Skip to Main content Skip to Navigation
Theses

Statistical modeling of bladder motion and deformation in prostate cancer radiotherapy

Abstract : Prostate cancer is the most common cancer amongst the male population in most developed countries. It is the most common cancer amongst the male population in France (73.609 cases in 2014) and in Colombia (9564 cases in 2014). It is also the third most common cause of cancer deaths in males in both countries (9.3% and 7.1% in France and in Colombia in 2014, respectively). One of the standard treatment methods is external radiotherapy, which involves delivering ionizing radiation to a clinical target, namely the prostate and seminal vesicles. Due to the uncertain location of organs during treatment, which involves around forty (40) radiation fractions delivering a total dose ranging from 70 to 80Gy, safety margins are defined around the tumor target upon treatment planning. This leads to portions of healthy organs neighboring the prostate or organs at risk — the bladder and rectum — to be included in the target volume, potentially resulting in adverse events affecting patients’ urinary (hematuria and cystitis, among others) or rectal (rectal bleeding, fecal incontinence, etc.) functions. The bladder is notorious for presenting the largest inter-fraction shape variations during treatment, caused by continuous changes in volume. These variations in shape introduce geometric uncertainties that render assessment of the actual dose delivered to the bladder during treatment difficult, thereby leading to dose uncertainties that limit the possibility of modeling dose-volume response for late genitourinary (GU) toxicity. The Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) project has stated that a similar dose-response to that of late gastrointestinal (GI) toxicity is far from being established. The dosimetric variables obtained from the planning CT prove to be very poor surrogates for the real delivered dose. As a result, it appears crucial to quantify uncertainties produced by inter-fraction bladder variations in order to determine dosimetric factors that affect late GU complications. The aim of this thesis was thus to characterize and predict uncertainties produced by geometric variations of the bladder between fractions, using solely the planning CT as input information. In clinical practice, a single CT scan is only available for a typical patient during the treatment planning while on-treatment CTs/CBCTs are seldom available. In this thesis, we thereby used a population approach to obtain enough data to learn the most important directions of bladder motion and deformation using principal components analysis (PCA). As in groundwork, these directions were then used to develop population-based models in order to predict and quantify geometrical uncertainties of the bladder. However, we use a longitudinal analysis in order to properly characterize both patient-specific variance and modes from the population. We proposed to use mixed-effects (ME) models and hierarchical PCA to separate intra and inter-patient variability to control confounding cohort effects. . Subsequently, we presented PCA models as a tool to quantify dose uncertainties produced by bladder motion and deformation between fractions.
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01779880
Contributor : Abes Star :  Contact
Submitted on : Friday, April 27, 2018 - 8:59:05 AM
Last modification on : Wednesday, May 16, 2018 - 11:23:42 AM
Long-term archiving on: : Tuesday, September 25, 2018 - 5:09:39 AM

File

RIOS_PATINO_Richard.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01779880, version 1

Collections

Citation

Richard Rios Patiño. Statistical modeling of bladder motion and deformation in prostate cancer radiotherapy. Signal and Image processing. Université Rennes 1; Universidad Nacional de Colombia, 2017. English. ⟨NNT : 2017REN1S116⟩. ⟨tel-01779880⟩

Share

Metrics

Record views

191

Files downloads

188