J. Andén and S. Mallat, Multiscale scattering for audio classification, Proceedings of the 12th International Society for Music Information Retrieval Conference, pp.657-662, 2011.

G. Biau and A. Mas, PCA-kernel estimation, Statistics & Risk Modeling, vol.26, issue.1, pp.19-46, 2012.
DOI : 10.1214/aos/1176345969

URL : https://hal.archives-ouvertes.fr/hal-00704945

J. Bruna and S. Mallat, Invariant Scattering Convolution Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.8, pp.1872-1886, 2013.
DOI : 10.1109/TPAMI.2012.230

URL : http://arxiv.org/pdf/1203.1513

C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, vol.2, issue.2, pp.121-167, 1998.
DOI : 10.1023/A:1009715923555

E. J. Candès, X. Li, Y. Ma, and J. Wright, Robust principal component analysis?, Journal of the ACM, vol.58, issue.3, pp.1-1137, 2011.
DOI : 10.1145/1970392.1970395

O. Catoni, Statistical learning theory and stochastic optimization, volume 1851 of Lecture Notes in Mathematics, Lecture notes from the 31st Summer School on Probability Theory held in Saint-Flour, 2001.

O. Catoni, Challenging the empirical mean and empirical variance: A deviation study, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.48, issue.4, pp.1148-1185, 2012.
DOI : 10.1214/11-AIHP454

URL : https://hal.archives-ouvertes.fr/hal-00517206

O. Catoni, Estimating the gram matrix and least square regression through pac-bayes bounds. preprint, 2015.

N. Cristianini and J. Shawe-taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, 2000.
DOI : 10.1017/CBO9780511801389

W. E. Donath and A. J. Hoffman, Lower Bounds for the Partitioning of Graphs, IBM Journal of Research and Development, vol.17, issue.5, pp.420-425, 1973.
DOI : 10.1147/rd.175.0420

M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czechoslovak Math. J, vol.25, issue.1004, pp.619-633, 1975.

T. Hofmann, B. Schölkopf, and A. J. Smola, Kernel methods in machine learning, The Annals of Statistics, vol.36, issue.3, pp.1171-1220, 2008.
DOI : 10.1214/009053607000000677

I. Jolliffe, Principal component analysis, Statistics Reference Online, 2002.

V. Koltchinskii and E. Giné, Random Matrix Approximation of Spectra of Integral Operators, Bernoulli, vol.6, issue.1, pp.113-167, 2000.
DOI : 10.2307/3318636

V. Koltchinskii and K. Lounici, Asymptotics and concentration bounds for spectral projectors of sample covariance, 2014.

V. Koltchinskii and K. Lounici, Concentration inequalities and moment bounds for sample covariance operators. preprint arXiv:1405, 2014.

V. Koltchinskii and K. Lounici, Normal approximation and concentration of spectral projectors of sample covariance, The Annals of Statistics, vol.45, issue.1, 2015.
DOI : 10.1214/16-AOS1437

S. Mallat, Group Invariant Scattering, Communications on Pure and Applied Mathematics, vol.37, issue.10, pp.1331-1398, 2012.
DOI : 10.1137/S0036141002404838

URL : http://arxiv.org/pdf/1101.2286

A. David and . Mcallester, Pac-bayesian model averaging, Proceedings of the Twelfth Annual Conference on Computational Learning Theory, pp.164-170, 1999.

M. Meila and J. Shi, Learning segmentation by random walks, Advances in Neural Information Processing Systems, pp.873-879, 2001.

S. Minsker, Geometric median and robust estimation in Banach spaces, Bernoulli, vol.21, issue.4
DOI : 10.3150/14-BEJ645

Y. Andrew, M. I. Ng, Y. Jordan, and . Weiss, On spectral clustering: Analysis and an algorithm, In ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS, pp.849-856, 2001.

M. Reed and B. Simon, Methods of modern mathematical physics. I, 1980.

L. Rosasco, M. Belkin, and E. D. Vito, On learning with integral operators, Journal of Machine Learning Research, vol.11, pp.905-934, 2010.

M. Rudelson, Random Vectors in the Isotropic Position, Journal of Functional Analysis, vol.164, issue.1, pp.60-72, 1999.
DOI : 10.1006/jfan.1998.3384

B. Schölkopf and A. J. Smola, Learning with kernels : support vector machines, regularization, optimization, and beyond. Adaptive computation and machine learning, 2002.

B. Schölkopf, A. J. Smola, and K. Müller, Advances in kernel methods. chapter Kernel Principal Component Analysis, pp.327-352, 1999.

M. Seeger, 10.1162/153244303765208377, CrossRef Listing of Deleted DOIs, vol.7, issue.5, pp.233-269, 2003.
DOI : 10.1016/S0004-3702(98)00002-2

J. Shawe-taylor and N. Cristianini, Kernel Methods for Pattern Analysis, 2004.
DOI : 10.1017/CBO9780511809682

J. Shawe-taylor, C. Williams, N. Cristianini, and J. Kandola, On the eigenspectrum of the gram matrix and its relationship to the operator eigenspectrum, Eds.): ALT 2002, LNAI 2533, pp.23-40, 2002.

J. Shawe-taylor, C. K. Williams, N. Cristianini, and J. Kandola, On the eigenspectrum of the gram matrix and the generalisation error of kernel pca, IEEE Transactions on Information Theory, vol.51, 2005.

J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell, vol.22, issue.8, pp.888-905, 2000.

E. Stein, G. Weiss, and N. J. , Introduction to Fourier Analysis on Euclidean Spaces, 1971.

J. A. Tropp, User-Friendly Tail Bounds for Sums of Random Matrices, Foundations of Computational Mathematics, vol.16, issue.2, pp.389-434, 2012.
DOI : 10.1214/ECP.v16-1624

R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, Compressed sensing, pp.210-268
DOI : 10.1017/CBO9780511794308.006

M. Ulrike-von-luxburg, O. Belkin, and . Bousquet, Consistency of spectral clustering, The Annals of Statistics, vol.36, issue.2, pp.555-586, 2008.
DOI : 10.1214/009053607000000640

L. Zwald, O. Bousquet, and G. Blanchard, Statistical Properties of Kernel Principal Component Analysis, Learning theory, pp.594-608, 2004.
DOI : 10.1007/978-3-540-27819-1_41