n′ ∈ H(m)\
{n}.

• VN-processing (variable-node processing): variable-to-check messages (αm,n)
are updated according to the input γn value and the current value of βm′,n
messages, with m′ ∈ H(n) \ {m}.

• AP-update (a posteriori information update): the a posteriori information
(γ̃n) is updated according to the input γn value and the current value of βm,n
messages, with m ∈ H(n).

In addition, at each iteration the decoder also computes a hard-decision vector,
denoted by x̂ and corresponding to the estimation of the transmitted codeword, and
the corresponding syndrome s = Hx̂T . The decoder stops if a codeword has been
found (i.e., s = 0), or if the maximum number of iterations has been reached.

Depending on the update rules that are used to compute check and variable-
node messages, there are several message-passing decoding algorithms, such as Bit-
Flipping (BF), Belief-Propagation (BP), Min-Sum (MS) and MS-based algorithms
[86]. In this thesis, we mainly focus on MS and MS-based decoding. In order to
understand the rationale behind the MS decoding, it is necessary to take a look first
to the BP decoding.
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Figure 2.5: Computation of extrinsic messages and of the a posteriori information

2.3.2 Belief-Propagation decoding

The Belief-Propagation (BP), also referred to as Sum-Product (SP), is a soft decision
message-passing (MP) algorithm. In the probability domain, the a priori information
(γn) of the BP decoding consists of the probability of each coded bit (xn) being equal
to 0 or 1, conditional on the received value (yn). These probabilities are updated
by the iterative message-passing process. Thus, the extrinsic information passed
between variable and check-nodes is also given in terms of probabilities. The BP
decoding is known to be optimal for codes defined by cycle-free bipartite graphs, in
the sense it outputs the Maximum A Posteriori (MAP) estimates of the coded bits
which is given by:

x̂(MAP)
n = argmax

b∈{0,1}
Pr(xn = b | y) (2.3)

Alternatively, BP decoding can be implemented in logarithmic or log-likelihood
ratio (LLR) domain. It is usually more convenient to consider the BP decoding
in LLR-domain instead of probability-domain, without decoding performance loss.
The most benefit of the representation of probabilities in LLR-domain comes from
the fact that multiplication is replaced by addition operation. In terms of hardware
implementation, this can reduce significantly the implementation complexity. The
algorithm of BP decoding in LLR-domain is described in Algorithm 1.

2.3.3 Min-Sum decoding

The most advantage of BP decoding is represented by its excellent decoding per-
formance. Although practical codes are defined by bipartite graphs with cycles, and
thus BP fails to produce MAP estimates of the coded bits, it is often referred to in
the literature as being the “optimal” messqage-passing decoder. However, in practical
implementations, BP decoding has a number of drawbacks related to its complex-
ity, numerical instability, and its sensitivity to channel signal-to-noise ratio (SNR)
estimation mismatch. One way to deal with complexity and numerical instability is-
sues is to simplify the computation of messages exchanged within the BP decoding.
From Algorithm 1, it can easily be seen that the most complex step of the BP decod-
ing is the computation of check-node messages (CN-processing step), which makes
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Algorithm 1 LLR-domain Belief Propagation (BP) decoding
Input: y = (y1, . . . , yN) ∈ YN (Y is the channel output alphabet). received word
Output: x̂ = (x̂1, . . . , x̂N) ∈ {0, 1}N . estimated codeword

Initialization
for all n = 1, . . . , N do γn = Ln = log

Pr(xn = 0 | yn)

Pr(xn = 1 | yn)
;

for all n = 1, . . . , N and m ∈ H(n) do αm,n = γn;
Iteration Loop

for all m = 1, . . . ,M and n ∈ H(m) do . CN-processing

βm,n =

 ∏
n′∈H(m)\n

sgn(αm,n′)

 .Φ

 ∑
n′∈H(m)\n

Φ(|αm,n′|)

;

for all n = 1, . . . , N and m ∈ H(n) do . VN-processing
αm,n = γn +

∑
m′∈H(n)\m

βm′,n;

for all n = 1, . . . , N do . AP-update
γ̃n = γn +

∑
m∈H(n)

βm,n;

for all n = 1, . . . , N do x̂n =
1−sgn(γ̃n)

2
; . hard decision

if x̂ is a codeword then exit the iteration loop . syndrome check
End Iteration Loop

The function Φ, used to compute the check-to-variable messages, is given by:

Φ(u) = − log
(

tanh
u

2

)
= log

(
1 + e−u

1− e−u

)
,∀u > 0

use of computationally intensive hyperbolic tangent functions. The MS algorithm
[20, 30, 33] is aimed at reducing the computational complexity of the BP, by using
“max-log” approximations for these messages. The only computations required by
the MS decoding are additions and comparisons, which solves the complexity and
numerical instability problems. The performance of the MS decoding is also known
to be insensitive to channel SNR estimation mismatch.

MS decoding is based on an approximation of the hyperbolic tangent function
Φ. Figure 2.6 shows the shape of the y = Φ(x) curve. It can be easily observed
that the curve of Φ decreases rapidly along the y-axis for small x values, then it
continues decreasing smoothly for intermediate x values, getting increasingly closer
to the x-axis for increasing values of x. Hence, for any set of positive values {xi}i∈I ,
one can use the approximation:

Φ

(∑
i∈I

xi

)
≈ Φ

(
max
i∈I

xi

)
(2.4)
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Figure 2.6: Φ function, where Φ(x) = − log(tanh x
2
), ∀x > 0

which is known as the max-log approximation. In follows that:

Φ

(∑
i∈I

Φ(xi)

)
≈ Φ

(
max
i∈I

Φ(xi)

)
= Φ

(
Φ

(
min
i∈I

xi

))
= min

i∈I
xi (2.5)

The MS decoding, using the above approximation, is described in Algorithm 2.

2.3.4 Min-Sum-based decoding

As mentioned in the previous section, MS decoding has been seen as a promis-
ing solution to reduce the complexity of the BP decoding, by using max-log ap-
proximation of the check-node processing side. However, the max-log approxima-
tion used in the MS decoding causes an overestimation of check-node messages,
which leads to a degradation in the error-rate performance of the decoder. In-
deed, since Φ is a decreasing function satisfying Φ(Φ(x)) = x, it follows that
Φ
(∑

i∈I Φ(xi)
)
≤ Φ (Φ(xj)) = xj (∀j ∈ I), and consequently:

Φ

(∑
i∈I

Φ(xi)

)
≤ min

i∈I
(xi) (2.6)

Several approaches have been proposed in the literature to compensate the over-
estimation of check-node messages, as for instance using scaling or offset factors
[16, 17, 108]. These algorithms are known in the literature as Normalized MS (NMS),
Offset MS (OMS), and several enhancements have been further proposed by different
authors, such as the Modified OMS [105] and the Adaptive NMS/OMS decoding al-
gorithms [48, 102]. A different approach which deals with the overestimation issue at
the variable-node processing side, referred to as Self-Corrected Min-Sum (SCMS),
was introduced in [85]. We refer to such decoding algorithms as MS-based decod-
ing. It is worth noting that all MS-based decoding algorithms aim at improving
the decoding performance, with only small or negligible increase of the algorithmic
(computational) complexity.
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Algorithm 2 Min-Sum (MS) decoding
Input: y = (y1, . . . , yN) ∈ YN (Y is the channel output alphabet). received word
Output: x̂ = (x̂1, . . . , x̂N) ∈ {0, 1}N . estimated codeword

Initialization
for all n = 1, . . . , N do γn = Ln = log

Pr(xn = 0 | yn)

Pr(xn = 1 | yn)
;

for all n = 1, . . . , N and m ∈ H(n) do αm,n = γn;
Iteration Loop

for all m = 1, . . . ,M and n ∈ H(m) do . CN-processing

βm,n =

 ∏
n′∈H(m)\n

sgn(αm,n′)

( min
n′∈H(m)\n

|αm,n′ |
)
;

for all n = 1, . . . , N and m ∈ H(n) do . VN-processing
αm,n = γn +

∑
m′∈H(n)\m

βm′,n;

for all n = 1, . . . , N do . AP-update
γ̃n = γn +

∑
m∈H(n)

βm,n;

for all n = 1, . . . , N do x̂n =
1− sgn(γ̃n)

2
; . hard decision

if x̂ is a codeword then exit the iteration loop . syndrome check
End Iteration Loop

2.3.4.1 Normalized and Offset Min-Sum decoding

The Normalized Min-Sum (NMS) and Offset Min-Sum (OMS) decoding algorithms
are slightly modified versions of the MS decoder that rely on the use of either
a normalization or an offset factor to compensate the overestimation of check-to-
variable messages:

• The NMS decoder (Algorithm 3) compensates this overestimation by introduc-
ing a normalization (scaling) factor ν ∈]0, 1[ within the CN-processing step.

• The OMS decoder (Algorithm 4) compensates this overestimation by intro-
ducing an offset factor δ > 0 within the CN-processing step.

The NMS and OMS decoding algorithms are probably the most popular ones, mainly
because of their simplicity. Apart from the use of a normalization or offset factor for
the computation of check-to-variable messages, the other steps of NMS and OMS
decoding algorithms are identical to those of the MS decoding. The normalization
(resp. offset) factor can either be constant (e.g., for regular LDPC codes, the same
normalization/offset factor value is used for all the check-nodes), or vary, usually
as a function of the check-node degree. The optimal value of the normalization
(resp. offset) factor can be determined by either Monte-Carlo simulation or density
evolution (DE) analysis (DE will be discussed in Section 2.4.2).
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Algorithm 3 Normalized Min-Sum (NMS) decoding
· · · . same as MS decoding

Iteration Loop
for all m = 1, . . . ,M and n ∈ H(m) do . CN-processing

βm,n = ν.

 ∏
n′∈H(m)\n

sgn(αm,n′)

 .

(
min

n′∈H(m)\n
|αm,n′ |

)
;

· · · . same as MS decoding
End Iteration Loop

Normalization (scaling) factor ν ∈]0, 1[; may either be a constant value, or vary according to
the check-node degree.

Algorithm 4 Offset Min-Sum (OMS) decoding
· · · . same as MS decoding

Iteration Loop
for all m = 1, . . . ,M and n ∈ H(m) do . CN-processing

βm,n =

 ∏
n′∈H(m)\n

sgn(αm,n′)

 .max

{(
min

n′∈H(m)\n
|αm,n′|

)
− δ, 0

}
;

· · · . same as MS decoding
End Iteration Loop

Offset factor δ > 0; may either be a constant value, or vary according to the check-node degree.

It is important to note that these normalization/offset factors must be “finely
tuned” (optimized) in order to avoid creating “artificial” error floors (i.e., error floors
that are not directly attributable to topological structures of the bipartite-graph). To
overcome this problem, two-dimensional (2-D) NMS and OMS decoding algorithms
have been proposed in [108]. They rely on normalization (resp. offset) factors used to
normalize (resp. offset) both variable-to-check and check-to-variable messages, and
whose values depend on variable and check-node degrees. DE analysis can be used
to derive optimal values for 2-D normalization (resp. offset) factors [15].

2.3.4.2 Self-Corrected Min-Sum decoding

The Self-Corrected Min-Sum (SCMS) [85] addresses the overestimation issue at the
variable-node processing side of the algorithm. The rationale behind the SCMS is
that the overestimation of check-node messages is not critical, unless any given
variable-node message is updated to map a different bit state. Hence, the character-
istic of the SCMS decoding is to “erase” (e.g., set to zero) any variable-node message
that experiences a sign change between two consecutive iterations. The SCMS de-
coding is described in Algorithm 5. It can also be shown that such a sign change
occurs if and only if the corresponding computation tree contains unreliable infor-
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Algorithm 5 Self-Corrected Min-Sum (SCMS) decoding
· · · . same as MS decoding

Iteration Loop
· · · . same as MS decoding

for all n = 1, . . . , N and m ∈ H(n) do . VN-processing
αtmp
m,n = γn +

∑
m′∈H(n)\m

βm′,n

αm,n =

{
0, if sgn(αtmp

m,n) 6= sgn(αm,n) and αm,n 6= 0
αtmp
m,n, otherwise

· · · . same as MS decoding
End Iteration Loop

mation and, as a consequence, the SCMS decoding behaves as the MS decoding on
a computation tree that has been pruned of its unreliable branches.
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2.4 Quantized Min-Sum decoding

2.4.1 Finite alphabet Min-Sum decoding

Since the focus of this thesis is on efficient hardware implementation of LDPC de-
coders, in this section we deal with quantized versions of the MS decoding, also
referred to as finite-alphabet MS decoding.

The finite-alphabet MS decoding is described in Algorithm 6. Throughout this
thesis, we will assume that the a priori information (γn) and the exchanged mes-
sages (αm,n, βm,n) are quantized on q bits, while the a posteriori information (γ̃n)
is quantized on q̃ > q bits. The alphabet of the a priori information and of the ex-
changed messages is denoted by M = {−Q, . . . ,−1, 0,+1, . . . ,+Q}, where Q ,
2q−1 − 1. Similarly, the alphabet of the a posteriori information is denoted by
M̃ = {−Q̃, . . . ,−1, 0,+1, . . . ,+Q̃}, where Q̃ , 2q̃−1 − 1.

We shall further assume that the a priori information γn = ϕ(Ln) is a quantized
version of the LLR value Ln, with ϕ denoting the quantization map. Hence, in the
initialization step of Algorithm 6, the LLR values Ln are first computed, and then
quantized to q bits, by using γn = ϕ(Ln). Variable-to-check node messages αm,n are
then initialized according to the corresponding γn value. During the decoding iter-
ations, the only arithmetic operations required to update variable and check-node
messages are additions and comparisons. To adhere to usual hardware implemen-
tations, we shall assume that all additions are performed by using q̃-bit saturated
adders. Then, the VN-processing step in Algorithm 6, first computes the value of
αm,n on q̃-bits, then saturates it to q-bits. This convention will be also reflected in
the density evolution analysis from Section 2.4.2.

Of course the decoding performance of the finite-alphabet MS decoding directly
depends on the way the input information is quantized, i.e., on the quantization
map ϕ. Several quantization methods will be investigated in Chapter 3. We describe
below the gain factor quantizer that will be used in Chapters 3 to 6 of this thesis. We
assume a Binary-Input Additive White Gaussian Noise (BI-AWGN) channel model,
with noise variance σ2. Hence, the channel output yn is given by yn = xn+zn, where
zn follows a Gaussian distribution with mean 0 and variance σ2, and the LLR value
Ln can be computed by:

Ln =
2

σ2
yn (2.7)

We consider a constant µ > 0, referred to as gain factor, and define

ϕ(Ln) =

[
µ
σ2

2
Ln

]
M

= [µyn]M (2.8)

where [x]M denotes the closest integer to x that belongs to M = {−Q, . . . ,+Q}.
The map ϕ will be referred to as gain factor quantizer. Since, the value of γn = ϕ(Ln)
can actually be directly computed from the received value yn, when no confusion is
possible we shall also write ϕ(yn) instead of ϕ(Ln), and thus:

γn = ϕ(yn) = [µyn]M (2.9)
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Algorithm 6 Finite Alphabet Min-Sum decoding
Input: y = (y1, . . . , yN) ∈ YN (Y is the channel output alphabet). received word
Output: x̂ = (x̂1, . . . , x̂N) ∈ {0, 1}N . estimated codeword

Initialization
for all n = 1, . . . , N do Ln = log

Pr(xn = 0 | yn)

Pr(xn = 1 | yn)
; γn = ϕ(Ln);

for all n = 1, . . . , N and m ∈ H(n) do αm,n = γn;
Iteration Loop

for all m = 1, . . . ,M and n ∈ H(m) do . CN-processing

βm,n =

 ∏
n′∈H(m)\n

sgn(αsat
m,n′)

( min
n′∈H(m)\n

|αsat
m,n′|

)
;

for all n = 1, . . . , N and m ∈ H(n) do . VN-processing
αm,n = sM̃

(
sM̃(γn + βm1,n), . . .+ βmdv−1,n

)
;

αsat
m,n = sM (αm,n);

for all n = 1, . . . , N do . AP-update
γ̃n = sM̃

(
sM̃(γn + βm1,n), . . .+ βmdv ,n

)
;

for all n = 1, . . . , N do x̂n = sgn(γ̃n); . hard decision
if x̂ is a codeword then exit the iteration loop . syndrome check

End Iteration Loop

• ϕ(x) is the quantization map of x
• αsat

m,n is the value of αm,n (output of the VNU) saturated to q-bit
• sM is the q-bit saturation map defined by:

sM(z) =

 −Q, if z < −Q
z, if z ∈M

+Q, if z > +Q

where Q , 2q−1 − 1

The q̃-bit saturation map sM̃ is defined in a similar manner.

One of the contributions of this thesis, is to show that is spite of its simplicity,
the gain factor quantizer provides performance close to the optimal quantizer (see
Chapter 3).

2.4.2 Density evolution analysis

Density Evolution (DE) is a method where the evolution of probability density
functions (pdf) of the exchanged messages is tracked through the message-passing
algorithm. This is done by deriving recursive equations, referred to as DE equations,
that express the pdf of the exchanged messages at iteration ` + 1 of a function of
their pdf at iteration `. The method has been first introduced in [83], and it applies
to MP decoders over both continuous and finite alphabets. The finite alphabet case
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greatly simplifies the computation, since instead of tracking the pdf’s of continuous
random variables, one has to determine the recursion between the probability mass
functions (pmf) of random variables with finite support.

The classical assumptions when deriving DE equations, are that (i) both the
channel and the decoder are symmetric, and (ii) incoming messages to any check
and variable node are independent. The first assumption allows reducing the analysis
to the all-zero codeword, since the symmetry of both the channel and the decoder
implies that the decoding performance is independent on the transmitted codeword.
The second assumption holds as long as the number of iterations is less than half
the girth of the graph. In practice, one assumes that both the girth of the graph and
the length of the code go to infinity, thus (ii) always holds. It also follows that the
DE equations predict the asymptotic behavior of an ensemble of LDPC codes, with
both girth and code-length going to infinity [83]. The predicted behavior depends on
the irregularity profile of the code, defined by the degree distribution polynomials
(Eq. (2.2)), and the decoding algorithm. Even if the predicted behavior does not
apply to finite-length codes, DE is a useful method for both code and decoding
design, and we will make intensive use of this method in Chapter 3 for the analysis
and design of code aware quantizers, and in Chapter 5 for the optimization of Non-
Surjective Finite Alphabet Iterative Decoders (NS-FAIDs).

In this section, we derive the DE equations for the finite alphabet MS decoding.
The equations are given for regular LDPC codes. The same method can be used
for irregular LDPC codes, simply by averaging according to the degree distribution
polynomials.

Let ` > 0 denote the decoding iteration. Superscript (`) will be used to indicate
the messages and the a posteriori information computed at iteration `. To indicate
the value of a message on a randomly selected edge, we drop the variable and check
node indexes from the notation (and we proceed in a similar manner for the a priori
and a posteriori information). The corresponding probability mass functions are
denoted as follows:

• G(z) = Pr(γ = z), ∀z ∈M,

• G̃(`)(z̃) = Pr(γ̃(`) = z̃), ∀z̃ ∈ M̃,

• A(`)(z) = Pr(α(`) = z), ∀z ∈M

• B(`)(z) = Pr(β(`) = z), ∀z ∈M

Since G is the pmf of the quantized input LLR values (γn), and assuming that the
all zero codeword has been transmitted, it follows that the input error probability
is given by:

P (0)
e =

1

2
G(0) +

−1∑
z=−Q

G(`)(z), (2.10)

where the 1
2
G(0) term accounts for the fact that sign(0) = ±1 with equal probability.
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Similarly, at iteration ` > 0, the probability that the decoder output is erroneous
is given by:

P (`)
e =

1

2
G̃(0) +

−1∑
z̃=−Q̃

G̃(`)(z̃) (2.11)

While G depends only on the channel model and the quantization of the input
LLRs, pmf’s A(`), B(`), and G̃(`) can be computed recursively as explained in the next
sections. The following notation will be used throughout in the following sections,
for any pmf C:

C[x,y]
∆
=

y∑
z=x

C(z) (2.12)

2.4.2.1 Expression of the input pmf G

The probability mass function G depends only on the channel and the quantization
map ϕ : Y →M, where Y is the channel output alphabet, andM = {−Q, . . . ,+Q}
the input alphabet of the decoder. Assuming the BI-AWGN channel with noise
variance σ2, and the gain factor quantization map from Eq. (2.9), one has:

G(z) =


1− q

(
−Q+0.5−µ

µσ

)
, if z = −Q

q
(
z−0.5−µ

µσ

)
− q

(
z+0.5−µ

µσ

)
, if −Q < z < +Q

q
(
Q−0.5−µ

µσ

)
, if z = +Q

(2.13)

where q(x) =
1√
2π

∫ +∞

x

exp
(
−u

2

2

)
du is the tail probability of the standard nor-

mal distribution (also known as the Q-function).

Finally, we define A(0) ∆
= G.

2.4.2.2 Expression of B(`) as a function of A(`−1)

For the sake of clarity, the iteration index will be removed from the notation of
exchanged messages and their probability mass functions. Hence, let A , A(`−1)

and B , B(`). We proceed by recursion on i = 2, . . . , dc − 1, where dc denotes the
check-node degree. Let β1 = α1, and define βi for i = 2, . . . , dc − 1 by

βi = sgn(βi−1) · sgn(αi) ·min(|βi−1|, |αi|) (2.14)

and Bi by its probability mass function. At z = 0, Bi(0) can be expressed as follows:

Bi(0) = Pr(βi = 0) =A(0)Bi−1(0) +Bi−1(0)

(
1− A(0)

)
+ A(0)

(
1−Bi−1(0)

)
(2.15)
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For z > 0, Bi(z) is determined using the following steps. First, define F+
i (z) by

F+
i (z) = Pr(βi ≥ z)

= Bi−1[z,Q]
A[z,Q] +Bi−1[−Q,−z]

A[−Q,−z] (2.16)

Then, Bi(z) for z > 0 is given by

Bi(z) = Pr(βi = z) =

{
F+
i (z)− F+

i (z + 1), if z < +Q
F+
i (z), if z = +Q

(2.17)

Similarly, we proceed for z < 0. Hence, define F−i (z) by

F−i (z) = Pr(βi ≤ z)

= Bi−1[−z,Q]
A[−Q,z] +Bi−1[−Q,z]

A[−z,Q] (2.18)

Then, Bi(z) for z < 0 is given by

Bi(z) = Pr(βi = z) =

{
F−i (z)− F−i (z − 1), if z > −Q
F−i (z), if z = −Q (2.19)

Finally, we have B = Bdc−1.

2.4.2.3 Expressions of A(`) and G̃(`) as functions of B(`) and G

As in the previous section, we drop the iteration index for clarity. Hence, let A , A(`),
B , B(`) and G̃ , G̃(`). We proceed by recursion on i = 0, . . . , dv, where dv denotes
the variable-node degree. For i = 0, we make the following definitions:

ω̃0
∆
= γ ∈M ⊆ M̃

Ω̃0(z̃)
∆
= Pr(ω̃0 = z̃) =

{
G(z), if z̃ ∈M
0, if z̃ ∈ M̃\M (2.20)

For i = 1, . . . , dv, we make the following definitions:

ωi
∆
= ω̃i−1 + βmi,n ∈ Z, (2.21)

Ωi(ω)
∆
= Pr(ωi = ω) =

∑
u

Ω̃i−1(u)B(ω − u),∀ω ∈ Z, (2.22)

ω̃i
∆
= sM̃(ωi) ∈ M̃ (2.23)

Ω̃i(ω̃)
∆
= Pr(ω̃i = ω̃) =


Ωi(ω̃), if ω̃ ∈ M̃\{+Q̃,−Q̃}∑

ω≤−Q̃ Ωi(ω), if ω̃ = −Q̃∑
ω≥+Q̃ Ωi(ω), if ω̃ = +Q̃

(2.24)

Finally, we have

A = sM(Ω̃dv−1) (2.25)

G̃ = Ω̃dv (2.26)

In Eq. (2.25) above, applying the saturation operator sM on the probability
mass function Ω̃dv−1 means that all the probability weights corresponding to values
ω̃ outsideM must be accumulated to the probability of the corresponding boundary
value ofM (that is, either −Q or +Q, according to whether ω̃ < −Q or ω̃ > +Q).
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2.4.2.4 Asymptotic error probability and noise threshold

Using the DE equations one may recursively determine the pmf’s of the exchanged
messages and of the AP-LLLs, and thus the decoding error probability P (`)

e , at any
iteration ` > 0:

P (`)
e =

1

2
G̃(0) +

−1∑
z̃=−Q̃

G̃(`)(z̃) (2.27)

The asymptotic error probability is defined by:

P (+∞)
e = lim

`→+∞
P (`)
e (2.28)

Even if the limit is taken only over `, it is worth noticing that P (+∞)
e actually

corresponds to the error probability when both the code-length and the number of
iterations go to infinity. This follows from the fact that the DE recursion is only
valid as long as incoming messages to any variable or check node are independent,
which holds when the girth of the graph, and thus the code length, go to infinity.
We also note that P (+∞)

e actually depends on (i) the channel, (ii) the quantization,
(iii) the irregularity profile of the LDPC code.

Finally, the noise threshold, denoted by σ2
th, is defined as:

σ2
th = sup{σ2 | P (+∞)

e = 0} (2.29)

It corresponds to the maximum channel noise for which the bit error probability can
be made arbitrarily small, assuming that both the code length and the number of
iterations go to infinity.

To illustrate the threshold phenomenon, Figure 2.7(a) shows the asymptotic error
probability P (+∞)

e as function of the Signal to Noise Ratio (SNR = −10 log10(σ2)),
for the ensemble of regular LDPC codes with variable-node degree dv = 3 and check-
node degree dc = 6. We have considered the finite-alphabet MS decoder, with input
LLR values and exchanged messages quantized on q = 4 bits, and AP-LLR values
quantized on q̃ = 6 bits. The gain factor used for the quantization of the input LLRs
is µ = 5.6. The SNR threshold is equal to 1.643 and it separates the SNR region
where P (+∞)

e > 0 (on its left) from that where P (+∞)
e = 0 (on its right).

It is worth noticing that for finite alphabet decoders, the asymptotic error proba-
bility P (+∞)

e may exhibit an error floor phenomenon, which is attributable to specific
dynamics of the DE recursion. This may happen especially for irregular codes. To
illustrate this phenomenon, Figure 2.7(b) shows the asymptotic error probability
P

(+∞)
e as function of the SNR, for the ensemble of irregular LDPC codes with edge-

perspective degree distribution polynomials λ(x) = 0.2895x + 0.3158x2 + 0.3947x5

and ρ(x) = 0.6316x5 + 0.3684x6 (these polynomials correspond to the irregularity
profile of the irregular LDPC code with rate 1/2 specified by the IEEE 802.16e
(WiMAX) standard [46]). We have considered the finite-alphabet MS decoder with
(q, q̃) = (4, 6) quantization, while the gain factor used for the quantization of the
input LLRs is µ = 1.4. To take into account the asymptotic error floor phenomenon,
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Figure 2.7: Asymptotic error probability P (+∞)
e as function of the SNR

the noise threshold can be alternatively defined by requiring P (+∞)
e to be below a tar-

get error probability. This leads to the following definition, referred to as η-threshold,
where η ≥ 0 is the target error probability:

σ2
th(η) = sup{σ2 | P (+∞)

e ≤ η} (2.30)

The value of the η-threshold is shown in Figure 2.7(b), for a target error probability
η = 10−10. Note that at this point, P (+∞)

e value actually drops from 10−1 to 10−10.
Hence, the η-threshold value is actually the same for any 10−10 ≤ η ≤ 10−1.
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2.5 Scheduling strategies

This section discuses scheduling strategies for message-passing (MP) decoders. MP
decoders may deal with different scheduling strategies, according to the order in
which variable and check-node messages are updated during the message passing
iterative process. The classical convention is that, at each iteration, all check-nodes
and subsequently all variable-nodes pass new messages to their neighbors. This
message-passing schedule is usually referred to as flooded scheduling [54]. A dif-
ferent approach is to split the parity-check matrix in several horizontal layers, then
process horizontal layer sequentially, while check-nodes (rows) within the same layer
are processed by using a flooding schedule strategy. Each time a layer is processed
the decoder updates the neighbor variable-nodes, so as to profit from the propagated
messages, and then proceeds to the next layer. This message scheduling, known as
layered scheduling [40], propagates information faster and converges in about half
the number of iterations compared to the flooded scheduling, thus yielding a lower
decoding latency [109].

2.5.1 Flooded scheduling

We first discuss the flooded scheduling. In this case, exchanged messages are passed
along the edges of the Tanner graph, first from variable to check nodes, and then from
check to variable nodes. Considering for instance the MS decoding, this corresponds
exactly to the description from Algorithm 2. A generic hardware architecture of a
flooded MP decoder, with all variable and check node processing units instantiated
in hardware, is shown in Figure 2.8. The process is split into two phases. In the first
half of each iteration (phase one), all check-node units (CNUs) are processed and
all check-node messages (βm,n) are sent from check to variable-nodes. At the second
half of each iteration (phase two) all variable-node units (VNUs) are processed and
all variable-node messages (αm,n) are sent from variable to check-nodes. Therefore,
this scheduling strategy is also referred to as two phases message-passing decoding.
Messages can be exchanged through an interconnection network (connecting variable
and check nodes), or through a shared memory, as shown in Figure 2.8.

In case that processing units are instantiated in hardware for all variable and
check-nodes, in which case the decoder is said to be fully parallel, VNUs and CNUs
can be directly connected through an interconnection network. An alternative so-
lution is to instantiate in hardware only a reduced number of VNUs and CNUs, in
which case the decoder is said to be partially parallel, and to reuse them to process
all the variable and check nodes. In this case messages can be exchanged through the
use of a shared memory. We discuss below the main advantages together with the
main drawbacks of the flooded scheduling strategy. Note that more details related
to hardware implementation aspects will be discussed in Section 2.6.2.

• Fully parallel flooded decoders exploit the maximum hardware parallelism,
and thus are able to achieve very high throughput. Each decoding iteration
can be executed in 2 clock cycles, corresponding tho the two aforementioned
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CNU1 CNU2 CNUm CNUM 

VNU1 VNU2 VNUn VNUN 

Interconnect network or Shared memory 

Figure 2.8: Message-passing decoding with flooded scheduling

decoding phases. However, the main bottleneck is the interconnection network
of a fully parallel decoder, and in practice fully parallel implementations are
limited to codes of a few hundreds of bits length.

• Partially parallel flooded decoders may represent a solution to the intercon-
nection network problem, but they require the use of large memories for the
storage of the input information and of the exchanged messages in both direc-
tions (i.e., both αm,n and βm,n).

• Flooded decoders (both fully and partially parallel) make an inefficient use of
the hardware resources, since that VNUs and CNUs can not work in parallel
(VNUs have to wait for the execution of CNUs, and vice versa).

• The lack of flexibility represents another drawback, especially for fully parallel
decoders, since each implementation is specific to only one given code.

2.5.2 Layered scheduling

Unlike the flooded scheduling, in case of layered scheduling, the parity-check matrix
H of size M × N is partitioned in L horizontal layers, also refereed to as decoding
layers (see Figure 2.9). Each decoding layer contains M/L consecutive rows of H,
such that any variable-node is connected at most once to any layer. We denote by
M` is the set of consecutive rows of H corresponding to layer ` ∈ {1, . . . , L}. To
help understanding the layered decoding principle, the MS decoding with layered
scheduling is described in Algorithm 7. For the sake of simplicity we consider the un-
quantized version of the decoder, but the quantized (finite alphabet) version follows
the same principle.
Initialization

• The decoding starts by initializing the a posteriori information γ̃n = γn and
the check-node messages βm,n = 0.

Iterations

• During the iterative decoding process, the variable-node messages αm,n are
computed by subtracting the check-node messages incoming on the same edge
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Figure 2.9: Parity-check matrix with layered scheduling

from the a posteriori information of variable node n, that is αm,n = γ̃n − βm,n
(VN-processing step). These messages are only computed for the variable nodes
n connected to check-nodes m in the current decoding layerM`.

• Messages outgoing from check-nodesm ∈M` are then computed (CN-processing
step), and used to update the γ̃n values, n ∈ H(m) (AP-update step).

Hence, subsequent layers will use updated valuers of γ̃n, thus ensuring a faster
convergence of the iterative decoding process.

The fact that layered scheduling converges faster than flooded scheduling can be
explained as follows: AP-LLR values of variable-nodes n connected to a given layer
are updated after the check-nodes in that layer have been processed. When the
next layer is processed, the incoming check-node messages (αm,n) are derived from
the AP-LLR values of the corresponding variable-nodes. Hence, incoming messages
incorporate the contribution of the check-nodes from the previous layers (even those
processed in the same iteration). This yield a faster propagation of messages through
the decoding graph, thus speeding up the decoder convergence. In case the maximum
number of decoding iterations is relatively low (as it may be the case in practical
applications), the faster convergence speed may also translate into an improved
decoding performance. In any case, the faster convergence speed yields a reduction
of the average number of decoding iterations performed by the decoder, which in
turn translates into energy savings (assuming that an early stopping criterion, e.g.,
syndrome check, is implemented by the decoder).

A generic hardware architecture of a layered MP decoder, is shown in Figure 2.10.
The number of VNUs and CNUs instantiated in hardware is equal to the number of
rows per decoding layer (denoted in the figure by ω ∆

= M/L). Concerning memory
requirements, such an architecture only need to store the AP-LLR values γ̃n and the
check-node messages βm,n, thus resulting in significant memory reduction as com-
pared to partially parallel flooded scheduling based solutions.
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Algorithm 7 Layered MS decoding algorithm
Input: y = (y1, . . . , yN) ∈ YN (Y is the channel output alphabet). received word
Output: x̂ = (x̂1, . . . , x̂N) ∈ {0, 1}N . estimated codeword

Initialization
for all n = 1, . . . , N do γ̃n = γn = Ln = log

Pr(xn = 0 | yn)

Pr(xn = 1 | yn)
;

for all m = 1, . . . ,M and n ∈ H(m) do βm,n = 0;
Iteration Loop

for all ` = 1, . . . , L do . Loop over horizontal layers
for all m ∈M` and n ∈ H(m) do . VN-processing

αm,n = γ̃n − βm,n;

for all m ∈M` and n ∈ H(m) do . CN-processing
βm,n =

∏
n′∈H(m)\n

sgn(αm,n′) · min
n′∈H(m)\n

|αm,n′|;

for all m ∈M` and n ∈ H(m) do . AP-update
γ̃n = αm,n + βm,n;

end (horizontal layers loop)

for all n = 1, . . . , N do x̂n =
1− sgn(γ̃n)

2
; . hard decision

if H · x̂ = 0 then exit iteration loop . syndrome check
End Iteration Loop
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Figure 2.10: Message-passing decoding with layered scheduling



2.5. Scheduling strategies 31

Layered scheduling for QC-LDPC codes

Layered scheduling applies when the parity-check matrix can be split in hori-
zontal layers. This is the case of QC-LDPC codes, due their construction based on
circulant matrices. A decoding layer is usually comprised of the z consecutive rows of
the parity check-matrix H, corresponding to one row of the base matrix B, where z
denotes the expansion factor (Section 2.2.2). More generally, it is possible to define
a decoding layer as corresponding not only to one row of B, but to a number of
consecutive rows of B, as long as these rows do not overlap. Clearly, due to the fact
that each non-negative entry of B is replaced by a circulant (permutation) matrix,
any column of H has at most one non-zero entry in each decoding layer.

Another advantage of QC-LDPC codes is that the routing network, used to route
the AP-LLRs and check-node messages to the appropriate processing units, can be
simply implemented by barrel shifters. This significantly simplifies the implementa-
tion of the layered architecture from Figure 2.10. Due to the numerous advantages
of layered architectures, QC-LDPC codes with layered message passing decoders
became the predominant solution for most practical applications [9].

Figure 2.11 shows Monte-Carlo simulation results over the BI-AWGN channel, for
WiMAX-irregular LDPC code with rate of 1/2, by using different decoders discussed
in the previous sections, namely BP (SP), MS, and SCMS, with either flooded and
layered scheduling. Results are provided in terms of Frame Error Rate (FER) per-
formance, as well as average number of decoding iterations. The maximum number
of decoding iterations is set to 50. We can observe the following:

• In terms of error correction performance, BP and SCMS decoders provide
similar FER performance, outperforming the MS decoding by ≈ 0.4 dB.

• Layered scheduling provide slightly better error correction performance than
flooded scheduling, due the its faster convergence. It is worth noticing that the
maximum number of decoding iterations (50) is sufficiently high to narrow the

(a) Frame Error Rate (FER) (b) Convergence speed

Figure 2.11: Error correction performance and convergence speed of various MP
decoder, with flooded and layered scheduling
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gap between the two scheduling strategies. However, this gap should increase
with decreasing maximum number of decoding iterations.

• For SNR values in the second part of the waterfall region, layered scheduling
can converge approximately twice faster than flooded scheduling.
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2.6 From decoding algorithms to their hardware im-
plementation

2.6.1 Algorithmic choices

In pratical LDPC decoder implementations (e.g., FPGA or ASIC designs) [37, 67],
one the major concerns to be addressed is the design of a decoder architecture that
yields small area, low power consumption, fast processing speed and good error
correction capacity. Unfortunately, it is very hard to meet all the above criteria
simultaneously. Therefore, depending on a specific application, one may consider
different trade-offs between the aforementioned figure of merits of the design.

Such as trade-off usually starts with algorithmic choices: choice of an LDPC code,
of a decoding algorithm, of a quantization scheme, or even of a scheduling strategy.
We note however that the scheduling strategy has such a significant impact on the
hardware architecture, that it can be actually considered as both an algorithmic
and architectural choice. Then a number of architectural choices have to be made,
e.g., related to degree of parallelism of the architecture (i.e., number of processing
units operating in parallel) and that of the processing units (i.e., number of inputs
processed by clock cycle), messages storing and routing (e.g., choice of memory type,
number of read/write ports, etc.), pipeline stages, etc. Of course, algorithmic and
architectural choices are not completely decorrelated, since for instance the choice
of the LDPC code and of the scheduling strategy will also impose a number of
architectural choices.

In this section, we discuss various algorithmic choices, related to the decoding
algorithm, the quantization scheme, the scheduling strategy, and the number of
iterations. Architectural choices, with a focus on high-throughput applications, will
be discussed in Section 2.6.2.

2.6.1.1 Decoding algorithm

The main criteria that dictate the choice of a MP decoding algorithm consist of
its computational complexity, and its error correction performance, which can be
expressed in terms of either Bit Error Rate (BER) or Frame Error Rate (FER).
By way of example, we consider the BER performance of several MP decoding
algorithms, for a (3, 6)-regular QC-LDPC code, with base matrix of size R × C =
12 × 24, and expansion factor z = 54. Hence, the parity check matrix H is of size
M ×N , with M = zR = 648 and N = zC = 1296.

Figure 2.12(a) shows the BER performance of BP (SP), MS, NMS (with optimal
normalized factor of 0.8 [15]), OMS (with optimal offset factor of 0.15 [15]), and
SCMS decoding algorithms (layered scheduling is considered, and the number of
decoding iterations is set to 20). At BER = 10−4, MS decoding suffers a decoding
loss of approximately 0.4 dB compared to SP, NMS, OMS and SCMS decoding. As
mentioned in Section 2.3.3, although SP achieves excellent decoding performance,
it is not suitable for practical implementations due to the complexity of check-node
processing. Thus, practical LDPC decoder implementations mostly rely on the MS
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Figure 2.12: BER performance of various decoding algorithms for (3, 6)-regular QC-
LDPC code, with code-length N = 1296

or MS-based decoding algorithms, which might come at the price of an acceptable
decoding performance loss. Figure 2.12(b) shows BER curves for finite precision
(finite alphabet) MS and MS-based (NMS, OMS, SCMS) decoders, which are more
suitable for hardware implementations. These decoders use 4-bit quantization for
the exchanged messages, and 6-bit quantization for the AP-LLR values. It is worth
noting that the finite precision NMS exhibits worst error correction performance
than the finite precision MS. Thus, for practical hardware implementations, MS
OMS, and SCMS decoding are good choices. The quantization of finite precision
decoders is further discussed in the next section.

2.6.1.2 Quantization

The size of the quantization for finite-precision decoders influences significantly the
memory requirements (used to store the quantized messages), as well as the size
of the interconnection network (used to route messages from memory to processing
units), and the complexity of the processing units. In terms of error correction
performance, it is worth mentioning that the quantization is one of the factors that
may aggravate the error floor phenomenon. Thus, in practical implementations of
finite precision decoders, in order to trade-off between hardware complexity and
decoding performance, it is very important to decide how many quantization bits
are needed to represent the finite precision values.

Let MS-quantization(q, q̃) be the Finite-Alphabet Min-Sum decoding (Section 2.4.1),
with input LLRs and exchanged messages are quantized on q-bits, and AP-LLRs
quantized on q̃-bits (q̃ > q). Figure 2.13 shows BER curves of Min-Sum decoding
according to several different quantization for (3,6)-regular and irregular WiMAX
codes.



2.6. From decoding algorithms to their hardware implementation 35

1 1.5 2 2.5 3 3.5 4

SNR (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

B
it

 E
rr

o
r 

R
at

e 
(B

E
R

)

MS-floating point

MS-quantization(2,4)

MS-quantization(3,5)

MS-quantization(4,6)

MS-quantization(5,7)

(a) (3,6)-regular LDPC code, N = 1296

1 1.5 2 2.5 3 3.5 4

SNR (dB)

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

B
it

 E
rr

o
r 

R
at

e 
(B

E
R

)

MS-floating point
MS-quantization(2,4)
MS-quantization(3,5)
MS-quantization(4,6)
MS-quantization(5,7)
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Figure 2.13: Impact of the quantization to BER of LDPC decoders

It can be observed that:

• The gap between quantization (q, q̃) = (2, 4) and the other quantization schemes
is quite significant, of approximately 1 dB from the (q, q̃) = (3, 5) quantization
(at BER = 10−5).

• The gap between the other quantization schemes narrows with increasing quan-
tization size. In particular, quantization schemes (q, q̃) = (4, 6) and (q, q̃) =
(5, 7) exhibit decoding performance very close to the infinite precision decoder,
and even outperform it for the (3,6)-regular code.

• The gap between (q, q̃) = (4, 6) and (q, q̃) = (5, 7) quantization schemes is very
small, and may be considered negligible, for both (3,6)-regular and WiMAX
code. Therefore, (q, q̃) = (4, 6) quantization is a good choice for practical
implementations, since it results in lower hardware complexity, as discussed
above.

According to the above analysis, (q, q̃) = (4, 6) is the main quantization scheme
that will be used throughout this thesis.

2.6.1.3 Scheduling strategy

In this section, we investigate the effect of the scheduling strategy on the decoding
performance, through Monte-Carlo simulations. Figure 2.14 shows BER curves for
finite-alphabet MS decoding, with (q, q̃) = (4, 6) quantization, using both flooded
and layered scheduling. We compare layered scheduling with maximum number
of iterations Ilayered, with flooded scheduling with maximum number of iterations
Iflooded = 2Ilayered. From simulation results, it can be easily seen that at the same
target BER, layered scheduling improves convergence speed by nearly 2, as compared
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Figure 2.14: Impact of the scheduling strategy to BER of LDPC decoders

to the flooded one. Besides, layered scheduling advantageously applies to QC-LDPC
codes [34], which are naturally equipped with a layered structure, and also known
to significantly reduce the complexity of the interconnection network. Due to their
benefits in terms of area/throughput/flexibility, layered QC-LDPC decoders have
been widely adopted, and can be considered as a de facto standard solution in most
applications [9].

2.6.1.4 Number of iterations

Figure 2.15 shows the BER performance of the finite-alphabet MS-quantization(4, 6)
decoder, as a function of the maximum number of decoding iterations. It can be
observed that increasing the number of iterations improves decoding performance.
However, this improvement reaches a limit, after which extra iterations provide only
little benefit. Most of the practical implementations that will be reported in this
thesis use a maximum number of decoding iterations equal to 20.

It is also worth noticing that the maximum number of iterations has little impact
on the average number of decoding iterations performed by the decoder. Indeed,
most practical implementations have an early termination criterion [27, 59], which
detects convergence (e.g., by checking the syndrome) and may stop the decoder
before the maximum number of iterations is reached. However, the maximum of
number iterations determines the worst case latency of the decoder.

If the decoder is required to have a fixed latency (which is actually the case is
most of practical applications), this latency is necessarily equal to the worst case
latency, which therefore determines the throughput of the decoder. A different possi-
bility would be to allow some variation of the decoding latency, but to use additional
buffers for the input and output data, such that make the overall latency fixed (from
the moment when data is written to the input buffer, to the moment when the cor-
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Figure 2.15: Impact of the number of iterations to BER of LDPC decoders

responding result is read from the output buffer). However, such a solution requires
an additional and non-negligible cost, determined by the size of the input and out-
put buffers. The throughput achieved by the hardware implementations proposed in
this thesis, will always be reported for the maximum number of decoding iterations,
which is sometimes referred to in the literature as worst case throughput.

Table 2.1 summarizes the different algorithmic aspects discussed in this section,
the impact they may have on the hardware complexity and decoding performance,
as well as the main issues to be considered.

Table 2.1: Factors impact to hardware complexity and decoding performance

Items Hardware Decoding Main issues
complexity performance to be considered

Algorithm X X
• Processing units
• Memory requirements
• Error correction capacity

Quantization X X

• Processing units
• Memory requirements
• Interconnections
• Error floor phenomenon

Scheduling X • Interconnections

No. iterations X
• Error correction capacity
• Energy consumption
• Worst case throughput



38Chapter 2. Low-Density Parity-Check Codes and Message-Passing Decoders

2.6.2 State-of-the-art on hardware implementations

In this section, we discuss several LDPC decoder hardware architectures, with a
focus on low-cost, high-throughput implementations. We also provide a state of the
art on ASIC designs, and discuss the trade-off between cost, throughput and power.

2.6.2.1 LDPC decoder architectures

A typical hardware architecture of an LDPC decoder consists of several variable-
node units (VNUs) and check-node units (CNUs), optional memories for a pri-
ori/posteriori LLRs and exchanged messages, and an interconnection (routing) net-
work [7, 26], as shown in Figure 2.16. In case of MS-based decoders, the VNUs’ main
operation is represented by addition, while the CNUs compute the first and second
minimum values among the input values (e.g., by employing a tree of comparators).
Note that VNUs and CNUs can be interconnected in many different ways (depend-
ing on the hardware architecture of the decoder) and sometimes they can be merged
into a single processing unit.

Figure 2.16: General hardware architecture of an LDPC decoder

Generally, LDPC decoder architectures can be classified into three main cate-
gories, namely fully parallel, serial, and partly parallel architectures. Fully parallel
architectures are naturally implementing a flooded scheduling, as discussed in Sec-
tion 2.5.1. Such implementations are characterized by a very large number of CNUs
and VNUs and a dense interconnection network. Due to the large, and usually highly
irregular, interconnection network, fully parallel decoders pose significant problems
in the place-and-route or wiring the decoder. Therefore, fully parallel implementa-
tions have been seldom adopted in practical implementations.

At the opposite design spectrum, serial architectures uses only one VNU and
one CNU, which are then reused to process all the variable- and check-nodes of the
bipartite graph. Message passing is implemented by storing the computed messages
in a dedicated memory, and reading them from the memory whenever they are
needed by another processing unit. Serial architectures have a number of advantages:
(i) very low cost, (ii) no routing congestion problems, (iii) may implement any of the
flooded or layered scheduling, which may be simply controlled by the control unit,
(iv) high flexibility, as they support a large variety of codes. But they also have a
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significant drawback: they have a very low throughput, which may be way too low
for practical applications in modern communication systems, characterized by an
increased need for higher and higher data rates.

The partially parallel architecture inherits the main features and advantages of
the two above architectures. In the partially parallel architecture, the number of
VNUs and CNUs instantiated in hardware is lower than the number of variable and
check nodes, and multiple nodes share a same processing unit. Different trade-offs
between area, throughput and flexibility can be obtained by adjusting the num-
ber of processing units. Although the concept of partly parallel architecture is not
necessarily related to a specific decoding scheduling, it is naturally suited to the
layered scheduling strategy. Consequently, most of the partly parallel architectures
are actually partly parallel layered architectures, using structured QC-LDPC codes,
in order to further reduce the complexity of the interconnection network [24, 88–90].
The characteristics of the fully parallel, serial and partly parallel architectures are
summarized in Table 2.2.

Table 2.2: Main characteristics of decoder architectures
Decoder architecture Area Throughput Flexibility

Fully parallel Large Very high 7

Serial Small Very low X
Partly parallel Medium High X

2.6.2.2 High-throughput optimizations

Cost, throughput and power optimizations mainly rely on architectural choices. The
choice of the hardware architecture (fully parallel, partially parallel, or serial) is one
of them. The parallelization degree of the partially parallel architecture (i.e., the
number of processing units instantiated in hardware) is another. One possible way
to achieve even higher throughput is to unroll hardware resources, i.e., to instan-
tiate dedicated hardware for each iteration and then pipeline such hardware [87].
Unrolling hardware (HW) resources further increase the throughput, at the price of
a significant increase in the area. Low-power optimizations have also been proposed,
based either on an interconnect-driven code design approach to eliminate the need
for a complex interconnection network [66, 93], or on the early detection of the iter-
ative decoding’s convergence, to terminate the computations, thereby reducing the
dynamic power [93]. Further optimizations can be obtained by considering different
processing unit architectures, e.g., implementing different decoding algorithms or
processing the input data in either a serial or a parallel manner [9].

Regarding the parallelisation of the processing units (i.e., number of inputs pro-
cessed by clock cycle), highest flexibility can be achieved by using serial process-
ing units: VNUs and CNUs process incoming messages in a serial manner, which
makes their implementation independent of the variable or check-node degree [9].
However, this comes at the cost of a reduced throughput. A practical solution to
increase throughput, consists in the use of partly parallel layered LDPC decoder
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architectures, with fully parallel processing units. Further throughput increase can
be obtained by pipelining the datapath, which also ensures an efficient use of the
hardware resources. However, the number of stages in the datapath may impose
some specific constrains on the base matrix of the QC-LDPC code, in order to en-
sure that no memory conflicts occur during the read/write operations from/to the
memory storing the exchanged messages or the a posteriori logarithmic likelihood
ratios (AP-LLR) values.

Since the focus of this thesis is on high throughput applications, most of the
architectures investigated in this thesis are partly parallel layered architectures, will
fully parallel processing units. Several enhancements will be proposed in Chapter 4
and Chapter 6, so that to ensure an efficient use of the hardware resources.

2.6.2.3 Cost optimizations

As mentioned before, the main components of an LDPC decoder are processing
units (VNUs and CNUs), memories, and interconnects. To obtain better cost, main
solutions usually focus on reducing the hardware complexity of processing units
and/or the memory size requirements.

Regarding the complexity of the processing units, one of the proposed solutions
consists in the use of imprecise arithmetic operations (e.g., imprecise additions and
comparisons), or more generally imprecise computational circuits [71]. An imprecise
circuit is obtained by pruning the exact circuit. This amounts to removing a cer-
tain number of logic gates from the circuit (depending on the decoder’s tolerance
to errors), which may result in significant savings in energy, delay and area [60].
The authors in [71] evaluated the robustness of several LDPC decoding algorithms,
whose VNUs and CNUs have been implemented by using imprecise adders and com-
parators. The arithmetic circuits used are a weighted pruned parallel prefix adder
and a truncated comparator. They showed that for (3,6)-regular LDPC codes, by
using imprecise arithmetic, the total logic resources reduction for processing units
can achieve up to 23.7% compared to the use of exact arithmetic.

While imprecise arithmetic (e.g., adders and comparators), or more generally
imprecise processing of the datapath, may reduce the cost of the processing units,
such an approach has little of no impact on the memory and interconnection blocks
of the decoder. However, one important characteristic of LDPC decoders is that the
memory and interconnection blocks dominate the overall area/delay/power perfor-
mance of the hardware design. Other approaches deal with reducing the memory size
requirements, by reducing the size of the exchanged messages, instead of interfering
in the internal structure of the processing circuits. This also leads to a reduction
of the interconnect network used to route messages from memory to the processing
units.

Reducing the memory size requirements has been been addressed by several
authors. For instance, the authors in [3, 13] proposed modified versions of the MS
decoding, with check-node messages quantized on a very small number of bits (e.g.,
2-bit [13] or 3-bit [3]). To limit the degradation of the decoding performance, the
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variable-nodes processing operates in a higher precision quantization domain (e.g.,
4-bit [13] or 7-bit [3]).

Reducing the memory size requirements is also an approach that will be further
explored in this thesis. However, the approach proposed in this thesis builds upon
the Finite Alphabet Iterative Decoders (FAIDs) framework introduced in [77, 78].
FAIDs are MS-based decoders, characterized by the fact that variable-node update
functions are defined by specific Look-up Tables (LUTs), which can be designed
with the goal of increasing the guaranteed error-correction capability by using the
knowledge of potentially harmful subgraphs (e.g., trapping set). We will make a
different use of this framework, and actually divert FAIDs from their initial purpose:
precisely, in our approach, variable-node update functions are defined by specific
Look-up Tables (LUTs), which are designed with the goal of reducing the memory
requirements of the decoder, without degrading the error correction performance.

2.6.2.4 Cost/power/throughput trade-offs in state of the art designs

In this section we discuss the trade-off between different figures of merit of the
hardware design, as reported in state of the part implementations. We start by dis-
cussing first the relationship between the computational effort and the information
throughput required for prominent applications relying on LDPC codes, which is
illustrated in Figure 2.17 [84]. The diagonal lines in the double-logarithmic scale are
representative for the overall complexity required by a corresponding decoder. It is
interesting to see that the computational effort required per information bit remains
approximately the same for all considered standards. However, the throughput re-
quirements across standards vary by more than three orders of magnitude, whereas
the throughput within a standard may also vary by one order of magnitude.

Area, Throughput, and Energy-Efficiency Trade-offs in the

VLSI Implementation of LDPC Decoders

C. Roth∗, A. Cevrero‡, C. Studer∗, Y. Leblebici‡, and A. Burg‡

∗Dept. of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland

e-mail: rothc@iis.ee.ethz.ch; studerc@nari.ee.ethz.ch
‡School of Engineering, EPF Lausanne, 1015 Lausanne, Switzerland

e-mail: {alessandro.cevrero, yusuf.leblebici, andreas.burg}@epfl.ch

Abstract—Low-density parity-check (LDPC) codes are key ingredients
for improving reliability of modern communication systems and storage
devices. On the implementation side however, the design of energy-
efficient and high-speed LDPC decoders with a sufficient degree of
reconfigurability to meet the flexibility demands of recent standards
remains challenging. This survey paper provides an overview of the state-
of-the-art in the design of LDPC decoders using digital integrated circuits.
To this end, we summarize available algorithms and characterize the
design space. We analyze the different architectures and their connection
to different codes and requirements. The advantages and disadvantages
of the various choices are illustrated by comparing state-of-the-art LDPC
decoder designs.

I. INTRODUCTION

Digital communication and storage systems rely on channel coding

to ensure reliable transmission and to guarantee data integrity. Besides

Turbo codes, low-density parity-check (LDPC) codes [1], are among

the best performing codes known today. While initially considered too

complex for economic implementation, LDPC codes have been redis-

covered [2] and turned out to be most suitable for implementation in

modern CMOS technologies. Due to this implementation advantage,

their excellent error-correction performance, and the favorable IP-

licensing situation, LDPC codes are gradually replacing other well-

established forward error-correction schemes.

A. LDPC Codes

Binary LDPC codes are defined through an M ×N binary-valued

sparse parity-check matrix H, whose columns are associated with

coded bits and rows describe the parity-check equations. A convenient

representation of LDPC codes are bipartite graphs [3] (Tanner graphs)

in which variable nodes (VNs) are associated with code bits and check

nodes (CNs) with parity-check equations. In this graph, a VN and a

CN are connected when the corresponding entry in H is one. The

dimension and structure of H define the block size N , the code rate

and the performance of the code, as well as the complexity of the

decoding process.

B. Decoding Algorithm and Complexity

LDPC codes are commonly decoded using iterative message-

passing algorithms which improve the initial estimates of the bits

initializing the VNs by sending messages along the edges of the graph

in an iterative manner (see Sec. II for details). The computational

effort for decoding a single code block depends roughly linearly on

the number of edges in the graph and on the number of iterations

performed to achieve a given target error-rate. Normalizing this effort

with the number of information bits contained in a code block yields

the number of processed edges per information bit, which is a first-

order approximation for the computational effort required by the

decoder for a specific LDPC code. In Fig. 1, we compare the decoding

complexity for prominent applications relying on LDPC codes. To

this end, we plot the computational effort (assuming 10 iterations)
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Fig. 1. Computational effort and throughput overview of typical wired and
wireless communication standards employing LDPC codes.

against the throughput requirement given in information bits per

second for the various operation modes. The diagonal lines in the

double-logarithmic scale are representative for the overall complexity

required by a corresponding decoder.

It is interesting to see that the computational effort required per in-

formation bit remains approximately the same for all considered stan-

dards. However, the throughput requirements across standards vary by

more than three orders of magnitude, whereas the throughput within

a standard may also vary by one order of magnitude. Furthermore, we

observe that wireless communication standards foresee a wide range

of operation modes with similar—but not equal—complexity. These

modes (covering different throughputs) must usually be supported

by a single flexible decoder implementation. What is not directly

visible from Fig. 1 is that some applications have a very tight energy-

efficiency constraint as they target battery-powered devices.

C. Contributions and Outline

In this survey paper, we review and investigate the trade-offs

associated with the design of digital LDPC decoders. To this end,

Sec. II briefly summarizes the essentials and preferred choices with

respect to the underlying decoding algorithms. Sec. III introduces the

prototype architecture from which all other architectures are derived

and describes our performance metrics to compare different state-of-

the-art designs. In Sec. IV we partition the design-space into three

different architecture classes. We describe similarities and differences

between these architectures and highlight solutions for the main

implementation challenges with reference to corresponding designs

in the literature.

II. ALGORITHM ASPECTS FOR LDPC DECODING

Decoding of LDPC codes essentially involves three different types

of values that are being updated in an iterative manner: Prior to

decoding, L-values (associated to VNs) are initialized by reliability

information (log-likelihood ratios) generated by the demodulator. In

each iteration, Q-messages are passed from the VNs to the CNs and

R-messages are sent back from the CNs to the VNs and L-values

978-1-4244-9474-3/11/$26.00 ©2011 IEEE 1772

Figure 2.17: Computational effort (assuming 10 iterations) and throughput overview
of several standards employing LDPC codes [84]
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Table 2.3: Comparison of state-of-the-art ASIC designs for LDPC decoders
Paper [93] [110] [96] [4] [87] [25] [74] [100] [55]

Parameters related to Software Implementations
Flexibility 802.16e/.11n No No 820.11ad No No No 802.11ad 802.11n
Code-length 2304 2304 2048 672 672 4095 672 672 1944
Coding-rate 0.5 0.5 0.84 0.5 0.81 0.82 0.50 0.81 0.5
Algorithm BP MS OMS MS MS MDD-BMP OMS – OMS
Decoder Partly Parallel Partly Partly Fully Fully Row Fully Block

architecture parallel layer parallel parallel parallel parallel parallel parallel parallel
Decoding performance Good Good – Not good Not good – Not good Not good Good

Parameters related to Hardware Implementations
Quantization – 3 4 8 4 6 5 5 5
Iterations 10 10 8 6 9 31 10 3.75 10

Technology (nm) 90 90 90 65 65 65 65 28 90
Frequency (MHz) 450 950 303 215 257 180 540 260 336

Area (mm2) 3.5 2.9 6.14 1.1 12.09 15.37 1.6 0.63 5.2
Area scale to 28 nm 0.34 0.28 0.59 0.20 2.24 2.85 0.30 0.63 0.50

Power (mW) 410 870 1392 210 5360 5354 782.9 180 451.3
Power scale to 28 nm 39.68 84.21 134.73 38.97 994.61 993.50 145.28 180.00 43.68
Throughput (Gbps) 1.0 2.2 9.7 6.0 160.8 23.0 9.0 12.0 1.71

Throughput scale to 28 nm 3.21 7.07 31.18 13.93 373.29 53.39 20.89 12.00 5.50
EE (pJ/bit) 410.00 395.45 143.51 35.00 33.33 232.78 86.99 15.00 263.92

EE scale to 28 nm 12.35 11.91 4.32 2.80 2.66 18.61 6.95 15.00 7.95
NEE (pJ/bit/iter) 41.00 39.55 17.94 5.83 3.70 7.51 8.70 4.00 26.39
NEE scale to 28 nm 1.23 1.19 0.54 0.47 0.30 0.60 0.70 4.00 0.79
TAR (Gbps/mm2) 0.29 0.76 1.58 5.45 13.30 1.50 5.63 19.05 0.33

TAR scale to 28 nm 9.49 25.19 52.46 68.24 166.39 18.72 70.37 19.05 10.92
NTAR (Gbps/mm2/iter) 2.86 7.59 12.64 32.73 119.70 46.39 56.25 71.43 3.29
NTAR scale to 28 nm 94.88 251.93 419.71 409.43 1497.50 580.34 703.70 71.43 109.21

• EE (Energy Efficiency) = Energy/bit = Power/Throughput
• NEE (Normalized EE) = EE/Iterations = Energy/Bit/Iteration
• TAR (Throughput to Area Ratio) = Throughput/Area
• NTAR (Normalized TAR) = Throughput/Area/Iteration = TAR × Iterations
(N.B. Throughput is inversely proportional to the number of iterations)
• TNR (Target to Nominal Ratio) = target_technology_size / nominal_technology_size
• scaled_area = nominal_area × (TNR)2

• scaled_power = nominal_power × (TNR)2
• scaled_throughput = nominal_throughput / TNR

Concerning state-of-the-art implementations of LDPC decoders, we provide in
Table 2.3 a comparison between several high-throughput ASIC designs. It is worth
noting that making a fair comparison between different designs is a very difficult
task. This is due to the large number of algorithmic and architectural choices that
can be made, resulting in different trade-offs between error correction capacity, cost,
power, throughput. These criteria cannot be optimized simultaneously. Whether a
trade-off is “better” than another depends on which of the above criteria is given
highest priority in the optimization process, and on how much we are willing to
pay for the optimal solution, in terms of performance degradation of the lowest
priority criteria. In particular, regarding the results reported in Table 2.3, it should
be noticed that:

• they may be obtained using different technologies (e.g., 28 nm, 45 nm, 65 nm,
90 nm), which of course has significant impact on the reported area, power,
and frequency,

• they may implement different LDPC codes, with different code-lengths and
coding-rates,

• they may implement different decoding algorithms, and may use different
quantizations,
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Figure 2.18: Throughput vs. energy consumption trade-offs for state-of-the-art ASIC
designs

• they may have different error correction performance, e.g., due to the LDPC
code itself, or to the chosen decoding algorithm or quantization,

• they may use a different number of decoding iterations; besides some authors
report the worst case throughput (corresponding to the maximum number of
decoding iterations), some others report average throughput (corresponding
to the average number of decoding iterations for some SNR value),

• they may have different design flexibility, e.g., some designs implement one
single LDPC decoder, some others are compliant with all the decoders specified
in one or several standards.

To keep the comparison as fair as possible, we further define a number of relative
and normalized (with respect to the number of iterations) metrics, as follows:

• Energy Efficiency (EE) is the energy per decoded bit,

• Normalized Energy Efficiency (NEE) is the energy per decoded bit and per
iteration

• Throughput to Area Ratio (TAR) is the throughput achieved per area unit
(mm2)

• Normalized Throughput to Area Ratio (NTAR) is the throughput achieved per
area unit (mm2), assuming that only one single decoding iteration is performed.

It is worth noticing that for all the reported implementations, the throughput is in-
verse proportional to the number of iterations, which justifies the normalized metrics
defined above. We have computed the above metrics according to the implementa-
tion results reported for the nominal technology used for the designed, as well as
after scaling all of the reported implementation results to 28 nm technology. Area,
power, and throughput scaling is detailed in the footnote to Table 2.3. Parameters
scaling is done as suggested in [38].
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The trade-off between EE and TAR is illustrated in Figure 2.18 (both with and
without technology scaling). It is worth noticing that the designs achieving the best
EE/TAR trade-offs ([4], [74], [87], [100]) implement decoding of the QC-LDPC
codes specified in the 802.11ad (WiGig) [43] standard. These codes rely indeed on
a specific structure known to allow very high throughput implementation, which in
turn is also directly responsible for their very poor error correction performance.
[93], [110], and [55] designs implement decoding of the QC-LDPC codes specified in
either the 802.16e (WiMAX) [46], 802.11n (WiFi) [44] standard: they have better
error correction performance, but inferior performance in terms of TAR and EE.
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2.7 Conclusion
This chapter provided a brief introduction to LDPC codes and iterative message-
passing decoders. We focused on some specific decoders that will be used in this
thesis, namely the MS, as well as several MS-based decoders. We also discussed the
finite alphabet MS decoding and its density evolution analysis, which will be exten-
sively used throughout the remaining of this thesis. Then, we discussed a number
of algorithmic and architectural choices that impact both the decoding performance
and the complexity of the hardware implementation. Finally, we have presented a
state of the art on low-cost, high-throughput implementations, and discussed the
trade-off between different figures of merit of the design, such as cost, throughput,
energy efficiency and error correction performance.
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Chapter 3

Code-Aware Quantizer Design for
Finite-Alphabet Min-Sum Decoders

Classically, the quantization of the soft information supplied to a finite-alphabet
decoder is chosen to optimize a certain criterion which does not depend on the
characteristics of the existing code. This chapter investigates quantizers that are
both code and decoder aware: such quantizers optimize the density evolution noise
threshold of a given decoder and a given ensemble of LDPC codes. Throughout
this chapter the LDPC decoder under consideration is the finite-alphabet MS
decoder, and thus we shall simply refer to such quantizers as code-aware quan-
tizers.
We propose a code-aware quantizer with lower complexity than that obtained by
optimizing all decision levels and approaching its performance, for few quan-
tization bits. We show that code-aware quantizers outperform code-independent
quantizers in terms of noise threshold for both regular and irregular LDPC codes.
To overcome the error floor behavior of LDPC codes, we propose the design of
the quantizer for a target error probability at the decoder output. The results
show that the quantizer optimized to get a zero error probability could lead to a
very bad performance for practical range of signal to noise ratios.
We further propose to design jointly irregular LDPC codes and code-aware quan-
tizers for the finite-alphabet MS decoder. We show that they achieve significant
decoding gains with respect to LDPC codes designed for infinite-alphabet belief
propagation decoding, but decoded by finite-alphabet MS.
Finally, we note that the proposed code-aware quantizer can easily be adapted to
the MS-based decoders investigated in the next chapters of this thesis. This will
allow the optimization of the code-aware quantizer jointly with the integration
of approximate computing and storage techniques into the MS decoder.

47
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3.1 Introduction

This chapter focuses on LDPC codes with Min-Sum decoder, which is more practi-
cal to implement than the sum-product decoder at the cost of a slight degradation
in performance. The Min-Sum algorithm uses simple arithmetic (additions) and
logical (comparisons) operations; hence it is suitable for hardware implementation.
Nowadays, using few bits of precision to represent channel output and the soft infor-
mation propagating during the iterative decoding process is crucial for high speed
applications and for reducing hardware complexity. However, the performance of the
decoder will decrease when the number of quantization bits decreases. Therefore, a
good design of quantizer at the input of the decoder is necessary to achieve the best
performance under a constrained low-precision hardware. Recently, many works are
focusing on the field of FPGA implementation of LDPC decoders, see, e.g., [5], [12]
and references therein. On the other hand, most of works in literature, consider the
design of the quantizer at the channel output independently of the channel code used
by the communication system. A review of literature about the code-independent
quantizers is presented further in this chapter.

To evaluate the asymptotic performance of a family of LDPC codes, an itera-
tive process called density evolution (DE) is used, assuming that the Tanner graph
of this family is cycle-free. Density evolution can be used to find the maximum
level of channel noise, called noise threshold, which can be corrected by a family
of LDPC codes using the message passing algorithm. In this work, the density evo-
lution is used as a tool to search for the quantizer that can achieve the best noise
threshold for a specific family of LDPC codes. There are few works in literature
that analyze the dependency of optimal quantizers on the channel code. In [19],
the authors consider the code-dependent quantizers for BI-AWGN channel when
regular LDPC codes are used and evaluate the quantizer performance by density
evolution. They demonstrate that quantizers that maximize the noise threshold are
superior to Lloyd quantizers. Although the authors consider quantized decoder in-
puts, a belief-propagation decoding was considered with infinite-alphabet messages
exchanged between variable and check nodes in density evolution. Other works in-
vestigate also quantization methods to lower the error floor for LDPC codes [1] and
reduce the effects of weak absorbing sets [115].

The contributions of this work are the following. First, we present a review of
the literature about the quantizers which are designed independently of the existing
channel code. We propose a low complexity code-aware quantizer, whose perfor-
mance approaches that of the code-aware quantizer with decision levels optimized
through exhaustive search. We demonstrate that code-aware quantizers are more effi-
cient than code-independent quantizers in terms of noise threshold for finite-alphabet
Min-Sum decoders. We further show that finite-alphabet Min-Sum decoders exhibit
an asymptotic error-floor phenomenon, which limits the performance of the LDPC
code family. Therefore, the code-aware quantizer that maximizes the DE threshold
(to get zero error probability at the decoder output), may not be suitable for lower
bit error rate. Thus we propose the design of code-aware quantizer for a target bit
error rate and we show that the quantizer optimality is highly dependent on the
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target bit error rate. Finally, we propose to design jointly irregular LDPC codes and
code-aware quantizers for finite-alphabet Min-Sum decoders.

3.2 System model

X Channel Y L Quantizer L̄ Decoder X̂

Figure 3.1: Point to point communication system with quantized-input decoder

This work deals with the point to point communication system as shown in
Figure 3.1. The study could be extended to other channel models. We assume that
the coded bits are modulated using a BPSK constellation, X ∈ X = {+1,−1},
and are transmitted over a Gaussian channel with noise variance σ2. The choice of
low-order BPSK modulation is to simplify the analysis of density evolution. At the
receiver side, a metric denoted by L is calculated from the channel output Y and
then quantized to L̄ , ϕ(L) using a quantizer ϕ1 to be used as input for the finite-
alphabet Min-Sum decoder as mentioned in Section 2.4.1. Usually, L represents the
log-likelihood ratio (LLR). However, in this work, it could be not the LLR. A q-bit
quantizer ϕ quantifies its input L on q bits. Since the performance of the quantizer
will be evaluated according to its resulting noise threshold using density evolution,
a symmetric-output quantizer will be considered for convenience. Thus the q-bit
quantizer has 2q − 1 output values belonging toM = {−Q, . . . ,−1, 0,+1, . . . ,+Q},
where Q , 2q−1−1. The cardinality of the setM is denoted by |M| = 2 ·Q+1. For
convenience, the non-negative elements of the set M are denoted by L̄i such that
L̄i = i, ∀i ≥ 0. In the following, the reconstruction levels of the q-bit quantizer are
constrained to the values of M and only the decision levels can be optimized for
practical purpose. Since a symmetric quantizer is used, the quantizer can be fully
characterized by the non-negative decision levels denoted by Ti, i ∈ {1, . . . , Q}, such
that Ti ≤ Ti+1. By convention TQ+1 = +∞. The quantizer quantifies its input value
L into ϕ(L) such that

ϕ(L) =


+L̄i if L ∈ Ii , [Ti, Ti+1[,

−L̄i if L ∈ I−i ,]− Ti+1,−Ti],
+L̄0 if L ∈ I0 ,]− T1,+T1[

(3.1)

where L̄i = i ∈ {1, . . . , Q}. Note that if Ti = Ti+1 the values L̄i and −L̄i are never
taken by the quantizer ∀i ≥ 1. Besides, if T1 = 0, then the value L̄0 is never taken
by the quantizer.

Equation (3.1) gives the general definition of a quantizer and in the next section
we will present several code-independent or code-aware optimization criteria. By a
slight abuse of language, we shall use the same terminology to refer to both the
optimization criterion and the resulting quantizer.

1By abuse of notation, the quantizer is denoted by its associated quantization map ϕ.
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3.3 Code-Independent Quantizers
This section reviews some of the well known quantizers which do not depend on the
existing channel code.

3.3.1 MIXL̄: the quantizer which maximizes I(X; L̄)

The design of quantizers based on information-theoretic measures has been widely
considered in literature. Quantizers which maximize the mutual information between
the channel input and the quantizer output have been of special interest. This is
because the channel capacity is obtained by maximizing the mutual information
between the channel input and its output. Nowadays, there exits powerful codes
which approach the channel capacity of point to point Gaussian channel as LDPC
codes. The expression of the mutual information I(X; L̄), where L̄ ∈M, is given by

I(X; L̄) =
∑
x∈X

pX(x)
∑
¯̀∈M

pL̄|X(¯̀|x) · log
pL̄|X(¯̀|x)∑

x pX(x) · pL̄|X(¯̀|x)
(3.2)

The input L of the MIXL̄ quantizer is the LLR value. For the Gaussian channel with
noise variance σ2, the LLR value L is related to the channel output Y as L = µ · Y
where µ , 2

σ2 . It is easy to demonstrate that in this case the conditional pdf of L,
given that X = x was sent, follows a normal distribution of mean µL = µ · x and of
variance σ2

L = 2µ [79]. Thus, the expression of pL̄|X(¯̀|x), for ¯̀∈M, is given by:

pL̄|X(¯̀= i|X = x) =

∫
`∈Ii

pL|X(`|x)d` (3.3)

where i ∈M. Using the definition of Q-function defined byQ(x) = 1√
2π

∫ +∞
x

exp−
u2

2 du,
(3.3) can be written as

pL̄|X(¯̀= i|X = x) = Q
(
Ti−µL
σL

)
−Q

(
Ti+1−µL

σL

)
pL̄|X(¯̀= −i|X = x) = Q

(
−Ti+1−µL

σL

)
−Q

(
−Ti−µL
σL

)
pL̄|X(¯̀= 0|X = x) = Q

(
−T1−µL

σL

)
−Q

(
T1−µL
σL

) (3.4)

where i ∈ {1, . . . , Q}. For BPSK modulation, the maximal mutual information is
achieved using equally probable input i.e., pX(x = +1) = pX(x = −1) = 1

2
[91]. In

order to design the quantizer which maximize the mutual information between X
and L̄, the following optimization problem should be solved:

max
Ti,i=1,...,Q

I(X; L̄) (3.5)

where I(X; L̄) depends on Ti through (3.4). The problem (3.5) appears difficult to
solve even with a low order modulation (BPSK). In [63], the authors consider the
case of the binary input and ternary output channel which is simple to solve since the
maximization in (3.5) is done over one parameter. When the number of output values
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increase, the optimization becomes difficult to perform. In many works such as in
[91] and [61], local optimization algorithm were used to solve the multi-variable case
of the problem. Reference [57] solves this problem using a greedy search algorithm
for any finite-input discrete memoryless channels. In [56], the authors propose an
algorithm which finds the global optimal quantizer which maximizes I(X; L̄) for
arbitrary binary input channels and for an arbitrary number of decision levels. The
algorithm has a cubic complexity in the cardinality of channel output.

3.3.2 MILL̄: the quantizer which maximizes I(L; L̄)

Since the design of quantizer which maximizes the mutual information between
channel input and quantizer output has high complexity, especially when the input
alphabet size increases, an alternative method used in literature is to maximize the
mutual information between the quantizer input and its output [72]. The optimal
quantizer in this case is obtained by solving the following optimization problem

max
Ti,i=1,...,Q

I(L; L̄) (3.6)

where L refers also the LLR in the case of MILL̄ quantizer. The mutual information
I(L; L̄) can be written as I(L; L̄) = H(L̄)−H(L̄|L) where H denotes the entropy.
Since L̄ is a deterministic function of L, H(L̄|L) = 0. Consequently, the optimal
quantizer should maximizes the entropy of L̄. It is well known that the entropy of a
discrete variable is maximized with its uniform distribution. Using (3.4), the solution
of problem (3.6) for the binary input Gaussian channel is such that

pL̄(L̄i) =
1

2

[
Q
(Ti − µ

σL

)
−Q

(Ti+1 − µ
σL

)]
+

1

2

[
Q
(Ti + µ

σL

)
−Q

(Ti+1 + µ

σL

)]
=

1

|M|
(3.7)

for i = 1, . . . , Q. These equations are solved starting from step i = Q, where there
is only one variable to solve in equation (3.7) since TQ+1 = +∞. Then the problem
is solved going from i = Q to i = 1. For any step i < Q, Ti+1 is calculated from the
previous step i+ 1 thus we have only to determine Ti which solves (3.7) given Ti+1.
In other terms at step i, we have to solve the following equation of one variable Ti

f(Ti) , Q
(Ti − µ

σL

)
+Q

(Ti + µ

σL

)
−
[
A1 + A2

]
− 2

|M|
= 0 (3.8)

where A1 = Q
(
Ti+1−µ
σL

)
and A2 = Q

(
Ti+1+µ
σL

)
are constants since Ti+1 is known at

step i.

Proposition 3.1 The equation (3.8) has a unique solution which can be obtained
using the bisection method.

Proof. First, define the function u(Ti) = Q
(
Ti−µ
σL

)
+Q

(
Ti+µ
σL

)
. We can easily demon-

strate using the derivative of u(Ti) with respect to Ti that u is a strictly monotone
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function. For i = Q, solving (3.8) is equivalent to solve u(TQ)− u(TQ+1)− 2
|M| = 0

where u(TQ+1) = 0 using the definition of the Q-function and the fact that TQ+1 =
+∞. We can demonstrate recursively that at each step i, the equation to solve is
u(Ti) = 2(Q−i+1)

|M| where 0 < 2(Q−i+1)
|M| < 2. Since the Q-function values are bounded

between 0 and 1, u(Ti) is bounded between 0 (achieved for Ti = +∞) and 2 (achieved
for Ti = −∞). Thus u(Ti) = 2(Q−i+1)

|M| has always a solution which can be obtained
efficiently by the bisection method. This proof applies for arbitrary input alphabet
size. �

3.3.3 Others

There exists other criteria in literature to design the quantizer at the decoder input.
The well known Lloyd algorithm allows to obtain the optimal reconstruction and
decision levels for the quantizer which minimizes the mean square reconstruction
error called also distortion [62]. Other quantizers considered in literature maximizes
the cutoff-rate since it has simpler expression than the mutual information as a func-
tion of the transition probabilities [61]. Some works considered also the quantizers
that maximize random coding exponents since this metric is more suitable for finite
length codes than mutual information [106].

All the quantizers presented above maximize certain criteria that do not depend
on the characteristics of the existing LDPC code as its degree distribution, etc. The
next section is dedicated to code-aware quantizer design.
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3.4 Code-aware quantizers

3.4.1 Decision levels quantizer (DL)

This section investigates code-aware quantizer design for BI-AWGN channel when
LDPC codes are used along with Min-Sum decoding. Our study differs from [19]
by the use of finite-alphabet LDPC decoders where the messages exchanged using
density evolution are also quantized on a fixed number of bits as well as the decoder
input. Moreover, our study includes both regular and irregular LDPC codes. We refer
the reader to Chapter 2 for the density evolution equations for finite-alphabet Min-
Sum decoding. The density evolution equations allow to obtain the error probability
P

(`)
e at each iteration ` of the iterative message-passing algorithm. The criterion

used to optimize the quantizer is the noise threshold σ2
th defined by

σ2
th = sup{σ2 : lim

`→∞
P (`)
e = 0} (3.9)

The finite-alphabet Min-Sum decoder is known to have high error floors. Thus
a quantizer ϕ1 which is better than another quantizer ϕ2 for a target bit error rate
may be worse than ϕ2 for a different target bit error rate. Moreover, in practice the
target bit error rate is usually fixed to a practical value (e.g., 10−5) because a very
low target error probability requires higher SNR in general. Hence, we investigate the
optimal quantization which maximizes the noise threshold for zero error probability
using density evolution as well as the optimal quantization which maximizes the
noise threshold for a target bit error rate. The η-threshold for a target bit error rate
η is defined by

σ2
th(η) = sup{σ2 : lim

`→∞
P (`)
e ≤ η} (3.10)

When η = 0, the η−threshold will be called “DE threshold” and is equivalent to the
threshold defined in (3.9). The code-aware quantizer design for a target bit error
rate η requires to solve the following optimization problem

max
Ti,i=1,...,Q

σ2
th(T1, . . . , TQ; η) (3.11)

This problem is solved using exhaustive search method to avoid local solutions.

3.4.2 Gain factor quantizer (GF)

Since the complexity of exhaustive search methods increases with the number of
quantization bits, we provide a code-aware quantizer design with lower complexity
based on a uni-parametric optimization. The idea is to relax the constraint on the
value of µ , 2

σ2 in the expression of the LLR given by L = µ · Y and optimize µ.
This case uses the symmetric quantizer such that the non-negative decision levels
are given by Ti = L̄i−1+L̄i

2
for i = 1, . . . , Q, however the channel output Y is scaled

by the gain factor µ. In other terms, L is quantized to the nearest integer in M.
To obtain the optimal gain factor for a target bit error rate η we should solve the
following optimization problem

max
µ

σ2
th(µ; η) (3.12)
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Problem (3.12) is a uni-dimensional optimization problem and is solved using ex-
haustive search method.

3.4.3 Summary and remarks

The quantizers under study and their parameters are summarized in Table 3.1.
The quantizers MIXL̄, MILL̄ are code-independent quantizers where the LLR (L =
2
σ2 ·Y ) is used as the input of the decoder and the quantizer decision levels are those
maximizing a mutual information. DL and GF are code-aware quantizers. For DL
quantizer, the LLR is used as decoder input while for GF, L = µ · Y is used as an
input of the decoder where g is optimized.

Table 3.1: Parameters of the quantizers under study

Quantizer µ Decision levels

MIXL̄ 2
σ2 optimized

MILL̄ 2
σ2 optimized

DL 2
σ2 optimized

GF optimized Ti = L̄i−1+L̄i

2
, i = 1, . . . , Q

Finally some remarks on the parameters in Table 3.1 are presented in the fol-
lowing.

• For the quantizer MILL̄, the gain factor µ will not affect the performance
since the value of the mutual information I(L; L̄) is independent of µ, where
L = µ · Y . However, it can be proven easily using (3.4) and the expression of
the mutual information, that the values of the optimal decision levels when
L = µ ·Y are equal to the optimal decision levels when L = Y multiplied by a
factor µ. Hence, we choose the conventional LLR as input for the decoder in
this case where µ = 2

σ2 . Similarly, for the cases of MIXL̄ and DL quantizers,
where the LLR is used as decoder’s input.

• For GF quantizer, we optimize µ such that L = µ · Y but the decision levels
are fixed to be Ti = L̄i−1+L̄i

2
for i = 1, . . . , Q. The GF quantizer gives the same

performance of the quantizer with L = Y and Ti = 1
µ
· L̄i−1+L̄i

2
for i = 1, . . . , Q

or the quantizer with L = 2
σ2 · Y and Ti = 2

µσ2 · L̄i−1+L̄i

2
for i = 1, . . . , Q.
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3.5 Performance evaluation
Throughout this section, we assume that the a posteriori information of the finite-
alphabet Min-Sum decoder is quantized on q̃ = q + 1 bits, where q is the number
of quantization bits for the a priori information and exchanged messages of the
finite-alphabet Min-Sum decoder.

3.5.1 (Semi-) Regular LDPC codes

Table 3.2: DE threshold of some independent-code quantizers and code-aware quan-
tizers for the family of (semi-)regular LDPC codes of rate r and variable node degree
dv = 3. The a priori information and the exchanged messages of the finite-alphabet
Min-Sum decoder are quantized on q = 2 bits and the a posteriori information is
quantized on q̃ = 3 bits.

r GF DL MIXL̄ MILL̄ Optimal
µ for GF

1/3 0.8453 0.8453 0.8403 0.7713 1.1969
1/2 0.5422 0.5422 0.5403 0.4248 1.5352
2/3 0.3527 0.3527 0.3526 - 1.8151
3/4 0.2810 0.2810 0.2809 - 1.9426
5/6 0.2176 0.2176 0.2167 - 2.0730

Table 3.3: DE threshold of some independent-code quantizers and code-aware quan-
tizers for the family of (semi-)regular LDPC codes of rate r and variable node degree
dv = 3. The a priori information and the exchanged messages of the finite-alphabet
Min-Sum decoder are quantized on q = 3 bits and the a posteriori information is
quantized on q̃ = 4 bits.

r GF DL MIXL̄ MILL̄ Optimal
µ for GF

1/3 1.0234 1.0234 1.0116 0.9898 2.2592
1/2 0.6625 0.6625 0.6591 0.6266 2.7726
2/3 0.4399 0.4399 0.4389 0.3934 3.1871
3/4 0.3554 0.3554 0.3544 0.2885 3.4510
5/6 0.2799 0.2799 0.2785 - 3.8480

Table 3.2 and Table 3.3 show the noise thresholds (σ2
th) for some LDPC codes of

rate r and variable node degree dv when the a priori information and the exchanged
messages of the finite-alphabet Min-Sum decoder are quantized both on q = 2 and
3 bits respectively. Since we have fixed r and dv, the check nodes can be all of the
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same degree (regular code) or not (semi-regular code). The thresholds are given in
Table 3.2 and Table 3.3 for η = 0 (zero error rate on the decoder output). The preci-
sion on the threshold value is fixed to 10−4. The results show that the GF quantizer
gives the same performance of the DL quantizer of high computational complexity.
The quantizer maximizing the mutual information between the channel input and
the quantizer output (MIXL̄) gives good performance which coincides with the per-
formance of DL for some codes. The quantizer MIXL̄ gives better performance than
the quantizer maximizing the mutual information between the input of the quantizer
and its output MILL̄ for regular codes. It can be observed that the quantizer MILL̄
does not achieve a target zero error probability when the code rate is higher than a
certain value (e.g., when r ∈ {2

3
, 3

4
, 5

6
} in Table 3.2).

3.5.2 Irregular LDPC codes

In this section, we study the performance of irregular LDPC codes in terms of
noise threshold using code-aware and code-independent quantizers. Consider the
family of irregular LDPC codes of rate one-half, variable node degree distribution
λ(x) = 0.23882x + 0.29515x2 + 0.03261x3 + 0.43342x10 and check node degree dis-
tribution ρ(x) = 0.43011x6 + 0.56989x7. This code was shown to be powerful for
belief-propagation decoding and has a noise DE threshold of σ2

th = 0.9162 [47].
However, for the fixed point Min-Sum decoder, the performance of this code seems
to be worse than the regular code of rate one half in the previous section, especially
when the number of quantization bits is small as shown in Table 3.4, due to the
error floor.

The DL quantizer is not considered when q > 3 due to the complexity of the
exhaustive search in this case. Tables 3.5, 3.6 and 3.7 show the η−threshold for
the same irregular code when the number of quantization bits is q = 2, 3 and 4
respectively and η ∈ {10−3, 10−4, 10−5, 10−10}. We observe also that the quantizer
MILL̄ is better than MIXL̄ in most cases contrarily to the case of regular codes in
the previous section. In general, we can see that any of the two quantizers ( MIXL̄
and MILL̄) can be better than the other depending on the values of η and q because
these quantizers are not code-aware.

The code aware quantizer GF can achieve noticeable gains comparing to the
best quantizer among the independent-code quantizers depending on η and q. For
q = 2, GF quantizer has the same performance as the DL quantizer. This may be
obvious because there is one variable to optimize in both cases. For q = 3, the
performance of GF quantizer is very close to that of DL quantizer. The decision
levels obtained for both code-aware quantizers are very close as shown in Figure
3.2 when η = 10−5. It is worth to note that in Figure 3.2, the decisions levels are
given when L = 2

σ2
th(DL)

·Y , where σ2
th(DL) is the η−threshold for DL quantizer with

η = 10−5, for both quantizers in order to compare them for the same L. Then, the
decision levels for GF quantizer are given by Ti = 2

µ·σ2
th(DL)

· L̄i−1+L̄i

2
for i = 1, . . . , Q

(cf. Section 3.4.3) where µ is the optimal gain factor for η = 10−5 which is given in
Table 3.6.
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Table 3.4: DE threshold of some independent-code quantizers and code-aware quan-
tizers for the family of irregular LDPC codes of rate 1

2
, variable node degree dis-

tribution λ(x) = 0.23882x + 0.29515x2 + 0.03261x3 + 0.43342x10 and check node
degree distribution ρ(x) = 0.43011x6 + 0.56989x7. The a priori information and the
exchanged messages of the finite-alphabet Min-Sum decoder are quantized on q bits
and the a posteriori information is quantized on q̃ = q + 1 bits.

q GF DL MIXL̄ MILL̄ Optimal
µ for GF

2 0.0560 0.0570 0.0156 0.0525 0.5092
3 0.1179 0.1179 0.0359 0.0557 0.5135
4 0.2932 Not given 0.0759 0.0570 0.5322

Table 3.5: η-threshold of some independent-code quantizers and code-aware quantiz-
ers for the family of irregular LDPC codes of rate 1

2
, variable node degree distribution

λ(x) = 0.23882x+ 0.29515x2 + 0.03261x3 + 0.43342x10 and check node degree distri-
bution ρ(x) = 0.43011x6 + 0.56989x7. The a priori information and the exchanged
messages of the finite-alphabet Min-Sum decoder are quantized on q = 2 bits and
the a posteriori information is quantized on q̃ = q + 1 bits.

η GF DL MIXL̄ MILL̄ Optimal
µ for GF

10−3 0.5362 0.5362 0.4330 0.5107 0.7952
10−4 0.4536 0.4536 0.2825 0.4351 0.6146
10−5 0.3760 0.3760 0.1947 0.3490 0.5592
10−10 0.1868 0.1868 0.0667 0.1704 0.5179

Table 3.6: η-threshold of some independent-code quantizers and code-aware quantiz-
ers for the family of irregular LDPC codes of rate 1

2
, variable node degree distribution

λ(x) = 0.23882x+ 0.29515x2 + 0.03261x3 + 0.43342x10 and check node degree distri-
bution ρ(x) = 0.43011x6 + 0.56989x7. The a priori information and the exchanged
messages of the finite-alphabet Min-Sum decoder are quantized on q = 3 bits and
the a posteriori information is quantized on q̃ = q + 1 bits.

η GF DL MIXL̄ MILL̄ Optimal
µ for GF

10−3 0.6733 0.6798 0.6668 0.6620 2.3247
10−4 0.6600 0.6650 0.4792 0.6590 1.5193
10−5 0.6350 0.6384 0.3373 0.5432 1.3183
10−10 0.4869 0.4870 0.1182 0.2716 0.6536
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Figure 3.2: Decision levels of DL and GF quantizers obtained when η = 10−5, q = 3
and using the irregular LDPC code of rate one-half in Section 3.5.2
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Figure 3.3: Error probability Pe obtained via DE using the GF quantizer with pa-
rameter µ as a function of the channel SNR when q = 3 bits. The value of η for
which the quantizer is optimal is given between parentheses.

Figure 3.3 shows the asymptotic error probability (i.e., Pe = lim`→∞ P
(`)
e ) at the

decoder output obtained via density evolution as a function of the channel SNR for
the GF quantizer and for different values of the gain factor µ. It can be observed that
the optimal value of µ which maximizes the noise threshold (equivalently minimizes
the SNR threshold) for a zero target bit error rate has a bad performance for the
SNR values smaller than 9 dB. This is due to the error floor in the curve of error
probability when the slope changes from a certain value of SNR. Thus, it is necessary
to optimize the quantizer for a target error probability to avoid having an error floor
behavior in the curve or bad performance at this target value.
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3.5.3 Finite length performance of GF quantizer

In this section, we study the performance of GF quantizer for finite length irregular
LDPC codes, with node-degree distribution polynomials λ and ρ from Section 3.5.2.
Figures 3.4 and 3.5 show the bit error rate (BER) curves, with q = 4, for infinite
length code based on density evolution and for finite length codes with a codeword
length N , when η = 10−4, and η = 10−5 respectively. Two methods for constructing
finite length codes are under consideration. The first method is when the code is
constructed randomly (RAND). The second is when the code is constructed using
the “progressive edge growth” (PEG) algorithm [41] in order to avoid undesirables
graph topologies (such as short cycles, small trapping sets, etc.). The corresponding
optimal µ value for each η can be obtained from Table 3.7.

Table 3.7: η-threshold of some independent-code quantizers and GF quantizer for the
family of irregular LDPC codes of rate 1

2
, variable node degree distribution λ(x) =

0.23882x+ 0.29515x2 + 0.03261x3 + 0.43342x10 and check node degree distribution
ρ(x) = 0.43011x6 +0.56989x7. The a priori information and the exchanged messages
of the finite-alphabet Min-Sum decoder are quantized on q = 4 bits and the a
posteriori information is quantized on q̃ = q + 1 bits.

η GF MIXL̄ MILL̄ Optimal
µ for GF

10−3 0.7074 0.6962 0.7063 3.9905
10−4 0.7068 0.5600 0.7063 3.8010
10−5 0.6999 0.4010 0.6095 2.9582
10−10 0.6457 0.1225 0.3170 1.4497

For the infinite length code, one can see that the BER curve is subject to a
fall at the η−threshold SNR for η = 10−4 and η = 10−5 in Figures 3.4 and 3.5
respectively. Then the curves experience an error floor starting from a value of BER
equal (in general less or equal) to the target value η for which the GF quantizer is
optimized. Consequently, one can conclude that optimizing the quantizer is crucial
to avoid error floor at the target BER. To the best of our knowledge, this is the first
time where it is shown that the error floor is not due solely to specific topologies in
the “finite-length graph”, but also to an intrinsic asymptotic behavior that occurs
even for infinite length codes. For the finite length code, the curves exhibit a similar
behavior; however, the curve for the finite length code presents a smooth fall rather
than an infinite-slope fall as in the asymptotic case.

We observe that the error probability of the finite length code, which is con-
structed randomly, is lower bounded by the error probability obtained via density
evolution during the error floor part and the curves are not exactly matching. This
is due to the topology of the finite length code, which makes its performance af-
fected by other factors (e.g., trapping sets [80], absorbing sets [114], etc.). Moreover,
we have observed that the minimum distance of the randomly constructed code is
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very small, such that in the error floor region the decoder converges quite often to a
wrong codeword (different from the one actually sent over the channel). Both codes
constructed by the PEG algorithm (N = 4000 and N = 20000) have girth equal to 8
and good minimum distance properties. For these codes, in all the simulations that
we ran, the decoder never converged to a wrong codeword. Surprisingly, the error
probability of the PEG constructed codes in the error floor region is smaller than
the one predicted by density evolution.

To explain this, we have investigated the edge-perspective joint degree distribu-
tion of the constructed codes. If (λ, ρ) is the degree distribution pair of the irregular
LDPC code ensemble, an implicit assumption made in the classical density evolution
is that the fraction of edges connected to a variable-node of degree i and check-nodes
of degree j is given by fij = λi · ρj. However, for the PEG constructed codes, we
observed a mismatch between the constructed fij distribution and the theoretical
one (even if the constructed λ and ρ distributions are very close to the theoretical
ones). To overcome this issue, future works should consider the density evolution for
multi-edge type LDPC [81].
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Figure 3.4: BER curves for the GF quantizer with finite and infinite length codes
when q = 4, η = 10−4 (µ = 3.8010) and using the irregular LDPC code of rate
one-half in Section 3.5.2
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Figure 3.5: BER curves for the GF quantizer with finite and infinite length codes
when q = 4, η = 10−5 (µ = 2.9582) and using the irregular LDPC code of rate
one-half in Section 3.5.2

3.5.4 Irregular LDPC code design for finite-alphabet Min-
Sum decoder

It was shown in Section 3.5.2 that irregular codes designed for infinite-alphabet
decoders based on belief propagation decoding may lead to very bad thresholds
when used for finite-alphabet Min-Sum decoders (see Table 3.4). In this section,
we propose to design irregular LDPC codes for finite-alphabet Min-Sum decoders
operating with a certain (small) number of quantization bits q (for the a priori
information and exchanged messages) and q̃ (for the a posteriori information). The
design of a code for a fixed rate, consists in finding the optimal degree distribution
pairs, usually for some fixed maximum variable node and check node degrees (dv
and dc) to simplify the optimization.

In our simulations, we have chosen to fix the maximum variable node degree
dv = 11. Ideally, we should consider a variable-node degree distribution of the form
λ(x) =

∑11
i=2 λix

i−1 and optimize all λi. However, this will make the optimization
very complex due to the large number of variables. Thus, we have considered a
variable-node degree distribution of the form λ(x) = λ2x + λ3x

2 + λ4x
3 + λ11x

10

which has the same form of the irregular code in Section 3.5.2. The code rate r is
fixed to one half. The check-node degree distribution ρ is chosen to be semi-regular,
according to the value of λ and the coding rate r. We consider a GF quantizer, with
a gain factor g optimized jointly with the degree distribution pair to maximize the
η-threshold for a target error probability equal to η.
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Table 3.8: Good degree distribution pairs of rate one-half with variable node degrees
fixed to 2, 3, 4 and 11 for q = 2, 3 and 4, when η = 10−10. For each degree distribution
pair, the η-threshold value in terms of noise variance σ2

th and the corresponding SNR
in decibels are given, as well as the optimized gain factor µ for the GF quantizer.

q 2 3 4
λ2 0 0.000276893 0.24805492
λ3 0.95587734 0.876706068 0.49037245
λ4 0.00015006 0.000000024 0.00000559
λ11 0.04397260 0.123017015 0.26156704
ρ6 0.775877 0.37470064 0.53656845
ρ7 0.224123 0.62529936 0.46343155
µ 1.51 2.776 1.4

σ2
th 0.5423889 0.6660461 0.717987

SNRth [dB] 2.656892 1.764957 1.438834

The optimization problem under consideration, for fixed q and r, is the following:

max
λ(x),µ

σ2
th(λ(x), ρ(x), µ; η) (3.13)

subject to:
∑
i

λi = 1 (3.14)

0 ≤ λi ≤ 1 ∀i (3.15)
µ > 0 (3.16)

where ρ is the unique (semi-)regular polynomial such that

∫ 1

0

ρ(x)dx = (1− r) ·
∫ 1

0

λ(x)dx (3.17)

Optimization techniques to solve such problems were described in [47]. In our sim-
ulations, we have used “differential evolution” method [92] to solve this problem.
Table 3.8 gives some good codes found by solving problem (3.16) for q = 2, 3, 4
and η = 10−10. Figure 3.6 shows the error probability as a function of the channel
SNR using the optimized code for belief propagation decoding in Section 3.5.2 and
the optimized code for the finite-alphabet Min-Sum decoding in Table 3.8 for each
q ∈ {2, 3, 4} and for target error probability η = 10−10. We observe that noticeable
gains of 4.63 dB, 1.36 dB, and 0.46 dB in SNR thresholds are obtained with respect
to optimized code for belief propagation decoding, when q = 2, 3 and 4 respectively.
Thus, it is crucial to consider the “finite-alphabet” property of the decoder to design
irregular LDPC codes for finite-alphabet Min-Sum decoders.
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We observe in Table 3.8 that when q = 2, the optimized code is very similar to
a semi-regular code with r = 1

2
and dv = 3, since λ3 ≈ 1. The η-threshold obtained

for q = 2 (σ2
th = 0.5423889) is also close to that of the (semi-) regular code of rate

one-half with dv = 3 given in Table 3.2. In Table 3.8, we observe that the optimized
codes exhibit higher irregularity with increasing q. Thus, we conclude that (semi-)
regular LDPC codes achieve good thresholds for finite-alphabet decoders with a very
few number of quantization bits.
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Figure 3.6: Error probability Pe obtained via density evolution using the GF quan-
tizer as a function of the channel SNR for η = 10−10 and q ∈ {2, 3, 4}. For each q, the
error probability is plotted for CMS, the optimized code for the finite-alphabet min
sum decoder given in Table 3.8 and CBP, the optimized code for belief propagation
decoding given in Section 3.5.2
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3.6 Conclusion
In this chapter, we investigated the design of code-aware quantizers for finite-alphabet
Min-Sum decoders which maximize the noise threshold of the existing family of
LDPC code. We have presented some non-aware-code quantizers existing in liter-
ature and shown that code-aware quantizers outperform them in terms of noise
threshold. We also proposed a low complexity code-aware quantizer. Besides the
quantizer itself, one of the main contributions of the work was to show that its
performance is close to that of the quantizer whose all decision levels are optimized
exhaustively. Moreover, we proposed to design the code-aware quantizer for a target
BER and it was shown that this can prevent error floor phenomenon at the target
BER. Finally, we proposed the joint design of good irregular LDPC code and code-
aware quantizer for a Min-Sum decoder with finite-alphabet resulting into important
gain in threshold with respect to irregular LDPC codes designed for belief propaga-
tion decoders with infinite-alphabet. This work can be considered as a benchmark
for practical implementation of LDPC codes on a finite-alphabet hardware.



Chapter 4

Design of High Throughput LDPC
Decoder based on Imprecise Offset
Min-Sum Decoding

This chapter proposes two new decoding algorithms and hardware implemen-
tations, obtained by introducing two levels of impreciseness in the Offset MS
(OMS) decoding: the Partially OMS (POMS), which performs only partially
the offset correction, and the Imprecise Partially OMS (I-POMS), which in-
troduces a further level of impreciseness in the check-node processing unit.
We show that they allow significant reduction in the memory (25% with re-
spect to the conventional OMS) and interconnect, and we further propose a
cost-efficient check-node unit (CNU) architecture, yielding a cost reduction
of 56% with respect to the conventional CNU architecture.
We further implement FPGA-based layered decoder architectures using the
proposed algorithms as decoding kernels, for a (3,6)-regular Quasi-Cyclic
LDPC code of length 1296 bits, and evaluate them in terms of cost, through-
put and decoding performance. Implementation results on Xilinx Virtex 6
FPGA device show that they can achieve a throughput between 1.95 and
2.41Gbps for 20 decoding iterations (48% to 83% increase with respect to
OMS), while providing decoding performance close to the OMS decoder, de-
spite the impreciseness introduced in the processing units.

65
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4.1 Introduction
Most hardware implementations of LDPC decoders are based on the Min-Sum (MS)
algorithm [33] or enhanced versions of it, such as Normalized MS (NMS) and Offset
MS (OMS) [16]. Further enhancements have been proposed in the literature, as
follows. In [105], the authors proposed a modification of the OMS, in which the offset
factor is adjusted iteratively, by using information from previous decoding steps.
Similarly, adaptive NMS or OMS decoding algorithms have been proposed in [48,
102], where the normalization/offset factor is adjusted at each iteration according
to information gained from the check-node processing step. In [48] the offset factor
is determined by the magnitude of the minimum output of the check-node, while
in [102] the normalization/offset factor is adjusted according to the check-node state
(verified or not). It should be noticed that all the above-mentioned papers focus on
improving the error correction performance of the NMS/OMS decoders, especially
in case of irregular codes. This is achieved at the price of an increased computational
complexity, required by the adaptation mechanism, which translates into cost and
throughput penalties in case of hardware implementation.

In order to address cost-efficiency and high-throughput issues, we propose two
new decoding algorithms and hardware implementations, obtained by introducing
two levels of impreciseness in the OMS decoding. The first level of impreciseness
concerns the offset factor: rather than subtracting a constant offset factor from
check-node messages, we simply “erase” the value of the least significant bit (LSB).
We refer to this decoding algorithm as Partially OMS (POMS) and show that it
has the following advantages in terms of hardware implementation: (i) significant
reduction of interconnect and memory requirements, and (ii) simple architecture for
the check-node processing unit (CNU), which avoids the use of comparator trees.
Besides, the error-correction performance of the proposed POMS is very close to
that of the OMS, both outperforming the conventional MS decoding. Moreover, we
introduce a second level of impreciseness in the CNU, by suppressing some of the
signals computed by the POMS decoder. The corresponding decoder is referred to
as Imprecise-POMS (I-POMS) and we show that it allows further improvements in
hardware cost and throughput.

The rest of the chapter is organized as follows. Section 4.2 reminds the MS,
OMS in shortly as well as the proposed POMS decoding algorithms. The hardware
architecture of the MS, OMS, POMS decoders for (3,6)-regular QC-LDPC codes is
discussed in Section 4.3. Section 4.4 presents the I-POMS decoder. Implementation
results are presented in Section 4.5, and Section 4.6 concludes the chapter.
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Algorithm 8 Layered MS / OMS / POMS decoding algorithms
Input: y = (y1, . . . , yN) ∈ YN (Y is the channel output alphabet). received word
Output: x̂ = (x̂1, . . . , x̂N) ∈ {0, 1}N . estimated codeword

[Initialization]
for all n = 1, . . . , N do Ln = log Pr(xn=0|yn)

Pr(xn=1|yn)
;

for all n = 1, . . . , N do γ̃n = γn = ϕ(Ln); . input quantization
for all n = 1, . . . , N and m ∈ H(n) do βm,n = 0;

[Decoding Iterations]
for all ` = 1, . . . , L do . Loop over horizontal layers

for all m ∈M` and n ∈ H(m) do . VNU
αm,n = γ̃n − βm,n;

for all m ∈M` and n ∈ H(m) do . CNU
βm,n =

(∏
n′∈H(m)\n sgn(αm,n′)

)
· |β|m,n;

// where |β|m,n is defined in the algorithm footnote below

for all m ∈M` and n ∈ H(m) do . AP-LLR
γ̃n = αm,n + βm,n;

end (horizontal layers loop)

Let αsat
m,n be the value of αm,n (output of the VNU) saturated to a lower quantization

level. In the CNU, the message amplitude |β|m,n is computed as follows, according
to the decoding algorithm:
MS : |β|m,n = minn′∈H(m)\n

(
|αsat
m,n′|

)
OMS: |β|m,n = max

(
minn′∈H(m)\n

(
|αsat
m,n′|

)
− δ, 0

)
// where δ > 0 is the offset factor

POMS: |β|m,n = minn′∈H(m)\n
(
|αsat
m,n′|[LSB←0]

)
// x[LSB←0] means that the LSB of x is set to 0

4.2 Proposed Partially Offset Min-Sum Decoding

MS, OMS, and POMS decoding algorithms are described in Algorithm 8. While our
description assumes layered decoding [40] and finite quantization (for the needs of
the hardware implementation), it can be easily extended to more general settings.
We shall further assume that input LLRs and exchanged messages are quantized
on q bits, while AP-LLR values are quantized on q̃ bits, with q < q̃. Subtractions
and additions used in the Variable Node Unit (VNU) and AP-LLR update steps
are implemented through the use of q̃-bit saturated adders. Variable-node messages
(αm,n) are saturated to q bits just before entering the Check Node Unit (CNU).
Hence, the amplitude values |αsat

m,n| used in the CNU are (q − 1)-bit values. It can
be noticed that the three decoders only differ in the computation of the amplitude
of check-node messages, denoted by |β|m,n. For the POMS decoding, the LSB of
|α(sat)
m,n | is set to zero prior to the minimum computation. It can be easily seen that
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this is equivalent to first computing the minimum and then setting the LSB of the
result to zero. Moreover, using superscripts to denote the corresponding algorithm,
and assuming that the offset factor for the OMS decoding is δ = 1, we have:

|β|(POMS)
m,n =

{
|β|(MS)

m,n if LSB
[
|β|(MS)

m,n

]
= 0

|β|(OMS)
m,n otherwise (for δ = 1)

(4.1)

The proposed POMS operates the same as the OMS decoding only if LSB
[
|β|(MS)

m,n

]
=

1, and thus the offset correction (with δ = 1) is only partially achieved. Consequently,
the decoding performance of POMS is expected to be in between MS and OMS. Note
that δ = 1 is the optimal offset factor in case that exchanged messages are quantized
on a relatively small number of bits (e.g., q = 4). For such a quantization scheme,
since the LSBs of β(POMS)

m,n messages are always zero and need not be stored, POMS
may lead to significant savings in memory and interconnects.
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4.3 Hardware Architecture for QC-LDPC Decoders
with Layered Scheduling

4.3.1 Hardware Architecture for Min-Sum Based Decoders

As mentioned in Chapter 2, QC-LDPC codes are known to achieve error correction
performance comparable to that of random codes, while facilitating the hardware
implementation of the decoder. In this section, we consider a (3,6)-regular QC-
LDPC code defined by a base matrix B of size R × C = 12 × 24, and expansion
factor z = 54, corresponding to a parity check matrix H of size M × N , with
M = z ·R = 54 ·12 = 648 and N = z ·C = 54 ·24 = 1296. The code is (3, 6)-regular,
meaning that H has 3 non-zero entries per column, and 6 non-zero entries per row.
The base matrix of the (3,6)-regular LDPC code is given in Figure 4.1. It is worth
noting that B is designed such that H can be divided in L = 3 horizontal decoding
layers1, with each layer corresponding to rpl = 4 consecutive rows ofB. This special
case allows maximum parallelism to be exploited through the use of full decoding
layers2. We further define Z = z×rpl, corresponding to the number of parity checks
(rows of H) within one decoding layer, and referred to as the parallelism degree (of
the hardware architecture). Each column of H has exactly one non-zero entry in
each layer.

49 -1 -1 -1 -1 43 -1 -1 -1 -1 50 -1 -1 -1 -1 2 -1 27 -1 -1 -1 -1 -1 49

-1 -1 -1 10 41 -1 -1 -1 -1 52 -1 -1 32 -1 -1 -1 -1 -1 50 -1 50 -1 -1 -1

-1 -1 20 -1 -1 -1 -1 20 -1 -1 -1 51 -1 10 -1 -1 47 -1 -1 -1 -1 -1 33 -1

-1 24 -1 -1 -1 -1 22 -1 53 -1 -1 -1 -1 -1 31 -1 -1 -1 -1 18 -1 47 -1 -1

10 -1 -1 -1 15 -1 -1 -1 -1 -1 2 -1 -1 -1 -1 50 -1 13 -1 -1 -1 -1 -1 53

-1 -1 44 -1 -1 6 -1 -1 -1 -1 -1 29 -1 40 -1 -1 16 -1 -1 -1 13 -1 -1 -1

-1 2 -1 -1 -1 -1 -1 13 41 -1 -1 -1 -1 -1 42 -1 -1 -1 -1 48 -1 49 -1 -1

-1 -1 -1 36 -1 -1 24 -1 -1 50 -1 -1 12 -1 -1 -1 -1 -1 10 -1 -1 -1 48 -1

-1 -1 47 -1 50 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 9 -1 7 -1 -1 -1 -1 -1 28

6 -1 -1 -1 -1 -1 5 -1 -1 -1 -1 13 -1 3 -1 -1 29 -1 -1 -1 16 -1 -1 -1

-1 -1 -1 35 -1 16 -1 -1 37 -1 -1 -1 4 -1 -1 -1 -1 -1 24 -1 -1 -1 29 -1

-1 24 -1 -1 -1 -1 -1 51 -1 38 -1 -1 -1 -1 6 -1 -1 -1 -1 23 -1 16 -1 -1

Figure 4.1: Base matrix of the (3, 6)-regular QC-LDPC code

The block diagram of MS, OMS and POMS decoders is illustrated in Figure 4.2.
It can be summarized by the following main blocks:

Input/Output buffers. The input buffer, implemented as a number of Serial Input
Parallel Output (SIPO) shift registers, is used to store the input LLR values (γn)
received by the decoder. The output buffer, is used to store the hard bit estimates of
the decoded word. Input/output buffers allow data load/offload operations to take
place concomitantly with the decoding of the current codeword.

1A decoding layer consists of one or several consecutive rows of B, assuming that they do not
overlap (i.e., each column has at most one non-negative entry within each layer).

2A decoding layer is said to be full if each column of the base matrix has one non-negative entry
in one of the rows composing the layer.
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Figure 4.2: Block diagram for (3, 6)-regular QC-LDPC decoder

Memory blocks. Two memory blocks are used, one for the γ̃n values (γ̃_memory)
and one for the βm,n messages (β_memory). γ̃n values are quantized on q̃ = 6
bits, and βm,n values on q = 4 bits. Depending on the Check Node Unit (CNU)
implementation, check-to-node messages (β_message) can be either “uncompressed”
(i.e., for a check-node m, the corresponding β_message is given by the dc values
[βm,n1 , . . . , βm,ndc

], where n1, . . . , ndc denote the variable nodes connected to m) or
“compressed” (i.e., for a check-node m, the corresponding β_message is given by
the signs of the above βm,ni

messages, their first and second minimum, denoted
by min1 and min2, and the index of the first minimum, denoted by indx_min1)
[99]. Figure 4.3 and Figure 4.4 show β_message in uncompressed and compressed
format, respectively. Memory requirements for the βm,n values are further reduced
for the POMS decoder, as will be discussed in the next section. All data is read and
processed at during one clock cycle, then written during the consecutive clock cycle,
and so on. Therefore, the decoder takes 2 clock cycles for each layer processing.
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Figure 4.3: Uncompressed β-message
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Figure 4.4: Compressed β-message

Read and Write Permutations (PER_R, PER_W). PER_R permutation
is used to rearrange the data read from γ̃_memory, according to the processed
layer, so as to ensure processing by the proper VNU/CNU. PER_W block operates
oppositely to PER_R.
Read and Write Barrel Shifters (BS_R, BS_W). Barrel shifters are used to
implement the cyclic (shift) permutations corresponding to the non-negative entries
of the base matrix B. For the architecture in Figure 4.2, we use 24 BS_R and 24
BS_W blocks, corresponding to the number of columns of B. Each of them has 54
inputs and 54 outputs (for expansion factor z = 54).
Variable Node Units (VNUs) and AP-LLR Units. These units compute VN-
messages (αm,n) and AP-LLR values (γ̃n). Each VN-message is computed by sub-
tracting the corresponding CN-message from the AP-LLR value, that is αm,n =
γ̃n−βm,n. This operation is implemented by a q̃-bit subtractor, hence the αm,n value
outputted by the VNU is quantized on q̃ bits. The AP-LLR value is updated by the
AP-LLR unit, by γ̃n = αm,n + βnew

m,n, where βnew
m,n is the corresponding CN-message

computed at the current iteration (see below).
Saturators (SATs). Prior to CNU processing, αm,n values are saturated to q bits.
In other words, after saturation, α(sat)

m,n values are within the range {−Q, . . . ,+Q},
where Q = 2q−1 − 1.
Check Node Units (CNUs). These processing units compute the CN-messages
(βm,n). Each CNU_i (i = 1, . . . ,rpl) block in Figure 4.2 consists of dc inputs, each
one of size z×q bits. Thus, each CNU block actually includes z computing units, used
to process in parallel the z check-nodes within one row of the base matrix B. The
CNU is implemented by using either: (i) the high-speed low-cost tree-structure (TS)
approach proposed in [101] for “compressed” CN-messages, or (ii) comparator trees
for “uncompressed” CN-messages. The CNU architecture will be further detailed in
Section 4.3.2, where the proposed CNU architecture for the POMS decoder will also
be presented.
AP-LLR Units. These units compute the γ̃n values. Each AP-LLR_i (i = 1, . . . , C)
in Figure 4.2 consists of 54 6-bit saturated adders, for the parallel execution of 54
variable-nodes (corresponding to one column of B).
Controller. This block generates control signals such as count_layer for indicating
which layer is being processed, en_read and en_write for reading and writing data,
etc. It also controls the synchronous execution of the other blocks.
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Figure 4.5: Proposed CNU architecture for POMS (dc = 6)

4.3.2 Hardware Architecture for Proposed POMS Decoder

To ensure efficient implementation of the proposed POMS decoder, the CNU, VNU
and AP-LLR blocks are modified as discussed below.

CNU Architecture. Many CNU architectures compute only the first minimum,
the second minimum and index of the first minimum of the incoming |α(sat)

m,n |messages
(based on the observation that the amplitudes of the outgoing check-node message
are equal to the first minimum, except for the corresponding index for which the
amplitude of the check-node message is given by the second minimum). Yet, as
indicated in [107], this method is suitable for ASIC implementation, but for FPGA
implementation it is three times more complex than parallel computation of |β|m,n
by comparator trees. In this work, the CNU architecture proposed in [107] has been
implemented, both for the MS and the OMS decoders.

We discuss now the CNU architecture for the POMS decoder. As mentioned
before, the αm,n messages are saturated to q = 4 bits by the SAT blocks. After
saturation, the absolute value |α(sat)

m,n | is stored on 3 bits, and the LSB is set to zero
by the POMS decoder. Let am,n denote the 2-bit value obtained from |α(sat)

m,n | by
removing LSB as in Figure 4.5. Let dc be the number of incoming messages into
the CNU (in our case dc = 6). The computation of |β|(poms)

m,n requires finding the
minimum among (dc−1) 2-bit values (precisely the am,n′ values, for n′ ∈ H(m)\n).
Let us define:

AndMsb = AND (am,n′ [1]) ; // AND of MSB of (dc−1) inputs (4.2)
AndLsb = AND (am,n′ [0]) ; // AND of LSB of (dc−1) inputs (4.3)

Detect_0 =

{
0, if at least one input equals to 0
1, otherwise (4.4)

// signal that detects if at least one input equals to 0
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With the above notation, the |β|(poms)
m,n 2-bit value (omitting LSB that is equal to

0) can be computed by:

|β|(poms)
m,n (2 bits)

(in binary format)

=

{
01, if [Detect_0,AndMsb,AndLsb] = 100
[AndMsb, AndLsb], otherwise (4.5)

where [x, y] denotes concatenation operator.

VNU and AP-LLR Architecture. According to the above discussion, only 3
bits are required for each β(poms)

m,n message (2 bits for |β|(poms)
m,n and 1 bit for the sign),

representing a reduction by 25% of the β_memory size, with respect to conventional
MS and OMS decoders. To accommodate this change, in the VNU and AP-LLR
blocks the β

(poms)
m,n message is extended to 4 bits, by appending a zero LSB, as

illustrated in Figure 4.6.

(a)
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Figure 4.6: VNU (a) and AP-LLR (b) architectures for POMS decoder
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4.4 Imprecise Partially Offset Min-Sum Decoder
This section describes the I-POMS decoder, obtained by introducing a second level
of impreciseness in the CNU processing. According to the above section, the CNU of
the POMS decoder comprises a Detect_0 signal, which is used to obtain the correct
minimum value in case that both AndMsb and AndLsb signals are 0. In case that
AndMsb = AndLsb = 0, the Detect_0 signal allows one distinguish between the
following two possible cases: (i) at least one input is equal to 0 (hence the minimum
is equal to 0), or (ii) no input is equal to zero, in which case there must be at least
one input equal to 1 and another one equal to 2 (hence the minimum is equal to
1). However, compared to the AndMsb and AndLsb signals, the Detect_0 signal
requires much more logic gates to be implemented. To further simplify the CNU
architecture, we propose an imprecise CNU by suppressing the Detect_0 signal.
Using the notation from the previous section, let us further define:

a∗m,n =

{
am,n, if am,n = 0, 1, 3

1, if am,n = 2
(4.6)

The I-POMS decoder computes |β|(i-poms)
m,n = [AndMsb∗, AndLsb∗], with AndMsb∗

and AndLsb∗ signals computed from a∗m,n values. Note that |β|(i-poms)
m,n 6= |β|(poms)

m,n

only if am,n′ ≥ 2, ∀n′ and there exist at least one am,n′ value equal to 2. Figure 4.7
illustrates the implementation of the CNU for the I-POMS decoder. It only uses 24
AND gates to compute six |β|(i-poms)

m,n messages in parallel.
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Figure 4.7: Diagram circuit for computing |β|m,n messages in parallel (dc = 6) for
I-POMS decoder (one such circuit is used for each of LSB and MSB)
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4.5 Implementation Results
FPGA synthesis results reported in this section are after place and route and have
been obtained by using the Xilinx tool ISE 14.6. Table 4.1 shows the hardware
(HW) resources required to implement one CNU block for the four decoders under
investigation. It can be seen that the CNU architectures proposed for the POMS
and I-POMS decoders achieve significant HW resources reduction compared to the
conventional CNU architecture used for MS and OMS (e.g., the number of LUTs
is reduced by 56%). Full implementation results for the four decoders are shown
in Table 4.2. It can be seen that the proposed POMS not only saves 25% memory
resources on FPGA, but also increases the throughput by 10% and 48%, compared
with conventional MS and OMS, respectively. Since all data is processed in full
parallel at each layer, the number of BRAMs may appear to be large, but only 3
among 512 words are used for each BRAM.

Table 4.1: CNU hardware resources for MS, OMS (δ = 1), POMS, and I-POMS
decoders (dc = 6)

Decoder MS OMS POMS I-POMS
Device Xilinx Virtex 6 (XC6VLX240T-1FF1156)−ISE 14.6

No. slice LUTs/CNU unit (post PAR) 54 69 42 30
Cost reduction/CNU unit (compared to OMS) 21% 0% 39% 56%

Table 4.2: Implementation results for MS, OMS (δ = 1), POMS, and I-POMS de-
coders

Decoder MS OMS POMS I-POMS
Device Xilinx Virtex 6 (XC6VLX240T-1FF1156)−ISE 14.6

LDPC code QC-Regular (3,6), code rate: 0.5, codeword length: 1296

No. slice registers 23352 23352 23352 23352
No. slice LUTs 95188 97604 93202 90872
No. RAMB36E1 144 144 96 96
No. RAMB18E1 0 0 24 24
Max freq (MHz) 164 122 181 223
Throughput (Gbps) 1.77 1.32 1.95 2.41

We use two different signals to control memory reading and writing in consec-
utive clock cycles. This significantly improves the maximum operating frequency,
compared to using 1 signal for both reading and writing, but also leads to an in-
creased number of registers. Depending on the application, one may trade-off be-
tween throughput and area. Decoding throughput is computed by:

Throughput = (CodeLength× fmax) / (niter × ncyc) (4.7)

where fmax is the maximum operating frequency, niter is the maximum number of
decoding iterations, and ncyc is the number of clock cycles needed to complete one
iteration. The throughput reported in Table 4.2 corresponds to niter = 20, with
ncyc = 6 (2 clock cycles per layer).
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Figure 4.8: Decoding performance for proposed algorithms (AWGN channel)

Finally, to verify the error correction performance of POMS and I-POMS de-
coding algorithms, we have conducted Monte Carlo simulations for the (3,6)-regular
code with rate 0.5, and codeword length 1296 bits. The maximum number of de-
coding iterations is set to 20. The Bit Error Rate (BER) and Frame Error Rate
(FER) performance are shown in Figure 4.8. For comparison purposes, we have also
included the BER and FER performance of the conventional MS and OMS (δ = 1)
decoders. It can be seen that the proposed POMS decoder operates very close to the
OMS decoder. For a BER of 10−5, the POMS is at only 0.07 dB from the OMS, while
showing a gain of 0.16dB with respect to the MS decoder. I-POMS performance is
also comparable to that of the MS decoder (gap of 0.08 dB), in spite of the im-
preciseness introduced in the CNU, while the throughput is considerably increased
(36%).
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4.6 Conclusion
This chapter proposed the use of imprecise processing units for the OMS decoder,
in order to improve the cost and the throughput of the hardware implementation.
Impreciseness has been introduced at two levels: (i) within the offset correction,
which is only partially achieved, and (ii) within the minimum computation required
by the CNU. We further demonstrated the merits of the proposed POMS and I-
POMS decoders in terms of hardware implementation. Hardware architectures have
been proposed for (3, 6)-regular QC-LDPC codes, which highlighted the following
advantages of our proposal: (i) significant memory and interconnect savings, (ii)
simple CNU architecture, requiring only a very small number of AND gates, (iii)
increased throughput, up to 2.41Gbps and (iv) provides good to very good decoding
performance, despite the imprecise processing units.
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Chapter 5

Non-Surjective Finite Alphabet
Iterative Decoders

This chapter introduces a new family of Non-Surjective Finite Alphabet
Iterative Decoders (NS-FAIDs), characterized by specific processing rules,
which can be theoretically analyzed and optimized for different trade-offs
between hardware cost and error correction performance. The proposed ap-
proach builds upon the approximate storage technique, and allows storing
the exchanged messages using a smaller precision than the processing units.
It is also shown to provide a unified approach for several designs previously
proposed in the literature.
NS-FAIDs are optimized by density evolution for regular and irregular LDPC
codes, and are shown to provide different trade-offs between hardware com-
plexity and decoding performance. In particular, we show that optimized
NS-FAIDs may yield significant reductions of the memory size requirements,
while providing even better or only slightly degraded error correction perfor-
mance with respect to other MS-based decoders.

79
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5.1 Introduction

This chapter targets the design of cost-effective Low-Density Parity-Check (LDPC)
decoders, suitable for the new generation of communication systems, requiring in-
creased data rates and reduced energy footprint. One important characteristic of
LDPC decoders is that the memory and interconnect blocks dominate the overall
area/delay/power performance of the hardware design. To address this issue, we
build upon the concept of Finite Alphabet Iterative Decoders (FAIDs), introduced
in [11, 76–78]. FAIDs have been seen as a novel approach to the design of finite pre-
cision iterative decoders. In this approach the messages are not log likelihood ratios,
but “confidence” levels that belong to a finite alphabet. The finite alphabet contains
a relatively small number of symbols (the one proposed by authors is 7), which re-
quires a small number of bits for its representation. The main difference with the MS
decoding consists in the update rule used in the variable-node processing units. A
variable-node message is computed as an “inexact” sum of the incoming check-node
messages. The inexact sum is defined through an inexact sum table, which is derived
using knowledge of trapping sets [80] and are chosen to increase the guaranteed error
correction capability of the code in the error floor region. Moreover, empirical results
show that FAIDs with 3 bits messages may outperform floating-point SP decoding
[76].

While FAIDs have been previously investigated for variable-node regular LDPC
codes over the binary symmetric channel (BSC), this work extends their use to
any channel model, and to both regular and irregular LDPC codes. The approach
considered in this chapter is to allow storing the exchanged messages using a lower
precision (smaller number of bits) than that used by the processing units. The basic
idea is to reduce the size of the exchanged messages, once they have been updated by
the processing units. Hence, to some extent, the proposed approach is akin to the use
of imprecise storage, which is seen as an enabler for cost-effective, high-throughput,
and/or low-power decoder designs.

The proposed approach, referred to as Non-Surjective FAIDs (NS-FAIDs), is
shown to provide a unified framework for several designs previously proposed in
the literature, including the Normalized and Offset Min-Sum (MS) decoders [17],
the Partially Offset MS decoder in Chapter 4, the MS-based decoders proposed in
[13, 73], or the recently introduced Dual-quantization domain MS decoder [3]. It was
shown that NS-FAIDs can be optimized by using the Density Evolution (DE) tech-
nique, such as to obtain the best possible decoding performance for given hardware
constraints, expressed in terms of memory/interconnect reduction. The DE opti-
mization is illustrated for (3,6)-regular and the WiMAX irregular LDPC codes [46].
As a results, we proposed a set of 12 regular NS-FAIDs and 27 irregular NS-FAIDs,
with different trade-offs between hardware complexity and decoding performance.
For instance, irregular NS-FAID-433 may provide decoding gains up to 0.36dB,
while yielding a VN-message size reduction by 17.76% compared to the MS decoder.
Finally, to corroborate the analytic results obtained by DE, we conducted Monte-
Carlo simulations for the (3,6)-regular with codeword length of 1296 bits and the
WiMAX codes with rate 0.5, codeword length of 2304 bits.
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The chapter is organized as follows. NS-FAIDs are introduced in Section 5.2, in
which their implementation benefits and the DE analysis are also discussed. The op-
timization of regular and irregular NS-FAIDs is presented in Section 5.3. Section 5.4
concludes the chapter.



82 Chapter 5. Non-Surjective Finite Alphabet Iterative Decoders

5.2 Non-Surjective Finite Alphabet Iterative De-
coders

LDPC codes are defined by sparse bipartite graphs, comprising a set of variable-
nodes (VNs), corresponding to coded bits, and a set of check-nodes (CNs), corre-
sponding to parity-check equations. Finite Alphabet Iterative Decoders (FAIDs) are
message-passing LDPC decoders that have been introduced in [76–78]. We state be-
low the definition of FAIDs, in a slightly less general form than the one in [78]. Let
Q be a positive integer. A (2Q+ 1)-level FAID is a 4-tuple (M,Γ,Φv,Φc), where:

• M = {−Q, . . . ,−1, 0,+1, . . . ,+Q} is the alphabet of the exchanged messages,
and is also referred to as the decoder alphabet,

• Γ ⊆M is the input alphabet of the decoder, i.e., the set of all possible values
of the quantized soft information supplied to the decoder,

• Φv and Φc denote the update rules for VNs and CNs, respectively.

The CN-update function Φc is the same for any FAID decoder, and is equal to
the update function used by the MS decoder. Precisely, for a CN of degree dc, the
update function Φc :Mdc−1 →M is given by:

Φc (m1, . . . ,mdc−1) =

(
dc−1∏
i=1

sgn(mi)

)
min

i=1,...,dc−1
|mi| (5.1)

The VN-update function Φv : Γ×Mdv−1 →M, for a VN of degree dv, is defined
as:

Φv (γ,m1, . . . ,mdv−1) = F

(
γ +

dv−1∑
j=1

mj

)
(5.2)

where the function F : Z → M is defined based on a set of threshold values T =
{T0, T1, . . . , TQ+1} ⊂ R̄+, with T0 = 0, TQ+1 = +∞, and Ti < Tj for any i < j:

F (x) = sgn(x)m, where m is s.t. Tm ≤ |x| < Tm+1 (5.3)

It can be easily seen that any non-decreasing odd function satisfies Eq. (5.3). Pre-
cisely, the following proposition holds.

Proposition 5.1 For any function F : Z→M, there exists a threshold set T such
that F is given by Eq. (5.3), if and only if F satisfies the following two properties:

(i) F is an odd function, i.e., F (−x) = −F (x), ∀x ∈ Z,

(ii) F is non-decreasing, i.e., F (x) ≤ F (y) for any x < y.

We note that the above proposition also implies that F (0) = 0 and F (x) ≥ 0,∀x > 0.
In this chapter, we further extend the definition of FAIDs by allowing F (0) to take
on non-zero values. To ensure symmetry of the decoder, we shall write F (0) = ±λ,
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with λ ≥ 0, meaning that F (0) takes on either −λ or +λ with equal probability. In
the following, F will be referred to as framing function.

As the focus of this work is on practical implementations, we will further assume
that the sum γ+

∑dv−1
j=1 mj in Eq. (5.2) is saturated toM, prior to applying F on it.

Consequently, in the sequel we shall only consider framing functions F :M→M,
and the VN-update function Φv from Eq. (5.2) is redefined as:

Φv (γ,m1, . . . ,mdv−1) = F

(
sM

(
γ +

dv−1∑
j=1

mj

))
(5.4)

where sM : Z→M, sM(x) = sgn(x) min(|x|, Q), is the saturation function.

Since F (−x) = −F (x),∀x ∈ M, F is completely determined by the vector
[|F (0)|, F (1), ..., F (Q)], further referred to as the Look-Up Table (LUT) of F , which
satisfies the following inequalities (Proposition 5.1):

0 ≤ |F (0)| ≤ F (1) ≤ · · · ≤ F (Q) ≤ Q (5.5)

Summarizing, the subclass of FAIDs considered in this chapter is defined by
Eq. (5.4), where F is a framing function satisfying Eq. (5.5). Furthermore, for any
integer q > 0, the expression q-bit FAID is used to refer to a (2Q + 1)-level FAID,
with Q = 2q−1− 1. It follows that messages exchanged within the FAID decoder are
q-bit messages (including 1 bit for the sign).

5.2.1 Non-Surjective FAIDs

The finite alphabet MS decoder is a particular example of FAID, with framing
function F : M→M being the identity function. Using Eq. (5.5) it can be easily
verified that this is the only FAID for which the framing function F is surjective (or
equivalently bijective, since M is finite). For any other framing function F , there
exists at least one element ofM, which is not in the image of F . The class of FAIDs
defined by non-surjective framing functions is investigated in this section.

Although we restrict the study in this work to non-surjective framing functions
F :M→M, it can be readily extended to non-surjective framing functions F : Z→
M. While such an extension would widen the class of NS-FAIDs, our preliminary
investigations have shown that the best NS-FAIDs are actually those within the
subclass of NS-FAIDs defined by F :M→M, investigated in this chapter.

Definition 5.2 The weight of a framing function F : M → M, denoted by W ,
is the number of distinct entries in the vector [|F (0)|, F (1), ..., F (Q)]. It follows
that 1 ≤ W ≤ Q + 1. By a slight abuse of terminology, we shall also refer to
W as the weight of the NS-FAID. We further define the “framing bit-length” as
w = dlog2(W )e+ 1.

Definition 5.3 A non-surjective FAID (NS-FAID) is a FAID of weight W < Q+1.
Hence the framing function F is non-surjective, meaning that the image set of F is
a strict subset ofM.
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Table 5.1: Examples of 4-bit framing functions of weight W = 4
m 0 1 2 3 4 5 6 7

F1(m) 0 1 1 3 3 3 7 7
F2(m) ±1 1 1 3 3 4 4 7

Table 5.1 provides two examples of q = 4-bit NS-FAIDs (hence Q = 7), both of
which are of weight W = 4, hence framing bit-length w = dlog2 4e + 1 = 3. Note
that F1 maps 0 to 0, while F2 maps 0 to ±1. The image sets of F1 and F2 are
Im(F1) = {0,±1,±3,±7} and Im(F2) = {±1,±3,±4,±7}.

The main motivation for the introduction of NS-FAIDs is that they allow re-
ducing the size of the memory required to store the exchanged messages. Clearly,
for a NS-FAID with framing bit-length w (w ≤ q), the exchanged messages can be
represented using only w instead of q bits (including 1 bit for the sign). Moreover,
as a consequence of the message size reduction, the size of the interconnect network
that carries the messages from the memory to the processing units is also reduced.

Proposition 5.4 The number of (2Q+ 1)-level NS-FAIDs of weight W is given by:

NNS-FAID(Q,W ) =

(
Q

W − 1

)(
Q+ 1

W

)
(5.6)

where
(
y
x

)
denotes the binomial coefficient.

5.2.2 Examples of NS-FAIDs

As mentioned above, if the framing function F is the identity function, the cor-
responding FAID is equivalent to the MS decoder with finite alphabet M. Some
examples of NS-FAIDs are provided below.
Example 1. Let F :M→M be defined by:

F (x) = [ν · x]M (5.7)

where ν ∈]0, 1[, and [ξ]M denotes the closest integer to ξ that belongs toM. Then,
the corresponding NS-FAID is the Normalized Min-Sum (NMS) decoder with nor-
malization (scaling) factor ν.
Example 2. Let F :M→M be defined by:

F (x) = sgn(x) max(|x| − δ, 0) (5.8)

where δ is an integer value, such that 0 < δ < Q. Then, the corresponding NS-FAID
is the Offset Min-Sum (OMS) decoder with offset factor δ.
Example 3. Let F :M→M be defined by:

F (x) =

{
x, if |x| is even

sgn(x)(|x| − 1), if |x| is odd (5.9)
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Then, the corresponding NS-FAID is the Partially OMS (POMS) decoder in Chap-
ter 4.

Moreover, it can be seen that the MS-based decoders proposed in [13, 73] and
the dual-quantization domain decoder proposed in [3] are particular realizations of
NS-FAIDs.

While the main reason behind the NS-FAIDs definition consists in their ability
to reduce memory and interconnect requirements, we can also argue that they may
allow improving the error correction performance (with respect to MS). This is the
case of both OMS and POMS decoders mentioned above. Given a target message
bit-length w (e.g., corresponding to some specific memory constraint), one may try
to find the framing function F of corresponding weight W , which yields the best
error correction performance. The optimization of the framing function can be done
by using the DE technique, which will be discussed in Section 5.2.4.

Since F is a non-decreasing function, the framing function F can alternatively
be applied at the CN-processing step (instead of VN-processing), while resulting in
an equivalent decoding algorithm. Whether F is applied at the VN-processing or
the CN-processing step is rather a matter of implementation. When F is applied
at the VN-processing step, both VN- and CN-messages belong to a strict subset
of the alphabet M, namely M′ = Im(F ) ⊂ M. When F is applied at the CN-
processing step, only CN-messages belong toM′. However, it is worth noting that
many hardware implementations of Quasi-Cyclic (QC) LDPC decoders rely on a
layered architecture, which only requires storing the check-node messages [9].

5.2.3 Irregular NS-FAIDs

In case of irregular LDPC codes, irregular NS-FAIDs are NS-FAIDs using different
framing functions Fdv for VNs of different degrees dv. Framing functions Fdv may
have different weights Wdv . In this case, messages outgoing from degree-dv VNs can
be represented by using only wdv = dlog2(Wdv)e+ 1 bits. However, the message size
reduction does not necessarily apply to CN-messages, due to the fact that a CN
may be connected to VNs of different degrees. LetM′

dv
= Im(Fdv). Then, messages

outgoing from a CN m can be represented by using:⌈
log2

(∣∣∪dv∈DmM′
dv

∣∣)⌉ bits, (5.10)

where Dm is the set of degrees of VNs connected to m, and | · | is used to denote the
number of elements of a set.

Alternatively, it is also possible to define CN-irregular NS-FAIDs in a similar
manner. However, in this work we only deal with VN-irregular NS-FAIDs, since
most of the practical irregular LDPC codes are irregular on VNs, while almost
regular (or semi-regular) on CNs. In order to reduce the size of the CN-messages,
in Section 5.3.2 we will further impose certain conditions on the framing functions
Fdv , by requiring their images being included in one another.
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5.2.4 Density Evolution Analysis

For the sake of simplicity, we only consider transmission over binary-input memory-
less noisy channels. We assume that the channel input alphabet is X = {−1,+1},
with the usual convention that +1 corresponds to the 0-bit and −1 corresponds to
the 1-bit, and denote by Y the output alphabet of the channel. We denote by x ∈ X
and y ∈ Y the transmitted and received symbols, respectively.

We further consider a function ϕ : Y → Γ that maps the output alphabet of
the channel to the input alphabet of the decoder, and set γ = ϕ(y). Hence, ϕ
encompasses both the computation of the soft (unquantized) log-likelihood ratio
(LLR) value and its quantization. We shall refer to ϕ as quantization map and to γ
as the input LLR of the decoder.

Assumption: For transmission over the binary-input Additive White Gaussian
Noise (AWGN) channel, we shall consider that the decoder’s input information as
well as the exchanged messages are quantized on the same number of bits; therefore
Γ =M unless otherwise stated. In this case, y = x+z, where z is the white Gaussian
noise with variance σ2, and the quantization map ϕ : Y →M is defined by:

ϕ(y) = [µ · y]M (5.11)

where µ > 0 is a constant referred to as gain factor, and [x]M denotes the closest
integer to x that belongs toM (see also in Chapters 2 and 3).

The objective of the DE technique is to recursively compute the probability mass
function (pmf) of the exchanged messages, through the iterative decoding process.
This is done under the assumption that exchanged messages are independent, which
holds in the asymptotic limit of the code length. In this case, the decoding per-
formance converges to the cycle free case. DE equations for the NS-FAID can be
derived in a similar way as for the finite-alphabet MS decoder in Chapter 2. The
only modification required is to take into account the framing function F applied at
the VN-processing step, which can be easily done using the following:

Proposition 5.5 Let A(`)
MS denote the pmf of VN-messages αMS

def
= sM

(
γ +

∑dv−1
j=1 mj

)
computed by the MS decoder at iteration `, and F :M→M be a framing function.
Then the pmf of αNS-FAID = F (αMS), denoted by A(`)

NS-FAID, is given by:

A
(`)
NS-FAID(m) =

∑
x∈M:F (x)=m

A
(`)
MS(x)

Similar to Chapter 2, the DE is used to compute the asymptotic error probability,
defined as:

P (+∞)
e = lim

`→+∞
P (`)
e (5.12)

where P (`)
e is the bit error probability at iteration `.
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For a target bit error probability η > 0, the η-threshold is defined as the worst
channel condition for which decoding error probability is less than η. Assuming the
binary-input AWGN channel model, the η-threshold corresponds to the maximum
noise variance σ2 (or equivalently minimum SNR), such that the asymptotic error
probability is less than η:

σ2
thres(η) = sup

{
σ2 | P (+∞)

e ≤ η
}

(5.13)

In case that η = 0, the η-threshold is simply referred to as DE threshold [83]. How-
ever, the asymptotic decoding performance of finite-precision MS-based decoders
is known to exhibit an error floor phenomenon at high SNR [69]. This makes the
η-threshold definition more appropriate in practical cases, when the target bit error
rate can be fixed to a practical non-zero value.

Finally, it is worth noting that the σ2
thres(η) value depends on:

(i) the irregularity of the LDPC code, parametrized as usual by the degree distri-
bution polynomials λ(x) and ρ(x) [83],

(ii) the NS-FAID, i.e., the size of the decoder alphabet and the framing function
F ,

(iii) the channel quantizer ϕ, or equivalently the gain factor µ used in Eq. (5.11).

Therefore, assuming that the degree distribution polynomials λ(x) and ρ(x) and
the size of the decoder alphabet are fixed, we use the DE technique to jointly optimize
the framing function F and channel quantizer.
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5.3 Density Evolution Optimization of NS-FAIDs
Throughout this section, we consider q = 4-bit NS-FAIDs (hence, Q = 7). To
illustrate the trade-off between hardware complexity and decoding performance, we
consider the optimization of both regular and irregular NS-FAIDs.

5.3.1 Optimization of Regular NS-FAIDs

In this section, we consider the optimization of regular NS-FAIDs for (dv = 3, dc =
6)-regular LDPC codes. To illustrate the trade-off between hardware complexity
and decoding performance, we consider q = 4-bit NS-FAIDs (hence, Q = 7), with
framing bit-length parameter w ∈ {2, 3}. According to Proposition 5.4, the number
of NS-FAIDs is given by:

NNS-FAID(q = 4, w = 3) = NNS-FAID(Q = 7,W = 4) =

(
7

3

)(
8

4

)
= 2450 (5.14)

NNS-FAID(q = 4, w = 2) = NNS-FAID(Q = 7,W = 2) =

(
7

1

)(
8

2

)
= 196 (5.15)

All regular NS-FAIDs have been evaluated by using the DE technique from Sec-
tion 5.2.4, and their DE thresholds (η = 0) are shown in Figure 5.1 (note that the
DE threshold computation also encompasses the optimization of the gain factor µ).
NS-FAIDs are ordered according to the F (0) value, and then according to their DE
threshold. Best NS-FAIDs are those minimizing the DE threshold.

Figure 5.2 shows only the NS-FAIDs with DE thresholds less than 3 dB. For
comparison purposes, the DE threshold of the baseline q = 4-bit MS decoder is also
shown (MS threshold is equal to 1.643dB, for a gain factor µ = 5.6).

For w = 3, it can be observed that several NS-FAIDs with F (0) = 0 or F (0) = ±1
have better DE thresholds than the MS decoder. The best NS-FAID is given by the
framing function F = [0, 1, 1, 3, 3, 3, 7, 7] and its DE threshold is equal to 1.409dB
(gain factor µ = 3.8), representing a gain of 0.23 dB compared to MS. Also shown in
the figure is the best NS-FAID with F (0) = ±1: it is given by the framing function
F = [±1, 1, 1, 3, 3, 4, 4, 7] and its DE threshold is equal to 1.412dB (gain factor
µ = 5.1).

For w = 2, the best NS-FAID is given by the framing function
F = [±1, 1, 1, 1, 1, 6, 6, 6] and its DE threshold is equal to 1.834dB (gain factor
µ = 6.4), which represents a performance loss of only 0.19 dB compared to MS. It is
worth noticing that for w = 2, the best NS-FAID is defined by a framing function
with F (0) = ±1. Moreover, it can be seen that there are NS-FAIDs with F (0) = ±2
or F (0) = ±3 with better DE thresholds than the best NS-FAIDs with F (0) = 0.
The latter is given by the framing function F = [0, 0, 0, 0, 0, 6, 6, 6] and its DE thresh-
old is equal to 2.251dB (gain factor µ = 8.6), thus resulting in a performance loss
of 0.61 dB compared to MS.
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Figure 5.1: Density evolution thresholds of regular q = 4-bit NS-FAIDs with w = 3
and w = 2
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Figure 5.2: Density evolution thresholds of best regular q = 4-bit NS-FAIDs with
w = 3 and w = 2

Table 5.2: Best NS-FAIDs for (3, 6)-regular LDPC codes
w = 2 w = 3

F
(LUT)

SNR-thres (dB)
& gain factor µ

F
(LUT)

SNR-thres (dB)
& gain factor µ

F (0) = 0 [0, 0, 0, 0, 0, 6, 6, 6] 2.251 (µ = 8.6) [0,1,1,3,3,3,7,7] 1.409 (µ = 3.8)
F (0) = ±1 [±1,1,1,1,1,6,6,6] 1.834 (µ = 6.4) [±1, 1, 1, 3, 3, 4, 4, 7] 1.412 (µ = 5.1)
F (0) = ±2 [±2, 2, 2, 2, 2, 2, 2, 7] 1.911 (µ = 8.3) [±2, 2, 2, 3, 3, 3, 4, 7] 1.712 (µ = 7.1)
F (0) = ±3 [±3, 3, 3, 3, 3, 3, 3, 7] 2.014 (µ = 9.4) [±3, 3, 3, 3, 3, 4, 5, 7] 2.227 (µ = 10.0)
F (0) = ±4 [±4, 4, 4, 4, 4, 7, 7, 7] 4.535 (µ = 10.5) [±4, 4, 4, 4, 5, 6, 6, 7] 4.526 (µ = 9.8)
F (0) = ±5 [±5, 5, 5, 5, 5, 5, 7, 7] 4.648 (µ = 10.9) N/A
F (0) = ±6 [±6, 6, 6, 6, 6, 6, 6, 7] 4.783 (µ = 11.0) N/A

Table 5.2 summarizes the best NS-FAIDs according to the F (0) value; DE thresh-
olds and corresponding gain factors (µ) are also reported. Best NS-FAIDs for w = 2
and w = 3 are emphasized in bold.
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5.3.2 Optimization of Irregular NS-FAIDs

As a case study, we consider the optimization of irregular NS-FAIDs for the WiMAX
irregular LDPC codes with rate 1/2 [46] (of course, the proposed method can be
applied to any other irregular codes in the same manner). The edge-perspective
degree distribution polynomials are given by:

λ (x) = 0.2895x+ 0.3158x2 + 0.3947x5 (5.16)
ρ (x) = 0.6316x5 + 0.3684x6 (5.17)

Hence, VNs are of degree dv ∈ {2, 3, 6}. For each VN-degree dv, we consider
that the corresponding framing function Fdv may be of any weight Wdv ∈ {2, 4, 8},
corresponding to a framing bit-length wdv ∈ {2, 3, 4}. Therefore, the total number
of framing functions is given by (see Proposition 5.4):

NNS-FAID(7, 2) +NNS-FAID(7, 4) +NNS-FAID(7, 8) = 2645 (5.18)

Since a different framing function may be applied for each VN-degree, it follows
that the total number of irregular NS-FAIDs is equal to 26453 = 18 504 486 125.
Clearly, even though we rely on DE, it is practically impossible to evaluate the
decoding performance of all the irregular NS-FAIDs. To overcome this problem, we
proceed as described below.

5.3.2.1 Optimization procedure

First, we evaluate the DE thresholds of NS-FAIDs applying one and the same framing
function to all the variable-nodes, irrespective of their degree, which for simplicity
will be referred to as uniform NS-FAIDs throughout this section. Uniform NS-FAIDs
with framing bit-length w = {2, 3, 4} are then sorted with increasing DE threshold
value, from the best to the worst decoder. Note that the case w = 4 represents a
slight abuse of terminology, since there is only one such decoder, corresponding to
the original MS decoder. We further denote by U (best)-NS-FAID-w the set of best
uniform NS-FAIDs with framing bit-length w, determined as follows:

• U (best)-NS-FAID-2 is comprised of the uniform NS-FAIDs with w = 2, whose
DE threshold is less than or equal to 5 dB; this represents 121 decoders out of
the total of NNS-FAID(Q = 7, w = 2) = 196 decoders.

• U (best)-NS-FAID-3 is comprised of the uniform NS-FAIDs with w = 3, whose
DE threshold is less than or equal to 3 dB; this represents 946 decoders out of
the total of NNS-FAID(Q = 7, w = 3) = 2450 decoders.

• U (best)-NS-FAID-4 is comprised of the MS decoder only; its DE threshold is
equal to 1.374dB.
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For irregular NS-FAIDs, we denote by NS-FAID-w2w3w6 the ensemble of NS-
FAIDs defined by a triplet of framing functions (F2, F3, F6), corresponding to vari-
able node degrees dv=2, 3, 6, with framing bit-lengths w2, w3, w6. Since w2, w3, w6 ∈
{2, 3, 4}, there are 27 such ensembles. Since the number of NS-FAIDs in these en-
sembles can be very large, we only evaluate part of them, by further imposing the
following two constraints:

(i) Decoding performance constraint : We only consider irregular NS-FAIDs defined
by triplets of framing functions (F2, F3, F6), such that Fdv ∈ U (best)-NS-FAID-wdv ,
for any dv ∈ {2, 3, 6}.

(ii) Memory size reduction constraint : We further impose the following inclusion
constraint between the image sets of framing functions used for different VN-
degrees. Let w(max) = maxdv wdv and d(max)

v = argmaxdv wdv . We require that
Im (Fdv) ⊆ Im

(
F
d
(max)
v

)
, ∀dv ∈ {2, 3, 6}. According to Eq. (5.10), this con-

straint ensures that CN-messages can be represented by using only w(max)

bits, which is particularly suitable for layered architectures.

The number of irregular NS-FAIDs that satisfy the above two constraints (all NS-
FAID-w2w3w6 ensembles included) is equal to N irregular

NS-FAIDs = 7 017 762.

5.3.2.2 Density Evolution evaluation

For each of the above N irregular
NS-FAIDs irregular NS-FAIDs, we compute its decoding thresh-

old for a target bit error rate η = 10−6, using the DE technique from Section 5.2.4.
The threshold computation also encompasses the optimization of the gain factor
µ. Hence, for each NS-FAID, we first determine the gain factor µ that maximizes
the η-threshold defined in Eq. (5.13). The corresponding η-threshold value is then
reported as the η-threshold of the NS-FAID.

Density evolution results for the MS decoder (indicated as NS-FAID-444), as
well as NS-FAID decoders with the best η-thresholds from five NS-FAID-w2w3w6

ensembles, are shown in Table 5.3: the framing functions used for VN-degrees dv =
2, 3, 6 are shown in columns 2, 3, and 4, while the η-threshold value (in dB) and the
corresponding gain factor µ are shown in column 5.

The SNR gain (+) or loss (−) reported in column 6 corresponds to the differ-
ences between the the SNR threshold of the MS decoder (NS-FAID-444) and the
SNR threshold of the best NS-FAID-w2w3w6. The memory size reduction of the NS-
FAID-w2w3w6 decoders compared to the MS decoder is reported in columns 7-9, for
both VN and CN-messages. For CN-messages, two possibilities are considered, ac-
cording to whether they are stored in an uncompressed or compressed format, where
compressed format means that only the signs, first minimum, second minimum, and
index of the first minimum are stored [99]. Finally, the framing functions’ LUTs
of the best NS-FAID-w2w3w6 decoders are reported in Table 5.4 (Lx in Table 5.4
corresponds to LUTx in Table 5.3).
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Table 5.3: Hardware Complexity vs. Decoding Performance Trade-Off for Optimized
Irregular NS-FAIDs

NS-FAIDs
Ensemble

Framing functions applied to SNR-thres (dB)
(& gain factor µ)
@BER= 10−6

SNR
gain/loss
(+/−dB)

Memory size reduction (%)
dv = 2 dv = 3 dv = 6 VN-

mess.
CN-messages

uncomp. comp.
NS-FAID-444 LUT0 LUT0 LUT0 1.374 (µ=3.2) 0.000 0.00 0.00 0.00
NS-FAID-443 LUT0 LUT0 LUT1 1.073 (µ=2.9) +0.301 −9.87 0.00 0.00
NS-FAID-434 LUT0 LUT8 LUT0 1.073 (µ=2.8) +0.301 −7.90 0.00 0.00
NS-FAID-344 LUT10 LUT0 LUT0 1.203 (µ=2.6) +0.171 −7.24 0.00 0.00
NS-FAID-442 LUT0 LUT0 LUT15 1.224 (µ=3.1) +0.150 −19.74 0.00 0.00
NS-FAID-424 LUT0 LUT15 LUT0 1.352 (µ=3.1) +0.021 −15.79 0.00 0.00
NS-FAID-244 LUT18 LUT0 LUT0 2.106 (µ=2.3) −0.732 −14.47 0.00 0.00
NS-FAID-432 LUT0 LUT3 LUT17 1.188 (µ=3.0) +0.186 −27.63 0.00 0.00
NS-FAID-423 LUT0 LUT17 LUT2 1.262 (µ=3.1) +0.112 −25.66 0.00 0.00
NS-FAID-324 LUT4 LUT17 LUT0 1.464 (µ=2.6) −0.091 −23.03 0.00 0.00
NS-FAID-342 LUT10 LUT0 LUT17 1.278 (µ=2.6) +0.096 −26.97 0.00 0.00
NS-FAID-234 LUT21 LUT6 LUT0 1.998 (µ=2.7) −0.624 −22.37 0.00 0.00
NS-FAID-243 LUT21 LUT0 LUT5 1.997 (µ=2.8) −0.624 −24.34 0.00 0.00
NS-FAID-422 LUT0 LUT17 LUT19 1.509 (µ=3.4) −0.135 −35.52 0.00 0.00
NS-FAID-242 LUT21 LUT0 LUT15 2.049 (µ=2.9) −0.676 −34.21 0.00 0.00
NS-FAID-224 LUT21 LUT15 LUT0 2.155 (µ=2.9) −0.781 −30.27 0.00 0.00
NS-FAID-433 LUT0 LUT9 LUT8 1.015 (µ=2.8) +0.359 −17.76 0.00 0.00
NS-FAID-343 LUT10 LUT0 LUT8 1.085 (µ=2.4) +0.289 −17.11 0.00 0.00
NS-FAID-334 LUT10 LUT8 LUT0 1.102 (µ=2.3) +0.272 −15.13 0.00 0.00
NS-FAID-233 LUT21 LUT7 LUT7 2.046 (µ=2.6) −0.672 −32.24 −25.00 −13.04
NS-FAID-323 LUT11 LUT17 LUT5 1.457 (µ=2.9) −0.083 −32.90 −25.00 −13.04
NS-FAID-332 LUT10 LUT9 LUT17 1.273 (µ=2.6) +0.101 −34.87 −25.00 −13.04
NS-FAID-333 LUT10 LUT10 LUT9 1.110 (µ=2.4) +0.264 −25.00 −25.00 −13.04
NS-FAID-223 LUT20 LUT17 LUT12 2.154 (µ=2.9) −0.780 −40.13 −25.00 −13.04
NS-FAID-232 LUT21 LUT7 LUT14 2.080 (µ=2.7) −0.706 −42.11 −25.00 −13.04
NS-FAID-322 LUT13 LUT17 LUT19 1.667 (µ=3.4) −0.293 −42.76 −25.00 −13.04
NS-FAID-222 LUT18 LUT16 LUT16 2.299 (µ=2.3) −0.925 −50.00 −50.00 −26.09

Table 5.4: LUTs used by NS-FAIDs in Table 5.3
m L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ±1 ±1 ±1 ±1 ±1 ±1 ±2 ±2 ±2
1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
2 2 1 2 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 2
3 3 1 2 2 2 1 1 2 2 3 3 4 2 2 1 1 1 1 5 2 2 2
4 4 3 2 3 4 4 4 2 2 3 3 4 2 5 1 1 5 7 5 2 2 6
5 5 3 4 3 4 4 4 6 7 3 7 4 2 5 6 7 5 7 5 2 7 6
6 6 7 4 7 7 4 7 6 7 7 7 7 2 7 6 7 5 7 5 2 7 6
7 7 7 7 7 7 7 7 6 7 7 7 7 7 7 6 7 5 7 5 7 7 6
w 4 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2

Figure 5.3 captures the trade-off between decoding performance and memory
size reduction, for all the 27 NS-FAID-w2w3w6 ensembles. The height of vertical bars
indicates the VN memory size reduction (values on the left vertical axis), while their
color indicates the CN memory size reduction (uncompressed CN-message storage
is assumed in the legend). The red stems indicate the SNR threshold gain or loss
compared to MS decoder (values on the right vertical axis). It can be seen that
the NS-FAID-332 allows a significant memory size reduction for both variable- and
check-node messages, while still performing 0.1 dB ahead the MS decoder. The NS-
FAID-433 is also a very good candidate for applications requiring increased decoding
performance: it achieves the best SNR gain (0.36dB), while providing a VN memory
size reduction by 17.76% with respect to the MS decoder.
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Figure 5.3: Memory size reduction vs. decoding performance

Finally, it is worth noticing that the reported memory size reductions do not nec-
essarily translate as such in hardware implementations, for several reasons. First,
depending on the hardware architecture, VN-messages may or may not be stored in
a dedicated memory. For instance, layered architectures only require the storage of
CN-messages, which can be further stored in either a compressed or uncompressed
format. Moreover, VN processing units (VNUs) need to be equipped with a framing
and a deframing module, which may offset part of the promised gains. This is even
more true in case of irregular codes, for which some VNUs may need to implement
more than one single framing function, since the same VNU may be reused to process
VN of different degrees (except for fully parallel architectures). To asses the gains
of NS-FAIDs in practical implementations, the integration of the NS-FAID mech-
anism (framing/deframing modules) into two different MS decoder architectures is
discussed in the next chapter.
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5.4 Conclusion
In this chapter, we introduced the new framework of Non-Surjective FAIDs, which
allows trading off decoding performance for hardware complexity reductions. NS-
FAIDs have been optimized by density evolution and we showed that they exhibit
better or similar decoding performance compared to the MS decoder, while provid-
ing significant savings in memory and/or interconnects. While this chapter focused
on the theoretical aspects of NS-FAIDs, hardware implementation results will be
reported in the next chapter.



Chapter 6

Low-Cost, High-Throughput
Hardware Architectures

In this chapter, we propose three QC-LDPC decoder architectures targeting
low-cost, high-throughput and efficient use of the hardware resources. All of
the proposed architectures implement layered scheduled decoding with fully
parallel processing units.
The first architecture is an enhanced version of the architecture introduced
in Chapter 4. It is based on a specific design of the datapath processing units
(VNUs, CNUs, and AP-LLR units) that allow an efficient reuse of the hard-
ware resources, thus yielding significant cost reduction. In the second archi-
tecture, efficient use of the hardware resources is ensured by pipelining the
datapath, which also allows increasing the operating frequency, thus increas-
ing the achieved throughput. However, the use of pipelining imposes specific
constraints on the decoding layers, in order to ensure proper execution of the
layered decoding process. Finally, the third architecture does not make use of
pipelining, but allows maximum parallelism to be exploited through the use
of full decoding layers, thus resulting in significant increase in throughput.

The second and third architectures may accommodate both MS and NS-FAID
decoding kernels. Thus, to validate the promises of the NS-FAID approach
(see Chapter 5), both MS and NS-FAID decoding kernels are integrated into
each of these architectures, and compared in terms of throughput and re-
sources consumption. Implementation results on both FPGA and ASIC plat-
forms show that regular and irregular NS-FAIDs allow significant improve-
ments in terms of both throughput and hardware resources consumption, as
compared to the conventional MS solution, with even better or only slightly
degraded decoding performance.

95
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6.1 Introduction
In this chapter, we propose three QC-LDPC decoder architectures targeting (i)
flexibility, (ii) high-throughput, and (iii) low cost and efficient use of the hardware
resources.

Highest flexibility can be achieved by using serial processing units: VNUs and
CNUs process incoming messages in a serial manner, which makes their implemen-
tation independent of the variable or check-node degree. However, this comes at the
cost of a reduced throughput. Therefore, in order to improve the high-throughput
capabilities of the proposed designs, we focus on layered LDPC decoder architectures
with fully parallel processing units. Such architectures have some inherent limita-
tions in terms of flexibility, mainly concerning the maximum number of incoming
messages into VNUs and CNUs, corresponding to the maximum degrees of variable
and check nodes in the Tanner graph.

To increase throughput as well as to ensure an efficient use of hardware resources,
the classical solution is to pipeline the datapath. However, for layered architectures,
the number of stages in the datapath may impose specific constraints on the base
matrix of the QC-LDPC code, in order to ensure that no memory conflicts oc-
cur during the read/write operations from/to the memory storing the exchanged
messages or the a posteriori logarithmic likelihood ratios (AP-LLR) values. More-
over, pipelined architectures may violate the layered scheduling principle: due to
the pipeline depth, it may happen that some of the AP-LLR values used when
processing a given layer, might not have been yet updated by the previous layers.
This may lead to a significant degradation of the decoding performance (in case the
information from some layers is lost) or to a reduction of the convergence speed
(because the information propagates slowly). A pipelined architecture which avoids
these limitations is proposed and discussed in Section 6.3.1.

In case the datapath is not pipelined, we propose two solutions to make an
efficient use of the hardware resources in layered architecture. The first solution,
presented in Section 6.2, consists of a specific design of the processing units, so
that each layer is processed in two clock cycles, with the same processing units
being reused at each clock cycle. Finally, the architecture presented in Section 6.3.2,
allows maximum parallelism to be exploited through the use of full decoding layers
(i.e., a layer comprised of several rows of the base matrix, such that each column of
the base matrix has exactly one non-negative entry within the rows composing the
layer) as well as a complete reorganization of the data path, such that each layer
can be efficiently processed in only one clock cycle.

Throughout this chapter, we shall use the notations and conventions from Chap-
ter 4. In particular, we recall that B denotes the base matrix of the QC-LDPC code,
of size R × C, and z denotes the expansion factor. A decoding layer may consist
of one or several rows of B, assuming that they do not overlap (i.e., they do not
have common non-negative entries). The number of rows of B per decoding layer is
denoted by rpl. Hence, the number of decoding layers is given by L = R/rpl.
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6.2 Hardware reusing architecture

In this section, we propose a specific design of the datapath processing units (VNUs,
CNUs, and AP-LLR units) that allow an efficient reuse of the hardware resources,
thus yielding significant cost reduction. Accordingly, the main contribution consists
of:

(1) A low-cost VNU/AP-LLR processing unit that merges in an efficient
way the logical functionalities of the VNU and AP-LLR units, and can be
executed by selecting either the VNU or the AP-LLR mode.

(2) A high-speed, low-cost CNU architecture, which only computes the first
minimum (min1) and index of the first minimum (indx_min1), instead of
first two minima and indx_min1 as required by the MS decoding algorithm.
To compute the second minimum (min2), the CNU is executed a second time
with indx_min1 input set to the maximum value (according to the bit-length
of the exchanged messages). Due to a specific organization of the datapath,
the second execution of the CNU does not induce any penalty in terms of
throughput, as explained below.

(3) A splitting of the iteration processing in two perfectly symmetric
stages, executed in two consecutive clock cycles, each one using exactly the
same processing resources; the processing load is perfectly balanced between
the two clock cycles, thus yielding an optimal clock frequency. In the first
clock cycle decoder performs read operations, then execute the VNU/AP-
LLR unit in VNU mode, and the CNU to compute min1 and indx_min1.
In the second clock cycle decoder executes the CNU to compute min2, the
VNU/AP-LLR unit in AP-LLR mode, and performs write back operations.
The processing load is perfectly balanced between the two clock cycles, thus
yielding an optimal clock frequency. In particular, the second execution of
the CNU during the second clock cycle does not impose any penalty on the
operating clock frequency.

For the sake of simplicity, we shall first assume that all the check-nodes have the
same degree, which will be denoted in the sequel by dc. No further assumptions are
made regarding the base matrix B. The case of check-node irregular codes will be
discussed in Section 6.2.2.

Figure 6.1 illustrates the baseline architecture of the layered MS decoder. This
is essentially the same architecture as in Chapter 4, except that in this chapter we
consider that check-to-variable node messages are stored in a compressed format
(see Figure 4.4, page 71) to reduce memory requirements. We therefore refer to
Chapter 4, for the description o the main block of this architecture. Each decoding
iteration takes two clock cycles. All data are read and processed at the first rising
edge clock, then written at the second rising edge clock.
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Figure 6.1: Block diagram of the baseline layered MS decoder architecture. Assuming
that a decoding layer corresponds to a row of the base matrix (hence rpl = 1 and
Z = z).

6.2.1 Description of the proposed enhancements

We discuss now the main enhancements that we are incorporating into the baseline
architecture, which consist of (1) a low-cost VNU/AP-LLR processing unit that
merges the logical functionalities of the VNU and AP-LLR units, (2) a low-cost CNU
architecture, which is executed twice in order to complete computation of the check-
node messages, (3) a splitting of the iteration processing in two perfectly symmetric
stages. VNU/AP-LLR unit and the new CNU substitute to the VNU, AP-LLR,
and the old CNU units in the baseline architecture, as shown in Figure 6.2 (where
VNU/AP-LLR is shortened to VN/AP). All the other blocks of the architecture
remain the same.

6.2.1.1 VNU/AP-LLR Unit

The main difference between VNU and AP-LLR processing units is that subtractors
are used within the first, while adders are used within the second. We propose a new
VNU/AP-LLR processing unit that merges their logical functionalities, controlled
by a specific signal (sel) to allow selecting between the VNU or AP-LLR mode.
The control signal is generated by the controller, such that VNU mode is selected
during the first clock, and AP-LLR mode during the second. The block diagram
of the VNU/AP-LLR unit is detailed in Figure 6.3. At the input, two multiplexers
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Figure 6.2: New processing units for the layered MS decoder architecture

are used to select the input data according to either the VNU or AP-LLR mode.
Similarly, at the output, a de-multiplexer is used to choose the value of either αm,n
or γ̃n, depending on the sel signal. The block in the middle, which may acts as
either a subtractor or an adder is detailed in Figure 6.4 (for the sake of simplicity,
we illustrate this block for q̃ = 4 bits). It consist of a modified Ripple Carry Adder
(RCA) with carry in given by the complement of the sel signal (C0 = sel), and
which is further XORed to all the bits of the second input. It can be easily seen that
the VNU/AP-LLR unit operate in VNU mode if sel = 0 (C0 = 1), or in AP-LLR
mode if sel = 1 (C0 = 0).
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Figure 6.3: Proposed VNU/AP-LLR processing unit



100 Chapter 6. Low-Cost, High-Throughput Hardware Architectures

 

Figure 6.4: Adder/subtractor block used within the VNU/AP-LLR unit

6.2.1.2 CNU Unit

We focus only on the computation of min1, min2, and indx_min1, as the signs
of the output messages can be simply computed by XORing the adequate signs of
input messages. We propose a high-speed low-cost CNU architecture inspired by
the tree structure (TS) architecture proposed in [101], which is further simplified
so as to compute only the value and the index of the first minimum. As shown in
Figure 6.5, our CNU is executed during the first clock cycle to compute min1 and
indx_min1, then it is re-executed during the second clock cycle with indx_min1
input set to the maximum value, so that to compute min2. The sel control signal
is used to indicate whether the CNU is in first or second minimum mode (first or
second clock cycle). The compare and select block is used to set the indx_min1
input to the maximum value, in case that the sel signal indicates that the second
minimum is being computed (second clock cycle).
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Figure 6.5: Block diagram of the proposed CNU architecture
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The proposed CNU architecture is detailed in Figure 6.5 for a number of inputs
(2k + 2r) equal to the sum of two powers of 2. The general case can be worked
out by decomposing the number of inputs as a sum of powers of 2, then combining
corresponding blocks similarly to the technique used in [101]. The 2k-FMIG (First
Minimum and Index Generator) block computes the value and the index of the first
minimum among the 2k input values. The 2-FMIG block includes one comparator
and one multiplexer, as shown in Figure 6.6. The 4-FMIG consists of three 2-FMIG
blocks for finding the minimum value and one multiplexer for indicating its index, as
shown in Figure 6.7. Similarly, the 2k+1-FMIG block can be constructed from three
2k-FMIG blocks and one multiplexer. The IG (Index Generator) block in Figure 6.5
is used to determine the index of the minimum value, and is further detailed in
Figure 6.8.
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6.2.1.3 Layer Processing Split

As shown in Figure 6.2, in the new architecture the clock signal is fed to the CNU.
This allows splitting the layer processing in two perfectly symmetric stages, executed
in two consecutive clock cycles, each one using the same processing units, but in
different mode.

In the first clock cycle decoder performs read operations, then execute the
VNU/AP-LLR unit in VNUmode, and the CNU to compute min1 and indx_min1.
In the second clock cycle decoder executes the CNU to compute min2, the VNU/AP-
LLR unit in AP-LLR mode, and performs write back operations. The processing load
is perfectly balanced between the two clock cycles, thus yielding an optimal clock
frequency. In particular, the second execution of the CNU during the second clock
cycle does not impose any penalty on the operating clock frequency. The baseline
CNU (i.e., computing min1, min2, and indx_min1) executed in one of the two
clock cycles would lead to an increased critical path, and therefore a reduced clock
frequency, while splitting its execution between the two clock cycles would have
resulted in an inefficient use of the hardware resources.

6.2.2 Case of Check-Node Irregular Codes

To accommodate QC-LDPC codes with variable check-node degree dc ∈ [dcmin, dcmax],
some extra control logic is required in order to “inactivate” the last dcmax − dc
VNU/APLLR units as well as the last dcmax − dc inputs of the CNU, for check-
nodes of degree dc. If the check-node degree dc varies between dcmin and dcmax. A
VNU/AP-LLR unit is inactivated by setting the corresponding β-inputs to 0, while
an input of the CNU is inactivated by setting it to the maximum value (2q−1 − 1,
where q is the number of quantization bits of input αsat

m,n values, including the sign
bit). The modified VNU/AP-LLR and CNU architectures are shown in Figure 6.9
and Figure 6.10, respectively, for dcmin = dcmax − 1.
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Figure 6.9: Modified VNU/AP-LLR to accommodate variable check-node degree
(example for dcmin = dcmax − 1)
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Figure 6.10: Modified CNU to accommodate variable check-node degree (example
for dcmin = dcmax − 1)

6.2.3 Implementation results

We have implemented the baseline and enhanced layered MS decoder architectures
for a regular QC-LDPC code with variable-nodes of degree dv = 3, and for the
irregular WiMAX QC-LDPC code with rate 1/2 [46]. For both codes, the size of
the base is equal to R × C = 12 × 24. For the regular code, the base matrix B is
shown in Figure 4.1. It can be divided in L = 3 horizontal layers, with each layer
corresponding to rpl = 4 consecutive rows of B. For the WiMAX code, the base
matrix B is shown in Figure 2.4 and the rpl value is set to 1, thus the number of
decoding layers is equal to L = 12. Configuration parameters of the two decoders
are further detailed in Table 6.1.

Table 6.1: Parameters of the QC-LDPC codes
R C z rpl dcmin dcmax q̃ q niter

(3, 6)-regular 12 24 54 4 6 6 6 4 20
WiMAX 12 24 96 1 6 7 6 4 20

Table 6.2: Comparison between enhanced and baseline architectures for (3, 6)-regular
and WiMAX QC-LDPC codes

(3, 6)-regular QC-LDPC WiMAX QC-LDPC
Baseline Enhanced Baseline Enhanced

Max. Freq. (MHz) 111 250 83 250
Throughput (Mbps) 1198 2700 398 1200

Area (mm2) 0.95 0.72 0.88 0.86
Frequency (MHz) 111 111 83 83

Area (mm2) 0.95 0.71 0.88 0.76
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ASIC synthesis results targeting a 65nm CMOS technology are shown in Ta-
ble 6.2. The top part of the table reports the maximum operating frequency, the cor-
responding throughput, and the area. The reported throughput is given by Eq. (4.7).
First, we note that the enhanced architecture provides a significant increase in the
maximum operating frequency compared to the baseline architecture, by a factor of
×2.25 and ×3, for the (3, 6)-regular and the WiMAX code, respectively. This is due
to the proposed increased-speed CNU together with the proposed split of the itera-
tion processing. Regarding the area, it can be seen that the enhanced architecture
provides a significant area reduction for the (3, 6)-regular code, by 24.2% compared
to the baseline architecture. However, the area reduction is of only 2.27% for the
WiMAX code.

In oder to keep the area comparison on an equal basis with respect to synthesis
timing constraints, in the bottom part of Table 6.2 we report area figures when
the same timing constraints are applied to both the baseline and the enhanced ar-
chitecture. We consider timing constrains corresponding to the maximum operating
frequency for the baseline architecture. In this case, it can be seen that the proposed
cost-efficient VNU/AP-LLR and CNU processing units yield an area reduction by
25.26% for the (3, 6)-regular code, and by 13.64% for the WiMAX code.

To keep the throughput comparison on an equal basis with respect to technol-
ogy, area, and number of iterations. We also report the Throughput to Area Ratio
(TAR) and the Normalized TAR (NTAR) metrics, which are defined by Eq. (6.1)
and Eq. (6.2), respectively. The TAR metric is very useful to evaluate how much
throughput a decoder can achieve per area unit on ASIC.

TAR =
Throughput

Area
(6.1)

NTAR = TAR× Iterations (6.2)
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Table 6.3: Comparison between the proposed enhanced architecture and state-of-
the-art implementations for the WiMAX QC-LDPC code

Author/Year Y. Ueng’08 K. Zhang’09 T. Heidari’13 K. Kanchetla’16 Proposed
Paper [95] [110] [39] [51] decoder

Code length 2304 2304 2304 576-2304 2304
Technology (nm) 180 90 130 90 65
Frequency (MHz) 200 950 100 149 250

Iterations 4.6 (avarage) 10 10 5-16 20
Throughput (Mbps) 106 2200 183 955 1200

Tput. scaled to 65nm (Mbps) 294 3036 366 1318 1200
Area (mm2) - 2.90(∗) 6.90(∗∗) 11.42(∗) 0.86(∗)

Area scaled to 65nm (mm2) - 1.51(∗) 1.73(∗∗) 5.94(∗) 0.86(∗)

TAR (Mbps/mm2) - 2010.60 211.56 221.89 1395.35
NTAR (Mbps/mm2/iter) - 20106 2115.6 1109.45 27907

(∗) only core area is reported
(∗∗) total chip area is reported
TAR = (Throughput scaled to 65nm) / (Area scaled to 65nm)
NTAR = TAR × Iterations

Finally, the proposed enhanced architecture is further compared with other state-
of-the-art implementations in Table 6.3 for WiMAX QC-LDPC code. We mention
that the decoder proposed in [51] is a reconfigurable decoder that supports the IEEE
802.16e (WiMAX) and and the IEEE 802.11n (WiFi) wireless standards. The re-
ported throughput is the maximum achievable coded throughput for the (1152, 2304)
WiMAX code with 5 decoding iterations. To scale throughput and area to 65nm, we
use scale factors (technology size/65) and (65/technology size)2, as suggested in [38].
Note that for all the reported implementations, the achieved throughput is inversely
proportional to the number of iterations, hence the NTAR metric corresponds to the
TAR value assuming that only one decoding iteration is performed. From Table 6.3 it
can be seen that the proposed enhanced architecture compares favorably with state-
of-the-art implementations, yielding a NTAR value of 27.9 Gbps/mm2/iteration.
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6.3 Hardware architectures with MS and NS-FAID
kernels

NS-FAD decoders, introduced in Chapter 5, allow storing the exchanged messages
using a lower precision than the one used by the processing units. They are expected
to facilitate significant reductions of the memory and interconnect blocks, with no or
only slight degradation of the error correction performance, as compared to the con-
ventional MS decoder. Since these blocks usually dominate the overall performance
of the hardware implementation, NS-FAIDs are seen as a promising approach to
further optimizations of cost-effective, high-throughput designs.

To validate the promises of the NS-FAID approach, in this section we propose
two different hardware architectures, integrating both MS and NS-FAID decoding
kernels. The first architecture is pipelined, so as to increase throughput and ensure
an efficient use of the hardware resources, which in turn imposes specific constraints
on the decoding layers, in order to ensure proper execution of the layered decod-
ing process. The second architecture does not make use of pipelining, but allows
maximum parallelism to be exploited through the use of full decoding layers, thus
resulting in significant increase in throughput. Both MS and NS-FAID decoding
kernels are integrated to each of the two proposed architectures, and compared in
terms of throughput and resource consumption.

To ease the description of the hardware architectures proposed in this section,
we shall assume that all CNs have the same degree, denoted by dc (however, we
note that the case if check-node irregular codes can be addressed similarly as in
Section 6.2.2). No assumptions are made concerning VN degrees. We present each
architecture assuming the MS decoding kernel is being implemented, then we discuss
the required changes in order to integrate regular and irregular NS-FAID decoding
kernels.

6.3.1 Pipelined architecture

Proposed architecture with MS decoding kernel is detailed in Figure 6.11(a). A
high-level representation is also shown in Figure 6.11(b), for both MS and NS-FAID
decoding kernels. The main blocks of the architecture are discussed below. For the
remaining blocks such as VNU, CNU, AP-LLR, see the description from Chapter 4.

Memory blocks. Two memory blocks are used, one for AP-LLR values (γ̃_memory)
and one for CN-messages (β_memory). γ̃_memory is implemented by registers, in
order to allow massively parallel read or write operations. It is organized in C blocks,
denoted by APj (j = 1, · · · , C), corresponding to the columns of base matrix, each
one consisting of z×q̃ bits. Data are read from/write to blocks corresponding to non-
negative entries in the decoding layer being processed. β_memory is implemented
as a dual port Random Access Memory (RAM), in order to support pipelining. Each
memory word consists of Z × β_message, corresponding to one decoding layer. As
discussed in Chapter 4, depending on how CNUs are implemented, β_message can
be stored into β_memory either in “uncompressed” or “compressed” format.
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tecture with MS and NS-FAID kernels

Figure 6.11: Block diagram of the proposed pipelined architecture. Assuming that a
decoding layer corresponds to a row of the base matrix (hence rpl = 1 and Z = z).
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Barrel Shifters (BS_INIT, BS_R). Barrel shifters are used to implement the
cyclic (shift) permutations, according to the non-negative entries of the base matrix.
The γ̃_memory is initialized from the input LLR values stored in the input buffer.
However, input LLR values are shifted by BS_INIT block before being written to
the γ̃_memory, according to the last non-negative shift factor on the corresponding
base matrix column. BS_R blocks are then used to shift the LLR values read from
the γ̃_memory, such that to properly align them with the appropriate VNU. Note
that there are dc BS_R_{1, . . . , dc} blocks. In case rpl = 1, a decoding layer
corresponds to a row of B, and each BS_R block is used to shift the LLR values
within one of the dc columns with non-negative entries in the current row. Let i
be the index of the current row. The cyclic shift implemented by a BS_R block,
corresponding to a column j with bi,j ≥ 0, is given by −bi′,j + bi,j, where bi′,j is the
previous non-negative entry in column j (i.e., the previous row i′ with bi′,j ≥ 0). In
case rpl > 1, each BS_R block actually consists of rpl sub-blocks as above, with
one sub-block for each row in the layer. The values of the cyclic shifts are computed
offline for each layer `. This avoids the use of barrel shifters when the data is written
back to the γ̃_memory, thus reducing the critical path of the design. Finally, the
BS_INIT block operates oppositely to BS_INIT, and is used to shift back the hard
decision bits into appropriate positions.

Decompress (DCP). This block is only used in case that the CN-messages are
in compressed format (signs, min1, min2, indx_min1). It converts the β_messages
from compressed to the uncompressed format.

Controller. This block generates control signals such as en_mem to enable data
reading and writing, count_layer_read, count_layer_write to indicate which layers
are being processed, etc. It also controls the synchronous execution of the other
blocks.

Pipelining. To increase the operating frequency, the data path is pipelined by
adding a set of registers after the VNU-blocks. Hence, processing one layer takes 2
clock cycles, but at each clock cycle the two pipeline stages work on two consecutive
layers of the base matrix. This imposes specific constraints on the base matrix, as
consecutive layers must not overlap, in order to avoid γ̃_memory conflicts (note
that memory stall cycles would cancel the pipelining effect). An example of dc = 6
regular base matrix without overlap between consecutive layers is given in Figure 4.1,
assuming that each layer corresponds to a row of the base matrix.
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6.3.1.1 Regular NS-FAID kernel

The changes required to integrate the NS-FAID decoding kernel are shown in Fig-
ure 6.11(b). First, the Saturation (SAT) block used within the MS-decoding kernel
is replaced by a Framing (FRA) block. Note that the output of the VNU consists
of q̃-bit (unsaturated) VN-messages. Hence, the FRA block actually implements the
concatenation of the following operations:

[−Q̃, . . . ,+Q]
sM−−→ [−Q, . . . ,+Q]

F−→ Im(F )
∼−→ [−W, . . . ,+W ], (6.3)

where [−Q̃, . . . ,+Q̃] is the alphabet of unsaturated messages (Q̃ = 2q̃−1 − 1), F
is the framing function being used, Im(F ) is the image of F (which is a subset of
[−Q, . . . ,+Q] according to the framing function definition), and the last operation
consists of a re-quantization of the Im(F ) values on a number of w-bit where w =
dlog2(W )e+ 1 is the framing bit-length.

The De-framing (DE-FRA) block simply converts back from w-bit to q-bit values,
i.e., it inverts the re-quantization operation above.

[−W, . . . ,+W ]
∼−→ Im(F ) ⊂ [−Q, . . . ,+Q] (6.4)

Although we have to add the de-framing blocks, the reduction of the CN-messages
size may still save significant hardware resources, as compared to MS decoding. This
will be discussed in more details in Section 6.3.3.

6.3.1.2 Irregular NS-FAID kernel

We consider the irregular WiMAX QC-LDPC code of rate 1/2, for which irregular
NS-FAIDs have been optimized in Chapter 5. First, we note that the pipeline archi-
tecture proposed in this section can be applied to the WiMAX QC-LDPC code, by
assuming that each decoding layer consists of one row of the base matrix. Indeed,
it is known that for this code, the rows of the base matrix can be reordered, such
that any two consecutive rows do not overlap [112]. The base matrix with reordered
rows is shown in Figure 6.12. Parameters a (b) on the leftmost column show the row
index after (before) reordering.

Regarding the integration of an irregular NS-FAID decoding kernel, the same
framing (FRA) or de-framing (DE-FRA) block is reused for several VNs, which
may be of different degrees. This may require several framing functions to be imple-
mented within the FRA/DE-FRA blocks, thus increasing the hardware complexity.
To overcome this problem, one may change the way the VNs are mapped to the pro-
cessing units, by reordering the columns of the base matrix processed within each
decoding layer. We determine offline such a reordering for each decoding layer, so
as to minimize the number of FRA/DE-FRA blocks implementing more than one
single framing function. Hence, the PER_R and PER_W blocks, which ensure the
proper alignment between data and processing units, are redefined accordingly.
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Figure 6.12: Modified base matrix of the irregular WiMAX code, rate of 1/2, with
rows reordered [112]. In black: variable nodes of degree 2, in red: variable-nodes of
degree 3, in blue: variable-nodes of degree 6.

The optimal mapping between variable-nodes and VNUs is shown in Figure 6.13(b),
for the base matrix with reordered rows from Figure 6.12. For each VNU, we in-
dicate the index of the variable-node processed by the VNU within each decoding
layer. For comparison purposes, we also provide in Figure 6.13(a) the conventional
(unoptimized) mapping, which assumes that VNUk processes the variable-node cor-
responding to the k-th non-negative entry in the layer (row of B). The last row of
each table indicates the number of framing functions that have to be implemented
within the FRA/DE-FRA blocks corresponding to each VNU.

 

 

 

 

 

 

 

  

 

 

 

 

 

   

 
𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖 𝒗𝟗 𝒗𝟏𝟎 𝒗𝟏𝟏 𝒗𝟏𝟐 𝒗𝟏𝟑 𝒗𝟏𝟒 𝒗𝟏𝟓 𝒗𝟏𝟔 𝒗𝟏𝟕 𝒗𝟏𝟖 𝒗𝟏𝟗 𝒗𝟐𝟎 𝒗𝟐𝟏 𝒗𝟐𝟐 𝒗𝟐𝟑 𝒗𝟐𝟒 

 1 (01) -1 94 73 -1 -1 -1 -1 -1 55 83 -1 -1 7 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

 2 (03) -1 -1 -1 24 22 81 -1 33 -1 -1 -1 0 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 

3 (05) -1 -1 39 -1 -1 -1 84 -1 -1 41 72 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 

4 (12) 43 -1 -1 -1 -1 66 -1 41 -1 -1 -1 26 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 

5 (07) -1 -1 95 53 -1 -1 -1 -1 -1 14 18 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 

6 (09) 12 -1 -1 -1 83 24 -1 43 -1 -1 -1 51 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 

7 (11) -1 -1 7 65 -1 -1 -1 -1 39 49 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 

8 (02) -1 27 -1 -1 -1 22 79 9 -1 -1 -1 12 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 

9 (04) 61 -1 47 -1 -1 -1 -1 -1 65 25 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 

10 (06) -1 -1 -1 -1 46 40 -1 82 -1 -1 -1 79 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 

11 (08) -1 11 73 -1 -1 -1 2 -1 -1 47 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 

12 (10) -1 -1 -1 -1 -1 94 -1 59 -1 -1 70 72 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 

 
VNU1 VNU2 VNU3 VNU4 VNU5 VNU6 VNU7 

Layer 1 𝑣2 𝑣3 𝑣9 𝑣10 𝑣13 𝑣14 − 

Layer 2 𝑣4 𝑣5 𝑣6 𝑣8 𝑣12 𝑣15 𝑣16 

Layer 3 𝑣3 𝑣7 𝑣10 𝑣11 𝑣17 𝑣18 − 

Layer 4 𝑣1 𝑣6 𝑣8 𝑣12 𝑣13 𝑣24 − 
Layer 5 𝑣3 𝑣4 𝑣10 𝑣11 𝑣19 𝑣20 − 

Layer 6 𝑣1 𝑣5 𝑣6 𝑣8 𝑣12 𝑣21 𝑣22 

Layer 7 𝑣3 𝑣4 𝑣9 𝑣10 𝑣23 𝑣24 − 

Layer 8 𝑣2 𝑣6 𝑣7 𝑣8 𝑣12 𝑣14 𝑣15 

Layer 9 𝑣1 𝑣3 𝑣9 𝑣19 𝑣16 𝑣17 − 

Layer 10 𝑣5 𝑣6 𝑣8 𝑣12 𝑣13 𝑣18 𝑣19 

Layer 11 𝑣2 𝑣3 𝑣7 𝑣10 𝑣20 𝑣21 − 

Layer 12 𝑣6 𝑣8 𝑣11 𝑣12 𝑣22 𝑣23 − 

No. FRAs 𝟐 𝟐 𝟐 𝟐 𝟑 𝟏 𝟏 

 
VNU1 VNU2 VNU3 VNU4 VNU5 VNU6 VNU7 

Layer 1 𝑣2 𝑣13 𝑣9 𝑣10 𝑣3 𝑣14 − 

Layer 2 𝑣4 𝑣6 𝑣5 𝑣8 𝑣12 𝑣15 𝑣16 

Layer 3 𝑣7 𝑣3 𝑣11 𝑣10 𝑣17 𝑣18 − 

Layer 4 𝑣1 𝑣6 𝑣13 𝑣12 𝑣8 𝑣24 − 
Layer 5 𝑣4 𝑣3 𝑣11 𝑣10 𝑣19 𝑣20 − 

Layer 6 𝑣1 𝑣6 𝑣5 𝑣8 𝑣12 𝑣21 𝑣22 

Layer 7 𝑣4 𝑣3 𝑣9 𝑣10 𝑣23 𝑣24 − 

Layer 8 𝑣2 𝑣6 𝑣7 𝑣8 𝑣12 𝑣14 𝑣15 

Layer 9 𝑣1 𝑣3 𝑣9 𝑣19 𝑣16 𝑣17 − 

Layer 10 𝑣5 𝑣6 𝑣13 𝑣12 𝑣8 𝑣18 𝑣19 

Layer 11 𝑣2 𝑣3 𝑣7 𝑣10 𝑣20 𝑣21 − 

Layer 12 𝑣6 𝑣8 𝑣11 𝑣12 𝑣22 𝑣23 − 

No. FRAs 𝟐 𝟐 𝟏 𝟏 𝟐 𝟏 𝟏 

(a) Conventional (unoptimized) mapping

 

 

 

 

 

 

 

  

 

 

 

 

 

   

 
𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖 𝒗𝟗 𝒗𝟏𝟎 𝒗𝟏𝟏 𝒗𝟏𝟐 𝒗𝟏𝟑 𝒗𝟏𝟒 𝒗𝟏𝟓 𝒗𝟏𝟔 𝒗𝟏𝟕 𝒗𝟏𝟖 𝒗𝟏𝟗 𝒗𝟐𝟎 𝒗𝟐𝟏 𝒗𝟐𝟐 𝒗𝟐𝟑 𝒗𝟐𝟒 

 1 (01) -1 94 73 -1 -1 -1 -1 -1 55 83 -1 -1 7 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

 2 (03) -1 -1 -1 24 22 81 -1 33 -1 -1 -1 0 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 

3 (05) -1 -1 39 -1 -1 -1 84 -1 -1 41 72 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 

4 (12) 43 -1 -1 -1 -1 66 -1 41 -1 -1 -1 26 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 

5 (07) -1 -1 95 53 -1 -1 -1 -1 -1 14 18 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 

6 (09) 12 -1 -1 -1 83 24 -1 43 -1 -1 -1 51 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 

7 (11) -1 -1 7 65 -1 -1 -1 -1 39 49 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 

8 (02) -1 27 -1 -1 -1 22 79 9 -1 -1 -1 12 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 

9 (04) 61 -1 47 -1 -1 -1 -1 -1 65 25 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 

10 (06) -1 -1 -1 -1 46 40 -1 82 -1 -1 -1 79 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 

11 (08) -1 11 73 -1 -1 -1 2 -1 -1 47 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 

12 (10) -1 -1 -1 -1 -1 94 -1 59 -1 -1 70 72 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 

 
VNU1 VNU2 VNU3 VNU4 VNU5 VNU6 VNU7 

Layer 1 𝑣2 𝑣3 𝑣9 𝑣10 𝑣13 𝑣14 − 

Layer 2 𝑣4 𝑣5 𝑣6 𝑣8 𝑣12 𝑣15 𝑣16 

Layer 3 𝑣3 𝑣7 𝑣10 𝑣11 𝑣17 𝑣18 − 

Layer 4 𝑣1 𝑣6 𝑣8 𝑣12 𝑣13 𝑣24 − 
Layer 5 𝑣3 𝑣4 𝑣10 𝑣11 𝑣19 𝑣20 − 

Layer 6 𝑣1 𝑣5 𝑣6 𝑣8 𝑣12 𝑣21 𝑣22 

Layer 7 𝑣3 𝑣4 𝑣9 𝑣10 𝑣23 𝑣24 − 

Layer 8 𝑣2 𝑣6 𝑣7 𝑣8 𝑣12 𝑣14 𝑣15 

Layer 9 𝑣1 𝑣3 𝑣9 𝑣19 𝑣16 𝑣17 − 

Layer 10 𝑣5 𝑣6 𝑣8 𝑣12 𝑣13 𝑣18 𝑣19 

Layer 11 𝑣2 𝑣3 𝑣7 𝑣10 𝑣20 𝑣21 − 

Layer 12 𝑣6 𝑣8 𝑣11 𝑣12 𝑣22 𝑣23 − 

No. FRAs 𝟐 𝟐 𝟐 𝟐 𝟑 𝟏 𝟏 

 
VNU1 VNU2 VNU3 VNU4 VNU5 VNU6 VNU7 

Layer 1 𝑣2 𝑣13 𝑣9 𝑣10 𝑣3 𝑣14 − 

Layer 2 𝑣4 𝑣6 𝑣5 𝑣8 𝑣12 𝑣15 𝑣16 

Layer 3 𝑣7 𝑣3 𝑣11 𝑣10 𝑣17 𝑣18 − 

Layer 4 𝑣1 𝑣6 𝑣13 𝑣12 𝑣8 𝑣24 − 
Layer 5 𝑣4 𝑣3 𝑣11 𝑣10 𝑣19 𝑣20 − 

Layer 6 𝑣1 𝑣6 𝑣5 𝑣8 𝑣12 𝑣21 𝑣22 

Layer 7 𝑣4 𝑣3 𝑣9 𝑣10 𝑣23 𝑣24 − 

Layer 8 𝑣2 𝑣6 𝑣7 𝑣8 𝑣12 𝑣14 𝑣15 

Layer 9 𝑣1 𝑣3 𝑣9 𝑣19 𝑣16 𝑣17 − 

Layer 10 𝑣5 𝑣6 𝑣13 𝑣12 𝑣8 𝑣18 𝑣19 

Layer 11 𝑣2 𝑣3 𝑣7 𝑣10 𝑣20 𝑣21 − 

Layer 12 𝑣6 𝑣8 𝑣11 𝑣12 𝑣22 𝑣23 − 

No. FRAs 𝟐 𝟐 𝟏 𝟏 𝟐 𝟏 𝟏 

(b) Optimized mapping

Figure 6.13: Mapping between variable-nodes and VNUs. In black: variable nodes
of degree 2, in red: variable-nodes of degree 3, in blue: variable-nodes of degree 6.

6.3.2 Full layers architecture

A different possibility to increase throughput is to increase the hardware parallelism,
by including several non-overlapping rows of the base matrix in one decoding layer.
For instance, for the base matrix in Figure 4.1, we may consider rpl = 4 consecutive
rows per decoding layer, thus the number of decoding layers is L = 3. In this
case, each column of the base matrix has one (and only one) non-zero entry in
each decoding layer; such a decoding layer is referred to as being full. Full layers
correspond to the maximum hardware parallelism that can be exploited by layered
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architectures, but they also prevent the pipelining of the data path. Proposed full
layers architecture with MS decoding kernel is detailed in Figure 6.14(a). A high-level
representation is also shown in Figure 6.14(b), for both MS and regular NS-FAID
decoding kernels. The architecture proposed in this section is aimed at providing an
effective way to benefit from the increased hardware parallelism enabled by the use
of full layers.

We discuss below the main changes with respect to the pipelined architecture
from the previous section, consisting of the α_memory and the barrel shifters blocks
(the other blocks are the same as for the pipelined architecture) as well as a com-
plete reorganization of the data path. However, it can be easily verified that both
architectures are logically equivalent, i.e., they both implement the same decoding
algorithm.
α_memory. This memory is used to store the VN-messages for the current de-
coding layer (unlike the previous architecture, the AP-LLR values are not stored in
memory). Since only one q̃-bit (unsaturated) VN-message is stored for each variable-
node, this memory has exactly the same size as the γ̃_memory used within the
previous pipelined architecture. VN-messages for current layer ` are read from the
α_memory, then saturated or framed depending on the decoding kernel, and sup-
plied to the corresponding CNUs. CN-messages computed by the CNUs are stored
in the β_memory (location corresponding to layer `), and also forwarded to the
AP-LLR unit, through the DCP (decompress) and DE-FRA (de-framing) blocks,
according to the CNU implementation (compressed or uncompressed) and the de-
coding kernel (MS of NS-FAID). The AP-LLR unit computes the sum of the incom-
ing VN- and CN-messages, which corresponds to the AP-LLR value to be used at
layer ` + 1 (since already updated by layer `). The AP-LLR value is forwarded to
the VNU, through corresponding BS and PER blocks. Eventually, the VN-message
for layer ` + 1 is computed as the difference between the incoming AP-LLR and
the corresponding layer-(`+ 1) CN-message computed at the previous iteration, the
latter being read from the β_memory.

PER/BS blocks. PER_1/BS_1 blocks permute / shift the data read from the
input buffer, according to the positions / values of the non-negative entries in the
first decoding layer. Similarly to the BS_R blocks in the pipelined architecture,
the PER_WR/BS_WR blocks permute / shift the AP-LLR values, according to
the difference between the positions / values of the current layer’s (`) non-negative
entries and those of the next layer (` + 1). This way, VN-messages stored in the
α_memory are already permuted and shifted for the subsequent decoding layer.
Finally, PER_L /BS_L blocks permute / shift the hard decision bits (sign of AP-
LLR values), according to the positions / values of the non-negative entries in the
last decoding layer.
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6.3.3 Implementation results

This section reports implementation results (cost, throughput, etc.) on both FPGA
and ASIC platforms as well as the error correction performance of the implemented
codes, in order to corroborate the analytic results obtained in Chapter 5. As men-
tioned in the previous section, both architectures are logically equivalent, thus they
both yield the same decoding performance (assuming that they implement the same
MS/NS-FAID decoding kernel), but they may have different performance in terms
of area and throughput).

Throughput reported in this section is given by the formula:

Throughput =

{ N×fmax
L×niter

, full layers architecture
N×fmax

1+L×niter
, pipelined architecture

(6.5)

where N is the codeword length, fmax is the maximum operating frequency, L is the
number of decoding layers, and niter is the number of decoding iterations (set to 20).

To keep the throughput comparison on an equal basis, for ASIC designs, we
further define the Throughput to Area ratio (TAR) metric as:

TAR =
Throughput

Area
(Mbps/mm2) (6.6)

Similarly, for FPGA designs, we define the Hardware Usage Efficiency (HUE)
metric, as being the throughput corresponding to 100% utilization of the hardware
resources:

HUE =
Throughput

%Occupied slices
(Mbps) (6.7)

6.3.3.1 Regular NS-FAIDs

We consider the (3, 6)-regular QC-LDPC code with base matrix B of size R× C =
12×24, shown in Figure 4.1. The expansion factor z = 54, thus the codeword length
is N = zC = 1296 bits. The base matrix can be divided in either L = 12 decoding
layers (rpl = 1), for the pipelined architecture, or L = 3 horizontal decoding layers
(rpl = 4), for the full-layer architecture.

Figure 6.15 shows the Bit-Error Rate (BER) performance of the MS decoder
with quantization parameters (q, q̃) = (4, 6) as well as q = 4-bit NS-FAIDs with
w = 2 and w = 3 (framing functions F corresponding to w and F (0) values in the
legend are those in Chapter 5). Binary input AWGN channel model is considered,
with 20 decoding iterations. It can be seen that the simulation results corroborate
the analytic results in Chapter 5, in terms of SNR gain / loss provided by NS-FAIDs,
as compared to MS. For comparison purposes, we have further included simulations
results for the Offset MS (OMS) decoder with (4, 6)-quantization and offset factor
= 1 as well as the MS decoder with (3, 5) and (2, 4)-quantization.
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Figure 6.15: BER performance of optimized NS-FAIDs for (3,6)-regular LDPC code

FPGA Implementation results

FPGA implementation (post place-and-route) results on Xilinx Zynq-7000 FPGA
device are shown in Table 6.4, for the MS(4, 6) decoder and the NS-FAIDs with
(w = 3, F (0) = 0) and (w = 2, F (0) = ±1), indicated in the table as NS-FAID-3
and NS-FAID-2, respectively. The rows in Table 6.4, named by “Variant”, indicate
the architecture (pipelined or full layers) and the CNU type (compressed or uncom-
pressed). We also note that for the NS-FAID-2, the assumption that 0 is mapped to
either −1 or +1, with equal probability, is only needed for theoretical analysis (the
symmetry of the decoder allows reducing the analysis to the all-zero codeword). How-
ever, in practical situations one may always map 0 to +1, since random codewords
are transmitted (for instance, in telecommunications systems, pseudo-randomness
of the transmitted data is ensured by a scrambling mechanism).

While the NS-FAID-3 outperforms the baseline MS(4, 6) decoder by 0.19 dB at
BER = 10−5 (Figure 6.15), it can be seen from Table 6.4 that it also exhibits a HUE
improvement between 8.28% and 42.53%, depending on the hardware architecture
and CNU type. As predicted, the NS-FAID-2 exhibits a performance loss of 0.21 dB
compared to MS(4, 6), but yields a significant HUE improvement, by 35.72% to
57.78%.

To further emphasize the high-throughput characteristic of the proposed archi-
tectures, Table 6.5 provides a comparison between state-of-the-art FPGA implemen-
tations of (3, 6)-regular LDPC decoders and the uncompressed full layers architec-
ture with NS-FAID-3 decoding kernel, presented in this work. Our implementation
achieves a significantly increased throughput, which has also to be reported to the
number of decoding iterations.
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Table 6.4: FPGA Post-PAR Implementation Results on Zynq-7000
(XC7Z045FFG900-1)

Variant pipeline.uncompressed pipeline.compressed
Decoder MS(4,6) NS-FAID-3 NS-FAID-2 MS(4,6) NS-FAID-3 NS-FAID-2

No. occupied slices 9776 9204 8844 10163 10091 9617
(% utilization) (17.89) (16.84) (16.18) (18.60) (18.46) (17.60)

Max. freq (MHz) 98 108 138 95 102 125
No. layers (L) 12 12 12 12 12 12

Throughput (Mbps) 527 580 742 510 548 672
HUE (Mbps) 2945 3444 4585 2741 2968 3818

±% w.r.t. MS(4,6) 0% +16.94% +55.69% 0% +8.28% +39.29%

Variant full_layers.uncompressed full_layers.compressed
Decoder MS(4,6) NS-FAID-3 NS-FAID-2 MS(4,6) NS-FAID-3 NS-FAID-2

No. occupied slices 17578 16812 15018 21317 18313 17712
(% utilization) (32.16) (30.76) (27.48) (39.01) (33.51) (32.41)

Max. freq (MHz) 69 75 80 58 71 76
No. layers (L) 3 3 3 3 3 3

Throughput (Mbps) 1490 1620 1728 1252 1533 1641
HUE (Mbps) 4633 5266 6288 3209 4574 5063

±% w.r.t. MS(4,6) 0% +13.66% +35.72% 0% +42.53% +57.78%

Table 6.5: Comparison of FPGA implementations for (3, 6)-regular LDPC codes
Author/Year

Paper
Karkooti’04

[52]
Chen’11

[18]
Vikram’15

[14]
This work
NS-FAID-3

Device Virtex 2 Virtex 2 Virtex 5 Zynq-7000
Codeword length 1536 1536 2304 1296

No. occupied slices 11352 6102 8430 16812
No. BRAMs 66 24 232 0
No. iterations 20 3 (avg) 8 (avg) 20

Max. freq (MHz) 121 149.8 114 75
Throughput (Mbps) 127 830.6 (avg) 1096 (avg) 1620

ASIC Implementation results

ASIC post-synthesis implementation results on 65nm-CMOS technology are shown
in Table 6.6. TAR results and corresponding gain/loss (+/-) with respect to the
MS(4,6) decoder are also reported. It can be seen from Table 6.6 that NS-FAID-3
exhibits a TAR improvement between 18.88% and 31.61%, depending on the hard-
ware architecture and CNU type. The NS-FAID-2 exhibits a performance loss of
0.21 dB compared to MS(4, 6), but yields a significant TAR improvement, by 34.37%
to 58.75%.
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Table 6.6: ASIC post-synthesis implementation results on 65nm-CMOS technology
for optimized (3, 6) regular NS-FAIDs

Variant pipeline.uncompressed pipeline.compressed
Decoder MS(4,6) NS-FAID-3 NS-FAID-2 MS(4,6) NS-FAID-3 NS-FAID-2

Frequency (MHz) 200 222 227 175 200 208
Throughput (Mbps) 1075 1193 1220 941 1075 1118

Area (mm2) 0.45 0.42 0.38 0.41 0.38 0.36
TAR (Mbps/mm2) 2389 2840 3210 2295 2828 3105
±% w.r.t. MS(4,6) 0% +18.88% +34.37% 0% +23.22% +35.29%

Variant full_layers.uncompressed full_layers.compressed
Decoder MS(4,6) NS-FAID-3 NS-FAID-2 MS(4,6) NS-FAID-3 NS-FAID-2

Frequency (MHz) 151 172 192 125 147 172
Throughput (Mbps) 3261 3715 4147 2700 3175 3715

Area (mm2) 0.80 0.72 0.68 0.75 0.67 0.65
TAR (Mbps/mm2) 4076 5159 6098 3600 4738 5715
±% w.r.t. MS(4,6) 0% +26.57% +49.61% 0% +31.61% +58.75%

6.3.3.2 Irregular NS-FAIDs

We consider the irregular WiMAX QC-LDPC code of rate 1/2, with base matrix of
size R × C = 12 × 24 is given in Figure 6.12. The expansion factor z = 96, thus
resulting in a codeword length N = zC = 2304 bits. The pipelined architecture from
Section 6.3.1 is implemented, with rpl = 1 row per decoding layer, after reordering
the rows of the base matrix, such that any two consecutive rows do not overlap
[112]. Note that the full layers architecture does not apply to irregular WiMAX
LDPC codes, since it is not possible to group the rows of the base matrix in full
decoding layers.

BER results for the MS(4, 6) decoder and the NS-FAID-w1w2w3 are shown in Fig-
ure 6.16, while ASIC post-synthesis implementation results on 65nm-CMOS technol-
ogy are shown in Table 6.7. It is worth noting that the NS-FAID-433 and NS-FAID-
432 decoders outperform the MS decoder by 0.3 dB and 0.15 dB (at BER= 10−5),
respectively, at the price of a small degradation of the TAR. NS-FAIDs-333 improves
the BER performance by 0.12 dB, with TAR improvement by 13.51% to 16.39%, de-
pending on the CNU type (compressed or uncompressed). NS-FAIDs-332 exhibits
similar BER performance, with TAR improvement by 13.51% to 19.30%. The NS-
FAID-222 decoder yields the most significant TAR improvement (up to 42.09%),
but this comes at the price of a significant BER degradation by ≈ 1 dB as estimated
in Chapter 5 (BER curve not shown in Figure 6.16).
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Figure 6.16: BER performance of optimized NS-FAIDs for WiMAX irregular LDPC
code

Table 6.7: ASIC post-synthesis implementation results on 65nm-CMOS technology
for optimized irregular NS-FAIDs

Variant pipeline.uncompressed

Decoder MS(4,6) NS-FAID- NS-FAID- NS-FAID- NS-FAID- NS-FAID-
(WiMAX) 433 432 333 332 222

Frequency (MHz) 175 172 178 192 192 200
Throughput (Mbps) 1673 1644 1701 1835 1835 1912

Area (mm2) 0.87 0.88 0.90 0.82 0.80 0.70
TAR (Mbps/mm2) 1922 1868 1890 2237 2293 2731
±% w.r.t. MS(4,6) 0% -2.81% -1.66% +16.39% +19.30% +42.09%

Variant pipeline.compressed

Decoder MS(4,6) NS-FAID- NS-FAID- NS-FAID- NS-FAID- NS-FAID-
(WiMAX) 433 432 333 332 222

Frequency (MHz) 161 156 161 178 178 200
Throughput (Mbps) 1539 1491 1539 1701 1701 1912

Area (mm2) 0.77 0.79 0.79 0.75 0.75 0.72
TAR (Mbps/mm2) 1998 1887 1948 2268 2268 2655
±% w.r.t. MS(4,6) 0% -5.56% -2.50% +13.51% +13.51% +32.88%
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Table 6.8: Comparison between the proposed NS-FAID and state-of-the-art imple-
mentations for the WiMAX QC-LDPC code

Author/Year

Paper

K. Zhang’09

[110]b
B. Xiang’11

[104]b
T. Heidari’13

[39]b
W. Zhang’15

[112]b
K. Kanchetla’16

[51]a
This work

NS-FAID-332b

Code length 2304 576-2304 2304 576-2304(†) 576-2304(†) 2304

Technology (nm) 90 130 130 40 90 65

Frequency (MHz) 950 214 100 290 149 192

Iterations 10 10 10 10 5 20

Throughput (Mbps) 2200 955 183 2227 955 1835

Tput scale to 65nm (Mbps) 3036 1910 366 1370 1318 1835

Area (mm2) 2.90(∗) 3.03(∗) 6.90(∗∗) 2.26(∗) 11.42(∗) 0.80(∗)

Area scale to 65nm (mm2) 1.51(∗) 0.76(∗) 1.73(∗∗) 5.97(∗) 5.94(∗) 0.80(∗)

TAR (Mbps/mm2) 2011 2513 212 229 222 2293

NTAR (Mbps/mm2/iter) 20110 25130 2120 2290 1110 45860
a Post-layout results
b Post-synthesis results
(†) support both WiMAX and Wi-Fi standards
(∗) only core area is reported
(∗∗) total chip area is reported
TAR = (Throughput scaled to 65nm) / (Area scaled to 65nm)
NTAR = TAR × Iterations

Finally, to emphasize the high-throughput characteristic of the proposed archi-
tecture, the irregular NS-FAID-332 decoder is further compared with other state-
of-the-art implementations of WiMAX decoders in Table 6.8. We also report the
TAR and Normalized TAR (NTAR) metrics, so as to keep the throughput compar-
ison on an equal basis with respect to technology, area, and number of iterations.
From Table 6.8 it can be seen that the proposed irregular NS-FAID compares fa-
vorably with state-of-the-art implementations, providing a NTAR value up to 45.86
Gbps/mm2/iteration.
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6.4 Conclusion
This chapter first presented an enhanced version of the previous hardware architec-
ture for layered QC-LDPC decoders with fully-parallel processing units. The pro-
posed enhancements allow a more efficient hardware usage, thus yielding a signif-
icant cost reduction and increase in the maximum operating frequency. Then, two
different hardware architectures were presented, making use of either pipelining or
increased hardware parallelism in order to increase throughput. Both MS and NS-
FAID decoding kernels were integrated into each of the two proposed architectures,
and compared in terms of area and throughput. ASIC post-synthesis implementa-
tion results demonstrated the effectiveness of the NS-FAID approach in yielding
significant improvements in terms of area and throughput, as compared to the MS
decoder, with even better or only slightly degraded decoding performance.
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Chapter 7

Conclusion and Perspectives

7.1 General Conclusion
The research conducted in thesis was oriented towards the design of efficient hard-
ware implementations of LDPC decoders, through exploiting approximate/imprecise
computing and storage techniques in message-passing decoding algorithms.

Approximate computing has been previously investigated for image and video
processing applications, which can trade the accuracy of the circuit for area, delay,
and/or power improvements. We have shown that a similar trade-off is possible for
LDPC decoders. However, one issue specific to LDPC – or more generally FEC –
decoders, is to guarantee their ability to provide reliable error protection, despite the
integration of approximate computing and storage mechanisms. This is even more
problematic in case of iterative message-passing decoders, since such approximations
could propagate and accumulate in a catastrophic way during the iterative decoding
process. To avoid this happening, specific models and analytic tools are required, so
as to determine the impact of such approximations on the iterative decoding process.
Proposing such models and analytic tools has been one of the main contributions
of this thesis, materialized by the proposed framework of NS-FAID decoders: ap-
proximate storage has been modeled through the use of framing functions, while
analytic tools based on density evolution and code-aware quantizers have been used
to derive optimal solutions in terms of error correction performance. Our findings
have further been validated through low-cost hardware implementations, targeting
multi-Gigabit/s applications.

We conclude the manuscript by summarizing our contributions on several levels,
from theoretical tools, to algorithmic and architectural designs.

A first contribution of the thesis was to investigate code-aware quantizers for
finite-alphabet MS decoders. The study revealed that a very simple quantizer –
defined as the uniform quantization with unitary step size, of a linearly scaled version
of the received signal – provides nearly the optimal solution with regard to the
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error correction performance of the finite-alphabet MS decoder. Therefore, finding
the optimal quantizer reduces to a 1-dimensional optimization problem, over the
possible values of the parameter used to scale the received signal (referred to as
gain factor). The approach can be easily adapted to any MS-based decoder, and the
simplicity of the solution makes possible the joint optimization of the quantizer and
the approximate computing techniques, integrated afterward in various forms into
the MS decoder.

At the algorithmic level, the main contributions of the thesis have been to propose
several MS-based decoding algorithms, that integrate techniques of approximate
computing and storage at different levels. Our contribution is twofold:

• First, we proposed two new decoding algorithms, obtained by introducing two
levels of impreciseness in the OMS decoding: the Partially OMS (POMS),
which performs only partially the offset correction, and the Imprecise Partially
OMS (I-POMS), which introduces a further level of impreciseness in the check-
node processing unit.

• The previous contribution has been further generalized to the framework of
NS-FAID decoders, which allow storing the exchanged messages using a lower
precision than the processing units. NS-FAIDs have been optimized by density
evolution for regular and irregular LDPC codes, and shown to yield significant
reductions of the memory size requirements, while providing even better or
only slightly degraded error correction performance, as compared to conven-
tional MS decoding.

Finally, several low-cost, high-throughput architectures have been proposed, and
integrated with both conventional and proposed decoding kernels, so as to demon-
strate the benefits of our approximate-computing based solutions. Three hardware
architectures have been proposed, optimizing throughput in a cost-efficient way,
by making use of (i) efficient hardware reuse, (ii) hazard-free pipelining, or (iii)
maximum hardware parallelism. To ensure very high throughput capabilities, all
architectures implement layered decoding with fully parallel processing units.

Implementation results for both ASIC and FPGA designs have confirmed the
low-cost, high-throughput characteristics of the proposed architectures, as compared
to state of the art implementations. Moreover, we have shown that the proposed
decoding kernels allow up to 58% improvement – as compared to conventional MS
decoding – in the Throughput to Area Ratio (TAR) metric for ASIC designs, or the
equivalent Hardware Usage Efficiency (HUE) metric for FPGA designs.
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7.2 Perspectives
As discussed in the first chapter of the thesis, cost, throughput and power con-
sumption are key challenges for the next generation of communication systems.
High-throughput is required to support the continuously increasing demand of traf-
fic volume, while power consumption incorporates sustainability concerns and is a
major constraint in mobile devices.

Therefore, one of the first perspectives of this thesis, is to investigate the impact
of the proposed solutions in terms of power consumption. Including power consump-
tion as a parameter of our optimization problem may also require the development
of specific solutions, so as to take into account possible trade-offs between power,
area, and frequency, the latter directly related to throughput.

A second perspective is to investigate the proposed solutions in conjunction with
other high throughput architectures. Unrolling the hardware resources for several
decoding iterations is known to allow achieving very-high throughput [87], yet at
the price of a significant increase in area. Hence, the integration of approximate
computing and storage techniques is expected to increase the cost-efficiency of such
a solution.

Finally, the ultimate goal would be reduce the storage requirements to only 1 bit
per exchanged message, without degrading – or only with acceptable degradation of
– the error correction performance or the convergence speed. Such an approach is
closely related to the so-called probabilistic, or “noisy” hard-decision decoders, that
have already gained a lot of interest over the last years.
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