A. Obliger, R. Pellenq, F. Ulm, and B. Coasne, Free Volume Theory of Hydrocarbon Mixture Transport in Nanoporous Materials, The Journal of Physical Chemistry Letters, vol.7, issue.19, pp.3712-3717, 2016.
DOI : 10.1021/acs.jpclett.6b01684

URL : https://hal.archives-ouvertes.fr/hal-01454993

A. Botan, R. Vermorel, F. J. Ulm, and R. J. Pellenq, Molecular Simulations of Supercritical Fluid Permeation through Disordered Microporous Carbons, Langmuir, vol.29, issue.32, pp.9985-9990, 2008.
DOI : 10.1021/la402087r

URL : https://hal.archives-ouvertes.fr/hal-00856240

D. Nicholson, Simulation studies of methane transport in model graphite micropores, Carbon, vol.36, issue.10, pp.1511-1523, 1998.
DOI : 10.1016/S0008-6223(98)00143-2

Y. I. Lim, S. K. Bhatia, T. X. Nguyen, and D. Nicholson, Prediction of carbon dioxide permeability in carbon slit pores, Journal of Membrane Science, vol.355, issue.1-2, pp.186-199, 2010.
DOI : 10.1016/j.memsci.2010.03.030

R. F. Cracknell, D. Nicholson, and N. Quirke, Direct Molecular Dynamics Simulation of Flow Down a Chemical Potential Gradient in a Slit-Shaped Micropore, Physical Review Letters, vol.51, issue.13, pp.2463-2466, 1995.
DOI : 10.1080/00268978400100801

M. Kazemi and A. Takbiri-borujeni, Non-equilibrium molecular dynamics simulation of gas flow in organic nanochannels, Journal of Natural Gas Science and Engineering, vol.33, issue.6, pp.1087-1094, 2016.
DOI : 10.1016/j.jngse.2016.05.068

S. K. Bhatia, Characterizing Structural Complexity in Disordered Carbons: From the Slit Pore to Atomistic Models, Langmuir, vol.33, issue.4, pp.831-847, 2017.
DOI : 10.1021/acs.langmuir.6b03459

S. K. Jain, R. J. Pellenq, J. P. Pikunic, and K. E. Gubbins, Molecular Modeling of Porous Carbons Using the Hybrid Reverse Monte Carlo Method, Langmuir, vol.22, issue.24, pp.9942-9948, 2006.
DOI : 10.1021/la053402z

C. Bousige, A. Botan, F. Ulm, R. J. Pellenq, and B. Coasne, Optimized molecular reconstruction procedure combining hybrid reverse Monte Carlo and molecular dynamics, The Journal of Chemical Physics, vol.142, issue.11, p.114112, 2015.
DOI : 10.1016/j.carbon.2014.05.061

URL : https://hal.archives-ouvertes.fr/hal-01611964

C. Clarkson, N. Solano, R. Bustin, A. Bustin, G. Chalmers et al., Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion, Fuel, vol.103, pp.606-616, 2009.
DOI : 10.1016/j.fuel.2012.06.119

P. Rouse and . Jr, A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers, The Journal of Chemical Physics, vol.21, issue.7, pp.1272-1280, 1953.
DOI : 10.1063/1.1724075

P. Mallick, Composites Engineering Handbook, Materials Engineering, issue.10, 1997.

M. Vandenbroucke, Kerogen: from Types to Models of Chemical Structure, Oil & Gas Science and Technology, vol.40, issue.2, pp.243-269, 2003.
DOI : 10.1021/ef00009a004

M. Vandenbroucke and C. Largeau, Kerogen origin, evolution and structure, Organic Geochemistry, vol.38, issue.5, pp.719-833, 2007.
DOI : 10.1016/j.orggeochem.2007.01.001

URL : https://hal.archives-ouvertes.fr/bioemco-00147220

P. Ungerer, J. Collell, and M. Yiannourakou, Molecular Modeling of the Volumetric and Thermodynamic Properties of Kerogen: Influence of Organic Type and Maturity, Energy & Fuels, vol.29, issue.1, pp.91-105
DOI : 10.1021/ef502154k

URL : https://hal.archives-ouvertes.fr/hal-01278635

S. Plimpton, A. Thompson, S. Moore, and A. Kohlmeyer, Lammps molecular dynamics simulator, p.11, 1995.

M. G. Martin, MCCCS Towhee: a tool for Monte Carlo molecular simulation, Molecular Simulation, vol.33, issue.14-15, pp.14-15, 2013.
DOI : 10.1016/j.cpc.2011.04.026

S. E. Philosophy, Boltzmann ' s Work in Statistical Physics, p.23, 2014.

D. Frenkel and B. Smit, Understanding Molecular Simulation, Computers in Physics, vol.11, issue.4, pp.664-696, 2002.
DOI : 10.1063/1.4822570

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, J. Chem. Phys, vol.1087, issue.27, p.28, 1953.

P. Ungerer, V. Lachet, and B. Tavitian, Applications of Molecular Simulation in Oil and Gas Production and Processing, Oil & Gas Science and Technology - Revue de l'IFP, vol.40, issue.3, pp.387-403, 2006.
DOI : 10.1016/S0378-3812(97)00183-0

URL : https://hal.archives-ouvertes.fr/hal-01160405

A. Z. Panagiotopoulos, Monte Carlo methods for phase equilibria of fluids, Journal of Physics: Condensed Matter, vol.12, issue.3, p.27, 2000.
DOI : 10.1088/0953-8984/12/3/201

M. G. Martin, MCCCS Towhee: a tool for Monte Carlo molecular simulation, Molecular Simulation, vol.33, issue.14-15, pp.14-15, 2013.
DOI : 10.1016/j.cpc.2011.04.026

S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, vol.117, issue.1, pp.1-19, 1995.
DOI : 10.1006/jcph.1995.1039

URL : http://www.cs.sandia.gov/~sjplimp/papers/jcompphys95.ps.gz

M. P. Allen and D. J. Tildesley, Computer simulation of liquids, p.30, 2017.

D. Dubbeldam, A. Torres-knoop, and K. S. Walton, Monte Carlo code , tools and algorithms on the inner workings of Monte Carlo codes, p.30, 2013.

A. Boutin, A. H. Fuchs, D. B. Pre, and R. M. Cedex, Grand canonical Monte Carlo simulations of adsorption of mixtures of xylene molecules in faujasite zeolites Simulation model, p.30, 1997.

M. P. Allen and D. Tildsley, Computer Simulation in Chemical Physics, p.32, 1992.
DOI : 10.1007/978-94-011-1679-4

S. Chapman, The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Containing Papers of a Mathematical and Physical Character, Proceedings of the Royal Society of London. Series A, p.35, 1924.

S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio et al., A new force field for molecular mechanical simulation of nucleic acids and proteins, Journal of the American Chemical Society, vol.106, issue.3, pp.765-784, 1984.
DOI : 10.1021/ja00315a051

M. Waldman and A. T. Hagler, New combining rules for rare gas van der waals parameters, Journal of Computational Chemistry, vol.98, issue.9, p.37, 1992.
DOI : 10.1002/jcc.540140909

J. Delhommelle and P. Milliémilli´millié, Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation, Molecular Physics, vol.5, issue.8, pp.619-625, 2001.
DOI : 10.1016/0021-9614(72)90002-X

P. P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale, Annalen der Physik, vol.54, issue.3, pp.253-287, 1921.
DOI : 10.1002/andp.19213690304

T. Darden, D. York, and L. Pedersen, ) method for Ewald sums in large systems, The Journal of Chemical Physics, vol.9, issue.12, pp.10089-10092, 1993.
DOI : 10.1126/science.2548279

M. Deserno and C. Holm, How to mesh up Ewald sums. II. An accurate error estimate for the particle???particle???particle-mesh algorithm, The Journal of Chemical Physics, vol.109, issue.18, pp.7694-7701, 1998.
DOI : 10.1063/1.470043

J. V. Beckers, C. P. Lowe, and S. W. Leeuw, An Iterative PPPM Method for Simulating Coulombic Systems on Distributed Memory Parallel Computers, Molecular Simulation, vol.83, issue.6, pp.369-383, 1998.
DOI : 10.1103/PhysRevLett.61.869

H. Sun, S. J. Mumby, J. R. Maple, and A. T. Hagler, An ab Initio CFF93 All-Atom Force Field for Polycarbonates, Journal of the American Chemical Society, vol.116, issue.7, pp.2978-2987, 1994.
DOI : 10.1021/ja00086a030

J. Hill and J. Sauer, Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica, The Journal of Physical Chemistry, vol.98, issue.4, pp.1238-1244, 1994.
DOI : 10.1021/j100055a032

J. E. Mark, Physical Properties of Polymers Handbook, p.39, 2007.
DOI : 10.1007/978-0-387-69002-5

A. Pertsin and K. , The atom-atom potential method : applications to organic molecular solids, p.39

B. Widom, Some Topics in the Theory of Fluids, The Journal of Chemical Physics, vol.39, issue.11, p.41, 1963.
DOI : 10.1063/1.1703745

K. Shing and K. Gubbins, The chemical potential in dense fluids and fluid mixtures via computer simulation, Molecular Physics, vol.68, issue.5, pp.1109-1128, 1982.
DOI : 10.1039/f29726800320

J. Kolafa and I. Nezbeda, The Lennard-Jones fluid: an accurate analytic and theoretically-based equation of state, Fluid Phase Equilibria, vol.100, issue.42, p.43, 1994.
DOI : 10.1016/0378-3812(94)80001-4

K. Gubbins, The Lennard-Jones equation of state revisited, Molecular Physics, vol.78, issue.3, pp.591-618, 1993.

G. Torrie and J. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, Journal of Computational Physics, vol.23, issue.2, pp.187-199, 1977.
DOI : 10.1016/0021-9991(77)90121-8

J. Kästner, Umbrella sampling, Wiley Interdisciplinary Reviews: Computational Molecular Science, vol.8, issue.6, pp.932-942, 2011.
DOI : 10.1002/cphc.200600527

J. Comer, J. C. Gumbart, H. Jérôme, L. Tony, A. Pohorille et al., The Adaptive Biasing Force Method: Everything You Always Wanted To Know but Were Afraid To Ask, The Journal of Physical Chemistry B, vol.119, issue.3, pp.1129-1151, 2015.
DOI : 10.1021/jp506633n

URL : https://hal.archives-ouvertes.fr/hal-01238593

S. Sircar and M. Rao, Nanoporous Carbon Membranes for Gas Separation, Recent Advances in Gas Separation by Microporous Ceramic Membranes (N. Kanellopoulos of Membrane Science and Technology, pp.473-496, 2000.
DOI : 10.1016/S0927-5193(00)80020-0

D. Duque, P. Tarazona, and E. Chacón, Diffusion at the liquid-vapor interface, The Journal of Chemical Physics, vol.128, issue.13, pp.134704-50, 2008.
DOI : 10.1021/cr0403640

A. Botan, B. Rotenberg, V. Marry, P. Turq, and B. Noetinger, Hydrodynamics in Clay Nanopores, The Journal of Physical Chemistry C, vol.115, issue.32, pp.16109-16115, 2011.
DOI : 10.1021/jp204772c

H. Hoang and G. Galliero, Grand canonical-like molecular dynamics simulations: Application to anisotropic mass diffusion in a nanoporous medium, The Journal of Chemical Physics, vol.136, issue.18, pp.184702-50, 2012.
DOI : 10.1063/1.3696898

R. Krishna and J. M. Van-baten, In silico screening of metal???organic frameworks in separation applications, Physical Chemistry Chemical Physics, vol.126, issue.22, pp.10593-10616, 2011.
DOI : 10.1063/1.2713097

F. Zhu, E. Tajkhorshid, and K. Schulten, Collective Diffusion Model for Water Permeation through Microscopic Channels, Physical Review Letters, vol.85, issue.22, pp.224501-50, 2004.
DOI : 10.1016/0263-7855(96)00018-5

S. E. Strong and J. D. Eaves, Atomistic Hydrodynamics and the Dynamical Hydrophobic Effect in Porous Graphene, The Journal of Physical Chemistry Letters, vol.7, issue.10, pp.1907-1912, 2016.
DOI : 10.1021/acs.jpclett.6b00748

S. K. Bhatia, G. Enérationen´enération, . Structures-de-k-´-erog-`-eneerog-`-erog-`-ene, and . Mature, Characterizing Structural Complexity in Disordered Carbons: From the Slit Pore to Atomistic Models, Langmuir, vol.33, issue.4, pp.831-847, 1980.
DOI : 10.1021/acs.langmuir.6b03459

P. Mallick, Composites Engineering Handbook, Materials Engineering, p.66, 1997.

B. Tissot and D. Welte, Petroleum Formation and Occurrence, pp.66-75, 1984.

M. Vandenbroucke and C. Largeau, Kerogen origin, evolution and structure, Organic Geochemistry, vol.38, issue.5, pp.719-833, 2007.
DOI : 10.1016/j.orggeochem.2007.01.001

URL : https://hal.archives-ouvertes.fr/bioemco-00147220

S. K. Jain, R. J. Pellenq, J. P. Pikunic, and K. E. Gubbins, Molecular Modeling of Porous Carbons Using the Hybrid Reverse Monte Carlo Method, Langmuir, vol.22, issue.24, pp.9942-9948, 2006.
DOI : 10.1021/la053402z

G. Opletal, T. Petersen, B. O. Malley, I. Snook, D. G. Mcculloch et al., Hybrid approach for generating realistic amorphous carbon structure using metropolis and reverse Monte Carlo, Molecular Simulation, vol.12, issue.10-11, pp.927-938, 2002.
DOI : 10.1103/PhysRevB.44.4925

S. J. Stuart, A. B. Tutein, and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, The Journal of Chemical Physics, vol.11, issue.14, pp.6472-6486, 2000.
DOI : 10.1002/jcc.540120209

B. Ni, K. Lee, and S. B. Sinnott, A reactive empirical bond order (REBO) potential for hydrocarbon???oxygen interactions, Journal of Physics: Condensed Matter, vol.16, issue.41, p.7261, 2004.
DOI : 10.1088/0953-8984/16/41/008

T. P. Senftle, S. Hong, M. M. Islam, S. B. Kylasa, Y. Zheng et al., The ReaxFF reactive force-field: development, applications and future directions, npj Computational Materials, vol.134, issue.1, pp.15011-15014
DOI : 10.1021/ja209152n

G. Opletal, T. Petersen, I. Snook, and S. Russo, HRMC_2.0: Hybrid Reverse Monte Carlo method with silicon, carbon and germanium potentials, Computer Physics Communications, vol.184, issue.8, pp.1946-1957, 2013.
DOI : 10.1016/j.cpc.2013.03.004

A. H. Farmahini and S. K. Bhatia, Hybrid Reverse Monte Carlo simulation of amorphous carbon: Distinguishing between competing structures obtained using different modeling protocols, Carbon, vol.83, issue.68, pp.53-70, 2015.
DOI : 10.1016/j.carbon.2014.11.013

A. H. Farmahini and S. K. Bhatia, Effect of structural anisotropy and pore-network accessibility on fluid transport in nanoporous Ti3SiC2 carbide-derived carbon, Carbon, vol.103, pp.16-27, 2016.
DOI : 10.1016/j.carbon.2016.02.093

C. Bousige, A. Botan, F. Ulm, R. J. Pellenq, and B. Coasne, Optimized molecular reconstruction procedure combining hybrid reverse Monte Carlo and molecular dynamics, The Journal of Chemical Physics, vol.142, issue.11, pp.114112-69, 2015.
DOI : 10.1016/j.carbon.2014.05.061

URL : https://hal.archives-ouvertes.fr/hal-01611964

C. Bousige, C. M. Ghimbeu, C. Vix-guterl, A. E. Pomerantz, A. Suleimenova et al., Realistic molecular model of kerogen???s nanostructure, Nature Materials, vol.15, issue.5, pp.576-582
DOI : 10.1002/jcc.23035

URL : https://hal.archives-ouvertes.fr/hal-01611970

S. R. Kelemen, M. Afeworki, M. L. Gorbaty, M. Sansone, P. J. Kwiatek et al., C Nuclear Magnetic Resonance Methods, Energy & Fuels, vol.21, issue.3, pp.1548-1561, 2007.
DOI : 10.1021/ef060321h

J. Mao, X. Fang, Y. Lan, A. Schimmelmann, M. Mastalerz et al., Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy, Geochimica et Cosmochimica Acta, vol.74, issue.7, pp.2110-2127, 2010.
DOI : 10.1016/j.gca.2009.12.029

M. S. Solum, C. L. Mayne, A. M. Orendt, R. J. Pugmire, J. Adams et al., Characterization of Macromolecular Structure Elements from a Green River Oil Shale, I. Extracts, Energy & Fuels, vol.28, issue.1, pp.453-465, 2014.
DOI : 10.1021/ef401918u

P. Ungerer, J. Collell, and M. Yiannourakou, Molecular Modeling of the Volumetric and Thermodynamic Properties of Kerogen: Influence of Organic Type and Maturity, Energy & Fuels, vol.29, issue.1, pp.91-105, 2015.
DOI : 10.1021/ef502154k

URL : https://hal.archives-ouvertes.fr/hal-01278635

J. Collell, P. Ungerer, G. Galliero, M. Yiannourakou, F. Montel et al., Molecular Simulation of Bulk Organic Matter in Type II Shales in the Middle of the Oil Formation Window, Energy & Fuels, vol.28, issue.12, pp.7457-7466, 2014.
DOI : 10.1021/ef5021632

URL : https://hal.archives-ouvertes.fr/hal-01278644

L. Michalec and M. Lisal, Molecular simulation of shale gas adsorption onto overmature type II model kerogen with control microporosity, Molecular Physics, vol.1, issue.9-12, pp.9-12, 2017.
DOI : 10.1016/j.orggeochem.2012.03.012

T. A. Ho, L. J. Criscenti, and Y. Wang, Nanostructural control of methane release in kerogen and its implications to wellbore production decline, Scientific Reports, vol.134, issue.1, pp.28053-28059
DOI : 10.1063/1.3595260

S. R. Kelemen, M. Afeworki, M. L. Gorbaty, M. Sansone, P. J. Kwiatek et al., C Nuclear Magnetic Resonance Methods, Energy & Fuels, vol.21, issue.3, pp.1548-1561, 2007.
DOI : 10.1021/ef060321h

J. D. Bredehoeft, J. B. Wesley, and T. D. Fouch, Simulations of the origin of fluid pressure, fracture gen-eration, and the movement of fluids in the uinta basin, utah, pp.1729-1747, 1994.

X. Guo, S. He, K. Liu, and L. Zheng, Quantitative estimation of overpressure caused by oil generation in petroliferous basins, Organic Geochemistry, vol.42, issue.11, pp.1343-1350, 2011.
DOI : 10.1016/j.orggeochem.2011.08.017

C. Barker, Calculated volume and pressure changes during the thermal cracking of oil to gas in reservoirs, pp.1254-1261, 1990.

X. Luo and G. Vasseur, Geopressuring mechanism of organic matter cracking ; numerical modeling, AAPG Bulletin, vol.80, issue.6, pp.856-874, 1996.

O. Batalin and N. Vafina, Condensation Mechanism of Hydrocarbon Field Formation, Scientific Reports, vol.12, issue.8, pp.10253-76, 2017.
DOI : 10.1016/S0264-8172(98)00085-3

J. Espitalie, G. Deroo, and F. Marquis, Rock-eval pyrolysis and its applications (part two), pp.755-784, 1986.

D. M. Jarvie, R. J. Hill, T. E. Ruble, and R. M. Pollastro, Unconventional shalegas systems : The mississippian barnett shale of north-central texas as one model for thermogenic shale-gas assessment, pp.475-499, 2007.

M. Romero-sarmiento, J. Rouzaud, S. Bernard, D. Deldicque, M. Thomas et al., Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation, Organic Geochemistry, vol.71, issue.84, pp.7-16, 2014.
DOI : 10.1016/j.orggeochem.2014.03.008

URL : https://hal.archives-ouvertes.fr/hal-01068539

C. Jiang, Z. Chen, A. Mort, M. Milovic, R. Robinson et al., Hydrocarbon evaporative loss from shale core samples as revealed by Rock-Eval and thermal desorption-gas chromatography analysis: Its geochemical and geological implications, Marine and Petroleum Geology, vol.70, pp.294-303, 2016.
DOI : 10.1016/j.marpetgeo.2015.11.021

L. Herrera, D. Do, and D. Nicholson, A Monte Carlo integration method to determine accessible volume, accessible surface area and its fractal dimension, Journal of Colloid and Interface Science, vol.348, issue.2, pp.529-536, 2010.
DOI : 10.1016/j.jcis.2010.05.001

T. Duren, F. Millange, G. Férey, K. S. Walton, and R. Q. Snurr, Calculating Geometric Surface Areas as a Characterization Tool for Metal???Organic Frameworks, The Journal of Physical Chemistry C, vol.111, issue.42, pp.15350-15356, 2007.
DOI : 10.1021/jp074723h

H. Marsh and F. Reinoso, Activated Carbon, p.88, 2006.

R. Bansal and M. Goyal, Activated Carbon Adsorption, p.88, 2005.

J. L. Oberlin, A. , and M. Villey, Kerogen : Insoluble organic matter from sedimentary rocks, pp.191-241, 1980.

A. D. Mcnaught, A. Wilkinson, G. Enérationen´enération, . Structures-de-k-´-erog-`-eneerog-`-erog-`-ene, and . Mature, Gold Book " ). WileyBlackwell, IUPAC. Compendium of Chemical Terminology, vol.2

C. Clarkson, N. Solano, R. Bustin, A. Bustin, G. Chalmers et al., Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion, Fuel, vol.103, pp.606-616, 2013.
DOI : 10.1016/j.fuel.2012.06.119

D. J. Ross and R. M. Bustin, Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs, Fuel, vol.86, issue.17-18, pp.2696-2706, 2007.
DOI : 10.1016/j.fuel.2007.02.036

J. Pikunic, P. Llewellyn, R. Pellenq, and K. E. Gubbins, Argon and Nitrogen Adsorption in Disordered Nanoporous Carbons:?? Simulation and Experiment, Langmuir, vol.21, issue.10, pp.4431-4440, 2005.
DOI : 10.1021/la047165w

C. 4. Adsorption, . Et, . Des, . P. Dans-les-k-´-erog-`-eneserog-`-erog-`-enes-matures-f, R. M. Wang et al., Pore networks and fluid flow in gas shales, p.96, 2009.

T. F. Rexer, E. J. Mathia, A. C. Aplin, and K. M. Thomas, High-Pressure Methane Adsorption and Characterization of Pores in Posidonia Shales and Isolated Kerogens, Energy & Fuels, vol.28, issue.5, pp.2886-2901, 2014.
DOI : 10.1021/ef402466m

H. Hoang, S. Delage-santacreu, and G. Galliero, Simultaneous Description of Equilibrium, Interfacial, and Transport Properties of Fluids Using a Mie Chain Coarse-Grained Force Field, Industrial & Engineering Chemistry Research, vol.56, issue.32, pp.9213-9226, 2017.
DOI : 10.1021/acs.iecr.7b01397

URL : https://hal.archives-ouvertes.fr/hal-01695743

M. Gasparik, P. Bertier, Y. Gensterblum, A. Ghanizadeh, B. M. Krooss et al., Geological controls on the methane storage capacity in organic-rich shales, International Journal of Coal Geology, vol.123, issue.108, pp.34-51, 2014.
DOI : 10.1016/j.coal.2013.06.010

S. Ottiger, R. Pini, G. Storti, and M. Mazzotti, Competitive adsorption equilibria of CO2 and CH4 on a dry coal, Adsorption, vol.45, issue.4-5, pp.539-556, 2008.
DOI : 10.1007/s10450-008-9114-0

L. Brochard, M. Vandamme, R. J. Pellenq, and T. Fen-chong, Competitive Adsorption, Langmuir, vol.28, issue.5, pp.2659-2670, 2012.
DOI : 10.1021/la204072d

URL : https://hal.archives-ouvertes.fr/hal-00691799

A. Mejia, C. Herdes, and E. A. Müller, Force Fields for Coarse-Grained Molecular Simulations from a Corresponding States Correlation, Industrial & Engineering Chemistry Research, vol.53, issue.10, pp.4131-4141, 2014.
DOI : 10.1021/ie404247e

S. Brandani, E. Mangano, and L. Sarkisov, Net, excess and absolute adsorption and adsorption of helium, Adsorption, vol.17, issue.2, pp.261-276, 0102.
DOI : 10.1007/s10450-011-9364-0

S. K. Jain, J. P. Pikunic, R. J. Pellenq, and K. E. Gubbins, Effects of Activation on the Structure and Adsorption Properties of a Nanoporous Carbon Using Molecular Simulation, Adsorption, vol.34, issue.1, pp.355-360, 0107.
DOI : 10.1007/s10450-005-5950-3

URL : https://hal.archives-ouvertes.fr/hal-00015243

A. Herbst and P. Harting, Thermodynamic description of excess isotherms in highpressure adsorption of methane, argon and nitrogen, Adsorption, vol.8, issue.2, pp.111-123, 0107.
DOI : 10.1023/A:1020474217002

Y. Sawa, Y. Liang, S. Murata, T. Matsuoka, T. Akai et al., Pore-Filling Nature of CH<sub>4</sub> Adsorption Behavior in Kerogen Nanopores: A Molecular View Based on Full-Atom Kerogen Models, SPE Asia Pacific Unconventional Resources Conference and Exhibition, p.107
DOI : 10.2118/176999-MS

C. Clarkson, N. Solano, R. Bustin, A. Bustin, G. Chalmers et al., Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion, Fuel, vol.103, pp.606-616, 2013.
DOI : 10.1016/j.fuel.2012.06.119

K. Falk, B. Coasne, R. Pellenq, F. Ulm, and L. Bocquet, Subcontinuum mass transport of condensed hydrocarbons in nanoporous media, Nature Communications, vol.19, issue.1, pp.6949-6953
DOI : 10.1023/A:1006590500229

S. K. Jain, R. J. Pellenq, J. P. Pikunic, and K. E. Gubbins, Molecular Modeling of Porous Carbons Using the Hybrid Reverse Monte Carlo Method, Langmuir, vol.22, issue.24, pp.9942-9948, 2006.
DOI : 10.1021/la053402z

T. A. Centeno and A. B. Fuertes, Supported carbon molecular sieve membranes based on a phenolic resin, Journal of Membrane Science, vol.160, issue.2, pp.201-211, 1999.
DOI : 10.1016/S0376-7388(99)00083-6

A. Botan, R. Vermorel, F. Ulm, R. J. , and -. Pellenq, Molecular Simulations of Supercritical Fluid Permeation through Disordered Microporous Carbons, Langmuir, vol.29, issue.32, pp.9985-9990, 2013.
DOI : 10.1021/la402087r

URL : https://hal.archives-ouvertes.fr/hal-00856240

K. Makrodimitris, G. K. Papadopoulos, and D. N. Theodorou, through Silicalite via Molecular Simulations, The Journal of Physical Chemistry B, vol.105, issue.4, pp.777-788, 2001.
DOI : 10.1021/jp002866x

S. Sircar and M. Rao, Nanoporous carbon membranes for gas separation, " in Recent Advances in Gas Separation by Microporous Ceramic Membranes, of Membrane Science and Technology, pp.473-496, 2000.

K. P. Travis, Computer simulation investigation of diffusion selectivity in graphite slit pores, Molecular Physics, vol.181, issue.14, pp.2317-2329, 2002.
DOI : 10.1063/1.468739

Y. Lim, S. K. Bhatia, T. X. Nguyen, and D. Nicholson, Prediction of carbon dioxide permeability in carbon slit pores, Journal of Membrane Science, vol.355, issue.1-2, pp.186-199, 2010.
DOI : 10.1016/j.memsci.2010.03.030

M. Firouzi and J. Wilcox, Molecular modeling of carbon dioxide transport and storage in porous carbon-based materials, Microporous and Mesoporous Materials, vol.158, pp.195-203, 2012.
DOI : 10.1016/j.micromeso.2012.02.045

M. Vasileiadis, L. D. Peristeras, K. D. Papavasileiou, and I. G. Economou, Modeling of Bulk Kerogen Porosity: Methods for Control and Characterization, Energy & Fuels, vol.31, issue.6, pp.6004-6018, 2017.
DOI : 10.1021/acs.energyfuels.7b00626

R. Morris and P. Wheatley, Gas Storage in Nanoporous Materials, Angewandte Chemie International Edition, vol.129, issue.27, pp.4966-4981, 2008.
DOI : 10.1016/j.crci.2004.10.018

A. U. Czaja, N. Trukhan, and U. Muller, Industrial applications of metal???organic frameworks, Chemical Society Reviews, vol.120, issue.5, pp.1284-1293, 2009.
DOI : 10.1016/j.crci.2006.09.017

R. Krishna and J. Van-baten, Unified Maxwell???Stefan description of binary mixture diffusion in micro- and meso-porous materials, Chemical Engineering Science, vol.64, issue.13, pp.3159-3178, 2009.
DOI : 10.1016/j.ces.2009.03.047

J. Collell, G. Galliero, R. Vermorel, P. Ungerer, M. Yiannourakou et al., Transport of Multicomponent Hydrocarbon Mixtures in Shale Organic Matter by Molecular Simulations, The Journal of Physical Chemistry C, vol.119, issue.39, pp.22587-22595, 2015.
DOI : 10.1021/acs.jpcc.5b07242

URL : https://hal.archives-ouvertes.fr/hal-01278630

A. Botan, R. Vermorel, F. Ulm, R. J. , and -. Pellenq, Molecular Simulations of Supercritical Fluid Permeation through Disordered Microporous Carbons, Langmuir, vol.29, issue.32, pp.9985-9990, 2013.
DOI : 10.1021/la402087r

URL : https://hal.archives-ouvertes.fr/hal-00856240

R. M. Barrer and E. K. , Activated diffusion in membranes, Transactions of the Faraday Society, vol.35, pp.644-656, 1939.
DOI : 10.1039/tf9393500644

J. Xiao and J. Wei, Diffusion mechanism of hydrocarbons in zeolites???I. Theory, Chemical Engineering Science, vol.47, issue.5, pp.1123-1141, 1992.
DOI : 10.1016/0009-2509(92)80236-6

T. A. Centeno and A. B. Fuertes, Supported carbon molecular sieve membranes based on a phenolic resin, Journal of Membrane Science, vol.160, issue.2, pp.201-211, 1999.
DOI : 10.1016/S0376-7388(99)00083-6

M. Rao and S. Sircar, Nanoporous carbon membrane for gas separation, Gas Separation & Purification, vol.7, issue.4, pp.279-284, 1993.
DOI : 10.1016/0950-4214(93)80030-Z

M. Rao and S. Sircar, Performance and pore characterization of nanoporous carbon membranes for gas separation, Journal of Membrane Science, vol.110, issue.1, pp.109-118, 1996.
DOI : 10.1016/0376-7388(95)00241-3

D. M. Ford and E. D. Glandt, Molecular Simulation Study of the Surface Barrier Effect. Dilute Gas Limit, The Journal of Physical Chemistry, vol.99, issue.29, pp.11543-11549, 1995.
DOI : 10.1021/j100029a037

L. W. Drahushuk and M. S. Strano, Mechanisms of Gas Permeation through Single Layer Graphene Membranes, Langmuir, vol.28, issue.48, pp.16671-16678, 2012.
DOI : 10.1021/la303468r

C. Sun, M. S. Boutilier, H. Au, P. Poesio, B. Bai et al., Mechanisms of Molecular Permeation through Nanoporous Graphene Membranes, Langmuir, vol.30, issue.2, pp.675-682, 2014.
DOI : 10.1021/la403969g

T. X. Nguyen and S. K. Bhatia, Pore accessibility of N2 and Ar in disordered nanoporous solids: theory and experiment, Adsorption, vol.16, issue.3-4, pp.307-314, 2007.
DOI : 10.1007/s10450-007-9061-1

T. X. Nguyen and S. K. Bhatia, Determination of Pore Accessibility in Disordered Nanoporous Materials, The Journal of Physical Chemistry C, vol.111, issue.5, pp.2212-2222, 2007.
DOI : 10.1021/jp065591f

J. D. Weeks, D. Chandler, and H. C. Andersen, Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids, The Journal of Chemical Physics, vol.54, issue.12, pp.5237-5247, 1971.
DOI : 10.1063/1.1671328

E. S. Loscar, C. G. Ferrara, and T. S. Grigera, Spinodals and critical point using short-time dynamics for a simple model of liquid, The Journal of Chemical Physics, vol.22, issue.13, pp.134501-126, 2016.
DOI : 10.1063/1.2227027

S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, vol.117, issue.1, pp.1-19, 1995.
DOI : 10.1006/jcph.1995.1039

URL : http://www.cs.sandia.gov/~sjplimp/papers/jcompphys95.ps.gz

R. Vermorel, F. Oulebsir, and G. Galliero, Communication: A method to compute the transport coefficient of pure fluids diffusing through planar interfaces from equilibrium molecular dynamics simulations, The Journal of Chemical Physics, vol.147, issue.10, pp.101102-126, 2017.
DOI : 10.1063/1.1674820

F. Reif, Fundamentals of Statistical and Thermal Physics, p.129, 2009.

K. Gubbins and K. Travis, Computer simulation of isothermal mass transport in graphite slit pores, 0132.
DOI : 10.1201/9781420023350.ch8

D. Dubbeldam, E. Beerdsen, T. J. Vlugt, and B. Smit, Molecular simulation of loading-dependent diffusion in nanoporous materials using extended dynamically corrected transition state theory, The Journal of Chemical Physics, vol.122, issue.22, pp.224712-139, 2005.
DOI : 10.1021/j100315a003

E. Beerdsen, B. Smit, and D. Dubbeldam, Molecular Simulation of Loading Dependent Slow Diffusion in Confined Systems, Physical Review Letters, vol.95, issue.24, pp.248301-139, 2004.
DOI : 10.1021/jp026257w

L. W. Drahushuk and M. S. Strano, Mechanisms of Gas Permeation through Single Layer Graphene Membranes, Langmuir, vol.28, issue.48, pp.16671-16678, 2012.
DOI : 10.1021/la303468r

S. E. Strong and J. D. Eaves, Atomistic Hydrodynamics and the Dynamical Hydrophobic Effect in Porous Graphene, The Journal of Physical Chemistry Letters, vol.7, issue.10, pp.1907-1912, 2016.
DOI : 10.1021/acs.jpclett.6b00748

A. Botan, B. Rotenberg, V. Marry, P. Turq, B. Noetinger et al., Hydrodynamics in Clay Nanopores, The Journal of Physical Chemistry C, vol.115, issue.32, pp.16109-16115
DOI : 10.1021/jp204772c

A. Botan, R. Vermorel, F. Ulm, R. J. , and -. Pellenq, Molecular Simulations of Supercritical Fluid Permeation through Disordered Microporous Carbons, Langmuir, vol.29, issue.32, pp.9985-9990, 2013.
DOI : 10.1021/la402087r

URL : https://hal.archives-ouvertes.fr/hal-00856240

J. Collell, G. Galliero, R. Vermorel, P. Ungerer, M. Yiannourakou et al., Transport of Multicomponent Hydrocarbon Mixtures in Shale Organic Matter by Molecular Simulations, The Journal of Physical Chemistry C, vol.119, issue.39, pp.22587-22595, 2015.
DOI : 10.1021/acs.jpcc.5b07242

URL : https://hal.archives-ouvertes.fr/hal-01278630

P. Levitz, V. Tariel, M. Stampanoni, and E. Gallucci, Topology of evolving pore networks, The European Physical Journal Applied Physics, vol.34, issue.77, pp.24202-154, 2012.
DOI : 10.1016/j.cemconres.2004.05.034

S. Bhattacharya and K. E. Gubbins, Fast Method for Computing Pore Size Distributions of Model Materials, Langmuir, vol.22, issue.18, pp.7726-7731, 2006.
DOI : 10.1021/la052651k

L. Herrera, D. Do, and D. Nicholson, A Monte Carlo integration method to determine accessible volume, accessible surface area and its fractal dimension, Journal of Colloid and Interface Science, vol.348, issue.2, pp.529-536, 2010.
DOI : 10.1016/j.jcis.2010.05.001

T. Duren, F. Millange, G. Férey, K. S. Walton, and R. Q. Snurr, Calculating Geometric Surface Areas as a Characterization Tool for Metal???Organic Frameworks, The Journal of Physical Chemistry C, vol.111, issue.42, pp.15350-15356, 2007.
DOI : 10.1021/jp074723h

A. Einstein, ¨ Uber die von der molekularkinetischen theorie der wärme geforderte

S. Groot and P. Mazur, Non-Equilibrium Thermodynamics, 2013.

I. Prigogine, Thermodynamics Of Irreversible Processes, 1961.

L. Onsager, Reciprocal Relations In Irreversible Processes.II, Physical Review, vol.38, 1931.
DOI : 10.1103/physrev.37.405

D. Nicholson, The transport of adsorbate mixtures in porous materials: Basic equations for pores with simple geometry, Journal of Membrane Science, vol.129, issue.2, pp.209-219, 1997.
DOI : 10.1016/S0376-7388(96)00341-9