Y. Yamaguchi and V. J. Hearing, Physiological factors that regulate skin pigmentation, BioFactors, vol.128, issue.2, pp.193-202, 2009.
DOI : 10.1002/biof.29

A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation, Physiological Reviews, vol.84, issue.4, pp.1155-228, 2004.
DOI : 10.1111/1523-1747.ep12343712

T. Matsui and M. Amagai, Dissecting the formation, structure and barrier function of the stratum corneum, International Immunology, vol.18, issue.1, pp.269-280, 2015.
DOI : 10.1101/gad.1232104

M. Haniffa, M. Gunawan, and L. Jardine, Human skin dendritic cells in health and disease, Journal of Dermatological Science, vol.77, issue.2, pp.85-92, 2015.
DOI : 10.1016/j.jdermsci.2014.08.012

S. H. Woo, E. A. Lumpkin, and A. Patapoutian, Merkel cells and neurons keep in touch, Trends in Cell Biology, vol.25, issue.2, pp.74-81, 2015.
DOI : 10.1016/j.tcb.2014.10.003

R. R. Driskell and F. M. Watt, Understanding fibroblast heterogeneity in the skin, Trends in Cell Biology, vol.25, issue.2, pp.92-101, 2015.
DOI : 10.1016/j.tcb.2014.10.001

J. M. Sorrell and A. Caplan, Chapter 4 Fibroblasts???A Diverse Population at the Center of It All, Int Rev Cell Mol Biol, vol.276, pp.161-214, 2009.
DOI : 10.1016/S1937-6448(09)76004-6

G. Cardinali, D. Kovacs, and M. Picardo, Mechanisms underlying post-inflammatory hyperpigmentation: lessons from solar lentigo, Annales de Dermatologie et de V??n??r??ologie, vol.139, pp.96-101, 2012.
DOI : 10.1016/S0151-9638(12)70127-8

T. Kondo and V. J. Hearing, Update on the regulation of mammalian melanocyte function and skin pigmentation, Expert Review of Dermatology, vol.112, issue.1, pp.97-108, 2011.
DOI : 10.1111/j.1755-148X.2009.00558.x

C. Duval, Key Regulatory Role of Dermal Fibroblasts in Pigmentation as Demonstrated Using a Reconstructed Skin Model: Impact of Photo-Aging, PLoS ONE, vol.73, issue.3, p.114182, 2014.
DOI : 10.1371/journal.pone.0114182.s002

S. J. Hedley, Fibroblasts Play a Regulatory Role in the Control of Pigmentation in Reconstructed Human Skin from Skin Types I and II, Pigment Cell Research, vol.151, issue.1, pp.49-56, 2002.
DOI : 10.1002/(SICI)1521-1878(199809)20:9<712::AID-BIES4>3.0.CO;2-I

M. Cario-andre, C. Pain, Y. Gauthier, V. Casoli, and A. Taieb, In vivo and in vitro evidence of dermal fibroblasts influence on human epidermal pigmentation, Pigment Cell Research, vol.294, issue.5, pp.434-476, 2006.
DOI : 10.1074/jbc.272.1.503

R. Yang, Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors, Nature Communications, vol.148, p.5807, 2014.
DOI : 10.1111/1523-1747.ep12468971

C. Praetorius, R. A. Sturm, and E. Steingrimsson, Sun-induced freckling: ephelides and solar lentigines, Pigment Cell & Melanoma Research, vol.122, issue.Suppl 3, pp.339-50, 2014.
DOI : 10.1046/j.0022-202X.2004.22244.x

K. A. Cayce, A. J. Mcmichael, and S. R. Feldman, Hyperpigmentation: an overview of the common afflictions, Dermatol Nurs, vol.16, pp.401-407, 2004.

M. Bastiaens, J. Hoefnagel, R. Westendorp, B. J. Vermeer, and J. N. Bouwes-bavinck, Solar Lentigines are Strongly Related to Sun Exposure in Contrast to Ephelides, Pigment Cell Research, vol.19, issue.41, pp.225-234, 2004.
DOI : 10.1001/archderm.124.6.869

S. Nouveau-richard, Skin ageing: A comparison between Chinese and European populations, Journal of Dermatological Science, vol.40, issue.3, pp.187-93, 2005.
DOI : 10.1016/j.jdermsci.2005.06.006

S. Monestier, C. Gaudy, J. Gouvernet, M. A. Richard, and J. J. Grob, Multiple senile lentigos of the face, a skin ageing pattern resulting from a life excess of intermittent sun exposure in dark-skinned caucasians: a case-control study, British Journal of Dermatology, vol.36, issue.3, pp.438-482, 2006.
DOI : 10.1111/1523-1747.ep12465072

J. P. Ortonne and D. L. Bissett, Latest Insights into Skin Hyperpigmentation, Journal of Investigative Dermatology Symposium Proceedings, vol.13, issue.1, pp.10-14, 2008.
DOI : 10.1038/jidsymp.2008.7

M. Nakamura, Environment-induced lentigines: formation of solar lentigines beyond ultraviolet radiation, Experimental Dermatology, vol.2011, issue.5 Suppl 2, pp.407-418, 2015.
DOI : 10.1046/j.1365-2133.2002.04834.x

W. K. Andersen, R. R. Labadie, and J. Bhawan, Histopathology of solar lentigines of the face: A quantitative study, Journal of the American Academy of Dermatology, vol.36, issue.3, pp.444-451, 1997.
DOI : 10.1016/S0190-9622(97)80224-1

N. Unver, Alterations in the epidermal-dermal melanin axis and factor XIIIa melanophages in senile lentigo and ageing skin, British Journal of Dermatology, vol.330, issue.1, pp.119-147, 2006.
DOI : 10.1042/bj3301235

C. B. Lin, Immuno-histochemical evaluation of solar lentigines: The association of KGF/KGFR and other factors with lesion development, Journal of Dermatological Science, vol.59, issue.2, pp.91-98, 2010.
DOI : 10.1016/j.jdermsci.2010.06.006

H. Aoki, O. Moro, H. Tagami, and J. Kishimoto, Gene expression profiling analysis of solar lentigo in relation to immunohistochemical characteristics, British Journal of Dermatology, vol.73, issue.6, pp.1214-1237, 2007.
DOI : 10.1016/j.jdermsci.2005.02.004

E. Goyarts, N. Muizzuddin, D. Maes, and P. Giacomoni, Morphological Changes Associated with Aging: Age Spots and the Microinflammatory Model of Skin Aging, Annals of the New York Academy of Sciences, vol.1119, issue.1, pp.32-41, 2007.
DOI : 10.1196/annals.1404.006

G. Imokawa, Autocrine and Paracrine Regulation of Melanocytes in Human Skin and in Pigmentary Disorders, Pigment Cell Research, vol.114, issue.2, pp.96-110, 2004.
DOI : 10.1016/S0015-0282(98)00401-4

D. Kovacs, Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo, British Journal of Dermatology, vol.11, issue.5, pp.1020-1027, 2010.
DOI : 10.1042/bj3140305

M. Kim, J. H. Han, J. H. Kim, T. J. Park, and H. Kang, Secreted Frizzled-Related Protein 2 (sFRP2) Functions as a Melanogenic Stimulator; the Role of sFRP2 in UV-Induced Hyperpigmentary Disorders, Journal of Investigative Dermatology, vol.136, issue.1, 2015.
DOI : 10.1038/JID.2015.365

T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, Journal of Immunological Methods, vol.65, issue.1-2, pp.55-63, 1983.
DOI : 10.1016/0022-1759(83)90303-4

A. P. Sappino, W. Schurch, and G. Gabbiani, Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations, Lab Invest, vol.63, pp.144-61, 1990.

M. L. Gardel, I. C. Schneider, Y. Aratyn-schaus, and C. M. Waterman, Mechanical Integration of Actin and Adhesion Dynamics in Cell Migration, Annual Review of Cell and Developmental Biology, vol.26, issue.1, pp.315-348, 2010.
DOI : 10.1146/annurev.cellbio.011209.122036

M. Cario-andre, Perilesional vs. lesional skin changes in senile lentigo, Journal of Cutaneous Pathology, vol.326, issue.1, pp.441-448, 2004.
DOI : 10.1046/j.1523-1747.2001.01296.x

V. Dugina, A. Alexandrova, C. Chaponnier, J. Vasiliev, and G. Gabbiani, Rat Fibroblasts Cultured from Various Organs Exhibit Differences in ??-Smooth Muscle Actin Expression, Cytoskeletal Pattern, and Adhesive Structure Organization, Experimental Cell Research, vol.238, issue.2, pp.481-90, 1998.
DOI : 10.1006/excr.1997.3868

B. Hinz, G. Celetta, J. J. Tomasek, G. Gabbiani, and C. Chaponnier, Alpha-Smooth Muscle Actin Expression Upregulates Fibroblast Contractile Activity, Molecular Biology of the Cell, vol.12, issue.9, pp.2730-2771, 2001.
DOI : 10.1091/mbc.12.9.2730

W. Li, J. Fan, M. Chen, and D. T. Woodley, Mechanisms of human skin cell motility, Histol Histopathol, vol.19, pp.1311-1335, 2004.

C. Duval, M. Regnier, and R. Schmidt, Distinct Melanogenic Response of Human Melanocytes in Mono-culture, in Co-Culture with Keratinocytes and in Reconstructed Epidermis, to UV Exposure, Pigment Cell Research, vol.14, issue.5, pp.348-55, 2001.
DOI : 10.1034/j.1600-0749.2001.140506.x

T. Hirobe, How are proliferation and differentiation of melanocytes regulated?, Pigment Cell & Melanoma Research, vol.33, issue.Suppl. 8, pp.462-78, 2011.
DOI : 10.1038/ng1087

Y. Yamaguchi, Mesenchymal???epithelial interactions in the skin, The Journal of Cell Biology, vol.14, issue.2, pp.275-85, 2004.
DOI : 10.1016/S0003-2697(03)00172-6

Y. Yamaguchi, Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/??-catenin signaling in keratinocytes, The FASEB Journal, vol.22, issue.4, pp.1009-1029, 2008.
DOI : 10.1016/S0092-8674(00)00178-1

W. Choi, L. Kolbe, and V. J. Hearing, Characterization of the bioactive motif of neuregulin-1, a fibroblast-derived paracrine factor that regulates the constitutive color and the function of melanocytes in human skin, Pigment Cell & Melanoma Research, vol.2, issue.4, pp.477-81, 2012.
DOI : 10.1038/35052073

E. Shishido, S. Kadono, I. Manaka, M. Kawashima, and G. Imokawa, The Mechanism of Epidermal Hyperpigmentation in Dermatofibroma is Associated with Stem Cell Factor and Hepatocyte Growth Factor Expression, Journal of Investigative Dermatology, vol.117, issue.3, pp.627-660, 2001.
DOI : 10.1046/j.0022-202x.2001.01440.x

C. Kihira, H. Mizutani, K. Asahi, H. Hamanaka, and M. Shimizu, Increased cutaneous immunoreactive stem cell factor expression and serum stem cell factor level in systemic scleroderma, Journal of Dermatological Science, vol.20, issue.1, pp.72-80, 1998.
DOI : 10.1016/S0923-1811(98)00077-2

M. Okazaki, The mechanism of epidermal hyperpigmentation in cafe-au-lait macules of neurofibromatosis type 1 (von Recklinghausen's disease) may be associated with dermal 25

G. Cardinali, A kindred with familial progressive hyperpigmentation-like disorder: implication of fibroblast-derived growth factors in pigmentation, Eur J Dermatol, vol.19, pp.469-73, 2009.

M. M. Shull, Targeted disruption of the mouse transforming growth factor-??1 gene results in multifocal inflammatory disease, Nature, vol.359, issue.6397, pp.693-702, 1992.
DOI : 10.1038/359693a0

O. Reilly and S. , Role of interleukin-13 in fibrosis, particularly systemic sclerosis, BioFactors, vol.193, issue.6, pp.593-599, 2013.
DOI : 10.1084/jem.193.11.1247

P. M. Siegel and J. Massague, Cytostatic and apoptotic actions of TGF-?? in homeostasis and cancer, Nature Reviews Cancer, vol.3, issue.11, pp.807-828, 2003.
DOI : 10.1038/nrc1208

R. Bibliographiques-1, R. Hay, A. M. Griffiths, C. Sterry, and W. , Board of the International League of Dermatological S, the Grand Challenges Consultation g. The global challenge for skin health, The British journal of dermatology, vol.172, issue.6, pp.1469-72, 2015.

A. Kligman, C. Koblenzer, N. Johns, H. Williams, I. Bolliger et al., Demographics and psychological implications for the aging population The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. The Journal of investigative dermatology, Dermatologic clinics, vol.1512134, issue.46, pp.549-531527, 1997.

K. Park, Role of Micronutrients in Skin Health and Function, Biomolecules & Therapeutics, vol.23, issue.3, pp.207-224, 2015.
DOI : 10.4062/biomolther.2015.003

M. Venus, J. Waterman, and I. Mcnab, Basic physiology of the skin, Surgery (Oxford), vol.28, issue.10, pp.469-72, 2010.
DOI : 10.1016/j.mpsur.2010.07.011

A. Baroni, E. Buommino, D. Gregorio, V. Ruocco, E. Ruocco et al., Structure and function of the epidermis related to barrier properties, Clinics in Dermatology, vol.30, issue.3, pp.257-62, 2012.
DOI : 10.1016/j.clindermatol.2011.08.007

I. Bentov and M. Reed, The effect of aging on the cutaneous microvasculature. Microvascular research, pp.25-31, 2015.

D. Kellogg and J. , In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges, Journal of Applied Physiology, vol.100, issue.5, pp.1709-1727, 2006.
DOI : 10.2170/jjphysiol.37.929

Y. Roudaut, A. Lonigro, B. Coste, J. Hao, P. Delmas et al., Touch sense, Channels, vol.15, issue.4, pp.234-45760, 2012.
DOI : 10.1038/nrn2993

M. Farage, K. Miller, P. Elsner, and H. Maibach, Structural characteristics of the aging skin: a review Cutaneous and ocular toxicology Anatomy and Physiology of the Skin, Journal of the Dermatology Nurses' Association, vol.26123, issue.44, pp.343-57214, 2007.

A. Benedetto, The environment and skin aging, Clinics in Dermatology, vol.16, issue.1, pp.129-168, 1998.
DOI : 10.1016/S0738-081X(97)00193-4

M. Cichorek, M. Wachulska, A. Stasiewicz, A. Tyminska, A. Slominski et al., Skin melanocytes: biology and development. Postepy dermatologii i alergologii Melanin pigmentation in mammalian skin and its hormonal regulation, Physiological reviews, vol.3084, issue.154, pp.30-411155, 2004.

X. Wu, J. Hammer, T. Passeron, M. Brenner, D. Tobin et al., Melanosome transfer: it is best to give and receive. Current opinion in cell biology Costin GE, Hearing VJ Human skin pigmentation: melanocytes modulate skin color in response to stress What are melanocytes really doing all day long, FASEB journal : official publication of the Federation of American Societies for Experimental Biology. Plonka PM, vol.292118, issue.189, pp.1-7976, 2007.

C. Duval, N. Smit, A. Kolb, M. Regnier, S. Pavel et al., Keratinocytes control the pheo/eumelanin ratio in cultured normal human melanocytes. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society, pp.440-446, 2002.

C. Praillet, J. Grimaud, and H. Lortat-jacob, Les protéoglycanes. (I) Molécules aux multiples fonctions... futures molécules thérapeutiques ? Medical science monitor : international medical journal of experimental and clinical research, pp.412-432, 1998.

R. Driskell and F. Watt, Understanding fibroblast heterogeneity in the skin. Trends in cell biology, pp.92-101, 2015.

J. Sorrell, A. Caplan, D. Lee, J. Lee, E. Lee et al., Fibroblasts play a stimulatory role in keratinocyte proliferation but an inhibitory role in melanocyte growth and pigmentation in a skin equivalent system from skin type IV. Archives of dermatological research Biological characterization of human fibroblastderived mitogenic factors for human melanocytes, vivo and in vitro evidence of dermal fibroblasts influence on human epidermal pigmentation. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society, pp.161-21410, 1998.

Z. Wang, Y. Wang, F. Farhangfar, M. Zimmer, Y. Zhang et al., Enhanced keratinocyte proliferation and migration in co-culture with fibroblasts Epidermal morphogenesis during progressive in vitro 3D reconstruction at the air-liquid interface The development of a 3D immunocompetent model of human skin, PloS one. Experimental dermatology. Biofabrication, vol.7215, issue.283, pp.40951-27871, 2012.

C. Duval, C. Cohen, C. Chagnoleau, V. Flouret, E. Bourreau et al., Key Regulatory Role of Dermal Fibroblasts in Pigmentation as Demonstrated Using a Reconstructed Skin Model: Impact of Photo-Aging, PLoS ONE, vol.73, issue.3, p.114182, 2014.
DOI : 10.1371/journal.pone.0114182.s002

J. Sorrell and A. Caplan, Fibroblasts play a regulatory role in the control of pigmentation in reconstructed human skin from skin types I and II. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society Braverman IM. The cutaneous microcirculation. The journal of investigative dermatology Symposium proceedings / the Society for Investigative Dermatology, Inc [and] European Society for Fibroblast heterogeneity: more than skin deep, Dermatological Research. Epub Journal of cell science, vol.15125117, issue.321, pp.49-563, 2000.

T. Fitzpatrick, M. Manickam, and S. Jung, The validity and practicality of sun-reactive skin types I through VI. Archives of dermatology Inhibitors of melanogenesis: a patent review, Epub, vol.124, issue.6, pp.869-71, 1988.

T. Hirobe, K. Hasegawa, R. Furuya, R. Fujiwara, and K. Sato, Effects of fibroblast-derived factors on the proliferation and differentiation of human melanocytes in culture, Journal of Dermatological Science, vol.71, issue.1, pp.45-57, 2013.
DOI : 10.1016/j.jdermsci.2013.03.012

M. Kim, J. Han, J. Kim, T. Park, H. Kang et al., Secreted Frizzled-Related Protein 2 (sFRP2) Functions as a Melanogenic Stimulator; the Role of sFRP2 in UV-Induced Hyperpigmentary Disorders Epub 2016/01/15. 39 Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes The role of endothelin-1 in epidermal hyperpigmentation and signaling mechanisms of mitogenesis and melanogenesis. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society, The Journal of investigative dermatology. The Journal of biological chemistry, vol.13626710, issue.1344, pp.236-4424675, 1992.

B. Castillo and J. Barrios-payan, Granulocyte-macrophage colony-stimulating factor: not just another haematopoietic growth factor. Medical oncology Epub 2013/11/23. 42. Shirakata Y. Regulation of epidermal keratinocytes by growth factorsJun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin An overview of the c-MET signaling pathway. Therapeutic advances in medical oncology, 45. Stoker M, Perryman M. An epithelial scatter factor released by embryo fibroblasts, pp.77473-80745, 1985.

M. Mildner, V. Mlitz, F. Gruber, J. Wojta, and E. Tschachler, Hepatocyte growth factor establishes autocrine and paracrine feedback loops for the protection of skin cells after UV irradiation. The Journal of investigative dermatology, pp.2637-2681, 2007.

S. Werner and H. Smola, Paracrine regulation of keratinocyte proliferation and differentiation. Trends in cell biology, pp.143-149, 2001.

C. Peng, Q. He, C. Luo, A. Vaidya, V. Kale et al., Lack of keratinocyte growth factor retards angiogenesis in cutaneous wounds The Journal of international medical research TGF-beta signaling and its role in the regulation of hematopoietic stem cells. Systems and synthetic biology Mechanism of activation of the TGF-beta receptor, Nature, vol.399370, issue.49126488, pp.416-231, 1994.

L. Roy, C. Wrana, and J. , Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling, Nature Reviews Molecular Cell Biology, vol.11, issue.2, pp.112-138, 2005.
DOI : 10.1016/S0955-0674(99)80061-1

J. Massague, X. Wang, K. Liefer, S. Tsai, O. Malley et al., TGFbeta signalling in context Epub 2012/09/21. 53 Development of gene-switch transgenic mice that inducibly express transforming growth factor beta1 in the epidermis, Nature reviews Molecular cell biology. Proceedings of the National Academy of Sciences of the United States of America, vol.139621, issue.54, pp.616-308483, 1999.

J. Mohammed, A. Gunderson, H. Khong, R. Koubek, M. Udey et al., TGFbeta1 overexpression by keratinocytes alters skin dendritic cell homeostasis and enhances contact hypersensitivity. The Journal of investigative dermatology, pp.135-178, 2013.

G. Yang, Y. Li, E. Nishimura, H. Xin, A. Zhou et al., Inhibition of PAX3 by TGF-?? Modulates Melanocyte Viability, Molecular Cell, vol.32, issue.4, pp.554-63, 2008.
DOI : 10.1016/j.molcel.2008.11.002

J. Borron, Transforming growth factor-beta1 inhibits basal melanogenesis in B16/F10 mouse melanoma cells by increasing the rate of degradation of tyrosinase and tyrosinase-related protein-1

U. Rodeck, A. Bossler, U. Graeven, F. Fox, P. Nowell et al., Transforming growth factor beta production and responsiveness in normal human melanocytes and melanoma cells. Cancer research, pp.575-81, 1994.

D. Kim, S. Park, and K. Park, Transforming growth factor-beta1 decreases melanin synthesis via delayed extracellular signal-regulated kinase activation. The international journal of biochemistry & cell biology, pp.1482-91, 2004.

R. Yang, Y. Zheng, L. Li, S. Liu, M. Burrows et al., Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors Significant downregulation of transforming growth factor-beta signal transducers in human skin following ultraviolet-A1 irradiation, Nat Commun. The British journal of dermatology, vol.515627, issue.62, pp.951-957, 2007.

T. Quan, T. He, S. Kang, J. Voorhees, and G. Fisher, Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. The American journal of pathology, pp.741-51, 2004.

G. Hershey, T. Murata, S. Husain, H. Mohri, and R. Puri, Two different IL-13 receptor chains are expressed in normal human skin fibroblasts, and IL-4 and IL-13 mediate signal transduction through a common pathway, 65. McCormick SM, Heller NM. Commentary: IL-4 and IL-13 receptors and signaling, pp.677-901103, 1998.

J. Han, E. Lee, E. Kim, M. Yeom, O. Kwon et al., T-cell-derived interleukin 13 in the skin-whitening effect of Ginsenoside F1, Experimental Dermatology, vol.83, issue.11, pp.860-862, 2014.
DOI : 10.1097/01.LAB.0000069521.42488.1B

H. Choi, H. Choi, J. Han, S. Jin, J. Park et al., IL-4 inhibits the melanogenesis of normal human melanocytes through the JAK2-STAT6 signaling pathway. The Journal of investigative dermatology Analysis of epithelialmesenchymal transition markers in psoriatic epidermal keratinocytes Open biology Epub In vitro assessment of IL-4-or IL-13-mediated changes in the structural components of keratinocytes in mice and humans Assessment of cumulative exposure to UVA through the study of asymmetrical facial skin aging The ovary: basic biology and clinical implications of estrogens in skin: implications for skin aging, The Journal of investigative dermatology. Clin Interv Aging. Epub The Journal of clinical investigation. Experimental dermatology, vol.133215141345101201526, issue.72201, pp.528-361342, 2006.

M. Thornton, Estrogens and aging skin, Dermato-Endocrinology, vol.12, issue.2, pp.264-70, 2013.
DOI : 10.1016/j.freeradbiomed.2010.12.038

D. Archer, Postmenopausal skin and estrogen, Gynecological Endocrinology, vol.339, issue.sup2, pp.2-6, 2012.
DOI : 10.1016/0140-6736(92)90009-R

L. L. Baumann, A. Morita, T. Tsuji, G. Bubenik, and S. Konturek, Skin aging induced by ultraviolet exposure and tobacco smoking: evidence from epidemiological and molecular studies Melatonin and aging: prospects for human treatment, Cosmetic Dermatology: Principles and Practice Journal of physiology and pharmacology : an official journal of the Polish Physiological Society, pp.178-83, 2001.

J. Desotelle, M. Wilking, and N. Ahmad, The Circadian Control of Skin and Cutaneous Photodamage???, Photochemistry and Photobiology, vol.17, issue.90, pp.1037-1084, 2011.
DOI : 10.1111/j.1600-079X.2005.00273.x

T. Abreu and M. Braganca, The bipolarity of light and dark: A review on Bipolar Disorder and circadian cycles, Journal of Affective Disorders, vol.185, pp.219-248, 2015.
DOI : 10.1016/j.jad.2015.07.017

M. Farage, K. Miller, P. Elsner, H. Maibach, E. Makrantonaki et al., Advances in wound care Clinical aspects and molecular diagnostics of skin aging Clinics in dermatology Chronic actinic damage of facial skin Skin physiology in men and women: in vivo evaluation of 300 people including TEWL, SC hydration, sebum content and skin surface pH Ageing and photoageing of keratinocytes and melanocytes, Characteristics of the Aging Skin, pp.5-103, 2001.

L. Li, S. Mac-mary, J. Sainthillier, S. Nouveau, O. De-lacharriere et al., Age-Related Changes of the Cutaneous Microcirculation in vivo, Gerontology, vol.279, issue.3, pp.142-53, 2006.
DOI : 10.1159/000056333

URL : https://hal.archives-ouvertes.fr/inserm-00473374

J. Shin, J. Park, S. Kim, H. Kang, C. Lin et al., Characteristics of keratinocytes in facial solar lentigo with flattened rete ridges: comparison with melasma Clinical and experimental dermatology Immuno-histochemical evaluation of solar lentigines: The association of KGF/KGFR and other factors with lesion development, Journal of dermatological science, vol.40245914, issue.872, pp.489-9491, 2010.

C. Delattre, E. Winstall, C. Lessard, M. Donovan, L. Simonetti et al., Proteomic analysis identifies new biomarkers for postmenopausal and dry skin Epub 2012/03/03. 89. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown In vitro 3-D model based on extending time of culture for studying chronological epidermis aging, Matrix biology : journal of the International Society for Matrix Biology, pp.205-10311, 2000.

H. Aoki, O. Moro, H. Tagami, K. J. Gene, P. Freyschmidt-paul et al., Alterations in the epidermal-dermal melanin axis and factor XIIIa melanophages in senile lentigo and ageing skin Comprehensive analysis of melanogenesis and proliferation potential of melanocyte lineage in solar lentigines Perilesional vs. lesional skin changes in senile lentigo The hallmarks of fibroblast ageing. Mechanisms of ageing and development Molecular aspects of skin ageing Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging Morphological characterization of solar lentigines by in vivo reflectance confocal microscopy: a longitudinal approach, The British journal of dermatology. Journal of dermatological science. Journal of cutaneous pathology. Maturitas. PloS one. Epub International journal of cosmetic science, vol.156155247331138693123510, issue.9463122, pp.1214-23119, 2004.

D. Kovacs, G. Cardinali, N. Aspite, C. Cota, F. Luzi et al., Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo. The British journal of dermatology, pp.1020-1027, 2010.

M. Salducci, N. Andre, C. Guere, M. Martin, R. Fitoussi et al., Factors secreted by irradiated aged fibroblasts induce solar lentigo in pigmented reconstructed epidermis. Pigment cell & melanoma research, pp.502-506, 2014.

E. Assar, M. Angulo, J. Vallejo, S. Peiro, C. Sanchez-ferrer et al., Mechanisms Involved in the Aging-Induced Vascular Dysfunction, Frontiers in Physiology, vol.3, p.132, 2012.
DOI : 10.3389/fphys.2012.00132

T. Simoncini, P. Mannella, L. Fornari, A. Caruso, G. Varone et al., Genomic and non-genomic effects of estrogens on endothelial cells*1, Steroids, vol.69, issue.8-9, pp.537-4204, 2004.
DOI : 10.1016/j.steroids.2004.05.009

N. Charkoudian and N. Stachenfeld, Sex hormone effects on autonomic mechanisms of thermoregulation in humans Autonomic neuroscience : basic & clinical, 2015.

S. Iriyama, T. Ono, H. Aoki, and S. Amano, Hyperpigmentation in human solar lentigo is promoted by heparanase-induced loss of heparan sulfate chains at the dermal???epidermal junction, Journal of Dermatological Science, vol.64, issue.3, pp.223-231, 2011.
DOI : 10.1016/j.jdermsci.2011.09.007

Y. Goncharova, E. Attia, K. Souid, and I. Vasilenko, Dermoscopic Features of Facial Pigmented Skin Lesions, ISRN Dermatology, vol.42, issue.1, part 1, p.546813, 2013.
DOI : 10.1111/j.1365-2133.2004.06328.x

B. Akay, M. Bozkir, Y. Anadolu, and S. Gullu, Epidemiology of vitiligo, associated autoimmune diseases and audiological abnormalities: Ankara study of 80 patients in Turkey, Journal of the European Academy of Dermatology and Venereology, vol.127, issue.10, pp.1144-50, 2010.
DOI : 10.1155/1993/356874

N. Chen, Y. Hu, W. Li, M. Eisinger, M. Seiberg et al., The role of keratinocyte growth factor in melanogenesis: a possible mechanism for the initiation of solar lentigines, Experimental Dermatology, vol.14, issue.Suppl. 35, pp.865-72, 2009.
DOI : 10.1038/sj.jid.5701047

T. Motokawa, T. Kato, T. Katagiri, J. Matsunaga, I. Takeuchi et al., Messenger RNA levels of melanogenesis-associated genes in lentigo senilis lesions, Journal of Dermatological Science, vol.37, issue.2, pp.120-123, 2005.
DOI : 10.1016/j.jdermsci.2004.10.009

S. Kadono, I. Manaka, M. Kawashima, T. Kobayashi, and G. Imokawa, The Role of the Epidermal Endothelin Cascade in the Hyperpigmentation Mechanism of Lentigo Senilis, Journal of Investigative Dermatology, vol.116, issue.4, pp.571-705, 2001.
DOI : 10.1046/j.1523-1747.2001.01296.x

Y. Yamaguchi and V. Hearing, Physiological factors that regulate skin pigmentation, BioFactors, vol.128, issue.2, pp.193-905, 2009.
DOI : 10.1002/biof.29

M. Yaar and B. Gilchrest, Photoageing: mechanism, prevention and therapy. The British journal of dermatology, pp.874-87, 2007.

H. Hattori, M. Kawashima, Y. Ichikawa, and G. Imokawa, The epidermal stem cell factor is overexpressed in lentigo senilis: implication for the mechanism of hyperpigmentation. The Journal of investigative dermatology, pp.1256-6505, 2004.

G. Cardinali, D. Kovacs, and M. Picardo, Mechanisms underlying post-inflammatory hyperpigmentation: lessons from solar lentigo, Annales de Dermatologie et de V??n??r??ologie, vol.139, 2012.
DOI : 10.1016/S0151-9638(12)70127-8

Y. Shamis, E. Silva, K. Hewitt, Y. Brudno, S. Levenberg et al., Fibroblasts Derived from Human Pluripotent Stem Cells Activate Angiogenic Responses In Vitro and In Vivo, PLoS ONE, vol.6, issue.12, p.83755, 2013.
DOI : 10.1371/journal.pone.0083755.s003

K. Hasegawa, R. Fujiwara, K. Sato, J. Shin, S. Kim et al., Possible Involvement of Keratinocyte Growth Factor in the Persistence of Hyperpigmentation in both Human Facial Solar Lentigines and Melasma, Annals of Dermatology, vol.27, issue.5, pp.626-930, 2015.
DOI : 10.5021/ad.2015.27.5.626

M. Bastiaens, J. Hoefnagel, R. Westendorp, B. Vermeer, B. Bavinck et al., Solar lentigines are strongly related to sun exposure in contrast to ephelides. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society, pp.225-905, 2004.

S. Monestier, C. Gaudy, J. Gouvernet, M. Richard, and J. Grob, Multiple senile lentigos of the face, a skin ageing pattern resulting from a life excess of intermittent sun exposure in dark-skinned caucasians: a case-control study, British Journal of Dermatology, vol.36, issue.3, pp.438-4402, 2006.
DOI : 10.1111/1523-1747.ep12465072

R. Goorochurn, C. Viennet, C. Granger, F. Fanian, N. Varin-blank et al., Biological processes in solar lentigo: insights brought by experimental models. Experimental dermatology, 2016.

J. Kim, C. Nam, J. Kim, J. Gye, S. Hong et al., Objective Evaluation of the Effect of Q-Switched Nd:YAG (532 nm) Laser on Solar Lentigo by Using a Colorimeter, Annals of Dermatology, vol.27, issue.3, pp.326-334, 2015.
DOI : 10.5021/ad.2015.27.3.326

J. Sainthillier, S. Mac-mary, and H. P. , Digital photography as a scientific tool] Annales de dermatologie et de venereologie, pp.280-286, 2009.

S. Pande and M. R. Sebumeter, Indian journal of dermatology, venereology and leprology, pp.444-606, 2005.

A. Petitjean, J. Sainthillier, S. Mac-mary, P. Muret, B. Closs et al., Skin radiance: how to quantify? Validation of an optical method, Skin Research and Technology, vol.39, issue.1, pp.2-8, 2007.
DOI : 10.1016/S0043-1648(96)07240-7

URL : https://hal.archives-ouvertes.fr/inserm-00479720

P. Clarys, K. Alewaeters, R. Lambrecht, and A. Barel, Skin color measurements: comparison between three instruments: the Chromameter(R), the DermaSpectrometer(R) and the Mexameter(R)

A. Chardon, I. Cretois, and C. Hourseau, Skin colour typology and suntanning pathways, International Journal of Cosmetic Science, vol.5, issue.6, pp.191-20801, 1991.
DOI : 10.1111/1523-1747.ep12470474

H. Tagami, Location-related differences in structure and function of the stratum corneum with special emphasis on those of the facial skin, International Journal of Cosmetic Science, vol.101, issue.6 Suppl, pp.413-447, 2008.
DOI : 10.1046/j.0909-752x.2001.10311.x

A. Firooz, B. Sadr, S. Babakoohi, M. Sarraf-yazdy, F. Fanian et al., Variation of Biophysical Parameters of the Skin with Age, Gender, and Body Region, The Scientific World Journal, vol.22, issue.10, p.386936, 2012.
DOI : 10.1111/j.1532-5415.2004.52262.x

R. Speeckaert, M. Van-gele, M. Speeckaert, J. Lambert, and N. Van-geel, The biology of hyperpigmentation syndromes. Pigment cell & melanoma research, pp.512-536, 2014.

Y. Liu and M. Sheikh, Melanoma: Molecular Pathogenesis and Therapeutic Management, Molecular and cellular pharmacology, vol.6, issue.3, p.228, 2014.

D. Bino, S. Ito, S. Sok, J. Nakanishi, Y. Bastien et al., Chemical analysis of constitutive pigmentation of human epidermis reveals constant eumelanin to pheomelanin ratio. Pigment cell & melanoma research, pp.707-724, 2015.

J. Kasprzak and Y. Xu, Diagnosis and management of lentigo maligna: a review, Drugs in Context, vol.4, issue.06, p.212281, 2015.
DOI : 10.7573/dic.212281

G. Palmieri, M. Capone, M. Ascierto, G. Gentilcore, D. Stroncek et al., Main roads to melanoma, Journal of Translational Medicine, vol.7, issue.1, p.8616, 2009.
DOI : 10.1186/1479-5876-7-86

A. Sappino, W. Schurch, and G. Gabbiani, Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations Laboratory investigation; a journal of technical methods and pathology, pp.144-6101, 1990.

J. Stricker, T. Falzone, and M. Gardel, Mechanics of the F-actin cytoskeleton, Journal of Biomechanics, vol.43, issue.1, pp.9-14, 2010.
DOI : 10.1016/j.jbiomech.2009.09.003

V. Dugina, A. Alexandrova, C. Chaponnier, J. Vasiliev, and G. Gabbiani, Rat fibroblasts cultured from various organs exhibit differences in alpha-smooth muscle actin expression, cytoskeletal pattern, and adhesive structure organization. Experimental cell research, pp.481-9014, 1998.

B. Hinz, G. Celetta, J. Tomasek, G. Gabbiani, and C. Chaponnier, Alpha-Smooth Muscle Actin Expression Upregulates Fibroblast Contractile Activity, Molecular Biology of the Cell, vol.12, issue.9, pp.2730-2771, 2001.
DOI : 10.1091/mbc.12.9.2730

C. Viennet, J. Bride, V. Armbruster, F. Aubin, A. Gabiot et al., Contractile forces generated by striae distensae fibroblasts embedded in collagen lattices. Archives of dermatological research, pp.10-705, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00097457

N. Maeshige, H. Terashi, M. Aoyama, K. Torii, M. Sugimoto et al., Effect of ultrasound irradiation on alpha-SMA and TGF-beta1 expression in human dermal fibroblasts. The Kobe journal of medical sciences, pp.242-52, 2011.

H. Tsukamoto, Y. Mishima, K. Hayashibe, and A. Sasase, ??-Smooth Muscle Actin Expression in Tumor and Stromal Cells of Benign and Malignant Human Pigment Cell Tumors, Journal of Investigative Dermatology, vol.98, issue.1, pp.116-136, 1992.
DOI : 10.1111/1523-1747.ep12496020

W. Li, J. Fan, M. Chen, and D. Woodley, Mechanisms of human skin cell motility, Histology and histopathology, vol.19, issue.4, pp.1311-1335, 2004.

E. Goyarts, N. Muizzuddin, D. Maes, and P. Giacomoni, Morphological Changes Associated with Aging: Age Spots and the Microinflammatory Model of Skin Aging, Annals of the New York Academy of Sciences, vol.1119, issue.1, pp.32-907, 2007.
DOI : 10.1196/annals.1404.006

G. Cardinali, D. Kovacs, and M. Picardo, [Mechanisms underlying post-inflammatory hyperpigmentation: lessons from solar lentigo] Annales de dermatologie et de venereologie, 2012.

M. Shull, I. Ormsby, A. Kier, S. Pawlowski, R. Diebold et al., Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease, Nature, vol.35910, issue.6397, pp.693-922, 1992.

P. Siegel and J. Massague, Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer, Nature reviews Cancer, vol.310, issue.11, pp.807-2115, 2003.

Y. Yamaguchi, T. Passeron, T. Hoashi, H. Watabe, F. Rouzaud et al., Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/??-catenin signaling in keratinocytes, The FASEB Journal, vol.22, issue.4, pp.1009-2007, 2007.
DOI : 10.1016/S0092-8674(00)00178-1

W. Choi, L. Kolbe, and V. Hearing, Characterization of the bioactive motif of neuregulin-1, a fibroblast-derived paracrine factor that regulates the constitutive color and the function of melanocytes in human skin. Pigment cell & melanoma research, pp.477-81, 2012.

E. Shishido, S. Kadono, I. Manaka, M. Kawashima, and G. Imokawa, The Mechanism of Epidermal Hyperpigmentation in Dermatofibroma is Associated with Stem Cell Factor and Hepatocyte Growth Factor Expression, Journal of Investigative Dermatology, vol.117, issue.3, pp.627-660, 2001.
DOI : 10.1046/j.0022-202x.2001.01440.x

C. Kihira, H. Mizutani, K. Asahi, H. Hamanaka, and M. Shimizu, Increased cutaneous immunoreactive stem cell factor expression and serum stem cell factor level in systemic scleroderma, Journal of Dermatological Science, vol.20, issue.1, pp.72-80, 1998.
DOI : 10.1016/S0923-1811(98)00077-2

M. Okazaki, K. Yoshimura, Y. Suzuki, G. Uchida, Y. Kitano et al., The mechanism of epidermal hyperpigmentation in cafe-au-lait macules of neurofibromatosis type 1 (von Recklinghausen's disease) may be associated with dermal fibroblast-derived stem cell factor and hepatocyte growth factor, British Journal of Dermatology, vol.188, issue.4, pp.689-9705, 2003.
DOI : 10.1159/000247170

G. Cardinali, D. Kovacs, M. Giglio, C. Cota, N. Aspite et al., A kindred with familial progressive hyperpigmentation-like disorder: implication of fibroblast-derived growth factors in pigmentation, avis favorable des comités Inserm-Transfert et de la SATT IDF Innov à la demande de dépôt de brevet, pp.469-73, 2009.

R. *. Goorochurn, C. *. Viennet, M. Tissot, F. Locatelli, C. Granger et al., ** *co-authors **co-corresponding authors, Article Original (soumis) Communications affichées en congrès Functional characterization and biomarkers of solar lentigo extracted-primary fibroblasts, Goorochurn R The Young Researchers in Life Science, Morphological and functional characterizations of fibroblats extracted from solar lentigo

R. Goorochurn, Institut Fédératif de Recherche Biomédicale de l, Université Paris, vol.13

C. B. Lin, Y. Hu, and D. Rossetti, Immuno-histochemical evaluation of solar lentigines: The association of KGF/KGFR and other factors with lesion development, Journal of Dermatological Science, vol.59, issue.2, pp.91-97, 2010.
DOI : 10.1016/j.jdermsci.2010.06.006

M. Cario-andre, S. Lepreux, and C. Pain, Perilesional vs. lesional skin changes in senile lentigo, Journal of Cutaneous Pathology, vol.326, issue.1, pp.441-447, 2004.
DOI : 10.1046/j.1523-1747.2001.01296.x

H. Aoki, O. Moro, and H. Tagami, Gene expression profiling analysis of solar lentigo in relation to immunohistochemical characteristics, British Journal of Dermatology, vol.73, issue.6, pp.1214-1223, 2007.
DOI : 10.1016/j.jdermsci.2005.02.004

N. Unver, P. Freyschmidt-paul, and S. Horster, Alterations in the epidermal-dermal melanin axis and factor XIIIa melanophages in senile lentigo and ageing skin, British Journal of Dermatology, vol.330, issue.1, pp.119-128, 2006.
DOI : 10.1042/bj3301235

H. Hattori, M. Kawashima, and Y. Ichikawa, The Epidermal Stem Cell Factor Is Over-Expressed in Lentigo Senilis: Implication for the Mechanism of Hyperpigmentation, Journal of Investigative Dermatology, vol.122, issue.5, pp.1256-1265, 2004.
DOI : 10.1111/j.0022-202X.2004.22503.x

S. Kadono, I. Manaka, and M. Kawashima, The Role of the Epidermal Endothelin Cascade in the Hyperpigmentation Mechanism of Lentigo Senilis, Journal of Investigative Dermatology, vol.116, issue.4, pp.571-577, 2001.
DOI : 10.1046/j.1523-1747.2001.01296.x

D. Kovacs, G. Cardinali, and N. Aspite, Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo, British Journal of Dermatology, vol.11, issue.5, pp.1020-1027, 2010.
DOI : 10.1042/bj3140305

T. Motokawa, T. Kato, and T. Katagiri, Messenger RNA levels of melanogenesis-associated genes in lentigo senilis lesions, Journal of Dermatological Science, vol.37, issue.2, pp.120-123, 2005.
DOI : 10.1016/j.jdermsci.2004.10.009

N. Chen, Y. Hu, and W. Li, The role of keratinocyte growth factor in melanogenesis: a possible mechanism for the initiation of solar lentigines, Experimental Dermatology, vol.14, issue.Suppl. 35, pp.865-872, 2010.
DOI : 10.1038/sj.jid.5701047

S. Iriyama, T. Ono, and H. Aoki, Hyperpigmentation in human solar lentigo is promoted by heparanase-induced loss of heparan sulfate chains at the dermal???epidermal junction, Journal of Dermatological Science, vol.64, issue.3, pp.223-228, 2011.
DOI : 10.1016/j.jdermsci.2011.09.007

T. Scholzen and J. Gerdes, The Ki-67 protein: From the known and the unknown, Journal of Cellular Physiology, vol.19, issue.31, pp.311-322, 2000.
DOI : 10.1093/ajcp/110.1.24

A. Hachiya, A. Kobayashi, and Y. Yoshida, Biphasic Expression of Two Paracrine Melanogenic Cytokines, Stem Cell Factor and Endothelin-1, in Ultraviolet B-Induced Human Melanogenesis, The American Journal of Pathology, vol.165, issue.6, pp.2099-2109, 2004.
DOI : 10.1016/S0002-9440(10)63260-9

M. Yaar and B. A. Gilchrest, Photoageing: mechanism, prevention and therapy, British Journal of Dermatology, vol.52, issue.5, pp.874-887, 2007.
DOI : 10.1562/0031-8655(2000)0720526IEEATI2.0.CO2

Y. Shamis, E. A. Silva, and K. Hewitt, Fibroblasts Derived from Human Pluripotent Stem Cells Activate Angiogenic Responses In Vitro and In Vivo, PLoS ONE, vol.6, issue.12, p.83755, 2013.
DOI : 10.1371/journal.pone.0083755.s003

A. J. Thody and A. Graham, Does ??-MSH Have a Role in Regulating Skin Pigmentation in Humans?, Pigment Cell Research, vol.124, issue.5, pp.265-274, 1998.
DOI : 10.1111/1523-1747.ep12480983

Y. Yamaguchi, M. Brenner, and V. J. Hearing, The Regulation of Skin Pigmentation, Journal of Biological Chemistry, vol.2, issue.38, pp.27557-27561, 2007.
DOI : 10.1096/fj.06-6649rev

S. Shibahara, K. Takeda, and K. Yasumoto, Microphthalmia-Associated Transcription Factor (MITF): Multiplicity in Structure, Function, and Regulation, Journal of Investigative Dermatology Symposium Proceedings, vol.6, issue.1, pp.99-104, 2001.
DOI : 10.1046/j.0022-202x.2001.00010.x

G. Imokawa, Y. Yada, and N. Morisaki, Biological characterization of human fibroblast-derived mitogenic factors for human melanocytes, Biochemical Journal, vol.330, issue.3, pp.1235-1239, 1998.
DOI : 10.1042/bj3301235