K. Semkow and A. Sammells, A Lithium Oxygen Secondary Battery, Journal of The Electrochemical Society, vol.134, issue.8, pp.2084-2085, 1987.
DOI : 10.1149/1.2100826

N. Schneider and A. Deposition, Atomic Layer Deposition ( ALD ) Atomic Layer Deposition, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01741546

R. Castanheira and L. , Corrosion of high surface area carbon supports used in proton-exchange membrane fuel cell, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01303814

A. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, vol.49, issue.230, pp.14095-14107, 2000.
DOI : 10.1063/1.97476

T. Jawhari, A. Roid, and J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials, Carbon, vol.33, issue.11, pp.1561-1565, 1995.
DOI : 10.1016/0008-6223(95)00117-V

L. Nistor, J. Landuyt, and V. Ralchenko, Direct observation of laser-induced crystallization of a-C:H films, Applied Physics A Solids and Surfaces, vol.8, issue.2, pp.137-144, 1990.
DOI : 10.1007/BF00616297

K. Abraham, Z. Jiang, and J. Soc, A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery, Journal of The Electrochemical Society, vol.143, issue.1, pp.1-5, 1996.
DOI : 10.1149/1.1836378

URL : http://jes.ecsdl.org/content/143/1/1.full.pdf

J. Melorose, R. Perroy, and S. Careas, World population prospects, United Nations, vol.1, pp.587-92, 2015.

C. Nevada, World Fossil Fuels Reserves and Expected Consumtion. 1?3. 11. International Energy Agency (2016) Key world energy statistics, ) Material Safety Data Sheet Fuel Oil Tesoro, 2002.

S. Kloff and C. Wicks, Gestion environnementale de l'exploitation de pétrole offshore et du transport maritime pétrolier: un document d'information à l'attention des parties prenantes de l'écorégion marine ouest africaine, 2004.

P. Mckenna, Fossil fuels are far deadlier than nuclear power. New Swientist 15 Mohtasham J (2015) Review Article-Renewable Energies, Energy Procedia, vol.74, pp.1289-1297, 2011.

M. Delucchi and M. Jacobson, Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies, Energy Policy, vol.39, issue.3, 2011.
DOI : 10.1016/j.enpol.2010.11.045

S. Badwal, S. Giddey, and C. Munnings, Emerging electrochemical energy conversion and storage technologies, Frontiers in Chemistry, vol.16, issue.153, 2014.
DOI : 10.1016/j.cossms.2012.04.002

URL : https://www.frontiersin.org/articles/10.3389/fchem.2014.00079/pdf

P. Alotto, M. Guarnieri, and F. Moro, Redox flow batteries for the storage of renewable energy: A review, Renewable and Sustainable Energy Reviews, vol.29, pp.325-335, 2014.
DOI : 10.1016/j.rser.2013.08.001

G. Moreno, N. , C. Molina, M. Gervasio, D. et al., Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost, Renewable and Sustainable Energy Reviews, vol.52, pp.897-906, 2015.
DOI : 10.1016/j.rser.2015.07.157

L. Schlapbach, Hydrogen-storage materials for mobile applications, Nature, vol.253, issue.6861, pp.353-358, 2001.
DOI : 10.1016/S0925-8388(96)03049-6

URL : http://doc.rero.ch/record/6025/files/zuttel_hsm.pdf

C. Liu, F. Li, L. Ma, and H. Cheng, Advanced Materials for Energy Storage, Advanced Materials, vol.19, issue.8, pp.28-62, 2010.
DOI : 10.1021/nn900933u

P. De-rango, D. Fruchart, and M. P. , Le stockage solide de l'hydrogène au service des énergies renouvelables, CNRS (Centre Natl la Rech Sci, pp.86-92, 2011.

A. Fotouhi, D. Auger, and K. Propp, A review on electric vehicle battery modelling: From Lithium-ion toward Lithium???Sulphur, Renewable and Sustainable Energy Reviews, vol.56, 2016.
DOI : 10.1016/j.rser.2015.12.009

F. Cheng, J. Chen, M. Bayer, and C. Dustmann, Metal???air batteries: from oxygen reduction electrochemistry to cathode catalysts, Chemical Society Reviews, vol.196, issue.6, p.2172, 2012.
DOI : 10.1016/j.jpowsour.2011.02.023

J. Bouteillon, Constantes électrochimiques des sels fondus. 33: 28. Padbury R, Zhang X (2011) Lithium?oxygen batteries?Limiting factors that affect performance, J Power Sources, vol.196, pp.4436-4444, 2012.

M. Zimmermann, Oxygen Reduction Reaction Mechanism on Glassy Carbon in Aprotic Organic Solvents, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01230599

C. Laoire, S. Mukerjee, and K. Abraham, Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications, The Journal of Physical Chemistry C, vol.113, issue.46, pp.20127-20134, 2009.
DOI : 10.1021/jp908090s

C. Allen, S. Mukerjee, and E. Plichta, Oxygen Electrode Rechargeability in an Ionic Liquid for the Li?Air Battery Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries, Luntz A, McCloskey B (2014) Nonaqueous Li?air batteries: a status report, pp.2420-2424, 2011.

B. Mccloskey, R. Scheffler, and A. Speidel, Batteries, Journal of the American Chemical Society, vol.133, issue.45, pp.18038-18079, 2011.
DOI : 10.1021/ja207229n

T. Fujinaga and S. Sakura, Polarographic Investigation of Dissolved Oxygen in Nonaqueous Solvent, Bulletin of the Chemical Society of Japan, vol.47, issue.11, pp.2781-2786, 1974.
DOI : 10.1246/bcsj.47.2781

D. Sawyer, G. Jr, B. Mccloskey, D. Bethune, and R. Shelby, Solvents ' Critical Role in Nonaqueous Lithium À Oxygen Battery Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery) Nonaqueous Li ? Air Batteries : A Status Report A review of high energy density lithium-air battery technology, Anal Chem J Phys Chem Lett J Phys Chem C Chem Rev J Appl Electrochem, vol.2, issue.44, pp.1720-1724, 1982.

R. Black, B. Adams, and L. Nazar, Non-Aqueous and Hybrid Li-O2 Batteries, Advanced Energy Materials, vol.334, issue.109, pp.801-815, 2012.
DOI : 10.1126/science.1212858

B. Mccloskey, D. Bethune, and R. Shelby, Limitations in Rechargeability of Li-O2 Batteries and Possible Origins Pearson G (1963) Hard and Soft Acids and Bases Studies of Li-Air Cells Utilizing Dimethyl Sulfoxide-Based Electrolyte, 46. C. Laurence JF. GAL Lewis Basicity and Affinity Scales. 47. Solutions N, Copyright KI, pp.3043-3047, 2002.

A. Khetan, A. Luntz, and V. Viswanathan, Batteries: Solution-Driven Growth versus Nucleophilic Stability, The Journal of Physical Chemistry Letters, vol.6, issue.7, pp.1254-1259, 2015.
DOI : 10.1021/acs.jpclett.5b00324

C. Andrieux, P. Hapiot, and J. Saveant, Mechanism of superoxide ion disproportionation in aprotic solvents, Journal of the American Chemical Society, vol.109, issue.12, pp.3768-3775, 1987.
DOI : 10.1021/ja00246a040

W. Xu, K. Xu, and V. V. Viswanathan, Reaction mechanisms for the limited reversibility of Li???O2 chemistry in organic carbonate electrolytes, Journal of Power Sources, vol.196, issue.22, pp.9631-9639, 2011.
DOI : 10.1016/j.jpowsour.2011.06.099

J. García, H. Horn, J. Rice, K. Lau, J. Lu et al., Batteries, The Journal of Physical Chemistry Letters, vol.6, issue.10, pp.1795-1799348, 2014.
DOI : 10.1021/acs.jpclett.5b00529

Y. Lu, B. Gallant, and D. Kwabi, Lithium???oxygen batteries: bridging mechanistic understanding and battery performance, Energy & Environmental Science, vol.22, issue.3, pp.750-7682902, 2012.
DOI : 10.1021/cm1017536

Z. Guo, X. Dong, and S. Yuan, Humidity effect on electrochemical performance of Li???O2 batteries, Journal of Power Sources, vol.264, 2014.
DOI : 10.1016/j.jpowsour.2014.04.079

T. Liu, M. Leskes, and W. Yu, Cycling Li-O2 batteries via LiOH formation and decomposition doi: 10.1126/science Stability of polymer binders in Li-O2 batteries, Science J Power Sources, vol.350, issue.243, pp.530-533899, 2013.
DOI : 10.1126/science.aac7730

T. Huseby and H. Bair, Dissolution of Polyethylene Single Crystals in Xylene and Octadecane, Journal of Applied Physics, vol.4, issue.11, pp.4969-4973, 1968.
DOI : 10.6028/jres.071A.033

J. Poulakis and C. Papaspyrides, The dissolution/reprecipitation technique applied on high-density polyethylene: I. Model recycling experiments, Advances in Polymer Technology, vol.14, issue.3, pp.237-242, 1995.
DOI : 10.1002/adv.1995.060140307

W. Zhang, J. Zhu, and H. Ang, Binder-free graphene foams for O2 electrodes of Li???O2 batteries, Nanoscale, vol.25, issue.20, pp.9651-9659, 2013.
DOI : 10.1002/adma.201204018

Z. Wang, D. Xu, and J. Xu, Graphene Oxide Gel-Derived, Free-Standing, Hierarchically Porous Carbon for High-Capacity and High-Rate Rechargeable Li-O2 Batteries, Advanced Functional Materials, vol.132, issue.17, pp.3699-3705, 2012.
DOI : 10.1021/ja1072299

Y. Li, J. Wang, and X. Li, Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries, Electrochemistry Communications, vol.18, pp.12-15, 2012.
DOI : 10.1016/j.elecom.2012.01.023

C. Choi, H. Lim, and M. Chung, Long-range electron transfer over graphene-based catalyst for high-performing oxygen reduction reactions: Importance of size, n-doping, and metallic impurities Fe-based metallopolymer nanowall-based composites for Li-O2 battery cathode, J Am Chem Soc ACS Appl Mater Interfaces, vol.136, issue.6, pp.9070-90777164, 2014.

W. Chen, Z. Zhang, and W. Bao, Hierarchical mesoporous ??-Fe2O3/carbon nanocomposites derived from metal organic frameworks as a cathode electrocatalyst for rechargeable Li-O2 batteries, Electrochimica Acta, vol.134, pp.293-301, 2014.
DOI : 10.1016/j.electacta.2014.04.110

W. Xia, J. Zhu, W. Guo, L. An, D. et al., Well-defined carbon polyhedrons prepared from nano metal???organic frameworks for oxygen reduction, J. Mater. Chem. A, vol.33, issue.30, pp.11606-11616, 2014.
DOI : 10.1016/0008-6223(95)00154-6

J. Zhang, L. Wang, and L. Xu, Porous cobalt-manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li-O2 batteries A high performance O2 selective membrane based on CAU-1- NH2@polydopamine and the PMMA polymer for Li-air batteries, Nanoscale Chem Commun (Camb), vol.7, issue.51, pp.720-726, 2014.

X. Hu, Z. Zhu, and F. Cheng, batteries, Nanoscale, vol.134, issue.28, pp.11833-11840, 2015.
DOI : 10.1021/ja208944x

O. Thotiyl, M. Freunberger, S. Peng, and Z. , A stable cathode for the aprotic Li- O2 battery TEMPO: A Mobile Catalyst for Rechargeable Li-O2 Batteries Understanding the behavior of Li?oxygen cells containing LiI, C5TA01399B References 1. Vosburgh WC, Cogswell SA (1943) Complex Ions. VIII. Pyridine-Silver Ions, pp.1050-1056, 2013.

H. Baltruschat, Differential electrochemical mass spectrometry, Journal of the American Society for Mass Spectrometry, vol.142, issue.555, pp.1693-1706, 2004.
DOI : 10.1149/1.2048406

URL : https://link.springer.com/content/pdf/10.1016%2Fj.jasms.2004.09.011.pdf

E. Hoffmann, . De, and V. Stroobant, Mass Spectrometry -Priniples and Applications, Mass Spectrom Rev, 2007.

K. Abraham, Z. Jiang, and J. Soc, A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery, Journal of The Electrochemical Society, vol.143, issue.1, pp.1-5, 1996.
DOI : 10.1149/1.1836378

URL : http://jes.ecsdl.org/content/143/1/1.full.pdf

P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nanosci Technol, pp.320-329, 2009.

E. Nasybulin, W. Xu, and M. Engelhard, Stability of polymer binders in Li???O 2 batteries, Journal of Power Sources, vol.243, pp.899-907, 2013.
DOI : 10.1016/j.jpowsour.2013.06.097

T. Huseby and H. Bair, Dissolution of Polyethylene Single Crystals in Xylene and Octadecane, Journal of Applied Physics, vol.4, issue.11, pp.4969-4973, 1968.
DOI : 10.6028/jres.071A.033

J. Poulakis and C. Papaspyrides, The dissolution/reprecipitation technique applied on high-density polyethylene: I. Model recycling experiments, Advances in Polymer Technology, vol.14, issue.3, pp.237-242, 1995.
DOI : 10.1002/adv.1995.060140307

C. Laoire, S. Mukerjee, and E. Plichta, Rechargeable Lithium/TEGDME-LiPF6?O2 Battery, J Electrochem Soc, vol.158, 2011.
DOI : 10.1149/1.3531981

B. Mccloskey, R. Scheffler, and A. Speidel, Batteries, Luntz A, McCloskey B (2014) Nonaqueous Li?air batteries: a status report, pp.18038-18079, 2011.
DOI : 10.1021/ja207229n

K. Schwenke, M. Metzger, and T. Restle, Correlating Li/O2 Cell Capacity and Product Morphology with Discharge Current Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen Li?O 2 Battery Degradation by Lithium Peroxide (Li 2 O 2 ): A Model Study Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries Carbon corrosion induced by membrane failure: The weak link of PEMFC long-term performance, Protons on Li2O2 Crystal Growth in Aprotic Li-O2 Cells Microscopie électronique à balayage et Microanalyses, pp.573-584, 2006.

R. 1. Mccloskey, B. Scheffler, R. Speidel, and A. , Batteries, Journal of the American Chemical Society, vol.133, issue.45, pp.18038-18079, 2011.
DOI : 10.1021/ja207229n

M. Ahmed, Lithium battery with charging redox couple, 2013.

W. Kwak, D. Hirshberg, and D. Sharon, Understanding the behavior of Li???oxygen cells containing LiI, Journal of Materials Chemistry A, vol.114, issue.16, pp.8855-8864, 2015.
DOI : 10.1021/jp102019y

T. Liu, M. Leskes, and W. Yu, Cycling Li-O2 batteries via LiOH formation and decomposition doi: 10.1126/science TEMPO: A Mobile Catalyst for Rechargeable Li-O2 Batteries, Science J Am Chem Soc, vol.350, issue.136, pp.530-53315054, 2014.
DOI : 10.1126/science.aac7730

D. Kundu, R. Black, B. Adams, and L. Nazar, A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium???Oxygen Batteries, ACS Central Science, vol.1, issue.9, pp.510-515, 2015.
DOI : 10.1021/acscentsci.5b00267

V. Viswanathan, K. Thygesen, and J. Hummelshj, Electrical conductivity in Li 2O 2 and its role in determining capacity limitations in non-aqueous Li-O 2 batteries, J Chem Phys, vol.135, pp.0-10, 2011.

B. Mccloskey, D. Bethune, and R. Shelby, Batteries and Possible Origins, The Journal of Physical Chemistry Letters, vol.3, issue.20, pp.3043-3047, 2012.
DOI : 10.1021/jz301359t

X. Hu, Z. Zhu, and F. Cheng, batteries, Nanoscale, vol.134, issue.28, pp.11833-11840, 2015.
DOI : 10.1021/ja208944x

J. Zhang, Y. Luan, and Z. Lyu, batteries, Nanoscale, vol.8, issue.36, pp.14881-14888, 2015.
DOI : 10.1007/s12274-014-0604-y

URL : https://hal.archives-ouvertes.fr/hal-01612077

J. Shui, N. Karan, and M. Balasubramanian, Battery: Studies of Catalytic Structure and Activity toward Oxygen Evolution Reaction, Journal of the American Chemical Society, vol.134, issue.40, pp.16654-612047, 1979.
DOI : 10.1021/ja3042993

H. Ota, Y. Sakata, A. Inoue, and S. Yamaguchi, Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode, Journal of The Electrochemical Society, vol.148, issue.98, 2004.
DOI : 10.1149/1.1785795

B. Mccloskey, A. Speidel, and R. Scheffler, Batteries, The Journal of Physical Chemistry Letters, vol.3, issue.8, pp.997-10014436, 2012.
DOI : 10.1021/jz300243r

R. Black, S. Oh, and J. Lee, /LiOH Crystallization, Journal of the American Chemical Society, vol.134, issue.6, pp.2902-2907, 2012.
DOI : 10.1021/ja2111543

S. Badwal, S. Giddey, and C. Munnings, Emerging electrochemical energy conversion and storage technologies, Frontiers in Chemistry, vol.16, issue.153, 2014.
DOI : 10.1016/j.cossms.2012.04.002

URL : https://www.frontiersin.org/articles/10.3389/fchem.2014.00079/pdf

B. Mccloskey, D. Addison, M. Bhatt, H. Geaney, and C. Dwyer, A viewpoint on heterogeneous electrocatalysis and redox mediation in nonaqueous Li-O 2 batteries (2014) A review of high energy density lithium-air battery technology, ACS Catal J Appl Electrochem, vol.778, issue.44, pp.5-22, 2016.

X. Yu, J. B. Bates, G. E. Jellison, J. , and F. , A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride, Journal of The Electrochemical Society, vol.144, issue.2, pp.524-532, 1997.
DOI : 10.1149/1.1837443

J. Bates, N. Dudney, and B. Neudecker, Thin-film lithium and lithium-ion batteries, Solid State Ionics, vol.135, issue.1-4, pp.33-45, 2008.
DOI : 10.1016/S0167-2738(00)00327-1

J. Ribeiro, R. Sousa, and J. Sousa, Rechargeable Lithium Film Batteries ??? Encapsulation and Protection, Procedia Engineering, vol.47, pp.676-679, 2012.
DOI : 10.1016/j.proeng.2012.09.237

URL : https://doi.org/10.1016/j.proeng.2012.09.237

C. Laoire, S. Mukerjee, and K. Abraham, Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications, ) Oxygen Reduction Reaction Mechanism on Glassy Carbon in Aprotic Organic Solvents, pp.20127-20134, 2009.
DOI : 10.1021/jp908090s

H. Zare, N. Nasirizadeh, M. Ardakani, and M. , Electrochemical properties of a tetrabromo-p-benzoquinone modified carbon paste electrode. Application to the simultaneous determination of ascorbic acid, dopamine and uric acid, Journal of Electroanalytical Chemistry, vol.577, issue.1, pp.25-33, 2005.
DOI : 10.1016/j.jelechem.2004.11.010

R. Holze, Surface Raman spectroelectrochemical studies of oxygen reduction catalysts, pp.999-1007, 1991.

B. Ortiz and S. Park, Electrochemical and spectroelectrochemical studies of cobalt salen and salophen as oxygen reduction catalysts, Bull Korean Chem Soc, vol.21, issue.00, pp.405-411, 2000.

A. Bard, L. Faulkner, and N. York, Electrochemicals methods: Fundamentals and Applications. Electrochem I Faulkner, 1944.

R. Lebel, D. Goring, J. Janisch, A. Ruff, and B. Speiser, Density, Viscosity, Refractive Index, and Hygroscopicity of Mixtures of Water and Dimethyl Sulfoxide doi: 10.1021/je60012a032 36 Consistent diffusion coefficients of ferrocene in some non-aqueous solvents: Electrochemical simultaneous determination together with electrode sizes and comparison to pulse-gradient spin-echo NMR results, J Chem Eng Data J Solid State Electrochem, vol.7, issue.15, pp.100-1012083, 1962.

D. Dragu, M. Buda, and T. Vi?an, Cyclic voltammetry simulation using orthogonal collocation: Comparison with experimental data and measuring the electrochemical rate constant, UPB Sci Bull Ser B Chem Mater Sci, vol.71, pp.77-90, 2009.

G. Brisard, M. Manzini, and A. Lasia, Kinetics of the electroreduction of Co(salen) in DMSO, Journal of Electroanalytical Chemistry, vol.326, issue.1-2, pp.317-322, 1992.
DOI : 10.1016/0022-0728(92)80518-9

C. Laoire, S. Mukerjee, and K. Abraham, Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery Studies of Li-Air Cells Utilizing Dimethyl Sulfoxide-Based Electrolyte Nonaqueous Li ? Air Batteries : A Status Report Effects of media and electrode materials on the electrochemical reduction of dioxygen Dominant Decomposition Pathways for Ethereal Solvents in Li?O 2 Batteries, 2014) Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic Li-O2 Battery, pp.9178-9186, 1982.

R. Younesi, M. Hahlin, and F. Björefors, A Model Study doi: 10.1021/cm303226g integrate in the fits) The O1s peak (Figure V.12-D) exhibits three contributions; the first, located at 530.5 eV, corresponds to metal oxides (here probably Nb-O bound The lower contribution at 531.5 eV, is linked to metal hydroxides [24] (formation of niobium hydroxides on the surface) The N1s spectra show the presence of adsorbates on the surface of the sample (as the signal is very noisy). The contribution around 400 eV is attributed to adsorbed N-N bound [24], and for the contribution at 395 eV, several papers linked this transitions to metal nitrides (niobium nitrides), Li?O 2 Battery Degradation by Lithium PeroxideTBTDEN) chemisorbed on the surface of the sample (as it comprises Nb-N bounds), pp.77-84, 2013.

V. Figure, 13: XPS surface analysis of Thermal ALD sample at 400°C, 5000 cycles. A-Survey, C1s, C-Nb3d5/2 and 3d3, pp.1-1

V. Figure, 14: XPS surface analysis of thermal ALD sample at 375°C, 5000 cycles. A-Survey, C1s, C-Nb3d5/2 and 3d3, pp.1-1

V. Figure, Y-primary axis: O2 ion current (A) Y-Secondary axis: Electrochemical current (mA) Electrolyte 0.2 M LiClO4 DMSO, Ar-purge. Scan rate 2 mV s -1 , for pristine Panex 30 (A and B) Electrode, p.1500

V. Figure, Y-primary axis: CO2 ion current (A) Y-Secondary axis: Electrochemical current (mA) Electrolyte 0.2 M LiClO4 DMSO, Ar-purge. Scan rate 2 mV s -1 , for pristine Panex 30 (A and B) Electrode, p.1500

V. Figure, Y-primary axis: O2 ion current (A) Y-Secondary axis: Electrochemical current (mA) Electrolyte 0.2 M LiClO4 DMSO, O2-purge. Scan rate 2 mV s -1 , for pristine Panex 30 (A and B) Electrode, p.1500

O. Thotiyl, M. Freunberger, S. Peng, and Z. , A stable cathode for the aprotic Li- O2 battery The investigation of NbO2 and Nb2O5 electronic structure by XPS, UPS and first principles methods, Nat Mater Surf Interface Anal, vol.12, issue.45, pp.1050-61206, 2013.

M. Leskelä and M. Ritala, Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges, ChemInform, vol.42, issue.3, pp.5548-5554, 2003.
DOI : 10.1002/chin.200403244

R. Johnson, A. Hultqvist, and S. Bent, A brief review of atomic layer deposition: from fundamentals to applications, Materials Today, vol.17, issue.5, pp.236-246, 2014.
DOI : 10.1016/j.mattod.2014.04.026

M. Sablier and E. Bergmann, Depots sous vide par procedes plasma -Principes, 2014.

T. Suntola, Atomic layer epitaxy, Thin Solid Films, vol.216, issue.1, pp.84-8990874, 1992.
DOI : 10.1016/0040-6090(92)90874-B

N. Schneider and A. Deposition, Atomic Layer Deposition ( ALD ) Atomic Layer Deposition, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01741546

K. Knapas, A. Rahtu, and M. Ritala, Etching of Nb2O5 thin films by NbCl5, Chem Vap Depos, vol.15, pp.269-273, 2009.

M. Bechelany, M. Bedjaoui, and D. Blanc-pelissier, Evaluation thermodynamique des précurseurs ALD Nanostructured Nb 2 O 5 Polymorphs by Electrospinning for Rechargeable Lithium Batteries Evaluation and comparison of novel precursors for atomic layer deposition of Nb2O5 thin films, Principes Appl. la Tech. ALD J Phys Chem C Chem Mater, vol.11, issue.24, pp.664-671975, 1021.

K. Kukli, M. Ritala, M. Leskelä, and R. Lappalainen, Niobium Oxide Thin Films Grown by Atomic Layer Epitaxy, Chemical Vapor Deposition, vol.04, issue.01, pp.29-34, 1998.
DOI : 10.1002/(SICI)1521-3862(199801)04:01<29::AID-CVDE29>3.3.CO;2-I

K. Knapas, A. Rahtu, and M. Ritala, and Water, Langmuir, vol.26, issue.2, pp.848-853, 2010.
DOI : 10.1021/la902289h

M. Anderson, B. Aitchison, D. Johnson, W. Hoffeditz, M. Pellin et al., Corrosion Resistance of Atomic Layer Deposition-Generated Amorphous Thin Films, ACS Applied Materials & Interfaces, vol.8, issue.44, pp.30644-30648, 2016.
DOI : 10.1021/acsami.6b11231

G. Jungsk, Possibilities and limitations of ellipsometry, Thin Solid Films, vol.234, pp.423-431, 1993.

R. Collins, Ellipsometry in Analysis of Surfaces and Thin Films Encycl Anal Chem. doi: 10.1002 Rate of Carbon Contamination on Copper , Iron and Aluminum Targets in Gas Flows by an Electron Microprobe, Konuma H, pp.99-108, 1983.

N. Ferraz, F. Marcos, and A. Nogueira, Hexagonal-Nb 2 O 5 /Anatase-TiO 2 mixtures and their applications in the removal of Methylene Blue dye under various conditions, Materials Chemistry and Physics, vol.198, pp.331-340, 2017.
DOI : 10.1016/j.matchemphys.2017.06.029

K. Sahu and U. De, Role of Nb2O5 phase in the formation of piezoelectric PbNb2O6, 2014.

R. Shao, Z. Cao, and Y. Xiao, Enhancing photocatalytic activity by tuning the ratio of hexagonal and orthorhombic phase Nb2O5 hollow fibers Handbook of X-ray Photoelectron Spectroscopy, 1992.

G. Mcguire, G. Schweitzer, T. Carlson, R. Pollak, H. Stolz et al., Core electron binding energies in some Group IIIA, VB, and VIB compounds, Inorganic Chemistry, vol.12, issue.10, pp.2450-2453185, 1973.
DOI : 10.1021/ic50128a045

R. Romero, J. Ramos-barrado, F. Martin, and D. Leinen, Nb2O5 thin films obtained by chemical spray pyrolysis, Surface and Interface Analysis, vol.36, issue.8, pp.888-891, 2004.
DOI : 10.1002/sia.1793

Z. Yue, D. Chu, and H. Huang, A novel heterogeneous hybrid by incorporation of Nb 2 O 5 microspheres and reduced graphene oxide for photocatalytic H 2 evolution under visible light irradiation Corrosion behaviour of polycrystalline Nb2O5 thin films and its size effects Structural investigations of nitrided Nb2O5 and Nb2O5-SiO2 sol-gel derived films, RSC Adv Prot Met Phys Chem Surfaces Ko?cielska B, Winiarski A J Non Cryst Solids, vol.5, issue.354, pp.47117-47124104, 2008.

J. Alfonso, J. Buitrago, and J. Torres, Influence of fabrication parameters on crystallization, microstructure, and surface composition of NbN thin films deposited by rf magnetron sputtering, Journal of Materials Science, vol.22, issue.164, pp.5528-5533, 2010.
DOI : 10.1116/1.1601610

G. Jouve, C. Séverac, and S. Cantacuzène, XPS study of NbN and (NbTi)N superconducting coatings, Thin Solid Films, vol.287, issue.1-2, pp.146-153, 1996.
DOI : 10.1016/S0040-6090(96)08776-7

A. Ermolieff, M. Girard, and C. Raoul, An XPS comparative study on thermal oxide barrier formation on Nb and NbN thin films, Applications of Surface Science, vol.21, issue.1-4, pp.65-79, 1985.
DOI : 10.1016/0378-5963(85)90008-X

P. Martin, R. Netterfield, and T. Kinder, Optical properties and stress of ion-assisted aluminum nitride thin films, Applied Optics, vol.31, issue.31, pp.6734-6740, 1992.
DOI : 10.1364/AO.31.006734

A. Galtayries, R. Sporken, and J. Riga, XPS comparative study of ceria/zirconia mixed oxides: powders and thin film characterisation, Journal of Electron Spectroscopy and Related Phenomena, vol.88, issue.91, pp.951-956, 1998.
DOI : 10.1016/S0368-2048(97)00134-5

A. Beccaria, G. Poggi, and G. Castello, Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water, British Corrosion Journal, vol.19, issue.4, pp.283-287, 1995.
DOI : 10.1016/0010-938X(73)90031-0

H. Peng, Composition chimique et nanostructure des films passifs formés sur acier inoxydables austénitique : effet du molybdène Thermodynamic evaluation of Nb-O system, 2006.

Y. Okazaki, T. Tateishi, and Y. Ito, Corrosion Resistance of Implant Alloys in Pseudo Physiological Solution and Role of Alloying Elements in Passive Films, Materials Transactions, JIM, vol.38, issue.1, pp.78-84, 1997.
DOI : 10.2320/matertrans1989.38.78

P. Jouan, M. Peignon, C. Cardinaud, and G. Lemperiere, Characterisation of TiN coatings and of the TiN/Si interface by X-ray photoelectron spectroscopy and Auger electron spectroscopy, Applied Surface Science, vol.68, issue.4, 1993.
DOI : 10.1016/0169-4332(93)90241-3

H. Estrade-szwarckopf, B. Rousseau, C. Herlod, and P. Lagrange, Sodium - Oxygen Graphite Intercalation Compound: XPS, UPS and STM Study, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, vol.310, issue.1, pp.231-236, 1080.
DOI : 10.1103/PhysRevB.40.5856

S. Gardner, C. Singamsetty, and G. Booth, Surface characterization of carbon fibers using angle-resolved XPS and ISS Surface composition of AlN powders studied by x-ray photoelectron spectroscopy and bremsstrahlung-excited Auger electron spectroscopy, Carbon N Y Liao HM J Vac Sci Technol A Vacuum, vol.3394, pp.587-595, 1993.

M. Goldberg, J. Clabes, and C. Kovac, Metal???polymer chemistry. II. Chromium???polyimide interface reactions and related organometallic chemistry, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.6, issue.3, pp.991-996, 1988.
DOI : 10.1116/1.575006

S. Vanini, A. Audouard, J. Marcus, and P. , The role of nitrogen in the passivity of austenitic stainless steels, Corrosion Science, vol.36, issue.11, pp.1825-1834, 1994.
DOI : 10.1016/0010-938X(94)90021-3

H. Profijt, S. Potts, M. Van-de-sanden, and W. Kessels, Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.29, issue.5, 2011.
DOI : 10.1116/1.3609974

S. Jin, A. Atrens, J. Hammond, and K. Smith, ESCA-studies of the structure and composition of the passive film formed on stainless steels by various immersion times in 0.1 M NaCl solution, Applied Physics A Solids and Surfaces, vol.2, issue.2, pp.149-165446, 1986.
DOI : 10.1016/B978-0-444-42252-1.50066-7

D. Brion, Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l'air et dans l'eau, Applications of Surface Science, vol.5, issue.2, pp.133-152, 1980.
DOI : 10.1016/0378-5963(80)90148-8

T. Barr, K. Kim, R. Davis, K. Thygesen, and J. Hummelshj, An ESCA study of the termination of the passivation of elemental metals Electron spectroscopy of the nickel-oxygen system, Electrical conductivity in Li 2O 2 and its role in determining capacity limitations in non-aqueous Li-O 2 batteries, pp.1801-1810, 1063.

A. Luntz, B. Mccloskey, B. Mccloskey, A. Speidel, and R. Scheffler, Nonaqueous Li ? Air Batteries : A Status Report doi: 10.1021/cr500054y 55 Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries, Chem Rev J Phys Chem Lett, vol.114, issue.3, pp.11721-11750997, 2012.
DOI : 10.1021/cr500054y

V. Aravindan, J. Gnanaraj, Y. Lee, S. Madhavi, R. Fu et al., Insertion-type electrodes for nonaqueous Li-ion capacitors High-Resolution 7 Li Solid-State NMR Study of LixV2O5 Cathode Electrodes for Li-Rechargeable Batteries ESD and ALD depositions of Ta2O5 thin films investigated as barriers to copper diffusion for advanced metallization, Chem Rev J Phys Chem B J Electrochem Soc, vol.1141, issue.156, pp.11619-11635, 1149.

A. Lintanf-salaün, A. Mantoux, E. Djurado, and E. Blanquet, Atomic layer deposition of tantalum oxide thin films for their use as diffusion barriers in microelectronic devices, Microelectronic Engineering, vol.87, issue.3, 2010.
DOI : 10.1016/j.mee.2009.06.015

E. Blanquet, I. Nuta, and V. Brizé, (Invited) Developments of ALD Processes: Experiments and Thermodynamic Evaluations, ECS Trans, vol.33, pp.321-332, 2010.
DOI : 10.1149/1.3485268

S. George, W. Stickle, P. Sobol, and K. Bomben, Atomic Layer Deposition: An Overview, Chemical Reviews, vol.110, issue.1, pp.111-131, 1992.
DOI : 10.1021/cr900056b

G. Mcguire, G. Schweitzer, and T. Carlson, Core electron binding energies in some Group IIIA, VB, and VIB compounds, Inorganic Chemistry, vol.12, issue.10, pp.2450-2453, 1973.
DOI : 10.1021/ic50128a045

J. Mendialdua, R. Casanova, and Y. Barbaux, XPS studies of V2O5, V6O13, VO2 and V2O3, Journal of Electron Spectroscopy and Related Phenomena, vol.71, issue.3, pp.249-261, 1995.
DOI : 10.1016/0368-2048(94)02291-7

G. Sawatsky and D. Post, X-ray photoelectron and Auger spectroscopy study of some vanadium oxides, Physical Review B, vol.37, issue.4, 1979.
DOI : 10.1051/jphyscol:1976433

G. Silversmit, D. Depla, and H. Poelman, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+), Journal of Electron Spectroscopy and Related Phenomena, vol.135, issue.2-3, pp.167-175, 2004.
DOI : 10.1016/j.elspec.2004.03.004

S. Kumar, N. Chandrasekaran, J. Mariappan, and R. , V2O5 nano-rods using low temperature chemical pyrophoric reaction technique: The effect of post annealing treatments on the structural, morphological, optical and electrical properties, Superlattices and Microstructures, vol.65, pp.353-364, 2014.
DOI : 10.1016/j.spmi.2013.09.035

G. Hopfengartner, D. Borgmann, and I. Rademacher, XPS studies of oxidic model catalysts: Internal standards and oxidation numbers, Journal of Electron Spectroscopy and Related Phenomena, vol.63, issue.2, pp.91-116, 1993.
DOI : 10.1016/0368-2048(93)80042-K

S. Jin, A. Atrens, J. Hammond, and K. Smith, ESCA-studies of the structure and composition of the passive film formed on stainless steels by various immersion times in 0.1 M NaCl solution, Applied Physics A Solids and Surfaces, vol.2, issue.2, pp.149-165446, 1986.
DOI : 10.1016/B978-0-444-42252-1.50066-7

D. Brion, Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l'air et dans l'eau, Applications of Surface Science, vol.5, issue.2, pp.133-152, 1980.
DOI : 10.1016/0378-5963(80)90148-8

T. Barr, An ESCA study of the termination of the passivation of elemental metals, The Journal of Physical Chemistry, vol.82, issue.16, pp.1801-1810, 1978.
DOI : 10.1021/j100505a006

J. Alfonso, J. Buitrago, and J. Torres, Influence of fabrication parameters on crystallization, microstructure, and surface composition of NbN thin films deposited by rf magnetron sputtering, Journal of Materials Science, vol.22, issue.164, pp.5528-5533, 2010.
DOI : 10.1116/1.1601610

G. Jouve, C. Séverac, and S. Cantacuzène, XPS study of NbN and (NbTi)N superconducting coatings, Thin Solid Films, vol.287, issue.1-2, pp.146-153, 1996.
DOI : 10.1016/S0040-6090(96)08776-7

H. Liao, Surface composition of AlN powders studied by x???ray photoelectron spectroscopy and bremsstrahlung???excited Auger electron spectroscopy, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.11, issue.5, 1993.
DOI : 10.1116/1.578626

M. Goldberg, J. Clabes, and C. Kovac, Metal???polymer chemistry. II. Chromium???polyimide interface reactions and related organometallic chemistry, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.6, issue.3, pp.991-996, 1988.
DOI : 10.1116/1.575006

E. Peled, The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems???The Solid Electrolyte Interphase Model, Journal of The Electrochemical Society, vol.126, issue.12, 1979.
DOI : 10.1149/1.2128859

E. Peled, Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes, Journal of The Electrochemical Society, vol.144, issue.8, 1997.
DOI : 10.1149/1.1837858

K. Matsumoto, K. Nakahara, and K. Inoue, Performance Improvement of Li Ion Battery with Non-Flammable TMP Mixed Electrolyte by Optimization of Lithium Salt Concentration and SEI Preformation Technique on Graphite Anode The Surface Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions, J Electrochem Soc Aurbach D J Electrochem Soc, vol.1611, issue.141, pp.831-834, 1149.

S. Jeong, M. Inaba, T. Abe, and Z. Ogumi, Surface Film Formation on Graphite Negative Electrode in Lithium-Ion Batteries: AFM Study in an Ethylene Carbonate-Based Solution, Journal of The Electrochemical Society, vol.142, issue.358, 2001.
DOI : 10.1149/1.2048659

A. Andersson, A. Henningson, and H. Siegbahn, Electrochemically lithiated graphite characterised by photoelectron spectroscopy, Journal of Power Sources, vol.119, issue.121, pp.522-527, 2003.
DOI : 10.1016/S0378-7753(03)00277-5

J. Christensen and J. Newman, A Mathematical Model for the Lithium-Ion Negative Electrode Solid Electrolyte Interphase, Journal of The Electrochemical Society, vol.2, issue.6, 2004.
DOI : 10.1149/1.1804812

H. Iddir and L. Curtiss, Li Ion Diffusion Mechanisms in Bulk Monoclinic Li 2 CO 3 Crystals from Density Functional, pp.20903-20906, 2010.

S. Shi, P. Lu, and Z. Liu, Direct Calculation of Li-Ion Transport in the Solid Electrolyte Interphase, Aldrich S (2017) Material Safety Data Sheet of N,N'-Bis(salicylidene)ethylenediaminocobalt(II), pp.15476-15487, 2012.
DOI : 10.1021/ja305366r

/. Msds, . Msds, and . Pleasewaitmsdspage, do?language=&country=F R&brand=ALDRICH&productNumber=274712&PageToGoToURL=http%3A%2F%2Fwww, 2017.

S. Aldrich, Material Safety Data Sheet of CoCl2. http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=FR&language=fr& productNumber=409332&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww, 2017.

B. Mccloskey, A. Speidel, and R. Scheffler, Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries Nonaqueous Li ? Air Batteries : A Status Report Computational study of the mechanisms of superoxideinduced decomposition of organic carbonate-based electrolytes, J Phys Chem Lett Chem Rev Bryantsev VS, Blanco M J Phys Chem Lett, vol.3, issue.2, pp.997-100111721, 2011.

V. Viswanathan, K. Thygesen, and J. Hummelshj, Electrical conductivity in Li 2O 2 and its role in determining capacity limitations in non-aqueous Li-O 2 batteries, J Chem Phys, vol.1351, pp.10-1021, 2011.

B. Mccloskey, D. Bethune, and R. Shelby, Batteries and Possible Origins, The Journal of Physical Chemistry Letters, vol.3, issue.20, pp.3043-3047, 2012.
DOI : 10.1021/jz301359t