A. A. Abbasi and M. Younis, A survey on clustering algorithms for wireless sensor networks, Computer Communications, vol.30, issue.14-15, pp.2826-2841, 2007.
DOI : 10.1016/j.comcom.2007.05.024

A. Agarwal, O. Chapelle, M. Dudík, and J. Langford, A reliable effective terascale linear learning system, The Journal of Machine Learning Research, vol.15, issue.1, pp.1111-1133, 2014.

A. Agarwal and J. C. Duchi, Distributed delayed stochastic optimization, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp.873-881, 2011.
DOI : 10.1109/CDC.2012.6426626

URL : http://arxiv.org/pdf/1104.5525

A. Agarwal, M. J. Wainwright, and J. C. Duchi, Distributed dual averaging in networks, Advances in Neural Information Processing Systems, pp.550-558, 2010.

R. Agrawal and R. Srikant, Privacy-preserving data mining, ACM SIGMOD Record, vol.29, issue.2, pp.439-450, 2000.
DOI : 10.1145/335191.335438

N. Ailon, R. Jaiswal, and C. Monteleoni, Streaming k-means approximation, Advances in Neural Information Processing Systems, pp.10-18, 2009.

M. Aizerman, E. M. Braverman, and L. Rozonoer, Theoretical foundations of the potential function method in pattern recognition, Avtomat. i Telemekh, vol.25, issue.6, pp.917-936, 1964.

M. Akelbek and S. Kirkland, Coefficients of ergodicity and the scrambling index, Linear Algebra and its Applications, vol.430, issue.4, pp.1111-1130, 2009.
DOI : 10.1016/j.laa.2008.10.007

J. A. Almendral and A. Díaz-guilera, Dynamical and spectral properties of complex networks, New Journal of Physics, vol.9, issue.6, pp.187-217, 2007.
DOI : 10.1088/1367-2630/9/6/187

S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics, vol.13, issue.2, pp.77-87, 1977.
DOI : 10.1098/rstb.1952.0012

S. Amari, H. Park, and K. Fukumizu, Adaptive Method of Realizing Natural Gradient Learning for Multilayer Perceptrons, Neural Computation, vol.12, issue.6, pp.1399-1409, 2000.
DOI : 10.1162/089976698300017007

N. Aronszajn, Theory of reproducing kernels, Transactions of the American mathematical society, pp.337-404, 1950.

D. Arthur and S. Vassilvitskii, k-means++ : The advantages of careful seeding, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp.1027-1035, 2007.

S. Avila, N. Thome, M. Cord, and E. Valle, BOSSA: Extended bow formalism for image classification, 2011 18th IEEE International Conference on Image Processing, pp.2909-2912, 2011.
DOI : 10.1109/ICIP.2011.6116268

URL : https://hal.archives-ouvertes.fr/hal-00625533

S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu et al., Clustering distributed data streams in peer-to-peer environments, Information Sciences, vol.176, issue.14, pp.1952-1985, 2006.
DOI : 10.1016/j.ins.2005.11.007

A. Barabási and R. Albert, Emergence of scaling in random networks, science, vol.286, issue.89, pp.509-512, 1999.

M. Belkin and P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, NIPS, pp.585-591, 2001.

F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli, Weighted Gossip: Distributed Averaging using non-doubly stochastic matrices, 2010 IEEE International Symposium on Information Theory, pp.1753-1757, 2010.
DOI : 10.1109/ISIT.2010.5513273

URL : https://infoscience.epfl.ch/record/148711/files/05513273.pdf

F. Benezit, P. Thiran, and M. Vetterli, Interval consensus: From quantized gossip to voting, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.3661-3664, 2009.
DOI : 10.1109/ICASSP.2009.4960420

Y. Bengio, Learning Deep Architectures for AI, Machine Learning, pp.1-127, 2009.
DOI : 10.1561/2200000006

Y. Bengio and M. Monperrus, Non-local manifold tangent learning, Advances in Neural Information Processing Systems, pp.129-136, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01575349

K. P. Bennett and E. J. Bredensteiner, Duality and geometry in svm classifiers, ICML, pp.57-64, 2000.

P. Berkhin, A Survey of Clustering Data Mining Techniques, Grouping multidimensional data, pp.25-71, 2006.
DOI : 10.1007/3-540-28349-8_2

A. Bertrand and M. Moonen, Distributed adaptive estimation of covariance matrix eigenvectors in wireless sensor networks with application to distributed PCA, Signal Processing, vol.104, issue.104, pp.120-135, 2014.
DOI : 10.1016/j.sigpro.2014.03.037

P. Bianchi, G. Fort, and W. Hachem, Performance of a distributed stochastic approximation algorithm. Information Theory, IEEE Transactions on, issue.11, pp.597405-7418, 2013.

P. Bianchi, W. Hachem, and F. Iutzeler, A stochastic coordinate descent primaldual algorithm and applications, Machine Learning for Signal Processing (MLSP), 2014 IEEE International Workshop on, pp.1-6, 2014.

G. Birkhoff, Extensions of jentzsch's theorem. Transactions of the, pp.219-227, 1957.

C. M. Bishop, Pattern recognition and machine learning, p.95, 2006.

D. Blatt, A. O. Hero, and H. Gauchman, A Convergent Incremental Gradient Method with a Constant Step Size, SIAM Journal on Optimization, vol.18, issue.1, pp.29-51, 2007.
DOI : 10.1137/040615961

A. Bordes, L. Bottou, and P. Gallinari, Sgd-qn : Careful quasi-newton stochastic gradient descent, The Journal of Machine Learning Research, vol.10, pp.1737-1754, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00750911

A. Bordes, S. Ertekin, J. Weston, and L. Bottou, Fast kernel classifiers with online and active learning, The Journal of Machine Learning Research, vol.6, issue.129, pp.1579-1619, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00752361

L. Bottou, Large-scale machine learning with stochastic gradient descent, International Conference on Computational Statistics, p.137, 2010.

L. Bottou, Large-scale machine learning with stochastic gradient descent, Proceedings of COMPSTAT'2010, pp.177-186, 2010.

L. Bottou, Stochastic Gradient Descent Tricks, Neural Networks : Tricks of the Trade, pp.421-436, 2012.
DOI : 10.1137/1116025

L. Bottou and O. Bousquet, The tradeoffs of large scale learning, Advances in Neural Information Processing Systems, pp.161-168, 2008.

J. Bourgain and A. Yehudayoff, Monotone expansion, Proceedings of the 44th symposium on Theory of Computing, STOC '12, pp.1061-1078, 2012.
DOI : 10.1145/2213977.2214073

S. Boyd, P. Diaconis, X. , and L. , Fastest Mixing Markov Chain on a Graph, SIAM Review, vol.46, issue.4, pp.667-689, 2004.
DOI : 10.1137/S0036144503423264

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Gossip algorithms: design, analysis and applications, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies., pp.1653-1664, 2005.
DOI : 10.1109/INFCOM.2005.1498447

URL : http://www.stanford.edu/~balaji/papers/05gossipalgorithms.pdf

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Randomized gossip algorithms. Information Theory, IEEE Transactions on, vol.52, issue.37, pp.2508-2530, 2006.
DOI : 10.1109/tit.2006.874516

URL : http://www.stanford.edu/~boyd/papers/pdf/gossip.pdf

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Machine Learning, pp.1-122, 2011.
DOI : 10.1561/2200000016

M. Brand, Charting a manifold, Advances in neural information processing systems, pp.961-968, 2002.

F. Brauer, Compartmental Models in Epidemiology, Mathematical epidemiology, pp.19-79, 2008.
DOI : 10.1007/978-3-540-78911-6_2

J. Bruna and S. Mallat, Invariant scattering convolution networks. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.35, issue.8, pp.1872-1886, 2013.

P. Bruneau, M. Gelgon, and F. Picarougne, Aggregation of Probabilistic PCA Mixtures with a Variational-Bayes Technique Over Parameters, 2010 20th International Conference on Pattern Recognition, pp.702-705, 2010.
DOI : 10.1109/ICPR.2010.177

URL : https://hal.archives-ouvertes.fr/hal-00471313

P. Bruneau, M. Gelgon, and F. Picarougne, Aggregation of Probabilistic PCA Mixtures with a Variational-Bayes Technique Over Parameters, 2010 20th International Conference on Pattern Recognition, pp.702-705, 2010.
DOI : 10.1109/ICPR.2010.177

URL : https://hal.archives-ouvertes.fr/hal-00471313

J. Buhl, D. J. Sumpter, I. D. Couzin, J. J. Hale, E. Despland et al., From Disorder to Order in Marching Locusts, Science, vol.181, issue.16, pp.3121402-1406, 2006.
DOI : 10.1016/S0167-2789(03)00102-7

K. Bunte, S. Haase, M. Biehl, and T. Villmann, Stochastic neighbor embedding (SNE) for dimension reduction and visualization using arbitrary divergences, Neurocomputing, vol.90, pp.23-45, 2012.
DOI : 10.1016/j.neucom.2012.02.034

G. A. Carpenter, S. Grossberg, and D. Rosen, Art 2-a : An adaptive resonance algorithm for rapid category learning and recognition, Neural Networks, 1991., IJCNN- 91-Seattle International Joint Conference on, pp.151-156, 1991.

J. E. Carroll, Birkhoff´sBirkhoff´s contraction coefficient. Linear algebra and its applications, pp.227-234, 2004.

A. Cauchy, Méthode générale pour la résolution des systemes d'équations simultanées, Comp. Rend. Sci. Paris, pp.25536-538, 1847.

C. Chang and C. Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, 2001.
DOI : 10.1145/1961189.1961199

E. Y. Chang, H. Bai, K. Zhu, H. Wang, J. Li et al., Psvm : Parallel support vector machines with incomplete cholesky factorization. Scaling up Machine Learning : Parallel and Distributed Approaches, p.134, 2012.

K. C. Chang, K. Pearson, and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Communications in Mathematical Sciences, vol.6, issue.2, pp.507-520, 2008.
DOI : 10.4310/CMS.2008.v6.n2.a12

O. Chapelle, Training a Support Vector Machine in the Primal, Neural Computation, vol.6, issue.5, pp.1155-1178, 2007.
DOI : 10.1198/106186005X25619

J. Cheeger, A lower bound for the smallest eigenvalue of the laplacian. Problems in analysis, pp.195-199, 1970.

J. Chen, C. Hu, and C. Su, Scalable retrieval and mining with optimal peer-to-peer configuration. Multimedia, IEEE Transactions on, vol.10, issue.2, pp.209-220, 2008.

F. Chung, Laplacians and the Cheeger Inequality for Directed Graphs, Annals of Combinatorics, vol.9, issue.1, pp.1-19, 2005.
DOI : 10.1007/s00026-005-0237-z

J. E. Cohen and P. H. Sellers, Sets of nonnegative matrices with positive inhomogeneous products, Linear Algebra and its Applications, vol.47, issue.29, pp.185-192, 1982.
DOI : 10.1016/0024-3795(82)90237-3

R. Collobert and S. Bengio, Svmtorch : Support vector machines for large-scale regression problems, The Journal of Machine Learning Research, vol.1, pp.143-160, 2001.

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, pp.273-297, 1995.
DOI : 10.1007/BF00994018

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, vol.1, issue.3, pp.273-297, 1995.
DOI : 10.1007/BF00994018

T. F. Cox and M. A. Cox, Multidimensional Scaling, p.95, 2000.
DOI : 10.1007/978-3-540-33037-0_14

S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta, Distributed Data Mining in Peer-to-Peer Networks, IEEE Internet Computing, vol.10, issue.4, pp.18-26, 2006.
DOI : 10.1109/MIC.2006.74

S. Datta, C. Giannella, and H. Kargupta, K-Means Clustering Over a Large, Dynamic Network, SDM. 71, p.72, 2006.
DOI : 10.1137/1.9781611972764.14

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin et al., Large scale distributed deep networks, Advances in Neural Information Processing Systems, pp.1223-1231, 2012.

A. Defazio, F. Bach, and S. Lacoste-julien, Saga : A fast incremental gradient method with support for non-strongly convex composite objectives, Advances in Neural Information Processing Systems, pp.1646-1654, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01016843

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson et al., Epidemic algorithms for replicated database maintenance, Proceedings of the sixth annual ACM Symposium on Principles of distributed computing, pp.1-12, 1987.

D. Demers and G. Cottrell, Non-linear dimensionality reduction Advances in neural information processing systems, pp.580-580, 1993.

A. P. Dempster, N. M. Laird, R. , and D. B. , Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society. Series B (Methodological ), vol.62, issue.65, pp.1-38, 1977.

P. Diaconis, Group representations in probability and statistics. Lecture Notes- Monograph Series, pp.192-223, 1988.

P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of markov chains. The Annals of Applied Probability, pp.36-61, 1991.

A. G. Dimakis, S. Kar, J. M. Moura, M. G. Rabbat, and A. Scaglione, Gossip Algorithms for Distributed Signal Processing, Proceedings of the IEEE, vol.98, issue.11, pp.981847-1864, 2010.
DOI : 10.1109/JPROC.2010.2052531

R. Dobrushin, Central limit theorem for nonstationary markov chains. ii. Theory of Probability & Its Applications, pp.329-383, 1956.

J. Dong, A. Krzy?-zak, C. D. Suen, and C. Grimes, A fast parallel optimization for training support vector machine In Machine Learning and Data Mining in Pattern Recognition Hessian eigenmaps : Locally linear embedding techniques for high-dimensional data, Proceedings of the National Academy of Sciences, pp.96-1055591, 2003.

J. C. Duchi, A. Agarwal, and M. J. Wainwright, Dual averaging for distributed optimization, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp.592-606, 2012.
DOI : 10.1109/Allerton.2012.6483406

M. Durut, B. Patra, and F. Rossi, A discussion on parallelization schemes for stochastic vector quantization algorithms, pp.72-75, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00696072

C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika, vol.1, issue.3, pp.211-218, 1936.
DOI : 10.1007/BF02288367

M. Eisenhardt, W. Muller, and A. Henrich, Classifying documents by distributed p2p clustering, GI Jahrestagung, vol.70, issue.71, pp.286-291, 2003.

A. Elhashash and D. B. Szyld, Generalizations of M-matrices which may not have a nonnegative inverse, Linear Algebra and its Applications, vol.429, issue.10, pp.4292435-2450, 2008.
DOI : 10.1016/j.laa.2008.01.006

P. Erd?-os and A. Rényi, On random graphs, Publicationes Mathematicae Debrecen, vol.6, pp.290-297, 1959.

E. A. Erosheva and S. E. Fienberg, Bayesian Mixed Membership Models for Soft Clustering and Classification, Classification?The Ubiquitous Challenge, pp.11-26, 2005.
DOI : 10.1007/3-540-28084-7_2

P. T. Eugster, R. Guerraoui, A. Kermarrec, and L. Massoulié, Epidemic information dissemination in distributed systems, Computer, vol.37, issue.5, pp.60-67, 2004.
DOI : 10.1109/MC.2004.1297243

B. Everett, An introduction to latent variable models, p.95, 2013.
DOI : 10.1007/978-94-009-5564-6

M. Everingham, L. Van-gool, C. K. Williams, J. Winn, and A. Zisserman, The Pascal Visual Object Classes (VOC) Challenge, International Journal of Computer Vision, vol.73, issue.2, 2007.
DOI : 10.1371/journal.pcbi.0040027

F. Fagnani and S. Zampieri, Asymmetric Randomized Gossip Algorithms for Consensus, Proc. IFAC world congress, pp.9051-9056, 2008.
DOI : 10.3182/20080706-5-KR-1001.01528

C. Farabet, Y. Lecun, K. Kavukcuoglu, E. Culurciello, B. Martini et al., Large-Scale FPGA-Based Convolutional Networks, Machine Learning on Very Large Data Sets, p.156, 2011.
DOI : 10.1017/CBO9781139042918.020

G. D. Fatta, F. Blasa, S. Cafiero, and G. Fortino, Epidemic K-Means Clustering, 2011 IEEE 11th International Conference on Data Mining Workshops, pp.151-158, 2011.
DOI : 10.1109/ICDMW.2011.76

G. D. Fatta, F. Blasa, S. Cafiero, and G. Fortino, Fault tolerant decentralised k, p.196, 2012.

J. Fellus, D. Picard, and P. Gosselin, Calcul décentralisé de dictionnaires visuels pour l'indexation multimédia dans les bases de données réparties sur les réseaux, ORASIS : Orasis, Congrès des jeunes chercheurs en vision par ordinateur, p.73, 2013.

J. Fellus, D. Picard, and P. Gosselin, Decentralized K-Means Using Randomized Gossip Protocols for Clustering Large Datasets, 2013 IEEE 13th International Conference on Data Mining Workshops, pp.599-606, 2013.
DOI : 10.1109/ICDMW.2013.58

URL : https://hal.archives-ouvertes.fr/hal-00915822

J. Fellus, D. Picard, and P. Gosselin, Asynchronous decentralized convex optimization through short-term gradient averaging, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, p.136, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01148648

J. Fellus, D. Picard, and P. Gosselin, Indexation multim??dia par dictionnaires visuels en environnement d??centralis??. Une approche par protocoles Gossip, Traitement du signal, vol.32, issue.1, p.78, 2015.
DOI : 10.3166/ts.32.36-64

J. Fellus, D. Picard, and P. Gosselin, Dimensionality reduction in decentralized networks by gossip aggregation of principal components analyzers, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp.171-176, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00985721

S. Fine and K. Scheinberg, Efficient svm training using low-rank kernel representations, The Journal of Machine Learning Research, vol.2, pp.243-264, 2002.

K. Flouri, B. Beferull-lozano, and P. Tsakalides, Distributed consensus algorithms for svm training in wireless sensor networks, Signal Processing Conference 16th European, pp.1-5, 2008.

P. A. Forero, A. Cano, and G. B. Giannakis, Consensus-based distributed linear support vector machines, Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN '10, pp.1663-1707, 2010.
DOI : 10.1145/1791212.1791218

P. A. Forero, A. Cano, and G. B. Giannakis, Distributed clustering using wireless sensor networks. Selected Topics in Signal Processing, IEEE Journal, vol.5, issue.71, pp.707-724, 2011.

J. G. Francis, The QR Transformation A Unitary Analogue to the LR Transformation--Part 1, The Computer Journal, vol.4, issue.3, pp.265-271, 1961.
DOI : 10.1093/comjnl/4.3.265

D. Gabay, Chapter IX Applications of the Method of Multipliers to Variational Inequalities, Studies in mathematics and its applications, pp.299-331, 1983.
DOI : 10.1016/S0168-2024(08)70034-1

I. Gelfand, Normierte ringe, Matematicheskii Sbornik, pp.3-24, 1941.

Z. Ghahramani and M. J. Beal, Variational inference for bayesian mixtures of factor analysers, NIPS, pp.449-455, 1999.

Z. Ghahramani and G. E. Hinton, The em algorithm for mixtures of factor -197, 1996.

A. Gionis, P. Indyk, and R. Motwani, Similarity search in high dimensions via hashing, VLDB, pp.518-529, 1999.

R. Glowinski and A. Marroco, Sur l'approximation, par ??l??ments finis d'ordre un, et la r??solution, par p??nalisation-dualit?? d'une classe de probl??mes de Dirichlet non lin??aires, Revue fran??aise d'automatique, informatique, recherche op??rationnelle. Analyse num??rique, vol.9, issue.R2, pp.941-76, 1975.
DOI : 10.1051/m2an/197509R200411

A. Goh and R. Vidal, Clustering and dimensionality reduction on Riemannian manifolds, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-7, 2008.
DOI : 10.1109/CVPR.2008.4587422

O. Goldreich, Basic Facts about Expander Graphs, Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation, pp.451-464, 2011.
DOI : 10.2307/3062153

P. Gosselin, N. Murray, H. Jégou, and F. Perronnin, Revisiting the Fisher vector for fine-grained classification, Pattern Recognition Letters, vol.49, pp.92-98, 2014.
DOI : 10.1016/j.patrec.2014.06.011

URL : https://hal.archives-ouvertes.fr/hal-01056223

H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik, Parallel support vector machines : The cascade svm, Advances in neural information processing systems, pp.521-528, 2004.

A. Greenberg, J. Hamilton, D. A. Maltz, P. , and P. , The cost of a cloud, ACM SIGCOMM Computer Communication Review, vol.39, issue.1, pp.68-73, 2008.
DOI : 10.1145/1496091.1496103

G. Grimmett, What is Percolation?, p.34, 1999.
DOI : 10.1007/978-3-662-03981-6_1

S. Gunnemann and C. Faloutsos, Mixed Membership Subspace Clustering, 2013 IEEE 13th International Conference on Data Mining, pp.221-230, 2013.
DOI : 10.1109/ICDM.2013.109

I. Guyon, B. Boser, and V. Vapnik, Automatic capacity tuning of very large vcdimension classifiers Advances in neural information processing systems, pp.147-147, 1993.

J. Hajnal, On products of non-negative matrices, Mathematical Proceedings of the Cambridge Philosophical Society, pp.521-530, 1976.
DOI : 10.1016/0040-5809(75)90007-6

M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf, Support vector machines. Intelligent Systems and their Applications, pp.18-28, 1998.

C. Hensel and H. Dutta, Gadget svm : a gossip-based sub-gradient svm solver, International Conference on Machine Learning (ICML), Numerical Mathematics in Machine Learning Workshop, p.135, 2009.

G. E. Hinton and S. T. Roweis, Stochastic neighbor embedding, Advances in neural information processing systems, pp.833-840, 2002.

G. E. Hinton and R. R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks, Science, vol.313, issue.5786, pp.313504-507, 2006.
DOI : 10.1126/science.1127647

W. Hoeffding, Probability Inequalities for Sums of Bounded Random Variables, Journal of the American Statistical Association, vol.1, issue.301, pp.13-30, 1963.
DOI : 10.1007/BF02883985

T. Hofmann, B. Schölkopf, and A. J. Smola, Kernel methods in machine learning . The annals of statistics, pp.1171-1220, 2008.

M. Hong and Z. Luo, On the linear convergence of the alternating direction method of multipliers. arXiv preprint, 2012.

E. Hopf, An inequality for positive integral linear operators, Journal of Mathematics & Mechanics, vol.12, issue.5, pp.683-692, 1963.

H. Hotelling, Analysis of a complex of statistical variables into principal components., Journal of Educational Psychology, vol.24, issue.6, pp.417-95, 1933.
DOI : 10.1037/h0071325

W. Hu, N. Xie, L. Li, X. Zeng, and S. Maybank, A survey on visual contentbased video indexing and retrieval, Systems, Man, and Cybernetics, Part C. Applications and Reviews IEEE Transactions on, issue.6, pp.41797-819, 2011.

P. Indyk and R. Motwani, Approximate nearest neighbors, Proceedings of the thirtieth annual ACM symposium on Theory of computing , STOC '98, pp.604-613, 1998.
DOI : 10.1145/276698.276876

F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, Asynchronous distributed optimization using a randomized alternating direction method of multipliers, 52nd IEEE Conference on Decision and Control, pp.3671-3676, 2013.
DOI : 10.1109/CDC.2013.6760448

URL : https://hal.archives-ouvertes.fr/hal-00868412

F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, Linear convergence rate for distributed optimization with the alternating direction method of multipliers, 53rd IEEE Conference on Decision and Control, pp.5046-5051, 2014.
DOI : 10.1109/CDC.2014.7040177

F. Iutzeler, P. Ciblat, and W. Hachem, Analysis of Sum-Weight-Like Algorithms for Averaging in Wireless Sensor Networks, IEEE Transactions on Signal Processing, vol.61, issue.11, p.171, 2012.
DOI : 10.1109/TSP.2013.2256904

URL : https://hal.archives-ouvertes.fr/hal-00737584

F. Iutzeler and J. Hendrickx, Online relaxation method for improving linear convergence rates of the admm, 34 th Benelux Meeting on Systems and Control, pp.20-135, 2015.

O. Ivanciuc, Applications of Support Vector Machines in Chemistry, Reviews in computational chemistry, vol.23, pp.291-128, 2007.
DOI : 10.1002/9780470116449.ch6

T. Jaakkola and D. Haussler, Exploiting generative models in discriminative classifiers Advances in neural information processing systems, pp.487-493, 1999.

A. K. Jain, Data clustering : 50 years beyond k-means. Pattern recognition letters, pp.31651-666, 2010.
DOI : 10.1016/j.patrec.2009.09.011

URL : http://web.cse.msu.edu/~cse802/notes/JainDataClusteringPRL09.pdf

E. Januzaj, H. Kriegel, and M. Pfeifle, DBDC: Density Based Distributed Clustering, Advances in Database Technology-EDBT 2004, pp.88-105, 2004.
DOI : 10.1007/978-3-540-24741-8_7

H. Jegou, M. Douze, and C. Schmid, Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search, European Conference on Computer Vision, pp.304-317, 2008.
DOI : 10.1109/CVPR.2007.383150

URL : https://hal.archives-ouvertes.fr/inria-00316866

H. Jégou, M. Douze, C. Schmid, and P. Pérez, Aggregating local descriptors into a compact image representation, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.3304-3311, 2010.
DOI : 10.1109/CVPR.2010.5540039

H. Jégou, F. Perronnin, M. Douze, J. Sanchez, P. Perez et al., Aggregating local image descriptors into compact codes. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.34, issue.9, pp.1704-1716, 2012.

H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez et al., Aggregating Local Image Descriptors into Compact Codes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.9, pp.3304-3311, 2012.
DOI : 10.1109/TPAMI.2011.235

M. Jelasity, W. Kowalczyk, V. Steen, and M. , Newscast computing, p.89, 2003.

M. Jelasity, A. Montresor, and O. Babaoglu, Gossip-based aggregation in large dynamic networks, ACM Transactions on Computer Systems, vol.23, issue.3, pp.219-252, 2005.
DOI : 10.1145/1082469.1082470

M. Jerrum and A. Sinclair, Approximating the Permanent, SIAM Journal on Computing, vol.18, issue.6, pp.1149-1178, 1989.
DOI : 10.1137/0218077

T. Joachims, Making large scale svm learning practical, p.134, 1999.

R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, Randomized rumor spreading, Proceedings 41st Annual Symposium on Foundations of Computer Science, pp.565-574, 2000.
DOI : 10.1109/SFCS.2000.892324

D. Kempe, A. Dobra, and J. Gehrke, Gossip-based computation of aggregate information, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pp.482-525, 2003.
DOI : 10.1109/SFCS.2003.1238221

D. Kempe and F. Mcsherry, A decentralized algorithm for spectral analysis, Journal of Computer and System Sciences, vol.74, issue.1, pp.70-83, 2008.
DOI : 10.1016/j.jcss.2007.04.014

W. O. Kermack and A. G. Mckendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, pp.700-721, 1927.

I. King, C. H. Ng, and K. C. Sia, Distributed content-based visual information retrieval system on peer-to-peer networks, ACM Transactions on Information Systems, vol.22, issue.3, pp.477-501, 2004.
DOI : 10.1145/1010614.1010619

T. Kohonen, The self-organizing map, Proceedings of the IEEE, pp.1464-1480, 1990.

S. B. Korada, A. Montanari, and S. Oh, Gossip PCA, Proceedings of the ACM SIGMETRICS joint international conference on Measurement and modeling of computer systems, SIGMETRICS '11, pp.209-220, 2011.
DOI : 10.1145/1993744.1993764

W. Kowalczyk and N. A. Vlassis, Newscast em, Advances in neural information processing systems, pp.713-720, 2004.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Advances in neural information processing systems, pp.1097-1105, 2012.
DOI : 10.1162/neco.2009.10-08-881

J. B. Kruskal, Nonmetric multidimensional scaling: A numerical method, Psychometrika, vol.60, issue.2, pp.115-129, 1964.
DOI : 10.1137/1004089

V. N. Kublanovskaya, On some algorithms for the solution of the complete eigenvalue problem, USSR Computational Mathematics and Mathematical Physics, vol.1, issue.3, pp.637-657, 1962.
DOI : 10.1016/0041-5553(63)90168-X

C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, Journal of Research of the National Bureau of Standards, vol.45, issue.4, 1950.
DOI : 10.6028/jres.045.026

URL : https://hal.archives-ouvertes.fr/hal-01712947

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.
DOI : 10.1109/5.726791

Y. Lecun, K. Kavukcuoglu, and C. Farabet, Convolutional networks and applications in vision, Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp.253-256, 2010.
DOI : 10.1109/ISCAS.2010.5537907

H. Lee, A. Battle, R. Raina, and A. Y. Ng, Efficient sparse coding algorithms, Advances in neural information processing systems, pp.801-808, 2006.

J. A. Lee, D. H. Peluffo-ordonez, and M. Verleysen, Multiscale stochastic neighbor embedding : Towards parameter-free dimensionality reduction, Proceedings of 22st European Symposium on Artificial Neural Networks, Computational Intelligence And Machine Learning (ESANN), p.98, 2014.

J. A. Lee, E. Renard, G. Bernard, P. Dupont, and M. Verleysen, Type 1 and 2 mixtures of Kullback???Leibler divergences as cost functions in dimensionality reduction based on similarity preservation, Neurocomputing, vol.112, pp.92-108, 2013.
DOI : 10.1016/j.neucom.2012.12.036

H. Lejsek, B. Þ. Jónsson, and L. Amsaleg, NV-Tree, Proceedings of the 1st ACM International Conference on Multimedia Retrieval, ICMR '11, pp.54-153, 2011.
DOI : 10.1145/1991996.1992050

URL : https://hal.archives-ouvertes.fr/hal-00644939

H. Li, L. Teng, W. Chen, and I. Shen, Supervised Learning on Local Tangent Space, Advances in Neural Networks?ISNN 2005, pp.546-551, 2005.
DOI : 10.1007/11427391_87

Y. Linde, A. Buzo, and R. Gray, An Algorithm for Vector Quantizer Design, IEEE Transactions on Communications, vol.28, issue.1, pp.84-94, 1980.
DOI : 10.1109/TCOM.1980.1094577

Y. Liu, D. Zhang, G. Lu, M. , and W. , A survey of content-based image retrieval with high-level semantics, Pattern Recognition, vol.40, issue.1, pp.262-282, 2007.
DOI : 10.1016/j.patcog.2006.04.045

S. P. Lloyd, Least squares quantization in PCM, IEEE Transactions on Information Theory, vol.28, issue.2, pp.129-137, 1982.
DOI : 10.1109/TIT.1982.1056489

L. Lovász, Random walks on graphs : A survey. Combinatorics, Paul erdos is eighty, pp.1-46, 1993.

S. Lyu, Mercer kernels for object recognition with local features, Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, pp.223-229, 2005.

S. V. Macua, P. Belanovic, and S. Zazo, Consensus-based distributed principal component analysis in wireless sensor networks, Signal Processing Advances in Wireless Communications (SPAWC), pp.1-5, 2010.

M. Mahajan, P. Nimbhorkar, and K. Varadarajan, The Planar k-Means Problem is NP-Hard, Proceedings of the 3rd International Workshop on Algorithms and Computation, WALCOM '09, pp.274-285, 2009.
DOI : 10.1109/TC.1981.6312176

R. Marée, P. Denis, L. Wehenkel, and P. Geurts, Incremental indexing and distributed image search using shared randomized vocabularies, Proceedings of the international conference on Multimedia information retrieval, MIR '10, pp.91-100, 2010.
DOI : 10.1145/1743384.1743405

A. A. Markov, Extension of the law of large numbers to dependent quantities, Izv. Fiz.-Matem. Obsch. Kazan Univ, vol.15, pp.135-156, 1906.

T. M. Martinetz, S. G. Berkovich, and K. J. Schulten, 'Neural-gas' network for vector quantization and its application to time-series prediction, IEEE Transactions on Neural Networks, vol.4, issue.4, pp.558-569, 1993.
DOI : 10.1109/72.238311

S. Mehrotra, On the Implementation of a Primal-Dual Interior Point Method, SIAM Journal on Optimization, vol.2, issue.4, pp.575-601, 1992.
DOI : 10.1137/0802028

Z. Meng, A. Wiesel, and A. O. Hero, Distributed principal component analy, p.202, 2012.

J. Mercer, Functions of positive and negative type, and their connection with the theory of integral equations. Philosophical transactions of the royal society of London. Series A, containing papers of a mathematical or physical character, pp.415-446, 1909.

R. K. Merton, The Matthew Effect in Science: The reward and communication systems of science are considered, Science, vol.159, issue.3810, pp.56-63, 1968.
DOI : 10.1126/science.159.3810.56

C. D. Meyer, Matrix analysis and applied linear algebra. Siam, p.29, 2000.
DOI : 10.1137/1.9780898719512

W. T. Müller, M. Eisenhardt, and A. , <title>Efficient content-based P2P image retrieval using peer content descriptions</title>, Internet Imaging V, 2003.
DOI : 10.1117/12.531184

V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, Proceedings of the 27th International Conference on Machine Learning (ICML- 10), pp.807-814, 2010.

R. Negrel, D. Picard, and P. Gosselin, Web-Scale Image Retrieval Using Compact Tensor Aggregation of Visual Descriptors, IEEE MultiMedia, vol.20, issue.3, pp.1-129, 2013.
DOI : 10.1109/MMUL.2013.14

URL : https://hal.archives-ouvertes.fr/hal-00832760

R. Negrel, D. Picard, and P. Gosselin, Web-Scale Image Retrieval Using Compact Tensor Aggregation of Visual Descriptors, IEEE MultiMedia, vol.20, issue.3, p.150
DOI : 10.1109/MMUL.2013.14

URL : https://hal.archives-ouvertes.fr/hal-00832760

Y. Nesterov, Primal-dual subgradient methods for convex problems, Mathematical Programming, vol.8, issue.1, pp.221-259, 2009.
DOI : 10.1007/978-3-642-82118-9

M. E. Newman, C. Moore, and D. J. Watts, Mean-Field Solution of the Small-World Network Model, Physical Review Letters, vol.13, issue.14, pp.3201-3233, 2000.
DOI : 10.1007/s100510050067

A. Nguyen, J. Yosinski, C. , and J. , Deep neural networks are easily fooled: High confidence predictions for unrecognizable images, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.157, 2015.
DOI : 10.1109/CVPR.2015.7298640

A. Nikseresht, Estimation de modèles de mélange probabilistes : une proposition pour un fonctionnement réparti et décentralisé, p.105, 2008.

A. Nikseresht and M. Gelgon, Gossip-Based Computation of a Gaussian Mixture Model for Distributed Multimedia Indexing, IEEE Transactions on Multimedia, vol.10, issue.3, pp.385-392, 2008.
DOI : 10.1109/TMM.2008.917343

URL : https://hal.archives-ouvertes.fr/inria-00368854

D. Noutsos, On Perron???Frobenius property of matrices having some negative entries, Linear Algebra and its Applications, vol.412, issue.2-3, pp.132-153, 2006.
DOI : 10.1016/j.laa.2005.06.037

C. Ordonez, N. Mohanam, and C. Garcia-alvarado, Pca for large data sets with parallel data summarization. Distributed and Parallel Databases, pp.377-403, 2014.

J. M. Ortega and H. F. Kaiser, The LLT and QR methods for symmetric tridiagonal matrices, The Computer Journal, vol.6, issue.1, pp.99-101, 1963.
DOI : 10.1093/comjnl/6.1.99

L. Parsons, E. Haque, and H. Liu, Subspace clustering for high dimensional data, ACM SIGKDD Explorations Newsletter, vol.6, issue.1, pp.90-105, 2004.
DOI : 10.1145/1007730.1007731

G. Patanè and M. Russo, The enhanced LBG algorithm, Neural Networks, vol.14, issue.9, pp.1219-1237, 2001.
DOI : 10.1016/S0893-6080(01)00104-6

G. Patanè and M. Russo, Elbg implementation, International Journal of Knowledge based Intelligent Engineering Systems, vol.2, pp.2-4, 2000.

O. Perron, Zur Theorie der Matrices, Mathematische Annalen, vol.64, issue.2, pp.248-263, 1907.
DOI : 10.1007/BF01449896

F. Perronnin and C. Dance, Fisher Kernels on Visual Vocabularies for Image Categorization, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.383266

F. Perronnin, J. Sánchez, and T. Mensink, Improving the fisher kernel for largescale image classification, Computer Vision?ECCV 2010, pp.143-156, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00548630

D. Picard and P. Gosselin, Efficient image signatures and similarities using tensor products of local descriptors, Computer Vision and Image Understanding, vol.117, issue.6, p.162
DOI : 10.1016/j.cviu.2013.02.004

URL : https://hal.archives-ouvertes.fr/hal-00799074

D. Picard and P. Gosselin, Efficient image signatures and similarities using tensor products of local descriptors, Computer Vision and Image Understanding, vol.117, issue.6, pp.680-687, 2013.
DOI : 10.1016/j.cviu.2013.02.004

URL : https://hal.archives-ouvertes.fr/hal-00799074

D. Picard, A. Revel, and M. Cord, An application of swarm intelligence to distributed image retrieval, Information Sciences, vol.192, issue.151, pp.71-81, 2012.
DOI : 10.1016/j.ins.2010.03.003

URL : https://hal.archives-ouvertes.fr/hal-00656322

B. Pittel, On Spreading a Rumor, SIAM Journal on Applied Mathematics, vol.47, issue.1, pp.213-223, 1987.
DOI : 10.1137/0147013

J. Platt, Sequential minimal optimization : A fast algorithm for training support vector machines, p.128, 1998.

P. Pollett and E. Van-doorn, Quasi-stationary distributions for reducible absorbing markov chains in discrete time, p.55, 2008.

M. Radovanovi´cradovanovi´c, A. Nanopoulos, and M. Ivanovi´civanovi´c, Hubs in space : Popular nearest neighbors in high-dimensional data, The Journal of Machine Learning Research, vol.11, issue.64, pp.2487-2531, 2010.

F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain., Psychological Review, vol.65, issue.6, pp.386-127, 1958.
DOI : 10.1037/h0042519

N. Roussopoulos, S. Kelley, and F. Vincent, Nearest neighbor queries, ACM SIGMOD Record, vol.24, issue.2, pp.71-79, 1995.
DOI : 10.1145/568271.223794

N. L. Roux, M. Schmidt, and F. R. Bach, A stochastic gradient method with an exponential convergence rate for finite training sets, NIPS, vol.125, issue.136, pp.2663-2671, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00674995

S. T. Roweis and L. K. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, vol.290, issue.5500, pp.2902323-2326, 2000.
DOI : 10.1126/science.290.5500.2323

J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, Image Classification with the Fisher Vector: Theory and Practice, International Journal of Computer Vision, vol.73, issue.2, pp.222-245, 2013.
DOI : 10.1007/s11263-006-9794-4

A. D. Sarwate and A. G. Dimakis, The impact of mobility on gossip algorithms. Information Theory, IEEE Transactions on, vol.58, issue.3, pp.1731-1742, 2012.

I. D. Schizas, G. B. Giannakis, S. Roumeliotis, and A. Ribeiro, Consensus in Ad Hoc WSNs With Noisy Links???Part II: Distributed Estimation and Smoothing of Random Signals, IEEE Transactions on Signal Processing, vol.56, issue.4, pp.1650-1666, 2008.
DOI : 10.1109/TSP.2007.908943

M. Schmidt, N. L. Roux, and F. Bach, Minimizing finite sums with the stochastic average gradient, p.137, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00860051

D. Schnitzer and A. Flexer, Choosing the metric in high?dimensional spaces based on hub analysis, Proc. 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, p.64, 2014.

B. Schölkopf, A. Smola, and K. Müller, Kernel principal component analysis, Artificial Neural Networks?ICANN'97, pp.583-588, 1997.
DOI : 10.1007/BFb0020217

N. N. Schraudolph, J. Yu, and S. Günter, A stochastic quasi-newton method for online convex optimization, International Conference on Artificial Intelligence and Statistics, pp.436-443, 2007.

E. Seneta, Coefficients of ergodicity : structure and applications Advances in applied probability, pp.576-590, 1979.

E. Seneta, Non-negative matrices and Markov chains, pp.34-53, 2006.
DOI : 10.1007/0-387-32792-4

D. Shah, Gossip Algorithms, Foundations and Trends?? in Networking, vol.3, issue.1, p.49, 2009.
DOI : 10.1561/1300000014

S. Shalev-shwartz, Y. Singer, N. Srebro, and A. Cotter, Pegasos, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.3-30, 2011.
DOI : 10.1145/1273496.1273598

S. Shalev-shwartz and A. Tewari, Stochastic methods for l 1-regularized loss minimization, The Journal of Machine Learning Research, vol.12, pp.1865-1892, 2011.

S. Shalev-shwartz and T. Zhang, Stochastic dual coordinate ascent methods for regularized loss, The Journal of Machine Learning Research, vol.14, issue.136, pp.567-599, 2013.

J. Shawe-taylor and N. Cristianini, Kernel methods for pattern analysis, p.153, 2004.
DOI : 10.1017/CBO9780511809682

A. Sinclair, Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow, Combinatorics, Probability and Computing, vol.11, issue.04, pp.351-370, 1992.
DOI : 10.1016/0095-8956(89)90029-4

J. Sivic and A. Zisserman, Video Google: a text retrieval approach to object matching in videos, Proceedings Ninth IEEE International Conference on Computer Vision, pp.1470-1477, 2003.
DOI : 10.1109/ICCV.2003.1238663

T. Suzuki, Dual averaging and proximal gradient descent for online alternating direction multiplier method, Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp.392-400, 2013.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan et al., Intriguing properties of neural networks, 2013.

A. Tahbaz-salehi and A. Jadbabaie, Small world phenomenon, rapidly mixing Markov chains, and average consensus algorithms, 2007 46th IEEE Conference on Decision and Control, pp.276-281, 2007.
DOI : 10.1109/CDC.2007.4434174

A. Tahbaz-salehi and A. Jadbabaie, A Necessary and Sufficient Condition for Consensus Over Random Networks, IEEE Transactions on Automatic Control, vol.53, issue.3, pp.791-795, 2008.
DOI : 10.1109/TAC.2008.917743

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, DeepFace: Closing the Gap to Human-Level Performance in Face Verification, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.1701-1708, 2014.
DOI : 10.1109/CVPR.2014.220

A. S. Tanenbaum and M. Van-steen, Distributed systems, p.49, 2007.

J. W. Tangelder and R. C. Veltkamp, A survey of content based 3d shape retrieval methods. Multimedia tools and applications, pp.441-471, 2008.

J. B. Tenenbaum, D. Silva, V. Langford, and J. C. , A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science, vol.290, issue.5500, pp.2902319-2323, 2000.
DOI : 10.1126/science.290.5500.2319

L. Teng, H. Li, X. Fu, W. Chen, and I. Shen, Dimension reduction of microarray data based on local tangent space alignment, Fourth IEEE Conference on Cognitive Informatics, 2005. (ICCI 2005)., pp.154-159, 2005.
DOI : 10.1109/COGINF.2005.1532627

M. E. Tipping and C. M. Bishop, Mixtures of Probabilistic Principal Component Analyzers, Neural Computation, vol.2, issue.1, pp.443-482, 1999.
DOI : 10.1007/BF00162527

K. I. Tsianos, S. Lawlor, and M. G. Rabbat, Push-Sum Distributed Dual Averaging for convex optimization, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp.5453-5458, 2012.
DOI : 10.1109/CDC.2012.6426375

L. Van-der-maaten and G. Hinton, Visualizing data using t-sne, Journal of Machine Learning Research, vol.9, pp.2579-260585, 2008.

L. Van-der-maaten, E. Postma, and H. Van-den-herik, Dimensionality reduction : A comparative review, Journal of Machine Learning Research, vol.10, pp.1-41, 2009.

J. C. Van-gemert, C. J. Veenman, A. W. Smeulders, and J. M. Geusebroek, Visual Word Ambiguity, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.7, pp.1271-1283, 2010.
DOI : 10.1109/TPAMI.2009.132

V. Vapnik, Pattern recognition using generalized portrait method. Automation and remote control, pp.774-780, 1963.

V. Vapnik, Statistical Learning Theory, p.18, 1998.

V. Vapnik, Statistical Learning Theory, p.126, 1998.

V. N. Vapnik and A. Y. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability & Its Applications, pp.264-280, 1971.

P. Verhulst, La loi d'accroissement de la population, Nouv. Mem. Acad. Roy. Soc. Belle-lettr. Bruxelles, vol.18, pp.1-34, 1845.

V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin et al., State-of-the-art in privacy preserving data mining, ACM SIGMOD Record, vol.33, issue.1, pp.50-57, 2004.
DOI : 10.1145/974121.974131

T. Vicsek, A. Czirók, E. Ben-jacob, I. Cohen, and O. Shochet, Novel type of phase transition in a system of self-driven particles. Physical review letters, pp.751226-751260, 1995.

J. Wang, J. Yang, K. Yu, F. Lv, T. Huang et al., Locality-constrained Linear Coding for image classification, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.3360-3367, 2010.
DOI : 10.1109/CVPR.2010.5540018

T. Watanabe and N. Masuda, Enhancing the spectral gap of networks by node removal, Physical Review E, vol.82, issue.4, pp.46102-46132, 2010.
DOI : 10.1385/NI:2:2:145

D. J. Watts and S. H. Strogatz, Collective dynamics of ???small-world??? networks, Nature, vol.338, issue.2, pp.440-442, 1998.
DOI : 10.1038/338334a0

Y. Weiss, Segmentation using eigenvectors : a unifying view The proceedings of the seventh IEEE, Computer vision, pp.975-982, 1999.

A. Wiesel and A. O. Hero, Decomposable Principal Component Analysis, IEEE Transactions on Signal Processing, vol.57, issue.11, pp.4369-4377, 2009.
DOI : 10.1109/TSP.2009.2025806

URL : https://www.eecs.umich.edu/~hero/Preprints/wiesel_tsp09.pdf

D. R. Williams and G. Hinton, Learning representations by backpropagating errors, Nature, pp.323-533, 1986.

J. Wolfowitz, Products of indecomposable, aperiodic, stochastic matrices, Proceedings of the, pp.733-737, 1963.
DOI : 10.1090/S0002-9939-1963-0154756-3

L. Xiao, Dual averaging method for regularized stochastic learning and online optimization, Advances in Neural Information Processing Systems, pp.2116-2124, 2009.

L. Xiao and T. Zhang, A Proximal Stochastic Gradient Method with Progressive Variance Reduction, SIAM Journal on Optimization, vol.24, issue.4, pp.2057-2075, 2014.
DOI : 10.1137/140961791

J. Yang, K. Yu, Y. Gong, and T. Huang, Linear spatial pyramid matching using sparse coding for image classification, Computer Vision and Pattern Recognition CVPR 2009. IEEE Conference on, pp.1794-1801, 2009.

T. Yang, Trading computation for communication : Distributed stochastic dual coordinate ascent, Advances in Neural Information Processing Systems, pp.629-637, 2013.

G. Zanghirati and L. Zanni, A parallel solver for large quadratic programs in training support vector machines, Parallel Computing, vol.29, issue.4, pp.535-551, 2003.
DOI : 10.1016/S0167-8191(03)00021-8

L. Zanni, T. Serafini, and G. Zanghirati, Parallel software for training large scale support vector machines on multiprocessor systems, The Journal of Machine Learning Research, vol.7, pp.1467-1492, 2006.

P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity search : the metric space approach, p.152, 2006.

D. Zhang and S. K. Pal, Neural networks and systolic array design, p.25, 2002.
DOI : 10.1142/4878

Z. Zhang and H. Zha, Principal manifolds and nonlinear dimension reduction via local tangent space alignment, In SIAM Journal of Scientific Computing, p.98, 2002.

M. Zukerman, Introduction to queueing theory and stochastic teletraffic models. arXiv preprint, 2013.