P. Lodahl, S. Mahmoodian, and S. Stobbe, Interfacing single photons and single quantum dots with photonic nanostructures, Reviews of Modern Physics, vol.8, issue.2, pp.347-400, 2015.
DOI : 10.1038/nature00912

URL : http://arxiv.org/pdf/1312.1079

M. R. Jorgensen, B. Yonkee, and M. H. Bartl, Strong modification of density of optical states in biotemplated photonic crystals, Nonlinear Optics and Applications V, p.807109, 2011.
DOI : 10.1117/12.890606

E. Yeganegi, A. Lagendijk, A. P. Mosk, and W. L. Vos, Local density of optical states in the band gap of a finite one-dimensional photonic crystal, Physical Review B, vol.35, issue.4, p.45123, 2014.
DOI : 10.1098/rspa.1991.0137

P. Qiu, G. Wang, J. Lu, and H. Wang, Local density of states in photonic crystal cavity, Local density of states in photonic crystal cavity, pp.341-344, 2012.
DOI : 10.1103/PhysRevB.45.13962

R. D. Tweney, Epistemic Artifacts: Michael Faradays Search for the Optical Effects of Gold, in: Model-Based Reasoning, pp.287-303, 2002.

G. Mie, Contributions to the optics of turbid media, particularly of colloidal metal solutions, Tech. rep, 1908.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. Schropp, H. A. Atwater et al., Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells, Nano Letters, vol.11, issue.10, pp.11-4239, 2011.
DOI : 10.1021/nl202226r

A. Polman and H. A. Atwater, Plasmonics: optics at the nanoscale, Materials Today, vol.8, issue.1, 2005.
DOI : 10.1016/S1369-7021(04)00685-6

D. Canneson, I. Mallek-zouari, S. Buil, X. Qulin, C. Javaux et al., Enhancing the fluorescence of individual thick shell CdSe/CdS nanocrystals by coupling to gold structures, New Journal of Physics, vol.14, issue.6, p.63035, 2012.
DOI : 10.1088/1367-2630/14/6/063035

URL : https://hal.archives-ouvertes.fr/hal-01342987

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White et al., Plasmonics for extreme light concentration and manipulation, Nature Materials, vol.91, issue.3, pp.193-204, 2010.
DOI : 10.1080/09500349608232782

P. Berini and I. De-leon, Surface plasmon???polariton amplifiers and lasers, Nature Photonics, vol.63, issue.1, pp.16-24, 2011.
DOI : 10.1007/BF01567877

R. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, Plasmon lasers: coherent light source at molecular scales, Laser & Photonics Reviews, vol.7, issue.48, pp.1-21, 2013.
DOI : 10.1002/j.1538-7305.1969.tb01165.x

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm et al., Active nanoplasmonic metamaterials, Nature Materials, vol.9, issue.7, pp.573-584, 2012.
DOI : 10.1021/nl803868k

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao et al., Biosensing with plasmonic nanosensors, Nature Materials, vol.636, issue.6, pp.442-453, 2008.
DOI : 10.1088/0957-4484/18/32/325101

V. Giannini, A. I. Fernndez-domnguez, S. C. Heck, and S. A. Maier, Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters, Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters, pp.3888-3912, 2011.
DOI : 10.1021/cr1002672

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Nature, vol.10, issue.6668, pp.667-669, 1998.
DOI : 10.1109/TMTT.1962.1125490

J. Michaelis, C. Hettich, J. Mlynek, and V. Sandoghdar, Optical microscopy using a single-molecule light source, Nature, vol.387, issue.6784, p.35012545, 2000.
DOI : 10.1038/42674

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou et al., High performance optical absorber based on a plasmonic metamaterial, Applied Physics Letters, vol.96, issue.25, p.251104, 2010.
DOI : 10.1016/S0375-9601(01)00838-6

J. Hao, L. Zhou, and M. Qiu, Nearly total absorption of light and heat generation by plasmonic metamaterials, Physical Review B, vol.38, issue.16, p.165107, 2011.
DOI : 10.1364/OL.32.000053

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Kll et al., Nanohole Plasmons in Optically Thin Gold Films, The Journal of Physical Chemistry C, vol.111, issue.3, pp.1207-1212, 2007.
DOI : 10.1021/jp065942q

A. Baudrion, F. D. Len-prez, O. Mahboub, A. Hohenau, H. Ditlbacher et al., Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film, Optics Express, vol.16, issue.5, pp.3420-3429, 2008.
DOI : 10.1364/OE.16.003420

C. Genet and T. W. Ebbesen, Light in tiny holes, Nature, vol.95, issue.7123, pp.39-46, 2007.
DOI : 10.1103/PhysRevLett.95.170406

T. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas et al., Optical Properties of a Nanosized Hole in a Thin Metallic Film, ACS Nano, vol.2, issue.1, pp.25-32, 2008.
DOI : 10.1021/nn700292y

P. D. Garca, S. Stobbe, I. Sllner, and P. , Nonuniversal Intensity Correlations in a Two-Dimensional Anderson-Localizing Random Medium, Physical Review Letters, vol.109, issue.25, pp.25-2012
DOI : 10.1103/PhysRevLett.108.113901

M. Minkov, U. P. Dharanipathy, R. Houdr, and V. Savona, Statistics of the disorder-induced losses of high-Q photonic crystal cavities, Optics Express, vol.21, issue.23, pp.28233-28245, 2013.
DOI : 10.1364/OE.21.028233

S. Ithurria and B. Dubertret, Quasi 2D Colloidal CdSe Platelets with Thicknesses Controlled at the Atomic Level, Journal of the American Chemical Society, vol.130, issue.49, pp.16504-16505, 2008.
DOI : 10.1021/ja807724e

B. Mahler, B. Nadal, C. Bouet, G. Patriarche, and B. , Core/Shell Colloidal Semiconductor Nanoplatelets, Journal of the American Chemical Society, vol.134, issue.45, pp.18591-18598, 2012.
DOI : 10.1021/ja307944d

M. B. Sigman, A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee et al., S Nanorods, Nanodisks, and Nanoplatelets, Solventless Synthesis of Monodisperse Cu2s Nanorods, Nanodisks, and Nanoplatelets, pp.16050-16057, 2003.
DOI : 10.1021/ja037688a

R. Malakooti, L. Cademartiri, A. Migliori, and G. A. Ozin, nanowires and nanoplatelets, J. Mater. Chem., vol.114, issue.1, pp.66-69, 2007.
DOI : 10.1021/cm00059a023

J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson et al., PbTe Colloidal Nanocrystals:?? Synthesis, Characterization, and Multiple Exciton Generation, Journal of the American Chemical Society, vol.128, issue.10, pp.3241-3247, 2006.
DOI : 10.1021/ja0574973

Y. Yin and A. P. , Colloidal nanocrystal synthesis and the organic???inorganic interface, Nature, vol.5, issue.7059, pp.664-670, 2005.
DOI : 10.1021/nl048060g

A. I. Ekimov and A. A. Onushchenko, Quantum size effect in three-dimensional microscopic semiconductor crystals, Soviet Journal of Experimental and Theoretical Physics Letters, vol.34, p.345, 1981.

L. E. Brus, Electron???electron and electron???hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, The Journal of Chemical Physics, vol.4, issue.9, pp.4403-4409, 1984.
DOI : 10.1016/0038-1098(73)90214-7

R. Kubo, Electronic Properties of Metallic Fine Particles. I., Journal of the Physical Society of Japan, vol.17, issue.6, pp.975-986, 1962.
DOI : 10.1143/JPSJ.17.975

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher et al., Shape control of CdSe nanocrystals, Nature, vol.101, issue.6773, pp.59-61, 2000.
DOI : 10.1021/jp971091y

N. R. Jana, L. Gearheart, and C. J. Murphy, Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template, Advanced Materials, vol.13, issue.18, pp.1389-1393, 2001.
DOI : 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F

B. Nikoobakht and M. A. , Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method, Chemistry of Materials, vol.15, issue.10, pp.1957-1962, 2003.
DOI : 10.1021/cm020732l

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik et al., Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals:??? State-of-the-Art, The Journal of Physical Chemistry C, vol.111, issue.40, pp.14628-14637, 2007.
DOI : 10.1021/jp072463y

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose et al., Quantum dots for live cells, vivo imaging, and diagnostics, pp.307-5709, 2005.

N. Tomczak, D. Jaczewski, D. Dorokhin, M. Y. Han, and G. J. Vancso, Enabling Biomedical Research with Designer Quantum Dots, Methods in molecular biology, pp.811-245, 2012.
DOI : 10.1007/978-1-61779-388-2_16

D. V. Talapin, J. Lee, M. V. Kovalenko, and E. V. Shevchenko, Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications, Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications, pp.389-458, 2010.
DOI : 10.1021/cr900137k

E. H. Sargent, Colloidal quantum dot solar cells, Nature Photonics, vol.16, issue.3, pp.133-135, 2012.
DOI : 10.1038/nphoton.2012.30

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovi, Emergence of colloidal quantum-dot light-emitting technologies, Nature Photonics, vol.8, issue.1, pp.13-23, 2013.
DOI : 10.1021/ol060803c

N. N. Ledentsov, Quantum dot laser, Semiconductor Science and Technology, vol.26, issue.1, p.14001, 2011.
DOI : 10.1088/0268-1242/26/1/014001

C. Gies, M. Florian, P. Gartner, and F. Jahnke, The single quantum dot-laser: lasing and strong coupling in the high-excitation regime, Optics Express, vol.19, issue.15, pp.14370-14388, 2011.
DOI : 10.1364/OE.19.014370

P. Michler, A. Imamolu, M. D. Mason, P. J. Carson, G. F. Strouse et al., Quantum correlation among photons from a single quantum dot at room temperature, Nature, vol.32, issue.6799, pp.968-970, 2000.
DOI : 10.1021/ar9700320

B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E. Moerner, Photon antibunching in single CdSe/ZnS quantum dot fluorescence, Chemical Physics Letters, vol.329, issue.5-6, pp.399-404, 2000.
DOI : 10.1016/S0009-2614(00)01042-3

URL : https://hal.archives-ouvertes.fr/hal-01550470

E. M. Purcell, H. C. Torrey, and R. V. Pound, Resonance Absorption by Nuclear Magnetic Moments in a Solid, Physical Review, vol.79, issue.1-2, pp.37-38, 1946.
DOI : 10.1007/BF01349398

J. R. Lakowicz, Plasmonics in Biology and Plasmon-Controlled Fluorescence, Plasmonics, vol.299, issue.5, pp.5-33, 2006.
DOI : 10.1046/j.1365-2818.2003.01088.x

V. S. Rao and S. Hughes, Single Quantum Dot Spontaneous Emission in a Finite-Size Photonic Crystal Waveguide: Proposal for an Efficient ???On Chip??? Single Photon Gun, Physical Review Letters, vol.6195, issue.19, 2007.
DOI : 10.1063/1.1405146

D. Goldberg and V. M. Menon, Enhanced amplified spontaneous emission from colloidal quantum dots in all-dielectric monolithic microcavities, Applied Physics Letters, vol.102, issue.8, p.81119, 2013.
DOI : 10.1038/nature05839

A. Kress, F. Hofbauer, N. Reinelt, H. J. Krenner, R. Meyer et al., Manipulation of the Spontaneous Emission Dynamics of Quantum Dots in 2d Photonic Crystals, Physical Review B, vol.71, issue.24

A. Badolato, K. Hennessy, M. Atatre, J. Dreiser, E. Hu et al., Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes, Science, vol.308, issue.5725, pp.1158-1161, 2005.
DOI : 10.1126/science.1109815

P. D. Garca, G. Kiransk, A. Javadi, S. Stobbe, and P. , Two mechanisms of disorder-induced localization in photonic-crystal waveguides, Physical Review B, vol.96, issue.14, pp.2017-144201
DOI : 10.1088/0957-4484/26/48/484002

G. Mie, Contributions to the Optics of Turbid Media Particularly of Colloidal Metal Solutions, Ann. Phys. (Leipzig), vol.25, pp.377-445, 1908.

D. Pines and D. Bohm, Individual Particle Aspects of the Interactions, Physical Review, vol.24, issue.2, pp.338-353, 1952.
DOI : 10.1002/andp.19484370302

D. Bohm and D. , A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas, Physical Review, vol.75, issue.3, pp.609-625, 1953.
DOI : 10.1103/PhysRev.75.1864

R. H. Ritchie, Plasma Losses by Fast Electrons in Thin Films, Physical Review, vol.114, issue.5, pp.874-881, 1957.
DOI : 10.1007/BF01329519

D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nature Photonics, vol.89, issue.2, pp.83-91, 2010.
DOI : 10.1088/1464-4258/8/4/S06

A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, Quantum size effect in semiconductor microcrystals, Solid State Communications, vol.56, issue.11, pp.921-924, 1985.
DOI : 10.1016/S0038-1098(85)80025-9

H. M. Schmidt and H. Weller, Quantum size effects in semiconductor crystallites: Calculation of the energy spectrum for the confined exciton, Chemical Physics Letters, vol.129, issue.6, pp.615-618, 1986.
DOI : 10.1016/0009-2614(86)80410-9

C. F. Hoener, K. A. Allan, A. J. Bard, A. Campion, M. A. Fox et al., Demonstration of a shell-core structure in layered cadmium selenide-zinc selenide small particles by x-ray photoelectron and Auger spectroscopies, The Journal of Physical Chemistry, vol.96, issue.9, pp.3812-3817, 1992.
DOI : 10.1021/j100188a045

M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states, The Journal of Chemical Physics, vol.32, issue.2, pp.946-954, 1992.
DOI : 10.1016/0038-1098(83)90874-8

A. I. Ekimov, F. Hache, M. C. Schanne-klein, D. Ricard, C. Flytzanis et al., Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions, Journal of the Optical Society of America B, vol.10, issue.1, pp.100-107, 1993.
DOI : 10.1364/JOSAB.10.000100

D. J. Norris and M. G. Bawendi, Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots, Physical Review B, vol.75, issue.1, pp.16338-16346, 1996.
DOI : 10.1103/PhysRevLett.75.3728

X. Brokmann, G. Messin, P. Desbiolles, E. Giacobino, M. Dahan et al., Colloidal CdSe/ZnS quantum dots as single-photon sources, New Journal of Physics, vol.6, issue.1, p.99, 2004.
DOI : 10.1088/1367-2630/6/1/099

URL : https://doi.org/10.1088/1367-2630/6/1/099

L. Qu and X. Peng, Control of Photoluminescence Properties of CdSe Nanocrystals in Growth, Journal of the American Chemical Society, vol.124, issue.9, pp.2049-2055, 2002.
DOI : 10.1021/ja017002j

S. A. Maier, Plasmonic: Fundamentals and applications, 2007.
DOI : 10.1007/0-387-37825-1

D. Canneson, Modification de l'esmission d'un nanocristal individuel de CdSe/CdS l'aide d'une nanostructure mtallique, 2013.

C. Kittel, Introduction to Solid State Physics, 2007.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Nano-optics of surface plasmon polaritons, Physics Reports, vol.408, issue.3-4, pp.131-314, 2005.
DOI : 10.1016/j.physrep.2004.11.001

N. Rahbany, Towards integrated optics ar the nanoscale: plasmon-emitter coupling using plasmonic structure, 2016.

J. R. Lakowicz, Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission, Analytical Biochemistry, vol.337, issue.2, pp.171-194, 2005.
DOI : 10.1016/j.ab.2004.11.026

URL : http://europepmc.org/articles/pmc2763912?pdf=render

J. Homola, Surface Plasmon Resonance Based Sensors, 2006.
DOI : 10.1007/b100321

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings , in: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics, pp.4-39, 1988.
DOI : 10.1007/BFb0048317

E. Kretschmann and H. Raether, Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light, Zeitschrift f??r Naturforschung A, vol.23, issue.12, pp.2135-2136, 1968.
DOI : 10.1515/zna-1968-1247

A. Bouhelier and G. P. Wiederrecht, Surface plasmon rainbow jets, Optics Letters, vol.30, issue.8, pp.884-886, 2005.
DOI : 10.1364/OL.30.000884

K. H. Drexhage, Influence of a dielectric interface on fluorescence decay time, Journal of Luminescence, vol.1, issue.2, pp.693-701, 1970.
DOI : 10.1016/0022-2313(70)90082-7

K. H. Drexhage, IV Interaction of Light with Monomolecular Dye Layers, Progress in Optics, pp.163-232, 1974.
DOI : 10.1016/S0079-6638(08)70266-X

S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, Direct observation of localized dipolar excitations on rough nanostructured surfaces, Physical Review B, vol.17, issue.17, pp.11441-11448, 1998.
DOI : 10.1007/BF01437368

. Smolyaninov, . Mazzoni, and . Davis, Imaging of Surface Plasmon Scattering by Lithographically Created Individual Surface Defects, Physical Review Letters, vol.29, issue.18, pp.3877-3880, 1996.
DOI : 10.1103/PhysRevB.39.767

A. Y. Nikitin, G. Brucoli, F. J. Garca-vidal, and L. Martn-moreno, Scattering of surface plasmon polaritons by impedance barriers: Dependence on angle of incidence, Physical Review B, vol.77, issue.19, 2008.
DOI : 10.1017/CBO9780511813535

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron et al., Selective Excitation of Plasmon Resonances of Single Au Triangles by Polarization-Dependent Light Excitation, The Journal of Physical Chemistry C, vol.116, issue.27, pp.14591-14598, 2012.
DOI : 10.1021/jp303475c

C. Deeb, R. Bachelot, J. Plain, A. Baudrion, S. Jradi et al., Quantitative Analysis of Localized Surface Plasmons Based on Molecular Probing, ACS Nano, vol.4, issue.8, pp.4579-4586, 2010.
DOI : 10.1021/nn101017b

URL : https://hal.archives-ouvertes.fr/hal-00536498

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The Optical Properties of Metal Nanoparticles:?? The Influence of Size, Shape, and Dielectric Environment, The Journal of Physical Chemistry B, vol.107, issue.3, pp.668-677, 2003.
DOI : 10.1021/jp026731y

K. A. Willets and R. P. , Localized Surface Plasmon Resonance Spectroscopy and Sensing, Annual Review of Physical Chemistry, vol.58, issue.1, pp.267-297, 2007.
DOI : 10.1146/annurev.physchem.58.032806.104607

L. Sun, P. Chen, and L. Lin, Enhanced Molecular Spectroscopy via Localized Surface Plasmon Resonance, Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences

M. I. Stockman, S. V. Faleev, and D. J. Bergman, Localization versus Delocalization of Surface Plasmons in Nanosystems: Can One State Have Both Characteristics?, Physical Review Letters, vol.56, issue.16, 2001.
DOI : 10.1103/PhysRevE.56.6494

P. A. Dirac, The Quantum Theory of the Emission and Absorption of Radiation, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.114, issue.767, pp.243-265, 1927.
DOI : 10.1098/rspa.1927.0039

V. Weisskopf, Probleme der neueren Quantentheorie des Elektrons, Die Naturwissenschaften, vol.23, issue.37, pp.631-637, 1935.
DOI : 10.1007/BF01492012

T. A. Welton, Some Observable Effects of the Quantum-Mechanical Fluctuations of the Electromagnetic Field, Physical Review, vol.73, issue.9, pp.1157-1167, 1948.
DOI : 10.1103/PhysRev.73.173

E. T. Jaynes and F. W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proceedings of the IEEE, vol.51, issue.1, pp.89-109, 1963.
DOI : 10.1109/PROC.1963.1664

P. W. Milonni, Why spontaneous emission?, American Journal of Physics, vol.52, issue.4, pp.340-343, 1984.
DOI : 10.1119/1.13886

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, Observation of Cavity-Enhanced Single-Atom Spontaneous Emission, Physical Review Letters, vol.43, issue.24, pp.1903-1906, 1983.
DOI : 10.1103/PhysRevLett.43.343

T. Asano, B. Song, and S. Noda, Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities, Optics Express, vol.14, issue.5, 1996.
DOI : 10.1364/OE.14.001996

P. Grinberg, K. Bencheikh, M. Brunstein, A. M. Yacomotti, Y. Dumeige et al., Enhancement of a nano cavity lifetime by induced slow light and nonlinear dispersions, Optics Express, vol.20, issue.24, pp.27403-27410, 2012.
DOI : 10.1364/OE.20.027403

URL : https://hal.archives-ouvertes.fr/hal-00975352

J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu et al., Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy, The Analyst, vol.7, issue.2, pp.1308-1346, 2008.
DOI : 10.1016/j.ab.2005.07.005

T. M. Schmidt, Engineering of gold and aluminum plasmonic structures: Fabrication and fluorescence enhancement, Interdisciplinary Nanoscience Center, 2013.

M. Scharte, R. Porath, T. Ohms, M. Aeschlimann, J. R. Krenn et al., Do Mie plasmons have a longer lifetime on resonance than off resonance?, Applied Physics B: Lasers and Optics, vol.73, issue.4, pp.305-310, 2001.
DOI : 10.1007/s003400100701

K. J. Russell, T. Liu, S. Cui, and E. L. Hu, Large spontaneous emission enhancement in plasmonic nanocavities, Nature Photonics, vol.37, issue.7, p.459, 2012.
DOI : 10.1016/S0379-6779(96)04210-5

Y. Luo, E. D. Ahmadi, K. Shayan, Y. Ma, K. S. Mistry et al., Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities, Nature Communications, vol.7, issue.1, p.1413, 2017.
DOI : 10.1021/nn305336x

D. P. Mccutcheon and A. Nazir, Quantum dot Rabi rotations beyond the weak exciton???phonon coupling regime, New Journal of Physics, vol.12, issue.11, p.113042, 2010.
DOI : 10.1088/1367-2630/12/11/113042

D. Vanmaekelbergh and P. Liljeroth, Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals, Chemical Society Reviews, vol.87, issue.4, pp.299-312, 2005.
DOI : 10.1039/b314945p

K. L. Sowers, B. Swartz, and T. D. Krauss, Chemical Mechanisms of Semiconductor Nanocrystal Synthesis, Chemistry of Materials, vol.25, issue.8, pp.1351-1362, 2013.
DOI : 10.1021/cm400005c

Y. Wang and N. Herron, Optical properties of cadmium sulfide and lead(II) sulfide clusters encapsulated in zeolites, The Journal of Physical Chemistry, vol.91, issue.2, pp.257-260, 1987.
DOI : 10.1021/j100286a004

N. Herron, Y. Wang, M. M. Eddy, G. D. Stucky, D. E. Cox et al., Structure and optical properties of cadmium sulfide superclusters in zeolite hosts, Journal of the American Chemical Society, vol.111, issue.2, pp.530-540, 1989.
DOI : 10.1021/ja00184a021

T. Moyo, K. Maruyama, and H. Endo, Photodarkening and photobleaching of CdS microclusters grown in zeolites, Journal of Physics: Condensed Matter, vol.4, issue.26, 1992.
DOI : 10.1088/0953-8984/4/26/001

M. Krishnan, J. R. White, M. A. Fox, and A. J. Bard, Integrated chemical systems: photocatalysis at semiconductors incorporated into polymer (Nafion)/mediator systems, Journal of the American Chemical Society, vol.105, issue.23, pp.7002-7003, 1983.
DOI : 10.1021/ja00361a064

N. M. Dimitrijevic and P. V. Kamat, Transient photobleaching of small cadmium selenide colloids in acetonitrile. Anodic decomposition, The Journal of Physical Chemistry, vol.91, issue.8, pp.2096-2099, 1987.
DOI : 10.1021/j100292a023

J. P. Kuczynski, B. H. Milosavljevic, and J. K. Thomas, Photophysical properties of cadmium sulfide in Nafion film, The Journal of Physical Chemistry, vol.88, issue.5, pp.980-984, 1984.
DOI : 10.1021/j150649a027

C. Petit and M. P. Pileni, Synthesis of cadmium sulfide in situ in reverse micelles and in hydrocarbon gels, The Journal of Physical Chemistry, vol.92, issue.8, pp.2282-2286, 1988.
DOI : 10.1021/j100319a037

M. Meyer, C. Wallberg, K. Kurihara, and J. H. Fendler, Photosensitized charge separation and hydrogen production in reversed micelle entrapped platinized colloidal cadmium sulphide, Journal of the Chemical Society, Chemical Communications, vol.0, issue.2, pp.90-91, 1984.
DOI : 10.1039/c39840000090

T. Dannhauser, M. O. Neil, K. Johansson, D. Whitten, and G. Mclendon, Photophysics of quantized colloidal semiconductors. Dramatic luminescence enhancement by binding of simple amines, The Journal of Physical Chemistry, vol.90, issue.23, pp.6074-6076, 1986.
DOI : 10.1021/j100281a004

P. Lianos and J. K. Thomas, Cadmium sulfide of small dimensions produced in inverted micelles, Chemical Physics Letters, vol.125, issue.3, pp.299-302, 1986.
DOI : 10.1016/0009-2614(86)87069-5

S. Jin, Y. Hu, Z. Gu, L. Liu, and H. Wu, Application of Quantum Dots in Biological Imaging, Journal of Nanomaterials, vol.14, issue.22, pp.1-13, 2011.
DOI : 10.1016/j.bios.2010.09.016

C. B. Murray, D. J. Norris, and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society, vol.115, issue.19, pp.8706-8715, 1993.
DOI : 10.1021/ja00072a025

A. Rogach, Semiconductor Nanocrystal Quantum Dots -Synthesis, Assembly, Spectroscopy and Applications, 2008.

M. A. Hines and P. Guyot-sionnest, Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals, The Journal of Physical Chemistry, vol.100, issue.2, pp.468-471, 1996.
DOI : 10.1021/jp9530562

D. V. Talapin, I. Mekis, S. Gtzinger, A. Kornowski, O. Benson et al., CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core???Shell???Shell Nanocrystals, The Journal of Physical Chemistry B, vol.108, issue.49, pp.18826-18831, 2004.
DOI : 10.1021/jp046481g

X. Brokmann, Proprits de fluorescence de nanocristaux de CdSe individuels, 2004.

A. L. Efros, Luminescence polarization of CdSe microcrystals, Physical Review B, vol.24, issue.12, pp.7448-7458, 1992.
DOI : 10.1103/PhysRevB.42.11123

E. Burstein and C. Weisbuch, Synthesis and spectroscopy of II-VI quantum dots : An overview, in: Confined Electrons and Photons -New Physics and Applications, Elias Burstein |, pp.339-356, 1995.

C. Javaux, Etude de la rduction du phnomne de clignotement dans les nanocristaux semi-conducteurs de CdSe/CdS coque paisse, 2012.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris et al., Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states, Physical Review B, vol.98, issue.7, pp.4843-4856, 1996.
DOI : 10.1103/PhysRev.98.368

M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, A. L. Efros et al., Observation of the "Dark Exciton" in CdSe Quantum Dots, CdSe Quantum Dots, pp.3728-3731, 1995.
DOI : 10.1103/PhysRevB.42.11123

K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher et al., Single-photon emission of CdSe quantum dots at temperatures up to 200 K, Applied Physics Letters, vol.18, issue.16, pp.2920-2922, 2002.
DOI : 10.1364/OL.25.001294

F. Eloi, Etude de la luminescence de nanocristaux semi-conducteurs coupls avec des structures plasmoniques tempratures ambiante et cryognique, 2016.

G. E. Cragg and A. L. Efros, Suppression of Auger Processes in Confined Structures, Nano Letters, vol.10, issue.1, pp.313-317, 2010.
DOI : 10.1021/nl903592h

Y. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh et al., Near-Unity Quantum Yields of Biexciton Emission from CdSe/CdS Nanocrystals Measured Using Single- Particle Spectroscopy, Physical Review Letters, vol.106, issue.18, 2011.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman et al., Fluorescence intermittency in single cadmium selenide nanocrystals, Nature, vol.383, issue.6603, pp.802-804, 1996.
DOI : 10.1038/383802a0

K. Zhang, H. Chang, A. Fu, A. P. Alivisatos, and H. Yang, Continuous Distribution of Emission States from Single CdSe/ZnS Quantum Dots, Nano Letters, vol.6, issue.4, pp.843-847, 2006.
DOI : 10.1021/nl060483q

B. R. Fisher, H. Eisler, N. E. Stott, and M. G. Bawendi, Emission Intensity Dependence and Single-Exponential Behavior In Single Colloidal Quantum Dot Fluorescence Lifetimes, The Journal of Physical Chemistry B, vol.108, issue.1, pp.143-148, 2004.
DOI : 10.1021/jp035756+

R. Schmidt, C. Krasselt, C. Ghler, and C. Borczyskowski, The Fluorescence Intermittency for Quantum Dots Is Not Power-Law Distributed: A Luminescence Intensity Resolved Approach, ACS Nano, vol.8, issue.4, pp.3506-3521, 2014.
DOI : 10.1021/nn406562a

P. A. Frantsuzov, S. Volkan-kacso, and B. Janko, Model of Fluorescence Intermittency of Single Colloidal Semiconductor Quantum Dots Using Multiple Recombination Centers, Physical Review Letters, vol.77, issue.20
DOI : 10.2307/3214130

P. A. Frantsuzov and R. A. Marcus, Explanation of quantum dot blinking without the long-lived trap hypothesis, Physical Review B, vol.72, issue.15, p.155321, 2005.
DOI : 10.1126/science.1086911

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, Measurement of the Radiative and Nonradiative Decay Rates of Single CdSe Nanocrystals through a Controlled Modification of their Spontaneous Emission, Physical Review Letters, vol.46, issue.10, p.107403, 2004.
DOI : 10.1021/jp971091y

V. Biju, Y. Makita, T. Nagase, Y. Yamaoka, H. Yokoyama et al., Subsecond Luminescence Intensity Fluctuations of Single CdSe Quantum Dots, The Journal of Physical Chemistry B, vol.109, issue.30, pp.14350-14355, 2005.
DOI : 10.1021/jp0526187

P. Spinicelli, S. Buil, X. Qulin, B. Mahler, B. Dubertret et al., Bright and Grey States in CdSe-CdS Nanocrystals Exhibiting Strongly Reduced Blinking, Physical Review Letters, vol.102, issue.13, 2009.
DOI : 10.1103/PhysRevB.71.205317

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. Hermier et al., Towards non-blinking colloidal quantum??dots, Nature Materials, vol.85, issue.8, p.659, 2008.
DOI : 10.1038/nmat2222

M. Nasilowski, P. Spinicelli, G. Patriarche, and B. Dubertret, Gradient CdSe/CdS Quantum Dots with Room Temperature Biexciton Unity Quantum Yield, Nano Letters, vol.15, issue.6, pp.3953-3958, 2015.
DOI : 10.1021/acs.nanolett.5b00838

T. Klar, M. Perner, S. Grosse, G. Von-plessen, W. Spirkl et al., Surface-Plasmon Resonances in Single Metallic Nanoparticles, Surface- Plasmon Resonances in Single Metallic Nanoparticles, pp.4249-4252, 1998.
DOI : 10.1126/science.277.5329.1078

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn et al., Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance, Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance, pp.4721-4724, 2000.
DOI : 10.1364/JOSAB.3.000430

J. Yun, E. Lee, H. Park, D. Kim, W. A. Anderson et al., Incident light adjustable solar cell by periodic nanolens architecture, Scientific Reports, vol.7, issue.1, p.6879, 2014.
DOI : 10.1088/0268-1242/7/3/007

N. G. Walter, C. Huang, A. J. Manzo, and M. A. Sobhy, Do-it-yourself guide: how to use the modern single-molecule toolkit, Nature Methods, vol.296, issue.6, pp.475-489, 2008.
DOI : 10.1038/nmeth.1215

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, Photon management in two-dimensional disordered media, Nature Materials, vol.11, issue.12, pp.1017-1022, 2012.
DOI : 10.1016/j.cpc.2009.11.008

D. Canneson, I. Mallek-zouari, S. Buil, X. Qulin, C. Javaux et al., Strong Purcell effect observed in single thick-shell CdSe/CdS nanocrystals coupled to localized surface plasmons, Physical Review B, vol.84, issue.24
DOI : 10.1103/PhysRevB.76.115123

C. Indukuri, A. Mukherjee, and J. K. Basu, Tailoring local density of optical states to control emission intensity and anisotropy of quantum dots in hybrid photonic-plasmonic templates, Applied Physics Letters, vol.106, issue.13, p.131111, 2015.
DOI : 10.1021/nl0602140

S. Grsillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin et al., Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films, Physical Review Letters, vol.46, issue.22, pp.4520-4523, 1999.
DOI : 10.1103/PhysRevB.46.2503

Z. C. Drachev, A. K. Ying, V. M. Sarychev, and . Shalaev, Near-field optical studies of semicontinuous metal films, Physical Review B, vol.64, 2001.

V. Krachmalnicoff, E. Castani, Y. De-wilde, and R. Carminati, Fluctuations of the Local Density of States Probe Localized Surface Plasmons on Disordered Metal Films, Physical Review Letters, vol.105, issue.18, 2010.
DOI : 10.1103/PhysRevE.67.056611

I. Mallek-zouari, S. Buil, X. Qulin, B. Mahler, B. Dubertret et al., Plasmon assisted single photon emission of CdSe/CdS nanocrystals deposited on random gold film, Applied Physics Letters, vol.97, issue.5, p.53109, 2010.
DOI : 10.1016/j.chemphys.2005.06.032

S. Buil, J. Aubineau, J. Laverdant, and X. Qulin, Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode, Journal of Applied Physics, vol.100, issue.6, p.63530, 2006.
DOI : 10.1103/PhysRevB.64.115414

J. Laverdant, J. Hermier, X. Quelin, and S. Buil, From scattering regime to strong localization: a statistical analysis of the near-field intensity on random gold films, Journal of Nanophotonics, vol.7, issue.1, p.73589, 2013.
DOI : 10.1117/1.JNP.7.073589

URL : https://hal.archives-ouvertes.fr/hal-01341711

R. Gordon, A. G. Brolo, A. Mckinnon, A. Rajora, B. Leathem et al., Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays, Physical Review Letters, vol.16, issue.3, p.37401, 2004.
DOI : 10.1103/PhysRevLett.86.1110

O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska et al., Mapping the Polarization Pattern of Plasmon Modes Reveals Nanoparticle Symmetry, Mapping the Polarization Pattern of Plasmon Modes Reveals Nanoparticle Symmetry, pp.2345-2350, 2008.
DOI : 10.1021/nl801179a

H. Mertens and A. Polman, Plasmon-enhanced erbium luminescence, Applied Physics Letters, vol.89, issue.21, p.211107, 2006.
DOI : 10.1103/PhysRevA.64.033807

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, Polarization-Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence, Nano Letters, vol.6, issue.11, pp.2622-2625, 2006.
DOI : 10.1021/nl061494m

URL : http://daedalus.caltech.edu/publication/pubs/Mertens_NanoLett_2006.pdf

J. Laverdant, Nanosources exaltes pour la spectroscopie non linaire en champ proche optique, 2007.

S. I. Bozhevolnyi and V. Coello, Statistics of local field intensity enhancements at nanostructured surfaces investigated with a near-field optical microscope, Physical Review B, vol.78, issue.11, 2001.
DOI : 10.1103/PhysRevLett.78.1667

J. Laverdant, S. Buil, B. Brini, and X. Qulin, Polarization dependent near-field speckle of random gold films, Physical Review B, vol.4, issue.16, p.165406, 2008.
DOI : 10.1016/S0079-6816(98)00004-5

R. H. Brown and R. Q. Twiss, Correlation between Photons in two Coherent Beams of Light, Nature, vol.45, issue.4497, pp.27-29, 1956.
DOI : 10.1080/14786440708520475

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, pp.0-9, 2005.
DOI : 10.1007/3-540-28882-1

F. Eloi, H. Frederich, F. Mazas, A. Kumar, S. Buil et al., Colas des Francs, J.-P. Hermier, Enhanced and polarized emission from single colloidal CdSe/CdS nanocrystals coupled to a one-dimensional gold grating, Physical Review B, issue.8, pp.94-085301, 2016.

T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu et al., Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer, Proceedings of the National Academy of Sciences, vol.312, issue.25, pp.16448-16453, 2008.
DOI : 10.1016/S0375-9601(03)00687-X

URL : http://www.pnas.org/content/105/43/16448.full.pdf

J. Laverdant, S. Buil, and X. Qulin, Local field enhancements on gold and silver nanostructures for aperture near field spectroscopy, Journal of Luminescence, vol.127, issue.1, pp.176-180, 2007.
DOI : 10.1016/j.jlumin.2007.02.050

T. P. Ung, X. Qulin, B. Berini, G. C. Francs, M. Nasilowski et al., Probing the hot spot properties of semicontinuous gold films through the fluorescence polarization of CdSe, CdS colloidal nanocrystals Journal of Nanophotonics, vol.11, issue.4, p.46005, 2017.

R. W. Wood, Anomalous Diffraction Gratings, Physical Review, vol.48, issue.12, pp.928-936, 1935.
DOI : 10.1103/PhysRev.48.928

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Nature, vol.10, issue.6668, 1998.
DOI : 10.1109/TMTT.1962.1125490

H. A. Bethe, Theory of Diffraction by Small Holes, Physical Review, vol.12, issue.7-8, pp.163-182, 1944.
DOI : 10.1063/1.1712882

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Surface plasmons enhance optical transmission through subwavelength holes, Physical Review B, vol.390, issue.11, pp.6779-6782, 1998.
DOI : 10.1038/36514

E. Popov, M. Nevire, S. Enoch, and R. Reinisch, Theory of light transmission through subwavelength periodic hole arrays, Physical Review B, vol.13, issue.23, pp.16100-16108, 2000.
DOI : 10.1364/JOSAA.13.001019

URL : https://hal.archives-ouvertes.fr/hal-00426561

L. Martn-moreno, F. J. Garca-vidal, H. J. Lezec, K. M. Pellerin, T. Thio et al., Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays, Physical Review Letters, vol.14, issue.6, pp.1114-1117, 2001.
DOI : 10.1080/14786440709463661

L. Salomon, F. Grillot, A. V. Zayats, and F. De-fornel, Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film, Physical Review Letters, vol.62, issue.6, pp.1110-1113, 2001.
DOI : 10.1103/PhysRevB.62.17072

URL : https://hal.archives-ouvertes.fr/hal-00084868

R. Wannemacher, Plasmon-supported transmission of light through nanometric holes in metallic thin films, Optics Communications, vol.195, issue.1-4, pp.107-118, 2001.
DOI : 10.1016/S0030-4018(01)01333-5

M. M. Treacy, Dynamical diffraction in metallic optical gratings, Applied Physics Letters, vol.75, issue.5, pp.606-608, 1999.
DOI : 10.1063/1.366736

M. M. Treacy, Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings, Physical Review B, vol.6, issue.19, 2002.
DOI : 10.1103/PhysRevB.6.4370

M. Sarrazin, J. Vigneron, and J. Vigoureux, Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes, Physical Review B, vol.62, issue.8, p.85415, 2003.
DOI : 10.1103/PhysRevB.62.10101

H. J. Lezec and T. Thio, Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays, Optics Express, vol.12, issue.16, pp.3629-3651, 2004.
DOI : 10.1364/OPEX.12.003629

J. Braun, B. Gompf, T. Weiss, H. Giessen, M. Dressel et al., Optical transmission through subwavelength hole arrays in ultrathin metal films, Physical Review B, vol.90, issue.15, p.155419, 2011.
DOI : 10.1103/PhysRevB.76.241102

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films, Physical Review B, vol.78, issue.16, pp.79-161406, 2009.
DOI : 10.1103/PhysRevB.77.075401

S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu et al., Nearly zero transmission through periodically modulated ultrathin metal films, Applied Physics Letters, vol.97, issue.7, p.71116, 2010.
DOI : 10.1103/PhysRevB.6.4370

URL : http://arxiv.org/pdf/1006.3041

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. , Optical Spectroscopy of Nanometric Holes in Thin Gold Films, Nano Letters, vol.4, issue.6, pp.1003-1007, 2004.
DOI : 10.1021/nl0497171

C. Snnichsen, A. C. Duch, G. Steininger, M. Koch, G. Von-plessen et al., Launching surface plasmons into nanoholes in metal films, Applied Physics Letters, vol.56, issue.2, pp.140-142, 2000.
DOI : 10.1063/1.113340

H. Leong and J. Guo, A surface plasmon resonance spectrometer using a super-period metal nanohole array, Optics Express, vol.20, issue.19, pp.21318-21323, 2012.
DOI : 10.1364/OE.20.021318

H. Gao, J. M. Mcmahon, M. H. Lee, J. Henzie, S. K. Gray et al., Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays, Optics Express, vol.17, issue.4, pp.2334-2340, 2009.
DOI : 10.1364/OE.17.002334

M. L. Andersen, S. Stobbe, A. S. Srensen, and P. , Strongly modified plasmonmatter interaction with mesoscopic quantum emitters, Nature Physics, vol.7, issue.3

K. Yee, Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, vol.14, pp.302-307, 1966.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite- Difference Time-Domain Method, 2005.

W. Yu and R. Mittra, A conformal FDTD software package modeling antennas and microstrip circuit components, IEEE Antennas and Propagation Magazine, vol.42, issue.5, pp.28-39, 2000.

N. Guillot, Proprietes optiques de nanoparticules mtalliques et application aux nanocapteurs par exaltation de surface, 2012.

W. H. Escovitz, T. R. Fox, and R. Levi-setti, Scanning transmission ion microscope with a field ion source., Proceedings of the National Academy of Sciences, vol.72, issue.5, pp.1826-1828, 1975.
DOI : 10.1073/pnas.72.5.1826

J. H. Orloff and L. W. Swanson, Study of a field???ionization source for microprobe applications, Journal of Vacuum Science and Technology, vol.12, issue.6, pp.1209-1213, 1975.
DOI : 10.1116/1.568497

R. L. Seliger, J. W. Ward, V. Wang, and R. L. Kubena, A high???intensity scanning ion probe with submicrometer spot size, Applied Physics Letters, vol.72, issue.5, pp.310-312, 1979.
DOI : 10.1063/1.88540

D. G. Brandon, Field Ion Microscopy. Principles and Applications. Erwin W. Muller and Tien Tzou Tsong. Elsevier, New York, 1969. x, 314 pp., illus. $19, Science, vol.169, issue.3949, pp.970-970, 1970.
DOI : 10.1126/science.169.3949.970

V. E. Krohn and G. R. Ringo, Ion source of high brightness using liquid metal, Applied Physics Letters, vol.13, issue.9, pp.479-481, 1975.
DOI : 10.1103/RevModPhys.3.191

R. Clampitt, K. L. Aitken, and D. K. Jefferies, Abstract: Intense field???emission ion source of liquid metals, Journal of Vacuum Science and Technology, vol.12, issue.6, pp.1208-1208, 1975.
DOI : 10.1116/1.568496

R. L. Seliger, R. L. Kubena, R. D. Olney, J. W. Ward, and V. Wang, High???resolution, ion???beam processes for microstructure fabrication, Journal of Vacuum Science and Technology, vol.16, issue.6, pp.1610-1612, 1979.
DOI : 10.1116/1.570253

J. Gierak, Focused ion beam technology and ultimate applications, Semiconductor Science and Technology, vol.24, issue.4, p.43001, 2009.
DOI : 10.1088/0268-1242/24/4/043001

J. Orloff, L. W. Swanson, and M. Utlaut, Fundamental limits to imaging resolution for focused ion beams, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.6, pp.3759-3763, 1996.
DOI : 10.1116/1.588663

V. Castaldo, C. W. Hagen, B. Rieger, and P. Kruit, Sputtering limits versus signalto-noise limits in the observation of Sn balls in a Ga[sup +] microscope, Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures, vol.26, p.2107, 2008.

J. A. Okeefe, Resolving Power of Visible Light, Journal of the Optical Society of America, vol.46, issue.5, pp.359-359, 1956.
DOI : 10.1364/JOSA.46.000359

E. A. Ash and G. Nicholls, Super-resolution Aperture Scanning Microscope, Nature, vol.6, issue.5357, pp.237510-237510, 1972.
DOI : 10.1364/JOSA.57.000932

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, Development of a 500 ?? spatial resolution light microscope, Ultramicroscopy, vol.13, issue.3, pp.227-231, 1984.
DOI : 10.1016/0304-3991(84)90201-8

D. W. Pohl, W. Denk, and M. Lanz, Optical stethoscopy: Image recording with resolution, Applied Physics Letters, vol.20, issue.447, pp.651-653, 1984.

U. Durig, D. W. Pohl, and F. Rohner, Near???field optical???scanning microscopy, Journal of Applied Physics, vol.30, issue.10, pp.3318-3327, 1986.
DOI : 10.1364/AO.24.001498

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue et al., Observation of nanostructure by scanning near-field optical microscope with small sphere probe, Science and Technology of Advanced Materials, vol.8, issue.3, pp.181-185, 2007.
DOI : 10.1143/JJAP.16.1119

Y. Sonnefraud, Dveloppement et applications de sondes actives en microscopie en champ proche optique, phdthesis, 2007.

K. Karrai and R. D. Grober, Piezoelectric tip???sample distance control for near field optical microscopes, Applied Physics Letters, vol.60, issue.14, pp.1842-1844, 1995.
DOI : 10.1063/1.113340

R. Jazi, Etude dans le champ proche optique de linteraction entre fluorescence dun nanocristal et rsonance plasmon, 2017.

G. Kaupp, Atomic Force Microscopy, Scanning Nearfield Optical Microscopy and Nanoscratching, 2006.

N. Chevalier, Sondes actives a base dun anocristal semiconducteur unique pour loptique en champ proche : concept et realisation, phdthesis, 2005.

N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, Nanoscale Vibrational Analysis of Single-Walled Carbon Nanotubes, Journal of the American Chemical Society, vol.127, issue.8, pp.2533-2537, 2005.
DOI : 10.1021/ja045190i

A. Hartschuh, E. J. Snchez, X. S. Xie, and L. Novotny, High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes, Physical Review Letters, vol.2, issue.9, p.95503, 2003.
DOI : 10.1103/PhysRevLett.85.4180

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, Nanoscale Probing of Adsorbed Species by Tip-Enhanced Raman Spectroscopy, Physical Review Letters, vol.19, issue.9, p.96101, 2004.
DOI : 10.1364/AO.19.003373

Y. D. Wilde, F. Formanek, R. Carminati, B. Gralak, P. Lemoine et al., Thermal radiation scanning tunnelling microscopy, Nature, vol.182, issue.7120, p.5265, 2006.
DOI : 10.1016/S0030-4018(00)00826-9

URL : https://hal.archives-ouvertes.fr/hal-00133282

O. Mollet, Sondes actives en champ proche pour la plasmonique et la plasmonique quantique, phdthesis, 2012.

M. Murray-mthot, M. Ratel, and J. Masson, Optical Properties of Au, Ag, and Bimetallic Au on Ag Nanohole Arrays, Optical Properties of Au, Ag, and Bimetallic Au on Ag Nanohole Arrays, pp.8268-8275, 2010.
DOI : 10.1021/jp101231c

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor, Applied Physics Letters, vol.91, issue.12, p.123112, 2007.
DOI : 10.1063/1.2747668

S. Yokogawa, S. P. Burgos, and H. A. Atwater, Plasmonic Color Filters for CMOS Image Sensor Applications, Nano Letters, vol.12, issue.8, pp.4349-4354, 2012.
DOI : 10.1021/nl302110z

D. Canneson, S. Buil, X. Qulin, C. Javaux, B. Dubertret et al., Influence of the cluster???s size of random gold nanostructures on the fluorescence of single CdSe???CdS nanocrystals, Gold Bulletin, vol.10, issue.4, pp.329-334, 2013.
DOI : 10.1103/PhysRevLett.89.117401

P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Physical Review, vol.23, issue.5, pp.1492-1505, 1958.
DOI : 10.1016/S0031-8914(57)92891-4

G. Bergmann, Quantitative analysis of weak localization in thin Mg films by magnetoresistance measurements, Physical Review B, vol.11, issue.4, pp.2937-2939, 1982.
DOI : 10.1103/PhysRevB.11.4224

I. M. Lifshits, Quantum Theory of Solids, 1983.

P. A. Lee and T. V. Ramakrishnan, Disordered electronic systems, Reviews of Modern Physics, vol.86, issue.110, pp.287-337, 1985.
DOI : 10.1143/JPSJ.43.415

C. A. Condat, T. R. Kirkpatrick, and S. M. Cohen, Acoustic localization in one dimension in the presence of a flow field, Physical Review B, vol.31, issue.10, pp.4653-4661, 1987.
DOI : 10.1103/PhysRevB.31.2713

P. Sebbah, D. Sornette, and C. Vanneste, Anomalous diffusion in two-dimensional Anderson-localization dynamics, Physical Review B, vol.191, issue.17, pp.12506-12510, 1993.
DOI : 10.1016/0378-4371(92)90556-6

M. M. Sigalas, C. M. Soukoulis, C. Chan, and D. Turner, Localization of electromagnetic waves in two-dimensional disordered systems, Physical Review B, vol.51, issue.13, pp.8340-8348, 1996.
DOI : 10.1103/PhysRevB.51.2780

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Transport and Anderson localization in disordered two-dimensional photonic lattices, Nature, vol.57, issue.7131, 2007.
DOI : 10.1051/jphys:01987004804052700

F. Riboli, P. Barthelemy, S. Vignolini, F. Intonti, A. D. Rossi et al., Anderson localization of near-visible light in two dimensions, Optics Letters, vol.36, issue.2, pp.127-129, 2011.
DOI : 10.1364/OL.36.000127

C. H. Chan, S. H. Lou, L. Tsang, and J. A. Kong, Electromagnetic scattering of waves by random rough surface: A finite-difference time-domain approach, Microwave and Optical Technology Letters, vol.27, issue.9, pp.355-359, 1991.
DOI : 10.1002/mop.4650040907

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev et al., FDTD modeling of realistic semicontinuous metal films, Applied Physics B, vol.51, issue.1, pp.159-168, 2010.
DOI : 10.1007/978-3-662-09109-8

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga et al., Fabrication and realistic modeling of three-dimensional metal-dielectric composites, Journal of Nanophotonics, vol.5, issue.1, p.51513, 2011.
DOI : 10.1117/1.3590208

S. Buil, J. Laverdant, B. Berini, P. Maso, J. Hermier et al., FDTD simulations of localization and enhancements on fractal plasmonics nanostructures, Optics Express, vol.20, issue.11, pp.11968-11975, 2012.
DOI : 10.1364/OE.20.011968

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix et al., Probing the statistical properties of Anderson localization with quantum emitters, Probing the statistical properties of Anderson localization with quantum emitters, p.63044, 2011.
DOI : 10.1088/1367-2630/13/6/063044

A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P. D. Garca et al., Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides, Optics Express, vol.22, issue.25, pp.30992-31001, 2014.
DOI : 10.1364/OE.22.030992

P. D. Garca and P. , Physics of Quantum Light Emitters in Disordered Photonic Nanostructures, Annalen der Physik, vol.2, issue.11, p.1600351, 2017.
DOI : 10.1021/acsphotonics.5b00422

N. Mann, A. Javadi, P. D. Garca, P. Lodahl, and S. Hughes, Theory and experiments of disorder-induced resonance shifts and mode-edge broadening in deliberately disordered photonic crystal waveguides, Physical Review A, vol.92, issue.2
DOI : 10.1103/PhysRevB.80.125332

R. Kumar and S. Mujumdar, Intensity correlations in metal films with periodic-on-average random nanohole arrays, Optics Communications, vol.380, pp.174-178, 2016.
DOI : 10.1016/j.optcom.2016.05.070

Y. Nishijima, L. Rosa, and S. Juodkazis, Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting, Optics Express, vol.20, issue.10, pp.11466-11477, 2012.
DOI : 10.1364/OE.20.011466

J. K. Patel and C. B. Read, Handbook of the Normal Distribution., Biometrics, vol.38, issue.4, pp.0-9, 1996.
DOI : 10.2307/2529920

J. Laverdant, S. Buil, J. Hermier, and X. Quelin, Near-field intensity correlations on nanoscaled random silver/dielectric films, Journal of Nanophotonics, vol.4, issue.1, p.49505, 2010.

P. Gadenne, B. Berini, S. Buil, X. Quelin, C. Anceau et al., Localized plasmon-enhanced optical response: harmonic generation and polarization effects, Complex Mediums II: Beyond Linear Isotropic Dielectrics, pp.288-296, 2001.
DOI : 10.1117/12.432941