Skip to Main content Skip to Navigation
Theses

Radio access mechanisms for massive machine communication in long-range wireless networks

Qipeng Song 1, 2
2 ADOPNET - Advanced technologies for operated networks
UR1 - Université de Rennes 1, IMT Atlantique - IMT Atlantique Bretagne-Pays de la Loire, IRISA-D2 - RÉSEAUX, TÉLÉCOMMUNICATION ET SERVICES
Abstract : As a key step toward a smart society, apart from the Human-to-Human (H2H) communication, the future wireless networks, are expected to accommodate Machine-to-Machine Communication (also known as Machine Type Communication (MTC)). The latter is a new communication paradigm in which the devices can talk with each other without or with little human intervention. With the rapid proliferation of M2M applications, a huge number of devices will be deployed in many types of use cases such as smart metering, industry automation, e-health, etc. However, the current wireless networks are still not ready to hold traffic from MTC. The reason is twofold. First, the evolution of the wireless network seeks for higher throughput and lower latency. Second, the special features that MTC exhibits, such as huge number of deployed devices, small payload but frequent transmission, adverse installation location, etc., lead to that the requirements by H2H are no longer required by most of M2M use cases.From the state-of-the-art work, we find that two possible research orientations to efficiently handle M2M traffic: Low Power Wide Area Network (LPWAN) and adaption of the existing cellular networks. For both of them, the radio access mechanisms, used in Radio Access Network (RAN), is vitally important to make MTC a promising technology. From this view, radio access mechanism is the main focus of our studies. In this thesis, we present the contributions covering the aforementioned aspects: performance evaluation of ALOHA-based LPWAN networks, and a polling service that is an extension to RAN of LTE networks for periodic M2M traffic.The contributions of this thesis are summarized on the following axis:We make a survey about the energy efficiency related studies in the literatures. The main contribution in this survey is to review, classify the existing research works into different categories, and compare the pros and cons between categories. We also review the advances of the LPWAN related study.We study the impact of transmit power level diversity and imperfect power control to the slotted ALOHA based LPWAN systems. Some insightful design guidelines are obtained by manipulating the established analytical model.We study the performance of LPWAN system with macro reception diversity. By stochastic geometry, we get simple closed-form formulas for the packet loss rate and spatial throughput, which were unknown before. These formulas are very useful to analyze LPWAN networks (especially in urban areas) and to quantify the system capacity gain. By gathering several available results about the analysis of non slotted ALOHA, we finally get a synthesis framework to study the RAN of LPWAN.In terms of adaptations to RAN of LTE networks, we first analyze the conventional random access mechanism in LTE and identify the existing inefficiencies. We then propose a multiple period polling service for periodic M2M use cases. The proposed service is compared with conventional random access mechanism in LTE in a fluid model. The numerical results show that the proposed service dramatically reduces the consumption of system resources such as Radio Network Temporary Identifier (RNTI), Resource Block (RB) and has a higher energy efficiency due to the avoidance of random access procedure and related signaling messages.
Complete list of metadatas

Cited literature [113 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01783063
Contributor : Abes Star :  Contact
Submitted on : Wednesday, May 2, 2018 - 11:31:05 AM
Last modification on : Wednesday, August 5, 2020 - 3:49:46 AM
Long-term archiving on: : Monday, September 24, 2018 - 2:27:40 PM

File

2017IMTA0047_SongQipeng.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01783063, version 1

Citation

Qipeng Song. Radio access mechanisms for massive machine communication in long-range wireless networks. Networking and Internet Architecture [cs.NI]. Ecole nationale supérieure Mines-Télécom Atlantique, 2017. English. ⟨NNT : 2017IMTA0047⟩. ⟨tel-01783063⟩

Share

Metrics

Record views

378

Files downloads

595