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Résumé

L’évolution moléculaire, basée sur I'étude des données de séquencage, s’est imposée
comme une approche majeure pour I’étude de I'Histoire des organismes vivants (no-
tamment & travers les arbres phylogénétiques). Ses méthodes classiques reposent
sur un découpage des génomes en entités supposées indépendantes : les génes.

Or, les génes n’évoluent pas indépendamment : D’histoire d’un géne s’inscrit
au sein de I'histoire des espéces qui le portent. En outre, leur position le long
des chromosomes fait qu’ils partagent des événements de mutations structurales
(duplications, pertes de fragments chromosomiques) avec les génes proches. Enfin,
leur potentielle fonction biologique les améne & étre influencés par (et a influencer
en retour) I'évolution d’autres génes.

Je montre que ne pas prendre en compte ces relations d’inter-dépendances évo-
lutives (de coévolution) lors de l'inférence d’arbres de génes résulte en une suresti-
mation des différences entre les arbres des différents génes ainsi qu’entre les arbres
des génes et I'arbre des espéces.

Des modéles permettent déja d’intégrer la coévolution des génes avec les espéces a
la reconstruction des arbres de génes . Par ailleurs, on connait des modéles décrivant
I’évolution des relations entre génes, néanmoins sans intégrer ces informations a la
reconstruction des arbres de génes. Je reprend ces avancées et les combine au sein
d’une méthode qui modifie les arbres de génes selon un critére qui prend en compte
les séquences ainsi que des relations de coévolution avec les espéces et d’autres génes.

Cette méthode, appliquée a des mammiféres et des champignons, permet de

produire des histoires de génes cohérentes entre elles.

Mots clefs: évolution moléculaires, phylogénie, coévolution, adjacence



Phylogeny of dependencies and
dependencies of phylogenies in genes

and genomes

Abstract

Molecular evolution, based on the study of sequencing data, established itself as a
fundamental approach in the study of the history of living organisms (noticeably
through the inference of phylogenetic trees).

(Classical molecular evolution methods rely on the decomposition of genomes into
entities that are supposed independent: genes. However we know that genes do not
evolve independently: their potential biological function lead them to be influenced
by (and influence) the evolution of other genes. Moreover, their position along
chromosomes imply that they share events of structural mutations (duplication, loss
of a chromosome fragment) with neighbouring genes. Similarly, a gene individual
history inscribes itself in the history of the species that bears it.

I show that not taking into account this inter-dependency relationships (co-
evolutionary relationships) during the inference of gene trees results in an overesti-
mation of the differences between gene trees as well as between gene tree and species
tree.

Modelling efforts these last year have allowed the integration of gene and species
co-evolution information to the reconstruction of gene trees. Besides, researchers
have proposed models describing the evolution of the relationships linking genes,
but without integration of this information in the tree building process.

My works aim to combine these advances in a method that modify gene trees
according to a criterion that integrates sequence information and information coming
from co-evolution relationships.

This method, applied to mammals and fungi, leads to gene histories that are

more congruent (simpler adjacency histories, longer events of loss or transfer, ...).

Keywords: molecular evolution, phylogeny, co-evolution, adjacency



Résumé étendu

Dans un contexte biologique, le terme «évolution» fait référence au processus qui
sous-tend la transmission avec variation des traits héritables d'une génération a
I'autre. Cette transmission est dite «avec variation» parce qu’elle implique des
modifications (appelées mutations) de certain traits transmis. Une autre facette im-
portante de I’évolution est ce qu’on appelle la «sélection» ou «sélection naturelle»
qui fait référence au fait que les traits génant la reproduction des individus les por-
tant auront tendance a voir leurs fréquences baisser au sein des populations (puisque
leurs porteurs ont, en moyenne, moins de descendance). A linverse, les traits fa-
vorisant la reproduction de leur porteurs auront tendance a augmenter en fréquence
au sein des populations : ils sont sélectionnés. Le jeu des mutations, qui produisent
une variation au sein des entités biologiques, et de la sélection, qui favorise la par-
tie de cette variation qui améliore les chances de reproduction des individus, est a
I'origine de 'accumulation de différences entre les lignées au fil des générations qui
resulte en la diversification des formes de vie sur Terre. Ainsi, deux traits dans deux
espéces différentes peuvent avoir pour origine un méme trait qui existait au sein de
I’espéce ancétre des deux espéces mentionnées. Des traits partageant un ancétre
commun sont dit homologues. Usuellement, le processus de diversification d’un trait
donné au cours de son histoire évolutive est représenté sous la forme d’un arbre
phylogénétique (ou les branchements successifs symbolisent la séparation de deux
lignées). La reconstruction d’arbres capturant l'histoire de traits biologiques est
située au cceur de cette thése, et en particulier la reconstruction d’arbres phylogéné-
tiques a partir de données moléculaires. Je vais maintenant décrire les méthodes
d’analyse qu’ont pourrait appeler «classiques» en phylogénie moléculaire parce que
mes travaux s’appuient en grande partie sur leurs concepts et parce que je cherche a
remettre en question certaines des hypothéses qui sont courantes dans ces méthodes.

Il a été établi que PADN ! présent au cceur des cellules vivantes constitue un
marqueur évolutif de choix |[Zuckerkandl and Pauling, 1965]: il est le support de la
transmission génétique d’une génération a 'autre et porte a la fois les traces de cette
transmission, mais aussi des innovations (les mutations) qui ’accompagne. Ainsi, en

comparant les séquences d’ADN (des séries de A, T, G et C) de différents organismes,

! Acide Desoxy-RiboNucléique qui forme de longues molécules, appelés chromosomes et composé
d’un assemblage de nucléotides pouvant prendre quatre formes : I’adénine (A) , la thymine (T), la
guanine (G) et la cytosine (C).



on peut établir leurs relations de parenté, comprendre lesquels sont les plus proches
les uns des autres ainsi que le nombre de mutations qui les séparent. Néanmoins,
I’étude des méchanismes de I’évolution du matériel génétique a révélé que comparer
les séquences d’ADN des organismes n’est pas un probléme aisé, en grande partie
parce que les séquences ne subissent pas seulement des mutations de contenu (un
nucléotide est remplacé par un autre), mais aussi des mutations structurelles (des
morceaux de séquence se déplacent, sont supprimés, dupliqués ou ajoutés).

Avant d’espérer reconstruire une histoire des espéces vivantes a partir de leur
séquences d’ADN, il faut d’abord établir quels sont les morceaux de leurs séquences
qui sont homologues entre eux. Ces relations d’homologies sont généralement basées
sur un principe de similarité : on suppose que les séquences dérivant d’un ancétre
commun seront, plus semblables entre elles qu’avec d’autres séquences. Cela implique
aussi que les séquences détectées comme homologues n’auront pas subi de grandes
mutations structurelles durant le laps de temps qui les sépare dans I’évolution (sans
quoi on n’aurait pas pu établir 'homologie de ces séquences).

Dans un contexte d’étude de I’évolution, on appelle ces fragments d’ADN pour
lesquels on peut établir des relations d’homologie des génes et on nomme un groupe
de génes homologues entre eux une famille de génes. Ainsi, le géne a fonction d’unité
d’évolution : a chaque famille de géne correspond une histoire évolutive qui lui est
propre, un arbre de géne.

Une fois des familles de génes définies, il faut aligner les différentes séquences
homologues, c’est a dire établir 'homologie non pas séquence a séquence, mais nu-
cléotide a nucléotide. C’est une étape cruciale car d’elle dépendent directement les
inférences des événements de mutations qui serviront a reconstruire les phylogénies.
Pour autant, aligner plusieurs séquences constitue un probléme difficile (d’un point
de vue de la complexité algorithmique) et en pratique on aligne les séquences a I’aide
d’heuristiques, ce qui implique que les résultats puissent ne pas correspondre a nos
attentes de qualité et impliquer des biais et /ou des incertitudes dans les phylogénies.

L’inférence d’une phylogénie a partir d'un alignement est, de nos jours, effec-
tuée a partir de calculs de vraisemblance d’'un modéle probabiliste d’évolution d’un
nucléotide. Chaque position de I'alignement est alors considérée indépendamment
de ses voisines, ce qui renforce I'importance de la qualité de I'alignement et améne
a faire, au moins de maniére implicite, I'hypothése que les nucléotides d'un méme

géne évoluent indépendamment les uns des autres.



Or, cette hypothése, si elle est utile pour inférer une phylogénie dans des temps
de calcul raisonnables, ne permet pas d’accéder aux relations qu’entretiennent les
différentes entités biologiques entre elles. En effet on observe que les forces de sélec-
tion qui s’exercent sur les nucléotides (ou d’autres entités biologiques) dépendent de
'état d’autres nucléotides (par exemple dans les codons la mutation d’un nucléotide
en un autre n’aura pas le méme impact, et ne sera donc pas sélectionné de la méme
maniére, si I’état des deux autres nucléotides du codon implique que cette mutation
entrainera un changement de 'acide aminé codé ou non).

On désigne par le terme de co-évolution ce concept selon lequel les contraintes
évolutives s’exergant sur une entité biologique dépendent de 1'état (ou de la dy-
namique) d’autres traits. La co-évolution peut étre observée a toutes les échelles
du vivant: entre écosystémes (par exemple, entre I’écosystéme d’un lac et celui des
terres qui l'entoure), entre espéces (par exemple, les proies et les prédateurs), entre
individus et a I’échelle moléculaire entre protéines, génes et nucléotides ou acides
aminés (j’ai déja évoqué I'exemple des codons). Mes travaux se focalisent sur 'unité
d’évolution que forme le géne et je définis trois formes de coévolution qu’un géne
peut entretenir avec d’autres entités.

La premiére forme de coévolution est celle qui unit le géne aux nucléotides de son
alignement. On peut considérer chaque nucléotide comme une entité propre (une
forme de mini-géne) qui coévolue avec ses nucléotides voisins de maniére si forte
qu’ils peuvent étre représentés dans la méme phylogénie. Ainsi je représente ces
relations de «cophylogénie » entre les nucléotides comme une relation hiérarchique
de coévolution entre le nucléotide (contenu) et le géne (contenant). SiI’on considére
I'inférence de phylogénie, chaque nucléotide contient un peu d’information concer-
nant son histoire, mais généralement pas assez pour la reconstruire entiérement.
Mais parce qu’ils coévoluent, I'information des autres nucléotides d’un méme géne
nous informent sur I'histoire du nucléotide et a plus forte raison, du géne qui les
contient tous.

La deuxiéme forme de coévolution est celle qui lie le géne aux espéces dans
lesquelles il évolue. Ainsi lorsque les espéces se diversifient (spéciation) les génes
qu’elles contiennent subissent ces événements aussi. A l'inverse, les génes subissent
des événements évolutifs qui leur sont propres et qui causent des différences entre
leurs phylogénies et celle des espéces. Ainsi la duplication de géne provoque une

augmentation du nombre de copies d’'un géne au sein du méme génome. A I'inverse,



la perte de géne correspond a une diminution du nombre de copies d’un géne dans
un génome. Le tri de lignée incomplet résulte de la diversité génétique de popula-
tions subissant des spéciations rapprochées dans le temps et améne les lignées d'un
géne a se diversifier dans un ordre différent de celui des espéces. Enfin, le trans-
fert horizontal correspond a l'intégration au sein d’un génome de matériel génétique
venant d’un autre organisme, parfois trés éloigné phylogénétiquement parlant. C’est
une importante source d’innovation pour les organismes (en particulier les bactéries)
parce qu’il permet I'acquisition soudaine de nouvelles fonctions. On appelle récon-
ciliation le fait d’inférer, au sein d'un arbre de géne, quelles parties correspondent
a des spéciations ou a d’autres événements évolutifs (on parle alors d'un arbre de
géne réconcilié).

La troisitme forme de coévolution est celle qui intervient entre génes. Ainsi,
les génes dont la fonction est liée subissent une pression évolutive commune pour le
maintien de cette fonction (ou exercent une pression I'un sur l'autre): ils coévoluent.
De méme, les génes qui sont physiquement proches le long des chromosomes ont
de plus fortes chances de partager un événement évolutif tel qu'une duplication,
une perte ou un transfert (parce que techniquement ces événements arrivent a des
fragments chromosomiques et pas a des génes).

Ces trois formes de coévolution permettent d’établir un cadre dans lequel penser
aux contraintes au sein desquelles les génes évoluent et & I'information qui est a notre
disposition pour reconstruire les phylogénies des génes. L’inférence d’arbre «clas-
sique» présentée précédemment peut étre vue comme n’exploitant que la premiére
forme de coévolution. D’autres méthodes développées plus récemment exploitent
aussi la seconde forme de co-évolution, cherchant une phylogénie qui implique une
réconciliation vraisemblable (étant donné un arbre d’espéce et un modéle de réconcil-
iation). En particulier, certaines méthodes sont en mesure d’exploiter I'information
de la premiére et de la deuxiéme forme de coévolution conjointement, résolvant les
incertitudes de I'une grace a I'autre. Mes travaux visent a intégrer a la reconstruc-
tion des histoires des génes de 'information venant de chacune des trois formes de
coévolution, ce qu’aucune méthode ne fait a ce jour. En effet, ne pas prendre en
compte la troisitme forme de coévolution rend aveugle aux larges mutations struc-
turelles (ainsi, on voit plusieurs duplications de géne indépendantes la ot il n’y en a
qu’une seule de grande taille) et améne a sous-estimer I'importance de la congruence

entre les génes liés (physiquement ou fonctionnellement).



Afin d’illustrer 'importance de la prise en compte des liens unissant les génes
lors de la reconstruction de I'histoire d’un groupe de génes (et a fortiori d'un génome
entier) j’expose les travaux que j’ai effectués dans le cadre de la reconstruction de
I’histoire de ces liens entre génes et les problémes qu’on observe lorsque les histoires
des génes ont été inférées indépendamment les unes des autres. Je désigne comme
adjacence un lien entre deux génes. Les adjacences peuvent représenter diverses
formes de lien entre géne (lien physique, fonctionnel, ...). A I'image des génes, les
adjacences ont leurs propres histoires et peuvent ainsi étre transmises, créées (on
parle de gain d’adjacence) ou perdues (cassure d’adjacence)?.

Des méthodes existent déja pour inférer des histoires d’adjacences étant données
les adjacences entres génes actuels et les arbres réconciliés de ces génes. En partic-
ulier je m’intéresse a I'algorithme DeCo |Bérard et al., 2012] qui infére les histoires
d’adjacences qui minimisent un score basé sur le nombre de gains et de cassures.
Depuis la publication originale en 2012, de nombreuses extensions ont été publiées
pour cet algorithme, mais & chaque fois de maniére indépendante. Ainsi une pub-
lication a permis de prendre en compte les réconciliations incluant des transferts
horizontaux [Patterson et al., 2013|, une autre intégre I'inférence de nouvelles adja-
cences actuelles [Anselmetti et al., 2015] et encore une autre permet 1’échantillonage
de solutions non parsimonieuses [Chauve et al., 2015|, mais aucune implémentation
ne permet de faire les trois a la fois. Une partie significative de mes travaux a
été d’intégrer les différentes extensions de l'algorithme DeCo au sein d’une implé-
mentation unique, modulaire et cohérente®. Cette implémentation a donné lieu a
une généralisation des formules de récursion servant au calcul du score des histoires
d’adjacences afin de prendre en compte tout les cas provenant des interactions en-
tre les différentes extensions et a aussi été l'occasion d’ajouter plusieurs nuovelles
extensions et options a 'algorithme. Le programme obtenu, nommé DeCoSTAR, a

donné lieu & une publication dans une revue scientifique, incluse dans ce document .

2Notons toutefois qu’une adjacence ne peut étre présente que si les deux génes qu’elle relie sont
présents.

3Une version probabiliste de I’algorithme DeCo existe aussi [Semeria et al., 2015]. Toutefois je ne
I’ai pas intégrée avec les autres & cause de la différence entre méthodes de parcimonie et méthodes
probabilistes d’une part, et & cause des ses limitations méthodologiques (comme 'impossibilité
d’avoir plus d’une duplication & la suite par espéce par exemple) et computationelles (notamment
lors du traitement des longueurs de branches) d’autre part.

4Tout le code produit a été intégré au sein de la suite de programmes ecceTERA [Jacox et al.,
2016] qui permet linférence d’arbres de génes en optimisant un critére prenant en compte de
I'information de la premiére et seconde forme de coévolution.



[’algorithme DeCo permet d’inférer les histoires des adjacences, et donc les ad-
jacences ancestrales. Ainsi, si 'on considére les relations de voisinage le long d’un
chromosome comme adjacences on peut avoir accés a 'ordre ancestral des génes.
C’est 'approche que j’ai mise en place au sein d’une étude ayant pour but la recon-
struction de la séquence des chromosomes ancestraux d’une souche de la bactérie
Yersinia pestis (en effet, pour avoir accés a la séquence ancestrale il me fallait
d’abord avoir accés a 'ordre des génes ancestraux). Cette étude a aussi fait 'objet
d’une publication scientifique incluse dans ce document. Dans cet article, on met en
évidence que le fait que les arbres et réconciliations des génes aient été faits indépen-
damment les uns des autres méne a des inférences d’adjacences ancestrales erronées,
en particulier I'inférence de chromosomes ancestraux non linéaires. On développe
aussi l'idée que la linéarité des chromosomes ancestraux inférés peut étre utilisée
comme un critére pour corriger les arbres de génes a 'origine de ces conflits.

Cette idée est intéressante car elle représente un cas ou I'on utilise un critére issu
de la troisiéme forme de coévolution (la linéarité des chromosomes ancestraux, qui
dépend des adjacences) dans la reconstruction (ou plutot ici la correction) des his-
toires individuelles des génes. Les génes dont I'histoire est ainsi corrigée se retrouvent
avec des arbres et des réconciliations localement moins vraisemblable (dans le sens de
critéres qui leur sont propres comme leur alignement ou le nombre d’événements évo-
lutif dans leur réconciliation), mais qui sont globalement plus vraisemblable (dans le
sens d’'un critére prenant en compte tout le génome, ici la linéarité des chromosomes
ancestraux).

En développant cette idée d’un critére global (a I’échelle du génome) allant
plus loin que la somme d’un ensemble de critéres locaux (a 1’échelle du géne), j’ai
développé un score qui regroupe un ensemble de familles de génes et permet de les
évaluer sur la base d’information provenant des trois formes de coévolution. Ce
score prend des valeurs d’autant plus petites que les histoires des familles de génes
sont en adéquation avec les données dont on dispose. Il prend la forme:

Score Global = topologie + réconciliation + adjacence 4+ co-événement

La premiére partie du score, topologie, correspond a l'information de la pre-
miére forme de coévolution et évalue I'adéquation de chaque arbre de géne a son
alignement. En pratique, je n’utilise pas directement 'alignement des génes, mais
plutot une distribution a posteriori d’arbres qui me permet d’estimer avec précision

la vraisemblance d’un arbre en utilisant une méthode similaire & celle utilisée dans
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'algorithme TERA [Scornavacca et al., 2014].

La seconde partie du score, réconciliation, est égale a la somme des cotits des
événements de duplication, perte et transfert de génes observés dans les arbres réc-
onciliés de chaque famille de géne. Ainsi elle correspond a l'information venant de
la deuxiéme forme de coévolution.

La troisiéeme et la quatriéme partie du score sont des critéres reposant sur la
troisitme forme de coévolution. adjacence correspond a la somme des cotits des his-
toires d’adjacences (inférées avec DeCoSTAR) entre les génes considérés en termes de
gains et de cassures d’adjacences. Ainsi des génes voisins ayant des histoires compat-
ibles entre elles (c’est a dire impliquant moins de gains et de cassures d’adjacences)
sont favorisés. Enfin, co-événement est une mesure qui prend en compte le fait qu’on
considére chaque événement de géne (par exemple une duplication de géne) indépen-
damment dans chaque arbre réconcilié alors qu’il est possible que les événements de
deux arbres réconciliés dont les génes seraient voisins correspondent en fait & un
seul événement (par exemple, la duplication d’un large fragment chromosomique est
observée sous la forme d’une duplication pour chacun des génes impliqués). Les
résultats de DeCoSTAR permettent de détecter les cas ol des événements observés
dans deux arbres réconciliés correspondent en fait & un événement partagé. En util-
isant ces résultats je détecte des co-événements et je suis en mesure de corriger le
fait qu’on les compte séparément lorsqu’on considére les familles de génes indépen-
damment les unes des autres (comme c’est le cas dans réconciliation).

Ayant défini un score global pour un ensemble de familles de génes reliées par des
adjacences actuelles, je décris une stratégie pour trouver I’ensemble de topologies
et d’arbres réconciliés (un par famille de géne) qui minimise le score global. Etant
donné la taille de I'espace des solutions a explorer (la combinaison de tout les arbres
et de toutes les réconciliations possibles pour chaque famille de génes), une explo-
ration exhaustive ne parait pas envisageable en pratique. J’ai choisi une méthode
qui, & partir d’'une solution initiale (c’est-a-dire, une instance ou chaque famille de
géne a son arbre réconcilié et ot les histoires d’adjacences ont été calculées), effectue
des mouvements locaux pour optimiser graduellement le score (a la maniére d’un
échantillonneur de Gibbs). Le mouvement local correspond a la proposition d’'un
nouvel arbre réconcilié pour une famille de génes (toutes les autres étant fixes par
ailleurs). A ce nouvel arbre réconcilié correspond un changement dans les histoires

des adjacences qui le lient aux autres familles, et donc aussi un changement dans
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les co-événements impliquant des génes de cette famille. Ainsi, le nouvel arbre réc-
oncilié implique un changement dans le score global. Si ce changement correspond
a une diminution, alors on accepte le nouvel arbre réconcilié. Sinon on rejette le
nouvel arbre et on garde I’ancien (ou alternativement, on accepte le nouvel arbre
avec une probabilité qui dépend de I'augmentation du score, a la maniére d’un re-
cuit simulé et afin de permettre d’échapper a un optimum local). En enchainant
ainsi des mouvements locaux (a Péchelle d’une famille de génes), on améliore pe-
tit & petit le score global afin de le faire tendre vers un optimum. Un programme
permettant de calculer et d’optimiser le score global a été développé a partir du
code de DeCoSTAR intégré a ecceTERA qui constitue alors pour moi une biblio-
théque utile pour la manipulation des arbres, des réconciliations et des histoires
d’adjacences. J’ai développé plusieurs méthodes permettant de faire une nouvelle
proposition d’arbre réconcilié pour une famille de génes (c’est a dire proposer un
mouvement local).

La premiére consiste a choisir un arbre aléatoire pour la famille de géne, puis a le
réconcilier de maniére parcimonieuse (a I’aide de TERA). Cette méthode n’exploite
aucune information de coévolution dans le choix du nouvel arbre.

Le deuxiéme méthode utilise I'information venant de la premiére forme de co-
évolution. Elle revient a échantillonner un arbre au sein de la représentation qu’on
a de la distribution d’arbres a posteriori de la famille de génes (qui elle-méme
représente le support venant de I'alignement). Comme précédemment, I’arbre échan-
tillonné est ensuite réconcilié a 'aide de TERA.

La troisiéme méthode va un peu plus loin en intégrant de I'information de la pre-
miére et de la deuxiéme forme de co-évolution. Elle s’inspire des formules de récur-
rence de TERA mais dépasse le cadre initial de calcul d’une solution parcimonieuse
en y appliquant une transformation algébrique qui, aprés quelques ajustements (no-
tamment pour garantir que la complexité de 'algorithme reste la méme), permet
d’échantillonner des arbres de génes réconciliés avec une probabilité inversement pro-
portionnelle a leur score joint topologie + réconciliation (pour reprendre les termes
du score global). Le fait d’étre en mesure de dépasser la parcimonie de TERA nous
permet de proposer des solutions localement suboptimales, mais globalement opti-
males (en d’autre terme, la perte de vraisemblance de 'arbre ou de la réconciliation
peut étre compensée par des histoires d’adjacences plus parcimonieuses ou plus de

co-événements).
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Enfin, la quatriéme méthode développée utilise de I'information venant des trois
formes de coévolution. Pour ce faire, je pars de la troisitme méthode proposée et
j'y ajoute la présence d'un arbre réconcilié guide ('arbre réconcilié d'un géne avec
lequel la famille pour laquelle on fait une proposition coévolue) avec lequel il est
possible de former des co-événements a un coit inférieur & ceux de 1’événement in-
dépendant. De cette maniére, j’obtiens une méthode de réconciliation et de choix de
topologie qui favorise les solutions qui contiennent des co-événements avec un autre
arbre réconcilié. Ces deux derniéres méthodes, qui correspondent & des nouveautés
algorithmiques, ont été implémentées dans un programme a part entiére.

La stratégie d’optimisation du score global a été appliquée a des jeux de données
de mammiféres (absence de transferts horizontaux) et de champignons (présence
de transferts horizontaux). Ces applications permettent dans un premier temps de
comparer les différentes méthodes de propositions développées, mais aussi d’observer
les modifications qu’entraine 'optimisation du score global sur les arbres réconciliés
des génes et les histoire des adjacences et enfin elles servent a obtenir des élements
de réponse sur la viabilité des adjacences en tant que vecteur de signal évolutif et
aussi sur la taille des larges événements évolutif (duplications, pertes et transferts)

J’observe tout d’abord que les méthodes que j’ai développé sont bien a méme
de trouver des arbres de génes et des réconciliations qui font diminuer le score
global. Cette amélioration concerne en particulier les parties du score ayant trait a
la co-évolution entre les génes (adjacences et co-événements), ce qui signifie qu’avec
ces méthodes on augmente bien la congruence entre histoires de génes. En outre,
j'observe que I'amélioration du score global est liée & une augmentation de la taille
(en nombre de génes) des événements de duplication, perte et transfert (il s’agit
donc ici des co-événements). Cela confirme mon idée selon laquelle en effectuant
Iinférence des histoires de géne indépendamment on sous-évalue la taille de ces
événements et il est donc particuliérement intéressant que ma méthode permette
d’obtenir un point de vue alternatif qui prend en compte des attentes de co-évolution
entre les génes. Dans mes jeux de données, j'observe qu’en moyenne les pertes
sont plus grandes que les autres événements (duplications ou transfert horizontaux).
Dans le jeu de données de champignons, les transferts horizontaux sont détectés
comme étant a la fois plus longs et plus nombreux que les duplications (a noter que les
transferts ne sont vus comme plus long que les duplications qu’aprés 'optimisation

du score global).
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Dans le cas des jeux de données de mammiféres, cette amélioration s’accompagne
aussi d’'une amélioration de mesures de linéarité des génomes ancestraux (dans le
cadre de l'inférence de I'ordre des génes ancestraux, la linéarité est un critére de
qualité) ainsi que d’une augmentation du nombre de nouvelles adjacences extantes
retrouvées (en effet le jeu de données de mammifére inclut des espéces dont le génome
est mal assemblé et pour lesquelles il est souhaitable d’inférer de nouvelles adjacences
reliant les contigs existants). Ces observations ne sont pas faites sur le jeu de don-
nées de champignons o1 je remarque plutdot une diminution globale du nombre de
co-événements de réconciliations, en particulier les pertes ainsi qu’une légére aug-
mentation du nombre d’événements de gains et de cassures d’adjacences.

En effet chez les champignons je considére une plus grande profondeur évolutive
(Parbre d’espéces utilisé pour les champignons correspond a un temps de divergence
environ 5 fois plus long que celui couvert par I'arbre d’espéce des mammiféres): les
génomes de champignons ont donc eu plus de temps pour accumuler des réarrange-
ments et les adjacences entre génes apparaissent comme moins conservées (parce que
les réarrangement modifient les adjacences). Ceci implique que chez les champignons
les adjacences contiennent moins de signal nous renseignant sur I'histoire des génes
(ou du moins un signal qui ne va pas aussi profondément dans I’arbre d’espéce) que
dans le jeux de données de mammiféres. Cela peut expliquer la plus grande impor-
tance donnée a la parcimonie des réconciliations par rapport a celle des adjacences
lors de 'optimisation des arbres de génes des champignons.

En somme, j’ai décrit trois formes de coévolutions s’appliquant au géne: la coévo-
lution avec sa séquence, avec les espéces et avec les autres génes. Aprés avoir ex-
ploré les problémes venant de ce qu’on ne prend en compte que la premiére et/ou
la deuxiéme forme de coévolution lors de la reconstruction des histoires (phylogénie
et réconciliation) des génes, j’ai écrit un score global qui permet d’évaluer des his-
toires d'un ensemble de familles de génes selon des critéres propres a chacunes des
trois formes de coévolution. J’ai aussi développé une méthode, basée sur des mou-
vements locaux (a I’échelle d’une seule famille), pour optimiser le score global, ainsi
que plusieurs algorithmes pour effectuer les nouvelles propositions a la base des mou-
vements locaux. Enfin, j’ai montré a travers des applications a des jeux de données
de mammiferes et de champignons que cette méthode d’optimisation du score global
peux effectivement amener des changements dans les arbres de génes qui favorisent

de plus long événements evolutifs ainsi que des génomes ancestraux plus lineaires.
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Chapter 1

Introduction : Molecular evolution

and co-evolution

1.1 Molecular evolution

In a biological context, evolution refers to the processes underlying the transmission
with variation of heritable traits of biological entities (species, population, gene)
from generation to generation.

The transmission of heritable traits is said to be "with variation" because it
can involve modifications (called mutations), making some traits of the descendant
different from the ones of its ancestors.

The accumulation of these modifications over generations in different lineages is
at the origin of the diversity of life on Earth. Thus, traits (e.g., teeth) present in
two different biological entities (e.g., two species like human and mouse) may be
different (e.g., human teeth and mouse teeth differ) but nonetheless results from
the transmission with mutation of the same, ancestral trait (e.g., the teeth of the
common ancestor of human and mouse). Traits sharing a common ancestor are said
to be homologous.

The diversification pattern of homologous traits from a single common ancestor

to its current biodiversity is commonly represented through a phylogenetic tree'

!section 1.1.3 contains many details about trees and the various technical terms surrounding
them.
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transcription translation

DNA f\ RNA f\ Protein
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Figure 1.1: DNA is transcribed into RNA, which is translated into proteins.

1.1.1 Molecules as evolutionary markers

Situated at the heart of living cells, deoxyribonucleic acid (DNA) molecules encode
the information necessary to the expression of the various organism traits: the
genome.

DNA is composed of two strands coiled around each-other to form a double
helix [Watson, J. D.; Crick, 1953|. Each strand is a chain of nucleotides, which are
themselves composed of three elements: a phosphate group, a five carbon sugar and
a nitrogenous base. These nitrogenous bases can be of four type in nucleic DNA
(adenine (A), thymine (T), guanine (G) and cytosine (C)) and the sequence formed
by the succession of these four bases is generally held to be the genetic information.

In the scientific community, DNA molecules are usually considered to be the
medium by whom this genetic information is passed from one generation to an-
other. Zuckerkandl and Pauling [1965] are usually credited with the establishement
of DNA as "documents of evolutionary history" (or semantides), meaning that they
carry information establishing the relatedness of the different organisms (i.e., the
similarities between the genome of different species) but they also carry the trace
of the evolutionary processes (i.e., the differences between the genome of different
species).

Also mentioned by Zuckerkandl and Pauling [1965] as semantides, proteins, or
polypeptides are chains of amino-acids and are synthesized in the cell by using some
portion of DNA as a template 2 (this is called translation, see Figure 1.1), followed by
subsequent transformations (post-translational modification) and have various roles
in cell and organism physiology, from forming the cytoskeleton (the complex net-
work of filaments that help govern cell shape), regulating cross-membrane transport
(allowing various ions or bigger molecules such as glucose to enter or exit the cell),

help synthesise various metabolites through enzymatic ability (such as the degra-

2the DNA must first by transcribed into ribonucleic acid (RNA)
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dation of starch into simpler sugars by amylases), or regulate metabolism (such as
insuline, an hormone implied in glycemy regulation).

Their functional role make them interesting markers to study, because track-
ing their evolution can help understand the apparition of numerous functions in
living organisms (such as photosynthesis [Tavano and Donohue, 2006]). As such,
polypeptides can and are also considered as molecular evolutionary marker. How-
ever, as they are not the primary carrier of the genetic information but are merely
derived from it and can subsequently be modified, they carry an evolutionary infor-
mation different from the one contained into their DNA counterpart. Moreover, the
non-translated fraction of the genome contains information about the evolutionary
history of genomes.

Changes in the DNA sequence, the basis of the signal of evolutionary history,
can occur in a variety of ways, such as a modification during the replication or
reparation of DNA. Independent from their origin, mutations can be of at least two
types: substitutions, which correspond to changes in the value of a nucleotide in the
sequence, and structural changes, which correspond to changes in the organization
of the nucleotides between them.

Substitutions correspond to the replacement of a single nucleotide by another
in the sequence. Figure 1.2 illustrates some scenarios of nucleotide substitution
as well as establishes some vocabulary for the description of these scenarios: single
substitution and multiple substitutions are quite self-explanatory; a back substitution
correspond to a case where the scenario of substitution lead back to the original
nucleotide (from a Guanine to a Guanine in the figure) ; convergent substitutions
describe the phenomenon that occurs when two sequences evolving independently
undergo scenarios of substitution that lead to similar differences with the original
sequence (s1 in the figure)?.

Some structural mutations are illustrated in Figure 1.3 (these correspond to the
ones that are most often modelled in evolutionary biology). Insertions relate to
the addition of nucleotides in a sequence. They can range in size from a single
nucleotide to whole chromosome regions. When the insertion is small, it is likely the
result of an erroneous addition during DNA replication, but when the insertion is

large the inserted region may come from another region of the genome, like another

3Note that this vocabulary is applied to substitutions here, but is also adapted where speaking
about mutations in general.

23



single multiple back
substitution substitutions substitution
sl ATGGCT sl ATGGCT sl ATGGCT
G—>C G—>C
G>C C->A C—-G
s2 ATGCCT s2 ATGACT s2 ATGGCT
convergent
substitutions
sl ATGGCT
G->T
T>C N
s2 ATGCCT s3 ATGCCT

Figure 1.2: Different scenarios of substitutions in the evolution of the sequence s1
into sequence s2; or into the parallel evolution of sl into sequences s2 and s3
(bottom row). Here, the mutations are always occurring on the same (highlighted)
position (a Guanine in s1).

HHYH
T

Figure 1.3: A Insertion of a region of the red chromosome in the gray one. B
Deletion of the red chromosome region. C Duplication of the red chromosome
region. D Inversion of the red chromosome region. E Translocation between the

red and gray chromosomes. F Fusion of the red and gray chromosomes. G Fission
of the gray chromosome.
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chromosome. Deletions are about the disappearance of nucleotides from a sequence,
and may also range in size from a single nucleotide to a whole chromosome region.
They can be seen as complementary to the insertion, and insertions and deletions
are often referred to together as indels. Examples of small indels are shown in Figure
1.4.

insertion deletion
sl AT T sl ATGGCT
+CCTGAC -TGG

s2 ATGCCTGACGCT s2 ACT

Figure 1.4: Insertion and deletion in nucleotides sequences.

Duplication is a mutation that copies a chromosome portion and inserts it else-
where in the genome. It can also occur at all sorts of range, including the whole
genome (and a cell replication may be seen as a duplication of the whole genome
followed by the segregation of each copy in a different cell). Inversions consist in
the reversal of a chromosome portion. Translocation is a process where two chro-
mosomes exchange fragments. Finally, entire chromosomes may fusion or fission
together.

A mutation occurring in the genome of a given individual in a population creates
a new locus, or a new variant of a pre-existing locus in the population (a locus is
a position on a chromosome). In either case this result is called an allele?. An
allele begins by being present in only one genome/individual (the one where it
occurred) and may, through reproduction, see the number of individual bearing it
in the population vary®.

A given allele may then be categorized in terms of its effect on the reproductive
success of the organism that bears it. If the allele increases the reproductive suc-
cess, it is said to be beneficial. On the contrary, an allele that decreases reproductive
success (for instance, by causing a grave illness preventing the survival of the indi-

vidual bearing it) is said to be deleterious. Finally, an allele that has no effect (or

4Tt follows that a given locus may have one or several alleles (i.e., variants).

® Tn some multicellular organisms (such as animals), a mutation may only be passed to the
next generation if it occurred in the germline of the organism (i.e., a cell that will participate in
reproduction).
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no significant effect) on reproductive fitness is said to be neutral.

Beneficial alleles will tend to become more frequent in the population (i.e., their
bearers will on average reproduce more than others in the population), whereas
deleterious alleles will tend to see their frequency decrease in the population, a
process known as natural selection.

However this process of allele frequency variation is inherently stochastic and is
thus subject to random variation, which is referred to as genetic drift. The strength
of the genetic drift is usually related to the effective population size® : a high effective
population size will mean a lower genetic drift, and vice-versa. The more genetic
drift there is, the more a beneficial or a deleterious allele will be subject to random
noise and the more the evolution of their frequency in the population will come close

to that of a neutral allele.

1.1.2 Classical molecular phylogeny: how to get a phyloge-

netic tree

The following sections describe a classical pipeline of phylogenetic tree inference. It
is not an exhaustive presentation of all possible methods or each step, but rather
focuses on the most used ones, the most representatives ones.

NB: for vocabulary purpose, I presume that the sequence studied are DNA se-
quences. Similar observations can be done when using other sequences, such as

polypeptides.

Homology detection

To unravel and understand the processes that lead to the current diversity of an
ensemble of biological sequences from a ancestral single ancestor, one must first
establish that these sequences have a common ancestor. That is, one must first
determine homology at the sequence level (an example of homologous sequences is
given in Figure 1.5).

At the scale of genomes, the question of homology determination becomes about

splitting the genomes sequences in groups (families) of homologous sub-sequences.

6The effective population size is the size that an idealised (i.e., a population that corresponds
to the simplifying assumptions made in population genetic models, such as random mating or
constant size) would need to have to represent the genetic diversity of the real population.
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Figure 1.5: Three sequences (s1, s2 and s3) have evolved from the same, ancestral
sequence: they are homologous.

In the absence of structural mutations, defining homology would just come down
to grouping together chromosomes of different species. However in practice the rel-
ative positions of two nucleotides (or groups of nucleotides) can vary throughout
evolution. One or the other (or both) could be moved to another position or chro-
mosome, or be lost in a deletion.

So when looking for homologous sequences, one simultaneously looks for con-
tiguous blocks of nucleotides that share a common evolutionary history. These
contiguous blocks of nucleotides can be seen as forming a cohesive unit from the
point of view of evolution and I call them genes” . Following this notation, I call a
family of homologous sequences a gene family.

Detecting gene families is, in itself, a hard problem. It is done by comparing
different sequences together under the hypothesis that if two sequences have, indeed,
a common ancestor, then they should exhibit more similarity between them than
with other sequences (that they are not homologous with).

Similarity between two sequences can be assessed with local alignment tools, such
as BLAST [Altschul et al., 1990] which provides a score of similarity significance
(the e-value). Two sequences that share enough similarity (using a e-value cut-off
for instance) over their whole lengths may be considered putative homologs. These
can be converted into pairwise relationships between sequences, and these can, in
turn, be used to cluster together groups of putative homologs (so that in fine, two

sequences detected as putative homologs because of similarity may not be considered

"Not to be confused with other function-based definitions like the protein-coding gene or ex-
pressed gene. Here T use this term in its evolutionary definition.
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Figure 1.6: Two blocks of homologous nucleotides (in teal and salmon color) are
neighbours in human, mouse and rabbit, but the goat only shows the teal block. A
study including only human, mouse and rabbit (blue frame) will see the whole "teal
and salmon" block as a single gene. In contrast, a study including all four species
(red frame) will distinguish the whole teal gene and salmon gene.

as homologs, and vice versa). Going beyond pairwise similarity scores, more recent
methods directly compare a single sequence to a group of sequences. Other methods
combine the results of several approaches to refine homology search. See Fuellen
[2008|, Fujimoto et al. [2016] , Overbeek et al. [1999], for examples of homology
detection methods and their relative strengths and advantages.

Note that homology relationships are transitive (if a is homologous to b and e,
then b and ¢ are homologous) and symmetric (if a is homologous to b, then b is
homologous to ¢), so that defining homology between couples of sequences is enough
to determine groups of homologous sequences.

Similarity based approaches make the implicit hypothesis that the sequences
should not have diverged so much that they now share no more similarity than
any two random (non-homologous) sequences. For this reason, detecting homology
between sequences separated by a long evolutionary time can be a challenging task.

In the case of protein-coding sequences, amino-acid sequences may be preferred
to nucleotide sequences for deep homology detection. This is due to the genetic
code degeneracy®: a nucleotide substitution might not result in a change in the
corresponding amino-acid, so the amino-acid sequences of two diverging genes may
be more similar together than their nucleotide sequences.

An important point to make is that what I define as a gene (again, from an

8this refers to the fact that protein coding nucleotide sequences are organised in triplets (called
codons). Each triplet correspond to an amino-acid, but there is more codons than amino acids (64
possible triplets, 20 amino-acids) so different codons can encode the same amino-acid. Furthermore,
codons encoding the same amino-acid are often quite similar (they often share there first and second
nucleotides) so that a nucleotide substitution might not result in a change in the corresponding
amino-acid sequence.
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evolutionary perspective) depends on the context of the study. As in Figure 1.6,
what constitutes one gene when considering some species may constitute several
when considering others. In general, the bigger the scope of a study in time is,
the more genes will tend to reduce in size. To understand this, consider a block
of contiguous nucleotides: the longer we let it evolve, the higher the chance that a
structural mutation will break up this contiguous block into several, smaller, blocks.

However, despite the idea that structural mutations renders complex and contex-
tual the detection of homologous families, many studies still defines their evolution-
ary units using predetermined arbitrary objects, in particular protein coding genes
(this is the case in the HOGENOM data-base [Penel et al., 2009] for instance). Such
an approach causes problems, as these do not necessarily form good evolutionary
units and any error made during the homology detection will have repercussions
during the subsequent analyses. For instance, coding genes are known to sometimes
fusion or fission. Consider the case where two genes (A and B) are found in a fu-
sionned form AB in some organisms. Using coding gene as the unit of evolution
means that 3 different families (A, B and AB) will be considered and then treated
independently, completely obscuring the relationship between A (resp. B) and AB
and leading to false inferences of the rates of gene apparition / disappearance or
ancestral gene content. Similar problems occur because many proteins have been
identified to be modular [Moore et al., 2013]: they are composed of several blocks
that rearrange themselves throughout evolution, in these cases, an approach finding
the smallest blocks of homologous characters (as illustrated in Figure 1.6) is better
adapted, such as the approach used to build the ProDom data-base [Kahn et al.,
2008].

Sequence alignment

The previous step detected homology between sequence fragments, sequence align-
ment aims to establish homology at the nucleotide (or amino-acid) scale. Here a
given position in an amino-acid or nucleotide sequence is commonly called a site.
Among a gene family (i.e., a set of homologous sequences), the different se-
quences may not have the same size (e.g., the same number of sites) and in the
alignment problem it is presumed to be because of structural mutations such as
insertion /deletions (indels). A multiple sequence alignment is formed by the ensem-

ble of its sequences where special characters have been inserted to symbolize indels
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sl ATGGCTC  jignement sl -ATGGCTC
s2 TCGCTA _— s2 - -TCGCTA
s3 GATCGTC 53 GATCG-TC

Figure 1.7: Three homologous sequences (s1, s2 and s3) and their alignment on the
right. Gaps are figured with the - symbol.

(called gaps in this context) so that the different sequences have the same size and
homologous nucleotides have the same position in the completed sequence (i.e., the
sequence with its gaps). An example of such an alignment is shown in Figure 1.7.
The ensemble of the sites at the same position across the sequences of a multiple
sequence alignment is commonly referred to as a column of the multiple sequence
alignment. Consequently, building a multiple sequence alignment comes down to
placing gaps in the different sequences it is composed of. Note that this definition of
alignement inference leaves out all the other forms of structural mutations (such as
duplication) which are not modelled in an intra-gene context, and which may lead
to erroneous alignments.

Henceforward, I interchangeably use the terms "multiple sequence alignment"
and "alignment".

This gap placement can be achieved through the optimisation of an arbitrary
score that takes into account matches (declaring as homologous two sites bearing
the same nucleotide / amino-acid), mismatches (declaring as homologous two sites
bearing different nucleotides / amino-acids), gap opening (i.e., the first position of
a gap), and gap extension (the other positions). Exact algorithms exist to infer
the alignments corresponding to the optimal score for two sequences (such as the
Needleman-Wunsch algorithm [Needleman and Wunsch, 1970]). However for more
than two sequences (and the vast majority of gene families have more than two)
such exact approaches are intractable and thus methods to build a multiple sequence
alignment rely on heuristics.

Aside from the fact that an heuristic solution means that the optimal alignment
may never be reached (or at least never with certitude), the optimized metric is
arbitrary and may not be realistic for the data under study. Indeed, remember that
the scores that these algorithms optimize only take into account a predetermined
number of events (substitution and small indels) and do not model a lot of more

complex ones (like small inversions for instance), at the risk of missing them. De-
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pending on the specificity of the dataset (such as the number of sequences, their size
or similarity), different alignment algorithms, will be more or less suited to build a
correct multiple sequence alignment [Pais et al., 2014|. Additionally, a number of
the parameters underlying alignment bear an evolutionary meaning and their value
constitutes, in itself, an hypothesis on the evolutionary processes that shaped the
data (for instance, the costs associated to a given type of mismatch compared to
another). Because of this one should exercise caution toward a multiple sequence
alignment and the extent to which it represents the real homology between sites.
Moreover, many multiple sequence alignment methods (see Hogeweg and Hesper
[1984]; Edgar [2004]; Loytynoja and Goldman [2005] for instance) involve, at some
point in their algorithm, a tree describing the relations between the sequences to
guide the alignment. This tree, by necessity, is often itself built using very crude
method as a proper phylogenetic tree reconstruction would necessitate an alignment
(so that there is a form of co-dependency between alignment and tree reconstruc-
tion). As, in the context of phylogenetic reconstruction, the alignment is critical
to the reconstruction of the phylogenetic tree (see next section), the idea that the
alignment was built using a crudely constructed tree as a guide is yet another reason

to be critical of the alignment and the phylogenetic tree it leads to.

Phylogenetic tree

This step aims to reconstruct the history of diversification of the sequences of a gene
family (the gene family (bifurcating) tree), from the multiple sequence alignment of
this gene family. For definitions of the tree-related vocabulary, see the section about
phylogenetic tree jargon.

While there exists many methods to reconstruct a tree from a multiple sequence
alignment, most currently used ones rely on a probabilistic model of sequence evolu-
tion. These methods can be categorized in two broad groups: maximum likelihood
(ML) and Bayesian °.

9 There also exists distance and maximum parsimony approaches, however they are considered
to be less statistically reliable than probabilistic methods (the probabilistic approaches are more
computationally intensive than the distance approaches but this barrier has lowered with the
advent of better computers and algorithms). Distance based approaches rely on a measure of
genetic distance between the sequences of the alignment. These distances, summarized in a genetic
distance matrix, are then used to build the phylogenetic tree. This is done either with a hierarchical
clustering algorithm (see UPGMA [Sokal and Michener, 1958] and Neighbor-Joining [Saitou and
Nei, 1987]) or by finding the tree which minimizes the distance between the tree distance matriz
(where the distance is given by the sum of the lengths of the branches separating two leaves) and the
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Figure 1.8: A continuous Markov nucleotide substitution model. The probability,
given the nucleotide A evolving for time ¢; to obtain T, can be computed with the
matrix P(t).

Probabilistic model of sequence evolution. A probabilistic model of sequence
evolution, or more precisely in our case a model of nucleotide substitution describes a
stochastic process of substitution for a single nucleotide (equivalent models exist for
amino-acids). This process is usually represented as a Markov process '© where the
states are the different nucleotides, as shown in Figure 1.8 where in the substitution
rate matrix P the value P,,(t) represents the transition probability from state x to

state y in a given amount of time ¢.

Computing the likelihood. Consider an alignment D as well as a model M
which includes the substitution model, tree topology, branch lengths (and any ad-
ditional parameter).

To evaluate the fit of the model to the alignment we would like to access its
probability given the data: p(M|D).

Using Bayes theorem we get:

p(M|D) = p(D|M) x 20

Assuming that all instances of the model (i.e., all different tree topologies, branch
lengths and substitution model parameters) are a priori equally likely and that the

probability of observing the data does not change with the model, % is constant

input distance matrix [Fitch and Margoliash, 1967]. Maximum parsimony approaches try to obtain
a tree that requires the minimal number of evolutionary events (in this context, a substitution or
an indel) to explain the current alignment [Fitch, 1971]. Other, related, methods consider instead
a linear combination of the different evolutionary events (i.e., making some substitutions more
costly than other) as the metric to optimize.

10 For an introduction to Markov processes, see: Markov process visual interactive examples
[last accessed 02-June-2017]. Note however that these models are discrete in time, while the one
presented here is continuous in time.
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across all instances of M'" and that in turn we can write:
p(M|D) & p(D|M)

(where o< means "proportional to").

The probability of the model according to the data is proportional to the prob-
ability to observe the data according to the model.

This second probability is called the likelihood of the model and is noted L(M) =
p(D|M).

As L(M) o p(M|D), an instance of M with a higher likelihood than another
instance also has a higher p(M|D) and so is a better fit to the data.

If we make the hypothesis that each alignment column is independent from the

others we get:
H p(D?| M)

where m is the ahgnment size, D® is the a-th column of the alignment. p(D* M)

is the likelihood of the model for the column D® and is computed with:
DG‘M Z 7T{L‘0LO ZIZ'O

where, for a node ¢, L i(z;) is the probability of observing data at the leaves of
the subtree rooted in 7, given that the nucleotide at ¢ is x;; 0 is the root of the tree;
and 7, is the probability to observe nucleotide z( at the root of the tree!?.
If node 7 is a leaf:
Li(z;) = 1 if x; is the observed nucleotide
= 0 otherwise

Otherwise:

where node ¢ is the parent of nodes j and k, with associated branch lengths ¢;
and t; (as in the diagram on the right).

Note that the computation of the likelihood essentially takes the form of a re-
cursion on the tree topology|Felsenstein, 1981].

Note also that this model is applied to each column of the alignment indepen-

"Note that in the context of Bayesian methods this may not be the case and we have to account
for a priori distributions on the model parameters, including topologies.

I2These probabilities are additional parameters of the model of evolution that may also be
inferred or fixed externally.
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dently, each contributing independently to the overall likelihood. This is causing
branch lengths in a phylogenetic tree to correspond to an expected number of sub-
stitution per site (however, tree branch lengths may also represent time in the case
of ultrametric trees). This is also due to computational issues: considering each
column of the alignment independently means that the complexity of the likelihood
computing algorithm will (at worst) be proportional to the number of columns in the
alignment (not doing so would mean considering the whole sequence at once, which
corresponds to a state space that grows with the nuceotide alphabet size raised to
power of the number of columns in the alignment). This however implies that when
reconstructing the gene tree we have to make the hypotheses that 1) each branch
of the tree evolves independently from the others 2) each position in the alignment
evolves independently from the others (an hypothesis which is implicit to the model
of single nucleotide substitution). As such these models cannot capture information
about the interactions between nucleotides or gene lineages, despite the fact that
these interactions are of particular interest, especially in a biological context where
entities (be they species, genes or nucleotides) do not evolve in a vacuum, but in
interaction with other biological entities (these ideas about interactions in evolution
will be further developed in the next section).

Using the likelihood to evaluate candidate trees, the tree reconstruction algo-
rithm must then explore the space of tree topologies'® (and other evolutionary pa-
rameters, when applicable). If the number of leaves is low enough, this exploration
can be exhaustive. However it quickly becomes intractable to do so and the algo-
rithm must rely on heuristics to explore the tree space.

Maximum likelihood and Bayesian approaches both compute the likelihood as
shown above, but maximum likelihood methods try to find the tree (and model
parameters) with the maximum likelihood (as their name indicates) while Bayesian
ones build a posterior distribution of trees (and models parameters): a distribution
of trees where the frequency of an observed tree is proportional to its likelihood
according to the alignment (and its prior probability).

The whole process used for phylogenetic tree inference is prone to error, may
they come from the previous steps (homology detection and alignment), from the

heuristics used for the tree space exploration, or the hypotheses of the chosen model

13 Again, see the section about phylogenetic tree jargon for a definition of the number of possible
topologies with a given number of leaves.
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of evolution. As such, any phylogenetic tree obtained may be viewed as a single
estimation of the history of a gene family, and some measure of the reliability of
this estimation is desirable. Several methods have been developed to evaluate the
certainty with whom a single tree represent the history of its alignment, or at least
the robustness of the inference. This evaluation most often comes in the form of
a support value associated with each clade or branch of the tree, representing the
levels of confidence on different parts of the reconstructed phylogeny.

One of the methods to do so is the bootstrap method |Felsenstein, 1985] (although
it is more an evaluation of the method robustness than certainty). It starts with the
constitution of several bootstrap samples by choosing (with replacement) columns in
the alignment (each bootstrap sample is an alignment the same size as the original
one). A bootstrap tree is then estimated from each bootstrap sample, using the same
method as the one used for the obtention of the original tree (the one inferred with
the original alignment). The support value associated to a given branch (viewed
are as a bipartition of the leaves of the tree) of the original tree corresponds to the
number of times this branch was observed in the bootstrap trees. It ranges between
0 (the worst case, where this branch /bipartition was not seen in any of the generated
bootstrap trees) and the number of generated bootstrap sample (where this branch
was seen in all the bootstrap trees)'*.

Another procedure to assign support values to an estimated tree is to evaluate
whether or not an internal branch length is significantly different from 0 (as, if it
was 0 then it would be equivalent to removing the branch which would result in
a multifurcating tree). For likelihood-based methods, this can be achieved via the
procedure known as likelihood ratio test [Felsenstein, 1988|.

Other methods can be used, such as the Shimodaira-Hasegawa test |Shimodaira
and Hasegawa, 1999| which compares the likelihood of a set of trees.

Finally, as mentioned before, the Bayesian methods do not infer a single phylo-
genetic tree but a distribution of trees. A way to extract support value from such a
distribution would be, for each possible bipartition, to assess the number of times it
is observed in the distribution and divide it by the number of trees in the distribution

[Larget, 1999|. This measure is called the posterior clade probability.

!4Branches that separates a single leaf from the rest of the tree are present in every topology
and their bootstrap value is thus always maximal. In practice, it is omitted.
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1.1.3 Trees and tree jargon

This document contains numerous references to phylogenetic trees or object derived
from them. Phylogenetic trees (henceforth referred to simply as trees) help, among
other, define evolutionary relationship between different entities, can be used to
determine times of divergence between them or characterise past, ancestral, entities.
This section aims to describe the common vocabulary surrounding trees.

In phylogeny, a tree is often described as a set of nodes, linked together by

branches, such that

e there is always a path between any two nodes (i.e., they are connected together

by one or several branches).
e there is only one path between any two nodes (i.e., there is no cycles).

The nodes of a tree are usually divided into two sets: leaves and internal nodes.
A leaf is a node of the tree that has only one neighbour (i.e., is linked by only one
branch). An internal node is a node that is not a leaf (i.e., it has more than one
neighbour).

Figure 1.9 shows two trees. Let us concentrate on the top tree first. It has 10
nodes (a, b, ¢, d, e, f, g, h, i and j). 6 of these are leaves (a, b, ¢, d, e and f) and 4
are internal nodes (g, h, i, j).

The top tree is said to be unrooted, which means that it has no root and cannot
be used directly to determine if a node represent an ancestor or a descendant of
another node.

By opposition, a rooted tree is a tree that possesses a root, which is a node that
is determined to be the ancestor of all the other nodes in the tree. The bottom tree
of Figure 1.9 is a rooted tree. Compared to the top tree, it has an additional node k
that is defined as the root of the tree. The presence of the root orients the tree (the
idea is that ancestry flows from the root to the leaves) and allows us to determine
which node is an ancestor to which. Here, the leaf a is said to be the child of the
internal node ¢. g, in turn, is the parent of a. b, who is also a child of g, is the sister
of a.

We define the ancestors of a node as the set of nodes composed of its parent and
the ancestors of its parent (i.e., the parent of its parent, and so on, and so forth, up

to the root). Here the ancestors of a are g, i and k.
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Figure 1.9: Two phylogenetic trees, one unrooted, the other rooted.

Conversely, the descendants of a node is composed of its children and their
descendants. The descendants of node j are f, h, e, d.

The Lowest Common Ancestor (abbreviated LCA) of a set of nodes N is the
node that is an ancestor to all node in N and is farthest from the root of the tree.
The LCA of a and b is g. The LCA of ¢ and a is ?. The LCA of e, d and f is j.

The part of the tree composed of a given node n and all its descendants is called
the subtree rooted at n.

Any branch in an unrooted tree can correspond to a bipartition of the leaves of
the tree. For instance in the unrooted tree of Figure 1.9, the branch linking 7 and ¢
corresponds to the bipartition {a,b | ¢,d,e, f}. T call a set of leaves a clade and say
that it is present in an unrooted tree if there exist a bipartition in it that separates
the clades from the rest of the leaves of the tree. In the unrooted tree of Figure 1.9,

the clade {a,b} is present in the tree, as well as {f,e,d} or {c,b,a}. However the
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Figure 1.10: The node h is, from left to right : a bifurcation, two multifurcations
and an artificial node.

clade {a, c} is not present in the tree (because of the presence of leaf b, there is no
branch that separates {a,c} from all the other leaves).

For any clade C' in a tree, there is a complementary clade that correspond to the
leaves of the tree that are not in C' (in other words, the other side of the bipartition).
In Figure 1.9 the complementary clade of {a,b} is {c,d,e, f}.

The two trees of Figure 1.9 are said to be bifurcating because their internal
nodes are linked by exactly three branches (or two, in the case of the root). The
internal nodes are said to be bifurcations in the tree. The term bifurcation refers to
the idea that, in the rooted tree, any internal node has two branches linking to its
children (the third branch links to its parent when it is not the root). When a node
has more than two children, it is said to be multifurcating. A node with exactly
3 children is called a trifurcation; a node with n children is called a n-furcation,
or a multifurcation of size n. Additionally, I call a node with only one child an
artificial node, for reasons explained later. Figure 1.10 illustrates these concepts.
Phylogenetic methods often (but not always) assume a bifurcating tree.

The different branches of a tree are often associated with lengths that describe
a distance between the linked nodes. Additionally, the distance between two nodes
that are not linked by a branch is the sum of the distances of the branches separating
them. In the context of molecular evolution, this distance can take two forms: it may
correspond to an amount of time or it may correspond to an amount of evolution
which is often expressed in terms of substitutions per site (as shown in Figure 1.11).
These concepts are illustrated in Figure 1.12, where it can be seen that evolutionary

and time distances do not correspond to each other.
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Figure 1.11: On the left, the evolution of the sequence s1 into sequences s2 and s3.
The computation of the distance (in substitution per nucleotides) between s1 and
s2 (respectvely, s3) are shown under s2 (respectively s3) in red. On the right, the
corresponding tree of s2 and s3, with branch lengths in red.
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Figure 1.12: Two phylogenetic trees of the rat, human, mouse and chimpanzee with
branch lengths in red. A. the branch lengths correspond to expected substitutions
per site between the sequences of the 16S ribosomal protein of each species. B. the
branch lengths correspond to time (expressed in million years) (divergence times
were obtained from timetree.org [last accessed 5th of August 2017]

Indeed, using the numbers of Figure 1.12 again, between the rat and its last
common ancestor with the mouse, 16 million years have passed while 0.1044 sub-
stitutions per sites accumulated, which gives a rate of 0.1044/16 = 6.525 - 1073
substitutions per site per million years. Compare this with the case of the human,

for whom the rate of substitution in the branch that separates it from its common
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ancestor with the chimpanzee is 0.00389/6 = 6.483 - 10~* substitutions per site per
million years. These differences are due to the fact that certain sequences accu-
mulate mutations faster than others depending on the selective pressure exerted on
them and the biology of their host organism.

When the branches of a tree correspond to time, the tree is said to be ultrametric.
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Figure 1.13: Similar and dissimilar topologies between rooted trees with 4 leaves

number of leaves n | unrooted T, rooted 1'r,,

2 1 1

3 1 3

4 3 15

n To1%(2n—5) | Try_1 % (2n — 3)
10 2 027 025 34 459 425
20 ~ 2.22 % 10% ~ 8.20 * 10%!

Table 1.1: Growth of the number of rooted and unrooted topologies with the number
of leaves.

The topology of a tree refers to the way it successively links together groups of
leaves in subtrees. In other words, the topology of a tree is its structure, without
branch lengths. Trees with similar and different topologies are shown in Figure
1.13. Note that while the examples shown on the figure are rooted trees, the same
concepts apply to unrooted trees. In a phylogenetics framework, two trees with
different topologies (but the same set of leaves) tell two different stories of evolution

and differentiation between biological objects.
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For bifurcating trees, the number of possible topologies is determined by the
number of leaves of the tree. For n leaves, I call the number of possible unrooted
and rooted topologies respectively 7,, and Tr,. The evolution of these numbers is
presented in Table 1.1. Note that The number of topologies grows exponentially
with the number of leaves, which means that even for a relatively low number of

leaves (say, 14), it is hard to iterate across all the possible topologies.

1.2 Co-evolution and the consequences of statistical

independence in an interdependent world

Co-evolution may be defined as the phenomenon where two or more biological enti-
ties reciprocally affect each other’s evolution.

In a model of evolution without co-evolution, biological traits evolve according
to pressures determined by their environment. This environment may change, but
is considered independent from the biological traits it exerts pressure on. In co-
evolution, the environment of a given biological trait is itself subject to evolutionary
pressures coming from this trait.

This term first appeared to describe the evolutionary interactions between com-
munities of butterflies and the plants they feed on [Ehrlich and Raven, 1964]. They
posited that the evolution of plants secondary substances (which may have poi-
sonous or repellent properties) exerted a selective pressure on phytophagous insects
which resulted in an adaptation to these secondary substances. In return, the role
of phytophagous insects as "predators" of plants also exerted a selective pressure on
plants.

From the study of populations interaction, co-evolution has been applied to other
systems. For instance, it has been used in hypotheses about the emergence of
important cell biology mechanisms |Lacey et al., 1975; Gregory, 2001|. It has also
been used to study the observed correlation between changes in quantitative traits
or to describe the evolutionary interaction between biological molecules, such as
proteins (this approach is called molecular co-evolution)[Codoner and Fares, 2008].

Co-evolution occurs at all scales and appears to be an idea essential to the under-
standing of life. Indeed a model without co-evolution has a reductionist approach
that recursively cuts down entities into smaller ones (genomes in genes, genes in

nucleotides) and considers bigger entities as bags of smaller, independent, ones.
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However, it appears that in biology many interesting phenomena, perhaps the most
significant ones, do not concern the entities themselves but rather the interactions
that they entertain between each others|Sapp, 1994; Soyer, 2012|. Such cases in-
clude symbiosis, protein interactions, metabolism / expression regulation, ecological
community dynamics. In all these, an entity is not so much defined in terms of its
internal qualities as it is by the sum of its relationships with other entities. Access
to these relationships (and their histories) can be seeked through the modelling of
co-evolutionary processes.

At the scale of genes and genomes, a concrete example of the limits of the reduc-
tionist modelling approach is that it does not allow the description of the sizes of
chromosomal duplication events in vertebrates (as each gene is considered indepen-
dently, one only sees single gene duplications). As we know that the majority of the
genome is composed of repetitions, duplicated elements (for instance in humans, see
de Koning et al. [2011]) and has undergone whole-genome duplications, we are effec-
tively missing information on a very important process of genetic innovation. Such
biological questions drive me to go beyond the "classical" approach that I described
and consider the history of genes in the context of co-evolution.

In the following sections I will describe the gene in term of the co-evolutionary
relationships it is part of, how these relationships are detected, how the history of
these relationship may be inferred, and how these relationships may be used to gain

information about a gene history.

1.2.1 Nucleotide and gene co-evolution
Nucleotides/amino-acid co-evolution

Co-evolution occurs at all scale of the living, including between different residues of
the same gene. For instance, such co-evolution relationships can arise from a physical
interaction that is needed to maintain a molecule (e.g., a protein) 3D structure. In
such relationship, the effect of a mutation in one residue depends on the current state
of the other residue and vice-versa. This leads to correlated patterns of substitutions
between different sites of an alignment.

These co-evolutionary interactions also imply that, at a given time, there only
exists a fraction of the positions in a protein that have acceptable mutations (i.e.,

a mutation that will not be selected against). The covarion (for concomitantly
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variable codons) model [Fitch and Markowitz, 1970] accounts for these effects of
co-evolution by authorizing positions in the alignment to shift in and out of a state
of invariance during their evolution. Here the co-evolutionary links between sites are
not explicitly modelled : it is only the effects of the co-evolution that is emulated.

Models of codon evolution are another interesting models of evolution that imply
a measure of co-evolution between sites of an alignment (see for instance Pouyet et al.
[2016]). Indeed, each codon represents a group of three nucleotides whose evolution
is particularly linked together : the transition probability from one nucleotide to
another depends on whether or not this mutation leads to a change in the amino-
acid sequence (and if it does, toward which amino-acid) and this depends on the
state of the two other nucleotides of the codon.

Rather than using co-evolution information, many methods seek to detect and
describe the co-evolutionary links between residues (both between residues of the
same gene and of different genes) as they represent useful tools for the understanding
of molecules functions and of the selective pressures acting on different sites.

Aside from methods based on directed mutagenesis experimentation or analysis
of the three dimensional structure of proteins, computational methods can be crudely
separated into two groups: the ones that do not account for phylogeny and the
ones that do'>. The first kind will seek correlated alignment columns and rely on
measures such as mutual information content or entropy. The second recognizes
that some of the observed correlation between alignment columns is caused by their
evolution along the same phylogenetic tree (i.e., they belong to the same gene) and
seeks patterns of correlated substitution events (see Dutheil [2012] on the subject of
accounting for phylogeny when detecting co-evolution between residues).

Codoner and Fares |2008| propose the following decomposition of the covariance

between two amino-acids:

Ci' = Cphylogeny + Cstructure + Cfuncti(m + Cinteractions + Cstochastic

Where Cyiructures Crunction and Cingeractions T€late to co-variation due to the same
selective force acting on both sites (respectively to maintain a protein structure,
function, or interaction with another molecule). Cigoenastic relates to a noise that

makes sites appear to be correlated when they actually are not. Finally, Cpnyiogeny

15See Codotier and Fares [2008] for a review on these methods and the stakes of molecular
co-evolution.
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corresponds to the signal inherent to the fact that the sites share the same phylogeny.

For the purpose of gaining insight on the phylogeny of an object, I will focus
on this idea that sites share a phylogeny. So rather than considering correlated
events of substitutions, I am interested in correlated events of diversification (i.e,
bifurcations in a tree)'6. In the next section, the references to co-evolution I make

should be understood to refer to the correlation of phylogenies.

Sequence co-evolution

In the previous section, I wrote that the alignment establishes homology relation-
ships between the nucleotides of several homologous genes. Then the phylogenetic
information contained in each column of the alignment is combined in a phylo-
genetic tree that describes a unique and coherent history for this whole group of
nucleotides. Moreover, as mentioned before, each column of the alignment is con-
sidered separately during the phylogeny inference: each contributes independently
to the likelihood of the tree (as well as the likelihood of the other parameters of the
model of evolution).

As such, each nucleotide could be seen as its own mini-gene. All of these mini-
genes (i.e., all positions of the alignment) are then supposed to co-evolve together
to such a degree that they share the same phylogeny: the gene phylogeny. The co-
evolutionary relationship between each position in the alignment is thus supposed
here to be total: the nucleotides may not have a different history (see however
Boussau et al. [2009] for a model allowing for more than one tree for an alignment).

Having all the sites of a gene co-evolving together in such a manner comes down
to seeing the gene a an atom of evolution: it forms a coherent, indivisible unit of
evolution.

However, looking at an alignment, it can appear like two neighbouring columns
may not have the same history. Cases where different columns of the same alignment

display different trees may come from different sources.

e [t is possible that the definition of the gene was erroneous: it groups positions

that do not, in fact, share the same history.

160ne could then speak about a state of co-phylogeny between sites to mean that they share the
same phylogeny. However, this specific term has already been claimed by a scientific community
to describe the host-parasite phylogenies relationship.
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Figure 1.14: Individual positions evolve along the same tree, but the substitutions
they undergo produce patterns that do not reflect this tree. The two positions will
then correspond to alignment columns which in turn, if we inferred a tree on each
column separately, would lead to different nucleotide trees.

e The homology detection and alignment phase are prone to error and may lead

to alignments segments where the aligned positions are not homologous.
e The process of evolution may lead to confusing patterns in extant sequences.

The third case may arise from stochastic processes like back mutations (a position
mutated once, then mutated back to its previous state) or convergent evolution.
Furthermore, they may be aggravated by differences in the selective pressures exerted
in the different positions of the biological sequence (certain site may appear to change
more slowly than other because each mutation they undergo is counter selected).
These phenomena do not necessarily violate the view of the gene as an atom of
evolution. However they are worth noting as they introduce uncertainties in the tree
reconstruction process (as different columns of the alignment will support different
trees, as shown in Figure 1.14).

The second case can also lead to more uncertainty in the tree reconstruction
phase, but rather than denoting the production of different patterns of evolution
from entities sharing the same history, it may rather come from the production of

similar patterns from entities that do not share the same history, thus leading to
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similarity and spurious homology.

Finally, the first case is more problematic in the context of phylogeny as it means
that the alignment cannot be represented by only one tree: there is more than one
gene in the alignment. This can occur even when all the columns of the alignment
are aligning homologous sites, if different parts of the sequences of interest followed
different histories.

Such cases come close to the concept of modular protein evolution, which con-
siders that proteins (i.e., protein coding genes) do not constitute atoms of evolution,
but rather are combinations of different subunits (modules) which are the atoms of
evolution|Moore et al., 2013].

For a proper phylogenetic analysis, an alignment should correspond to one gene
only and steps for correcting such errors (i.e., detecting segments of alignments with
different evolutionary histories and splitting the alignment accordingly) should be
undertaken (see Minin et al. [2005]; de Oliveira Martins et al. [2008]| for instances of
algorithms to detect segments of alignment with different phylogenetic signatures).

Grouping (neighbouring) nucleotides together in the same gene forces us to make
the hypothesis that the grouped nucleotides completely co-evolve together, which
may not be true. Only the nucleotide seems to constitute an irreducible unit of
evolution. However a gene containing a single nucleotide often will not contain
enough information on its own to reconstruct its entire evolutionary history. The
same can be said from genes composed of multiple nucleotides: a complex history
(i.e., one involving many copies of the gene) may require a lot of signal to be robustly
inferred, possibly more than what the gene contains.

From a practical point of view, one could argue that this is a question of balance
and goal. The gene should be constituted so as to be atomic enough (i.e., its
nucleotides have the same, or almost the same, history) so as to have meaning from
a phylogenetic point of view. And it should include enough nucleotides so as to
contain enough phylogenetic signal to robustly infer its history.

As T take the stance that one should privilege the first criterion (atomicity of
the defined gene), it becomes then interesting to ask ourselves if there is a way to
still infer the correct gene phylogeny, despite a limited amount of information in

its alignment. I thus have to consider other sources of information about the gene

phylogeny.
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Figure 1.15: Parental relationships (black lines) between individuals (dots). The
parental generation is represented above its children.

1.2.2 Species and gene co-evolution

Genes do not evolve independently in nature: they occur in genomes, which contain
many genes. As such the events that the different genes of a genome undergo along
their evolution have an influence on the evolution of the genome. Complementarily,
events occurring to the genome (for instance, a whole genome duplication) also have
an influence on the history of each of the gene it contains: there is a co-evolution
between genomes and their constituent genes.

In order to describe the co-evolution of genes and genomes, I must first define
the genome history.

While each individual possesses a different genome, individuals of the same
species have very similar ones and will recombine them together (especially in species
engaging in sexual reproduction).

This means that while it is possible to retrace the parental relationship between
individuals of the same species (in a fashion similar to the building of a genealog-
ical tree), such parental relationships are based over fine differences between their
genomes and these relationships are not tree-like in shape, as represented in Figure
1.15.

However, when looking at broader time and biological scale, the differences be-
tween individuals of the same species are dwarfed by the differences between species.
Moreover as individuals of different species do not normally exchange genetic ma-
terial'” the parental relationships between individuals of different species take the
form of a tree, as can be seen in Figure 1.16.

Because of this, studies interested in processes happening over a long evolutionary

time tend to summarize individual genomes into species genome. Species genomes

17See however the hybridization, and description of lateral gene transfer (later in this document)
for instance of cases where individuals of different species exchange genetic materials.
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Figure 1.16: Parental relationships (black lines) between individuals (dots). The
parental generation is represented above its children. Two sub-populations are not
reproducing together, making the pattern of descent take the shape of a tree over
time.

history are summarized into what is called a species tree.

Species tree

In a species tree, the leaves correspond to extant species and internal nodes cor-
respond to the speciation of an ancestral species. Speciation describes the process
by which new species are born. A model for speciations describes a population (of
individuals of a given species) that separates into two sub-populations that repro-
ductively isolate (i.e., they gradually or abruptly stop reproducing together). As the
two sub-populations reproduce less, their genetic material starts to evolve indepen-
dently: they accumulate differences. These differences can, in turn, preclude sexual
reproduction between individuals of the different sub-populations (in the case of
sexual species), thus enforcing the reproductive isolation and independent accumu-
lation of differences which will result in different species. The reproductive isolation
may be due to a physical isolation (e.g., the sub-populations are situated on different
islands without the mean to cross water), or simply arise from within the population
because of the mechanism of genetic polymorphism [Gavrilets, 2014].

Contrary to genes where it is possible to build a single linear multiple sequence

alignment upon which the gene tree is inferred, it is not possible to infer a single
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alignment for whole genomes because of rearrangements '8

However, because genes are parts of genomes, genomes-wide events such as spe-
ciation impact genes and are reflected in their phylogenies, so that it is possible to
use the phylogeny of genes to reconstruct the history of the genomes that bear them.

But using any single gene tree, changing the gene labels into species labels and
declaring it the species tree is not desirable. A gene may be situated on a sequence
segment that has undergone an history different from the rest of the genome: this
segment may have been deleted in a species, or duplicated in several copies in the
genomes, or even have been transferred into this genome!?. Moreover, an individual
gene tree may be prone to error, because it derogates from the hypothesis made by
the methods used to infer its phylogeny or simply because it does not contain the
necessary signal for a robust tree reconstruction : its nucleotides have accumulated
too few substitutions, or too many (leading to saturation). That is why species tree
inference methods will combine the information of several gene trees: this reduces the
(random) error associated with each individual gene tree by increasing the amount
of data, while also reducing the error coming from possible differences between
individual genes and species histories as it is expected that these differences are
part of the history that most of the genes do not share.

One such type of methods is termed concatenated alignment (also referred to
as supermatriz approach). The alignments of several genes families (containing one
copy per species of interest) are concatenated head to tail. A single phylogenetic tree
is then inferred on this concatenated alignment. In other methods, phylogenies are
inferred independently for each gene family and then these trees are combined to-
gether to produce a consensus tree or a supertree. This second approach accounts for
important differences in the substitution processes between individual gene families,
but it asks the question of how to combine together the information of different gene
trees. The most common methods to do this is are majority rule consensus [Adams,
1972] (for a comparison of concatenated-alignment and majority rule consensus, see
Gadagkar et al. [2005]) and supertree methods [Gordon, 1986; Cotton and Wilkin-
son, 2007; Ranwez et al., 2007] which make use of clades or bipartitions that the

different trees have in common (not unlike the method to compute posterior clade

8 Whole genome alignment would at best yield a group of multiple sequence alignments and is,
in itself, an open question as exemplified by the Alignathon collaborative project[Earl et al., 2014].

19T discuss further these events, where a gene phylogeny differ from the species phylogeny, in the
next section.
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probabilities mentioned earlier in the context of Bayesian phylogeny inference).
Yet other methods combine gene trees while accounting for their differences with

the species tree in a more explicit manner.

Differences between the species tree and gene trees

As mentioned earlier, genes can have a phylogeny different from the phylogeny of
their hosts species?’. Such differences are caused by mutation events that only affect
a portion of the genome where a gene copy is situated. Maddison [1997] described
the discord between gene tree and species tree and identified a number of processes
underlying it, shown in Figure 1.17. Note that this figure shows a gene tree drawn

inside a species tree, symbolizing the fact that the genome of species contains genes.

Gene Duplication. (1.17 B) Gene duplication occurs when the segment of chro-
mosome (or of a whole chromosome in the case of whole genome duplication) that
bears the gene replicates in the genome. It leads to an increase in the number of
copies of the same gene coexisting in the same genome.

There exists several reasons that explain that evolution retains what might seem
like redundant information in the genome (the first of them being a purely neutral
evolution point of view, where the fixation of the duplicated copies are only explained
through random drift), T detail some of them below (for a more complete explanation
of these, see Innan and Kondrashov [2010]).

Subsequent differential accumulation of mutations on the duplicated copies can
lead to one of the copies acquiring a new function (neofunctionalisation) or, when
the original gene performed several functions, a specialisation of each copy towards
different tasks (subfunctionalisation) (this specialisation in one function may imply
a respective loss of the other function by the copies, in which case both copies are
now needed to perform the functions of the original, pre-duplication, gene copy).

In other cases, the number of gene copy might be directly beneficial to the
organism bearing them. This is the case for expressed genes whose level of expression
should be as high as possible (such as ribosomal genes, whose product are needed in
large quantity) and is referred to as a beneficial increase in dosage. It is also possible
that the redundancy of genetic information offers a protection against deleterious

mutations: even if one copy of the gene is affected by such a deleterious mutation,

20Even barring any errors coming from the imperfect methods of tree inference.
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Figure 1.17: Figures 2, 3, 5 and 7 (partial) from [Maddison, 1997] which represent
different process of discord between a gene tree and a species tree. A Species tree (on
the left) of the four species A, B, C and D and gene tree (on the right) with one gene
copy per species. Gene tree and species tree differ. B Gene duplication (represented
by the "dup" tag; the duplicated lineages are indicated by the dashed line) and
gene losses (represented by crosses) events can explain the history of the gene along
the species tree. C Incomplete Lineage Sorting (ILS) implies the coexistence of of
several gene lineages along a species tree branch (such lineages are shown as bold
here). D Horizontal Gene Transfer (HGT) (represented using an arrow) from the
genome of a species to the other.
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the other will still be functional. This effect is stronger when mutation rates are
high.

Gene Loss. (1.17 B) Gene loss occurs when the gene bearing chromosome segment
is deleted from the genome (because of a large chromosomal deletion for instance).
When considering the evolution of functional genes, a gene loss may also correspond
to the pseudogenization of a gene copy.

Contrary to gene duplication, gene loss leads to a decrease in the number of gene

copies in a given genome.

Incomplete Lineage Sorting (ILS). (1.17 C)

Consider the existence, at any given time in a species, for a given locus in the
genome, of different alleles. These alleles have their own history in the population:
they appear through mutation and their relative proportions change with each gen-
eration (possibly to the point of allele extinction). When speciation occurs, the
alleles borne by individuals in the parent species will be sorted between the two
children species. While in some cases the children species will inherit copies from
all alleles present in the parent species, in some other cases they will only inherit a
subset of these.

Incomplete Lineage Sorting occurs when this allele sorting mechanism give rises
to a tree that is different from the species tree. Such a process is illustrated in Figure
1.18.

Horizontal Gene Transfer (HGT) . (1.17 D)

With the three sources of discord described previously (gene duplication, gene
loss and incomplete lineage sorting) the gene history is different from the one of the
species, but it is nevertheless contained in this species tree. The pattern of descent
is said to be wertical, as each children always gets its genetic information from its
parent. However, organisms have evolved ways to acquire genetic material from
distantly related organisms. These processes are grouped under the term Horizontal
Gene Transfer (also referred to as Lateral Gene Transfer), as they cause an organism
to get some of its genetic material outside of the vertical transmission from parent
to children. HGT is an asymmetrical phenomenon where one distinguishes the
organism giving some genetic material (the donor), from the organism receiving it

3

(the recipient).
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Substantial traces of HGT may be detected in nearly all bacterial genomes
|Ochman et al., 2000] (but also in archea |Diruggiero et al., 2000| or eukaryotes
such as fungi |[Rosewich and Kistler, 2000]). This detection may be based on the
composition of genomes gene repertoires: the presence of a given gene in only one
of two closely related species may be explained by the loss of the gene in the second
species (in which case the gene is supposed present in their ancestor) or by a trans-
fer in the first species. Thus high level of difference between the gene repertoires
of closely related species forces us to assume a huge ancestral genome size, or to
accept that HGT is responsible for a large part of these differences [Daubin et al.,
2003b|. Similarly, HGT may be detected from patterns of difference between a gene

tree and the tree of the species it evolves in (however precautions must be taken
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to avoid confusion of such patterns with the one generated by gene duplication and
loss or ILS) |Daubin et al., 2003a].

Three different mechanisms of DNA exchange between bacteria have been de-
scribed [Ochman et al., 2000; Thomas and Nielsen, 2005|: Transformation, Trans-
duction, Conjugation.

Transformation refers to an uptake of DNA directly present in the milieu (i.e.,
not inside another cell). It requires the recipient cell to be in a physiological state
called competence (certain bacterial species are perpetually competent while for
others this state is more transient) and can result in the transmission of DNA from
very distantly related organisms.

Transduction refers to the introduction of new genetic material in a bacterium via
a bacteriophage (a bacterium virus)?!. Contrary to transformation, transduction will
only occurs between specific species that can be infested by the same bacteriophage.

Conjugation involves a plasmid-mediated?? DNA exchange between two cells in
physical contact. The DNA received may be conserved in the form of a plasmid,
but may also be integrated in the chromosome of the recipient species.

In addition to these methods, a number of mechanisms may results in lateral
gene transfer?. Whatever the method used for the entry of foreign DNA in the
recipient cell, this DNA must then be integrated in the recipient’s genome for it
to be successful transfer. This integration can take the form of the maintenance
of the foreign DNA as a plasmid, but it may also be integrated to the recipient
chromosomes. This integration may take the form of homologous recombination, in
which case the new DNA replaces a pre-existing, homologous (and similar), sequence.

Homologous recombination, because of the similarity between the old and the
new copy, is not likely to introduce novel functions into the genome of the recipient
of the transfer. The other forms of HGT have, however, the potential to suddenly

introduce novel functions in the recipient organism (relative to the evolution of

21 As bacteriophages replicate in a bacterium (the donor), some of them may incorporate some
of their host cell DNA inside their capside. These donor-DNA bearing bacteriophages may then
infest a new cell (the recipient), thus injecting it with some DNA of the donor cell which can
then be integrated within the recipient’s genome (provided it does not die from the bacteriophage
infestation).

22Plasmids are small circular DNA molecules present in bacterial cells (they can also be found
in archea, as well as some eukaryotes such as yeast). They are separated from the chromosomal
DNA and replicate independently.

230r a lateral transfer signature. Such can be the case of ancient hybridization or introgression
that transfer detection method may detect as repeated and important horizontal transfer with
homologous recombination.
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this gene by accumulation of successive random mutation) and HGT have been
recognised as a driving force of the bacterial evolution |[Ochman et al., 2000].

As mentioned earlier, HGT stands out from the other sources of discord between
species tree and gene tree as it represent a non-vertical component of evolution,
the part of the gene tree that cannot be written inside the species tree, as shown
in Figure 1.17 where duplication, loss (1.17 B) and ILS (1.17 C) are drawn inside
the species tree, but horizontal transfer (1.17 D) shows a branch getting out of the
species tree before getting back in.

This action of drawing the gene tree inside (or around, in the case of HGT) the
species tree can be seen as a way to specify the events that happened along a gene
phylogeny, and in which species these events happened. Such a specification is called

a reconciliation.

Reconciliation

Reconciling a gene tree with a species tree comes down to associating the different

parts of the gene tree (nodes, corresponding to extant or ancestral genes) to:
e a node of the species tree (i.e., an extant or ancestral species)
e an evolutionary event (such as Speciation or a Duplication for instance)

The result of a reconciliation is called a reconciled gene tree.

A basic question in the study of reconciliation then is: given a species tree, a
gene tree whose leaves are associated to extant species, and a set of events, can we
infer the reconciled gene tree, as exemplified in Figure 1.19 with events of speciation,
gene duplication, gene loss and horizontal gene transfer.

Solutions to instances of this question, varying in the framework used and/or
the set of events considered, have been proposed over the years. Some consider only
events of gene duplication and loss (both in a parsimony-based [Goodman et al.,
1979; Bonizzoni et al., 2005|, and in a likelihood-based framework [Arvestad et al.,
2003]), or only events of horizontal gene transfer and losses [Suchard, 2005; Boc
et al., 2010].

Others consider together events of duplication, loss and incomplete lineage sort-
ing, such as Rasmussen and Kellis [2012] which builds on the multi-species coalescent
(a framework who had been previously developed mainly for other purposes, includ-

ing the inference of ancestral population sizes |[Rannala and Yang, 2003|).
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Figure 1.19: A species tree (upper left), a gene tree (upper right) and their reconcil-
iation (bottom). The gene tree (upper right) has an association between its leaves
and extant species of the species tree (A, B, C, D and E) (which means that the
extant gene is found in this extant species); two genes are associated to species A,
no gene is associated to B.

The reconciled gene tree (bottom) is represented inside the species tree. Speciations
(and leaves) are represented as white-circled red dots; gene duplications are repre-
sented as green squares, gene losses are represented are orange squares; horizontal
gene transfers are represented as a branch of the gene tree going out of the species
tree, toward another branch of the species tree.
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Yet others consider events of duplication, loss and horizontal gene transfers (see
instances in a parsimony |Doyon et al., 2010; Bansal et al., 2012] or a likelihood
[SzollGsi et al., 2012; Tofigh et al., 2011; Sjostrand et al., 2014| framework).

Stolzer et al. [2012] considers duplication, loss, horizontal gene transfers and ILS
in a parsimony framework, but only when ILS is restricted to some, non-binary,
nodes of the species tree.

Variants to this question include instances where the gene tree is considered
non-binary |Lafond et al., 2012|, where the species tree is not binary [Vernot et al.,
2008|, or where the species undergo hybridization events (the species are then not
represented by a tree, but by a species network) [Than et al., 2008].

During my work, I will generally not consider events of ILS and species hybridiza-
tion and rather focus on models implying events of duplication, loss and transfer of
genes.

Henceforward, I will refer to models considering only gene Duplication and Loss
as DL models, and models considering Duplication, horizontal gene Transfer and
Loss as DTL models.

Beyond the inference of a reconciliation given a gene tree and a species tree, a
bigger question is to integrate the idea that species and genes are co-evolving entities

and that understanding the evolution of one gives information on the other.

Reconciliation as a view of co-evolution

As mentioned earlier, genes and genomes co-evolve. Reconciliations, as they describe
the relationship between a gene tree and species/genomes history, have a role to play
in the deciphering of the history of this co-evolution.

The fact that this relationship is not a perfect one, and in particular the presence
of horizontal gene transfer, has lead some to doubt the idea that a tree of species
could be built or should be built [Doolittle, 1999; Dagan and Martin, 2006; McCann
et al., 2008]. Indeed, if the tree of species symbolizes the wvertical component of
evolution, then the presence of HGT, which represent the horizontal component of
evolution, in the genes which are used to infer it will introduce many additional
errors to the result. Moreover, if one considers that the history of genomes should
be the history of the whole genome (as opposed to the history of vertical descent),
then this history does not take the shape of a tree, but rather a network |Doolittle,
1999).
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Figure 1.20: Figure 1 from Abby et al. [2012] showing the use of HGT events as a
support for different species tree topologies.

While this second point mainly relies on what definition we give to "genome/species
phylogeny", the first raises many valid concerns about our ability to infer a species
phylogeny in the presence of HGT. To address this point, some studies (such as
[Galtier and Daubin, 2008; Daskalakis and Roch, 2015|) have demonstrated that
it was possible to find phylogenetic signal, and to reconstruct an accurate species
phylogeny despite the presence of HGT.

On the same point, Abby et al. [2012| make the choice to reconstruct the species
phylogeny, not despite transfers, but using "lateral gene transfer as a support for
the tree of life". They do so by considering different species phylogenies in terms
of the number of HGT they imply in the reconciliations of the genes they contain
(as shown in Figure 1.20). This number of HGT events is then used as a score with
whom the best species phylogeny is selected.

What is particularly interesting with this approach is that it favours a species
phylogeny according to a metric of the level of co-evolution?* it shows with its

constituent genes.

24Considering that HGT is a source of discord between gene and species history, more HGT
means a lower level of co-evolution between gene and species and vice-versa.

a8



1 MY R

F E D ex}nct C B A

species

Figure 1.21: An horizontal gene transfer event originating in a species that later
goes extinct. This particular event implies that the ancestral speciation H occurred
before the ancestral speciation G.

This idea of using the discord between gene and species trees as a source of
information to get better species tree have been exploited in the context of ILS
(reviewed in Liu et al. [2009]), DL models (Wehe et al. [2008|; Hernandez-Rosales
et al. [2012] for instance), TL models (DTL models without duplications) [Abby
et al., 2012] and DTL models [SzollGsi et al., 2012|. In particular, an HGT event
can serve as a testimony of the co-existence at some point in time of its donor
and recipient species. This information can be used to infer relative dates to the
speciations in the species tree [Sz6llGsi et al., 2012], provided one accounts for the
idea that the donor species may not have left any descendant in the used species
tree (either because it went extinct or its descendant were not sampled as leaves in
the species tree [SzollGsi et al., 2013b|) as shown in Figure 1.21.

One can also consider the species tree as a fixed entity and use it to infer better
gene trees. For instance, Lafond et al. [2012] consider a gene tree with multifurca-
tions (that are typically obtained by collapsing branches of a gene tree with a poor
support, thus symbolizing the parts of the gene tree that should be improved) and
transform the multifurcations into series of bifurcations that minimize the number
of gene duplications and losses they imply. Alternatively, given a gene tree Wu et al.
[2013] or Bansal et al. [2015] search the space of the gene trees with a similar se-
quence support, looking for the one that minimizes a reconciliation score (Wu et al.
[2013] used a DL model while Bansal et al. [2015] used a DTL model). SzollGsi et al.
[2013a| goes further by considering jointly sequence support and species tree sup-

port (i.e., the reconciliation) of the gene tree in a probabilistic framework. Tt does
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so by considering not directly the gene alignment, but rather a distribution of gene
trees reflecting the alignment (typically an a posteriori distribution obtained from
a Bayesian tree inference software). SzollGsi et al. [2013a| has seen an adaptation of
its approach in a parsimony framework [Scornavacca et al., 2014]. As this approach
is of particular importance in my works, I will detail it in another chapter.

Finally, as a co-evolution relationship goes both way, some have attempted to
jointly infer gene and species tree |[Heled and Drummond, 2010; Boussau et al.,
2013|, but at great computational cost.

The papers and methods cited here do not aim to give an exhaustive review,
but rather some examples of what have been done in the field of reconciliation and
associated problems?. I prefer to focus here on the idea of reconciliation as a way to
describe the co-evolutionary relationship between a genome and its constituent genes
through an alignment of the gene tree onto the species tree. This description then
can (and has) be used as a mean to add information from the species (respectively

gene) tree in the reconstruction of the gene (respectively species) tree.

1.2.3 Gene and gene co-evolution

After having described the co-evolution occurring between a given gene and the
nucleotides it is composed of, and between a given gene and the genome it is part
of, T will go on to describe a third form of co-evolution: the one between two genes
in the same genome.

Two genes may co-evolve because they are interacting with each other when they
fulfil their function. For instance, proteins that physically interact together need to
maintain a degree of compatibility between their contact surfaces. Such interaction
results in a degree of co-evolution which can not only be detected between proteins in
direct interaction, but also (albeit to a lesser extent) between proteins without direct
interaction but with interactions to the same proteins [Liang et al., 2010]. Similarly,
gene products that participate to similar cellular processes co-evolve because they
may have to interact with similar compounds and/or to be expressed in a correlated
fashion [Luo et al., 2007; Villa-Vialaneix et al., 2013|.

Two genes may also co-evolve because they are physically close in a chromosome.

Z5For more extensive reviews, please consult Szollgsi et al. [2015] and Nakhleh [2013] on the topic
of reconciliation inference, and Daubin and Sz6llGsi [2016] on the topic of HGT and the "Universal
Tree of Life".
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Two genes that are neighbours with each other will have a higher probability to be
affected by events such as a segmental duplication or large deletion, than two distant
genes.

Furthermore, the idea that we expect co-evolution to occur between genes that
are neighbours on a chromosome is strengthened by the fact that co-localisation of
genes along chromosomes have been shown to be correlated with contribution to a
similar function in eukaryotes |Lee and Sonnhammer, 2003] and prokaryotes |Yanai
et al., 2002|; co-localisation has also been shown to correlate with co-expression
[Hurst et al., 2004]. These correlations are well illustrated in the prokaryotic operon
structure (also observed in some eukaryotes [Blumenthal, 2004]) where genes con-
tributing to the same function are clustered together in such a way that their expres-
sion is regulated by a single promoter [Jacob et al., 1960|. Another illustration comes
in the form of gene fusion, a process where two adjacent protein coding genes become
one, which can be used to infer a functional association between genes [Promponas
et al., 2014].

Although in practice their effects are hard to distinguish because of the afore-
mentioned correlations, it is interesting to note the difference between mechanisms
where proximity on the genome implies a greater chance of being affected by the
same, big, structural mutation (such as a duplication) and mechanisms where func-
tional linkage implies a selective pressure favouring correlated mutations.

The co-evolution between two genes can be detected (and described) using their
profile of absence/presence in different species. Co-evolution between two genes
means that the disappearance/apparition of one will have an influence on the other,
so it is expected that pairs of co-evolving genes show a higher correlation between
their profile of absence/presence than random pairs of (non co-evolving) genes |Pel-
legrini et al., 1999).

However, a simple comparison of profiles in extant species can fail to capture the
complexity of the relationship between two entities. Because it does not account for
the phylogeny of the species it consider, it fails to distinguish scenarios of correlated
changes (here, gains / losses of gene) that recount a very different history of co-
evolution. Dutheil [2012|, while talking about co-evolving positions in a molecule,
illustrates nicely this point in his first figure, shown here as Figure 1.22 where the
same correlated patterns are shown to arise from two different scenarios, each of

which implies a different number of correlated events (here, substitutions) and thus
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Figure 1.22: Figure 1 from Dutheil [2012| illustrating how two scenarios display
the same correlated patterns (here, A associated with U and G associated with
C). The correlation between extant profiles is the same for both scenarios, but the
underlying evolutionary process is different. The leftmost scenario shows only 1
correlated substitution event (symbolized here as a transition from grey to black),
while the one on the right implies 4 co-substitution events. With this in mind,
the scenario on the right constitutes a stronger case for co-evolution as it is more
unlikely to have happened by chance if the characters are independent.

provides a different signal of co-evolution.

Correspondingly, some methods look for signal of co-evolution by assessing the
level of congruence between the phylogenetic tree of genes. This is the case of
the mirrortree approach [Pazos and Valencia, 2001; Pazos et al., 2005; Juan et al.,
2008]| (see Figure 1.23) which considers the genes trees in the form of their distance
matrix (the distance matrix of a tree contains pair-wise distances, either topological
or weighted by the branch length, between each pair of leaves of the tree). They
then compute the correlation between the two matrices. To be able to compare the
matrices in such a fashion, they use a 1:1 association between the leaves of each gene
tree (typically because they are in the same species) to ensure the matrices rows (and
columns) match. Similar approaches, differing in the way the matrices correlation is
assessed, have been developed such as the Congruence Among Distance Matrix test
[Legendre and Lapointe, 2004], created for the general context of distance matrices
comparison (they applied it to the comparison of whisky properties), but whose
performance in the context of phylogeny have been assessed|Campbell et al., 2011].
Yet other methods use a similar approach but consider gene tree distributions rather

that individual gene trees [Arnaoudova et al., 2010], in order to take into account
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Figure 1.23: Illustration 1 from Pazos and Valencia [2001]| showing the mirrortree
procedure.

the uncertainty inherent to the tree reconstruction process.

While they offer a good way to assess whether or not two gene phylogenies
look alike, these congruence approaches all suffer from the fact that they operate
based on a 1 : 1 association between the leaves of the species tree. This bars the
comparison of genes which have known a different history of duplication and loss
(and transfer, when biologically relevant), or at least forces the user to make a
decision on which leaves will be associated together, and which will be removed
from the study. Another critic lies with the idea that these methods usually don’t
take into account the tree of species (although see Pazos et al. [2005] where the
congruence between two genes is corrected by their congruence with the species
tree, but who introduce the additional constraint that there must be exactly one
gene copy per species) within whom the genes evolve. Hence two genes that do
not co-evolve, but that both follow the species phylogeny strictly will be highly
congruent despite an absence of co-evolution. Finally, these methods condense the
view of the co-evolution between two genes in the form of a single statistic. They do
not allow access to the history of the relationship uniting the genes, to the changes
in this relationship across lineages (two genes may co-evolve in a species clade, but
not in another).

A step in this direction can be seen in Barker et al. [2007] which proposes a
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Figure 1.24: The models of Barker et al. [2007] as a graph with 4 states: 0,0
, 0,1, 1,0 and 1,1 representing the four possibilities of absence/presence of two
genes in a species (for instance 0,0 means that both are absent while 1,0 means
that the first is present but the second absent.) The states are linked together
by transition probabilities (¢i2 , go1 , ... ) from one state to another. In the first
model, each transition probability is free to take any value. But in the second model,
independence between profiles is enforced by ensuring that transitions probabilities
associated with an arrow of the same colors are equal (forcing, for instance, g2 = ¢34
which means that the probability to gain the second gene is the same whether or
not the first is present).

method to test for the non-independence of gains and losses of two genes. It does so
by comparing two models of evolution of the presence/absence profiles of two genes
across a species tree in a likelihood framework: one that allows for a bias toward
correlated gains or losses, and the other that forces independence (represented in
Figure 1.24; note that here, at it models presence/absence profiles, a gain in one
family can only happen if there is no gene of that family already present). Addi-
tionally, this method can be used to infer the ancestral states of both profiles and
pinpoint correlated (and non-correlated) events along the species tree, which comes
closer to a description of the history of the relationship than what the congruence
methods yield.

Other methods model more directly the relationship itself, which 1 will refer to
as an adjacency. An adjacency is thus a binary (meaning that it is either present,

or absent, without middle ground) relationship that links two genes.
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Figure 1.25: Figure 1 from Pasek et al. [2006] that illustrates domain architectures
(as strings of domains linked by adjacencies) and the different events they can un-
dergo.

Methods that model the adjacencies more directly include the one from Ma
et al. [2006] who infer ancestral chromosomal regions by looking at the evolution
of the relationships between adjacent conserved regions along chromosomes. Their
method starts by the identification of such regions and their extant organizations
(i.e., the set of adjacencies?®®). Tt then reconstructs ancestral adjacencies following
a parsimonious principle that minimizes changes in organization over time.

At another scale, Pasek et al. [2006]; Moore et al. [2013] look at the evolution of
modular protein arrangements in eukaryotes. Thus, they consider protein domains
families and link by an adjacency two protein domains if they are adjacent in a pro-
tein. Thus, a set of domains linked by adjacencies forms a protein, otherwise called
domain architecture here. They focus on the quantification of the different events
underlying domain variability between protein (intra and inter genome) and avoid
potentially difficult cases of ancestral reconstruction by restricting their analysis to

domain architecture that only differ by at most one event such as fusion (appari-

26ysed here to represent the relationship between two neighbours along a chromosome
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Figure 1.26: Figure 1D from Wu et al. [2012] representing the different events con-
sidered in their domain architecture evolution model.

tion of an adjacency between two previously unlinked domain architectures), fission
(disappearance of an adjacency that cause a domain architecture to become domain
architecture), internal or terminal domain addition or loss (see Figure 1.25).

Wu et al. [2012] proposes a more formal method to reconstruct ancestral domain
architectures. From extant protein domains and their extant adjacencies, ancestral
domains and ancestral adjacencies between domains are inferred in a parsimony
framework that minimises a joint score taking into account events of domain gain
(apparition of a new domain), domain duplication, domain loss (both similar to
gene duplication and loss), merge/fusion (apparition of an adjacency between two
previously unlinked proteins) and split/fission (disappearance of an adjacency that
cause a protein to become two proteins) as shown in Figure 1.26. This model implies
that a duplication and loss scenario (but not a reconciliation, as no domain trees are
created) of each domain is implicitly inferred jointly with the ancestral adjacencies.
This method is well adapted to eukaryotes (they applied it to Drosophila species
here), in the absence of ILS or horizontal transfer.

DeCo |Bérard et al., 2012] models the evolution of relationships between pairs of
genes in a broader framework, mainly, but not limited to, revolving around physical
neighbourhood relations. It considers adjacencies as the link between two genes
and tries to infer an history of adjacencies that minimizes the number of adjacency
gains (appearance of an adjacency) and adjacency breakages (disappearance of an
adjacency), given a set of adjacencies between extant genes, the gene reconciliations
and a species tree. This method stands aside from the ones I cited previously as it
explicitly considers the genes reconciliations which, in turns, allows it to consider
cases where an evolutionary event (such as a duplication) occurred in two adjacent
genes at once, and thus in the adjacency between them as well (for instance an

adjacency duplication); a visualization of these ideas can be seen in Figure 1.27.
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Figure 1.27: Figure 1 from [Patterson et al., 2013] showing a species tree (bigger tree
with green nodes), two reconciled gene trees (blue and purple) with duplications,
losses and transfer (dashed branches), and adjacencies evolving between the genes
(red lines). Notice that the adjacency is conserved along the transfer of the two
genes.

Originally developed in a DL context, this method have been adapted to a DTL
context [Patterson et al., 2013| as well a several other extensions which I will detail
in the following chapter. A probabilistic version of the DeCo algorithm has also
been published, but it only allows events of Duplication and Loss [Semeria et al.,
2015] and also possesses other methodological and computational limits.

As I mentioned, gene to gene co-evolution appears to be an important factor in
the determination of individual genes evolution. As such, the co-evolutionary signal
between genes is a useful source of information for the annotation of genes. Meth-
ods have been designed to detect the co-evolution between genes (the congruence
methods). Other methods have been developed to describe this co-evolution, in par-

ticular the history of this co-evolution. However, few methods have been proposed
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Figure 1.28: Profiles (top) correspond to different possible gene phyloge-
nies/reconciliations (bottom). Here, just along a single branch of the tree, many
different topologies (each with its own reconciliation) may correspond to the top
profile (I only include 3 here).

to use this relationship as a source of information in the reconstruction of the gene
phylogeny. Methods like Wu et al. [2012] offer a way to infer ancestral gene content,
but this is only partially connected to the phylogeny problem (see Figure 1.28).
Other methods use it in the form of the conservation of neighbourhood relationship
between genomes (synteny) to aid homology search and discriminate genes that have
diverged from a speciation (those genes are called orthologs) or a duplication (those
genes are called paralogs) [Wapinski et al., 2007] . Finally, Lafond et al. [2013] goes
further and propose two methods that exploit information obtained from the study
of extant and ancestral gene physical adjacencies along a chromosome (using DeCo
for ancestral adjacency inference [Bérard et al., 2012|) to correct a gene phylogeny
and reconciliation. The first method uses knowledge, obtained via synteny, that
some gene tree nodes should be speciations. The second use the idea that a chromo-
some is linear and so that a given gene should have exactly 2 (1 if it is a chromosome
extremity) neighbours; thus the inference of more than 2 adjacencies for a gene is
used as a marker that the tree should be changed. Both methods are illustrated in
Figure 1.29.
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Figure 1.29: Figure 1 from Lafond et al. [2013] with added sub-figures 3bis and 4bis.
(1) A gene tree (the “initial tree”) for the gene family ¢, b1,02,a1,a2 is shown with
small red nodes and single thin red edges. It is reconciled with the phylogeny of the
three species A, B and C shown with large green nodes and hollow edges represented
by a pair of parallel black lines. Duplication nodes of the reconciled gene tree are
squared, while speciation nodes and leaves are dots. (2) The two neighbours of b1
on genome B and of al on genome A are inferred to be orthologous according to
their lowest common ancestor in their respective gene trees (not shown). This is
an argument for inferring orthology between b1 and al, which is in contradiction
with the information provided by the initial tree: their lowest common ancestor is a
duplication, and thus they are inferred to be paralogous. (3) A solution that respects
the inferred orthology between nodes, that is a gene tree of minimum Robinson-
Foulds distance with the initial tree verifying the constraint of b1 and al being
orthologous. (3bis) The ancestral adjacencies inferred with the reconciliation shown
in (3). The green and blue genes have adjacencies both to the ancestor of al and bl
(noted (al,bl)), and to the ancestor of a2 and b2 (noted (a2, b2)), which form a non-
linear structure. (4) A solution that respects the linearity of ancestral adjacencies,
that is a reconciled tree in which the clade {b1,b2,al,a2} of d in the initial tree is
rather rooted by a speciation node in the corrected tree. This is an example where
the optimal solutions to the two problems differ. (4bis) The ancestral adjacencies
inferred with the reconciliation shown in (4), where the constraint of linearity is now
respected.
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1.2.4 Conclusion on the co-evolutions

In this section I presented three forms of co-evolution for the gene (represented in
Figure 1.30):

e the co-evolution between the gene and its constituent nucleotides
e the co-evolution between the gene and its species

e the co-evolution between the gene and other genes

Species tree

Other genes in interaction

|

sequence alignment

Figure 1.30: A gene family (represented by its gene tree, in red) co-evolves with
three kind of entities. Its sequence alignment, the species tree, other gene families.

In the two first forms, we can speak about a hierarchical form of co-evolution,
as it relates to the co-evolution between two nested objects (the nucleotides in the
genes; the genes in the species). The third form of co-evolution can then be described
as non-hierarchical as it corresponds to a relationship between two objects of the
same nature (two genes). Note also that this representation separates the gene

from its alignment (the nucleotides it is composed of), and assume a vision where it
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effectively is an entity that is defined by its relationships (including the ones with
its own constituents).

Throughout this document, I generally refer to co-evolving genes, composed of
nucleotides and evolving in genomes/species, but these ideas can be applied to differ-
ent biological objects, and can thus be generalized. Genes can become a "character
of interest", genomes become a "container" (of the character of interest) and nu-
cleotides become residue (as the base atom of evolution). A last component of
this generalized framework is the link between the different co-evolving characters
of interest, which I call adjacencies (following the convention I used in the prece-
dent section). To different evolutionary biology problems will correspond different
definitions of the nature of the character of interest, container, residue and adjacen-
cies, which I illustrate in Table 1.2 and through different examples throughout this
document (the case of gene order evolution, as well as protein domain organization
evolution, have already been evoked). Additionally, the nature of the character and
adjacencies drives the hypotheses that we can make on the adjacencies evolution-
ary processes and the expectation we have toward the adjacency graphs (a graph
where characters are nodes and adjacencies are edges between the characters). For
instance, in the context of gene order we can expect that a given gene should not
have more than two neighbours in a species (as chromosomes are linear or circu-
lar) and thus that there cannot be more than two adjacencies that links it to other
genes. Such an assumption does not work in another context such as the study of
protein interaction as there is no particular restriction on the number of interactions
a protein can have.

However for clarity purpose (and without loss of generality) T will continue to
use the terms of genes, nucleotides and genomes (or often species).

In a classical phylogeny analysis, it can appear that the different co-evolutionary
relationships are not treated equally: individual gene trees are usually reconstructed
from their nucleotide alignments alone , which means that they are reconstructed
independently from the species history and the other genes they co-evolved with. In
other terms, the first form of co-evolution is the only one that is taken into account
for the reconstruction of the individual gene phylogeny.

Through homology search and the definition of genes, a decision is made that the
nucleotides that are in the same gene are expected to have exactly the same tree (i.e.,

we make the hypothesis that they co-evolve completely) and that the nucleotides
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Table 1.2: Different possible definitions of the described terms, implied by different
problems.

from two different genes are not expected to show any form of congruence between
their trees (i.e., we make the hypothesis that they evolve independently: their co-
evolution is null); see Figure 1.31 for an illustration of these hypotheses.

These two hypotheses are implicit to phylogeny inference procedures from an
alignment. They are necessary as considering all the possible co-evolutionary part-
ners of a gene when trying to build its phylogeny would render the task compu-
tationally intractable, even barring the idea that the phylogenies of these partners
should be also be built using the one we are trying to infer, thus implying the need
for some sort of simultaneous reconstruction of all gene trees together.

We should however remember that these hypotheses are made and that they do
not reflect the biological reality where we expect a level of congruence between the
trees of co-evolving genes, and between the tree of a gene and the one of the species

it evolves in (as illustrated in Figure 1.32).
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Figure 1.31: Three (neighbouring) nucleotides (a1,a2 and b1), coloured according to
the gene they belong to (al and a2 are part of the same gene and b1 is in a different
one). Co-evolutionary relationships between the nucleotides are shown with black
double arrows. Co-evolutionary relationships between the nucleotides and their
species are shown with blue double arrows. The co-evolutionary relationships are
annotated with a green tick if they are part of the classical phylogeny, and with a
red cross if they are not. Classical phylogeny forces the hypothesis that the different
parts of the same gene are in total co-evolution, while there is no co-evolution with
anything else (other part of other genes, or the species they evolve in)
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Figure 1.32: A observed genes for two gene families (the red and the green one),
with adjacencies between them (indicating, for instance, a physical interaction).
B Classical phylogeny: each gene family is reconstructed independently from the
others, only based on sequence information. C A more integrated view where gene
families evolve along the same species tree and sometimes share additional events
due to their co-evolutionary relationship.
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A considerable amount of effort has been spent on the optimization of methods
using the first form of co-evolution to infer phylogenies (Minh et al. |2013]; Sta-
matakis [2014]; Nguyen et al. [2015] to only cite a few recent ones) while only a
handful of methods use information from the second form of co-evolution to infer
gene phylogenies (often jointly with the first form, or as an a posteriori correc-
tion /refinement; see the end of the reconciliation section for more details and ci-
tations) and even less use information from the third form of co-evolution (I have
already mentioned the gene tree correction techniques of Lafond et al. [2013]).

However it is known that nucleotide-based gene tree inference is not without
its issues and the resulting tree may be erroneous and/or suffer from a high level
of uncertainty (eg., have low support values) either because of artefacts from the
methods themselves or because of a lack of information in the alignement. Gene
tree correction techniques using information from other form of co-evolution (for
instance, Wu et al. [2013]; Lafond et al. [2013]) have proven to be useful to get
better gene trees, where a better gene tree is often defined as a tree whose support
from the alignment is close to the support of the optimal tree inferred using the
alignment alone (often called the initial tree) and that shows a better agreement
with its species tree (e.g., have a reconciliation with less events of duplication, loss
or transfer) or with the trees of the other genes it interacts with (e.g., it allows the
inference of linear ancestral chromosomes).

To my knowledge, no method exists that takes into account information coming

from the three forms of co-evolution simultaneously.

1.3 Work accomplished

The rest of this document is organized along two main chapters.

Chapter 2 details my work on adjacencies and their histories (where adjacencies
represent the links between co-evolving genes) in a context where individual gene
trees and reconciliations are considered fixed. In particular, the chapter presents
two articles that I published. The first focuses on the inference of ancestral adja-
cencies given extant ones and reconciled gene trees. The second corresponds to an
application of ancestral adjacency inference on a genome scale, highlights limitations
arising from the use of fixed individual genes reconciliations and tree topologies that

were inferred independently from each other and proposes ways to design solutions

74



to the problems linked to these limitations.

Chapter 3 builds on the comments made in chapter 2 and describes a method
that goes beyond the traditional phylogenetic hypothesis of independence between
genes. It does so by describing a metric that accounts for all three described forms
of co-evolution (co-evolution with the sequence, with the species, with other genes):
a global score. This global score is designed to favour cases where an individual gene
tree may be sub-optimal with regards to its alignment sequence alone (first form
of co-evolution) but where this sub-optimality is compensated by a good fit to the
species tree (assessed via the gene reconciliation) and a good fit to gene with whom
it co-evolves (assessed via adjacencies). A method for the computation of the global
score is proposed, as well as strategies to optimize it. Lastly, these methods are
applied to mammalian and fungal data-sets where I show that the proposed method
can indeed lead to lower values of the global score. In addition, I observe that
instances with a lower global score exhibit longer chromosomal evolutionary events
(loss, duplication or transfer) in terms of the number of genes they encompass. In
the case of the mammalian data-set this is also coupled with an amelioration of the
inferred ancestral genomes and more parsimonious adjacency histories (i.e., ones

that require less events of adjacency gains and breakages to be explained).
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Chapter 2

Inference of adjacencies on fixed

reconciliations and topologies

2.1 A software to infer adjacencies histories: DeCo*

2.1.1 The DeCo family of algorithms

The article presented in this section describes a software, called DeCoSTAR, whose
aim is to reconstruct the evolutionary history of links between genes of the same
species: adjacencies.

Adjacency histories form a good basis for the study of the co-evolutionary rela-
tionship between genes because an adjacency history displays events telling a con-
joined story of the two genes, the evolutionary events they share and the ones they
do not. Additionally, an adjacency history exists only when the two sides of the
adjacency are present together in a species (at the same time).

Adjacencies can, for instance, model relationships between genes such as neigh-
bourhood on a chromosome, or between domains along a protein. They can also
symbolize the fusionned state of two genes (the absence of adjacency meaning that
the two genes are transcribed independently)®.

DeCoSTAR consists in a re-implementation, generalization and extension of a
class of software that I mentioned in the introduction: the DeCo-like algorithms.

A probabilistic version of the DeCo algorithm have also been published |[Semeria

et al., 2015] , however it is fairly distant from what I did from a methodological point

IThese three use cases are demonstrated in the article.
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of view and suffers from several limitations. Aside from being currently limited to
events of duplication and loss, it cannot consider cases where more than one dupli-
cation occurred between two speciations and has to perform heavy computations to
accounts for branch lengths. For these reasons the algorithm of Semeria et al. [2015]
has not yet been implemented in DeCoSTAR. So more more precisely, DeCoSTAR
includes the DeCo-like algorithms that use a parsimony framework.

The original DeCo publication of 2012 [Bérard et al., 2012] proposes a model
of evolution of adjacencies in a DL framework. Given a species tree, a set of gene
trees and a set of adjacencies between extant genes (extant adjacencies), DeCo 1)
computes the (DL) reconciliation of each gene tree 2) groups the adjacencies together

by homology 3) computes the histories of homologous adjacencies.

A B Hﬁ

al a2 a3 bl b2

Figure 2.1: Extant adjacencies (white lines) between reconciled gene trees can be
grouped by homology. A Adjacencies between different gene trees; the adjacency
al — a2 (between gene al and a2) is homologous to the adjacency bl — b2. B
Adjacencies within the same gene tree; The adjacencies al — a2 and bl — b2 are
homologous, but they are not homologous to the adjacency a2 — a3.

This introduces the notion of homology between adjacencies. Two adjacencies
al — a2 (linking gene al to gene a2) and bl — b2 are homologous if al (respectively
a2) is in the same gene tree as bl (resp. b2) and there exists a common ancestor
of al and b1 named ¢1 and a common ancestor of a2 and b2 named 72 such that i1
and 42 are in the same species (for instance, see Figure 2.1 A). Additionally, if al,
a2, bl and b2 are all in the same gene tree, then the LCA of al and a2 must be
the same node as the LCA of bl an 62 . This is illustrated in Figure 2.1 B where
the adjacencies al — a2 and bl — b2 respect this condition, but not the adjacencies
bl —b2 and a2 —a3 (the LCA of a2—a3 is i3 and is different from the LCA of b1 —b2:
i4). As any homology relationship, homology between adjacencies is transitive (if

a is homologous to b and ¢, then b and ¢ are homologous) and symmetric (if a is
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homologous to b, then b is homologous to a). T call a group of homologous adjacencies
an equivalence class.

Defining homology between adjacencies justifies that we describe them as part of
the same history where we precise the presence or absence of ancestral adjacencies
(adjacencies between internal nodes of the gene tree) as well as events of adjacency
gains (appearance of an adjacency) and adjacency breakages (disappearance of an
adjacency).

The reconciliations and adjacency histories are computed following a parsimony
principle that minimizes a score depending linearly on the number of events (gene
duplication and loss for the reconciliations, adjacency gains and breakage for adja-

cency histories).

Maximum Parsimony

Maximum Parsimony refers to a framework where one wants to find the
solution that implies the minimum number of events. This criterion
is often used in the context where rather than focusing on minimizing
a number of event, one minimizes a score that is a linear combination
of the number of events. In this context, each type of event is assigned
a cost (and minimizing the number of events becomes the particular
case where each type of event has the same cost).

The definition of the costs associated with each event is of crucial
importance as they will determine which solution will be favoured.

Value of these costs may for instance be fixed using knowledge about
the modelled objects gleaned from the bibliography (as is the case in
the DeCoSTAR article in the fusion /fission article) or by adapting ML
estimation of event rates (going from rates to costs can be done using a
—log operation). Alternatively, several runs of the parsimonious infer-
ence, using each time different costs, can be done to either assess the
robustness of the results or to look for a set of good costs (such as in
the heuristic of [Scornavacca et al., 2014]).

To use maximum parsimony can be viewed as making the choice
that the most simple explanation is the best one (because you prefer

solutions implying less costly events). While this principle is often used
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in science, it may not always apply very well to the modelling of evolu-
tion. In particular, multiple mutations, back mutations or convergent
mutations typically will not be detected under parsimony assumption
and thus lead to an underestimation of the number of events that oc-
curred.

There is however an argument to be made that the design of parsimony-
based algorithms may be easier than likelihood-based ones. Indeed for
many problems, including sequence alignment, alignment-based phy-
logeny, reconciliation and adjacency histories inferences, a maximum
parsimony algorithm was devised before probabilistic models and the

methods to compute their likelihood were proposed.

Several algorithms have been published that extend the original algorithm.

e Patterson et al. [2013] added the possibility to compute adjacency histories in
the presence of transfers, but did so at the cost of the reconciliation computation
(this is mostly due to the fact that reconciling a gene tree and a species tree in
the presence of HGT is more complicated than in its absence; additionally this
gives the user the possibility to input the reconciliation of its choice, which was

not previously possible).

e Chauve et al. [2015] introduced a method to transform the original DeCo for-
mulas in order to be able to sample adjacency histories according to their score
(meaning that an adjacency history with a better score than another will be
sampled more often). This constitutes an important step in the development of
the DeCo-like approaches as it allows to go beyond one of the major drawback

of parsimony (which only yields the adjacency histories with the better score).

e Anselmetti et al. [2015] adapted DeCo to a context of genome assembly, where
the adjacencies between certain extant genes are unknown and we want to
infer them. The introduced modifications effectively allow the software to infer
new extant adjacencies when they are supported by other, homologous, extant

adjacencies.

Each of these extensions was done independently, meaning, for instance, that the
possibility to sample adjacency histories according to their score or inferring new

extant adjacencies was not possible in a DTL framework,
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DeCoSTAR remedy this and integrates all of these extensions in the same soft-
ware?. Furthermore, I also extended the existing methods in many ways. Among
those extensions is the possibility to account for adjacencies evolving between gene
extremities (e.g., genes start and stop) rather than between genes, the possibility
to sample uniformly across parsimonious scenarios (rather than output an arbitrary
one, as was the case before) and also various additional options related to the tree
input (which may now be indifferently be rooted, unrooted, correspond to tree dis-
tribution or already reconciled gene trees). Also last but not least, the combination
of certain options (in particular the addition lateral gene transfers from Patterson
et al. [2013] and the Boltzmann-sampling from Chauve et al. [2015]) prompted a full
re-write of the recurrence formulas (used to compute the adjacency histories cost)
which were generalized.

As T would like to be able to jointly consider the information coming from all
three forms of co-evolution (cf. the conclusion on co-evolution in the introduction)
I integrated the adjacencies histories inference methods (third form of co-evolution)
in the ecceTERA [Jacox et al., 2016] package that is able to infer a gene tree /
species tree reconciliation that jointly considers sequence and reconciliation infor-
mation (first and second forms of co-evolution) thanks to the TERA algorithm
[Scornavacca et al., 2014|, already mentioned in the introduction and further ex-
plained in a latter chapter. This integration is one of the main factors behind the
flexibility of DeCoSTAR in terms of input.

2.1.2 DeCoSTAR: an integration of DeCo-like algorithms in
ecceTERA

2Tt is named as it in reference to a regular expression of the names of the programs it regroups
(DeCo, DeCoLT , art-DeCo, DeClone). This expression would be something like *DeCl?o.* ,
simplified DeCo*: DeCoSTAR
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Abstract

DeCoSTAR is a software that aims at reconstructing the organization of ancestral genes or genomes in the form of sets of neigh-
borhood relations (adjacencies) between pairs of ancestral genes or gene domains. It can also improve the assembly of fragmented
genomes by proposing evolutionary-induced adjacencies between scaffolding fragments. Ancestral genes or domains are deduced
from reconciled phylogenetic trees under an evolutionary model that considers gains, losses, speciations, duplications, and transfers
as possible events for gene evolution. Reconciliations are either given as input or computed with the ecceTERA package, into which
DeCoSTAR s integrated. DeCoSTAR computes adjacency evolutionary scenarios using a scoring scheme based on a weighted sum of
adjacency gains and breakages. Solutions, both optimal and near-optimal, are sampled according to the Boltzmann-Gibbs distri-
bution centered around parsimonious solutions, and statistical supports on ancestral and extant adjacencies are provided. DeCoSTAR
supports the features of previously contributed tools that reconstruct ancestral adjacencies, namely DeCo, DeColT, ART-DeCo, and
DeClone. In a few minutes, DeCoSTAR can reconstruct the evolutionary history of domains inside genes, of gene fusion and fission
events, or of gene order along chromosomes, for large data sets including dozens of whole genomes from all kingdoms of life. We
illustrate the potential of DeCoSTAR with several applications: ancestral reconstruction of gene orders for Anopheles mosquito
genomes, multidomain proteins in Drosophila, and gene fusion and fission detection in Actinobacteria.

Availability: http:/pbil.univ-lyon1.fr/software/DeCoSTAR (Last accessed April 24, 2017).

Key words: gene order, software, reconciliation, protein domain, evolution, gene fusion/fission, rearrangements.

Introduction a chromosome, or the link between two domains of a protein,

Colocalization of genes along a chromosome, or combina-
tions of domains within a gene are genomic features that
evolve and can be gained or broken by rearrangements. We
will use the term gene to designate an evolutionary unit (a
gene or a domain or any smaller or larger module), and we call
adjacency the link between two genes. An adjacency thus
represents either the link between two contiguous genes on

or may also represent the link between two genes fused into a
single gene. The evolution of adjacencies is usually modeled
differently for different scales (Pasek et al. 2006; Ma et al.
2006; Wu et al. 2013; Stolzer et al. 2015), complex gene
histories are rarely handled in ancestral organization recon-
struction, and models integrating fusions and fissions of
genes are called for (Haggerty et al. 2014).

© The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
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We describe a software, DeCoSTAR, which reconstructs
putative ancestral states of adjacencies, for example, ancestral
domain structures of a modular protein, as well as chromo-
some organizations of whole ancestral genomes, or fusion/
fission histories or modular genes, when genes have complex
histories made of gain, duplication, transfer, speciation, and
loss events.

The input of DeCoSTAR consists in a species tree, a set of
extant gene families—each in the form of one or several gene
trees—and extant adjacencies between pairs of extant genes.

The gene trees and the species tree follow the reconciliation
framework that is described by Jacox et al. (2016). (Reconciled
gene trees are rooted gene trees whose nodes are associated to
an evolutionary event, such as speciation, gene loss, gene du-
plication, or lateral gene transfer, and to a position in the spe-
cies tree. Numerous methods exist to build reconciliations, see
Akerborg and Sennblad [2009], Bansal et al. [2012], Stolzer
et al. [2012], and Szollosi et al. [2015] for example.) The species
tree may be dated or not, and gene families may be provided in
the form of a gene tree sample, a single gene tree, or directly a
fully reconciled gene tree. Reading direction (orientation) of
genes on the chromosome may be given or not. Accordingly,
ancestral genes are directed or not in ancestral organizations.

The output consists of adjacencies between ancestral genes
along with evolutionary scenarios composed of gains and
breakages of adjacencies. DeCoSTAR optimizes on a linear
combination of the number of gains and breakages of adja-
cencies along the species tree. It can sample among optimal
solutions, and thus give a statistical support to each inferred
adjacency. It can also sample in the space of suboptimal solu-
tions using a Boltzmann-Gibbs distribution centered on the
optimal solutions. As an option, it is possible to propose, based
on the adjacencies in other species, adjacencies that are not in
the input between extant genes; these new adjacencies can
be used to improve the assembly of extant genomes.

Note that input adjacencies depicting the linear organiza-
tion of chromosomes do not guarantee the same linear orga-
nization in ancestral genomes. We provide in the distribution a
linearization method (Manuch et al. 2012) to transform the
output in a linear organization if needed.

An example of input and output for DeCoSTAR is depicted
in figure 1 where the evolution of three gene families linked by
some adjacencies is represented: The adjacencies follow the
evolutionary path of the genes they link and undergo specia-
tions (fig. 1A), are transferred (fig. 1B), disappear because of a
gene loss (fig. 1C) or adjacency breakage (fig. 1D), and are
gained (fig. 1E).

Features and Implementation

DeCoSTAR supersedes (with the exception of the ability of
DeClone [Chauve et al. 2015] to compute the exact expecta-
tion of the frequency of a property of interest using a variant

A

[

Fic. 1.—A species tree (light blue), three reconciled gene trees (black,
red, and green) (losses are orange squares; duplications are green squares)
and a set of extant and ancestral adjacencies linking genes (white). (A) An
adjacency is inherited by both sister species after a speciation occurs. (B) An
adjacency between the red and green gene is transferred, and so are both
extremities of this adjacency. () The red gene undergoes gene loss and
thus both adjacencies it was a part of disappear. (D) The adjacency be-
tween the red and black genes disappears due to an adjacency break on
the branch leading to the leaf. (E) An adjacency is gained between the
black gene and the newly acquired red gene.

of the inside—outside algorithm) and combines all the features
of DeCo (Bérard et al. 2012), DeColLT (Patterson et al.
2013), DeClone (Chauve et al. 2015), and ART-DeCo
(Anselmetti et al. 2015). The generalization of all these
methods offers novel capabilities, including the
Boltzman—-Gibbs sampling of ancestral adjacencies in
the presence of transfers from error-prone/partial
genome assemblies. The integration with the software
package ecceTERA dedicated to reconciliations (Jacox
et al. 2016) adds novel features, such as the possibility
of taking unrooted gene trees or undated species trees as
input. As a novelty, it also fully handles gene orientations
whenever available, and provides statistical supports of
ancestral adjacencies by sampling among optimal
solutions.

DeCoSTAR is a C ++ program requiring the Bio ++ library
(Gueguen et al. 2013) and the Boost library (BOOST 2003)
to be installed. It is a command-line program whose various
options and input can be specified on the command line or
given in a parameter file. It handles newick format for trees
and recPhyloXML (Gence 2016) format for trees and
reconciliations.

A detailed documentation of DeCoSTAR options, input and
output formats is available in the supplementary material
(Supplementary Material online) and is included within the
distributed version of the software.
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Algorithm

Given a set of adjacencies between extant genes, DeCoSTAR
partitions it into homologous families. Two adjacencies aqa;
and b1b, are homologous if a; and b, respectively a, and b,,
have a common ancestor iy, respectively i>, such that i; and i»
are in a different gene tree or, if they are in the same gene
tree, one is not an ancestor of the other. This relation is tran-
sitive, yielding a partition of the full set of input adjacencies
into families.

For each family of homologous adjacencies, a minimal cost
adjacency history, that is, a history that minimizes the number
of adjacency gains and adjacency breakages weighted by their
respective costs, is computed. This is done in a dynamic pro-
gramming matrix following a generalization of the propaga-
tion rules described in Patterson et al. (2013) (see table 1 and
below where we introduce the notation we use).

Once the dynamic programming matrix of has been com-
puted, backtracking on this matrix permits to produce an evo-
lutionary history for the family of homologous adjacencies. This
history takes the form of ancestral adjacencies (linking ancestral
nodes of the gene trees) and the events they undergo. Events
may occur to individual genes or to pairs of genes linked by an
adjacency, in which case it is called a coevent. A coevent implies
that the events from two different reconciled gene tree nodes
are part of a single event spanning multiple genes.

DeCoSTAR allows multiple backtracks of the dynamic pro-
gramming matrix in order to form a sample of adjacency his-
tories, either within optimal solutions or according to a
probability space defined by a Boltzmann-Gibbs distribution
centered on the optimal solutions.

Each propagation rule is translated into a specific term in a
dynamic programming equation for the reconstruction of an-
cestral states. The complete set of rules (19 rules, whose com-
binations cover all the cases encountered by the algorithm)
implemented in DeCoSTAR is the result of a complete rewrit-
ing of a combination of rules taken in the previous softwares,
aggregating them in more general rules. For comparison
DeColT (Patterson et al. 2013), a less general algorithm,
used a set of 23 rules.

For two genes a and b, we note c¢;(a,b) and cy(a,b) the cost
of, respectively, having an adjacency and having no adjacency
between a and b. We call a; and a, (respectively, by and b,)
the children of a (respectively b) (NB: if a [respectively b] only
has one child, then a, [respectively b,] does not exist).

We denote by Gain the cost of a single adjacency gain. We
denote by Break the cost of a single adjacency breakage. Two
gene tree nodes a and b (from the same gene tree or not) are
said to be comparable if they are in the same species, if they
are in the same time slice when relevant, and if one is not an
ancestor of the other. Otherwise they are said to be
incomparable.

If the events at a and b (deduced from the gene tree/species
tree reconciliations) occurred simultaneously (which is only

possible if they are comparable), we call them synchronous.
Otherwise we call them asynchronous and have to take into
account if the event at a occurred before the one at b or the
opposite.

The different formulas of the propagation rules are combi-
nations of different cases where a and b are comparable,
synchronous and how many children they have.

The different case formulas are presented in table 1. In the
asynchronous cases, only the number of children of the events
that happens first (a in the figure) matters.

An exception to these rules occurs in the specific case
where a and b or their children are considered to be in an
extinct or unsampled lineage of the species tree (Szollosi et al.
2013). In these specific lineages event of adjacency breaks are
not counted in the cost function.

If @ and b both are leaves, the score associated to the pres-
ence of the adjacency relies on the adjacencies given as an
input. If the scaffolding mode is used, then the formulas at the
leaves follow the ones described in (Anselmetti et al. 2015), as
described in table 2.

If Boltzmann sampling is used, then the formulas undergo
the same changes described in Chauve et al. (2015). Namely,
every occurrence of the + operator becomes a product, min()
functions become sums, and any event cost EventCost be-
comes e, where T corresponds to a pseudo-tempera-
ture (the higher the temperature, higher the probability for
nonparsimonious scenarios to be sampled). The costs between
two leaves also follow a similar transformation.

Results

We tested DeCoSTAR on several biological data sets in order
to demonstrate its versatility in various contexts. The first ex-
ample shows a combination of options previously imple-
mented separately: Boltzmann sampling on the adjacencies
and the inference of new extant adjacencies in 18 mosquito
genomes under an evolutionary model where only duplica-
tions and losses are allowed.

The two other data sets show the application of DeCoSTAR
in a context different from gene order reconstruction: protein
modular architecture evolution, shown on a set of drosophila
genes in which we reconstruct ancestral adjacencies between
protein domains, and a history of fusions/fissions between
bacterial genes in the presence of transfers. Note that such
applications where previously discussed (see, e.g., the conclu-
sion of Patterson et al. [2013]), but had never been
demonstrated.

Eighteen Anopheles

We selected 14,940 gene families in 18 mosquito species from
Neafsey et al. (2015). Gene trees were constructed with
RAXML (Stamatakis 2014) and corrected with ProfileNJ
(Nouhati et al. 2016) (keeping all branches with a 100%
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Table 1
Description of the Propagation Rules under Different Situations

Synchronous Asynchronous (a before b)
cosy nvon(a,b) = min( coasyncH(a,b) =min(

Co(a17b1)+00(a2,b1) N Co(al,b)+80(ag,b),

g c1(ar,b1) + co(az, by) + Gain, c1(ay,b) + co(ag, b) + Gain,

2 co(ar, b1) + ci(az, b1) + Gain, co(a1,b) + c1(ag, b) + Gain,

%'5 ci(ar,br) + ci(az, by) + 2 % Gain) c1(a1,b) + c1(az, b) + Gain)

of

Sq cisyncom(a,b) = min( crasyncom(a,b) = min(

éﬁ co(ar,b1) + colaz, by) + Break, co(a1,b) + co(az, b) + Break,

S ci(ar, br) + co(az, br), ci(ar,b) + coaz,b),
co(ar,b1) + c1(az, b1), co(ay,b) + c1(az,b),
ci(ar,by) + ci(ag, br) + Gain) ci1(a1,b) + ci(az, b) + Gain)

— cosyncom(a,b) = min( coasyNcm(a,b) = min(

%% Co(al7 bl), ] Co(al,b)7 )

2o ci(ar,by) + Gain) c1(a1,b) + Gain)

53

éé cisyncn(a,b) =min( crasynon(ab) =min(

S ¢o(a1,b1) + Break, co(a1,b) + Break,
ci(ar,b1)) c1(a1,b))

cosynca(a,b) = min( In the case where a and b
coa1,b1) + co(az, b1) + colar, b2) + colaz, b2) , both are (comparable) losses:
c1(a1,01) 4 colag, by) + co(a1, b2) + colag, b2) + 1 % Gain ci1(a,b) =0
co(ar,by) + c1(az, by) + co(ar, ba) + colaz, ba) + 1 % Gain , cola,b) =0
C()(a]7 b]) + (‘()((1,27 b]) + (G,],bg) + Cg(ag, b2) + 1% Gain ,
co(a1,b1) + colag, by) + co(ar, b2) + ci1(ag, b2) + 1 % Gain
cl(ah bl) + (21((1127 bl) + co(a1 bz) + Cg(ag bz) + 2 x Gain s
ci(ar,br) + co(az,b1) + c1(ar,b2) + colaz, ba) + 2 * Gain ,
ci(a, by) + co(az, b1) + co(ay, ba) + c1(az, b2) + 2 * Gain In the case where a and b
co(ar,br) + ci(az, by) + c1(an, b2) + co(az, ba) + 2 * Gain are incomparable:
co(a, by) + c1(az, by) + colar, be) + c1(az, be) + 2 * Gain ,
coar,br) + co(az,b1) + c1(ar,b2) + c1(az, ba) + 2 * Gain , e1(a,b) = o
co(a1,b1) + c1(ag, by) + ci(a1, b2) + ci(ag, b2) + 3 * Gain & for i ble senes
er(an.bi) + colaz. b1) + cr(ar. ba) + cr(az. ba) + 3 * Gain | (no adjacency for incomparable genes)
cl(al, bl) -+ Cl(az bl) + Co(al,bg) + Cl(ag,bz) + 3% Gain , .
c1(a1,by) + c1(az, by) + c1(ay, ba) + co(az, b2) + 3 * Gain , cola,b) = min(
1((117 b]) +c ((1,27 bl) “+ (a1 5 bz) + 1 (a2 b2) + 4 % Gain ) COASYNCH ((L, b) )

coasyncu(b,a))

cisyncu(a,b) =min( (a is before b and b before a)

co (ll,bl) + coaz, br) + co(ar, ba) + co(az, ba) + 2 x Break ,
ci(a1,by) + co(az, b1) + co(ar, b2) + co(az, ba) + 1 % Break ,

a has two children
b has two children

In the case where a and b

(

(

( )
co(a,b1) + c1(az, by) + coar, be) + co(az, be) + 1+ Break ,
C()((ll7 bl) + C()((JQ7 bl) + cl(al bz) + Cg(ag,bg) + 1% BT@(I}C
co(ar,br) + co(ag, b1) + co(ar,be) + c1(az, ba) + 1 % Break , are comparable:
c1(ay,b1) + c1(az, b1) + co(ar, ba) + co(az, ba) + 1 * Break + 1x Gain ,
c1(a1,b1) + coaz, by) + c1(ar, be) + co(az, b2) + 1 % Break + 1 % Gain c1(a, b) = min( ,
c1(a1,b1) + colag, by) + co(ar, b2) + ci(az, b2) , crasynen\a, /)!] ’
colar,br) + c1(az,b1) + c1(ar,b2) + colaz, ba) , crasyncn (b a),
co(ar,by) + e1(az, by) + coay, be) + ¢1(az, b2) + 1 % Break + 1 % Gain aisyncn(a,b))
co(ar,by) + co(az,by) + c1(ar, ba) + c1(as, ba) + 1 % Break + 1 x Gain ,
C()((J,l7 bl) -+ Cl(ag bl) + cl(al, bg) + Cl(ag, bg) + 1% Gain , CO(a7 b) = 77LiTL(
c1(ar,b1) + co(az, by) + c1(ar, ba) + c1(az, ba) + 1 % Gain , coasyncu(a,b)
c1(a1,b1) + c1(az, by) + colar, be) + c1(az, b2) + 1 % Gain , coasyncu(b,a) ,

c1(a1,by) + e1(ag, by) + c1(ay, ba) + co(az, b2) + 1 % Gain | cosyncm(a,b))

c1(ay,b1) + c1(az, b1) + c1(ar, ba) + c1(asz, ba) + 2 * Gain )
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Table 2
Description of the Score between Leaves

General formulas :

c1(a,b)
co(a,b)

Adjacency given in input

Adjacency absent from input

o p=1 p=0
2| 7 does not matter 7 does not matter BP — _ #tctg—ttchr
g U 2xFtctg*(#ctg—1)
5}
_‘E ci(a, g’) - 0 ci(a, - o0 #ctg : number of contigs
coa,b) = oo co(a,0) =0 #chr : expected number
- of chromosomes
5;9 p = score given as input é For each species: Faqj 2 0,1,20r4
& = log(+ .
o 7 = log(3) @ p=Fuyx*BP SPI : Scaffolding
2 b =10 000 by default e . Break Propagation
& [e) T = ﬁ)
& SPIxlog(1 5% Index
<
O
2]

NotE—The two parameters F,qj and SP/ used in the scaffolding modes, respectively, account for the position of the genes in their contig and the repartition of poorly
assembled genomes in the species tree; both parameters are described with more details in the supplementary material, Supplementary Material online. The scaffolding
mode and score given option can be used simultaneously as they affect a different set of adjacencies: respectively, the adjacencies absent from the input and the adjacencies

given in the input.

bootstrap support and correcting the others to minimize du-
plications and losses in a reconciliation with a species tree).

A sample of 100 solutions was generated according to a
Boltzmann distribution with temperature 0.05. As the ge-
nomes are not fully assembled, we added the possibility of
proposing extant adjacencies (the scaffolding mode).
Combining these two options (sampling and extant adjacen-
cies proposition) is a specificity of DeCoSTAR as they were
hitherto only available separately.

This treatment provides a comprehensive history of dupli-
cations, losses and rearrangements of Anopheles, in addition
to novel propositions for the scaffolding of extant genomes:
187,870 ancestral adjacencies and 16,193 new extant adja-
cencies were generated, all with a posterior probability which
corresponds to their frequency in a sample. Figure 2 depicts
the connectivity of genes with other genes in the same extant
or ancestral species and thus gives an insight on the shape of
extant and ancestral genomes in the input and output. In the
input (see the black line), most genes have exactly two neigh-
bors with adjacencies weighted 1, but some have one or zero
neighbors because of incomplete assemblies. In the output,
extant genomes are better scaffolded (less genes with zero or
one neighbor, more with two) but ancestral genomes may
show some conflict (genes with three neighbors or more) be-
cause adjacencies evolved independently in the model.

Fly Protein Domains

DeCoSTAR can also be applied to protein domain architecture.
When doing so, gene trees become domain trees, evolving

along a species tree. Proteins are not modeled explicitly but
are rather formed by groups of domains linked together. Thus,
the resolution slightly differs from a similar previous approach
proposing to reconcile domain trees with gene trees (Stolzer
et al. 2015). For example, the transfers of domains from one
gene to another result in a sequence of adjacency gains and
breakages, while they were modeled as singular events there.
We exhibit an example of such an application on the protein
domain families described in Wu et al. (2012). It features
22,867 protein domain families in nine fully sequenced fly
genomes. Of these, we kept the 12,906 protein domain fam-
ilies that have at least one extant copy that is part of an extant
multidomain protein. Protein domain families were aligned
using MUSCLE (Edgar 2004) and their trees were inferred
using RAXML (Stamatakis 2014) with the appropriate model
(inferred using the RAXML perl helper script for finding the
best protein substitution model). The adjacencies used as
input reflect neighborhood relationship between domains of
the same extant protein.

There are in average 5,278 proteins per extant species in
the input data set with an average protein size of 2.030 do-
mains. DeCoSTAR was used to infer ancestral adjacencies
forming an average of 4,977 proteins per ancestral species,
for an average protein size of 2.188 domains. As with the
validation on the Anopheles species data set, some ancestral
protein domains have been erroneously inferred with more
than two neighbors, leading to the presence of some nonlin-
ear proteins in the ancestral species. Nonlinear proteins should
be seen as several linear proteins erroneously linked together.
Their presence decreases the total number of proteins and
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Density of the distribution
of degrees (sum of the weights of adjacencies)
of extant and ancestral genes

1.0

0.8

0.6

Density

0.0

== Extant - input
=== Extant - output
wes  Ancestral

Gene degree

Fic. 2.—Density of the distribution of the degree of all genes inferred by DeCoSTAR on the 18 Anopheles data set. The degree of an extant or ancestral
gene is the sum of the weights of all adjacencies containing this gene. For extant genomes in the input (black line), this value can only be O, 1, or 2. For
genomes in the output, extant (red line) or ancestral (green line), all values are possible because adjacencies have scores between 0 and 1, and a gene can
belong to an arbitrary number of adjacencies. The difference between the black and red lines are due to the scaffolding: genes with O or 1 neighbor are
linked to other genes as an output of DeCoSTAR. In ancestral genomes, some genes have degree three or slightly more.

increases the average number of protein domains per protein,
which would explain the difference in average number of
proteins and average protein size between extant and ances-
tral species.

A Fusion—Fission History in Actinobacteria

Adjacencies can be used to denote the fact that two genes are
fused into one. To illustrate this, we use a set of three gene
families from the HOGENOM database (Penel et al. 2009) that
we, respectively, call A, B, and C. In all Actinobacteria present
in HOGENOM, the A and B genes are always present together,
but never with C genes. Furthermore, in a profile alignment, A
and B both align on disjoint, consecutive regions of C, covering
nearly 98% of its length. We use this signal as the marker that
A and B genes fused in order to give C genes.

To reconstruct the history of this system, we manually cut
each C gene into its parts that, respectively, aligned with A
and B, added them to the alignment of the family with whom
they aligned and put an adjacency between the newly formed
gene so that we could account for the fact that they fused.

We used an option of DeCoSTAR that specifies that an
adjacency at the root of its history should not be penalized
by a gain, as we do not make any assumption about the
ancestral fissioned or fusioned state (which is not the case
for ancestral genome reconstruction for example, where an
adjacency can always be considered as gained in some root
branch of the phylogeny). Moreover, we set the event costs so
that an adjacency break (corresponding to a fission event),
costs four times as much as an adjacency gain (corresponding
to a fusion event), following the results of (Kummerfeld and
Teichmann 2005; by default, from the gene order context, an
adjacency gain costs twice as much as an adjacency break).

The results obtained with DeCoSTAR are represented in
figure 3. It exhibits three adjacency gains (represented by an
upper G on the figure), which correspond to three indepen-
dent fusion events between gene families A and B.

Conclusion

There exists an extensive set of bioinformatics tools aiming at
reconstructing the history of an evolutionary unit, as a gene or
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Frankia
sp. EANIPEC

Frankia
sp. EUIIC

Kineococcus
radiotolerans  chlorophenolicus

Arthrobacter  Arthrobacter Streptomyces Acidothermus
aurescens bingchenggensis cellulolyticus fusca

Thermobifida Nocardiopsis

dassonvillei

Fic. 3.—A schematic representation of the results obtained for the fusion—fission data set, following the schema described in figure 1, and with
adjacency gain marked by an upper G. Family A and B are represented as reconciled gene trees, respectively, in red and green. The presence of an adjacency

denotes the fusion of A and B to form the family C.

a domain or a gene concatenate. But they all make the as-
sumptions that, inside a unit, all sites have the same history,
and that two units are independent. The inter or intra unit
organization is rarely modeled, with the effect of missing an
evolutionary view on what the living is essentially made of:
organization and interaction. Here, we propose to depict this
interaction in the form of adjacencies between units, where
the units can be genes, gene domains, or parts of genes
having different histories like in the case of fusions or fissions.
We present a software—DeCoSTAR—that generalizes several
algorithms published by our group, is easy to install and to use,
allows a wide range of genomic events such as duplications,
transfers, losses, rearrangements, and can deal with poorly
assembled genomes. We demonstrate the utility of this soft-
ware on a diverse set of very large biological data sets where
taking the interactions between units into account is crucial.
We show that a single methodological framework can ac-
count for diverse situations which were previously approached
separately by ad-hoc methods. Up to changes in propagation
rules, the same principle can also be used to reconstruct an-
cestral states of any binary relationship, such as protein inter-
action, regulation, or coexpression.

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online.
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2.1.3 Discussion on DeCoSTAR

Adjacencies outside the gene order context

DeCo (and other DeCo-like algorithms) is inherently tuned for gene order problems,
which is evident from some of its formulas, most notably the ones about duplication
where only one duplicate inherits the adjacency freely (i.e., without any Gain or
Break cost), as shown in Figure 2.2 A. Other applications may find it better to
consider that both duplicates automatically inherit all the adjacencies of their parent
(this would be the case of protein interaction networks, where the duplicates, as they
are identical at first, would interact with the same proteins), as shown in Figure 2.2
B, and extending the recurrence formulas to reflect this would constitute a useful
future option for DeCoSTAR.

A B

® o o ® o o
Duplication Duplication
of the red of the red
gene gene

) L) ®
OR ° ®
® o o ® O ®

Figure 2.2: Different scenarios of adjacency transmission that do not imply any ad-
jacency gains nor breakages following the red gene’s duplication. A The adjacencies
are transmitted to only one duplicate. B The adjacencies are transmitted to each
duplicate. The transmission shown in A favours linearity, whereas the one in B does
not.

DeCoSTAR in the context of the integration of co-evolution information

DeCoSTAR can be seen as a method that tries to align two reconciled gene (sub-)trees
together and combines this information with extant adjacencies.

An adjacency history contains events such as adjacency gain, adjacency breakage,
but also shared events of gene speciation, duplication, loss and transfer (or, to the
contrary, events that occurred in one side of the adjacency and not the other).

From a co-evolution perspective, the presence of an adjacency can be seen as a

sign of the existence of a certain amount of co-evolution between two genes. Under
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this hypothesis, adjacency gains thus become the start of the co-evolutionary rela-
tionship, adjacency breakages signal the end of it and shared or non-shared events
establish a signal for the strength of the relationship between the genes.

From a more practical point of view, I now have at my disposal in a single soft-
ware a joint topology and reconciliation inference method (TERA) and an adjacency
history inference method (DeCo), which constitutes a step forward in the integra-
tion of the different forms of co-evolution as sources of information in a coherent
framework.

However, it should be noted that this integration fundamentally lacks intercom-
munication between its different components. By this, | mean two things. First, |
refer to the fact that TERA and DeCo are connected in a sequential manner: ad-
jacencies (extant or otherwise) play no part in the inference of the topologies and
reconciliations of gene families. Secondly, in DeCo (respectively TERA) adjacency
histories (resp. reconciliations) are inferred completely independently between each
equivalence class (resp. gene family).

This means that for each gene family, a choice of topology and reconciliation
is made independently from the other genes with whom it co-evolves (viewed here
as the genes it shares adjacencies with) and that any bias or error made in the
topology and reconciliation phase will irremediably reflect on the adjacency history
inference results without any chance to go back and change the genes individual
histories given what we know about their adjacencies. It also means that, as each
equivalence class has their histories reconstructed independently, it is not possible
to enforce constraints that inherently rely on different equivalence classes, such as
the constraint of linearity of ancestral chromosomes?. Indeed, DeCoSTAR. explores
the dependency between two genes (through adjacencies) but considers two depen-
dencies as independent, which may lead to conflict (or incongruence) between their
respective histories (similar to the conflict between individual gene trees).

These last points are illustrated in the next section where, through an example in
the bacterium Yersinia pestis, I show how this lack of intercommunication leads to
problems when inferring ancestral characters (here, ancestral chromosomes) but also
how these problems may be exploited to pinpoint errors made during the inference

of topology and reconciliation, and suggest how to correct them.

3For instance, if a gene family A has extant adjacencies with genes families B, C' and D, we
cannot a case where an ancestral gene of A shares an adjacency with ancestral genes of all three
other families.
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2.2 An application of adjacency history inference to

reconstruct ancestral chromosomes

2.2.1 Context of the application

This section presents an application of the DeCo software in a phylogenetic analy-
sis pipeline to reconstruct ancestral chromosomal sequences and validate them by
comparing them to an ancient genome.

Here, we make the distinction between ancestral and ancient genomes. Ancestral
genome refers precisely to the genome of the LCA of several extant individuals,
and will usually (and this is the case here) be reconstructed from the extant data
using phylogenetic methods. Ancient genome refers to the genome of an actual
organism that lived in the past, which may or may not have left extant descendants,
and whose remains have been sequenced. Both offer a window to the past but
reconstructed ancestral genomes are, by nature, hard to validate as they rely on
the adequateness of evolutionary models with what really happens while ancient
genomes are often of bad quality (because the DNA present in the remains of the
dead organism deteriorated). This is why we chose this Yersinia pestis example,
for whom we have ample extant sequence data and an ancient genome that is both
of good quality and is hypothesized to be phylogenetically close to an ancestor of
extant strains of the bacterium®.

The reconstruction of a whole ancestral genome at the scale of the nucleotide is,
in itself, a task that was never achieved before and that opens new venues of study
(in particular for intergenic regions). However, the most interesting part of this
work, in the context of this document, is the reconstruction of the ancestral gene
order which demonstrates some limitations of the current methods of inference which
reconstruct gene trees and reconciliations independently from adjacencies histories,
and also treats each gene family or equivalence class (i.e., group of homologous
adjacencies) separately, without intercommunication. Also of note is the suggestion
on how the symptoms of these limitations could be used to provide corrections
at the scale of individual gene families. More precisely, how the results of DeCo,
here in the form of an ancestral adjacency graph (a graph where nodes are genes

of a given ancestral species, and edges are adjacencies between these genes) upon

4Which is not a given, as an ancient organism may not have left any descent and it may have
diverged quite a lot from its last common ancestor with an extant organism.
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whom we want to apply constraints of linearity (as they represent chromosomes),
could influence (and subsequently benefit from) the choice of tree topology and
reconciliation.

It is worth noting that this work was done before the implementation of De-
CoSTAR (evidenced by the absence of HGT in the analysis for instance). However
I felt that, as it uses DeCo and its results, it would make sense to write about the

present analysis only after the DeCo-like approaches we properly introduced.

2.2.2 Reconstruction of an ancestral Yersinia pestis chromo-

somes
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Abstract

the ancestral reconstruction task challenging.

Background: We propose the computational reconstruction of a whole bacterial ancestral genome at the
nucleotide scale, and its validation by a sequence of ancient DNA. This rare possibility is offered by an ancient
sequence of the late middle ages plague agent. It has been hypothesized to be ancestral to extant Yersinia pestis
strains based on the pattern of nucleotide substitutions. But the dynamics of indels, duplications, insertion
sequences and rearrangements has impacted all genomes much more than the substitution process, which makes

Results: We use a set of gene families from 13 Yersinia species, construct reconciled phylogenies for all of them,
and determine gene orders in ancestral species. Gene trees integrate information from the sequence, the species
tree and gene order. We reconstruct ancestral sequences for ancestral genic and intergenic regions, providing
nearly a complete genome sequence for the ancestor, containing a chromosome and three plasmids.

Conclusion: The comparison of the ancestral and ancient sequences provides a unique opportunity to assess the
quality of ancestral genome reconstruction methods. But the quality of the sequencing and assembly of the
ancient sequence can also be questioned by this comparison.

Background

Extant species are derived from a process of evolution and
diversification from species now disappeared. These spe-
cies are called ancient in general and ancestral if they left a
descendant. Ancestral genomic sequences can be esti-
mated through computation from a set of extant sequences
related by a phylogeny and a model of evolution [1], while
ancient genomic sequences in general can be sequenced
from the remains of dead organisms [2].

Ancestral genome reconstruction

Ancestral genome reconstruction can consist in predicting
a gene content in ancestral species [3], and for each gene
its sequence [1]. While originally used to study proteins or
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isolated genes, ancestral genome reconstructions are now
robust at a scale larger than the gene, for fragments where
no rearrangement have occurred [4]. Methods for infer-
ring ancestral gene orders have also been explored [5-8].
Together, these methods open the way to the reconstruc-
tion of complete ancestral genomes, including their
sequences.

Obtaining ancestral sequences can allow, through the
study of physical properties of the reconstructed mole-
cules, the inference of the paleoenvironnements in which
these molecules evolved [9]. These methods also allow
access to an oriented and ordered view of molecular
events along the history of life. Moreover, they offer a bet-
ter understanding of this history and can further our
knowledge of the mechanisms linking organic sequences
to their functions [10].

Despite this, ancestral sequence reconstruction suffers
from several limits. Along with the study of molecular
evolution, it relies on the validity of models and their

© 2015 Duchemin et al; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/

publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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fundamental hypothesis. Furthermore, given that we are
interested in a phenomenon often distant in time, it is
at best difficult to obtain proofs validating proposed pre-
dictions. Thus, the validation of ancestral reconstruction
methods is often limited to robustness tests, or simula-
tions that themselves rely on the validity of the models
of evolution [1].

Ancient genome sequencing

Ancient DNA sequences is another way to have an access
to the past history of living organisms. Under certain con-
ditions it is possible to obtain genetic material through the
sequencing of the remains of an organism. Ancient DNA
sequencing began in the middle of the 80s with the clon-
ing and sequencing of fragments of mitochondrial DNA in
a museum specimen of Equus quagga, an extinct equine
species that disappeared in the XIX" century [11]. The
advent of PCR methods [12] and high-throughput sequen-
cing [13] followed by what is called third generation
sequencing [14] allowed the sequencing of several extinct
animals [15-17], ancient unicellular eukaryotes [18,19],
bacteria [2,20,21], metagenome [22], or virome [23].

The ancient sequences disclose a new source of infor-
mation concerning the evolution of lineages of interest.
They have already been used, among other things, to
understand the dynamic of extant populations of the
genus Homo [24-26], or other animals [27], to correct
and recalibrate phylogenies [17], or to better understand
past pandemics [18,19,2,20,21].

However, along with the problems specific to sequen-
cing technologies, ancient DNA sequencing is limited by
the post-mortem chemical degradation of DNA molecules
throughout time. Thus, like fossils, ancient sequences are
scarce while, unlike them, limited to recent times.

Yersinia pestis
Classified among Enterobacteriaceae, Yersinia pestis is the
bacterium thought to be responsible for the bubonic pla-
gue and the pneumonic plague. It diverged from the
Yersinia pseudotuberculosis lineage, in part through the
acquisition of two plasmids [28]. It has been demonstrated
that strains of Yersinia pestis caused the black death of
1347-1353 AD that is thought to have killed between a
third and half of the European population at that time and
persisted in Europe until the middle of the XVIII” century
[29]. An ancient genome has been extracted and
sequenced [2]. It was the first whole ancient bacterial gen-
ome. Based on a substitution pattern compared to extant
Yersinia species, it has been hypothesized to take place on
the extant species phylogeny in the vicinity of a known
speciation node leading to two set of extant, sequenced
and annotated strains of the bacterium (see Figure 1).

The existence of several sequenced and annotated extant
genomes as well as the relatively short evolutionary time
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separating them make their ancestor a good candidate for
an ancestral reconstruction including both sequence and
gene organization along the chromosome and the plas-
mids. However despite the short evolutionary time, while
substitutions are quite rare [2], there is a very active
dynamics of rearrangements, insertion sequences propaga-
tion, duplications, copy number variation (see Figure 2),
which makes the problem challenging.

The late-medieval ancient genome, likely close to that
ancestor, offers a validation opportunity for the ancestral
reconstruction method. We achieve here this recon-
struction and perform the comparison.

Note that a sequence of the same genome was proposed
recently by Rajaraman et al. [30], but was not issued from
ancestral reconstruction. The contigs of the ancient gen-
ome were scaffolded with a method including the phylo-
geny of relatives, and some parts of the assembly could be
corrected, but what we present here is not using at all the
ancient sequence in the reconstruction phase, it is done
only from independent extant data.

Methods

An overview of the method, including species tree con-
struction, gene tree construction and reconciliation,
gene order inference and gene tree corrections accord-
ing to this gene order, and eventually genic and inter-
genic sequence prediction, is illustrated on Figure 3.

Data set

The data consists in 13 Yersinia annotated genomes
(Figure 1) from which we extract 3772 homologous pro-
tein gene families containing at least two genes, using the
HOGENOM database [31]. Of these, 1971 have exactly
one copy per extant strain. This step corresponds to part
A in Figure 3.

Species tree

Using Muscle [32] (default parameters), we aligned the
1971 families, concatenated the variable sites of all align-
ments and obtained a phylogenetic tree using PhyML [33]
(100 bootstraps, otherwise default parameters) that we
rooted by separating the pestis from the pseudotuberculosis
clades, according to a consensus in the literature. In our
tree the branch separating the two clades is well sup-
ported, as well as the branches surrounding the ancestor
that we wish to reconstruct (see Figure 1). This step corre-
sponds to part B in Figure 3.

Gene trees

All gene families sequences were then aligned using Prank
[34] and one gene tree per family was computed using
PhyML (100 bootstraps, otherwise default parameters).
Because we are aligning recently diverged strains of the
same organisms [35], the sequences often have not
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diverged enough to allow an unambiguous tree recon-
struction. So we collapsed all branches with a support
lower than 99 and then used ProfileN] [36] to solve the
created polytomies. ProfileN] reconstructs species tree
branches instead of collapsed branches and chooses
among several solutions with a Neighbor-Joining formula.
Distances for the Neighbor-Joining part were computed
with bppdist, a Bio++ suite software [37] (GTR + I'(4)
model).

ProfileN] also roots the gene trees according to “Last
Common Ancestor” reconciliation method, annotating
internal nodes with duplications or speciations, and
choosing a root minimizing the number of duplications.

Reconciled gene trees depict the history of the gene
family, including all ancestral genes, uniquely defined by
the reconciliation.

This step corresponds to part C in Figure 3.

Gene families filtering

From the 3772 gene families, some were discarded
because they showed signal of a process that we do not
handle well in our pipeline, gene transfer. Transfer was
suspected when a branch in the reconciled gene tree
would correspond to at least 4 independent losses in the
species tree. We also removed the families with more
than 5 genes in the black death ancestor, suspecting
insertion sequences, which are poorly handled by the
method. We also removed families containing genes
fully included in other genes: as we model the evolution
of gene orders, these would be difficult to handle. We
eventually removed families when the reconciled gene
tree did not contain a gene in the ancestor we want to
reconstruct.

The final data set contained 3656 families. Note that
when removing gene families from the study, we do not
necessarily give up the reconstruction of parts of the
ancestral sequence. We just define the removed parts as
intergenic. As we also reconstruct intergenic sequences,
this simply modifies the resolution at which we are able
to detect rearrangements.

Extant gene order and adjacencies

Each gene is a segment of a chromosome or a plasmid and
has a start and an end position on it. We identify these
positions as the extremities of the gene. A start position
may be greater than an end position: the order of the
extremities defines the orientation of the gene. We model
each genome by a graph, whose nodes are gene extremi-
ties of genes in that genome. We put an edge, called an
adjacency between pairs of extremities of a same gene.
Additionally if genes AA’ and BB’ are consecutive (A and
A’ are the extremities of the first gene, appearing in that
order on the chromosome or plasmid, and B, B’ are the
extremities of the second gene), we put an adjacency
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between A’ and B. So extant genomes are sets of disjoints
cycles in a graph, modeling chromosomes and plasmids.

Gene extremities can be clustered into families, inher-
ited from gene families, and also inherit the reconciled
gene tree.

Ancestral gene order

Ancestral adjacencies between gene extremities were
inferred using DeCo [7]. It models the evolution of an
adjacency between two gene extremities following a parsi-
mony principle, i.e. minimizing the number of gains and
breakages of adjacencies, due to rearrangements. It takes
as input the species tree, all gene trees, and extant adjacen-
cies, and proposes a set of ancestral adjacencies between
ancestral gene extremities defined by the reconciled gene
trees. This step corresponds to part D in Figure 3.

DeCo assumes that adjacencies evolve independently.
This means in particular that ancestral gene extremities
can be involved in an arbitrary number of adjacencies.
Ancestral gene extremities and adjacencies are not neces-
sarily made of cycles as extant genomes, so we call this
object an adjacency graph. Figure 4 shows the obtained
adjacency graph at this step. While most of it shows a lin-
ear or circular structure, there are some gene extremities
with too many adjacencies, others with not enough.

There can be several reasons for the adjacency graph not
to be a collection of paths and cycles, as we would expect
if the data and methods were perfect. Incorrect gene trees

Figure 4 Ancestral adjacency graph obtained using DeCo on
the set of 3656 gene families. Each node is colored according to
its number of neighbors: green for two (ideal, linear case), turquoise
for one (where one adjacency has been lost), orange for three and
gray for four (when an error in the number of ancestral copies
creates conflict in the ancestral gene order).




Duchemin et al. BMC Genomics 2015, 16(Suppl 10):S9
http://www.biomedcentral.com/1471-2164/16/S10/S9

are probably the major source of such discrepancies, while
others may come from uncertainties in adjacency history
inference.

We transform the adjacency graph into a genome (i.e. an
adjacency graph that is a collection of paths and cycles),
first by correcting gene trees, by operations we call zipping
and unzipping, then by removing a minimum number of
adjacencies so that the remaining graph is a genome.

Correcting gene trees

This step corresponds to part E in Figure 3 and a more
detailed picture is on Figure 5.

Unzipping

Each ancestral gene extremity of a gene g should have at
most two adjacencies. If one has more than two, a first
hypothesis can be that in the real ancestral genome, the
gene g was duplicated in two copies, and each copy
would carry some of the adjacencies of g.

If in one extant species, there are two homologous
copies of the gene g, and their extremities share the
homologs of the adjacencies attributed to an extremity
of g, then we perform the unzipping operation.

It consists in making two genes out of g by modifying
the gene tree T of the gene family containing g. Only
the subtree rooted at g is changed, into a subtree rooted
at a new duplication node with two descendants: g and
a new gene g'. Then the two subtrees rooted at g and g’
are reconstructed, first by assigning all leaves to g or g’
according to their neighborhood; Then by constructing
subtrees on these leaves using ProfileN]J. In the case
where some leaves can’t be assigned to either g or g’
using their neighborhood (i.e. their extant neighbors are
not descendant of any of the ancestral neighbors), then
leaves are assigned to one of the two set of leaves
according to their mean phylogenetic distances with
them. Where there is a tie (for instance if all sequences
are identical, all distances are null), the leaf is randomly
assigned to one of the two leaf-set.

Figure 5A gives an example of an unzipping operation
on the ancestral adjacency graph and on the gene tree.

If the unzipping procedure increases the number of
adjacencies incident to a gene extremity of a gene / in the
immediate neighborhood of g in the adjacency graph, then
the unzipping procedure is applied to / as well, and then
to its neighbors, until the region is linearized.

Zipping

Another possible reason for a gene g to be involved in
more than two adjacencies is that two of these adjacencies
gh and gh' concern two paralogs /2 and /' which in reality
should form only one gene. In that case we perform a
zipping operation, similar to the one described in [38].

Let /1, be the last common ancestor of # and /' in their
gene tree. Suppose it is assigned to species s, whose des-
cendants are s; and s,. It is a duplication node, and we
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turn it into a speciation node by giving it two descendant
nodes /; and /1, and assigning its descendant leaves to
either one of them, depending on whether they are genes
from descendants of s1 or s,. Then subtrees rooted at /1;
and /1, are reconstructed using ProfileN].

Figure 5B gives an example of a zipping operation on
the ancestral adjacency graph and on the gene tree.

Zipping produces a new ancestral gene /1, instead of two
paralogues /1 and /4'. We propagate the same operation to
the neighbors of the ancestral gene 4, in the adjacency
graph if they are themselves supernumerary paralogues.

Note that for zipping and unzipping, the propagation
mechanism allows the treatment of several consecutive
nodes, such that a large segmental duplication containing
multiple genes can be dealt with as long as there exists a
node to start the unzipping move (e.g. at one extremity of
the segmental duplication).

Cutting

Zipping and unzipping are tested independently for each
ancestral node with more than two neighbors. Each of
them should decrease the number of gene extremities
with more than two adjacencies. The operation that
decreases it the most is kept.

If none of zipping and unzipping succeeds in removing
all such supernumerary adjacencies (it is possible that
none of the hypotheses applies), then we remove as few
adjacencies as possible so that only gene extremities with
at most two adjacencies remain. This is achieved using a
maximum matching technique described in [39].

Ancestral sequence reconstruction

Ancestral sequences have to be reconstructed by pieces,
because they need a multiple alignment free of rearran-
gements. The pieces have to be glued together, and in
order to avoid between pieces border problems, pieces
have to overlap. This is why we reconstruct an ancestral
sequence for all pairs of genes which are connected by
an adjacency. Then pairs are aligned together on their
common gene, and merged.

We orient each adjacent gene pair with a first and a sec-
ond gene, each gene should be once the first gene of a
pair, and once the second in another pair. We use the
gene tree of the first gene as a guide, to construct a multi-
ple sequence alignment with the extant sequences that
contain this adjacent pair (thus, the sequences contains
both genes and the sequence between them when they are
neighbors in an extant species, and only the first gene of
the adjacency when they aren’t), and the ancestral
sequence using Prank [34].

Gene sequences at the ends of contigs are reconstructed
alone using their own tree. In consequence each inter-
gene sequence is reconstructed once and each gene
sequence is reconstructed twice and at least once with its
own tree. We assemble the obtained ancestral sequences
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by aligning (using Smith & Waterman’s algorithm) the
ones sharing a gene and then making the consensus
sequence of that alignment, favoring the sequence recon-
structed with the tree of the aligned gene.

For instance, consider the ancestral path ABC (where
A,B and C are genes), we reconstruct the ancestral
sequence of A using its own tree, AB using A’s tree, BC
using B’s tree and C using its own tree. Afterward the
ancestral sequence of A is aligned with the ancestral
sequence AB, favoring the sequence of A when comput-
ing the consensus. Then the sequence AB is aligned
with the sequence BC, favoring the sequence BC in the
consensus (as both sequences align on gene B and BC
used B’s tree for the reconstruction). Finally, the
sequence ABC is aligned with the sequence C, favoring
C in the consensus.

A graphical view of these steps are given in Figure 3,
parts F and G.

Note that, as stated before, the ancestral sequence
reconstruction needs a multiple alignment free of rearran-
gements. This means that the size of the recombination
events that can be taken into account for ancestral
sequences reconstruction depends on the density of the
markers (here, the gene extremities of 3656 gene families)
used in the ancestral order reconstruction step.

Results

The shape of the ancestral genome

We perform the whole process of ancestral gene order
reconstruction for three data sets: the whole set of filtered
families, the set of D free families, without duplication and
the DL free families, without duplication nor loss.

Ancestral gene order is computed with the whole set,
but it gives fragmented paths in the adjacency graph. The
fragments are progressively assembled using the D free
and DL free gene orders.

The ancestral gene order was reconstructed for the
chromosome (3342 genes) and the three plasmids (pCD:
74 genes, pMT: 87 genes, pPCP: 5 genes). The plasmids
pCD and pPCP were obtained as circular elements in
the adjacency graph, while the plasmid pMT was repre-
sented by one linear fragment. The chromosome was
obtained as three linear components. To join these com-
ponents, we ran DeCo on their six extremities using a gra-
dient of adjacency gain/loss costs ratio (from 1/10 to 10/1)
and scored each potential adjacency by the number of
times it was observed. We then applied a weighted maxi-
mum matching technique [40] to extract the best possible
order between the fragments (only one optimal solution
remained).

The ancestral gene order is different from all extant
genomes. For example it is an intermediary between the
two extant strains CO92 and KIMI0. Figure 6 B and C
show the gene order comparison between the ancestral
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genome and two extant ones, while a comparison
between the two extant ones is shown on Figure 6A. The
isolated dots on the dotplots of Figure 6B and C are
probably reconstruction errors. While they could be
explained as small rearrangements, they probably are arti-
facts of the adjacency graph linearization method, like a
leaf falsely associated to a subtree in an unzipping event
for instance.

The ancestral sequences of the plasmids pCD, pMT and
pPCP were entirely reconstructed, for a total of respec-
tively 100.1 kb, 67.7 kb and 9.6 kb. Concerning the ances-
tral chromosome, a total of 4.7 Mb of ancestral sequence
was reconstructed, which is close to the size of the extant
chromosomes of Yersinia pestis strains (e.g. 4.7 Mb for the
strain Antiqua). A lack of signal in extant genomes due to
convergent rearrangements, prevented the reconstruction
of four ancestral adjacencies. Because of these, the ances-
tral chromosome sequence is actually composed of four
disjoint fragments (their sizes are respectively 3.44 Mb,
0.67 Mb, 0.40 Mb and 0.19 Mb).

The reconstructed ancestral sequences are avalaible in
Additional file 1.

Comparison to the ancient genome

Using Megablast [41] we aligned the 2134 ancient Yersinia
pestis contigs obtained by Bos et al.[2] (avalaible at http://
paleogenomics.irmacs.sfu.ca/FPSAC/, last accessed 19 june
2015) against the obtained ancestral genome, including
chromosome and plasmids.

We examine 2179 hits of length >10*°bp from 2087
contigs (see Additional file 2 for the bimodal distribution
of hit lengths which justifies this threshold). The others
are full of repeated elements, making the comparison diffi-
cult. As a consequence the examined hits all match to the
chromosome and none to the plasmids.

Gene order

These hits show a quasi-total congruence between the
organization of the ancient and ancestral sequence.
Figure 7 represents the correspondence between the two
in the form of a dotplot, where contigs of the ancient gen-
ome are concatenated according to the ancestral sequence.
Three isolated dots deviate from the central line. Two of
them concern large repeated regions, that is, the whole
contigs match at several places. Only one seems to be a
real discordance between the two genomes. Two contigu-
ous regions of the contig hit on two different ancestral
sequence fragments. This chimeric contig (number 8335
in [2]) had already been observed by Rajaraman et al. [30]
in their scaffolding of the ancient genome. This stretches
the proximity and the differences between the two
approaches. Indeed, the latter, called FPSAC, takes as
input the ancient contigs and the extant genomes, frag-
ments the contigs according to their alignments to extant
genomes, and orders fragments. Here we don’t use at all
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Figure 6 Dotplot between the ancestral genome and two extant strains of Yersinia pestis: C092 and KIM10. Both strains are
descendants of the ancestor we focus on. Data was obtained using the extant adjacency graphs of strains KIM10 and CO92 and concerns genes
order. Vertical and horizontal lines separate the different molecules (here the chromosome and the plasmids). A) dotplot between the gene
orders of the two extant strains KIM10 and C0O92. B) dotplot between the gene orders of the ancestral genome and the extant strain CO92. C)
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the ancient contigs and start from extant genes. So we are
independent of the extraction and assembly methodology
for the ancient sequence, and we can compare to it. More-
over, all our sequences are computationally reconstructed,
which was not the case of those obtained with FPSAC.

So at a large scale, there is only one difference which
can be an assembly error in the ancient sequence or a
derived mutation of the ancient bacteria, because the
ancient configuration is not supported by extant
genomes.

Sequences

At a finer scale, differences are more numerous.
Approximately 81% of the 2084 contigs with a hit are
exact matches to the ancestral genome. We examined
some of the remaining and found that the differences
could be explained by three kinds of error sources in
the ancestral or ancient sequences:

» Lack of sufficient data for ancestral reconstruction:
it is the case if only one of the two children which
branches off the ancestor, in addition to an out-
group, support the presence of a sequence. In that

case there is no comparison point to infer some
bases, and some are inferred differently than in the
ancient sequence.

« Lack of a good model of evolution at an intermedi-
ary scale, like duplication of small elements. They
are here included in alignments and indel models,
which do not account for repetitions.

» Assembly errors in the ancient sequence.

Consider for example the ancient contig number 497
where a mismatch occurs when aligned with the ances-
tral sequence. The mismatch is situated in an intergenic
region of the ancestral genome that is present in one
descendant of the reconstructed ancestor and two out-
group Yersinia pestis species. Consequently, the ances-
tral sequence was reconstructed using a tree where the
node of interest was along a branch, missing a compari-
son point (i.e. another descendant) to choose between
its descendant allele and the outgroup allele.

Consider also the ancient contig number 8849 which
aligns with one mismatch to the reconstructed ancestor.
At the position of the mismatch, all extant (group and
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Figure 7 Dotplot between the late medieval Yersinia pestis
genomes and the reconstructed ancestral sequence. The
reconstructed chromosome was aligned to the 2134 ancient
contigs, using megablast (default parameters, only hits with a
length >10>° were kept). Contigs are concatenated according to
the reconstructed sequence, so the agreement is partly due to the
fragmented nature of the ancient sequence. The contigs with hits
departing from the diagonal are circled in red.

outgroup species) sequences bear the same allele and
thus the reconstructed ancestral sequence bears it too.
However, the ancient contig bears another allele at that
position. If we consider the ancient contig as correct,
then this difference would be an original mutation on
the ancient strain. Such an hypothesis could be checked
by mapping the ancient reads to their contigs in order
to assess the validity of that specific allele. However, we
note that the original study [2] that used read data to
call SNPs did not detect any that were specific to the
ancient strain.

There are also differences that are more structural in
kind. For example 43 contigs show some structural dif-
ferences with the ancestral genome. On 39 of them, the
ancient contig displays two contiguous or slightly over-
lapping hits that are more distant on the ancestral gen-
ome (on 21 occasions, they are more than 300 bp apart
in the ancestral sequence), as in Figure 8A. On 4 ancient
contigs, contiguous regions are shown as overlapping in
the ancestral genomes, as in Figure 8B.

Such discrepancies can sometimes be explained by
errors in the ancient sequence, especially in regions
where repetitions occur. For instance, the case illu-
strated on Figure 8A, is seen on the contig number
8335 obtained by Bos et al.[2] (which is also the
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chimeric contig but this discrepancy is independent).
Around position 1860, that ancient contig displays one
occurrence of a 20-mer. However, the reconstructed
ancestral sequence has two consecutive occurrences of
that 20-mer. This region is situated in an intergenic
region, so it has been reconstructed by an alignment of
an adjacency with its two flanking genes. The extant
species (descendant of the reconstructed ancestor or
not) which have this gene adjacency all display two
occurrences (in favor of the ancestral reconstruction) at
the exception of Yersinia pestis strain CO92, the Yersi-
nia pestis reference genome which was used to map the
ancient reads in [2]. While the fact that we did not use
the raw reads obtained in [2] prevents us to draw any
definitive conclusion, this appears to be an error in the
ancient sequence assembly, caused by a derived muta-
tion in the genome used as a reference.

Conversely, it happens that similar patterns are better
explained by errors in the reconstructed ancestral
sequence. Such a case occurs on the locus where the
ancient contig number 5613 maps. The situation is also
similar to Figure 8A. Two contiguous regions hit at a dis-
tance of 1315 bp on the reconstructed ancestral sequence.
The sequence separating the two hits in the ancestor is
only supported by one extant descendant (Nepa! strain)
and the other extant descendants match the ancient contig
in only one long hit. This seems to be an error due to the
absence of an evolutionary model allowing big insertions.
Prank models indels but 1315 bp is not really an indel but
is rather an insertion of what should perhaps have been an
evolutionary unit. It seems that the indel model prefers
losing several times such a long DNA segment rather than
inserting it once in a terminal branch of the phylogeny. So
we can expect a small number of such false additions in
the ancestral sequence.

Discussion

A complete reconstruction of an ancestral genome at
the nucleotide level requires to take into account evolu-
tionary events at several scales: nucleotide substitutions,
indels, duplications, losses, recombinations, transfers,
transposable elements propagation, rearrangements.
Each level is handled by dedicated bioinformatics tools
which are rarely used together.

We associated here gene content/sequence/order tools
in order to attempt the reconstruction of a whole ancestral
bacterial genome, including a chromosome and three plas-
mids. We chose an organism from the Yersinia pestis
clade because of a recently published ancient sequence.
Despite being relatively recent at the evolutionary scale
(650 years), the evolution at all levels, and in particular in
genome structure and organization, makes the problem
difficult. The difficulty can come from numerous events
(rearrangements, insertion sequence dynamics), but also
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Figure 8 Different hit patterns for ancient contigs on the ancestral sequence. A) Contiguous or overlapping hits are more distant on the
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from scarce events (substitutions) that prevent recon-
structing gene trees from sequences because of a lack of
information.

We did not only assemble existing tools that handle
evolution at different levels, but also report methodolo-
gical novelties, like the zipping and unzipping processes
to modify gene trees and linearize adjacency graphs.
Using synteny information to construct gene trees is
rarely achieved [36] and linearizing often only use cut-
ting operations [39].

We cannot explicitly handle recombination events or
gene transfers, duplications at levels different from the
gene, and propagation of insertion sequences. Some tools
exist to reconstruct gene content or order in the presence
of transfers [3,42], but not equivalent to ProfileN]J [36],
which we used because of a lack of signal from the
sequences in many gene families. It has not been devel-
oped for transfers apparently for algorithmic purposes
[43]. Transfers will probably limit the quality of the
sequence, which at recombination points will be recon-
structed with a wrong gene tree. We expect these limits to
be rare, as we found only little evidence of gene evolution
clearly discordant with the species tree.

Another limit of this method is that it handles evolu-
tion at three different scales: sequence, gene content,
gene order, while evolution happens at a continuum of
scales, some part of it we don’t explicitly model. This is
for example the case for small duplications: gene dupli-
cations are handled but if they are smaller than genes,
duplications will be part of sequence evolution, where

the models and alignements take indels into account
but not duplications. This is also the case of insertion
sequence propagation. If insertion sequences are anno-
tated as genes, their dynamics is sometimes so fast that
parsimony duplication/loss principles are not accounting
for it, even within a very small amount of time. If inser-
tion sequences are taken in intergenic regions, they will
again be handled inside alignments and yield a small
amount of false positives.

A small part of the sequence is not reconstructed
because of convergent rearrangements which have wiped
the traces of some intergenic sequences. These convergent
rearrangements also introduce one ambiguity in the ances-
tral gene order. It is possible that it reflects an ancestral
polymorphism which has differently been resolved in dif-
ferent lineages.

Polymorphism, and the absence of it in our ancestral
genome, is another limitation of such an approach. The
ancient population was probably composed of several var-
iants, and the 650 years might not be sufficient to sort out
all of it. So we are not sure that a single organism carried
the genome we reconstruct, but it might be a consensus of
several genomes.

Yet these limits concern probably a very small percen-
tage of the sequence, which is largely reconstructed with
a total match to the ancient sequence. Beyond the meth-
odological challenge and the interesting comparison
with an ancient genome, the goal of such a reconstruc-
tion is not to find an application in synthetic biology,
but to understand the evolution of this dangerous
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pathogen. Substitutions, which apparently are only a
minor part of the story, are often the only marker of
evolution (for example in [2]) because of a better avail-
ability of performing tools.

Conclusions

In conclusion, we report here the reconstructed ances-
tral bacterial genome of an ancestral Yersinia pestis. The
reconstruction is achieved using already published soft-
ware and methods but also introduces methodological
novelties, especially concerning ancestral adjacency
graph linearization, leading to the obtention of larger
reconstructed ancestral chromosome fragments.

The comparison of the reconstructed ancestral gen-
ome with an ancient sequence provides the opportunity
to assess the quality of the reconstruction. It appears
that while the reconstruction methods display some
limits for events spanning more than a few nucleotides
and smaller than a gene (for instance, a gene domain
duplication), they yield good results concerning small
(substitutions, short indels) and gene-scale events(for
instance, gene duplications or rearrangements spanning
at least a gene).
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2.2.3 The need to correct for independent inferences when

looking at genome wide properties

In this article, I demonstrate that the inference of ancestral adjacencies (wvia DeCo)
using reconciliations and tree topologies obtained independently (from each other,
and from the adjacencies) leads to erroneous results (non-linear ancestral gene order
/ chromosome).

The proposed moves (zipping and unzipping) try to correct genes tree topologies
and reconciliations based on a constraint on the number of copies of a given gene in
an ancestral genome inferred from adjacencies information.

The method proposed here only accounts for gene duplications and losses and is
limited to the reconstruction of a unique ancestral species, both in terms of results
(i.e., it only linearises one ancestral genome) and in terms of the constraints it takes
into account. However it inscribes itself in the broader context of being able to make
information from the third form of co-evolution (gene to gene co-evolution, using
here adjacencies as a proxy) in the reconstruction of the individual gene history.

Another interesting idea is that zipping and unzipping are moves that were not
applied to a lone gene family: they were applied to sets of contiguous gene families
along the genome. This is in keeping with the idea that adjacent genes will be
affected together by larger structural mutations (including events of duplication ,

transfer or loss) and that by inferring each gene history independently we:

1. produce reconciliations that when taken independently are good but when taken

together are bad.

2. overestimate the number of duplication, transfer and loss events because some

are longer than a gene.

The first point refers to the idea that a given reconciliation satisfies (by definition)
the criterion that has been used to infer it, but that this criterion does not account
for other gene families with whom the gene co-evolves. As a consequence, and given
the uncertainty associated with the inference process (at all levels of the phylogenetic
pipeline an error could arise that would affect the final result), there is no guarantee
that this reconciliation will still be satisfying when we evaluate it with a criterion
accounting for multiple genes (for instance, the implication of this reconciliation in

terms of ancestral adjacency graph linearity, as was the case here).
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Figure 2.3: Details of two reconciliations (of the red gene and the black gene) with
adjacencies at speciation nodes (in white). The parents of each duplication shares
an adjacency, and the children of the duplications form couples that share an ad-
jacency, which suggest that these duplications were actually one single duplication
that encompassed both genes.

The second point means that to know the total number of times a given event
(for instance, a duplication) occurred one cannot just count the number of times
this event occurs across all reconciliations but should look at the neighbours of
duplicated genes to detect larger events (duplications of several genes together). This
is illustrated in Figure 2.3 where considering the red and black genes independently
one would count 2 duplication events when the pattern of adjacencies suggests that
there was only 1. Note also that as we overestimate the number of events, we are
also lead to underestimate their sizes, in terms of number of genes they encompass
(which is indirectly related to their size in number of nucleotides).

These two points are connected: as reconciliations are produced independently
from each other, they are less likely to share events and this may result in erro-
neous estimations of the number of evolutionary events that occurred. Consider,
for instance, Figure 2.4. The reconciliation of the black gene independently from
any other leads to a reconciliation without events (Figure 2.4 A). In 2.4 B, when
considering this reconciliation with the neighbours of the black gene , each seems to
undergo an independent duplication and so 2 duplication events are counted. But
the alternative reconciliation for the black gene of Figure 2.4 C (where a subsequent
loss made the traces of a duplication disappear) shows, combined with the patterns
of adjacencies, the possibility that only 1 duplication event occurred, encompassing
the red, black and green gene at once.

The case shown in Figure 2.4 also raises a question: when considering not only
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Figure 2.4: A The black gene is reconciled independently, without event of dupli-
cation or loss along the shown branch. B The black gene is considered with its
neighbours, the red and the green gene. C Alternative reconciliation for the black
gene, with an added duplication and a subsequent loss.

one gene, but several linked together by adjacencies, which case do we consider
better than the other? Do we prefer a scenario with two independent duplications
(Figure 2.4 B) or one with a big duplication (encompassing three genes) and a loss
(Figure 2.4 C)?

It is to answer such a question that I went on to develop a metric that aims to
account for both individual gene histories and the history of their relationships and

which is the topic of the next chapter.
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Chapter 3

Integration of topology,
reconciliation and adjacencies for

better gene histories

3.1 A global score

3.1.1 Motivation for the definition of a global score

Consider a gene family whose alignment analysis yielded two, equally likely, topolo-
gies! as shown in the Figure 3.1. I will henceforward refer to this family as the red
gene family. T would like to be able to discriminate between these two topologies
and to do this I will add information coming from other forms of co-evolution (as
the source of the first form of co-evolution, the alignment, led to uncertainties).
Considering first the second form of co-evolution, I consider a DTL parsimony

framework, where the costs are:

'T consider here only equiprobable possibilities for the sake of the exposition. The same rea-
soning can (and is, in a latter section) be extended to more complex cases of topology incertitude
albeit with significantly more complexity.

d]_ b b dl
) >—<d2 § C>—<d

2

Figure 3.1: Two equally possible topologies for the red gene family.
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Figure 3.2: For each topology, several equally parsimonious reconciliations are pos-
sible.

2 duplication = 2 loss = 1 transfer = 2

and where the leaves b, ¢ , d; and d, are respectively associated with the species
B, C , D and D. However reconciling yields equiparsimonious reconciliations for
both topologies, as shown in Figure 3.2 (only a few of these equally parsimonious
reconciliations are shown here), so that I am still unable to determine which topology
to favour.

As the first and second form of evolution did not yield sufficient information to
choose a topology (and reconciliation), I will evaluate the equiprobable topologies
and equiparsimonious reconciliations through the third form of co-evolution, using

the framework of evolving adjacencies that was described in the previous chapter.
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Figure 3.3: Reconciliations of the green gene family and red gene family along with
an adjacency history explaining their extant adjacencies. This adjacency history
implies two adjacency gains and also that an event of transfer was shared between
the families.

Consider the green gene family, which has some leaves that are linked by adjacen-
cies to leaves of the red family as shown in Figure 3.3. To each different reconciliation
of the red gene family corresponds a different adjacency history, with differences in
the number of adjacency gains and breakages (see Figure 3.4). Furthermore, some
of these adjacency histories may imply co-events (i.e., events that occur to the two
genes simultaneously) and we thus may want to account for the idea that only 1
event occurred when it was counted twice (each time independently in the red and
green family) (this is the case in the two adjacencies history on the right in Figure
3.4).

Considering that:

1 adjacency Gain = 2 adjacency Breakage = 2 transfer = 4

And that T account for co-events by counting them as a single event (e.g.,
1 transfer = 1 co — transfer = 2), 1 compute a score composed of the recon-
ciliations costs and the adjacency histories costs for each solution (shown in Figure
3.5). In Figure 3.5, the upper right case shows the lowest score (and is the only one
with a score that low), to the correspond topology as the better one for the red gene
(the one grouping the genes in species D).

This simple example shows how the introduction of information from the third
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Figure 3.4: To each reconciliation of the red gene family corresponds a different
adjacency history.

form of co-evolution (in the form of adjacencies and co-events) can help when the
first and second forms of co-evolution produce many equivalent optima. Further
than that, Figure 3.5 shows numbers that include score of reconciliations and hint
at the idea that the addition of adjacencies may lead us to chose a reconciliation
which, when taken in isolation, may not be optimal 2.

Here I just evaluated the red gene family and considered the green family fixed.
However it stands to reason that the green family can suffer from the same un-
certainties and would benefit from information coming from adjacencies with its
neighbours. Taking this into account means that I cannot evaluate and reconstruct
the history of each gene family independently, I have to consider them together.

This is why, in order to evaluate together the fit of a set of gene families topolo-

gies, reconciliations and adjacencies histories to information coming from the first,

2This idea was also touched upon in the last chapter, when for instance zipping events would
add additional duplications to a reconciliation.
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Figure 3.5: A score composed of the reconciliation costs (in the color of their respec-
tive gene family) and the adjacencies history can be computed for each reconciliation
of the red gene. The -1 Tansfer accounts for co-transfers of the red and green gene
(to compensate for the fact that we counted a transfer in each gene family, we deduce
1 so as to count only 1 co-transfer).

second and third forms of co-evolution, I devise a score which I call global because
it takes into account all the considered gene families at once and all forms of co-
evolution at once.

Schematically, I write the global score as being composed of four parts:

Global Score = topology + reconciliation 4+ adjacency 4+ co — event

The topology part of the global score evaluates the fit of each gene family with its
alignment: this corresponds to information from the first form of co-evolution. The
reconciliation part of the global score considers the fit to the species tree: this is

the second form of co-evolution.
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Finally the adjacency and co — event parts of the score represent information
coming from the third form of co-evolution: they evaluate the congruence between
the reconciliations of gene families that share adjacencies (i.e., are supposed to co-

evolve).

3.1.2 Topology

This part of the global score represents the information on the gene family that is
coming from the genes sequence alignment.

Rather than estimate sequence support for a given gene tree topology directly
from an alignment, I prefer to use a tree distribution that reflects this alignment,
such as an a posteriori tree distribution obtained via a Bayesian inference method.

This tree distribution is used in the form of a Conditional Clade Probability
distribution (CCP distribution). CCP distributions allow to compact a tree distri-
bution in such a way that it is easy to obtain an accurate approximation of the
likelihood of a given tree topology according to the original tree distribution [Hohna
and Drummond, 2012, which is what interests me.

The choice of using CCP distributions was further motivated by its use in the
joint inference of optimal topology and reconciliations, which will be further ex-
plained in the section about the reconciliation part of the score.

I will now describe CCP distributions, how to build them from a given tree

distribution, and how to use them to approximate the likelihood of a tree.

Building a CCP distribution

As its name entails, a CCP distribution is a distribution of conditional clade prob-
abilities |[Hohna and Drummond, 2012|, which are computed from a tree distribu-
tion sample (for instance, an a posteriori sample obtained with Bayesian inference
method), which T will refer to as G. In this sample, each (unrooted) tree can be
described in terms of the clades it contains. In particular the clades shared (or not)
between the different trees can be used to compute posterior clade probabilities,
which were already introduced in a section of the introduction: they represent the
frequencies at which given clades C' occur among the trees of G.

In an unrooted bifurcating tree (which is the sort of trees that we consider here),

each node that is not a leaf corresponds to a tripartition of the leaves of the tree
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into three clades. T call 7 such a tripartition, and =[1], w[2] and 7[3] each of the
three clades formed by the tripartition (I give them indexes here for the sake of
the explanation, but the clades defined by a tripartition are not actually ordered).
Furthermore, 7 is a split of C'if w[1] Un[2] = C. Note that this implies that 7[3] is
the complementary clade of C' (in practice, I only note the two first clades formed by
the tripartition, as the third one is always the complementary clade of their union).

The conditional clade probability of m given C, written Poeop(m|C), is the ratio
of the number of times we observe the tripartition 7 in G divided by the number of
times we observe the clade C' in G. In other words, it is the observed frequency at
which clade C' is split according to m (i.e., it is split into 7[1] and 7[2]). Note that,
given a clade C, the sum of the conditional clade probabilities of the set all of its
possible splits is equal to 1.

The CCP distribution corresponds to the set of all conditional clade probabilities,

for each clade and each tripartition present in G.

A a f b B the clade {a,b,c}
2X >_‘_L< red

C e d
{a,b,c}
>_!_L< Y
b c d 5X >—’—L<
b f e the tripartition
‘ {a,b};{c}
5X {f,e,d}
C a d
{a,b}  {c}

3 3 f
D Par (a0} [ {ab}) = o = 2 x

b c d

Figure 3.6: A A tree sample composed of three different topologies (in red, green
and blue). Each topology is represented a certain number of time (respectively, 2, 3
and 5 times). B A visual representation of the clade {a,b, ¢} which is represented in
the green and the blue topologies (so 8 times in total). C A visual representation of
the tripartition {a,b}; {c} which is represented in the green topologies (so 3 times in
total). D The computation of the conditional clade probability of the split {a, b}; {c}
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For instance, consider Figure 3.6. Figure 3.6 A shows a tree distribution in
which is constituted of 10 trees that are split among 3 different topologies. The clade
presented in Figure 3.6 B is seen 8 times in the 10 trees of the sample (for a posterior
clade probability of 0.8). The tripartition {a,b}; {c} (meaning: =[1] = {a, b}, 7[2] =
{c}) corresponds to a split of clade {a,b,c} (note again that w[3] = {d,e, f} is
implicit at it is the complementary of the union of the two others), as illustrated in
Figure 3.6 C.

This particular split of {a,b,c} is observed a total of 3 times in the 10 trees
of the sample of Figure 3.6 A. Figure 3.6 D follows this definition and shows the
computation of the CCP of split {a,b}; {c} given clade {a, b, c} (Note that given the
split, the clade is simply the union of the two elements of the split so that C could

not be mentioned).

Computing the likelihood of a tree according to a CCP distribution

Given a CCP distribution, estimating the likelihood of an unrooted tree (whose
leaves are labelled in the same way as the leaves of the tree sample that was used to
build the CCP distribution) is quite straightforward: it is the product of the CCPs
of all the clades and splits encountered during a traversal of this this tree.

Computing its likelihood starts by choosing a bipartition in the tree, and then
traversing each of the two subtree defined by this bipartition to make the list of the
different clades and splits it is composed of to finally retrieve the associated CCPs
and multiply them together.

Due to the manner in which CCP distribution are constructed, the chosen initial
bipartition does not change the computed likelihood. In practice, it is useful to
choose a bipartition that separates a single leaf from the rest of the tree because it
means that only one subtree (the one with all leaves but one) needs to be traversed.

Consider for instance the black tree presented in Figure 3.7 A. Figure 3.7 B
details the computation of its likelihood where the initial bifurcations is the one
that separates f from the rest of the tree.

Note that the black topology of Figure 3.7 A does not correspond to any of
the topologies presented in Figure 3.6 A but that we were still able to compute a
likelihood for it. Indeed, an important property of CCP distributions, called amal-
gamation |David and Alm, 2011], is to be able to combine clades in such a way that

tree that were not in the original tree sample can be accounted for. However, should
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Figure 3.7: A a black topology whose likelihood we want to estimate. B the com-
putation of the black topology’s likelihood using the CCP distribution presented in
Figure 3.6. Starting at the bifurcation separating leaf f from the rest of the tree,
the colors represent which topologies of the CCP distribution support the black
topology.

a tree contains a clade (or a split) not present in the CCP distribution, then its
likelihood according to said CCP distribution shall be 0 (or, alternatively, suffer an
arbitrary penalty for each clade of the tree that are absent from the CCP). Hence-
forward, I note the likelihood of tree T according to a CCP distribution Peop(T).

Back to the score

Following definitions of [Scornavacca et al., 2014| concerning the part of their score
that was topology related, I define the contribution of the topology T of a given

gene family to the global score as:

Poep(T)
PCCP<Tma:E)

where T),4. is the tree with the maximum likelihood according to the CCP dis-

Wtopology X _ZOQ(

tribution and wyepolegy 1S the weighting factor of the topology part of the global

score.
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Considering all N gene families, the overall topology part of the score is:

Peep(T;) )

N
ZL()p()l()qu = Wtopology X Z < - lOg(
i—0 PCCP(,—Ti maw)

Where T; refers to the tree of the i-th gene family (and similarly with 7} ,,42).

3.1.3 Reconciliation

This part of the global score represents the information on the gene family that is
coming from the second form of co-evolution: co-evolution with the species tree. In
this section, I describe the actual formula I use in the global score to account for
reconciliations and then I discuss two algorithms: the first actually minimizes the
reconciliation part of the score, while the second jointly minimizes the topology and

reconciliation part of the score and was the inspiration for these parts.

The reconciliation part of the score

In the global score, the part corresponding to individual reconciliations is fairly
straightforward: it corresponds to the weighted sum of all the individual events

present across all reconciliations. Indeed, it is written as:
reconciliation = Wreconciliation X (cdup.ndup 4 Closs-Toss + ctT.ntT)

where Wyeconcitiation 15 the weight of the reconciliation part of the global score,
c; and n, are respectively the cost of a single event x and the number of times an
event x is seen across the reconciliations of all gene families. x can take three values:
dup, tr and loss corresponding respectively to a gene duplication, a gene transfer

(technically a transfer reception) and a gene loss.

Most parsimonious reconciliation of gene tree / species tree in a duplica-

tion, loss and transfer context: Doyon et al. [2010]

If computing the contribution of a single reconciled gene tree to the global score is
quite trivial, obtaining said reconciliation is not, especially in a DTL context. What
follows is a discussion on the algorithm presented in Doyon et al. [2010], as it forms
the basis for the TERA [Scornavacca et al., 2014] algorithm that is implemented in
the same package as DeCoSTAR.
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Figure 3.8: Figure 1 from [Doyon et al., 2010]: "Two scenarios for a gene tree G
(plain lines) along a species tree S (tubes), where the symbol o represents loss.
(Left) A time consistent scenario. (Right) A scenario that is not time consistent:

the transfer from the donor at t3 (resp. t4) to a receiver at t; (resp. t2) implies that

u predates (resp. follows) w".

This algorithm builds the most parsimonious reconciliation of a gene tree with an
ultrametric species tree in a DTL context using a dynamic programming approach,
much like DeCoSTAR. This algorithm mainly defines a matrix whose rows and
columns respectively correspond to nodes of the gene and species tree, and a case
of the matrix with row uw and column x contains the cost of reconciling the subtree
of the gene tree rooted at node u such that wu is in species x. This approach allows
efficient computations as it makes the hypothesis that the reconciliation of a given
lineage does not depend on the reconciliation of its sister lineages.

However this hypothesis is linked with several limitations of these methods, in-
cluding the impossibility to include gene conversion, horizontal tranfers with homol-
ogous recombination or the possibility to infer scenarios that are not time consistent.

Time consistency refers to the production of reconciliations that contains contra-
diction in the order of the nodes of the species tree that they imply (remember that
a transfer is indicative of the co-existence in time of the donor and receiver species
and thus implies a temporal constraint on the species tree nodes), as illustrated in
Figure 3.8.

The method proposed in Doyon et al. [2010] bypasses the time consistency by
requiring an ultrametric species tree (a species where branch lengths correspond
to time) as it contains the (supposed) real order between the different speciations.
More precisely, the method use a subdivided species tree where the different nodes of
the species tree have been associated with a time slice corresponding to their index

in the list of the nodes ordered by height in the tree (and where all the leaves are
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Figure 3.9: A Ultrametric species tree with internal nodes (X,Y and Z). B The same
ultrametric species tree, subdivided into time slices. The added artificial nodes are
represented in gray (A’, B> and Y?).

considered to correspond to the same time slice: 0) and additional nodes (called
artificial nodes, because they only have 1 child and were not part of the original
tree) are created along some branches to ensure that the time slice of a node and its
parent differ by exactly 1. An example of such a subdivided species tree is shown
in Figure 3.9 where the time slices associated to the different nodes correspond to
the dashed line they are found on. This representation also symbolizes the idea that
nodes associated to the same time slice are considered simultaneous (for instance in
the figure, A, B’ and Y are supposed to occur at the same time).

Only allowing transfers between species tree nodes that are associated to the
same time-slice forces the gene lineages to follow the defined order of speciations in
the species tree and thus ensures the time consistency of reconciliations.

The original algorithm presented in Doyon et al. [2010| only treats transfer be-
tween two species present in the species tree. However, as mentioned earlier, trans-
fers may come from species absent in the species tree (because they are extinct or
that their extant descendants are not part of the species tree), which I shall refer to
as dead species, for clarity purposes. Arguably, it could be said that it is more likely
that they come from such a dead lineage rather than a sampled one |SzollGsi et al.,
2013b| (because, at any point in time, it is supposed that there are considerably
more species absent from the species tree than species that are present in it).

The original algorithm can be easily adapted to consider such lateral gene transfer
from the dead (to refer to the 2013 article) by adding a special, subdivided, branch
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Figure 3.10: A Reconciliation of a black gene tree in the species tree with transfers
from extinct/unsampled lineages (lighter blue). B The same reconciliation, repre-
senting all dead lineages with a single dead branch (lighter blue), subdivided to
comply with the time slices.

alongside the species tree which represent the dead lineages (see Figure 3.10). This
branch is special as it can receive transfer freely (as a transfer toward this branch
is actually a speciation toward a dead lineage), and losses in it are free (as they are
considered to arise from the extinction of the species the gene evolves in). Addi-
tionally, an event where a gene lineage bifurcates (i.e., divides into two) inside the
dead species can be considered (not represented in the figure). Such an event could
result from a duplication of the gene in a dead species, a transfer from a dead species
to another, or a speciation of dead species. In a parsimonious context a speciation
would be preferred (as they usually cost nothing) however I generally refer to such
an event as a Bifurcation Out (Bifurcation Outside the species tree) to underline

the idea that we are usually unable to distinguish between the different scenarios.

Joint optimization of topology and reconciliation: TERA

As mentioned earlier, the TERA algorithm [Scornavacca et al., 2014| offers a mean
to compute the reconciliation that jointly minimizes the discord with the species tree
and the alignement. It does so using the idea developed by Szollgsi et al. [2013a]
(called the ALE approach) which proposes formulas for the joint likelihood of a DTL
reconciliation and its topology given a species tree, a model of reconciliation and a
gene CCP distribution (which represents the information of the gene alignment).

By coupling the manner in which ALE explores the set of possible topologies
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(through the CCP distribution) with the algorithm of Doyon et al. [2010], Scor-
navacca et al. [2014] describe an algorithm that reconciles a gene CCP distribution
with a species tree in a parsimonious DTL framework.

Much of the original algorithm remains identical, however in the cost matrix
(and corresponding structures), where rows corresponded to nodes in the gene tree,
rows now correspond to clades of the CCP distribution. Furthermore, whenever
a bifurcation is implied (for instance, when computing scores for events of specia-
tion, duplication or transfer) all possible splits of the clade are tested and weighted
according to their CCP (actually, the opposite of the logarithm of the CCP, nor-
malized).

Note also that the original algorithm requires an ultrametric (subdivided) species
tree. TERA’s algorithm can make use of such a tree, but also authorizes a non-
ultrametric species tree, at the cost of sometimes producing time-inconsistent rec-
onciliations.

The score that is defined and optimized by the TERA algorithm, when summed
across all gene families, actually corresponds to the topology and reconciliation part
of my global score (although I use an additional parameter to weight the reconcili-

ation part of the score).

3.1.4 Adjacency

This part corresponds to information from the third form of co-evolution. It follows
the idea that adjacencies can be used to represent the link between genes, and
that the histories of adjacencies, in particular the number of gains and breakages of
adjacencies, can be taken as a measure of congruence between two reconciled gene
trees in the subtrees where they are linked by adjacencies (i.e., the part where they

are supposed to co-evolve). Thus, I define the adjacency part of the global score as:

adjacency = wadjacency X (CGain-nG’ain + CBreak-nBreak)

where cgain (respectively, cpreqr) represents the cost of a single adjacency gain
(resp. breakage), ngain (resp. Mpreak) represents the number of adjacency gains
(resp. breakages) across all adjacency histories (that is, all adjacency equivalence
classes) and Wygjacency represents a scaling factor for the global score.

Using the DeCo algorithm already introduced in the previous chapter I am able to

reconstruct adjacencies histories given reconciled gene trees and extant adjacencies,
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such that they minimize a linear combination of gains and breakages. In other words,
considering fixed extant adjacencies, I am able to associate a score of adjacency gains
and breakages to the reconciliations of the genes that are parts of adjacencies, which
amounts to an evaluation of reconciliations (and topologies) according to a gene-to-

gene co-evolution criterion.

3.1.5 Co-event

A co-event is an event, such as a duplication or a loss for instance, that encompasses
several genes at once. While this idea can be understood as to represent segmental
events (e.g., the duplication of a chromosome fragment containing several genes), it
may also take on the sense of two separate events whose fitness is interdependent
(e.g., the transfer of a protein is more likely to be retained by evolution if a co-
evolutionary partner that is necessary to its function is also transferred). In any case,
both visions come down to the idea that a co-event (e.g., 1 duplication of 3 genes)
will have a different probability to be observed than the probability of observing
independently an event of the same nature in each individual genes it encompasses
(e.g., 3 duplications of 1 gene each) (in the first case because its probability to occur
is different, in the other because its fitness is different).

However, as each reconciliation is computed independently, we can be lead to see
some events as independents when they may actually be part of the same co-event,
an idea that was discussed in the last section of the previous chapter, and that can
be seen also in the reconciliation part of the global score, which counts events across
all reconciliations, implicitly making the hypothesis of independence of events.

The co-event part of the score is there is to correct biases implied by this hy-
pothesis and introduce yet more information from the third form of co-evolution in
the global score. The first step to define this part of the score is the detection of

co-events.

Detecting co-events

In my framework, I define a co-event using adjacencies, and in particular the ad-
jacencies history computed using DeCoSTAR. Indeed, the formulas of DeCoSTAR
explicitly define cases which implies that two evolutionary events (i.e., nodes in rec-

onciled gene trees) occurred simultaneously (In Table 1 of the DeCoSTAR article,
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such cases are referred to as ¢15yncon, for synchronous). If these nodes bear events
of the same nature, then the synchronous formulas correspond to the case where the
nodes are actually part of the same co-event.

From this definition, I can actually define a co-event of type e as a graph where
each node corresponds to a node bearing event e in a reconciliation and edges link
together nodes backtracked using a ¢;5y yoy formula by DeCoSTAR, (note that this
implies that all the nodes of a given co-event are in the same species, and time slice

when applicable). Henceforward, I refer to such a graph as a co-event graph.

The co-event part of the global score

The cost of a co-event of a given type can be written in numerous way, for instance
considering the number of genes it contains. I will consider here that 1 event cost
the same independent of the number of genes it contains (this means that a co-
duplication of 3 gene costs the same as a duplication of 1 gene). So the contribution
to the global score of a single co-event whose event is e and which contains n genes

is:

Wreconciliation X (Ce - Ce-n)

which can be re-written as:

Wreconciliation X (_Ce-(n - 1))

where Wy econcitiation 15 the reconciliation a global score scaling factor?, ¢, is the
cost of a single e event and e takes the value dup, loss or tr, representing respectively
a duplication, a loss or a transfer.

This formula considers that, in the reconciliation part of the global score, every
individual event that is part of the co-event was already counted independently,

hence the negative term that reimburses the cost of these events.

3The scaling factor applied here is that of the reconciliation because co-events are considered
to be of the same nature as single events, despite the fact that they represent a different form of
co-evolution.
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With this definition, the formula of the co-event part of the global score can be

written as:
co — P?JP???L =
D
wreconciliationx( E ( Cdup ndup + E —Closs- nloss + E —Ctr. ntr )))
=0

where D (respectively, L, T') is number of co-duplication (resp. co-loss, co-
transfer) events, ¢, and e are as before, and n! is number of e events that the i-th

co-event of type e encompasses.

3.1.6 Explicit formulation of the global score

Given all the definitions above, the global score for a set of gene family topologies,
reconciliations and adjacency histories given CCP distributions for each gene family,
a species tree, extant adjacencies, costs for each events and scaling factor of the

different parts is:

Wiopology X EN: <— log(pCCP(Ti))))+

i—0 PCCP(T; mazx

Wreconciliation X <(‘1111/1-”(/u/) + Closs-Nioss T ("l/'~”'/r‘>+
Wadjacency X (CG(LiTL‘nG(L’iTL + CBT'Cak'nB'I‘C(Lk‘)+

D L T

Wreconciliation X ( Z (_Cdup-(nizup_ 1)) +Z (_Clos&(nfoss - 1)) "’Z (_Ctr‘-(nir - 1)))

=0 =0 1=0
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I call such a set of gene families topology, reconciliations and adjacency histories
a solution. The global score allows us to consider that a solution is better than
another when its associated score is lower. The different part of the score posit that
a solution can be better than another even if one part of it is worse (for instance,
there is more events in the reconciliations), provided the other parts of the score
compensate for this difference (for instance, all new events become part of co-events
and the topologies show more agreement with the CCP distribution).

My objective now becomes to be able to find a solution that minimizes the global

score and the next section describes the approach that I chose to do so.

3.2 Optimizing the score

Finding a solution that optimizes the global score can safely be assumed not to be
trivial. For once, an exhaustive search is not feasible in practice. To convince oneself
of this, one can consider the size of the space of solutions to explore. For each family,
there is multiple possible topologies to consider (up to the number possible number
of topologies for the number of leaves of this family), and for each such topology,
there exists several reconciliations (potentially an infinite number of them, although
this would imply events such as a duplication directly followed by a loss). It follows
that testing each possible combinations of topology and reconciliation across all
families quickly becomes intractable. Furthermore, one should consider that for a
given set of reconciliations, there can be more than one set of adjacency histories
and co-events, adding yet more dimensions to an already big space.

On the other hand, simply considering the problem of reconstructing the recon-
ciliation (with fixed topologies) and adjacencies history for two gene families jointly
is a hard problem, for which solutions have been searched without success so far?,
although no formal proof of NP-hardess of the general problem, nor any of its par-
ticular cases, is known. In light of this a heuristic approach seems fitting for the
optimization of the global score (which integrates more gene families and additional
criterions: topology and co-events) on a potentially large number of gene families.

It is however worth noting that given the size of the solution space, I can presume

that in practice the global optimal solution will never be found. What matters to

4Personal communications with Vincent Berry, Céline Scornavacca, Séverine Bérard and Eric
Tannier.
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me is that I get new gene trees and reconciliation that are better that the initial
ones in a biological sense, using metrics included in the global score or not (e.g., the
inference of linear ancestral chromosomes, such as I did in the article about Yersinia
pestis ancestral reconstruction). In that sense there actually is no guarantee that
the solution that minimizes the global score yields the best gene trees, but I suspect
that solutions associated with a lower global score will contain on average better

gene trees.

3.2.1 A Gibbs sampling-like approach

Consider a solution: a set of topologies, reconciliations, adjacencies histories and
co-events. This solution corresponds to a given score and I will here refer to them
as the current solution and current score.

I choose the gene family to be the basis of a local move in the solution space.
Thus, a local move consists in the modification of the topology and/or reconciliation
of a single gene family in the solution. This modification affects the histories of the
adjacencies this gene family is an extremity of, and consequently the co-events are
impacted. In short, the local move can affect each part of the global score and the
solution post local move (which T will call the new solution) corresponds to a score
(the new score) different from the current score. Then, I chose whether or not I
accept the new solution based on the difference between the new and current score.
If the new solution is accepted, then it replaces the current solution. Otherwise the
current solution stays the same.

A new score that is lower than the current score means that the new solution
is better than the current solution (i.e., the local move leads to a decrease in the
global score); the converse can also be held to be true. However, as I expect that
there exists local optima (i.e., solutions which do not minimize the global score but
that are better than all the solutions they can reach in one local move) among the
solutions, I use an approach where it is possible to accept a new solution even though
it worsens the score (i.e., increases it).

If the new score is lower than the current score, then I automatically accept the

new solution. Otherwise I define the probability to accept the new solution as:

Scurrent —Snew
e Temperature

127



‘ H m fixing all families but one

000 0

Base solution:
optimize families independently

One proposition chosen
.. . on the basis
Global score optimization scheme of its global score

OR no change

same method, with a different family

< A

Iterate accross \
all gene families — .

Figure 3.11: The proposed method for the optimization of the global score.

where S.urent 1S the current score, S,., is the new score and Temperature is
a scaling factor. Temperature is named as it is because given a fixed difference
between the current and new score, a higher value of T'emperature will result in a
higher probability to accept the new (worse) solution, like a physical temperature
which heightens the probability of high energy states.

Whether or not the local move was accepted, we can then try another local move
in another gene family and, local move by local move, explore the space of solutions
in a manner biased toward solutions with lower scores. This strategy reminds of
Gibbs sampling as it aims to explore a large multivariate space by changing the
value of one variable at a time (where variables correspond to gene families here).

The proposed local move operates at the scale of one gene family; during the
exploration of the space of solutions, I prefer to use the term rounds, where a round
corresponds to an iteration of local moves across all the gene families.

Figure 3.11 sums up the chosen optimization strategy.
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3.2.2 Implementation

In practice, the different elements for the computation global score and the proposi-
tion and evaluation of moves were implemented using the version of the ecceTERA
[Jacox et al., 2016] which contains DeCoSTAR as a backbone.

Given a current solution, once a new topology / reconciliation is proposed the
adjacency histories that need to be changed are computed using a version of De-
CoSTAR modified to favour adjacency histories containing co-events. This adjacen-
cies histories are then parsed to count the number of adjacency gains and breakages
and detect co-events.

The modification of DeCoSTAR, already described in Jean [2013|, amounts to
explicitly recognize during the computation of the cost matrix the cases implying
a co-event, tag them in order to report them during backtrack and subtract the
(properly scaled) cost of a single event of loss, duplication or transfer (depending
on the case) directly to their cost. When the cost of a co-event is considered equal
to the cost of a single event of the same nature and when co-event are supposed
linear, this modification effectively reflects the final cost of co-events across all gene
families and I thus jointly optimize the adjacency and co-event part of the score
(given fixed reconciliations). Otherwise this just represents a heuristic that favours
the formation of co-events, and may even cause an overestimation of them, which is
why I programmed this modification as an option which can be toggled off whenever
the described conditions are not met?®.

As for the local move, the proposition of a new topology and reconciliation for a

gene family, I propose several methods to do it in the next section.

3.3 Proposing new topologies and reconciliations for

a gene family

The chosen method for the optimization of the global score is inspired by Gibbs
sampling. Gibbs sampling consists in choosing a new solution for the variable pa-
rameter according to its probability distribution conditioned on the value of all the

other parameters. In my case, that would come down to be able to sample a gene

SRemember however that DeCoSTAR’s costs formulas correspond to the gene order problem
(where a linear solution is expected) anyway.
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family topology and reconciliation given the species tree, all the other gene families
reconciliations, and adjacencies (or, in other words, directly according to the global
score).

While there exists no formal proof that this would constitute a hard problem (in
the sense of the algorithmic complexity theory), I have already mentioned that sev-
eral groups have attempted, since 2012 and the original DeCo publication ([Bérard
et al., 2012]), to solve the (smaller) problem of jointly optimizing the reconciliation
and adjacency scores (which are only two of the four components of the global score)
for a couple of gene family with no success (the usual dynamic programming used
for optimizing each part of the score does not generalize), which leaves little hope
about the more general problem.

Therefore I have to rely on approximations to propose a new solution for a single
family. In the next sections I propose several methods to propose new solutions. I
start with a method that is blind to the global score (it does undirected moves) and
then describe methods that gradually add information from different parts of the

global score to direct them.

3.3.1 Sampling uniform random trees

A very basic way to propose a new topology is just choose one at random among
all the possible topologies with a number of leaves equal to that of the gene family
considered®.

Even if it is chosen randomly, the new topology must be evaluated by the CCP
distribution of the gene family in order to evaluate the topology.This can be done
using the procedure I discussed in a previous section, with special attention toward
the possibility to apply an arbitrary "penalty" multiplier when encountering a clade
absent from the CCP if one wants to be able to explore solutions whose topologies are
absent from the original CCP distributions” (this may be desirable if, for instance,
the original CCP distributions were made from very few trees).

There already exists numerous methods to choose a random topology and I

will here describe one that is based on clades and splits, mainly because I will use

6See the part about phylogenetic tree jargon for a definition of the number of possible topologies
given a fixed number of leaves.

"Indeed, not using this possibility comes down to assign a likelihood of 0 to the tree, which
translates into a topology part of the score of infinite value, and thus a solution that may not be
selected.
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Figure 3.12: Procedure to generate a random topology through clades splits. 1.
The root clade is split by separating a single leaf. 2. A size smallest child clade, [,
is chosen randomly according the possible number of topologies they can generate
(the different possibilities are shown such that their sizes reflect their probabilities;
the chosen split is framed in blue). 2bis. A split of the given size (here, one) is
generated by randomly selecting leaves. 3. The process is repeated until the tree is
fully bifurcating.

this method in the next section in order to extend the gene family’s original CCP
distribution (which is also based on clades and splits).

This method boils down to a procedure that splits a given clade in two children
clades so that any possible topology is equiprobable, and which is illustrated in
Figure 3.12.

Procedure to randomly split a clade

Consider a clade C, that is not the root clade, comprised of n leaves. Exactly
T'r,, rooted topologies can be generated from C, where Tr, the number of rooted
topologies with z leaves®.

The first step is to choose [, the size of the smallest child clade of C' when it is
split (the other child clade being of size n — ).

Each possible split whose smallest child is of size [ can generate T'r; x Tr,
subtrees (that is, the number of rooted topologies formed by the first child clade
multiplied by the number of rooted topologies formed by the second child clade).

It follows that given [, Tr; *x Tr,_; * L subtrees may be generated, where L
corresponds to the number of splits where the smallest child is of size [ and L =

(?) except in the special case where [ = 7, in which case L = (’Z) /2 because of

8 As defined in the part about phylogenetic tree jargon.
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symmetry”.

Consequently, the probability to split C' such that the smallest resulting clade is
of size [ is Try* Try_y % L/Tr,. 1 use this probability to chose .

Once [ is chosen, it is easy to randomly select [ leaves among the n of C to
generate the desired split (see Figure 3.13.2bis).

With this procedure, each (rooted) subtree is given an equal chance to appear.
By applying it recursively, a random (unrooted) topology is generated (the first
split, which starts the recursion, is a split whose smallest child consists of only 1 as

these splits occur in all topologies).

On the efficiency of random topologies

This method is able to explore fully the possible space of tree topologies for a given
family, it is @ priori not biased toward any of the source of information (as it does
not take any of them into consideration).

However, and as a consequence, it can also be expected that the generated tree
topologies do not fit very well with the alignment data, imply costly reconciliations
and show little congruence with their evolutionary partners. In short, I expect that
random topologies will often lead to a worse new score and shall therefore rarely be
kept, thereby not decreasing the global score by much per round of optimization.

If it seems natural that directed moves (moves that takes into account some of
the global score parts for instance) will be more efficient (i.e., lead to a higher rate
of score decrease per round), however it may not necessarily the case'®. At worse
these "blind" local moves may serve as a good baseline of comparison for different,

directed, methods of new solution propositions.

3.3.2 Sampling according to gene sequences

A way to improve the likelihood that a proposed topology yields a good score (and
thus is selected) is to add some information from the first from of co-evolution to

the topology choosing process.

9 (Z) is the number of subsets of size k among n, also described as the number of way to choose
k elements among n.
10 And many software rely on such undirected moves, such as PhyML [Guindon et al., 2010] or

TreeFix [Wu et al., 2013].
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Figure 3.13: Procedure to sample in a CCP distribution. 1. The root clade is split
by separating a single leaf. 2. A split of the clade is chosen randomly, according to
its conditional clade probability (the different possibilities are shown such that their
sizes reflect their probabilities; the chosen split is framed in blue). 3. The process
is repeated until the tree is fully bifurcating.

In my framework the first form of co-evolution is represented by the CCP dis-
tributions, so sampling a topology according to the first form of co-evolution comes
down to sampling a topology in the CCP distribution of the concerned gene family.

I give below the procedure to do so.

Sampling a topology according a CCP distribution

Consider a CCP distribution!'. Remember that a clade C that is not composed
of a single leave can be separated in two according to a split 7 and the conditional
probability of this event is written Poop(w|C). Poop(w|C') is the ratio of the number
of times we observe the split 7 in G divided by the number of time we observe the
clade C'in G.

Starting from the clade that contains all the leaves of the families, I do a between
one leaf and the clade containing all the other ones (see Figure 3.13.1), which I will
now refer to as C' 2.

Next, I consider all possible splits 7 for the clade ', and choose one randomly,
with a probability Poop(m|C) (see Figure 3.13.2). Each of the two clades gener-

ated trough the split 7 is recursively split (using the same process), until a fully

¢ef. The topology chapter for a detailed description of CCP distributions

12Here, the choice of the leaf does not matter because in all trees, for each leaf there exists
a bipartition that separates the leaf from all the other clades. So a tree sampled in the CCP
distribution will have the split that we chose anyway, and the CCP distribution are build in such
a way that the order in which we traverse them does not affect CCP-based computations.
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bifurcating tree is generated (see Figure 3.13.3).
Such a simple procedure allows the generation of any possible amalgamable tree
represented in the CCP distribution, with a probability proportional to its likelihood

under this distribution.

Beyond the set of amalgamable tree topologies

The method mentioned above is able to generate a number of topologies, but usually
not all of them. It is however possible that the good topologies (with respect to the
global score) may not be represented in the CCP distribution, because of insufficient
sampling and /or a lack of phylogenetic signal in the original alignment.

This phenomenon will tend to increase as the number of leaves grows (because
the number of possible topologies grows exponentially with the number of leaves).

To overcome this limitation, I propose to apply the procedure described above,
with the addition that any clade will have a probability « to be split according to the
procedure for random topologies (as in Figure 3.12) instead of using the observed
CCP distribution.

Adding this allows to randomly generate all possible topologies with a given num-
ber of leaves, but favouring the clades and splits observed in the original CCP distri-
bution, thus trying to reap the advantages of each of the two aforementioned proce-
dure (namely, reaching all possible topologies and biasing oneself towards topologies

with a good score).

Discussion

By looking at many topologies, each with its own support, each implying its own
reconciliation, adjacency histories and co-events, the space of solution can be ex-
plored, T propose here to sample topologies in a manner that is biased only by the
sequence information.

Sampling tree topologies, unbiased by the criterion of reconciliation (contrary to
TERA that is biased by both reconciliation and topology) allows for the exploration
of scenarios that may not be parsimonious with respect to each individual criterion
but possibly with respect to the global score, which is what I want.

The addition of a probability to chose random clades on top of the pre-existing
CCP distribution one allows me to overcome its limitation: its reliance on a tree

sample which may be incomplete for numerous reasons (lack of information in the

134



sequence, lack of computational power to produce a representative sample). This
addition offers a mean to combine sequence information while not limiting the ex-
ploration of the space of solution too much. Furthermore, it may remove some of
the bias toward sequence information in the proposition of solutions if one so wishes,
albeit 1 expect that this will also heighten the probability that a new proposition is
rejected, thereby lengthening the time to convergence toward an optimum.

In any case, proposing new topologies chosen at random can miss good solutions.
Indeed the reconciliations of the chosen topologies are still parsimonious (given the
sampled topologies, becasuse they are obtained using TERA), while the global op-

3

timal certainly implies non-parsimonious reconciliations.

3.3.3 Sampling according to gene sequences and reconcilia-

tions

As the global score that I want to optimize has several components, taking more
than one into account when proposing new solutions could lead to a faster global
score improvement.

In the last section, I described how to sample solutions according to sequence
information only (though the CCP distribution). In this section, I will describe
an algorithm to sample solutions according to both sequence and reconciliation
information (first and second form of co-evolution).

TERA [Scornavacca et al., 2014] already presents an algorithm for joint optimi-
sation of sequence and reconciliation based scores. However TERA computes most
parsimonious scenarios. As I mentioned in the article about Yersinia pestis and
earlier, solutions that minimize the global score are not expected to minimize the
topology and reconciliation part of the score in the presence of co-evolution between
genes.

To overcome the limitations brought around by parsimony, I applied to the
TERA algorithm a transformation similar to the one described in Chauve et al.
[2015] in the context of adjacency histories computation and that I familiarized
myself with when T implemented it in DeCoSTAR. This transformation changes a
dynamic programming algorithm (as is the case of DeCo, or TERA) for parsimo-
nious scenario inference into one that is able to sample scenarios, with a relative

probability inversely proportional to their cost (meaning that a given scenario will
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have a higher chance to be sampled than one with a higher cost). Tt does so by
redefining costs as probabilities, mainly through an algebraic change from sums to
products and from mm() operations to sums.

In this sense, the new algorithm I propose here is an intermediary between max-
imum parsimony and probabilistic models because it allows the exploration of a
probabilised solution space that is centred around parsimony (as the parsimonious
solutions have a higher probability to be sampled).

However, there already exists a software, ALE [Sz6llGsi et al., 2013al, that con-
siders jointly topologies and reconciliations in a probabilistic framework, and that
could be ideal for this part. But because the global score framework is already a
parsimony-based one, I think that it is pertinent to continue using my parsimony-
derived sampling method®®.

Technically speaking, we consider reconciliations between a gene CCP distribu-
tion and a rooted binary ultrametric species tree, subdivided as described in the
description of the algorithm in Doyon et al. [2010]'" and supplemented with a dead
lineage.

Given a single reconciliation R, I do not consider its cost C (i.e., the sum of
the costs of each of its individual components), but rather its Boltzmann factor:
B(R) = e T, where T is a temperature that determines how easy it is to sample
non-parsimonious solutions.

For a given gene clade u and a given species x (i.e., a node in the species tree),
let R(u,x) be the set of all reconciliations of the subtree rooted at clade u and with
the root in species x.

I define the partition function of v and x as:
Z(u,x) = Z B(R)

ReR(u,x)
That is, the sum of all the Boltzmann factors of the reconciliations in R(u, ).

When the species is actually a node of the dead lineage, I use the symbol « instead

13 Another, important, reason is that the algorithm that I describe here serves as the basis for
another one that includes more parameters and that I describe in the next section. As I mentioned
previously, an advantage of parsimony-based algorithm is that they are often simpler to design
(and thus extend) than likelihood-based methods.

!4 Here, I only describe the algorithm for an ultrametric species tree. I have designed the recur-
rence formulas such that in the case where the species tree is not ultrametric, the main algorithm
stays the same with the exception that all nodes are considered to have the same time slice. As
with the maximum parsimony algorithm, the absence of an ultrametric species tree can lead to the
generation of time-inconsistent scenarios.
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of x.

A similar transformation is done for single event costs:

e the cost of a single duplication D, § = e~ T

e the cost of a single transfer T, 7 = e T

e the cost of a single loss L, A\ = e~ T

Furthermore, T define Poop(m|u)¥s as the topology participation of split 7 of
clade u to the partition function, with the normalised weight of sequence informa-
tion: wg (this definition is derived from the expression of the same contribution in
[Scornavacca et al., 2014]).

What follows are the formulas used to compute the partition function Z(u, z).

Partition function formulas

If the species is not a dead lineage of S:
Z(u, ) = ZNosor(U; T) + ZspeciationOutLoss (U T)
Otherwise, when the species is in a dead lineage:
Z(u,a) =
Z (PCCP(W [u)" % Z; purcationout (T 7Oé)>

WEHu
+ZNeutral(uu Oé) + ZtansferBack (u, a)

Where I, is the set of all possible splits of u, Z.,ent(u, x) describes the part of
the partition function that corresponds to w undergoing the (non-splitting) event
event in species © and Zgyen (7, ) describes the part of the partition function that
corresponds to a split of u according to 7 in species x with the event event.

Znosor(u, ) represents the solutions for the reconciliation of u and x, excluding
events of speciation to an dead/unsampled lineage and loss in the current lineage
and is written as:

ZNosor (U, T) =

> (Pocr(mlu) s Zupeciation(T, 2)+ Zauptication (7, )+ Zspeciatinow (7, 7)) )

mell,
+Zneut7"al (U, l’) + ZspeciationLoss (U, JZ) + Zleaf (U, JZ)

The formulas for the different terms of these equations are shown in Table 3.1,

where 21 and x4 are the children of x (when applicable); 7 [1] and 7 [2] are the clades
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split of the gene tree no split of the gene tree

Zspeciation 7T,J)) = Zneutral(uwr) =

Z(m{l), 1) * Z(x[2],2)) + (1)

- (Z(?T[Q],.Tl) *Z(ﬂ'[l],:cz))

% ZspeciationLoss (’LL, ‘T) -

S Zduplication (7(-7 33) = Z(’U,7 $1) * A)—’_

g (Z(m[1],2) % Z(x[2],z) % 6) (Z(u,x2) * A)

'._a

% Zleaf (ua l’) =
1, if the leaf of © maps to =
0, otherwise

L,Q_‘sj ZspeciationOut (777 1’) = ZspeciationOutLoss ('LL, (E) =

% (Z(ﬂ-[l]u‘r) *Z(W[2]a04m))+ (Z(’U/7OZ1) *)\_ZNOSOL(U’7‘T) *T)

2 (Z(x[2],2) * Z(n[1], o))

&

o]

QS) ZbifurcationOut (71—7 04) = ZtansferBack (u; Oé) =

- (2(e(1), ) + Z(xf2], @) > (Bwosor(w2)+7)

% €S (tsa)

Table 3.1: Description of the formulas to reconcile a gene clade u, or a gene split T,
with a species x or a dead lineage a and with different events.

formed by the split 7; a, is the node of the dead lineage with the same time slice
as x and S(ts,) is the set of species with the same time slice as «.

Events of speciation and speciation and 10ss ( Zspeciation (T, ) and ZgpeciationLoss (U, T))
can only be computed when the species x has two children (meaning that it is not
a leaf or an artificial node). Conversely, simple vertical transmission (without any
further event) (Z,eutrar(u, )) is computed if z is an artificial node. Also, leaf events
(Zieas(u, z)) are only computed if u is a leaf clade and z is a leaf.

In the case of the speciation toward a dead lineage and loss in the current lineage
(ZspeciationOutLoss (U, T)) the first term of the formula describes the speciation and loss
toward the dead lineage, the second, negative term, is an adjustment that avoids a
direct transfer back of clade u in species x.

Note that if I kept the original form it takes in TERA, the equation for Zq,s fer Back (U, @)
would both include and be included in itself, thus creating a circularity that inval-

idates the Boltzmann-Gibbs sampling scheme. This problem is not present in a
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maximum parsimony framework as such potentially circular cases would have al-
ways implied additional transfers and losses than their non circular counterpart,
thus ensuring they would never end up in the solutions. However in my context all
the scenarios that I specify through the recurrence equations can actually be sam-
pled, hence the need to modify the equation so that it still means the same thing
(computation of the cost of having this clade undergo a transfer reception event),

but without circularity.

Algorithmic complexity issues related to transfer inference

In TERA, computing the cost of a transfer is done by identifying, at each clade
and each time slice, the best receiving species: the species with minimal cost. Then,
given a clade and a time slice, all parsimonious transfers are toward this best re-
ceiving species (except when the transfer originates from this species; in this case,
the transfer is toward the second best receiving species). This strategy allows the
algorithm to find the most parsimonious reconciliation in time and space complexity
of O(]S'| - |G]) (where |G| is the size of the gene CCP distribution and |S’| is the
size of the subdivided species tree).

However in the case of the Boltzmann-Gibbs sampling of reconciliations, all
(parsimonious and non-parsimonious) solutions have to be listed, which means that
all possible transfer recipients have to be enumerated. A naive translation of the rules
of TERA in a Boltzmann-Gibbs sampling scheme would thus yield a O(]S’|* - |G])
complexity algorithm, both in time and space.

I solve this increase in complexity, by forcing all the transfers to go through a
dead lineage. This change, when applied as described in the formulas above, does not
modify the space of solutions. It can be seen in the formulas for Zg,cciationout (T, )
and ZpeciationOutLoss (U, ), which only make reference to Z(u, a), but more impor-
tantly in the formula for Z,,,sferBack (4, @), which iterates over all species in a given

time slice. As this iteration is done only once per time slice, the complexity is

O2|5| - |G|) ~ O(]S"| - |G), as in the original TERA algorithm.

Sampling reconciled gene trees

Once the partition function has been recursively computed for each couple of clade

and species, it can be stochastically backtracked to sample reconciled gene trees.
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In the event where the species tree was subdivided, then all the produced rec-
onciled gene tree are valid. However if the species tree was not subdivided, then it
is possible to sample time-inconsistent solutions when transfers are allowed. Such
time-inconsistent solutions are detected during the backtracking procedure and dis-
carded. This simple procedure manages to produce the expected distribution of
time-consistent reconciled gene trees, but it also creates an additional time overhead
when sampling as there may be several backtracking attempt to produce a single
valid reconciled tree'®. For practicality purposes, the user is free to choose (through
options in the implemented software) if time-inconsistent scenarios should be dis-
carded or not, and can even specify the maximum number of attempts authorized to
get the desired number of time-consistent reconciliations (above this number time-
inconsistent reconciliations will be kept, so that the output will contain the desired
number of reconciliations) in order to limit the computation overhead.

The described algorithm has been implemented and tested as an object oriented

python program.

3.3.4 Sampling according to adjacencies and co-events

In the previous sections I described ways to approximate the sampling of a gene fam-
ily topology and reconciliation according to the global score. Instead of sampling
according to the four parts of the global score at once, I only consider a fraction of
them. Namely I sample according to the sequence information (only the topology
part of the score) and T sample according to the sequence and reconciliation infor-
mation (topology and reconciliation parts of the score).

I will examine in this section the possibility to sample according to yet another
component of the score.

Rather that sampling according to the topology, reconciliation, adjacency and
co — event parts together (a problem that I consider intractable), I will consider a

score that I note:

topology + reconciliation + co — event’

5Note that in the case of most parsimonious reconciliation, all optimal reconciliations may be
time inconsistent. However here, as we are not limited to most parsimonious solutions, it is always
possible (albeit potentially improbable) to sample a time-consistent scenario. A simple proof of this
is that the space of solutions includes reconciliations without any transfers (such a reconciliation
is always time-consistent).
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where topology and reconciliation correspond to their homonymous part of the
global score, but defined at the scale of a single gene family and co — event’ corre-
sponds to an approximation of the co — event part of the global score (again, at the
scale of this gene family).

The computation of the co — event part of the global score is dependent on
adjacencies and spans multiple gene families (i.e., more than two). In contrast,
co — event’ corresponds to associations between reconciliation events (i.e., duplica-
tion, transfer and loss events) of two gene families, independent from the adjacency
histories. I respectively call these two gene families, the target gene family and the
guide gene family (the target is the one we are doing inference on, and the guide is
fixed).

An association may form between an event of the target gene family (target

event) and an event of the guide gene family (guide event) if:
e they are in the same species (and the same time slice if this applies).
e they describe the same type of event (duplication, loss or transfer reception).

e the guide event has not already formed an association with a descendant or an

ancestor of the target event.
e the target event has not already formed an association with another guide event.

These conditions are also illustrated for duplications in Figure 3.14. They mimics
the way in which co-events are formed in the global score, which the associations
are here to approximate.

In the score that I define, an association costs:

o Ay, if the association occurs between duplications.
e A, if the association occurs between transfers.

e A, if the association occurs between losses.

Note that to favour the apparition of associations, these costs will usually be negative
(similar to co-events that are scored negatively in the global score).

co — event’ is the sum of the costs of all the associations between the target and
the guide gene families. However in practice the conditions I defined imply that

each association corresponds to exactly one event of the target family, so that I may
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Figure 3.14: Tllustration of the formation of associations between target duplica-
tions (green bordered square) and guide duplications (black bordered green bor-
dered square). A. case of a simple duplication (without association). B. case of an
association between the target and guide duplications. C. case of a guide duplica-
tion forming associations with two target duplications. D. case of two associations
following each other (as one target event is the parent of the other). E. forbidden
case, because a guide event cannot form an association with a target duplication
and its ancestor at the same time. F. forbidden case, because a target event cannot
form an association with more than one guide event.

consider them together in the score computation. I note the score of such an event

and its association:
® Cadup = Cdup + Aayp, if the event is a duplication.
® Cuy = ¢y + Ay, if the event is a transfer.
® Culoss = Closs + Doss, if the event is a loss.

In these formulas, cgup, (resp. Cioss, Cir) is the cost of a single duplication (resp.
loss, transfer) event.

Given a solution (that I note R), corresponding to reconciled tree for the target
gene family and with associations between guide and target reconciliation events,

its cost (that I note C) according the score that I define here can be written:
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C = topology + reconciliation + co — event' =

Pecp(T)

s X _log(PC’CP(Tmam)

(Cdup ‘NN Adup + Closs- TN Aloss T Ctr -nNAtr) +

(CAdup-nAdup + CAloss- T Aloss + CAtr-nAtr) +

, where wg, Poop(T) and Poop(Thna:) were already defined in the previous sec-
tion and in the global score, nyadup (T€SP. TN Aloss: NN Arr) 1S the number of single
duplication (resp. loss, transfer) events that are not associated to a event of the
guide gene family and nagu, (reSp. Mass, Nar) is the number of single duplication
(resp. loss, transfer) events that are associated to a event of the guide gene family.

The algorithm that 1T describe in this section can sample topologies and reconcil-
iations (and associations) for the target gene family according to this score. More
formally, it takes as input a CCP distribution, a species tree, guide evolutionary
events along the species tree (i.e., events of duplication, losses or transfer receptions
in the guide family reconciliation), costs for the different events, the topology weight
and a temperature and it outputs a sample of topologies and reconciliations'®.

This method builds on the one presented in the previous section and, as I
did there, I consider the boltzmann factor corresponding to the costs of solutions:
B(R) = e T (remember that T is a temperature that determines how easy it is to
sample non-parsimonious solutions).

I then define the partition function of v and x as:

Z(ux)= ) B(R)
ReR(u,x)
,where u is a gene clade, = is a species tree node and R(u,x) is the set of

all reconciliations of the subtree rooted at clade u and with its root in species .
Computing the partition function of the root clade of the CCP distribution over all
species will let me sample reconciliations according to their Boltzmann factor.

In the framework of the Boltzmann-Gibbs sampling scheme the costs for a target

16Tn this sample, the probability to be sampled is inversely proportional to the topology +
reconciliation + co — event’ cost of the solution.

143



event and an association become:
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Additional definitions: chained associations

In order to be able to compute the partition function while complying with the rules
for the formation of associations with guide events, I have to introduce additional
notations.

Consider, for any species x, xp , x7, and zp, respectively the number of duplica-
tion, loss and transfer reception guide events associated with x.

For any reconciliation of the clade u with species x, I call d the number of chained
duplication associations occurring in this reconciliation. This number corresponds to
the minimum number of guide events needed to explain the duplication associations
between u or descendants of u and guide events in the species x. The Figure 3.15
illustrates the evolution of the value of d along a reconciled gene tree. On the left
species branch, there are two associations, but as they occur in two sister lineages
they can correspond to only one guide duplication (they could also correspond to two
guide duplications, but T am interested in the minimal value here), hence the value
of 1 for the d of their lowest common ancestor. On the right species branch the two
duplication associations imply a node and its child, so that their associations cannot
occur with the same guide event: this history needs at least 2 guide duplications to
work. Also, note that in the common ancestor of the two species branches, d is again
equal to 0 as it is a species specific measurement (changing species reinitializes it).

Following this, I define Z(u, z,d), the partition function of the reconciliations of
u and x with d chained duplication associations.

Note that d is a integer ranging between 0 and xp.
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Figure 3.15: Reconciled target gene tree with some event associations. The value d
(number of chained duplication associations) at each node is marked in blue.

Reconciliation partition function formulas in the presence of event asso-

ciations

In general, I define:

Z(u,x) = Z (Z(u,x,d))
0<d<zp
If the species x is not a dead lineage,

Z(u,x,0) =

Za—dependant (U, T, 0) + Za_independant (U, T) + ZspeciationOutLoss (Uy T)
and,
Z(u,z,d) = Z4_gependant (4, x, d)

Zi—dependant (U, T, d) is the part of the score of Z(u,z,d) that depends on the
value of d and is defined as:
24— dependant (U, T, d) =
> (Pocr () + (Zauptication(7, 2, d) + Zopeciatonow (7, 7, d)) )

welly,

+Zneut7’al (U, xz, d)
Zi—independant (U, T, d) is the part of the score of Z(u, ) that does not depend on

the value of d. It is only defined for Z(u,x,0) and corresponds to:

Zd_mdependant (u7 I) -
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duplication and loss

transfer

dead lineage

split of the gene tree

no split of the gene tree

Z~1,<(;,y(;¢,;1(ﬁ- r) =
(Z(n[1], 1) * Z(
z

(Z(7[2],21) * Z(x[1], >

Zduplication (ﬂ—a T, d) =

(Z(ﬂ[l},x,d) * Z (Z(n[2], 2, 1)) *(5>+

0<i<d

(Z(wmx,d) « Y (2(x[1),2,1)) *5)+
0<i<d

(zrnd-1c Y (20

0<i<d—1

(Z(ﬂ[?],x,df 1)+

0<i<d—1
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Zne'u,t'ra,l (u7 T, d) =

Z(u,21,d)
ZspeczatzonLoas(u 1’)
(Z(u,21) * A)+
(Z(u,w2) * )+
( (u, z1) * A/\)+ if xor, >0
( (u, z2) *A/\) if 1, >0

Zleas(u, ) =
1, if the leaf of u maps to x
0, otherwise

ZspeciationOut (71', T, d) =
(Z(ﬂ'[l], z,d) x Z(r[2], oex))—i—
(Z(7r[2]7 x,d) * Z(n[1], ozz))

ZspeeiationOutLoss(uv {L') =
(Z(u,0p) * X)+
(Z(u,ap) x AN), if 21, >0

3/;/////(///”/”()“/ (\7- (‘) —

(Z(ﬁ“k(\) * Z(?M(\))

Ztansfe'rBack (U, a) =

>

z€S(tsa)
ZNOSOL( )*7—“'
ZNoSoL( u, T )*AT, lfl’T>0 )

Table 3.2: Description of the formulas to reconcile a gene clade u, or a gene split T,
with a species = or a dead lineage o and with different events and different number
of chained duplication associations d. The formulas in gray are the formulas that
have not changed from Table 3.1.

Z (PCCP(W|u)wS * (Zspeciation(ﬂ-vx))>

welly,

+ZspecmtionLoss (U, l’) + Zleaf (U, :E)

Table 3.2 details the different components of these formulas.

The equation for Zg,piication (7, x, d) has 4 components. The first two components

correspond to a simple duplication while the last two components correspond to a

duplication that form an association with a guide event. When a simple duplication

occurs, this means that d chained duplication associations must have happened in

at least one child clade of u. When an association occurs, d — 1 chained duplica-

tion associations must have happened in at least one child clade of u (as we add

one). The first and third components of the equation represent the case where m[1]
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has d, respectively d — 1, chained duplication associations. The second and fourth
components correspond to the same case, but with 7[2].

For the events of speciation, speciation and loss (speciationLoss), speciation
toward an unsampled lineage and loss (speciationOutLoss), and leaf event, there is
either no children, or these are not in the same species, thus breaking the chain of
duplication associations. Hence these events are independent from d.

Where a gene loss occurs as part of an event, it may be part of a loss association.
This is reflected in the cost formulas. In the equation for ZgcciationLoss(t, ), the two
last components correspond to the case of a loss association in one of the children
species. In the equation for Zg,cciationoutLoss(U, ), the second case corresponds to a
loss association in x.

If the species is a dead lineage, the formulas stays the same as in the previous
section, with the exception of the one for the transfer back event. A transfer from a

dead lineage back to the species tree can be part of a transfer reception association.

Sampling reconciled gene trees in the presence of event associations

Sampling in the presence of transfers can lead to a number of invalid solutions that
one has to exclude from the results.

First, as before, when the species tree is not ultrametric, it is possible to sample
time-inconsistent reconciliations that must be excluded from the sample (as men-
tioned in the previous section).

Additionally, transfers make it possible to create solutions where more duplica-
tion associations than possible may appear. This is due to the formulas for transfer-
related events (Zyeiationouttoss (s 7). Zepeciationout (s ) a0 Zpans perack (1, ) which,
for tractability purposes, do not carry up values of d, the number of chained dupli-
cation associations in a species. Thus, if a transferred descendant somehow comes
back to the origination species and then does a duplication association, it will not
be counted (or rather, it will be counted independently).

I call such a reconciliation where the number of associations exceeds the number
of possible ones (i.e., the number of of guide events in a given species) association
inconsistent reconciliations (see Figure 3.16 for an example) and T exclude them

from the sampled solutions as well'7.

17This is, again, an option that may be toggled off by the user.
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speciation
to dead lineage
and loss

transfer back
to the lineage

Figure 3.16: Illustration of association inconsistency where a guide duplication forms
an association with a target duplication and one of its ancestor. This scenario is
possible because of the transfer separating the two target duplications.

Choosing a guide tree

As the goal here is to bias the reconciliation of the target gene tree toward the guide
gene tree, the choice of this guide tree is fundamental. The guide tree is used to form
co-events with (or rather, associations as a proxy for co-events here), and co-events
are detected using adjacency histories. So for a guide tree to fill its purpose it should
be from a gene family which shares many adjacencies with the target gene family.
To respect this idea, I simply propose to randomly choose a guide family among
the families with whom the target family shares adjacencies, and with a probability
proportional to the number of extant adjacencies they share.

Once the guide gene family is chosen, I extract guide events, from its reconcilia-
tion as shown in Figure 3.17. A guide event can either be a duplication, a loss or a

transfer reception and are also associated to a species in the species tree.

Discussion

The defined partition function formulas allow the sampling of reconciled gene trees
according to their likelihood in a CCP distribution, events of duplication, loss, trans-
fers and event associations they form with a guide reconciliation, which serve as an

approximation of co-events.
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Figure 3.17: From a guide reconciled gene tree (left), I extract guide events (right).
I represent guide events (duplications as green square, losses as an orange square,
transfer reception as a blue triangle) with a black border.

In this Boltzmann-Gibbs sampling scheme the partition function must be com-
puted for any possible u, x and also d when guide duplications are present. Conse-
quently, the complexity of the proposed algorithm is O(|S’| * |G| * dnaz ), Wwhere dyq.
is the maximum number of guide duplications in a single species (i.e., the maximum
possible value for d)'®.

As T ultimately describe here a method with the goal to propose topologies and
reconciliations for the optimization of my global score, I am particularly interested in
the ability of Boltzmann-Gibbs sampling schemes to escape parsimonious solutions.
However, much like one can transform parsimony formulas into a Boltzmann-Gibbs
sampling scheme, one could quite easily transform the partition functions I defined
into costs formulas by changing sums into min() operators, products into sums, and
using the original costs (rather than their exponential).

It is worth noting that the presented algorithm constitutes, independently from
the global score framework, an interesting contribution to the study of reconciliation
reconstruction in a context that is aware of genes evolutionary interactions.

Like the the algorithm that it is based on, the method described here was im-

plemented in the form of an object oriented python program.

18In practice I do not expect d,,qe to be very big
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3.4 Results

Having described a global score and methods to optimize it. I want to apply them
to biological data-sets in order to verify that the optimization in indeed working
(meaning that the score diminishes as rounds go), study how the gene trees change
as the global score decreases and also gather estimates of biological measures. In
particular I am interested in the sizes of large reconciliations events because, as |
mentioned before, methods that consider gene families independently will tend to

underestimate these (when they actually can tell something about it).

3.4.1 Data-sets

I applied the methods I developed on three data-sets. The first two are subsets
of gene families evolving among a set of 36 mammals and were obtained from the
Ensembl Compara database (release 87 of December 2016 ; [Yates et al., 2016]).
The third data-set corresponds to the fungi data-set used in Szollgsi et al. [2015]
and is composed of gene families from the HOGENOM database (release 06 ; [Penel
et al., 2009]) evolving among 28 fungi species. This third data-set, unlike the two
mammalian ones, includes horizontal gene transfers.

From the complete set of gene families in the databases, I applied two filters on
the gene families. The first filter select families that have a gene copy in at least
half of the species (13 species for the mammalian data-sets, 14 for the fungal one).
This filter aims at removing the gene families that are only present in a few clades
and whose history would either imply many gene losses or only span a fraction of
the species tree. The second filter keep only the families which have at most as
many genes as twice the number of species (72 for mammals, 56 for fungi). This
second filter is here to keep only families whose evolution is not too complex and
for whom the hypothesis of a parsimonious (or quasi-parsimonious) reconciliation
is reasonable (as families with lots of genes are supposed to have a higher rate of
duplication and transfer and thus a more complex history).

For all three data-sets the adjacencies used correspond to neighbourhood along

a chromosome.
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Homo sapiens

Pan troglodytes
Gorilla gorilla
Pongo abelii
Macaca mulatta
Callithrix jacchus
Tarsius syrichta
Microcebus murinus

Otolemur garnettii
Tupaia belangeri
— Rattus norvegicus

———Mus musculus
Dipodomys ordii
‘ Cavia porcellus
4{ Ictidomys tridecemlineatus
T Ochotona princeps
Oryctolagus cuniculus
— Myotis lucifugus
Pteropus vampyrus
T Felis catus
Canis lupus
Equus caballus
‘ Vicugna pacos
Sus scrofa
\—‘_{ Bos taurus
Tursiops truncatus
T Sorex araneus
Erinaceus europaeus
Choloepus hoffmanni
’—‘ Dasypus novemcinctus
Loxodonta africana
\_,—{ Procavia capensis
Echinops telfairi
— Macropus eugenii
L Monodelphis domestica
Ornithorhynchus anatinus

Figure 3.18: The species tree used in the mammalian data-sets. Note that tree
branch lengths are not informative here.

The mammalian data-sets

As mentioned before, these data-sets consist of Ensembl protein families (Ensembl
release 87 of December 2016 ; [Yates et al., 2016]). Out of 6 695 families, 5 180 satisfy
both filters and out of these I generated two data-sets containing respectively 500
and 1 000 randomly chosen gene families.

For each selected gene families, I use a sample of 10 000 bootstrap trees (obtained
using IQtree [Nguyen et al., 2015]) as the basis for the construction of their CCP
distributions.

The species tree used correspond to the Ensembl mammalian species tree, as
shown in Figure 3.18.

For each of these two data-sets, adjacencies where extracted from the position of
genes along chromosomes (so adjacencies correspond to a neighbourhood relation-
ships). The mammalian genomes included in this data-set correspond to the ones
present in Ensembl and are not necessarily well assembled, which has consequences
in terms of adjacencies. Indeed because of it many genes are isolated on their contigs
and the number of adjacencies per genome ranges from 3 to 529 in the data set with
500 gene families, and from 14 to 1 079 for the one with 1 000 gene families (while
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genome show only little variation in terms of number of genes they contain). In
consequence, during the upcoming analyses I will activate the scaffolding option of
DeCoSTAR, which infers extant adjacencies and was developed for such a case (see

Anselmetti et al. [2015] for details).

The fungal data-sets

Out of the 11 295 gene families used in the fungi data-set of Szollgsi et al. [2015],
1 974 remain after I applied both filters.

Out of these 1 974, I removed the 72 families which possessed more than 1 300
clades because the proof-of-concept implementation of the method I use to sample
new solutions according to the first two or all three forms of co-evolution (see the
section about sampling according the the CCP distribution and reconciliation and
the following section) could not handle them in less than 10Gb of memory .

The CCP distribution of each selected gene families is constructed using an a
posteriori Bayesian sample of 10 000 trees, as described in [Szo6llGsi et al., 2015].

The species tree also corresponds to the Fungi tree A generated in [Sz6l16si et al.,
2015] and that is shown in Figure 3.19.

Adjacencies for this data-set were obtained using the genes start position along

chromosomes, contained in the HOGENOM database.

3.4.2 Getting the initial solution

Unless specified otherwise, my initial solution (the one onto whom I start do-
ing rounds of optimization), uses topologies and reconciliations obtained using the
TERA algorithm (with costs corresponding to the one I use in the global score) onto
which I compute adjacency histories using DeCoSTAR and then detect co-events.
Using TERA has the consequence that the initial solution jointly maximizes
the topology and reconciliation parts of the score without any concern toward the
adjacency and co-event parts (as this is what TERA is designed to do). This means
that any better solution will, at best, exhibit a sum of the topology and reconciliation
part equal to that of the initial solution, so that the source of the score improvement

(i.e., diminution) are the adjacency and co-event parts of the global score.

19Note that 1 300 clades correspond to a large quantity of phylogenetic information as it is more
than the number of clades among all the topologies with 10 leaves (1 023 clades).
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Candida albicans
Candida dubliniensis
Scheffersomyces stipitis
Debaryomyces hansenii
Komagataella pastoris

Saccharomyces cerevisae
Candida glabrata

Zygosaccharomyces rouxii

Kluyveromyces lactis

Ashbya gossypii

Lachancea thermotolerans
Yarrowia lipolytica
— Aspergillus niger cbs 513.88
\;Aspergillus niger
Emericella nidulans
Aspergillus oryzae
Aspergillus flavus
Aspergillus terreus
Aspergillus fumigatus
Aspergillus fumigatus
Neosartorya fischeri
Aspergillus clavatus
Penicillium chrysogenum wisconsin

Neurospora crassa

Schizosaccharomyces pombe
Ustilago maydis
Cryptococcus neoformans

Puccinia graminis

Figure 3.19: The species tree used in the fungal data-set. Note that tree branch
lengths are not informative here.

3.4.3 Testing different parameters to optimize the global score

These analyses were performed on the data-set containing 500 mammalian gene
families. As it is the smallest data-set, a round of optimization on it takes less
computation time, which allowed me to test the global optimization procedure under
many set-ups in an efficient manner.

I consider set-ups differing by the method used to propose new solution (see the
previous section): uniform sampling of random topologies, sampling using the CCP
distribution, sampling using the CCP distribution and reconciliation, and sampling
using the CCP distribution, reconciliation and co-events (or rather, associations)
with a guide family. I respectively refer to them as Uniform, CCP, CCPRec and
CCPRecCoeu.

I also considered cases where I examine 1 proposal before testing another gene
family and another where I examine 10. I respectively call these conditions 1 sample
and 10 samples.

For the last two proposal methods (sampling using the CCP distribution and

reconciliation, and sampling using the CCP distribution, reconciliation and co-events
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with a guide family), a temperature parameter determine the expected deviation
from maximum parsimony of sampled solutions. For these I tested two conditions :
a cold one (temperature of 0.5) and a hot one (temperature of 2)2.

Thus, when I refer to a set-up as CCPRec 1sample cold, it corresponds to sam-
pling using the CCP distribution and reconciliation, with 1 proposal per gene family
and a temperature of 0.5 for the proposals.

I consider a unique starting point (the solution obtained from TERA followed
by DeCoSTAR) and make each set-up perform as many successive rounds of opti-
mization as possible in 4 hours. The runs were performed on a desktop computer
(I impose a time constraint here, because the different methods do not have the
same complexity and thus a round duration varies with the method employed). The
chosen temperature for the acceptance of new solutions is 0 (only solutions which
actually decrease the score are chosen). After these, I compare the different set-ups
in terms of the amount of optimization they could yield during this fixed time (the
better set-ups result in lower global scores).

Figures 3.20 and 3.21 show the evolution the the global score during rounds
of optimization using different methods for the proposition of new solutions. The
curves corresponding to the Uniform protocol are not showed because they were
unable to produce any solution that was accepted (i.e., the global score remained
the same).

Figure 3.20 shows that proposing new solutions that consider CCP distributions
and reconciliation jointly (and also when adding co-events) with a low temperature
lead to a lower score decrease than considering CCP distributions alone. However,
with a higher temperature it leads to substantial global score improvements.

Figure 3.21 shows that protocols where only 1 proposal at a time are made
consistently perform worse than protocols where 10 proposals per gene family are
made (I only show the hot configurations here because they were the one that yielded
the best score improvement). The increase in computational time per round (i.e.,
less rounds could be done in 4 hours under these configurations) incurred when

testing more times, is compensated by a faster global cost optimization?!.

20Note that this does not correspond to the temperature that determines whether or not we
accept a proposal according to its global score.

2Tn these tests I compared the capacity of different methods to optimize the global score in
a given amount of time. While this is legitimate because it accounts for the differences between
methods in terms of computational cost in practice, it should also be noted that it leads imple-
mentation to play a role in the results. In particular, the method using only CCP distribution
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Figure 3.20: Evolution of the global score with different methods new solutions
proposal. Each protocol was run for about 4 hours (30 rounds with the CCP - 1
sample method , 10 rounds with the other methods).

Overall, the method that yields the best global score improvement here is the one
that considers jointly sequence (through the CCP distribution) and reconciliation
information (CCPRec) with a high temperature (for both conditions of samples
number).

The results suggest that when the method used for proposing new solutions
is considering jointly CCP distribution and reconciliation (and co-events), a higher
temperature leads to a faster global score optimization. The higher the temperature,

the higher the chances of proposing solutions deviating from the most parsimonious

information relies on the original C++ implementation of DeCoSTAR while the other methods
(CCPRec and CCPRecCoev) rely on a simpler "proof-of-concept" implementation in python. How-
ever, even this non-optimized implementations outperform CCP distribution sampling (when the
temperature parameter is high enough) in terms of global score optimization speed, which is quite
encouraging.
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Figure 3.21: Evolution of the global score with different methods new solutions
proposal. Each protocol was run for about 4 hours.

one which corresponds to the initial solution given by TERA. From there I can
conclude that the good solutions (with respect to the global score) are not the most
parsimonious ones (with respect to topology and reconciliation).

Overall, the methods lead to a score optimization (except for the undirected
random topology sampling). In particular, the one that yields the best score opti-
mization jointly considers the CCP distribution and reconciliation ( CCPRec) and it
would appear that adding the possibility to form co-events with neighbouring fam-
ilies (CCPRecCoev) is actually detrimental to the global score optimization. This
may be due to the fact that gene families actually co-evolve with many other gene
families while only one neighbouring family is considered when looking for guide
events. Additional methodological developments to be able to take multiple guide

families into account at once when reconciling may solve this problem.
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I also compared the size of events (in terms of number of genes, obtained through
the analysis of co-events) between the initial solution and the last round of the
condition that yielded the best global score improvement. I observe that the average
loss size is ~ 12% higher in the optimized solution (for a value of ~ 1.2818 genes
per loss). The average duplication size also increases by = 7%, for a final value
of ~ 1.1208. While this was expected, it is a good sign to see that improving the
global score indeed leads to the inference of longer co-events and therefore maybe

to a better congruence between gene trees.

3.4.4 The effect of the global score optimization on indepen-

dent measures of ancestral genome quality

When reconstructing the reconciliations and adjacency histories of a group of gene
families, a way to evaluate the quality of the results is to assess the size of the
ancestral genomes inferred through the reconciliations, and the linearity of the graph
formed by the inferred ancestral adjacencies (where genes are nodes and adjacencies
are edges between nodes)?2.

When reconciling, one actually infers ancestral genome content, and thus ances-
tral genome size. If we presume that, biologically speaking, the genome sizes should
not be particularly different between ancestral and extant species, then we can use
this difference as a basis to compare different sets of reconciliations. Figure 3.22
shows the variation, round after round, of inferred ancestral genome sizes under
some of the configurations that yielded the best global score decrease in the pre-
vious analysis on the data-set containing 500 mammalian gene families. Ancestral
genomes display a larger size than extant ones. The mean ancestral size seems to
increase during the rounds and stabilizes a little above 650. Compared to the initial
solutions, the genomes size did not increase by much (~ 3% at the maximum) and
the different methods seem to stabilize around the same size after a few rounds,
despite the fact that they do not correspond to the same global score (cf. Figure
3.21). This stability and convergence is a good sign and it gives hope about the
robustness of the optimization and it also shows that improvements in the global

score are not necessarily done at the detriment of ancestral genome sizes.

22Indeed, in the article about DeCoSTAR we assessed the linearity of extant and ancestral
genomes in the Anopheles data-set.
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Figure 3.22: Evolution of mean ancestral genome size across rounds of optimization
of the global score. The mean extant genome size is displayed as a dashed horizontal
black line (474.1).

The second criterion that I use to assess the quality of the solutions is the linearity
of ancestral genomes. Linearity is a relevant criterion only if we actually expect the
ancestral adjacency graph to be linear, as may be the case when adjacencies are
used to model gene order along chromosomes. This also comes down to making
the hypothesis that good gene trees (biologically speaking) will lead the inference
of linear ancestral genomes. While this may not always be the case (because of
limitations in the method used to infer ancestral adjacencies for instance), this
hypothesis still seems reasonable to a degree, as the extant genomes that we use as
input are themselves linear and the non-linearity of ancestral genomes can be used
to pin-point some incongruence between the trees of neighbouring genes (cf. the
article about an ancestral Yersinia pestis genome inference).

Figure 3.23 presents the evolution of two metrics of the linearity of ancestral

genomes. The first metric is the proportion of genes with degree 2 (i.e., genes with
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exactly two neighbours) in ancestral genomes. A low value of this metric could either
mean that the ancestral genomes contain many non-linear patterns (i.e., many nodes
with a degree above 2) or that they are very fragmented (i.e., many nodes with a
degree of 0 or 1). The second metric is the proportion of genes with a degree above 2
in ancestral genomes. A high value of this metric is the sign that ancestral genomes

contain many non-linear patterns.

proportion of gene with degree 2
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Figure 3.23: Variation of two measures of linearity for ancestral genomes during
rounds of global score optimization under different conditions. Dashed lines repre-
sent additional rounds.

Of the three displayed conditions, two exhibit a diminution of these linearity
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measures. However the third one shows that, after an initial decrease, there is an
increase of the measures up to the point of the initial solution and even above it. This
is interesting because this curves correspond to the condition that yielded the best
global score improvement in the previous analysis (cf. Figure 3.21): sampling of new
solutions according to a score based on their CCP distribution and reconciliation
with the species tree (testing 10 solution per gene family and with a temperature of
2). This trend of increase of the two linearity measures continues when additional
rounds are done under these particular conditions and the two measures of linearity
continue to go well above their value in the initial solution (dashed lines in the
figure).

The increase of both measures indicates that the method that leads to the best
global score improvements also seems to lead to the inference of more ancestral
adjacencies, sometimes creating non-linear patterns in ancestral genomes. However,
here the proportion of genes with degree 2 increased more than the proportion of
genes with a degree above 2 so that overall the linearity of the ancestral genomes

has increased.

3.4.5 The effect of an alternative starting point

In the previous analysis, I used TERA to obtain the initial solution’s topologies and
reconciliations. As mentioned before, this implies that the initial solution is quite
particular because it specifically jointly optimizes the topology and reconciliation
part of the score. The cold protocols failed to yield a good global score decrease: a
low temperature here leads to a higher probability of the proposition of parsimonious
solutions, that do not differ too much from the ones given by TERA. In contrast,
the hot protocols lead to a better improvement of the global score. This indicates
that the trees that were seen as better by the global score were less parsimonious
than the ones proposed by TERA in the initial solution. One could therefore ask
if this trend of increase in the complexity of the chosen reconciliations would be
experienced irrespective of the initial solutions, in which case the optimization of
the global score would just be a methods to get reconciliations with more events.

To verify the role of the initial solution in the choice of the global score opti-
mization method, I devised an alternative initial solution, that I will call the random
initial solution (to distinguish it from the TERA initial solution).

In this initial solution gene families topologies consist in a random draw in their
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respective CCP distribution. These topologies where then reconciled using the al-
gorithm for sampling reconciliations with a temperature of 1 (note that when used
with a fixed topology, this algorithm effectively becomes one that samples reconcili-
ations with a probability inversely proportional to their cost). These reconciliations
were then used in DeCoSTAR along with the extant adjacencies to finish the initial
solution.

When tested on the data-set containing 500 mammalian gene families, this ini-
tial solution exhibits a much higher global score than the TERA initial solution
(56 552.5 against 33 978.4). This difference is mainly due to higher reconciliation
and adjacency parts of the score, and is partially compensated by a better topol-
ogy part of the score (which is coherent with the fact that I chose the topologies
according to the CCP distributions alone).

Figure 3.24 presents the evolution of the global score under different conditions
when the initial solution is the random one. Contrary to what is observed with
the TERA initial solution, the cold protocols now lead to a faster global score
optimization. This can be explained by the fact that the random initial solution is
far from optimal from the point of view of reconciliation and that solutions that fall
closer to the most parsimonious reconciliation are favoured.

The observation that the initial solution computed by TERA optimizes faster
when sampling less parsimonious reconciliations (higher temperature), but that the
random initial solution does the converse (more parsimonious reconciliations are
favoured) hints at the idea that the optimal solution reconciliations lie in between

these two initial conditions (in terms of reconciliation costs).

3.4.6 Shuffling adjacencies

When choosing new topologies and reconciliations that lower the global score, 1
make the assumption that there is a relevant signal about the evolution of genes
families in their neighbours. In other words, I presume that the gene families that
are linked by adjacencies are more likely to be congruent than the ones that do not
share any adjacencies.

Under this hypothesis, the signal coming from the gene sequence and the gene
reconciliation with the species tree should bear the mark of this co-evolution between
neighbours and should support solutions where neighbours are in agreement, (which

in the context of the global score, translates into more co-events and more parsi-
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Figure 3.24: Evolution of the global score with different methods new solutions
proposal and the random initial solution as a starting point. Each protocol was run
for about 4 hours. The curve of the protocol that yielded the best improvement
from the TERA inital solution is shown as well (black dashed line)

monious adjacencies histories). However, if this hypothesis is false, then solutions
which display a better congruence with the neighbours would not be particularly
well supported by the sequence and reconciliation information.

To test this, I performed attempts at global score optimization on the data-set
containing 500 mammalian gene families where I randomly shuffled the adjacencies
inside the extant genomes?.

The idea behind this is that if there is indeed information to be found in the

neighbours of gene families, then the data-set with shuffled adjacencies would not

231 generate a shuffled adjacency by randomly choosing two genes in the same species and putting
an adjacency between them. Shuffling was done so that the number of adjacencies in each extant
genomes did not change.
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have access to this information and consequently T would expect a lower rate of
global score optimization than with the original adjacencies (because with mean-
ingful adjacencies, it is more likely that a solution satisfying one criterion will also
satisfy the other). Conversely, If the rate of global score optimization stays the same
with shuffled adjacencies, this means that the global score optimization process does
not exploit any particular information. This in turn may come from the absence of
such an information (but see this section in the introduction for elements of proof
stating that we do expect some information to be present), or from a weight for
adjacencies and co-events that is too high and which leads to neglecting sequence

and reconciliation information.
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Figure 3.25: Evolution of the global score with different methods new solutions
proposal when adjacencies have been shuffled. Each protocol was run for about 4
hours.

The results of global score optimization rounds under different protocols when
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extant adjacencies have been shuffled are shown in Figure 3.25. 1 observe both
a higher initial score (44 635.4 against 33 978.4) and a lower rate of global score
optimization (0.2% against 6.1% with the better protocol) than with the non-shuffled
data-set. Co-events in the shuffled data-set are smaller (by ~ 21%, for losses and
~ 10% for duplications) than in the non-shuffled one and the optimization also does
not increase their size by more than ~ 0.6% (for more than ten times as much in
the non shuffled data-set).

This is coherent with what I expected under the hypothesis that the signal
coming from adjacencies is complementary (rather than opposed) to the one found
in the sequence and the reconciliation and thus this hypothesis is not rejected.

In other words, there is some information in the adjacencies and co-events about

the histories of individual genes that the global score improvement method retrieves.

3.4.7 1000 gene families mammalian data-set results

To obtain values for the different weights of the global score for this data-set, I
used a heuristic inspired by the one presented in Scornavacca et al. [2014]. In order
to reduce the number of parameters to consider, I fix individual event costs at
their default values, which are widely used in reconciliation and adjacency analyses
(namely, a duplication costs 2, a loss 1, an adjacency gain 2 and an adjacency
breakage 1). The weights that have to be inferred are the weights of the global score
parts (respectively the topology, reconciliation and adjacency weights)?*.

Using an initial value of 1 for all weights, I computed the equivalent of an initial
solution (ecceTERA followed by DeCoSTAR). I then estimated new weights using

the formula:

T

tOpOlOgy + Nreconciliation event T Nadjacency event

new weight, = —log(

Where x takes the values of tOpOlOgy; Nreconciliation event OT Nadjacency event when
I respectively estimate the new weight for the topology, reconciliation or adjacency

parts of the global score. topology corresponds to the topologic disagreement with

24Consequently, even though I fixed both adjacency gain cost and duplication cost to 2, they are
not necessarily equivalent in the global score because they are always weighted according to their
nature (adjacency and reconciliation).

164



alignements (i.e., the topology score, unweighted), N,cconcitiation event 18 the number
of reconciliation events (losses and duplications, taking co-events into account) and
Nadjacency event 18 the number of adjacency events (adjacency gains and breakages) 25,

Using these new weights, I compute the initial solution whose global score I
will optimize. Drawing on the previous analyses done on the smaller mammalian
data-set, I did optimization rounds with the protocol that yielded the best results:
sampling several new solutions using both topology and reconciliation information
at a high temperature (protocol "CCPRec - 10 samples - hot" in Figure 3.21).

In a first optimization stage, the rounds where done with a temperature of 0 for
new solution acceptance, meaning that the solution was only accepted if it lead to a
global score decrease. Then, temperature was managed as follow : if an optimization
round accepted new solutions for less than 10% of the gene families, the temperature
was multiplied by 2 for the next round (if the temperature was 0, then it became
1). Conversely, if an optimization round lead to an increase in the global score
(compared with the previous round), the temperature was divided by 2 for the next
round. In this manner I hope to avoid local minima while still converging toward
lower values of the global score.

I performed 35 rounds of optimization under these conditions. As expected, the
global score effectively gets better from round to round. Furthermore, the results
observed on the smaller mammalian data-set with respect to genome linearity are
also seen here : T observe an increase from an initial value of proportion of gene with
degree two at &~ 0.351 to a final value of ~ 0.384 after an initial decrease during the
first rounds.

The final solution contains more reconciliation events that the initial one (both
when taking into account co-events or not) (taking into account co-events, it goes
from 14 227 losses and 4 133 duplications to 14 413 losses and 4 287 duplications,
or respectively a &~ 1% and = 3% increase). This increase is accompanied by an
increase in the size of co-events : from an average of 1.287 genes per loss to an average
of 1.417 (an ~ 10% increase) and from an average of 1.099 genes per duplication to
an average of 1.191 (an ~ 8% increase).

Figures 3.26 and 3.27 present the evolution of the repartition of of co-event sizes,

respectively for losses and duplications, indeed showing a shift toward events with

25Here, the new weights are 0.7149079 for the topology, 1.212417 for the reconciliation 1.545124
for the adjacency.
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Figure 3.26: Repartition of the loss sizes in number of genes between the initial
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a bigger size (but with an otherwise unchanged distribution shape).
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Figure 3.28: Comparison of the degrees of leaves in extant mammalian genomes
between the initial (black line) and final solution (red line).

In the meantime the number of events of adjacencies histories have decreased.
Adjacency gains have seen their number reduced by ~ 5% (from 8 699 to 8 310)
and the adjacency breakage number was reduced by ~ 65% (from 2 795 to 956).
This high decrease of the number of adjacency breakages is linked to the inference
of new adjacencies in extant genomes (remember that some of these mammalian
genomes assembly is of low quality and thus many extant adjacencies are missing
from the input data) : we go from 1 193 newly inferred extant adjacencies in the
initial solution to 3 456 in the final one. Figure 3.28 shows that this difference
mainly corresponds to adjacencies gained by nodes that previously had none and

that while the final solution implies more leaves with more than 3 neighbours (non-
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linear patterns that T want to avoid) this is not the case for the majority of impacted
nodes.

The observation that the optimization of the global score is linked to a better
linearity in ancestral genomes and better extant assemblies (i.e., new extant adja-
cencies) is truly supportive of my idea that a more integrative view of gene histories
leads to more congruence among them and a more coherent history of genomes.
The global score optimization also lead to a general increase in the size of events
of duplications and losses (compared to the initial solution), which is supportive as
well. Through my methods I am able to deliver a co-evolution-aware estimate that

differ from the estimates yielded by methods that consider genes independently 2.

3.4.8 Fungal data-set results

Methods to obtain the initial solution, weights for the score and managing accep-
tance temperature were the same as the ones used for the data-set of 1000 mam-
malian gene families (but adding a cost for horizontal transfer events, which were
absent from the mammalian analysis, of 3)27.

Using the observation on the 500 mammalian gene families data-set that the
efficiency of different optimization methods could reliably be estimated after only
one round of optimization, I performed a first round of optimization on this fungal
data-set and determined that the protocol that yielded the highest rate of global
score decrease per unit of time was the sampling in CCP distribution only, with
multiple samples per family.

23 rounds of optimization were performed under these conditions. Contrary to
what was observed in the mammalian data-sets, there does not appear to be an
increase in linearity measures during the optimization (there is actually a decrease:
from an initial value of proportion of gene with degree two of ~ 0.420 to a final
value of ~ 0.311).

Table 3.3 presents the changes in the number and average size (in number of
genes) of different kind of events (when taking co-events into account) while Figures

3.29, 3.30 and 3.31 exhibit the changes in the repartition of these events sizes (in

26However note that it is unlikely that the sizes reported here are the real ones, in part be-
cause the global score optimization is not complete for this data-set, and in other part because of
imperfections of the model.

2THere the weights are 0.7465697 for topologies, 1.927965 for reconciliations and 0.9660943 for
adjacencies.
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duplication horizontal transfer loss
Initial number 926 3 331 6 141
Final number 917 3 324 5 974
%change in number ~ —1% ~ —0.2% ~ —T%
Initial average size ~ 1.161 ~ 1.065 ~ 1.244
Final average size ~ 1.162 ~ 1.211 ~ 1.341
% change in size ~ 0.1% ~ 14% ~ 8%

Table 3.3: Evolution of the number and average size (in number of genes) of co-
events in the fungal data-set.
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Figure 3.29: Repartition of the loss sizes in number of genes between the initial
solution and the final one.

number of genes).

The number of events decreases or stagnates (rather than increases, as was the
case in the mammalian data-set). For duplications, this is accompanied by a decrease
in the number of gene duplications, which is coherent with the relative stability
(=~ 0.1% of change) of the average size of duplications where horizontal transfer and
losses lengthen.

During the optimization, I observe a slight increase in the number of adjacency
gains occuring (from 25 103 in the initial solution to 25 164, corresponding to an =
0.2% increase) while the number of adjacency breakages decreases by approximately
4% (from 2 422 adjacency breakages to 2 319). Again, these results are different
from the observation made on the mammalian data-set where both events saw their
number decrease, in particular adjacency breakages. However, in the mammalian

data-set these decreases were linked with the inference of new extant adjacencies,
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something that was not relevant and thus not made possible in this fungal data-set

(because it is composed of fully annotated and assembled genomes).
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Figure 3.30: Repartition of the duplication sizes in number of genes between the
initial solution and the final one.
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Figure 3.31: Repartition of the horizontal transfer sizes in number of genes between
the initial solution and the final one.

Aside from this difference coming from the nature of extant adjacencies in the
data-sets, these results on the fungal data-set and in the presence of horizontal
transfer still show several key differences with the results obtained on the mammalian
data-set.

It is worth noting that the bigger size of the data-set and the addition of transfers

significantly increased the time needed for a round of optimization. In particular
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the presence of transfers have greatly impacted the complexity of the two methods
to propose new solutions that make use of more co-evolution information (sequence
and reconciliation, and sequence, reconciliation and co-event). This has played in
the choice of the proposition method for this data-set and I expect an overall lower
per-round optimization rate than on the mammalian data-set.

This may explain the results on the evolution of linearity in this data-set : in the
mammalian data-set the (see Figure 3.23) increase in linearity measure was preceded
by a decrease phase. If this data-set optimizes more slowly, it is possible that it is
still in that initial decreasing phase. Alternatively, using the CCP distribution based
proposition method perhaps skews the results too much toward non-linear solutions.
Finally it is also possible that this is dependent on the data itself and that linear
solutions are just hard to attain.

On that note, when comparing the mammalian and fungal data-set another point
of divergence lies in the weights that were inferred for the different parts of the
score. In particular, the mammalian data-set gives more weight to adjacencies than
reconciliations (1.5 for adjacencies against 1.2 for reconciliations) while the fungal
data-set consider adjacency to be the less important of the two (1.0 for adjacencies
against 1.9 for reconciliations).

This implies that fungal global score (compared to its mammalian counter-
part) particularly favours solutions with less reconciliation events (accounting for
co-events) even when they imply more adjacency events (or, in other words, the
number of necessary reconciliation events to loose in order to compensate an addi-
tional adjacency event in the global score is lower in the fungal data-set than in the
mammalian one).

The relatively low weight of the adjacency in this data-set is due to the observa-
tion of many events of adjacency gains and breakages during the estimation of the
costs. If we consider that the fungal data-set spans about 5 times as much evolu-

tionary time than the mammalian one?®

, we understand that, comparatively, much
more events of rearrangement have happened in the fungal data-set and as such the
signal of co-evolution contained in the adjacencies has had more time to get lost.
This would explain the relatively low importance given to adjacencies as a source of
information in the fungal data-set. Note however that the weight of adjacencies is

non-negligible so that there is still some signal found in them.

Z8Divergence times estimated with timetree.org [last accessed 5th of August 2017].
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The optimization of this data-set leads to, on average, longer events, in particular
horizontal transfers that see their size increase the most, to the point where they
become longer, on average, than duplications (the longer events remain the losses).
Interestingly, despite them having a longer average size than duplication, several
duplications are longer than the longest transfer, maybe hinting at a mazimal size
for viable transfers (considering that to be successful a transfer has to be integrated
in its host genome), or at least at a lower variance in the size of transfers.

The results also show that, as a mechanism to increase the number of copies of a
gene, horizontal transfer seems to be preferred to duplications (despite a lower cost
for duplications), which is coherent with the observations made in [Szoll6si et al.,
2015 (on the same data-set).
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Chapter 4
Discussion / General Conclusion

The global score and the methods I developed to improve it can be seen as a strategy
to infer better individual gene trees thanks to the integration of information from
multiple sources. But it could also be seen as a work on the reconstruction of the
history of whole genomes that takes into account the heterogeneity of the entities
(genes families, adjacencies) they contain. In contrast with the hypotheses that are
made on the evolution of nucleotides when building a gene history (namely, total
co-evolution of nucleotides in the same gene, null co-evolution between nucleotides
of different genes), this genome history reconstruction does not make the hypothesis
that the different genes of the same genome co-evolve completely (i.e., they each have
a different tree and reconciliation), nor that they do not co-evolve at all (i.e., the
co-events and adjacency part of the score favour and describe co-evolution between
adjacent genes).

The score that 1 propose and the heuristic to optimize it are, in their current
implementations, tools that may benefit from a few further methodological improve-
ments (aside from simple optimization work).

It would be very interesting in particular to adapt them to an adjacency prob-
lem other than the ancestral gene order one. As I already mentioned the formulas
of DeCoSTAR are inherently tuned to this problem but they could be modified to
accommodate other biological networks such as metabolisms or protein interaction
networks. Aside from the inference of ancestral metabolisms/protein interaction
networks, which is interesting in itself, such a development could then be used to
answer several questions about the rate of appearance/disappearance of protein in-

teractions (which are linked to biological functions), the conservation of interactions
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after a duplication, or the gain of new ones after a successful horizontal gene transfer.

Another improvement that I would find interesting is about the way in which
co-events are scored. [ made the choice to score a co-event as much as a single event,
but one could make it depend on the co-event size. For instance, imitating the way
gaps are scored in some alignment algorithms, there could be an opening cost (paid
once per co-event) and an elongation cost (paid for each gene in the co-event)'.
Indeed the way in which the co-events are scored is bound to have an effect on their
inferred length, which is one of the thing that I would like to measure.

However even in its current form the method I propose can prove useful. As
[ show on a mammalian and fungal data-set, it is able to increase the congruence
between gene trees inferred independently, thereby leading to more coherent genome
histories as evidenced by longer inferred co-events (which requires congruence be-
tween neighbouring genes to occur). This increase in congruence is accompanied
by a departure of the individual gene histories from parsimony (in term of joint
topology and reconciliation). This hints at the idea that gene evolution is indeed
non-parsimonious, but also that the signal of reconciliation events that may be lost
to the individual gene can be found in its co-evolutionary partners (here, neighbour-
ing genes).

In the mammalian data-set, the global score improvement also leads to the in-
ference of more extant adjacencies, potentially leading to better assemblies. It is
also causing the inference of ancestral genomes that are more linear, which may be
taken again as the sign of more congruent gene histories.

Without adjacencies, events are seen at the scale of the single gene, but an
evolutionary event (a loss for instance) does not happen to a gene: it happens to a
chromosomal fragment. It seems more likely that this chromosomal fragment will
either be longer or smaller than the gene rather than correspond exactly to its size.
More so, this chromosomal fragment may only overlap partially with the gene. The
concept of co-events between adjacent genes that I develop here still uses the gene
as its smallest unit and as such it does not consider cases where an event is smaller
than the gene, or partially overlaps two genes (these questions are closer to the
homology detection and alignment problems). However co-events allow access to

the large events of loss, duplication and transfer that span multiple genes.

!Technically, what I did came down to fix the co-event opening cost at the cost of a single event,
and fix the elongation cost at 0.
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Indeed, for the mammalian and fungal data-set I am able to provide distribu-
tions of the sizes of events (at least in number of genes) both before and after the
global improvement. Furthermore, I show that, as I mentioned I expected, the im-
provement of the global score leads to the observation of longer events on average
(showing that independent inferences of gene histories are likely to underestimate
the size of co-events and that the global score can help provide another, co-evolution-
aware estimate). In both the fungal and mammalian data-set, losses are seen as the
(on average) longest events. When they are present (i.e., in the fungal data-set),
transfers are the events whose size increased the most during the global score im-
provement, to the point that they are reported as longer than duplications (while
they were shorter before the optimization).

Overall, T think there is reason to believe that the new gene trees obtained
through global score optimization are on average better (biologically speaking) than
the initial ones. As I already mentioned, they display more congruence between
each other, thereby implying a more coherent history of genomes. Moreover, the
global score takes into account some signal that is proper to each family (i.e., the
topology part of the score) which still allows them to possess an history of their
own. In other words, the construction of the global score accounts for cases where
there is enough signal in the alignment that the gene has an history different from
its neighbours. However if there is strength in the compromise between the different
sources of information that I consider, one can also see that it is heavily dependent
on the values of the parameters of the score, in particular the weights associated to
it different parts. I showed in my results a way to infer them but it makes no doubt
that a more complete exploration of the space of parameters, based on a probabilistic
model, would be more satisfying (however, I already mentioned that for adjacencies,
no model that takes transfers into account exists yet, so that many methodological
developments seems needed before a fully probabilistic version of the global score is
attainable).

In any case, it could be interesting to design tests to check whether or not the
global score indeed leads to better gene trees. One way to do this could be through
simulations. However such a simulation should also model adjacencies and gene co-
evolution. Another method could be to cut (or duplicate) a single gene in two and
then reconstruct the history of each half (or duplicate) both independently and with

the global score (considering adjacencies between the different halves/duplicates)

175



However such an example is more a test of the robustness of the gene tree inference
and ignores cases where the co-evolution between tree are not total, but partial
(and these cases could be argued to be the more interesting because when there is
a total co-evolutionary relationship, one could just put the sequences in the same
alignment).

On another note, there are things to be said about the gene as an evolutionary
unit. I (re-)defined it as the sum of different co-evolutionary relationships, actually
making it a somewhat abstract entity disconnected from its sequence (as it co-
evolves with it). In many cases in this document, the gene as a unit could seem
limited, either because it was too small (and we add to link genes together to detect
bigger events), too big (for the detection of smaller rearrangements for instance).
Given the problem it causes, one could be tempted to discard the gene entirely and
operate directly at the scale of nucleotides (this comes down to the idea of each
nucleotide being its own mini-gene that I mentioned in the introduction). Of course
a nucleotide by itself rarely contains enough signal to reconstruct its history. But
with a method such as the ones based on the global score, that can combine sequence
signal with the signal that is in neighbours, reconstructing the history of the single
nucleotide may become accessible. Surely such a thing is not tractable for instances
with more than a few nucleotides and it may be too extreme to discard the gene as
an evolutionary unit entirely as there indeed exists blocks of conserved nucleotides,
whose link together is important enough that we group them together. However
such considerations help put into perspective the hypotheses that we make when we
define an evolutionary unit and infer its history, be they for biological, statistical or

computational purposes.
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Scaffolding mode

DeCoSTAR can be used to infer some extant adjacencies, typically to account for badly assembled
genomes. In this case, the cost to put a new adjacency between two leaves (of the same species) is
defined by the formulas:

c1(a,b) = =T = log(p)
co(a,b) = =T xlog(1 — p)

Where: p = Fuq4; * BP

_ Break
T= SPJ*zog(%))

. _ #ctg—#chr
And: BP = 2xAtctgx(#ctg—1)

#ctg : number of contigs

#chr : expected number of chromosomes

F,q; is defined as follow. We make the assumption that a genome’s organisation is linear: a
gene can have at most two neighbors.

If the extremity of the adjacency a (respectively b) already has two neighbors (ie. is in the
middle of a contig), then this adjacency is not possible: F,4 = 0 (leading to ci(a,b) = 00 )

If both extremities of the adjacency already have one neighbor, F4 = 1.

If the extremity of the adjacency a (respectively b) already has one neighbor and the extremity
b (resp. a) has no neighbors, then F,4 = 2, to account for the fact that a could be either one of
the two neighbors of b.

If both extremities of the adjacency have no neighbors, Fi4 = 4, to account for the different
senses in which the two genes a and b could be linked together.

In the special case where DeCoSTAR is used with oriented adjacencies, a and b aren’t genes,
but extremities of genes (ie. a gene start or stop). We consider that gene extremity is always linked
to the other extremity of the same gene. As a consequence, Fig4; is always computed considering
that a and b have one more neighbor than before.

SPI, or Scaffolding Propagation Index, is a parameter that accounts for the ditribution of
poorly assembled genomes along the species tree. More precisely, it is the size of the clade ¢ where



DeCoSTAR can still infer new adjacencies even though the adjacency has no extant homologues in
¢ (ie. the only extant adjacency that support the new one is on the outgroup of this clade).

Data-sets

18 Anopheles genomes

The species tree is taken from (Fontaine et al., 2015) , and constructed from a concatenate of genes
on the X chromosome. Gene families have been obtained from (Neafsey et al., 2015). There are
17 780 gene families in the database, and we discarded gene families with only 1 gene, families
containing a gene included in another gene, and a few families which did not pass an alignment
quality filter (no resulting site after GBlock). This resulted in 14 940 families. Gene trees were first
inferred by RaxML with Muscle alignments as input, then corrected with ProfileNJ, keeping only
100% bootstrap support branches. Adjacencies were then computed as the set of consecutive genes
on the same scaffold. DeCoSTAR was used with scaffolding mode and Boltzmann sampling with a
temperature of 0.05.
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DeCoSTAR’s Documentation

DeCoSTAR: Detection of Co-evolution version 1, 24/11/2016

Given a species tree S, a set of gene family (unrooted) tree distributions G, a set of extant
adjacencies A and a set of costs for adjacencies events (adjacency gain and adjacency breakage),
DeCoSTAR can compute:

e reconciled gene trees R from the gene trees in G, such that these forms a most parsimonious
reconciliation between S and G according to the TERA algorithm described in [1].



e an history of the given adjacencies in A along the reconciled gene trees R such that this
history minimizes an adjacency gains and breakages cost(with respect to their relative costs);
according to the models described in [2][3].

The history of adjacencies comes in the form of one or several adjacency trees (phylogenetic
trees in which nodes represents adjacencies between the nodes of gene trees). We refer to such an
history as an adjacency forest. Note that DeCoSTAR can, but usually does not output adjacency
forest but instead provide lists of inferred adjacencies in ancestral species.

Rather than an adjacency forest minimizing the number of adjacency gains and breakages,
DeCoSTAR can sample adjacency forests in such a manner that adjacency forests with a lower
adjacency cost have a higher chance to be sampled. This is done according to the algorithm
described in [4], extended to include transfers.

It is also possible to use DeCoSTAR to infer adjacencies in extant species as described in [5] by
using the scaffolding mode.

There are three required parameters. The first is the species tree file (species.file), which
contains a tree in newick format. The second is a file containing the names (one per line) of files con-
taining gene tree distributions with one distribution per gene family (gene.distribution.file).
Even if each gene tree distribution only contains one tree (for instance if you used a maximum
likelihood approach to get that tree), DeCoSTAR ask for one file per gene family. The third is a
file containing the extant adjacencies (adjacencies.file). There must be one adjacency per line.
An adjacency correspond to a couple of leaves names separated by a space.

Description of the software parameters

The parameters that are boolean (ie. whose default is true or false) should be specified using 0 or
1 (for, respectively, false and true). Parameters must be given using the format <name>=<value>
(note the absence of >~ before the option name as well as the absence of space after the ’=’. For
instance, a typical command line might look like:

DeCoSTAR species.file=my.sp.tree.txt gene.distribution.file=my/distribs.txt adjacencies.file=adjs.t:

For a non dated (but with transfer) analysis where the cost of a single adjacency gain is 3 (the
other events will have their default costs).

Input parameters:

e species.file required. Species tree file (newick). NB: default behavior wants it to be
ultrametric if transfers are used (use dated.species.tree=0 to circumvent)

e parameter.file no default value. A file with input parameters (one per line)
e gene.distribution.file required. Gene distribution files file (one file name per line)

e adjacencies.file required. Adjacencies file (one adjacency per line; leaf names separated
by a space)

e dated.species.tree default : true. The species tree is ultrametric and dates will be used
to subdivide the trees in time slices.



char.sep default : ’>_’. Character separating gene names in gene tree files. One character
only. Caveat : I you decide to use char.sep=’1|’, be aware that the character > |’ is also
used as a separator in the newick output of reconciled trees (if you use write.newick=1 ).

ale default : false. Gene tree distribution are ALE files

already.reconciled default : false. Gene tree distribution are reconciled gene trees in
recPhyloXML format. Will skip the reconciliation phase

rooted default : false. Specify that the root of the given gene trees must be kept. This option
turns off amalgamation when switched on.

Reconciliation parameters:

In its default form, DeCoSTAR performs the reconciliation of gene families using the TERA algo-
rithm [1]. As such, it include some of the algorithm’s options.
The options that concern reconciliation are:

with.transfer default: true. Allows transfers in the reconciliation and adjacency histories
reconstruction.

dupli.cost default: 2. cost of a single gene duplication
HGT. cost default: 3. cost of a single Horizontal Gene Transfer
loss.cost default: 1. cost of a single gene loss

try.all.amalgamation default: true. try all possible amalgamation when reconciling gene
trees. Otherwise only the best tree (ie. The most frequent) of the distribution is used.

Topology.weight default: 1. In the case of amalgamation, this is the weight associated to
the topology part of the score guiding the reconciliation

Not all options are included. In the case were some specific, non-included, options are re-
quired, it is recommended to perform the reconciliation independently using ecceTERA (or any
other reconciliation software) and then to directly give the reconciliation to DeCoSTAR (using
already.reconciled=1).

Basic adjacency history parameters:

Again.cost default: 2. Cost of a single adjacency gain

Abreak.cost default: 1. Cost of a single adjacency breakage

Adjacency history sampling parameters:

use.boltzmann default: false. Use Boltzmann sampling for the adjacencies history computa-
tion.

boltzmann.temperature default: 0.1. Temperature to use in the Boltzmann sampling (if

used)

nb.sample default: 1. Number of samples to get from the adjacency matrix. NB: it can be
used together with use.boltzmann or not.



Adjacency history assembly related parameters (scaffolding mode [5]):

e scaffolding.mode default : false. Use scaffolding algorithm to improve extant genomes
scaffolding/assembly.

e chromosome.file no default value. A file containing the number of chromosome in each each
species (one species per line, each line comprised name of the species followed by the number
of chromosome, separated by a tabulation)

e adjacency.score.log.base default :10000. Used in the case where the adjacency file also
contains a score between (0 and 1. Base of the logarithm applied to this score.

e scaffold.includes.scored.adjs default : false. Used in the case where the adjacency file
also contains a score between 0 and 1 AND scaffolding.mode is true. If true, include the
adjacencies with a score j 1 in the computation of the number of contigs.

Advanced adjacency history parameters:

e Cl.Advantage default: 0.5. Between 0 and 1. Probability to choose C1 (presence of adja-
cency) over CO (absence of adjacency) in case of a score tie at the root of an equivalence
class

e all.pair.equivalence.class default: false. Compute adjacency histories for all pair of
gene families (even if they share no adjacencies).

e bounded.TS default: false. Use bounded time slices in adjacency history computations (only
if the species tree is dated)

e always.Again default: true. Always put an adjacency Gain at the top of an equivalence class
tree

e absence.penalty default: -1. If set to -1 (the default), nothing changes. Otherwise, specify
the cost of having an adjacency at a pair of leaves which are not part of the list of adjacencies
given at initialization

e substract.reco.to.adj default: false. If set to 1, the weighted cost of a reconciliation
event will be used to favor co-event in the adjacency matrix computation. Unavailable for
Boltzmann computation.

e Reconciliation.weight default: 1. Weight of the reconciliation events when substract.reco.to.adj=1

e Adjacency.weight default: 1. Weight of the adjacency events when substract.reco.to.adj=1

Output parameters:

e verbose default: 1. Show progress and timing.

0: nothing is reported short of error.
1: basic report (default).
2: various information about reconciliation, adjacency matrix and backtracking
3: maximal amount of information



e wyrite.newick default: false. Use newick format rather than phyloXML-like format for
ouputs.

e hide.losses.newick default: false. If true, losses and the branches leading to them will be
removed from newick formatted output.

e write.adjacencies default: true. Write the adjacencies inferred in ancestral species in a
file.

e write.genes default: false. Write the genes inferred in ancestral and extant species.
e output.dir default: none. Directory to print files in.
e output.prefix default: none. A prefix to prepend to all output files.

e write.adjacency.trees default: false. Write the inferred adjacency trees.

Input formats:

The default parameters assume an ultrametric dated (i.e., with branch lengths), binary species tree.
An undated species tree is input using dated.species.tree=0.

The gene trees are expected to be unrooted and in a newick format (unless the rooted option
is used). Leaves names should be composed of the name the the species in which the leaf is and
the gene name, linked by a separator (by default, this separator is >_’ and can be changed using
char.sep). Rather than gene trees, the user may supply ale files instead (specified with ale=1),
which are files that sum up a gene distribution in the form of conditional clades probabilities. Such
files can be obtained with the ale [6] software. If the gene family ave already been reconciled (for
instance if you don’t want to use the same method as DeCoSTAR), they can be provided instead
of the gene tree distributions (with already.reconciled=1) . Reconciled trees should be provided
using the recPhyloXML format (see http://phylariane.univ-lyonl.fr/recxml/ for a description of
the format).

The adjacencies given in the file (adjacencies.file) may present two additional fields describ-
ing the orientation of the genes forming the adjacencies. These orientations are specified using the
>+2 and ’-’ character (respectively for a sense and anti-sense gene). This will cause DeCoSTAR
to treat the extremities of a gene as two different entities when it comes to adjacencies (but not
reconciliation : the two extremities of a same gene have the same history).

Additionally, the adjacencies given in the file (adjacencies.file) may have a third field that
should be a number between 0 and 1. This number will be used as a score denoting the confidence
that the adjacency really exists (1 meaning that the adjacency is certain; 0 that the adjacency is
not possible) that DeCoSTAR algorithm will take into account, allowing the possibility to create
adjacency histories without this adjacency. This is an advanced functionality, and it is linked to
the option (adjacency.score.log.base) which determine the base of the logarithm that is used
to go from this O-to-1 score to a parsimony cost.

If both orientation and score are specified for an adjacency, they should come in that order:
orientation, then score; such that a valid line could look like:

gl g2+ + 0.9

Rather than being all provided in the command lines, arguments can be given in a file spec-
ified with the parameter.file argument. In that file, parameters can be given using the format



<name>=<value>. Any parameters given on the command line will take precedence and the dupli-
cated parameter will be ignored.

Output formats:

If the output.dir option has been used, all file will be written in the specified directory. Otherwise
they are written in the current directory.

If write.adjacencies is set to true (it is by default), DeCoSTAR will output the a file contain-
ing the adjacencies inferred at ancestral speciation nodes and leaves such that each line represent
an adjacency. The fields of these lines are separated by spaces and correspond to, in order:

e the species the adjacency is in

e the gene forming the first extremity if the adjacency

e the gene forming the second extremity if the adjacency

e the orientation of the first extremity if the adjacency (as described in the input format section)

e the orientation of the second extremity if the adjacency (as described in the input format
section)

e the eventual score given to that adjacency at input (NB: ancestral adjacency have an input
score of 0)

e the frequency of observation of the adjacency (ie. how many time the adjacency was observed
across all sample divided by the number of samples)

Ifwrite.genes is set to true (it is set to false by default), DeCoSTAR will output a file describing
all extant and ancestral genes. Each line correspond to one gene and begins with the code of the
species the gene is in followed by the gene name followed by the list of the gene’s extant descendants
(all separated by spaces).

DeCoSTAR will also output the species tree and will create a reconciliations.suffix file. If
write.adjacencies.trees isset to true (it is set to false by default), then an adjacencyTrees.suffix
file will also be written. Here suffix is either xml’ or ’newick’ depending on the chosen output
format. These files contain respectively the reconciled tree of each gene family and the adjacency
trees computed from the extant adjacencies.

By default, all trees are written in XML format. The species tree follows a classical phyloXML
format. The reconciled gene tree are in the recPhyloXML format (see http://phylariane.univ-
lyonl.fr/recxml/ for a detailed description of the format).

Adjacency trees follow a format close to the recPhyloXML one, adapted to include adjacency
related events. As each node represent an adjacency, its given name is actually the name (or the id,
if they have no name) of the two genes it links, separated by ’-’. Each clade has a <eventsAdj>
tag that contains an ordered list of event the adjacency has undergone. Each event has a coevent
property. If the coevent property is set at \1", then this indicate that the event spanned both end
of the adjacency at the same time. If it is set at \0", then it means that the event only spanned one
end of the adjacency. There is an additional event when compared to recPhyloXML: the adjBreak
event which marks an adjacency breakage. Furthermore, the different adjacency equivalence class
families (ie. a group of adjacencies linking gene from the same couple of gene families) are grouped



together under the <EquivalenceClassFamily> tag which specifies which gene families are linked.
If several samples were done, then an additional <sample> tag is present.

If the option write.newick has been activated, reconciled gene trees and adjacency trees will
be written in a newick format where reconciliation or adjacency information will be written in place
of the bootstrap.

This information consists in the name of the gene (or its id in the case of an internal node),
or the name of the two genes it links for adjacency trees, followed by the event associated with
the node, the species it is in and the time slice it occurs at (if applicable). These fours fields are
separated by a ’ |’ character. For reconciliation trees, events may be:

e Extant : for leaves

e Spe : speciation

e Loss : gene Loss

e Dup : gene duplication

e SpeOut : speciation to an extinct/unsampled lineage (otherwise called SpeciationOut)
e Reception : transfer reception

e Null : no event (to account for time slices)

e BifQut : bifurcation in an extinct/unsampled lineage (otherwise called BifurcationOut)

For adjacency trees, the following events are added:

e any reconciliation event might have the prefix \co-" marking the fact that both extremities
of the adjacency underwent the same event at the same time (for instance, a co-duplication
means that the two adjacent genes were duplicated together)

e Breakage : adjacency breakage

The trees linking different gene families are separated by an information line beginning by ’>’
and specifying which families are linked and, if necessary, the sample the trees belong to.

NB: in this model of reconciliation, lateral gene transfer are modeled as a process where a gene
first undergoes a speciation to an extinct or unsampled lineage of the species tree (otherwise called
SpeciationOut) where it evolves for a certain time before being transferred from this unsampled
lineage to a sampled lineage (ie. a branch) of the species tree (transfer reception). See [1] or [5] for
a more detailed view of this process when applied to reconciliation inference.

NB2: adjacency trees do not explicitly contain any adjacency gains because any adjacency gains
actually gives rise to a new adjacency tree. In other words, there is an implicit adjacency gain at
the root of every adjacency tree.
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Abstract

for genes with low to moderate expression.

Background: Forming a new species through the merger of two or more divergent parent species is increasingly
seen as a key phenomenon in the evolution of many biological systems. However, little is known about how expression
of parental gene copies (homeologs) responds following genome merger. High throughput RNA sequencing now
makes this analysis technically feasible, but tools to determine homeolog expression are still in their infancy.

Results: Here we present HyLiTE — a single-step analysis to obtain tables of homeolog expression in a hybrid or
allopolyploid and its parent species directly from raw mRNA sequence files. By implementing on-the-fly detection of
diagnostic parental polymorphisms, HyLiTE can perform SNP calling and read classification simultaneously, thus
allowing HyLIiTE to be run as parallelized code. HyLiTE accommodates any number of parent species, multiple data
sources (including genomic DNA reads to improve SNP detection), and implements a statistical framework optimized

Conclusions: HyLITE is a flexible and easy-to-use program designed for bench biologists to explore patterns of gene
expression following genome merger. HyLiTE offers practical advantages over manual methods and existing
programs, has been designed to accommodate a wide range of genome merger systems, can identify SNPs that arose
following genome merger, and offers accurate performance on non-model organisms.

Keywords: Hybrid, Allopolyploid, Homeolog, RNA-seq, Read assignment

Background

While evolution is usually a gradual process, the cre-
ation of a new species through the merger of different
parent species occurs near instantaneously [1]. Although
increasingly recognized as an important process in the
evolution of many biological systems [2-5], how different
gene copies (homeologs) are expressed following genome
merger remains a major outstanding question [6,7]. Most
studies have been restricted to observing just a few genes,
thus limiting the ability to study interactions between
competing gene regulation systems [8]. High throughput
mRNA sequencing now permits whole-genome screen-
ing of hybrid and allopolyploid gene expression [9,10].
However, identifying the parental origin of mRNA reads
remains challenging, especially for researchers without
advanced bioinformatics skills [11].

*Correspondence: m.p.cox@massey.ac.nz

Statistics and Bioinformatics Group, Institute of Fundamental Sciences,
Massey University, Palmerston North, New Zealand
Full list of author information is available at the end of the article
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To fill this gap, we have developed HyLiTE — Hybrid
Lineage Transcriptome Explorer — to produce tables of
homeolog expression data from raw mRNA read files in
a single step. HyLiTE automatically i) maps reads to a
reference genome, ii) masks gene regions with low read
coverage, iii) identifies polymorphisms that are diagnos-
tic of parental lineages, iv) classifies reads to parental
types, and v) produces detailed summary reports of gene
expression in both the hybrid or allopolyploid and its par-
ent species. The final product — tables of homeolog read
counts — can be used immediately for downstream anal-
yses (such as determining differential expression between
biological conditions, and between the new species and its
parents).

Implementation

The primary design directives behind HyLiTE were i)
ease of use, ii) runtime efficiency, and iii) use with non-
model organisms (which encompasses most hybrid and
allopolyploid species). Other key features include:

© 2015 Duchemin et al,; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication

waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise

stated.
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e Accommodating any number of parent species (for
instance, three-parent allopolyploids such as modern
hexaploid wheat) [12].

e The ability to study systems with both haploid or
diploid parents, thus allowing hybrids or
allopolyploids with different homeolog and allelic
copies.

e Using gene references from any species closely
related to the study system (hybrid and allopolyploid
species often lack good genome resources).

e Accommodating any number of biological replicates
(and boosting SNP identification by combining
information across replicates).

e Identifying new polymorphisms that have arisen
within the hybrid or allopolyploid (especially
important in species derived from older merger
events).

e Improving SNP calling by using (optional) genomic
DNA information in addition to high throughput
mRNA sequences.

e Providing statistical validation of SNP calls and
automatically masking ‘polymorphisms’ with low
statistical support.

e An experimental feature that identifies putative
chimeric genes (i.e., genes in which the homeologs
have recombined within the hybrid or allopolyploid)
[13], but see Additional file 1 for details on current
limits of accuracy.

The standard HyLiTE analysis, which will be adequate
for most users, comprises a single, short command line.
However, advanced users have complete flexibility to
override individual steps. For instance, by default, Bowtie2
is used for read mapping, but HyLiTE can be run with
any mapping software that returns the standard SAM
mapping format.

Because HyLiTE analyzes each gene independently, the
software has low RAM requirements and runtime is linear
with the number of genes under study. This indepen-
dence between genes also allows HyLiTE to be parallelized
via optional executables (see project website for details;
http://hylite.sourceforge.net). HyLiTE regularly autosaves
the run state, and analyses can therefore be stopped
and re-started from the last checkpoint. Extensive docu-
mentation about the algorithms implemented in HyLiTE,
software validation and benchmarking against alternative
pipelines is provided in Additional file 1.

Results and discussion

Output

The main output of HyLiTE comprises a list of read counts
for each homeolog in each biological replicate. Using pres-
ence and absence of diagnostic parental SNPs, reads are
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classified as i) derived from a given parent, ii) consistent
with two or more parents (i.e., lacking diagnostic SNPs),
or iii) unknown (i.e., masked due to low read coverage).
The last two classes are equally uninformative for deter-
mining homeolog expression, but can distinguish whether
improvements may be possible with additional sequence
data (the ‘unknown’ category) or whether part of the
gene is simply uninformative for ancestry (no diagnos-
tic parental SNPs identified). Finally, each read is marked
with an additional flag if one or more new SNPs are
detected within the hybrid or allopolyploid.

Software comparison

A major point of difference between HyLiTE and alter-
native approaches (e.g., PolyCat [14]) is its robust sta-
tistical assessment of SNP calls and automatic masking
of ‘polymorphisms’ with low statistical support. Due to
the substantial error rate of high throughput sequencing
technologies, sequencing errors can easily be confused
with genuine polymorphisms in genes with low expres-
sion (and hence, low read coverage). The probability that
a polymorphism at any given nucleotide position is a SNP
rather than an error is given by a binomial distribution
conditioned on the coverage level. Nucleotides with cov-
erage less than this threshold are masked, but because
coverage varies widely across even a single gene, typically
only small, uninformative regions of any given gene are
masked. This ‘dynamic masking’ substantially improves
the accuracy with which reads are assigned to homeologs
for genes with low to moderate expression. Detection of
expression levels can be improved further by including
genomic DNA reads due to the accuracy this imparts to
SNP calling (see Additional file 1 for details).

Worked examples

Fungi. Species in the fungal genera Epichloé and Neo-
typhodium, already well known for their symbiotic rela-
tionships with grasses in temperate pastoral systems, are
increasingly becoming the dominant model system for
studying genome merger in fungi [9,15,16]. The most
well studied example is Lp1, an economically important
allodiploid asexual species formed from the union of a
haploid sexual species, E. typhina, and a haploid asex-
ual species, N. lolii (~5% divergence). As HyLiTE had
not yet been developed, the Cox et al. study instead
applied a two-reference approach: gene references were
generated separately for E. typhina and N. lolii using
ancestry informative SNPs, and homeolog expression was
then ascertained via high stringency mapping. Although
estimates of gene expression are highly correlated (r =
0.83,P « 0.0001), HyLiTE assigns an average of five
times as many reads to homeologs as the two-reference
approach, an improvement almost entirely due to reduced
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gene masking (Figure 1A). 86% of reads are assigned
to homeologs, with the remainder classified as parental
uninformative or unknown. PolyCat [14] assigned fewer
reads to homeologs (Figure 1B), particularly for genes
with low to moderate expression (see Additional file 1 for
details).

Reads per Gene (Log 10)

I I I I I I I
0 1000 2000 3000 4000 5000 6000

Reads per Gene (Log 10)

T T 1 1 1 T 1
0 1000 2000 3000 4000 5000 6000
Genes (Ranked by Total Expression)

Figure 1 Comparison between HyLiTE and A) the results of the
Cox et al. study [9] and B) PolyCat [14] for Epichloé fungal data.
The black lines indicate the total number of reads that map to each
gene, ranked by expression level. Green points indicate the number
of reads assigned to homeologs by HyLiTE. Red points in A) indicate
the number of reads assigned to homeologs in the Cox et al. study,
while blue points in B) indicate the number of reads assigned to
homeologs by PolyCat. The substantial improvement in read
assignment by HyLiTE was obtained using its default settings.
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Plants. To show application to a plant system, we
also analyzed gene expression in a natural cotton allote-
traploid, Gossypium hirsutum, together with diploid rep-
resentatives of the A (G. arboreum) and D (G. raimondii)
genomes (~3% divergence) [10]. Assignment accuracy
was tested by classifying known reads from the two
diploid species. HyLiTE assigned reads to homeologs with
a very low error rate (1.6%; see Additional file 1 for
details). It also identified 46,206 new SNPs specific to G.
hirsutum.

Animals. Finally, we analyzed gene expression in a syn-
thetic allotetraploid fish derived from diploid goldfish
(Carassius auratus) and diploid common carp (Cyprinus
carpio) (~6% divergence) (NCBI BioProject accession
number: PRINA82763). The very small number of reads
available per gene (an average of only 15) caused HyLiTE
to reject most SNP calls and therefore classify the major-
ity of reads as parentally uninformative. However, the
reads for which sufficient information was available to
assign parental ancestry showed a very low error rate
(0.22%).

Conclusions

The formation of a new species from the merger of two
or more different parent species is important in the evo-
lutionary history of many eukaryotic lineages. Hybrid and
allopolyploid species carry multiple copies of each gene
(homeologs), and while homeolog expression levels can
be determined from high throughput RNA sequence data,
assigning reads is extremely challenging. Here, we have
developed HyLiTE to automate the process of moving
from raw mRNA sequence files to tables of homeolog
expression in a hybrid or allopolyploid and its parent
species. This single-step analysis is specifically designed
for ease-of-use, particularly for non-computational scien-
tists. HyLiTE therefore allows gene expression patterns
to be explored on a whole-genome scale even for species
with very complex patterns of genome merger.

Availability and requirements

Project name: HyLiTE

Project home page: http://hylite.sourceforge.net
Operating systems: Linux, OS X, Windows
Programming language: Python

Other requirements: None

License: GNU GPL v. 3.0

Any restrictions to use by non academics: None

Additional file

Additional file 1: Algorithms, validation and benchmarking.
Documentation of algorithms, software validation and benchmarking
against alternative pipelines.
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1 Algorithm for Detecting SNPs

Error model

A single nucleotide mismatch in a read relative to the reference can have two causes: either a genuine polymor-
phism, or an error introduced by the sequencing technology.

Consider a unique ¢, the probability that an error is generated on a read by the sequencing technology at a
given position. Every base in a read has probability £ of being an error. (The denominator is three because,
for any given position, one base is the reference, while the other three bases are tested independently as being
either SNPs or errors).

The distribution of errors along reads is not uniform. However, for a given coordinate in a gene (with the
exception of boundary conditions at gene extremities), the corresponding position in aligned reads does tend
to be uniformly distributed. Further, it is common practice to trim bases from reads when quality scores drop
below some low threshold, thus guaranteeing a minimum level of sequence quality for the entire read [1]. We
favor the SolexaQA package to perform this trimming (http://solexaqa.sourceforge.net).

It follows that the occurrence of a specific incorrect base (i.e., a base that does not represent the true geno-
type) at a given coordinate in the reference gene follows a binomial law with parameters

p=5
n = number of reads (from the same organism, but across all genomic DNA and RNA samples) mapping at
that position (i.e., the local coverage)

If the number of reads carrying an observed mismatch is a statistical outlier under such a binomial law, the
variant can be considered a SNP rather than an error. (Note that the reverse does not necessarily hold: a gene
with low expression might produce so few reads that a true SNP cannot be distinguished from sequencing error.
See section 4 on the benefits of using genomic DNA reads to improve expression estimates below).

Parameter Values
Using the SolexaQA package [1], the error rate € of the Cox et al. dataset [2] was determined to be 0.02. (This
value is typical of current Illumina sequence datasets; unpublished results). Therefore

p=L = (1)

The value n was determined as the number of reads at each coordinate along the gene (i.e., the local coverage).

The statistical threshold o was determined in the following way. As testing for the presence of SNPs is
performed at every coordinate in every gene, a very large number of independent statistical tests are necessarily
run. Therefore, the standard statistical « (e.g., 0.05 or 0.01) must be corrected for multiple testing. Because a
priori we do not know the number of tests m that need to be performed, other than m > 1, we employ the
Rough False Discovery Rate (RFDR) to correct our « in the limit m — oo

alm+1)
2m

(2)

Agdjusted =
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Figure S1 Decline in the Minimum Detected Expression Ratio (MDER) with increasing
coverage. Upper panel: coverage from zero to 200; lower panel: enlargement of region showing
coverage from 10 to 50.

and for large m

«Q
Ugdjusted ~ 5 (3)

It follows that a global probability threshold of 0.01 would require an adjusted o = 0.005. However, we note
that there are currently major concerns around statistical testing in scientific research, particularly around low
P value thresholds. Therefore, following the guidelines of Johnson et al. [3], we advocate for a more conservative
a of 0.001.

Minimum Coverage Rates
The local coverage rate n is a key parameter that allows us to distinguish between genuine SNPs and errors. As
the binomial law is discrete, small values of n return probability estimates of whether a mismatch is a genuine
SNP (or an error) in choppy, discrete steps (see Figure S1). Because the local coverage n changes along the
gene, we have developed an algorithm that determines the lower limit of n for which the binomial law returns
probabilities with poor reliability.
Consider, for example, local coverage of just two reads. The expected number of errors is effectively zero,
which implies that a true error at that gene coordinate would be called as a SNP. This is obviously undesirable.
For haploid organisms, only one genotype is expected at any gene coordinate. Given binomial probabilities,
coverage of three reads is sufficient to detect genuine SNPs with high reliability. If coverage is less than three
reads, the gene coordinate is masked and is not used to classify reads to parental types.
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For polyploid organisms, multiple genotypes are possible. Further, RNA-seq data does not guarantee equal
representation of each allele (either by chance, or because the different alleles do not have the same expression).
Therefore, we consider the ratio of expression between the least expressed allele and the sum of the remaining
alleles. Consider, for example, that one allele in a parent is expressed ten times, while the other is expressed
only once. The expression ratio would be % = 0.1. This lets us define the Minimum Detected Expression
Ratio (MDER) as the limit below which a SNP on the least expressed allele could be detected as an error. So,
for given «, p and n, the MDER corresponds to the expected occurrence of a specific error (€4,) divided by

N — Eeap

MDER = =< (4)
n— Eexp

Figure S1 (upper panel) shows the improvement in MDER with increasing coverage. (The limit tends to
p as n — o0). Note that the ‘choppy’ curve results from the discrete nature of the binomial law. In short,
however, the higher the coverage, the better a large difference in expression level between parental alleles can
be distinguished. Figure S1 (lower panel) shows an enlargement of the upper panel, with a focus on coverage
levels that are currently in a more cost effective range.

At 20-fold coverage, the MDER is 0.18 (exactly %), which only improves (i.e., declines) as the coverage
increases. We propose this value as a minimum coverage level for polyploid species. Put differently, an MDER,
greater than or equal to 13—7 (i.e., a minor allele frequency greater than or equal to 0.15) will always allow
SNPs to be detected with high reliability if the coverage level is greater than or equal to 20. Under default
settings, gene coordinates with coverage lower than 20 reads are masked. Both of these thresholds (haploid and
polyploid) can be changed by the user.

Implementation
With the statistical framework for SNP detection in place, describing the SNP calling algorithm implemented
in HyLiTE is relatively straightforward. At a given gene coordinate for a given organism:

1 Temporarily aggregate all genomic DNA and RNA reads. Thus, the local coverage becomes the sum of
local coverages across the different samples.

2 Count every genotype and compare the values obtained to their expected counts under the binomial
distribution.

3 Select the k best genotypes (where k is the ploidy of the organism).

4 Consider each statistically validated genotype that differs from the reference as a true SNP.

Note that temporarily combining data across samples increases the total coverage available for an organism,
decreases the MDER, and therefore reduces the number of gene coordinates that need to be masked. (See
section 4 on the use of genomic DNA reads to improve RNA read classification).

For example, at a given gene coordinate with reference A, a hybrid or allodiploid might have two biological
replicates with counts:

samplel: A:14 T:1 G:54 C:2
sample2: A:5 T:0 G:14 C:0

After temporarily aggregating the two replicates, the counts become:

A:19 T:1 G:68 C:2
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The total coverage is 90 reads, which greatly exceeds the minimum suggested coverage threshold for polyploids
(n = 20). According to the binomial distribution at this coverage level, calling a SNP requires the same
mismatch to be observed in at least five reads. Therefore, only two possible genotypes remain: A and G.
(Correspondingly, the observed mismatches at T and C are called as sequencing errors). Because the organism
is diploid in this example, up to two possible genotypes can be present at the same gene coordinate and both
of the called genotypes are retained. As A is the reference state, we conclude that a SNP exists with the
alternative state G, and that both A and G states are present.

Alternative Coverage Thresholds
We show above that the default coverage thresholds used by HyLiTE offer a good trade-off between sensitivity
and reasonable coverage goals. However, users are encouraged to tune these thresholds depending on their
biological questions and the quality of their sequence data. This can be easily managed by changing the two
options ‘“min_coverage_haploid’ and ‘~min_coverage_polyploid’ in the HyLiTE command line.

Users can also change the desired « value and expected error rate by employing an alternative parameter file

with the command flag ‘—alternative_params’. The alternative parameter file would look similar to this:

#SNP detection
MIN_COVERAGE_HAPLQID = 3
MIN_COVERAGE_POLYPLOID = 20
EXPECTED_ERROR_RATE = 0.02/3
ALPHA = 0.001

alternative minimum coverage for haploid organisms
alternative minimum coverage for polyploid organisms

alternative total error rate

H H H H

alternative alpha value

2 Algorithm for Classifying Reads
The primary purpose of HyLiTE is to determine the parental origin of high throughput RNA reads from a
hybrid or allopolyploid. The following sections describe how this goal is achieved.

Fingerprints
We define the sequence of SNPs present, absent or masked (due to poor coverage) at specific coordinates along
a gene as a ‘fingerprint’. Specifically, we distinguish two types of fingerprint:

e Parent fingerprints: where information about the presence, absence and masking of SNPs are stored,
gene-by-gene, for each parent.

e Child fingerprints: where every read in the hybrid or allopolyploid has its own fingerprint, referencing
presence or absence of every SNP on that specific read.

Note that child fingerprints do not allow masking. As noted above, we encourage poor quality read segments
to be trimmed from the dataset (e.g., using the ‘DynamicTrim’ function of the SolexaQA package [1]).

Read Tagging for Diploid Parents
Diploid parents can have up to two fingerprints at each SNP position to allow for allelic heterozygosity. Ac-
counting for this heterozygosity is achieved locally through read tagging (viz. linkage analysis).

Read tags have three possible values: unassigned, gene copy 0, and gene copy 1. Each parent is initiated with
an unassigned tag. When a heterozygous position is detected, the algorithm first looks for existing reads with
an assigned tag. (Note that HyLiTE steps through each gene from beginning to end, and therefore processes
multiple reads in parallel). If no earlier read has an assigned tag (as occurs when starting a new gene), gene
copy 0 or 1 is assigned arbitrarily to the allele, and each subsequent read carrying that SNP variant is given
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the same tag. However, if one or more reads have already been tagged (i.e., they have already been assigned
to an allele), HyLiTE determines which allele coincides with which tag and then propagates those earlier tags
to all reads bearing the same genotype at the new gene coordinate.

Algorithm

HyLiTE detects SNPs sequentially along the gene for each organism simultaneously. This means that when
HyLiTE moves to a new gene coordinate, all leftward SNPs have already been detected in both the parents
and the hybrid or allopolyploid descendant. This is an important characteristic: as soon as a read from the
hybrid or allopolyploid has been processed, all SNPs (present, absent and masked) have already been detected
and referenced in every organism. Thus, HyLiTE can immediately classify that read.

After removing masked SNPs (i.e., SNPs with poor coverage in at least one parent), the remaining SNPs
can be denoted by 0s and 1s, where 0 indicates the absence of a SNP and 1 indicates its presence. The same
process can be performed for SNPs in each parent.

Consequently, classification comes down to a series of comparisons between the parent and child fingerprints.
For reasons of computational speed, these are treated as a list of boolean values and analyzed with bitwise
operators. The process is:

1 Eliminate any child-specific SNPs, as these cannot help (but can hinder) comparison of the parent and
child fingerprints. If any SNP is eliminated, set an ‘N’ flag showing that there is at least one ‘new’
non-ancestral SNP on the read.

2 For remaining SNPs, perform a bitwise XNOR operation between the child fingerprint and the fingerprint
of each parent.

3 If this XNOR operation returns a list composed only of ones for any parent (i.e., the fingerprints match
perfectly), consider the read as coming from this parent.

4 If no perfect match is found, recursively try to ‘recombine’ parent fingerprints until a perfect match is
found.

If multiple parents exhibit a perfect match after step 3, the read is classified as equally consistent with coming
from more than one parent. For step 4, the ‘crossing’ operation is simply implemented as an OR operation
between parent XNOR results. Scenarios that imply recombination between fewer parents are preferred.

Worked Examples

Simple Example

Consider a read r from an allodiploid with two haploid parents, P1 and P2. Let r span coordinates 35 to 124 on
genel. The coordinates of SNPs in this region, with absence/presence/masking information for the allodiploid
read r and parents P1 and P2 is:

position r P1 P2

40 1 1-1
52 1 0 O
65 1 1 1
96 1 0 1
113 1 1 1

Where ‘1’ signifies the presence of the SNP, ‘0’ signifies its absence, and ‘-1’ signifies a masked SNP (i.e.,
coverage falls below the allowed threshold for that organism at that gene coordinate).
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The first step eliminates the masked SNP at position 40. The fingerprints for each organism then appear as

follows:

r: 1111
P1: 0101
P2: 0111

The SNP at position 52 is child-specific (i.e., it is found only in the allodiploid, but neither of its parents).
This SNP is removed and the new SNP ‘N’ flag raised. The fingerprints now appear as follows:

r: 111
P1: 101
P2: 111

An XNOR operation is performed between the fingerprint of the allodiploid read r and the fingerprints of each
of the parents:

r XNOR P1: 101
r XNOR P2: 111

In this step, 7 XNOR P2 yields a result with all values 1, while 7 XNOR P1 yields a mixture of Os and 1s. We
therefore conclude that P2 is the likely origin of the allodiploid read r.

The category assigned to r is ‘(P2)+N’; indicating an origin in parent P2, as well as the presence of a new
child-specific SNP in the allodiploid. (Note that the use of parentheses seems redundant in this simple case,
but quickly becomes crucial when dealing with multiple parents).

Complex Example
Consider a read r from an allotriploid with three parents, P1, P2 and P3. All preliminary steps, including
removal of masked and child-specific SNPs leads to the fingerprints:

r: 1101
P1: 1011
P2: 1110
P3: 0001

The XNOR operations yield:

r XNOR P1: 1001
r XNOR P2: 1100
r XNOR P3: 0011

None of these results contains only 1s , so r is likely a chimeric read (i.e., the result of recombination event(s)
between two or more parental types). First, we test for biparental crossovers by performing a bitwise OR

operation between pairs of results produced by the previous XNOR operation:
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Category | Unknown [ E. typhina-like | N. lolii-like | E. typhina or N. lolii | E. typhina/N. lolii chimeric reads
Manual 45 76 133 0 1
HyLiTE 22 73 130 1 29

Table S1 Comparison of manual read classification versus read classification by HyLiTE. Each
column corresponds to a different read class, as defined by HyLiTE. E. typhina and N. lolii are
the haploid parents of the allodiploid, Lpl. Note that due to the reduced accuracy with which
chimeric reads are detected, these are reported by HyLiTE as ‘parentally uninformative’'.

P1 + P2: 1101
P1 + P3: 1011
P2 + P3: 1111

One result yields only 1s and therefore indicates that the allotriploid read r likely derives from recombination
between the sequences of parents P2 and P3. Note that the resulting classification — (P24P3) — actually implies
the bitwise operation (r XNOR P2)OR(r XNOR P3). Note that due to poor accuracy rates (see validation
sections), chimeric reads are reported as ‘parentally uninformative’.

3 Validating Read Classification

To determine the accuracy with which HyLiTE assigns reads to parental types, we adopted a combination of
simulation and manual validation approaches. Assignment accuracy was tested for hybrids and allopolyploids
with both haploid and diploid parents.

Haploid Parents

We analyzed a dataset from the fungal allodiploid system described in the main text [2]. EfM3.000420 is a gene
1.1 kb in length with regions of both good and poor coverage, thus allowing us to assess the functionality of
HyIiTE in both positive and negative conditions. Real RNA reads for the gene EfM3.000420 were extracted,
classified automatically with HyLiTE, analyzed manually by visualizing the reads in the Integrative Genomics
Viewer (IGV) [4] and then assigned to parental types one-by-one.

Both analyses identified regions where poor coverage in one of the parent species demanded masking. This
typically occurs at the ends of genes, but can occur internally as well. EfM3.000420 was masked over bases
1-242, 630-648 and 854-1101 (where coordinate 1101 is the end of the gene). Low RNA read coverage in the
parent species required nearly half of the gene to be masked. (Note that genomic DNA reads would circumvent
this masking problem, as described in section 4 below). 35 SNPs were detected in the remaining unmasked
regions. Both HyLiTE and the manual annotation identified exactly the same set of SNPs.

These 35 SNPs were used to classify reads to parental types, as quantified in Table S1. The manual classifi-
cation very closely matches the classification made by HyLiTE. The main difference is that HyLiTE classified
a number of reads as chimeric (i.e., recombinant reads between the E. typhina and N. lolii parent sequences).
When these reads were examined further, we identified the following mitigating conditions:

e 14 reads were located close to the masked region 630-648 and showed poor quality read alignment (i.e.,
they were artifacts of Bowtie2 mapping errors, not HyLiTE).

e 12 reads were located near a SNP found only in the E. typhina parent, but not in the descendant al-
lodiploid.

The few remaining misallocated reads were present in low complexity regions where indels and sequencing
errors are common. While these types of error can be identified by eye, neither the mapping software Bowtie2
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nor HyLiTE can make such subtle distinctions. Features of this nature explain all of the observed differences
between the manual classification and the classification of HyLiTE.

We emphasize that manual classification of this single gene was a long process (approximately half a day’s
work) and mentally taxing. Although manual classification of reads outperforms the computational classification
of HyLiTE, the results are remarkably similar for most read classes. Of course, manual classification is simply
not possible for hundreds of millions to billions of reads.

We conclude that HyLiTE performs well under good quality read alignment conditions, as is usually the case
for genes. Where alignment quality decreases, HyLiTE misclassifies some reads, and genes with large numbers of
putatively chimeric reads are particularly prone to error. We also emphasize that the reference gene sequences
must be chosen carefully because regions of poor quality alignment will increase as the reference sequence

diverges from the transcriptomes under study.

Diploid Parents

To test the accuracy of read classification for tetraploid allopolyploids with diploid parents, the same simulated
data was used as described below to study the effect of genomic DNA reads on RNA read classification.
Mutations were inserted randomly. Because this is simulated data, both SNPs and read coverage tend to be
relatively uniform along the gene sequence. For this reason, none of the ‘mapping’ problems identified in the
real haploid dataset above were observed.

All simulated FASTQ read files were mapped to the gene sequence using the same parameters as HyLiTE, and
the resulting mappings were displayed in IGV. All SNPs were identified correctly by HyLiTE. As the origin of
all mutations was known, it was relatively straightforward to classify all reads manually. As all reads contained
at least one diagnostic SNP (due to the 5% divergence rate for our system), the parent and allele from which
every read was derived could be identified. For these simulated data, no discrepancies were found between the
manual classification and the classification of HyLiTE. We note, however, the limitations of using simulated

datasets, as they typically do not exhibit the complexity of real biological data (as illustrated above).

4 Using Genomic DNA Reads to Improve RNA Read Classification

Genomic DNA reads can be used to improve the classification of RNA reads by raising the call rate of diagnostic
parental SNPs. To quantify this effect, we simulated DNA and RNA read data for two systems: i) haploid
parents giving rise to an allodiploid, and ii) diploid parents giving rise to an allotetrapolyploid. For the haploid
parent case, we simulated a 1700 bp gene with polymorphism rates of 4.5% (i.e., 1 mutation per 22 bp) for
the first parent and 1% (i.e., 1 mutation per 100 bp) for the second parent, thus mimicking polymorphism
rates observed in the fungal allodiploid system described in the main text. For the diploid parent case, we
simulated a 1700 bp gene with the same polymorphism rates, but with 60% of mutations on one allele and 40%
on the other. The allopolyploid was created by merging the parent gene copies, and adding new polymorphisms
in the allopolyploid at a low rate (0.25%; i.e., one mutation per 400 bp on average, thus corresponding to
approximately one new polymorphism per gene copy). Genomic DNA and RNA reads were created by drawing
100 nucleotide sequences from these simulated genes with random start positions and strands. These simulated
reads were written to different FASTQ files (one for each of the parents and the allopolyploid). As the purpose
of this simulation was not to test the mapping efficiency of Bowtie2, quality scores were arbitrarily set to ‘H’,
corresponding to a high Illumina 1.8+ Phred+33 value. The number of reads required for each coverage level

were computed using:

N:T (5)
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Haploid parents Diploid parents

gDNA read coverage

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

RNA read coverage RNA read coverage
0 10 20 30 40 50 60 70 80 90 100

Classified reads (percentage)

Figure S2 Improvement in RNA read classification when using genomic DNA reads. The
percentage of classified reads is shown on a color scale from red (0%) to green (100%) for
different genomic DNA and RNA read coverage levels.

where N is the number of reads, [ is the length of the reads, L is the length of the gene and C' is the desired
coverage level. The percentage of reads classified by HyLiTE was determined for a range of genomic DNA and
RNA coverage levels.

As expected, genomic DNA reads can improve expression estimates for genes with low to moderate expression
(Figure S2). Because genes with low expression produce few reads, diagnostic parental SNPs often cannot be
called, and hence, RNA reads cannot be assigned to one parent or the other. In such cases, genomic DNA
reads can improve SNP calling, and thus lead to improved gene expression estimates. If no genomic DNA reads
are available, expression estimates are poor for genes with less than ~10-fold RNA coverage (allodiploids with
haploid parents), or ~25-fold RNA coverage (allotetraploids with diploid parents). Because RNA and DNA
reads are interchangeable for SNP calling purposes, these limits also hold for genomic DNA reads: ~10-fold
DNA coverage (haploid parents) or ~25-fold DNA coverage (diploid parents) is sufficient to assign nearly all
RNA reads to a parental type regardless of the expression level of the gene. We emphasize that genomic DNA
reads are, of course, not included in the read counts for expression estimates; they are only used for SNP calling
purposes.

5 Comparing HyLiTE and PolyCat

The following comparisons employ the same datasets as in the “Worked Examples” section in the main text.
In short, mRNA sequences were assigned to parental lineages (homeologs) using HyLiTE and PolyCat [5].
For comparability, the same mapping software was used with both programs, and where possible, runtime
parameters were set to be as similar as possible. To illustrate its simplicity, HyLiTE was run with its default
settings.

Fungi. HyLiTE results for the Epichloé dataset were obtained using a single command line:

HyLiTE -r ref.fasta -f protocol.txt -n PolyCatTest
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Figure S3 Median fold improvement of read assignment by HyLiTE compared to PolyCat
relative to gene expression level for the Epichloé dataset. Fold improvement is plotted for sets of
50 genes ranked from low to high expression (points, left to right). The red line shows the local
regression to the mean.

PolyCat results were obtained using the following pipeline:

1 Map reads to reference genes using Bowtie2 [6] separately for both of the parent species (E. typhina and
N. lolii) and the allodiploid Lpl.

2 Create, sort and index *.bam files using SAMtools [7] separately for both the parent species and the
allodiploid Lp1.

3 Run InterSNP (a companion program to PolyCat required to build the SNP index) separately on *.bam
files from both the parent species.

4  Run PolyCat on the *.bam file from the allodiploid species Lpl.

5 Determine read counts from multiple output *.bam files using SAMtools and custom grep commands.

Steps 1, 2, 4 and 5 have analogs in HyLiTE, but are performed automatically. In addition, PolyCat requires
a SNP index to be built for the parent species (step 3). Once built, this index can be used for multiple
experiments. HyLiTE does not require a separate SNP index, and instead identifies this information gene-by-
gene automatically.

The number of reads assigned to homeologs for each gene is shown in Figure 1 in the main text. HyLiTE
determined homeolog expression for 6,693 of 6,694 genes in the reference (99.99%), compared to 6,638 genes in
the Cox et al. study [2] (99.16%) and 5,995 genes for which homeolog expression was determined by PolyCat
(89.56%). Although PolyCat determined homeolog expression for fewer genes than the two-reference mapping
approach [2], homeolog assignment rates were substantially improved for those genes that were called (compare
panels A and B in Figure 1 in the main text). Consequently, we suggest that specific software solutions (such
as HyLiTE or PolyCat) should be strongly favored over alternative manual approaches.

In a direct comparison, HyLiTE assigned more reads to homeologs than PolyCat (the thin band of green
points versus the cloud of blue points in Figure 1B in the main text). The number of reads assigned by HyLiTE
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approached the theoretical maximum (indicated by the black line) across the full range from low to high ex-
pression. Importantly, the rate at which HyLiTE assigned reads to homeologs has very low variance across
this entire expression range (i.e., the green ‘band’ has approximately equal width regardless of the expression
level). Conversely, PolyCat was much more dependent on gene expression level (Figure S3). HyLiTE assigned
a median of 2.5 times as many reads to homeologs than PolyCat for genes with very low expression (and in
the case of some individual genes, as much as an order of magnitude more). However, HyLiTE and PolyCat
assigned almost the same number of reads to homeologs for genes with high expression (with a slight bias in
favor of PolyCat for highly expressed genes).

Plants. To show application to a plant system, we also analyzed gene expression in a natural cotton allote-
traploid, Gossypium hirsutum, together with two diploid parent genome-type representatives, G. arboreum and
G. raimondii [8]. HyLiTE and PolyCat [5] assigned reads to homeologs at comparable rates, with PolyCat
assigning more reads (Figure S4). Assignment accuracy was tested by classifying known reads from the parent

species:

misassigned
error rate =

(6)

misassigned + correctly assigned

PolyCat exhibited a higher proportion of reads (8.0%) that were incorrectly assigned than HyLiTE (1.6%).
This difference seems to reflect i) poor identification of chimeric reads (which we propose above mostly results
from mapping errors) and ii) alternative choices in SNP calling strategies. Of 147,453 total SNPs, PolyCat treats
23,208 SNPs (16%) as having fixed differences between the parents (say, A versus G), and therefore uses these
markers to classify the parental origin of reads. In contrast, HyLiTE recognizes these positions as polymorphic
in at least one of the parent species (say, A+G versus A), and therefore masks the shared state (here, A) as
uninformative for read classification. Manual screening on a subset of these SNPs confirmed that most are
genuinely polymorphic. Consequently, while HyLiTE assigns fewer reads, it does so with greater accuracy.

We also note that the PolyCat software was validated on a dataset containing 1,140,550,335 reads for the first
parent (G. raimondii) and 4,070,680,434 reads for the second parent (G. arboreum). In contrast, the analyses
described here were performed on datasets that are two orders of magnitude smaller, and therefore directly

comparable to most hybrid and allopolyploid studies.

Animals. Finally, we analyzed gene expression in a synthetic allotetraploid fish derived from diploid gold-
fish (Carassius auratus) and diploid common carp (Cyprinus carpio) (NCBI BioProject accession number:
PRJNAS2763). This dataset employed the 454 sequencing technology. As with the cotton example, PolyCat
assigned more reads, but also showed a higher error rate (32%) than HyLiTE (0.22%), with most errors due
to incorrectly called chimeric reads. The very small number of reads available per gene (an average of only 15)
caused HyLiTE to reject most SNP calls and therefore classify the majority of reads as parentally uninforma-
tive. While HyLiTE consequently assigned many fewer reads to homeologs, the proportion of misassigned reads

was nearly 150 times lower.

We note that PolyCat incorrectly assigned many reads as chimeric (295,538), although this feature appeared
to validate well on their original cotton example [5]. Excluding chimeric reads, misalignments still result in an
error rate ~5 times greater than HyLiTE. Consequently, PolyCat, which was developed and validated on the

model system cotton [5], appears to perform less well on non-model systems or alternative data types.
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Figure S4 Comparison between HyLiTE and PolyCat for plant cotton data. The black line
indicates the total number of reads that map to each gene, ranked by expression level. Green
points indicate the number of reads assigned to homeologs by HyLiTE, while blue points
indicate the number of reads assigned to homeologs by PolyCat. Default settings were used for
both programs. Note that although PolyCat assigns more reads than HyLiTE, the number of
misassigned reads is also substantially higher.
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Abstract. Bone flutes make use of a naturally hollow raw-material. As
nature does not produce duplicates, each bone has its own inner cavity,
and thus its own sound-potential. This morphological variation implies
acoustical specificities, thus making it impossible to handcraft a true
and exact sound-replica in another bone. This phenomenon has been
observed in a handcrafting context and has led us to conduct two series
of experiments (the first-one using handcrafting process, the second-one
using 3D process) in order to investigate its exact influence on acoustics
as well as on sound-interpretation based on replicas. The comparison of
the results has shed light upon epistemological and methodological issues
that have yet to be fully understood.

This work contributes to assessing the application of digitization, 3D
printing and handcrafting to flute-like sound instruments studied in the
field of archaeomusicology.

Keywords: Acoustics - Statistics - Handcrafting - Raw-materials -
Digitization - 3D printing - Music archaeology

1 Introduction

Elaborating a research project in close collaboration with a craftsman and a
research team dedicated to digitization of cultural heritage was the trigger point
to different kinds of experiments meant to investigate the morphological vari-
ability of bones and its influence on the emitted sounds when carved as flutes.
Dealing with this “Sound-morphology” is the main part of a craftsman’s work,
which is why it was decided to run the project of an apprenticeship that would
last for one year [18]. During this time, particular attention was paid to the
creation and use of prototypes, i.e. a bone flute manufactured in order to try
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and understand the sound specificities of a particular bone, and then used as a
guide in order to ease the adaptation process. Indeed, each bone has its own mor-
phology and needs to be considered as an individual. The flute-maker proceeds
then with a precise observation of each individual and takes every morphological
specificity into consideration in order to craft series of bone flutes with similar
sounds and identical tuning, even if this has to result in objects that do not look
the same. Otherwise, he would risk to create an inefficient object, or a completely
different flute.

These observations have raised specific issues regarding the use of bone flute’s
replicas for tone scales interpretations in archaeological surveys, as their manu-
facture never seems to take into consideration the bone’s morphology as part of
its acoustical specificities [6,8,16]. They have also led us to conduct “twin exper-
iments” in the hope of reaching consistent results that would spare no method-
ological tracks (past, actual and yet-to-come sound-reconstruction methods) in
order to explore their limitations as well as their potential. This way, we hope
to contribute to better the epistemological landscape of archaeological flute’s
research.

The work presented in this paper focuses on the comparison of the sound
results given by both series of experiments.

2 Context of the Work

2.1 Approach

Flutes are not all the same. They are grouped into several kinds which are distin-
guished by the way the air stream is directed toward the edge. Each kind has its
own sound aesthetics, but gives also more or less freedom to the flute-player in
choosing the pitch and the sound’s characteristics, thanks to the blowing angle
variability (Fig.1). Oblique-, pan-, vessel- and transverse-flutes are amongst the
most malleable kinds of flutes. We chose duct-flutes as they are the opposite.

In term of organology, these objects can be mentioned as 421.221.12 in the
S/H classification system (Sachs/Hornbostel), which means: Internal duct-flute
(straight and single) with finger holes and an open end.

A e — L —
~ l
a. b.

Fig. 1. Blowing angle variations regarding two different organological kinds of flutes:
(a) oblique flute, (b) duct-flute
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2.2 Partnership

This “two-front approach” demands to assemble a consistent amount of knowl-
edge, which can only be achieved through partnership.

e Handcrafting process: the work gathered a traditional flute-maker and a
statistician in computational biology.

e 3D process: the work was based on an existing collaboration between ar-
chaeologists and computer scientists on advanced imaging for archaeology,

the CNPAO [2]

2.3 Terminology

This paper will use the following terminology according to the acoustical speci-
ficities of bone flutes:

e Morphology: refers to the natural inner and outer shapes of the bone.

e Geometry: refers to the handcrafted inner and outer shapes carved deliber-
ately or not onto the bone’s surface.

e Sound-morphology: refers to the acoustical sections of the morphology,
which define the sound potential of the bone (i.e. the inner cavity). By defin-
ition, each bone has a different sound-morphology.

e Sound-geometry: refers to the acoustical sections of the geometry, which
are involved in the definition of the instrument’s final sound, whether they
were meant (deliberately carved) or not (unintentional and/or unconscious
geometry). As an example: the shapes of the internal duct, of the edge, of
the finger holes, etc. By definition, the sound-geometry rules out the outer
shaping as long as it does not change the finger holes depth.

e TO, T1, T2, etc.: refers to the finger holes’ combination. T0O means all holes
closed. T1 means that the lower finger hole (the first one) is open. T2 means
that the two lower finger holes (the first and the second one) are open, etc.

e FO, F1, F2, etc.: systematic identification numbers of the experimental
flutes. FO refers to the control flute, whereas F1, F2, F3, etc. refers to each
replica copying the control flute.

2.4 Related Works

Nowadays, 3D technologies allow outer and inner contact-free investigation on
complex geometries [15]. As such they contribute to answer both preservation
and sound studies issues and are more and more used in the actual archaeo-
musicological research. If their consequences on our interpretations are still to
be defined, they allow different kind of approaches and studies that aim to get a
better understanding of ancient sounds. They can be applied to any organological
material [10], such as string instruments [4,13,20,21] but also aerophones [3,8,
9,11}, among which archaeological “flutes”, and objects presumed to be flutes,
figure [1,14,22,23].

Eventually, the music-archaeology research may even explore new possibilities
in sound reconstruction studies, as its data can be applied to sound simulators
and sound-scape reconstructions [7,12,24].
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3 The Sound-Morphology Principle

Naturally hollow rawmaterials, such as bones, hornes, shells or reeds, present a
morphological variability between one individual and another. Those variations
can be observed both regarding their shapes, their scale and their volumet-
ric and spatial configuration (Fig.2). Some of them are involved in the sound-
morphology. For example, a larger bone will produce a lower pitch for the same
length. Likewise, an important and sudden increase or decrease of the bone’s
conicity tends to distort the efficiency of a close-range finger-hole.

| ;] @? \/\1\3\ \//:/B ¢ Top view

Front view

FO F1 F2 F3 F4 F5

Fig. 2. Morphological variations between bones used for crafting FO to F'5 in the Hand-
crafting process experiments explained below. Deer femurs show several constants, such
as a bulge characterizing the distal part of the epiphysis, a triangular and irregular
depression characterizing its proximal part, and a slimming zone in the concave area of

the bone’s bean-like cross-section. Despite those constants, there never are two identical
bones.

In order to illustrate this phenomenon, we chose to handcraft a unique replica
of a bone flute in another similar bone (Fig. 3).

The control flute was made in a goat’s tibia. It was made very simply, using
only steel knife and file, evoking archaeological flutes found in northern Europe
for medieval period [5]. The handmade replica was made very carefully, using
several measurement tools (caliper, compass, etc.). Also, as the depth of the
block changes the pitch, we chose depth 0 (Fig.4). This calibration is easier to
reproduce. We also tried our best to give both blocks a similar soil angle. As
a result, the two flutes gave different sounds, with a deviation going from half
a tone to more than one tone, increasing as we open the finger holes (Figs.9
and 10).

This replication test shows how much the sound of a bone flute replica may
be deviant from the sound of the control flute it’s related to. This phenomenon
illustrates the notion of “sound-morphology” as it reveals that every bone has a
sound-potential of its own.
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Fig. 3. The control flute (left) and its replica (right) both made out of goat’s tibias.

4 Handcrafting Experiments

4.1 Handcrafting Replication Process and Technical Specifications

Objectives: those experiments aim to define the extent of the limitation
caused by sound-morphology, as well as to explore the acoustical specificities
of this phenomenon. The approach is then different from what we can see
in experimental archaeology, as we need here a well-known, functional and
replicable bone flute in order to compare its actual sounds with our interpre-
tations.

Control and sample: we chose 6 similar deer femurs with morphological
variations. 5 replicas is the minimum sample required for statistical analysis.
Chosen sound-geometry: inner duct-flute with rectangular opening and
straight edge (Fig.5). Combined with a straight geometry, this configuration
creates powerful blowing constraints and is easier to reproduce.
Manufacture: handcrafted in January 2016.

e Sound capture and analysis: because of lack of means, we had to use a

common recording device (smartphone) and a free software (audacity). Having
no mechanical blower nor anechoic chamber available at the time, we had to
record the sound using natural blowing (as homogeneous as possible) and
the same context (a chosen room). Thankfully, the studied phenomenons are
contrasting enough to be well illustrated even with a lack of technical means.
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A
1
1
1

Fig. 4. Illustration of Depth 0 and soil Fig.5. Depiction of the sound-
angle geometry used for the handcrafting
experiments

4.2 Sound Results

The diagrams in Fig. 8 represent the results of basic acoustical analysis of the
control flute and its 5 replicas. They obviously show that each individual is
different from the control flute.

4.3 Statistics and Discussion

The table (Table 1) represents statistical analysis made on the recorded frequen-
cies. In order to compare them properly, we had to translate them from Hertz
to logarithmic scale (base 2 logarithm).

This table shows heterogeneous frequencies and intervals deviations compar-
ing the sample to the control flute, as well as between each individual from the
sample itself. Even if the frequency deviations are mostly non-significant regard-
ing statistics (TO is the only one being significant), the sound estimation they
produce is not satisfying for the ear (about one quarter-tone). However, inter-
vals deviations are really small in comparison (about 1/20*" of a tone), which is
extremely accurate.

The following facts should also be considered regarding those results:

1. The lower end of the flute was one of the most variable areas and it was then
difficult to reproduce an exact geometry in a changing trabecular bone. This
could explain TO deviation.

2. The small sample size is probably involved in those statistical results: a larger
sample (20 to 30 replicas) should help us to get better results and thus assess
if whether or not this incredibly accurate estimation of intervals is exact. It
should also explain the difference between a satisfying intervals reproduction
and an unsatisfying frequencies reproduction.

3. The human blow should be ruled out and replaced by a mechanical blower in
order to ensure the accuracy of the sound-capture.
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Table 1. Statistical analysis of frequencies emitted by FO to F5 while playing succes-
sively TO, T1 and T2. Differences are expressed in semi-tones (“—1” equals “1 semi-tone
lower”). The right columns show intervals deviations (T0-T1 and T1-T2).

T1T2 Dift. 1/2
3 Flute 1 1004 9,971544 -0,792041 1133  10,14593 -0,644882 1269 10,30948 -0,708361 -0,174389 -2,092663 -0,163544  -1,96253
4 |Flute 2 1048 10,03242 -0,049487 1194 10,22159 0,262977 1350 10,39874 0,362847 -0,188164 -2,257969 -0,177157 -2,125879
5 [Flute 3 1011 9,981567 -0,671756 1132 10,14466 -0,660169 1269 10,30948 -0,708361 -0,163091 -1,957092 -0,164818 -1,977817
6 Flute 4 995 9,958553 -0,947931 1115 10,12283 -0,922132 1247 10,28425 -1,011129 -0,164275 -1,971303 -0,161418 -1,937013
7 Flute 5 10,00422 -0,399918 10,16113 -0,462486 10,33316 -0,424213 -0,156911 -1,882937 -0,172023 -2,064282

8
9 Standard deviation 0,029531" 0,037438 0,043667 0,012237  0,146847 0,006579  0,078345

14 Flute 0 in the confidence interval range ?
15 deviation comparing to Flute 0 (Log2)
16 | deviati ing to Flute 0 (semi

-0,047686

-0,572227

-0,040445

-0,485338]

-0,041487

[ as7zaa] ["o.0ssss]

5 3D Experiments

5.1 CT-scanning

There exist several possibilities in matter of 3D image acquisition, but CT-
scanning was the only viable option because of the very nature of flutes: inner
shapes are drastically important and their acoustical properties are extremely
sensitive. We needed then a technology that would be able to capture high
resolution images both inside and outside of the objects. p-tomography, also
known as pCT, was then the perfect tool. This technology uses X-rays in order
to recreate high resolution 3D internal views of an object by compiling the
acquired images and is mainly used in medical imaging and industries.

5.2 3D Replication Process and Technical Specifications

e Objectives: those experiments aim to question the sound-replication capa-
bility of 3D technologies in order to define whether or not they may allow
us to pass beyond the sound-morphology limitation endured by handcraft-
ing process. They also aim to assess their own limitations and potential as a
sound-reconstruction method.

e Technologies used:

1. pnCT-scanning: the machine is an X-ray microfocus CT system Gen-
eral Electric (formerly Phoenix) v—tome—=x 240D from CRT Morlaix, a
resources center dedicated to metrology (http://www.crt-morlaix.com/).
In the set-up, the sample is placed on a rotating table, and the X-ray
source and detector are stationary.

2. 3D wire and resin printing: the machines are a MakerBotReplicator2
from IUT Le Creusot, and a Stratasys Mojo from ENS Rennes. The resin
model was printed on a 3D Objet by a contractor.

e Scanned object: we chose to scan the control flute used in the sound-
morphology principle (the one made from a goat’s tibia) in order to compare
the 3D results to the handmade replica. The flute was scanned in three parts
in order to get a precision of less than 50w. The reassembly was processed
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Fig. 6. Disconnected objects (yellow) Fig. 7. 3D sculpted patch (transpar-
in the area of the trabecular bone. ent gray) on Blender (based on the
(Color figure online) geometry of the cloud).

with the software Autodesk Meshmixer. Also, as the trabecular bone renders
through p-CT scanning as a cloud of 600+ tiny objects, it cannot be directly
printed (Fig.6). We chose to explore two possibilities: simply removing the
objects in one case, and integrating them as a 3D sculpted “patch” in the
other (Fig.7). We used Meshlab and Blender in order to get ready-to-print
3D models.

e Replicas: F1 refers to the handmade replica. F2 refers to the 3D orange wire
replica (with 3D sculpted “patch”, no post-printing treatments). F3 refers to
the 3D white wire replica (without the trabecular bone, acetone bath and
ultrasounds post-printing treatment). F4 refers to the 3D white resin replica
(better printing resolution, with 3D sculpted “patch”, no post-printing treat-
ments).

e Printings: printed between January and May 2016.

e Sound capture and analysis: same context than for the handcrafting
process.

5.3 Sound Results

The diagrams in Fig.9 represent the results of basic acoustical analysis of the
control flute and its four replicas.

5.4 Analysis and Discussion

The following tables represent sound-comparisons between the control flute and
its replicas using the recorded frequencies translated from Hertz to base 2 loga-
rithm (Table 2).

As we expected, this table shows that 3D printed replicas are globally closest
to the original than the handmade one. This is due to the absence of the bone’s
morphological variability that would occur from using several bones. However,
they are not identical between each other (Fig. 10).
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Fig. 8. Diagrams analysis of FO to F5 Fig. 9. Diagrams analysis of FO to
F4

Table 2. Comparison between frequencies (top)/intervals (bottom) emitted by FO to
F4 while playing successively T0, T1, T2, T3 and T4. Green cells indicate a sound-
reproduction precision of 1/20™ of a tone or less.

Flute 0 1088 10,087 1208 10,238 1300 10,384 1489 10,54 1649 10,687

1
2 Fl

3 Flute 1 (hand-made) 1124 10,134 0,56 1277 10,319 0,96 1401 10,452 1,30 1659 10,696 1,87 1854 10,856 2,03
4 Flute 2 (orange wire) 1055 10,043 -0,53 1176 10,2 -0,46 1287 10,33 -0,17 1497 10,548 0,09 1658 10,695 0,09
5 Flute 3 (white wire) 1083 10,081 -0,08 1187 10,213 -0,30 1271 10,312 -0,39 1455 10,507 -0,40 1624 10,665 -0,26
6 Flute 4 (white resin) 1084 10,082 -0,06 1203 10,232 -0,07 1296 10,34 -0,05 1491 10,542 0,02 1656 10,693 0,07

1

2 L - i E 4
3 Flute 1 (hand-made) 018 221 040 013 160 033 024 293 058 016 192 0,16
4 Flute 2 (orange wire) 016 18 007 013 156 029 022 262 027 015 1,77 0,00
5 Flute 3 (white wire) 013 15 -022 010 118 -009 020 234 -001 016 19 0,14
6 Flute 4 (white resin) 015 18 -001 011 129 002 020 243 008 015 18 0,05

In Fig. 10, both orange and white wire flutes present a significant but different
deviation regarding their emitted frequencies, whereas the resin flute is the most
accurate of them all. Indeed, it reaches the sounds of the original with a precision
of less than 1/20®™® of a tone.

As it appears, acoustical phenomenons related to 3D printed replicas seem
to be quite intricate. The following facts should thus be considered regarding
those results:

1. 3D wire-printing is processed by fusing a plastic filament which is then
deposited by layers, and finally cools down and solidifies. The cooling process
comes with a shrinking phenomenon which extent depends on the wire itself
as well as on the cooling context (hygrometry and temperature) [17]. Fur-
thermore, these deformations may occur in an irregular way. In other words,
3D wire-printing has a morphological variability of its own.
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[ FO (witness flute)
F1 (handmade) F3 (white wire)
F2 (orange wire) Bl F4 (white resin)

T0
2,5 A

1 1

- - - S — I

Fig. 10. Diagram representing the sound proximity of each replica comparing to the
control flute, for each finger hole (numeric scale in semi-tones). The 0 line represents
the control flute. The colored areas represent the replicas’ sounds. The more the colored
area fills the 0 line, the closest the replica is to the control flute.

2. 3D resin-printing on the other hand does not work the same and thus does
not have the same sources of error [19]: it uses a laser impact which solidifies a
gelatinous resin. This technology is more accurate than 3D wire-printing and
gives different physical results (smoother state of surface, solid 3D printings).
That explains why this replica is much more accurate than the other ones.

3. Once again, human blow should be replaced by a mechanical blower.

6 Conclusion

Handcrafting and 3D replication processes illustrate the acoustical complexity of
bone flutes, as well as they raise most important epistemological and methodolog-
ical issues. Succinctly, these results advise of the dangers of sound-interpretations
regarding ancient flutes when dealing with replicas. They demonstrate the com-
plexity of the acoustical phenomenons related to naturally hollow raw-materials.
They also demonstrate that 3D imagery is not as precise and trustworthy as we
would think it would be. However, the use of statistics and of high-precision
3D printers seems to offer a promising track to continue this research. Although
there is still much work to do in order to reach a better understanding of this
situation, at least we now know that archaeological bone flutes sounds should
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always be interpreted with caution. In any case, this research will try and go
deeper in the epistemological and methodological issues.

Acknowledgments. This project was partially funded by the french CNRS Imagln
IRMA project.

References

1. Avanzini, F., Canazza, S., De Poli, G., Fantozzi, C., Pretto, N., Roda, A.,
Menegazzi, A.: Archaeology and virtual acoustics - a pan flute from ancient Egypt.
In: Proceedings of the 12th International Conference on Sound and Music Com-
puting, pp. 31-36 (2015)

2. Barreau, J.B., Gaugne, R., Bernard, Y., Le Cloirec, G., Gouranton, V.: The West
Digital Conservatory of Archaelogical Heritage Project, DH, Marseille, France.
Digital Heritage International Congress, pp. 1-8, November 2013

3. Bellia, A.: The virtual reconstruction of an ancient musical instrument: the aulos
of selinus. In: Proceedings of Digital Heritage, vol. 1, pp. 55-58 (2015)

4. Borman, T., Stoel, B.: Review of the uses of computed tomography for analyzing
instruments of the violin family with a focus on the future. J. Violin Soc. Am. VSA
Papers 22(1), 1-12 (2009)

5. Brade, C.: Die mittelalterlichen Kernspaltfloten Mittel-und Nordeuropas, Ein
Beitrage zur Uberlieferung prahistorischer und zur Typologie mittelalterlicher
Kernspaltfloten, Band. 14, Neumiinster, Wachholtz (1975)

6. Clodor-Tissot, T.: Fiche témoins sonores du Néolithique et des Ages des métaux,
Industrie de 1'os préhistorique. Instruments sonores du Néolithique a ’aube de
I’ Antiquité, XII (2009)

7. Causs, R., Mille, B., Piechaud, R.: Restitution sonore numérique des cornua de
Pompei, Sound Making: Handcraft of Musical Instruments in Antiquity, video
recordings of the third IFAO conference, IRCAM (2016). http://medias.ircam.fr/
x27292e¢

8. Garca, B.C., Alcolea, M., Mazo, C.: Experimental study of the aerophone of Istu-
ritz: Manufacture, use-wear analysis and acoustic tests. Quaternary International
(2015). doi:10.1016/j.quaint.2015.11.033

9. Garca, B.C.: Methodology for the reconstruction of prehistoric aerophones made
of hard animal material, Actas das IV Jornadas de Jovens em Investigagao
Arqueoldgica, pp. 411-416 (2011)

10. Gattoni, F., Melgara, C., Sicola, C., Uslenghi, C.M.: Unusual application of com-
puterized tomography: the study of musical instruments. Radiol. Med. 97(3), 170—
173 (1999)

11. Hagel, S.: The meroé pipes: a musical jigsaw puzzle, sound making: handcraft of
musical instruments in antiquity, video recordings of the third IFAO conference,
IRCAM (2016). http://medias.ircam.fr/x9e8e19

12. Hawkins, J., Jacobson, J., Franklin, J.: Greco-Roman Music in Context; Bringing
Sound and Music to Virtual Pompeii, World Conference on E-Learning in Corpo-
rate, Government, Health Care, and Higher Education (2011)

13. Koumartzis, N., Tzetzis, D., Kyratsis, P., Kotsakis, R.G.: A new music instrument
from ancient times: modern reconstruction of the greek lyre of hermes using 3D
laser scanning, advanced computer aided design and audio analysis. J. New Music
Res. 44(4), 324-346 (2015)



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Digital and Handcrafting Processes Applied to Sound-Studies 195

Kunej, D., Turk, I.: New perspectives on the beginnings of music: archaeological
and musicological analysis of a middle Paleolithic bone “flute”. In: The Origins of
Music, pp. 235268 (2000)

Laycock, S., Bell, G., Mortimore, D., Greco, M., Corps, N., Finkle, I.: Combining
x-ray Micro-CT technology and 3D printing for the digital preservation and study
of a 19th century cantonese chess piece with intricate internal structure. ACM J.
Comput. Cultl. Heritage 5(4), 1-7 (2012)

Miinzel, S.C., Seeberger, F., Hein, W.: The Geissenklosterle flute: discovery,
experiments, reconstruction, Studien zur Musikarchaologie. Archéologie friither
Klangerzeugung und Tonordnung, Rahden, Verlag M. Leidorf, pp. 107-118 (2002)
Pierce, L.B.: Hacking the Digital Print: Alternative image capture and printmaking
processes with a special section on 3D printing, New Riders, Voices That Matter,
p. 262 (2015)

Safa, E.: Handcrafting in archaeomusicological research: record of a one-year
apprenticeship alongside a traditional-flute-maker and its application to sound
archaeology, Sound Making: Handcraft of Musical Instruments in Antiquity, video
recordings of the third IFAO conference, IRCAM (2016). http://medias.ircam.fr/
xcf6cf9

Sculpteo: 3D Printing Material: PolyJet Resin, Sculpteos website (2016). https://
www.sculpteo.com/en/materials/polyjet-resin-material /

Sirr, S.A., Waddle, J.R.: CT analysis of bowed stringed instruments. Radiology
203(3), 801-805 (1997)

Sodini, N., Dreossi, D., Chen, R., Fioravanti, M., Giordano, A., Herrestal, P.,
Zanini, F.: Non-invasive microstructural analysis of bowed stringed instruments
with synchrotron radiation X-ray microtomography. J. Cultl. Heritage 13(3), S44—
S49 (2012)

Tuniz, C., Bernardini, F., Turk, I., Dimkaroski, L., Mancini, L., Dreossi, D.: Did
Neanderthals play music? X-ray computed micro-tomography of the Divje Dabe
"flute’. Archaeometry 54(3), 581-590 (2012)

Turk, I., Blackwell, B.A., Turk, J., Pflaum, M.: Results of computer tomography of
the oldest suspected flute from Divje bab I (Slovenia) and its chronological position
within global palaeoclimatic and palaeoenvironmental change during last glacial.
Anthropologie 110(3), 293-317 (2006)

Tzevelekos, P., Georgaki, A., Kouroupetroglou, G.: HERON: a zournas digital
virtual musical instrument. In: Proceedings of the 3rd International Conference
on Digital Interactive Media in Entertainment and Arts, pp. 352-359, September
2015



D RecPhyloXML - a format for reconciled gene trees

This section presents the draft of an unpublished article about a new format for
reconciled gene trees (an object that I manipulated extensively during my work).
As of yet, most of the different methods that reconcile a species tree and a gene tree
have their own output format, which renders complex the creation of flexible analysis
pipelines that include reconciliation because many format conversion script must be
written (when conversion is possible, as some formats do not allow the inclusion of
the data contained in others, resulting in a loss of information). In order to lower
the programming burden when manipulating reconciled gene tree (either as output
or input of software), I reached out to the community of reconciliation software
programmer in order to agree on a common format. Most have answered positively
to our call and have agreed to participate to the publication (that should soon be
submitted to a scientific journal) and the project. This should be accompanied by
the integration of our format to their software, the coding of conversion script to
and from existing format, and the design of tools for the manipulation of the format,

including a reconciliation visualization tool.
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Abstract

Motivation: A reconciliation is an annotation of the nodes of a gene tree with evolutionary events and
a mapping onto a species tree. Many algorithms and software produce or use reconciliations but often
using exclusive reconciliation formats regarding the type of events considered or whether the species tree

is dated or not.

Results: Here we propose a format that aims to promote an integrative albeit flexible specification of
phylogenetic reconciliations. This format, named recPhyloXML, is accompanied by several tools such as

a reconciled tree visualizer and conversion utilities.
Availability: http://phylariane.univ-lyon1.fr/recphyloxml/
Contact: wandrille.duchemin@univ-lyon1.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The relationship between the history of genomes or species and the history
of their constituent genes is often described through a reconciliation. A
reconciliation consists of an association between the nodes of a gene
tree and the nodes or branches of a species tree, along with different
evolutionary events undergone by the gene.

For comprehensive reviews on the subject of reconciliations and their
inference, see for example Nakhleh (2013) or Szol16si er al. (2015).

Reconciliations can be used to better understand the history of a
specific gene family, but also to study the relationship between several
families. They can also be used to infer genome-wide parameters such
as rates of gene duplication, loss, or lateral gene transfers (Szoll6si et al.,
2013a; Sjostrand et al., 2014), or population parameters such as divergence
time and ancestral population size(Dutheil et al., 2009) Furthermore,
reconciliation based metrics can be used as a criterion to construct better
gene trees (Durand et al., 2006; Wu et al., 2013; SzollGsi et al., 2013a;
Scornavacca et al., 2013; Sjostrand et al., 2014) or better species tree
(Boussau et al., 2013; Nakhleh, 2013).

There are many algorithms and software to infer reconciliations
(Nakhleh, 2013; Szol16si et al., 2015), and while they share many features,
each has some unique characteristics.

Some methods work according to a parsimony principle (see for
instance (Durand ef al., 2006; Bansal er al., 2012; Jacox et al., 2016))
while others rely on a likelihood approach (Akerborg and Sennblad, 2009;
Szoll6si et al., 2013a; Sjostrand et al., 2014). Reconciliation methods may
differin the type of events they consider. Some methods also require a dated
species tree (a species tree where the relative timing of internal speciations
is known) while others do not.

The fact that the reconciliation programs (or rather each program
family) use different formats to represent reconciliations makes it difficult
to compare or use together reconciliation inferred from different software,
which can hamper proper comparison and validation studies. This also
means that any post-analysis or visualization software will either have
limited scope (it will only be able to take as input the reconciliations of
specific softwares) or view its release date greatly delayed in order to write
a reader for each and every format.

In this paper, we aim to propose a generic reconciliation format
encompassing the specificities of different reconciliation programs. This
will make reconciliation based analysis more accessible to scientists
without the need to develop or use multiple format conversion scripts.

Some events included in reconciliations occur in the species tree, such
as speciations or extant representatives of different gene families (i.e. the
gene tree leaves). Other events included by reconciliations occur along the
species tree branches, such as gene duplication (D), gene loss (L), lateral

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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gene transfer (T) or incomplete lineage sorting (ILS) (Than et al., 2008;
Rasmussen and Kellis, 2012; Mallo er al., 2014).

Reconciliations can be carried out with dated or undated species trees
In a dated species tree, the relative order of speciations is known and it
should be possible to include in the reconciliation information about the
relative time at which the different events occurred.

(Szol16si et al., 2013b) introduced a model that considers the existence
of extinct or unsampled lineages (i.e. branches absent from the gene tree)
from which lateral gene transfers might originate. In practice, this means
that some transfers, when represented on the species tree can appear to
travel to the future (but never in the opposite direction) because they have
evolved for a certain time in an unsampled lineage (outside the species
tree). Any transfer, even an instantaneous one between lineages of the
species tree, can be written in terms of speciation to a dead lineage and
transfer from that dead lineage. Thus the format proposed here represents
lateral gene transfer as two separate events: leaving the species tree
(speciation out), and going back in the species tree (transfer reception).

The notion of evolution in unsampled lineages also implies that a
bifurcation in the gene tree can occur in such a lineage. The children of the
bifurcation can undergo transfers back to the sampled lineages. The unseen
bifurcation might be a duplication, a speciation or a transfer between two
unsampled lineage. Existing models are yet unable to discriminate these
events. This idea is reflected in our format thanks to a specific way to
specify a bifurcation in an unsampled lineage.

There have been previous attempts to develop formats able to represent
evolutionary events along a phylogeny. The PhyloXML format (Han and
Zmasek, 2009) is able to depict various annotations along a tree. It already
has some way of representing evolutionary events along a phylogeny, but
with some limitations. For example PhyloXML lacks a mean to specify the
species associated with the different events and only include a rudimentary
representation of transfers.

Adapting the already existing tags for evolutionary event in PhyloXML
would have meant a near complete overhaul, so we decided to create a new
format (recPhyloXML) with entirely new tags, ensuring no confusion with
PhyloXML.

1.1 state of the art

Existing reconciliation formats can be broadly categorized in two groups.

The first group describes reconciliation events as labels in a newick or
NHX tree, in place of the nodal support ( e.g., bootstrap) information, or in
adevoted NHX comment field. Programs like ALE (Sz6116si et al., 2013a),
NOTUNG (Durand et al., 2006; Stolzer et al., 2012), or PrIME (Akerborg
and Sennblad, 2009; Sjostrand et al., 2014) adhere to this group. The
Newick-based reconciliation formats have the advantage of representing
the phylogeny. However the reconciliation information often takes the
space of other measures like bootstrap values (as in (Sz6l16si ez al., 2013a)).
The NHX-based format solves this by allocating a specific space for the
reconciliation. A common problem with NHX and newick-based formats
is that some characters are forbidden in the leaf names and annotations',
while sometimes species or gene annotations contain these characters (
whereas they rarely contain whole XML tags).

The second group represents reconciliations as lists of gene tree nodes
mapping to species tree nodes, making references to an implicit or external
gene tree (meaning that the gene tree structure might not be included in the
reconciliation). Examples of such output formats are used by ranger-DTL
(Bansal et al., 2012), ecceTERA (Jacox et al., 2016) or the simulation
software Simphy (Mallo et al., 2016).

I These forbidden characters are : , : (); in newick. In NHX, [] are
added to this list.

2 Format presentation

recPhyloXML and recGeneTreeXML are two XML grammars inherited
from PhyloXML and designed to describe reconciled gene trees.

They both rely on an XML structure composed of tags imbricated in
one-another. A specific tag may have different attributes which can be
obligatory or facultative.

In this section we briefly detail the structure of the PhyloXML used in
our format. We then expand on the tags that are specific to reconciliation.

Fundamental implementation

The recGeneTreeXML grammar allows you to add a new tag
<eventsRec> in phyloXML <clade>. This tag describes the different
evolutionary events associated to this clade. To distinguish phyloXML
trees from reconciled gene trees inferred by a reconciliation process, the
root tag <phyloxml> is replaced by <recGeneTree>.

The recPhyloXML grammar allows you to store and share one or more
reconciled genes trees and the associated species tree. Each reconciled gene
tree have to be described using the recGeneTreeXML grammar while the
species tree has to be described using the phyloXML grammar.

Common PhyloXML elements

A reconciled gene tree is delimited by the tag

<phylogeny rooted="true"></phylogeny>. Note that a
reconciled gene tree is always rooted. Each clade is then recursively
inscribed in a <clade></clade> tag. This clade tag possesses a
facultative attribute to describe branch length. The name or identifier of
the node is given in the <name></name> tag. Further information can
be included such as support value (<confidence></confidence>)
or description (<description></description>)

recGeneTreeXML

recGeneTreeXML enriches the phyloXML vocabulary by adding the
complex tag <eventsRec> that must be included inside a <clade>
tag.

The <event sRec> tag contains the sequence of evolutionary events
that occur along a gene tree branch.

Each type of evolutionary event is represented by a specific tag. These
can be of two types, according to whether they concern a branch or a node
of the gene tree:

e Nonterminal events: <speciationLoss>, <transferBack>
and <speciationOutLoss>. These tags can be used as many
times as necessary and in any order. These events do not cause any
bifurcation in the gene tree.

e Terminal events: <speciation>, <speciationOut>,
<bifurcationOut>, <duplication> and <leaf>. There is
exactly one of these tag at the end of the sequence of events contained
in the <event sRec> tag.

These terminal events cause either a bifurcation in the gene tree
(<speciation>, <speciationOut>,
<bifurcationOut>, <duplication>) or the end of a lineage
(<leaf>).

Aside fromthe <bifurcationOut>and <transferBack> tags,
all tags have an obligatory speciesLocat ion attribute that specifies in
which species the event takes place. For <bifurcationOut>, the event
always take place in an unsampled / extinct lineage. <t ransferBack>
events have instead a destinationSpecies attribute that specifies
the species that receive the transfer. All event tags also have a facultative
confidence attribute that is intended to store a support value for this
event. Additionally, all event tags have a facultative t imeS1ice attribute
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Fig. 1. A. Representation of the <leaf> tag. B. Representation of the <speciation> tag. C. Representation of the <speciationLoss> tag. D. Representation of the

<duplication> tag. The species tree is figured in green. The part of the gene tree the event occurs in is represented in plain red. Additional parts of the gene tree are represented

as dotted black lines.

that can, in models where the species tree is dated and subdivided for
instance (as shown in (Doyon et al., 2010), provide information on the
timing of the event. Finally, the <leaf> tag has a facultative geneName
attribute that can specify to which extant gene it corresponds.

<leaf> tag:
The <leaf> tag indicates that the branch ends on a gene tree leaf; see
Figure 1 A.

Associated recGeneTreeXML code:

<clade>
<name>gene_seq_1l</name>
<eventsRec>
<leaf speciesLocation="C"></leaf>
</eventsRec>
</clade>

<speciation> tag:
The <speciation> tag describes a gene lineage undergoing a
bifurcation due to a speciation; see Figure 1 B.

Associated recGeneTreeXML code:

<clade>
<eventsRec>
<speciation speciesLocation="A"></speciation>
</eventsRec>
</clade>

<speciationLoss> tag:

The <speciationLoss> tag describes an event similar to

<speciation>, with the exception that a gene copy is lost in one of the
two descendants resulting from the speciation; see Figure 1 C.

Associated recGeneTreeXML code:

<!--Example with end tag <leaf> -->
<clade>
<name>gene_seq_l</name>
<eventsRec>
<speciationLoss speciesLocation="A">

</speciationLoss>
<leaf speciesLocation="C"></leaf>
</eventsRec>
</clade>

<duplication> tag:
The <duplication> tag represents a gene duplication inside a species
tree branch; see Figure 1 D.

Associated recGeneTreeXML code:

<clade>
<eventsRec>
<duplication speciesLocation="C">
</duplication>
</eventsRec>
</clade>

<speciationOut> tag:
The <speciationOut> tag represents an event analogous to a
speciation, but where one of the resulting gene copies occurs in an
unsampled/extinct species; see Figure 3 A.

Associated recGeneTreeXML code:

<clade>
<eventsRec>
<speciationOut speciesLocation="B">
</speciationOut>
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</eventsRec>
</clade>

<transferBack> tag:
The <t ransferBack> tag represents an horizontal gene transfer toward
a branch of the species tree; see Figure 3 B.

Associated recGeneTreeXML code:

<!--Example with end tag <leaf> —-->
<clade>
<eventsRec>
<transferBack destinationSpecies="E">

</transferBack>
<leaf speciesLocation="E"></leaf>
</eventsRec>
</clade>

<speciationOutLoss> tag:

The <speciationOutLoss> represents a particular case where
after a speciation to a lineage absent from the species tree
(SpeciationOut), the gene copy that remained inside the species tree
is lost; see Figure 3 C.

Associated recGeneTreeXML code:

<!--Example with end tag <duplication> --—>
<clade>
<eventsRec>
<speciationOutLoss speciesLocation="B">
</speciationOutLoss>
<transferBack destinationSpecies="E">

</transferBack>
<duplication speciesLocation="E">
</duplication>
</eventsRec>
</clade>

<bifurcationOut> tag:
The <bifurcationOut> tag represents a bifurcation in the species
tree that would happen while the gene evolves along an unsampled/extinct
species (ie. one that is not represented in the species tree, see the
<speciationOut> and <transferBack> tags above); see Figure
3D.

Associated recGeneTreeXML code:

<clade>
<eventsRec>
<bifurcationOut></bifurcationOut>
</eventsRec>
</clade>

Note on the lateral gene transfer representation

A lateral gene transfer is represented in two steps: one that specifies
the species where the transfer originates, the other specifies the species
receiving the transfer. This representation follows a model implicating
unsampled/extinct lineages that are absent from the species tree (Szoll6si
et al., 2013b). In this model, a gene evolving in a given species undergoes
a speciation toward a species absent from the species tree; thus, a gene
copy exits the species tree. The gene copy situated outside of the species
tree will then be transferred back to another species (the gene copy comes
back to the species tree). The copy that remains outside the species tree
is considered lost as it belongs to a species that is not represented in the
species tree. These two successive steps are respectively represented by
the <speciationOut>and <transferBack> tags.

recPhyloXML

recPhyloXML facilitates the exchange of several gene family that were
reconciled to a same species tree. Its structure is fairly simple. A
<recPhylo> root tag contains the following sequence:

e 0.. 1 species tree. phyloXML format, but contains in the <spTree>
tag rather than the <phyloxml> tag.

e 1 ..n gene family tree in recGeneTreeXML format, each defined in a
separate <recGeneTree> tag.

<!--skeleton of a recphylo object with a species
tree and two reconciled gene trees ——>
<recphylo>
<spTree>

<!--phyloxml species tree -->
</sptree>
<recGeneTree>

<!-- first reconciled gene tree -->
</recGeneTree>
<recGeneTree>

<!-- second reconciled gene tree —-->
</recGeneTree>
</recphylo>

3 Availability

A detailed description of the recPhyloXML format, as well as a .xsd
file?, is available at http:/phylariane.univ-lyon1.fr/recphyloxml/. This
website also presents a tool that can generate a visual representation of
any reconciled tree in the recPhyloXML format, as shown in Figure 3.
The generated file is a .svg file, allowing easy further manipulation, like
changing the color scheme for instance.

The recPhyloXML format has already been implemented as an output
option in the reconciliation software ALE (Szo116si et al., 2013a) and both
as input and output options in the adjacency history computing software
DeCoSTAR (Duchemin er al., 2017).

Furthermore, scripts have been developed to convert the reconciliations
produced by ecceTERA(Jacox et al., 2016), NOTUNG(Durand et al.,
2006) and PrIME(Akerborg and Sennblad, 2009) in recPhyloXML , as
well as additional scripts to convert a recPhyloXML reconciled tree in the
newick format, or count the different events represented in a recphyloXML
file.

2 This is a file formally describing the format, used by many XML tools.
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Fig. 2. A. Representation of the <speciationOut> tag. B. Representation of the <t ransferBack> tag. C. Representation of the <speciationOutLoss> tag. D. Representation

of the <bifurcationOut> tag. The species tree is figured in green. Dead / unsampled lineages are represented in orange. The part of the gene tree the event occurs in is represented in

plain red. Additional parts of the gene tree are represented as dotted black lines.

APIs have been written to import and export in recPhyloXML for the
C++ library Bio++ (Gueguen et al., 2013), for the python libraries ETE3
(Huerta-Cepas et al., 2016) and for Biopython (Cock et al., 2009) (right
now, we distribute all these scripts and API by e-mail, on demand. Later
they shall be downloadable from the website).

4 Conclusion

With the growing number of available reconciliation models and software,
it becomes crucial to be able to exchange and compare their results.
RecPhyloXML is a format that can accommodate many reconciliation
features (dated / undated ; with or without lateral gene transfers). It relies
on an XML structure, a standard format for nested data and that already
has multiple API libraries in various programming languages. We provide

adetailed description of the recPhyloXML format on a website, along with
a tool to visualize it.
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