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Introduction

Research in early language acquisition has—whether implicitly or explicitly—treated
the processes of learning sounds and of learning meanings as a succession of two steps.
According to the received view, babies first master the phonetic categories of their
native language: they learn to ignore irrelevant variations in pronunciation (such as
differences in talker, speech rate, emotion, and linguistic context) (Kuhl, 2004). Only
then, according to this view, can they map sounds to meaning (Bloom, 2000).

The goal of this dissertation is, however, to investigate the possibility of interac-
tions in learning phonemes and semantics in the early stages of language learning.
In questioning the received view, we are supported by recent experimental evidence
and computational studies. Developmental data shows, on the one hand, that infants
do not wait to have completed the acquisition of phonemes to start learning mean-
ings (Tincoff & Jusczyk, 1999; Bergelson & Swingley, 2012). On the other hand,
the phonological representation continues developing beyond the age of perceptual
attunement (Stager & Werker, 1997). Thus, the developmental trajectory of phonol-
ogy and meaning overlaps. Infants do not wait to have completed one to start the
other, rather, they learn the sound system and word meanings in a parallel fashion.
This change in perspective, from sequential to parallel, suggests that phonology and

semantics influence each other throughout the learning process (Figure 0.1).
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INTRODUCTION

eceivads more realistic
timeline timeline
Phonology learning Phonology learning
0
= Meaning learning Meaning learning
—
time

Figure 0.1: In the “received timeline” of language learning, sounds are learned first, and
meaning next. Sounds can possibly influence word meaning learning, but not the other way
around. In a more realistic timeline, sounds and meanings are learned in parallel, and can
influence each other throughout the learning process.

Another reason why the received sequential approach is problematic, is that the
speech input exhibits high variability and leads to massive ambiguity in the pho-
netic space (Hillenbrand, Getty, Clark, & Wheeler, 1995). When purely bottom-up
clustering algorithms—that is, algorithms that try to find sounds using only the raw
speech signal—are tested on realistic input, they systematically fail to learn the right
categories (e.g., Varadarajan, Khudanpur, & Dupoux, 2008). In this study, I describe
a new mechanism in which the process of learning sounds benefits from the top-down

constraint of early semantics, albeit ambiguous and rudimentary.

This mechanism will be investigated through two complementary levels of analysis:

e Computational analysis of the input: the learning mechanism will be imple-
mented and tested on data extracted from corpora of natural speech in two ty-
pologically different languages. This will allow us to quantify how much learning

is a priori possible, based on cues available in the signal.

e Experimental test of the learner: having a rich input does not guarantee that

xiii



INTRODUCTION

learners, with their inherent limitations and biases, are actually making use of
this input. This part of the study will thus provide evidence for the cognitive

plausibility of the proposed mechanism.

The structure of the dissertation

This study includes three parts: a review of the literature, a modeling study and an
experimental test of human subjects. The first part, which corresponds to the first
chapter, introduces the scientific question and situates the present work in the context
of an ongoing research program in developmental psychology. Besides it states the
main proposal of this dissertation: a new top-down mechanism to phoneme learning.
The second part deals mainly with the computational level of analysis, i.e., the
extent to which the input offers sufficient cues to support the proposed learning
mechanism. It consists of the second, third and fourth chapters. The third part
complements the second one, in that it provides evidence for the cognitive plausibility
of the mechanism I propose, through testing humans with a controlled input. It

consists of the fifth and sixth chapters.

Xiv



Part 1

State of the Art



This part of the dissertation corresponds to the first chapter. It reviews work on the
acquisition of phonemes and early word meaning. The learning of these two linguistic
levels have typically been considered separately, usually under the assumption that meaning
cannot be fully mastered until phonemes are learned. Here I describe a learning mechanism
that shows how even an early and ambiguous semantic representation can help with the

acquisition of phonemes.



Chapter 1

The mechanisms of phoneme

learning



CHAPTER 1.

1.1 What is a phoneme?

The concept of ‘phoneme’ corresponds to the intuition of a “smallest contrastive linguistic
unit which may bring about a change of meaning” (Gimson, 1962). For example, difference
in meaning between the word right and the word light results from the minimal exchange
of the phoneme /r/ for the phoneme /1/. Despite the apparent simplicity of this notion,
there are actually differing views within linguistics on the exact way phonemes should be
defined, and controversies about their attributes, content, or even their ontological status
(Dresher, 2011). In fact, while some scholars such as Jones (1967) see the phoneme as a
physical entity, a ‘family’ of sounds that “count for practical purposes as if they were one
and the same”, others considers it, rather, as a psychological unit (or in modern terms, a
‘mental representation’), distinct from the sounds that it represents.(e.g., Trubetzkoy, 1939;
Sapir, 1933). A different group of researchers (e.g., Twaddell, 1935) thinks that, though it
is admittedly a useful tool, the phoneme remains a fictitious unit with no underlying reality.

Sapir (1925) proposed to characterize phonemes in term of their contrastive properties.
This idea was carried further by phonologists of the Prague school, leading to the notion
of phonemic make-up (Jakobson) and phonemic content (Trubetzkoy), both of which de-
scribe the contrastive features necessary to distinguish a phoneme from others in the same
linguistic system. Crucially, the contrastive representation of the phoneme is underspec-
ified, and any physical realization of the phoneme requires the specification of additional
features. An example of this representation is shown in Figure 1.1.  Other researchers,
e.g., ‘Exemplar Theorists’, posit, in contrast, that instances of speech sounds are stored in
great detail, forming exemplar “clouds” of phonemes (e.g., K. Johnson, 1997; Bybee, 2001;
Pierrehumbert, 2001, 2003) (Figure 1.2).

Researchers may disagree on whether to locate the phoneme in the signal or in the psyche.
They may also disagree on the level of abstractness most appropriate to characterize the

phoneme. However, it is undeniable that this unit enables us to efficiently describe a large



CHAPTER 1.

Underlying representations

/1/ /A/ /u/
+high [high] [+high
—round +round

Some realization rules
i [ ] — [+tense] / __ in an open syllable

i. [ ] — [~tense] / __in a closed syllable

Figure 1.1: Pitta-Patta language contains three vowels. Two features are therefore required
to distinguish them (zhigh, +round). Capital letters represent vowels that are specified
only for minimally contrastive features. Remaining features required for pronunciation are
supplied by a set of phonetic realization rule. From Dresher (2011)

Figure 1.2: Data representing exemplar distribution of three hypothetical categories. From
Pierrehumbert (2003)

number of words with a small set of segments. For instance, English language contains more
than 170.000 lexical items according to the second edition of the 20-volume Oxford English
Dictionary. These words can be generated with an inventory of about 40 phonemes, only.
World languages contain around 800 phonemes in total (Ladefoged, 2001), and each makes

use of a subset (e.g., there are only 11 phonemes in Piraha, and about 140 in !Xa).



CHAPTER 1.

1.2 Infants learn phonemes

Acquiring their native language requires the learners to narrow down on the relevant
subset of sounds. English learners, for instance, have to learn the distinction between
the phoneme /1/ and the phoneme /r/ to differentiate minimal pairs such as light and
right. In contrast, Japanese learners need not differentiate these sounds, which do not bring
about difference in word meaning in their language. Similarly, English learners need not
differentiate the aspirated and unaspirated allophones of the phoneme /p/, which correspond
to the sounds occurring, respectively, in the first segment of the word pin (phonetically noted
as [p]), and the second segment of the word spin (phonetically noted as [p"]). Thai and
Korean learners, in contrast, have to pay attention to this contrast since it might change
the meaning of words. This can be exemplified by the Korean lexical minimal pair /pPul/
(“grass”) vs. /pul/ (“fire”). Psycholinguistic studies show, indeed, that Japanese-speaking
adults have difficulties discriminating the English [r] vs. [1] contrast (Miyawaki et al., 1975),
and English-speaking adults have difficulties perceiving the difference between [p] and [p"]
sounds used in Thai (Lisker & Abramson, 1970).

Language acquisition research has devoted a lot of effort to study phoneme learning, since
it is believed to lie the foundation for later stages of linguistic development (such as word
learning). It was investigated through at least two main approaches, as will be explained

in the following.

1.2.1 Perceptual approach

The first line of research tries to characterize phoneme learning through the evolution
of infants’ perceptual sensitivity to native vs. non-native contrasts. It has been initiated
by the seminal work of J. Werker and Tees (1984), through the use of the Conditioned
Head-turn Procedure. In an experiment of this kind, infants hear repeatedly one stimulus

(e.g., the syllable ba). Every four to twenty repetitions, a different stimulus (e.g., da) is
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presented. The occurrence of the new sound da is associated with the activation of a little
toy animal. Babies are thus conditioned to turn their head to see the toy perform when they
detect a change in the stimulus presentation. Using such an experimental setting, J. Werker
and Tees (1984) compared the head-turn behavior of English babies from 6 to 12 months of
age, as a reaction to the contrast /ba/-/da/, used in both English and Hindi languages, and
the contrast /ta/-/ta/ (voiceless dental vs. retroflex stop), only used in Hindi language. All
subjects succeeded in discriminating the /ba/-/da/ contrast. However, discrimination of
the contrast /ta/-/ta/ varied as a function of age. 6 to 8-month old English-learning babies
succeeded in discriminating the non-native contrast, but this discrimination declined by 10-
12 months of age. Hindi Infants, in contrast, maintained the discrimination of the /ta/-/ta/
contrast. Many studies have replicated this finding (see Gervain and Mehler (2010) for a
review).

These results were often interpreted as the proof that babies start with a universal pho-
netic sensitivity, and by the end of their first birthday, this sensitivity is maintained for
native contrasts only. Recent findings show, nonetheless, that perceptual attunement is a
more complicated process. For instance, some native contrasts are not just maintained, but
are further enhanced by 1 year of age (Kuhl et al., 2006). Moreover, some difficult native
contrasts require language exposure to be successfully discriminated (Narayan, Werker, &
Beddor, 2010). Besides, the process of perceptual attunement continues well beyond the

first year of life (Sundara, Polka, & Genesee, 2006).

1.2.2 Functional approach

The second line of research characterizes phoneme learning not through the babies’ per-
ception of a contrast, but through their ability to use this contrast. In fact, Stager and
Werker (1997) showed that being able to discriminate sounds is not necessarily equivalent

to being able (or willing) to use these sounds to learn words. This was first shown using an
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experimental paradigm which has come to be called the “switch” task. In this paradigm,
babies are first familiarized with two word-object pairings (referred to, hereafter, by the
labels A and B) for many trials until their looking time drops to a habituation criterion. In
the test phase, babies are presented with two types of trials. The ‘same’ trial consists of a
correct pairing between a word and an object as in the familiarization phase (e.g., Word A
with Object A), whereas the ‘switch’ trial consists of a wrong pairing (e.g., Word A with
Object B). If subjects have correctly learned the association during the familiarization, they
are supposed to be surprised by the ‘switch’ trial and not by the ‘same’ trial. This fact
is quantified through measuring the looking time to the ‘switch’ relative to that of ‘same’.
J. Werker, Fennell, C.T., Corcoran, and Stager (2002) showed that babies under 17 months
old are not able to notice the ‘switch’” when Word A and Word B are minimal pairs (e.g.,
bih vs. dih), even though they can perfectly discriminate the contrast on a purely percep-
tual levell More recent experiments showed, nonetheless, that younger infants do succeed
in learning when the relevant phonetic dimension is highlighted during the familiarization
(Thiessen, 2007; Rost & McMurray, 2009), when a salient contrast is used (Curtin, Fennell,
& Escudero, 2009), when the referential context is made explicit (Fennell & Waxman, 2010),
or when a more fine-grained testing paradigm is used (Yoshida, Fennell, Swingley, & Werker,
2009). Interestingly, success in the switch task was shown to correlate, within subjects, with
the vocabulary size (J. Werker et al., 2002). This provides support for the hypothesis that
learning the function of phonemes and their use in language requires experience with word
learning, and not just passive exposure to meaningless speech (see J. Werker & Curtin,
2005). The functional approach has been particularly useful when perception was not, by
itself, a sufficient indicator of learning, e.g., when the non-native contrast was perceptually
salient. For example, Dietrich, Swingley, and Werker (2007) tested 18 month-old English-
and Dutch-learning toddlers on a contrast phonemic in both languages (vowel quality), and

a salient contrast that was phonemic only in Dutch (vowel length). They found that both
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groups noticed the switch when the first contrast was used to differentiate the labeling
words (tam vs. tem), but only Dutch babies looked significantly longer at the switch when

the second contrast was used (tam vs. taam).

1.3 The mechanisms of phoneme learning

Even though the timeline of phoneme learning has been documented in detail over the
past 30 years of research, little is known about the cognitive mechanisms involved in this
learning. In what follows, I review the main theoretical proposals and discuss their scope

and limitations.

1.3.1 Minimal-pair-based learning

The most intuitive learning mechanism consists in making use of lexical minimal pairs.
For instance, the presence of pairs such as ‘light and right, which have different meanings,
points towards the phonemic status of the contrast /r/ vs. /1/. This mechanism is indeed the
standard method used in field linguistics to determine the segmental inventory of a given
language (Pike, 1947). It has been proposed as a developmental mechanism to various
degrees in the work of researchers such as Jakobson (1966), MacKain (1982), and Best
(1993). However, inspection of developmental data shows that infants’ lexicon contains
very few, if any, minimal pairs during the time period of phoneme development (generally
within the first year and a half).

The babies’ lexicon is generally probed through the MacArthur-Bates communicative
Development inventory (CDI), which consists of parental /caregiver report on the words that
infants understand and simultaneously produce (Dale, 1996). Based on a cross-linguistic
analysis of CDI from English- and Italian-learning babies between 8 and 16 months of age,
Caselli et al. (1995) found that the first 50 words that English-learning babies are most likely

to understand contain no minimal pairs. For Italian babies, they found only two minimal
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Figure 1.3: Upon familiarization with either a Bimodal or a Unimodal distribution along
the continuum of [da]-[ta], infants of 6 months of age were able to discriminate this contrast
in the first case but not in the second one. From Maye et al. (2002)

pairs, nonno (“grandpa”) vs. nonna (“grandma”), and nonna vs nanna (“sleep/bedtime”).
A similar analysis of CDI from 18-month-old Dutch-learning babies conducted by Swingley
and Aslin (2007) revealed that about 78.6% of the words in their receptive vocabulary have

no phonological neighbors.

1.3.2 Distributional learning

Researchers have therefore directed their attention towards bottom-up mechanisms which
do not necessarily require substantial lexical knowledge. The most studied bottom-up mech-
anism is based on the observation that speech input shows distributional patterns that tend
to correlate with the phonemic status. For instance, J. Werker et al. (2007) analysed child
directed speech of both English and Japanese mothers, and found that vowels’ distributions
have a bimodal shape along the dimension of ‘duration’ in Japanese, and along the dimen-
sion of ‘color’ in English. These bimodal distributions correspond to the correct phonemic
split in each language. If infants could track down such statistical distributions, they would
be able to infer when a sound contrast is phonemic (bimodal distribution), and when it is
not (unimodal distribution). In fact, this was shown to be true in a laboratory experiment

conducted by Maye, Werker, and Gerken (2002), as illustrated in Figure 1.3.
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Figure 1.4: Vowel distribution in a formant space. Vowels values were collected from 46
men, 48 women and 46 children. Notice the high degree of overlap between vowel categories.
From Hillenbrand et al. (1995)

Distributional learning cannot, however, account for the entire acquisition process. In
fact, although phonemes that have sufficient separation in the acoustic space can be suc-
cessfully recovered in a distributional fashion (e.g., McMurray, Aslin, & Toscano, 2009;
Vallabha, McClelland, Pons, Werker, & Amano, 2007), some segments show substantial
overlap between categories (Hillenbrand et al., 1995) and pose a significant challenge to
this bottom-up mechanism, since it becomes difficult to tease apart unimodal from bimodal
distributions in a reliable fashion (Figure 1.4). Another serious, and more fundamental,
limitation of distributional learning is that the peaks or modes of distribution do not nec-
essarily signal a phonemic split. For example, in both Russian and Korean, production
data show a bimodal distribution of instances of [t] and [d] along the VOT dimension (Fig-
ure 1.5). However, only in russian does this contrast signal difference in word meaning as
witnessed by the minimal pair dom (“house”) vs. tom (“volume”). Korean speakers, in
contrast, never use these sounds to contrast meaning, since they occur in a complementary

distribution. Interestingly, Kazanina, Phillips, and Idsardi (2006) demonstrated that Rus-

11



CHAPTER 1.

/d/
RUSSIAN
\

[d] [t VOT, ms

T/

Figure 1.5: Both Russian and Korean production data show a bimodal distribution along
the VOT dimension. This bimodal distribution corresponds to two phonemic categories in
Russian, and to one phonemic category in Korean. From Kazanina et al. (2006)

sian adults showed a magnetic mismatch negativity (MMNm) upon hearing a sequence of
[da] syllables followed by a [ta] syllable, whereas Korean adults did not show any significant

perceptual discrimination of the [dal-[ta] contrast.

1.3.3 Word-form based mechanism

The limitations of the distributional approach as well as the minimal-pair-based approach
have urged researchers to seek a middle way between, on the one hand, purely top-down
mechanisms that rely on too advanced referential knowledge, and on the other hand, purely
bottom-up mechanisms that suffer from ambiguity and lack functional insight. The use
of the word-form (as opposed to word meaning) has been suggested to play the role of
the missing link (e.g., Swingley, 2009). In fact, we know that infants begin to segment
word-forms from continuous speech by as early as 6 months of age (Bortfeld, Golinkoff,
& Rathbun, 2005), and there is evidence that 11-month-old babies store in their memory
high frequent chunks that may or may not correspond to meaningful words (Ngon, Martin,
Dupoux, Cabrol, & Peperkamp, 2013).

The argument behind word-form based mechanism can be articulated as follows. If,
because of insufficient semantic knowledge, the learner cannot tell whether two similar
word-forms are same or different, she can, in contrast, more easily infer that different word-

forms represent different lexical items. For example, upon hearing the words bat and bet,
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the learner might not be able to decide if bet is a variation (or mispronunciation) of bat, or
if it is a distinct word. But she is more likely to decide that bat and egg are different words.
This knowledge can be used to discriminate similar phonemes. Imagine, for instance, that
tokens of the vowel categories /ae/ and /e/ overlap in the acoustic space. The learner
cannot decide a priori if they correspond to one or two categories, but since they occur in
different word contexts, i.e., “blae]t” and “[e]gg”, the learner will be able to tease them
apart. Indeed, a couple of laboratory experiments backs this learning mechanism. Thiessen
(2007) exposed 15-month-old toddlers to phonemes embedded in either similar words or
dissimilar words. Children who experienced phonemes in the latter condition were more
successful in using the contrast between the phonemes in a word referent learning task.
In another experiment that did not involve referential learning, Feldman, Myers, White,
Griffiths, and Morgan (2013) familiarized 8-month-old infants to two phones that occur in
either minimal pairs or non-minimal pairs. They showed that infants are sensitive to this
word level information, since they were able to discriminate the phones only when they
occur in a non-minimal pair context.

The word-form based mechanism suffers, nonetheless, from the following limitation. While
in controlled laboratory experiments babies are exposed to phones exclusively in similar
or dissimilar words, natural speech to which learners are exposed in a realistic learning
environment includes, indistinguishably, both similar and dissimilar words. More precisely,
lab experiments show that (non-)words like dawgoo and tawgoo (Thiessen, 2007) or gutah
and gutaw (Feldman, Myers, et al., 2013) do not facilitate discrimination (or even impairs
it, as suggested in the work of Martin, Peperkamp, and Dupoux (2013) and Fourtassi and
Dupoux (2014)), whereas words like dawboo and tawgoo or gutah and litaw do facilitate
discrimination. However, a more realistic setting would include dawgoo and tawgoo as well
as dawboo and tawgoo in the case of Thiessen (2007), and gutah, gutaw, as well as litah

and litaw in the case of Feldman, Myers, et al. (2013). Interestingly, discrimination was
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reported to be significantly lower in this situation (Feldman, Myers, et al., 2013). The
reason behind this effect (or absence of effect) is that minimal pairs tend to counteract
the effect of maximal pairs. In fact, while the learners tend to differentiate two similar
phonemes when they hear them in a non-minimal pair context, they will also tend to collapse
them in one category when they hear them in a minimal pair context! In a computational
study, Feldman, Griffiths, Goldwater, and Morgan (2013) found that, while the word-form
mechanism greatly improves learning compared to the distributional learning mechanism,

it also tends to produce errors in the presence of minimal pairs.

1.3.4 Complementary distribution

Peperkamp, Le Calvez, Nadal, and Dupoux (2006) proposed a cue to phonemicity based
on a well documented fact in phonology, which states that allophones tend to be in comple-
mentary distributions. For example, the English vowel /a/ is nasalised before nasals (e.g.,
[m&n]) and realized as oral in all other situations (e.g., [med]). Therefore the allophones
[e] and [#@] are in complementary distribution. According to Peperkamp et al., the degree
of distributional complementarity of any pair of phones correlates with the probability of
them being allophones. They quantified the degree of complementarity between two phones
through measuring the dissimilarity between their context distributions, using the classic
information theory measure called Kullback-Leibler divergence (hereinafter, KL).

Peperkamp et al. (2006) found that this cue allows for a relatively successful learning
when tested with simplified artificial corpora. However, when real corpora with realistic
linguistic allophones were used, it performed badly. Similar results were reported in Boruta
(2012) and Martin et al. (2013) where the performance of the KL measure degraded as
the allophonic complexity increased, eventually approaching chance level. The main reason
behind this failure is the fact that segments in real languages can be in complementary (or

near complementary) distribution even if they are not allophones. This could be due to

14



CHAPTER 1.

constraints linked to the syllabic structure or the phonotactics. For example, in English,
the phonemes /h/ and /y/ occur in different syllable positions and, therefore, are in com-
plementary distributions although they are not considered allophones in any phonological
theory.

As regards the cognitive plausibility of the mechanism, White, Peperkamp, Kirk, and
Morgan (2008) familiarized infants with consonant alternation in words (e.g., bevi vs pevi)
with either a consistent triggering context (e.g., bevi only after na, and pevi only after rot),
or an inconsistent context ( bevi and pevi after both na and rot). They found a difference
in looking time to voicing contrast depending on the condition, and they attributed this
difference to the fact that infants in the first case grouped in one category alternating voiced
and voiceless consonants. One problem with this interpretation, however, is that it interferes
with the one made in Feldman, Myers, et al. (2013), based on the word-form similarity
mechanism. In fact, while both mechanisms function in a rather similar fashion, they make
opposing predictions. For instance, learners that hear two similar sounds consistently in
two different word-forms could a priori either group them in one category according to the
complementary distribution mechanism, or in two categories according to the word-form

based mechanism.

1.4 This study

1.4.1 Semantic cues

The above review shows that we are still a long way from understanding the entire phe-
nomenon of phoneme acquisition. In fact, none of the reviewed mechanisms gives a sufficient
account of the learning process. More research is needed to test other potential learning
strategies, taking into account the timeline of acquisition and its inherent set of constraints.

Yeung and Werker (2009) had the idea of testing semantic cues in phoneme learning
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Figure 1.6: Upon familiarization with a non-native contrast paired with two objects, only
infants in the consistent pairing group succeeded in the subsequent discrimination test.
From Werker et al. (2012)

(Figure 1.6). They first familiarized 9-month-old English-learning infants with a non-native
hindi contrast [da] vs. [da]) paired with two objects in a consistent or inconsistent fashion.
Then they tested the infants’ perceptual discrimination of the contrast, and found that only
those who received a consistent training succeeded in this discrimination. This result is sur-
prising because we know that infants at this age are not able to learn the referential mapping
in typical word-object association tasks (Stager & Werker, 1997), not to mention learning
the mapping of minimal pairs with two different objects. The latter was shown to be possi-
ble only for older babies (14 months, when tested with the looking-while-listening paradigm
(Yoshida et al., 2009), and 17 months, when tested with the ‘switch’ task, J. Werker et al.
(2002)). Nonetheless, infants in this experiment seemed to have benefited from the contex-
tual co-occurrence of a minimal pair with two different objects to refine their sensitivity of
the phonetic contrast. Indeed, Yeung and Werker (2009) concluded that this effect is more
likely to be the outcome of a general perceptual learning mechanism known as acquired
distinctiveness (Hall, 1991), rather than the outcome of a referential semantic learning.
This experiment allows us to see the old minimal-pair-based mechanism in a different
light. As we mentioned above, the bulk of the criticism aimed at this mechanism was based
on the argument that babies’ vocabulary does not contain sufficient lexical minimal pairs.

The argument was put forward by many researchers such as Maye et al. (2002); Swingley
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and Aslin (2007); E. Thiessen and Saffran (2007); Feldman, Griffiths, et al. (2013). Here is

a well articulated quote from Feldman, Griffiths, et al. (2013) that represents this position:

The role of minimal pairs in phonetic category acquisition therefore critically
depends on the extent to which young infants have access to associations be-
tween form and meaning. Children do appear to know some minimal pairs at a
young age, but may not have sufficient vocabulary knowledge to support large-
scale minimal-pair-based learning, making it unlikely that early sound category
acquisition relies primarily on information from minimal pairs.

The criticism assumes that the use of minimal pairs is conditioned upon learning their
referential semantic representation. However, as one can conclude from the experiment of
Yeung and Werker (2009), infants need not necessarily learn the exact referential meaning
of a word to benefit from its top-down constraint. In fact, the learner need only associate
two words with different objects or events to home in the contrastive element. In fact, since
the aim is to decide whether or not a contrast is phonemic, one only need to know whether

this contrast signals two different words or a mere variation within a single word.

But how can babies know whether two word-forms represent one or two lexical items, if
they dont know their referential meanings? In order to answer this question, I will first
show evidence that a rudimentary semantic representation is accessible to babies from the
early stages of their development. Second, I will show that this early semantic represen-
tation contains distributional cues as to how word-forms relate to each other. Finally, I
will introduce the main proposal of this dissertation, a learning mechanism based on the

distributional properties of this early semantic representation.

1.4.2 Statistical learning and early semantic representation

As rightly argued by Feldman, Griffiths, et al. (2013), infants lack sufficient referential
knowledge during the process of acquiring phonemes. Nonetheless, they are in possession

of a highly sophisticated apparatus for tracking co-occurrence statistics of different sorts,
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and at different linguistic levels. For example, babies at an early age can learn how sounds
are structured within words, i.e., phonotactic patterns (e.g., J. Saffran & Thiessen, 2003).
They also learn how syllables are combined to form words, based on their co-occurrence
statistics (J. R. Saffran, Aslin, & Newport, 1996), and how words can be combined into
phrases and sentences (e.g., J. R. Saffran & Wilson, 2003; Gémez & Gerken, 1999). Besides
their ability to track sequential co-occurrences, babies around 15 months of age are able to
learn non-adjacent co-occurrence probabilities! (Gémez & Maye, 2005). More importantly,
babies are able to learn the co-occurrence of objects and their referents. L. Smith and
Yu (2008) showed that starting from 12 months of age, babies demonstrate a significant
sensitivity to the correspondence between words and the context in which they are uttered.
More precisely, they are able to integrate information gathered across many ambiguous
situations to settle on the most probable referent (i.e., ‘cross-situational learning’).

This powerful ability to track co-occurrence statistics—especially the gradual learning
of word-object associations across multiple contexts of exposure—suggests that infants’ se-
mantic representation does not function in a black-and-white mode. The failure to recognize
the semantic referent of a given word at a certain point in development does not, a pri-
ori, preclude the presence of a rudimentary semantic representation for this word. In fact,
according to J. Werker and Curtin (2005):

The transition from recognizing word-forms to full referential understanding
likely involves several steps (see Hirsh-Pasek & Golinkoff, 1996; Nazzi & Bertoncini,
2003; Werker & Tees, 1999). One of the earliest steps is learning arbitrary as-
sociative links between words and objects or events in the world. Although this
kind of “goes with” understanding falls short, on a number of dimensions, of
full referential understanding (Bloom, 1999; Merriman & Bowman, 1989), it is
an essential step toward meaning.

I will illustrate this idea with a concrete example. Before the baby learns that the word

“kitchen” refers to the concept of a room where food is prepared and/or eaten, she might at

'Non-adjacent patterns are needed, for instance, to learn grammatical dependencies marking tense, as in
“-ing”, which are necessarily separated by a

[759% 1)

the relationship between the auxiliary “is” and the inflection
verb.
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“Breakfast”

Figure 1.7: An illustration of a putative early semantic representation of the word “kitchen”,
including co-occurring objects, words and time periods.

first, as in typical experimental setting of cross-situational learning, associate it with the gen-
eral spatial context involving other co-occurring objects (KITCHEN, APPLE, SPOON,...).
Actually, the real situation is more complicated than the typical laboratory setting. In
fact, the baby sees many objects at different periods of the day, and hears many words in
the same conversation. Therefore, it is likely that the the infant’s early semantic repre-
sentation of the word “kitchen” involves not only the co-occurring objects located in space
(KITCHEN, APPLE, SPOON,...) but also the corresponding time of the day (MORNING,
MIDDAY, EVENING,...), as well as the co-occurring words in the conversation (“kitchen”,

“apple”, “spoon”,...) as illustrated in Figure 1.7.

1.4.3 Word co-occurrence as a proxy for the general context

Roy, Frank, DeCamp, and Roy (2015) conducted a large scale, longitudinal study of a

childs daily life from 9 to 24 months of age. They recorded approximately 10 hours/day
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during this period, capturing about 70% of the childs waking hours. Their primary goal
was to predict the childs age of production of the first 679 words, based on how the parents’
utterance of these words were distributed across the three dimensions we mentioned previ-
ously, i.e., the location in physical space where it is spoken, the time of the day at which
it is spoken, and the other words that appear nearby it in the conversation. Once they
had created context distributions for each dimension, they computed the ‘distinctiveness’
of words along that dimension, a measure that captures the distance between the contextual
distribution of the word and that of language more generally. For example, content words
like “fish” or “breakfast” have more distinct spatial, temporal and linguistic distributions
than function words like “with” or “the”. They showed that all these dimensions were ac-
curate in predicting the age at which words were first produced. But more striking was the
finding that, despite the radically different data they were derived from (videos, time of the
day of each utterance, and the conversation transcripts), the three distinctiveness variables
showed strong correlations with one another. This lead the authors to suggest that each
of the three investigated dimensions represents a proxy for a single underlying pattern of

word distinctiveness.

Following this work, I propose to approximate the early semantic representation of a word
by the set of co-occurring words. This assumption captures only one of the three above-
mentioned dimensions. However, as was noted by Roy et al. (2015), information related to
contextual distribution tends to be redundant across these dimensions, thus making word
co-occurrence a reasonable proxy to the general context. Moreover, as I will explain below,
this approximation will allow us to take advantage of a useful linguistic property known as

the ‘distributional hypothesis’.
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1.4.4 The distributional hypothesis

The early semantic representation—as approximated now by the set of co-occurring
words—is deemed highly ambiguous by the typical framing of meaning learning (e.g., Quine,
1960),. In fact, characterizing the referent of a word (e.g., “kitchen”) by the neighboring
words in the conversation (“breakfast”, “apple”, “spoon”,..) is ambiguous and does not
correspond to our mature and precise intuition of this referent. Nonetheless, this character-
ization contains considerable distributional information as to how words are related to each
other. In fact, linguists such as Harris (1954) and Firth (1957) noted that words’ similarity
can be derived from their distribution in natural speech, since semantically related words
tend to co-occur more often in conversations than unrelated words. For example, as the
word “cat” occurs more often with “dog”, than with, say, “school”, it is natural to expect
“cat” and “dog” to be more semantically related than “cat” and “school”. This seemingly
simple property probably plays a crucial role in learning the lower units of speech. Imagine
that the learner hears the word “cat” in an ambiguous context that includes many poten-
tial referents that co-occur consistently with a cat, such as “dog”, “chair”, “table”,... And
suppose the learner also hears the word “cab” in a context that consistently includes “car”,
“building”, “stranger”,... etc. Our learner may not have the words “cat” and “cab” in her
vocabulary, i.e., she may not be able to look or point at the correct referent when the word is
uttered, and therefore these words would not show up in a CDI-like repertoire. Nonetheless,
she will probably be able to decide that “cat” and “cab” refer to different things, since they
occur consistently in different contexts. This knowledge is sufficient to decide, for instance,

that [t]-[b] is a phonemic contrast.

In the next section, this intuition will be developed in a formal sense, thus introducing

the central learning mechanism of this dissertation.
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1.4.5 The proposed learning mechanism

5| [kanas]
é [kanax]
Semantic level °
[kanal]
dimension'1
Feedforward
Lexical level Feedback [kanaB]  [kanay] [kanal]

Feedforward

Phonetic level

6] [x] [1]

Figure 1.8: schematic illustration of the proposed learning mechanism. Learning is under-
stood to be the outcome of an interaction between three levels of linguistic representation.
The phonetic level is composed of fine-grained categories. This information percolates into
the lexical level where word-forms are extracted and stored along the granularity of the
phonetic level. The semantic level represents the distribution of these word-forms accord-
ing to their co-occurrence in conversations. Through a feedback loop, the semantic level
readjusts the phonetic level along the relevant (i.e., phonemic) dimensions

The main theoretical proposal of the present study is that learners need not have a
fully developed high level representation (e.g., semantic representation) to make use of
it as a top down constraint to learn the low level representations (e.g., phonemes). I
explore the hypothesis according to which infants learn approximate, provisional linguistic
representations in parallel, and that these approximate representations are subsequently

used to improve each other. More precisely, I make four assumptions:
1. Fine-grained categories: infants start by paying attention to fine-grained variation
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in the acoustic input, thus constructing perceptual phonetic categories that are not

phonemes, but segments encoding fine grained phonetic details.

2. Proto-lexicon: these units enable infants to segment proto-words from continuous

speech and store them in this detailed format.

3. Early semantic similarity: infants can use this imperfect lexicon to acquire a sense

of semantic similarity, according to the distributional hypothesis.

4. Feedback: as their exposure to language develops, infants reorganize the initial pho-
netic categories along the relevant dimensions of their native language based on cues

derived from this early sense of semantic similarity.

I will illustrate this mechanism in the light of a concrete example (Figure 1.8). In French,
the uvular fricative can take a voiced or voiceless surface form according to the voicing of
the following segment. This can be summarized in the allophonic rule shown in Figure 1.9.

[x] before a voiceless consonant
[/ —
[g] elsewhere

Figure 1.9: Allophonic rule of the French uvular fricative

Imagine, as in typical experimental framing of phoneme acquisition, that a french-learning
baby has to decide whether the sounds [] and [x] correspond to instances of the same phone-
mic category or instances of two different categories. We assume that, regardless of their
knowledge about the phonemic status of these phones, learners can use them to segment
acoustically detailed word-forms, such as [kanag| and [kanay| (both are surface forms of the
French word canard, meaning “duck”). This brings the initial problem to the lexical level.
Instead of deciding if two sounds belong to one or two phonemic categories, the learner

has now to decide if two word-forms correspond to one or two lexical items. Crucially,
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we suppose that the learner does not learn these detailed word-forms in a vacuum, but
in a linguistic and conversational context where they co-occur with other related words.
According to the distributional hypothesis, this general linguistic context offers a sense
of semantic similarity which can be used as a top down feedback. In fact, if two similar
word-forms have similar distributions (i.e., occur with similar words) as is the case with
the pair [kanas] vs. [kanay|, they are more likely to be merged in the same lexical cat-
egory, which means that the corresponding phones [] and [x] will be categorized in the
same phonemic category. Conversely, if two similar word-forms have dissimilar distribu-
tions (i.e., co-occur with different words) as is the case with [kanas] vs. [kanal] (“channel”),
they are more likely to be categorized in two different lexical categories, which means that

the corresponding phones [g] and [1] will be categorized in two different phonemic categories.

In the second part of this dissertation, I will tackle the computational aspect of this
learning mechanism, that is, starting from a realistic input and abstracting away from the
cognitive limitations of the learner, I will explore if sufficient cues to learning are available
to support the proposed mechanism. In the third part, I will study the complementary
question, i.e., starting from a controlled input, I will explore if human learners are cognitively

equipped to learn according to the mechanism I propose.
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Computational experiments
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This part of the dissertation deals with the computational level of analysis, i.e., the
extent to which the input offers sufficient cues to support the learning mechanism proposed
in Section 1.4.5. It includes the second, third and fourth chapters. In the second chapter,
I will present the datasets used and explain how the input will be represented at different
linguistic levels. In the third chapter, I will test bottom-up and top-down cues that are
believed to shape the learners’ early sensitivity to phonemic contrasts. I will compare their
performance to that of two implementations of the top-down mechanism that I propose.
While the third chapter explores rather continuous cues to phonemicity, the fourth chapters
models the ‘hard decision’ of phoneme acquisition, i.e., the fact that babies should be able,
not only to tell how phonemic a pair of phone is, but also to learn how much phonemicity
is contrastive in their native language. Here again, I will show that an early and ambiguous

semantic representation allows for successful learning.
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Chapter 2

Datasets and Representations
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Figure 2.1 shows the general scheme of the computational part of this dissertation. It
combines both a description of the way the linguistic representations were derived (the raw
input and softwares used to generate them) and a global indication of how the learning
algorithm I propose will operate on these representations. The present chapter deals rather
with the first aspect, that is, the derivation of the linguistic representations. This includes
both the end-state representation (i.e., phonemes), and the input representation (the format
in which information is extracted from the environment and putatively represented in the
mind before learning). Crucially, it is assumed here that the input representation is not
limited to phonetic information (contextual allophones), it also includes information from

higher linguistic levels such as the lexicon and the semantics.

In Section 2.1, I will present the datasets used in this study, and I explain how the
phonemic representation (end-state of learning) were derived from them. In Section 2.2, I
will describe the derivation of the input representations at the phonetic, lexical and semantic

level.

2.1 Datasets and the phonemic representation

Ideally, the dataset should consist of speech recordings from the natural environment
of infants. However, it is not easy to have access to corpora of Infant Directed Speech
(hereafter, IDS) which are well annotated and time-aligned at the phonetic level. Moreover,
most of the available IDS corpora do not come with a sound quality high enough to allow
the use of speech recognition techniques, and do not contain data large enough to support
the use of tools from computational linguistics and information retrieval. Here I made a
pragmatic choice by relying on existing corpora of rather adult direct speech, representing
mostly spontaneous conversations and monologues. I selected corpora from English and

Japanese, two languages that differ typologically along several phonological dimensions
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Transcript 1 Contextual
allophones

Audio l
Recordings
Transcript 2 t Lexicon

Transcript 3 Distrihuti_onal
Semantics

Figure 2.1: Schematic description of the computational part of the dissertation. It includes
a description of the way the representations are derived, and a global indication of how the
proposed algorithm operates on these representations.

such as the phonotactic constraints and the rhythmic structure. In the following, I present
the corpora used, and a summary of the main pre-processing steps made to derive the

phonemic representation.

2.1.1 The Corpus of Spontaneous Japanese (CSJ)

The Corpus of Spontaneous Japanese (hereafter, CSJ) (Maekawa, Koiso, Furui, & Isahara,
2000), is a large-scale annotated corpus of spontaneous Japanese. The whole CSJ contains
about 650 hours of spontaneous speech that correspond to about 7 million words. All these
speech material are recorded using head-worn close-talking microphones and digital audio
tapes, and down-sampled to 16 kHz, 16 bit accuracy (CSJ website, 2015). In this study,

we only used the subset of CSJ called the ‘Core’, which contains about 500 thousands
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words or about 45 hours of speech. It is the part of CSJ to which the cost of annotation
is concentrated. As explained in Maekawa et al. (2000), the speech recorded for CSJ is so-
called common, or standard, Japanese, a variety shared widely by educated people and used
in more or less public circumstances. Most of the speech material is devoted to spontaneous
monologues, of which the two main types are academic presentation speech done in various
academic societies, and simulated public speaking, in which laymen talk about everyday
topics like ‘my most delightful memory’ or ‘If I live in a deserted island’. The age and sex
of the speakers were approximately balanced.

The corpus is annotated for various linguistic levels (phonetics, phonology, morphology,
syntax, prosody,...). I pre-processed the original XML files to extract information about
phonemes, words and utterances. In order to obtain the phonemes, I ignored the phonetic
details annotated below what the CSJs documentation refers to as the ‘phonemic level’.
I also ignored sub-segmental events of various sorts (release of the stop closure, voicing
of vowels,...). Yet, some of the remaining segments do not represent real contrastive ele-
ments. I performed further pre-processing in order to obtain a true phonemic inventory (See
Appendix A). The resulting segmental inventory consists of 25 phonemes, 15 consonants
represented in Figure 2.2, and 10 vowels represented in Figure 2.3. This final phonemic
inventory is identical to the one used in Boruta (2012). It is also almost identical to the
inventory proposed by Okada (1999) (who posited an additional phoneme, /ts/) and to the
one described in the collaborative encyclopedia (Wikipedia, 2015), in which the only differ-
ence is that the abstract moraic obstruent /Q/ is considered as an independent segment.
Figure 2.4 shows the frequency of the final phonemes observed in the CSJ corpus. We can
see that the frequency distribution mimics a Zipfian trend, i.e., very few elements have high
frequencies and most elements have low frequencies.

In order to prepare the data for the derivation/evaluation of the higher linguistic levels

(lexicon and semantics), I also extracted higher units of speech: words and utterances.
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bilabial alveolar palatal velar Uvular glottal
Nasal m n N
Stop p b| t d k g
Fricative s z h
Flap r
Approximant y w

Figure 2.2: The consonants of Japanese as used in this study. The symbol to the right
represents the voiced version of the consonant.

Front central Back
long short long short long short
close liz! Il fu:/ lul
mid le:/ lel lo:/ lo/
open la:/ lal

Figure 2.3: The vowels of Japanese as used in this study.

CSJ is annotated for “short-unit words” (SUW) and “long-unit words” (LUW). I chose the
short-units to be the words since, according to the CSJ’s documentation, they correspond
to approximate items of ordinary Japanese dictionaries, whereas long units correspond
to compounds made up of more than two SUWs. For example, the phonemic sequence
/toHkyoHkoHgyoHdaigaku/ is analyzed into three short units: /tokyoH/ (Tokyo), /ko-
HgyoH/ (technology), and /daigaku/ (university), but constitutes a single compound noun,
(i.e., LUW) translated as “Tokyo Institute of Technology”.

An utterance is defined in CSJ as a speech unit bounded by pauses of more than 200
ms. In the pre-processing, I discarded utterances that were not at least 100 ms long (these

represent less than 1% of the corpus).
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Figure 2.4: Frequency distribution of phonemes in the CSJ Corpus.

2.1.2 The Buckeye Corpus of Spontaneous Speech

The Buckeye Corpus of Spontaneous Speech (Pitt et al., 2007) is a database of approx-
imately 300,000 words or about 40 hours of conversational speech by native central Ohio
speakers. It consists of interviews with 40 speakers balanced for age (over 40, under 40) and
gender. As explained in Pitt et al. (2007), talkers were told that the research team was in-
terested in how people express their opinions. They were invited to come to the Ohio State
University campus to have a conversation about everyday topics such as politics, sports,
traffic and schools. Speech was digitally recorded in a quiet room with a close-talking head-
mounted microphone, which allowed freedom of movement. The microphone was fed to a
digital audio tape recorder.

The corpus is annotated orthographically, phonemically and phonetically. The pho-
netic transcription is fine-grained, and encodes various kinds of phonological and speaker-
dependent variations. As I am interested in the phonemes, I naturally chose the phonemic
level of transcription. This allows me to use directly the original coding scheme of the
corpus, and avoid reprocessing a rich phonetic annotation into a reduced set of contrastive
sounds (as I did with Japanese data). The phonemic inventory used in the Buckeye cor-

pus is composed of 42 segments, 27 consonants summarized in Figure 2.5, and 15 vowels
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summarize in Figure 2.6, using lexical examples for each vowel. The number of vowels was
eventually reduced to 14, after tokens of the segments [a] and [o] were collapsed into the
same category. In fact, The vowel o occurred only 5 times in the corpus, compared to 17984
instances of the vowel a!. Figure 2.7 shows the frequency of the final phonemes observed in

the Buckeye corpus. As in Japanese data, we see a power-law-like frequency distribution.

bilabial labio- dental | alveolar | post- palatal | velar glottal
dental alveolar
Nasal m (em) n (en) ng
Stop p b t d k g
Affricate ch jh
Fricative f vithdh|s z |[sh zh hh
Approximant r y w
Lateral I (el)

Figure 2.5: The consonants of English, as used in the Buckeye corpus. The symbol to
the right represents the voiced version of the consonant. The symbol between parentheses
represents the syllabic version of the consonant (analysed as phonemes in the Buckeye
corpus). The ARPA transcription is used for ease of reading.

The corpus was annotated for word boundaries, but not for utterance boundaries. I took
as utterances sequences of words bounded by non-speech events such as silence (labeled
<SIL>), laughter (<LAUGH>), hesitation (<HES>), noise (<VOCNOISE>), or change
of speaker (<IVER>). Table 2.1 gives some useful statistics that characterize English and

Japanese data, when represented with phonemes.

My decision to merge these vowels in the same category was motivated by statistical considerations. It
is worth mentioning, however, that it corresponds to a real psycholinguistic phenomenon known to linguists
as the cot-caught merger (Labov, 1991). It has been established in many regions such as New England and
Canada, and it appears to be spreading rapidly in many parts of the United States, including Ohio, where
the Buckeye corpus was recorded.
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Front central Back
long short long short
close iy (beat) | ih (bit) uw (boot) uh (book)
mid eh (bet) er (bird) ao (caught)
open ae (bat) ah (butt) aa (cot)
Diphthongs ay (bite), aw (now), oy (boy), OW (boat), ey (bait)

Figure 2.6: The vowels of English, as used in the Buckeye corpus. Each vowel V is accom-
panied with a lexical CVC example. The diphthongs are analysed as single phonemes. The
ARPA transcription is used for ease of reading.

2.2 Input representations

In the previous section, I characterized the end-state of learning (i.e., the phonemes).
In this part, I will characterize the early speech representations at the phonetic, lexical
and semantic level (Figure 2.1). Note that these early representations are supposed to be
available to the learners before they come to the task of phoneme learning. The methods
and softwares used to generate these representations are not considered part of the learning

mechanism I propose, but only tools to approximate the learners’ prior knowledge.

2.2.1 Early phonetic representation

Even if languages make use of a finite inventory of segments (or phonemes) to form
words and utterances, the physical realization of these segments is not constant. In fact,
instances of the same phoneme can take various forms depending on both the properties of
the speaker (such as identity, sex, age, mood and spech rate), and the phonology/phonetics
of the language. A lot of studies in the modeling literature have dealt with random, low

level variation that results mainly from idiosyncratic properties of the speaker 2. In this

2often relying on the seminal work of Hillenbrand et al. (1995), who derived empirical estimates of
acoustic parameters for the English vowel category means and covariances, based on production data by
men, women and children
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Figure 2.7: Frequency distribution of phonemes in the Buckeye Corpus

study, I chose, instead, to focus on a relatively under-studied source of variation, which is,
rather, intrinsic to the linguistic system.

We can enumerate three main aspects of language-dependent variation. The first one is
free variation, that is, when a phoneme takes two or more forms in the same phonetic
environment without a change in meaning. An example of free variation in English is the
glottalization of voiceless stops in word-final position (e.g., the word stop can be pronounced
with a plain unaspirated [p], or with with a glottalized [p’]). The second source is posi-
tional variation, which could be described as a convention within a speech community to
use certain allophones in certain contexts. For example, English voiceless stops are aspi-
rated when they are word-initial or begin a stressed syllable, as in pell or kill, and they are
unaspirated when following word-initial s, as in spill and skill. The third source of variation,
and arguably the most pervasive one, is contextual variation, which is mainly driven by
the phenomenon of ‘coarticulation’, that is, when vocal tract gestures for one sound overlap
with gestures for another. For example, the English vowel /z/ is nasalised before nasals

(e.g., [m&n]) and realized as oral in all other situations (e.g., [maed]) . The present study

3The second and third sources of variation are not necessarily orthogonal to one another. Conventions
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English Japanese

Tokens

utterances 49,626 53,870
words 283,129 436,493
phonemes 2,263,683 2,890,624
Types

words 9,288 17,429
phonemes 41 25
Averages

words/utterance 5.7 8.1
phonemes/word 8.0 6.6
phonemes/utterance 45.6 53.6

Table 2.1: Characteristics of phonemically transcribed corpora in English and Japanese

[x] before a voiceless consonant
/8] —
[g] elsewhere

Figure 2.8: An allophonic rule of the French uvular fricative

deals mainly with this third source of variation, and we will call “allophones” of a phoneme,
the realization of the latter in different phonetic contexts.

Another example of contextual allophony (which we saw in Chapter 1), is the case of
the French uvular fricative phoneme (Figure 2.8). If the following segment is a voiced
obstruent, like /3/, it surfaces as a voiced sound (i.e., [#]) like in [kanas 3zon| (“canard
jaune”, yellow duck). If, instead, the following segment is voiceless, like /f/, it surfaces as
a voiceless sound (i.e., [x]) like in [kanay flotan] (“canard flottant”, floating duck). The
pair of phones [g] and [y] might sound almost indistinguishable to French adults, but they

represent, a priori, two different sounds to French-learning infants. The problem of phoneme

about positional allophones can well be driven by coarticulatory considerations.
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acquisition can be understood as learning when two sounds belong to the same abstract
category, and when they belong to different categories, signaling change in meaning, as
in [kanag| (duck) vs. [kanal] (canal or channel). Before studying the learning mechanism
per se (Chapters 3 and 4), I will investigate possible ways to code the corpus into fine-
grained context-dependent units (which we now call allophones). They will be taken as the
initial phonetic representation putatively processed by infants before they learn the relevant
phonemic categories of their language. Previous work in this line of research generated
allophonic variation using either random rules as in Martin et al. (2013) or Hidden Markov
Models (HMMs) trained on audio recordings as in Schatz & Dupoux (unpublished) and
Boruta (2012). Interestingly, choosing one or the other has been reported to make a huge

difference in terms of the quality of the subsequent learning (Boruta, 2012).

Random allophones

Martin et al. (2013) generated allophonic variation through a random partitioning of the
linguistic contexts. That is, for a given phoneme (e.g., /p/), the set of all possible contexts
is randomly partitioned into a fixed number N of subsets. In the transcription, the phoneme
/p/ is converted into one of its allophones (p1,p2,..,pn) depending on the subset to which the
context belongs. Note that this procedure does not take into account the fact that contexts
normally belong to natural classes (e.g., voiced vs. voiceless or obstruent vs. sonorant).
Figure 2.9 provides an example from Martin et al. (2013) that illustrates this procedure
on a concrete example in Japanese. In this example, each phoneme has two allophones,
and the notation is read as follows: a rule of the form X — Y / _ {A, B, C} states that

phoneme X is realized as allophone Y when followed by A, B, or C.
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a—a /_{wv,t,#¢g . m, d&,ako,rub i o kK h N pa,zp, d, e, d)

a—a /__ {ms,t, b eu,ots, )N, f i, f g0}

t =t /_ {wtakuer otk f,ma,f zd gdn}

t =t /_ {v,#g.m dg ), ons, b, run b, i, hop N, L, e £

m—m;/__ {t,# g, & W ks, t,r,u b0 tf,n K, j, f,m,p,a.f zd e, f g n}

m=—my/__ {w,v,m’, a0, eu,i,r, ts,hNp,id}

g—=g /__{w,b,mp,zp,d,f}

g—=g/  lav,g m dg W, t ko,s t,r,u e un b, i o, ts,n, # KL j b £, an N, [ e g, d, ')

i =i/ {wov# g ko,ump,lfigd}

=i /(Y. dg W, a s b, e b, i o ts, n K, j,h fa, Nz p,d e, f,n'}

Base utterance: a t a m a + g a + 1 t a 1 #
Utterance after rule application: a, t, a2 ma aa + @ a + b t, a 1, #

Figure 2.9: Example of rule application on the utterance “atama ga itai” (my head hurts),
using random rules which assign each phoneme one of two allophones. (from Martin et al.
2013)

HMDM-based allophones

Schatz & Dupoux (unpublished) used the speech recognition software HTK (Young et al.,
2006) to generate allophonic rules that are linguistically and acoustically more realistic than
the random rules used in Martin et al. (2013). HTK applies a standard Hidden Markov
Model (HMM) phoneme recognizer with a three-state-per-phone architecture to the signal.

We can summarize the process in the three following steps *:

e Feature extraction: the raw speech waveform is converted into successive vectors of
Mel Frequency Cepstrum Coefficients (hereafter, MFCCs), computed over 25 ms win-
dows, using a period of 10 ms (the windows overlap). 12 MFCC coefficients are used,
plus the energy, plus the first and second order derivatives, yielding 39 dimensions per

frame.

e Modeling the phonemes: each phoneme in the inventory is modeled by a three-
state HMM. The first state models the first part of the sound, the second state models

the middle part, and the third, the end-part of the sound unit. The HMM is trained

“but see Young et al. (2006) for more details
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on all the attested realizations of the phoneme in the corpus (as represented by their
MFCC features). This is possible because speech utterances are time-aligned with

their phonemic transcription.

e Modeling the allophones: the model of each phoneme is cloned into context-
dependent triphone, for each context in which the phoneme actually occurs. For
example, if the phoneme /o/ occurs in the context [d-o—g] as in the word “dog”, a
triphone unit is created (labeled in HTK as “d-o+g” with a “~” sign standing for
following and a “+” sign standing for preceding). The triphone inherits the HMM
model of the original phoneme (/o/ in our example). Next, it is retrained on only
the subset of the data corresponding to the given triphone context. These detailed
models are clustered in a procedure called ‘state-tying’. In brief, the i*" state (i = 1, 2
or 3) of all allophonic HMMs of a given phoneme are first put in a single cluster, and
then split into finer grained categories, gathering allophones with phonetically similar
preceding (or following) contexts. This partitioning is performed iteratively according
to a structure resembling a decision tree (Figure 2.10). At each new branch, different
ways of partitioning are tried, ranging from broad natural classes (e.g., does the left
(or right) context belong to the category of consonants?) to very specific questions
(i.e., is the left (or right) context a glottal fricative?) (See Appendix B for the list of
questions I designed for the purpose of this study). The algorithm selects the question
that maximizes the likelihood of the data. This procedure is repeated at every new
branch until a global threshold is reached. I chose as a termination criterion for this
procedure the global number of desired allophones, representing the complexity of the
initial sound inventory. There is a debate on how far a phonological theory should
go in describing the details of contextual variation (e.g., Cohn, 2006). I got around
this debate by varying the global number of allophones in the range of interest. A

preliminary investigation showed that varying this number from twice to 16 times the
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Initial set of untied states

Tie states in each leaf node

Figure 2.10: Example of a phonetic decision tree used in the state-tying procedure of HTK.
From young et al. (2006)

size of the phonemic inventory was sufficient to study the behavior of our learning

algorithm °.

In Appendix C, I statistically characterize HTK-allophones in terms of sensitivity to
variation and frequency. Random allophones, in contrast, were found to be sensitive to
variation but not to frequency. Data from perceptual learning literature show that, in
reality, both sensitivity to variation and sensitivity to frequency are crucial to representing
categories. While the former is necessary to differentiate items in the perceptual space, the
latter is necessary to avoid the spurious proliferation of unrepresentative categories. For
example, Maye et al. (2002) showed that exposure to a bimodal frequency distribution
lead to the representation of two categories along a VOT continuum, whereas exposure to
a unimodal frequency distribution lead to the formation of only one category, although,

crucially, items from each point in the continuum were heard.

°In fact, as will be shown in the next chapter, the effect tends to vanish starting from an allophonic
complexity equal to 8 times the size of the phonemic inventory

40



CHAPTER 2.

2.2.2 Early word-form representation

Developmental studies show that babies do not wait to have mastered phonemes to start

segmenting words from connected speech (e.g. Jusczyk & Aslin, 1995). How can infants
learn word-forms at an age when they still lack a robust phonemic representation? J. Werker
and Curtin (2005) suggested that infants use a finer-grained phonetic representation to code
speech and segment word-forms. This claim is supported by the fact that infants’ initial
word-form representation is itself acoustically detailed (Houston & Jusczyk, 2000; Curtin,
Mintz, & Byrd, 2001). I operationalized the assumption of J. Werker and Curtin (2005)
through using early phonetic categories (i.e., allophones) to encode speech in a detailed
format, i.e., two word-forms that belong to the same lexical category but differ in their
allophonic representation (e.g., [keet?], [kee?]) will be considered as two different items.
In addition to phonetic variability, infant’s early lexicon is affected by segmentation errors.
It contains under-segmented word-forms such as “get-a”, “put-a” and “want-to” (Brown,
1973), and over-segmented words, which can be illustrated by the example reported in
Peters (1983): when an adult tells a child that she “must behave”, the child responds: “I
am [herv]!”, indicating that she analyzed “behave” as “be [herv]”. More generally, Ngon et
al. (2013) showed that infants tend to store in their memory frequent chunks, whether they
match correct words or not.

In order to approximate infants’ word segmentation, I use a state-of-the-art unsupervised
word segmentation model, called Adaptor Grammar (AG, M. Johnson, Griffiths, & Gold-
water, 2007). It makes use of a stochastic process known as Pitman-Yor (Pitman & Yor,
1997). The algorithm takes as input multiple sequences of unsegmented utterances, looks
for recurring chunks, and reuses them to parse the corpus anew. It converges over many
such iterations towards an overall segmentation of the corpus where words tend to be dis-
tributed according to Zipf’s law, thus simulating the distribution observed in natural speech

(Goldwater, Griffiths, & Johnson, 2011). Figure 2.11 provides a schematic description of
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“| see the book” F-score
Allophonic )
encoding T Evaluation

| si D6 bUk | si D6bUk
Elimination of Output
boundaries
lsiD6bUkK|l ——> Model
Input

Figure 2.11: Schematic description of modeling early word segmentation. For ease of presen-
tation, I only show the case of the phonemic representation. The allophonic representation
at different levels of complexity is obtained by replacing each phoneme with the allophone
that fits the particular context where this phoneme occurs

the way I model and evaluate early word segmentation. The corpus is initially transcribed
using the phonemic inventory, then each phoneme is replaced with the allophone that fits
the particular context where this phoneme occurs. Next, information about word bound-
aries is removed in each utterance. The unsegmented utterances are then given as input
to the segmentation model. The model tries to put the boundaries back, in a way that
optimizes the posterior probability of the data, according to a Bayesian generative model
(Johnson et al. 2007). Finally, the output of the model is evaluated by comparison to the
initial transcription, and assigned an F-score (F), defined as the harmonic mean of Precision

(P) and Recall (R):
2% P=xR
~ P+R

where P is defined as the number of correct items found, out of all items posited, and R is

the number of correct items found, out of all items in the ideal segmentation.
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English Japanese
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Figure 2.12: Negative log posterior probability (lower is better), as a function of iteration,
for corpora at different levels of allophonic complexity. I used a collocation adaptor grammar
with Pitman-Yor adaptors and an incremental initialization.
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Figure 2.13: Token F-score (higher is better) as as a function of iteration, for corpora
at different levels of allophonic complexity. I used a collocation adaptor grammar with
Pitman-Yor adaptors and an incremental initialization.

For each level of allophonic complexity, I ran a Markov Chain Monte Carlo sampler for
100 iterations (Figure 2.12), a number around which the log posterior probability tends
to level out. We observe a clear difference between English and Japanese data, the for-
mer having a higher posterior probability. Moreover, within each language, we observe a

monotonic increase in the probability as a function of the average number of allophones per
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phoneme. As expected, the F-score mirrors closely the behavior of the segmentation proba-
bility (Figure 2.13). The higher the probability, the better the quality of the segmentation.
The buckeye corpus leads to an overall better segmentation, and generally more allophones
lead to lower segmentation scores.

In order to derive a single score for each corpus, I collected sample segmentations for eval-
uation after a burn-in of 80 iterations, and I performed a Minimum Bayes Risk decoding
over these samples. Figure 2.14 shows the results of the optimal segmentation F-score for
each corpus, both in terms of word tokens and word types. In addition to the output of
the segmentation model, I considered a random segmentation as a control. The F-scores
of the optimal segmentations show, again, that more allophones lead to a lower quality
segmentation. This pattern can be attributed to the fact that increasing the number of
allophones increases the number of word types (remember that different ways of pronounc-
ing the same word are considered independent word types). These spurious words occur
therefore with less frequency than the original ones, making them harder to find in contin-
uous speech. Table 2.2 shows the increase of the number of word types in the allophonic
representation relative to the phonemic representation, and the corresponding decrease in

the average number of tokens per type.

English Japanese
Allo. /phoneme w.form/word tokens/w.form | w.form/word tokens/w.form
1 1 30.48 1 25.04
2 1.46 20.84 1.12 22.27
4 2 15.21 1.42 17.64
8 2.49 12.23 2.02 12.39
16 3.06 9.96 2.46 10.17

Table 2.2: the number of word types in the allophonic representation relative to the phone-
mic representation, and the corresponding average number of tokens per type, as a function
the average number of allophones per phoneme.

The other salient effect in Figure 2.14 is that English tends to fare better than Japanese
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Figure 2.14: F-scores of optimal segmentations as a function of the average number of
allophones per phoneme for English and Japanese data, using a collocation adaptor grammar
model and a random segmenation as a control.

at the segmentation task. Unlike the previous pattern, the effect of language cannot simply
be attributed to a difference in statistical evidence (i.e., frequency). In fact, Table 2.2 shows
that, while the average number of tokens in Japanese vs. English varies (Japanese starts
lower: around 25, compared to about 30 in English, and becomes higher starting from 8
allophones), the quality of English segmentation remains higher.

In Fourtassi, Benjamin Borschinger, and Dupoux (2013) (paper in Appendix H), we con-
ducted an investigation to understand this phenomenon. We first reproduced the difference
between English and Japanese segmentation across different corpora of both adult and child
directed speech, showing that it cannot be reduced to some idiosyncratic features of the
corpus used, but that it is more probably due to an intrinsic property of the language.
Second, we introduced a quantity we named Normalized Segmentation Ambiguity (NSE),
which quantified how ambiguous speech utterances were. For example, the utterance “I S
K R E M” is ambiguous because it can be segmented as either “I SKREM” (I scream) or
“IS KREM” (Ice cream). We showed that, in general, Japanese utterances tend to be more
ambiguous than English ones (mainly because Japanese words contain more syllables), and

that this ambiguity leads to more errors, since many wrong segmented utterances end up
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Figure 2.15: LSA takes as input a matrix consisting of rows representing word types, and
columns representing contexts. The values correspond to the number of times a word is
uttered in a given context. A matrix reduction operation (Singular Value Decomposition)
is performed to obtain a compact semantic space. The semantic distance of two words in
the resulting space is given by the angle formed by their vectors.

having a higher probability than the correct ones.

2.2.3 Early semantic representation

Recent developmental studies show that infants not only start segmenting words from
continuous speech early in their development, they also begin to learn their meaning. For
example, infant can recognize highly frequent word-forms like their own names, by as early
as 4 months of age (Mandel, Jusczyk, & Pisoni, 1995). They also know the meaning of
many words linked to food and body parts by as early as 6 months (Tincoff & Jusczyk,
1999; Bergelson & Swingley, 2012). It is true that the lexicon remains relatively small
till around 18 months of age, when word learning speeds up (a phenomenon known as the
‘vocabulary spurt’). However, I already argued in Chapter 1 that babies’ semantic repre-
sentation does not necessarily function in a black-and-white mode, and that a rudimentary
semantic representation can be learned very early in development through tracking the
co-occurrence statistics of words (i.e., the distributional hypothesis).

I model this early semantic representation through a tool borrowed from the field of

information retrieval called Latent Semantic Analysis (LSA, Landauer & Dumais, 1997).
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This model has proved to be very effective in modeling human similarity judgement in
general. For instance, Griffiths, Steyvers, and Tenenbaum (2007) showed that it predicted
word ranks in the word association norms collected by Nelson, McEvoy, and Schreiber
(1998). The results of Griffiths et al. (2007) were replicated in Fourtassi and Dupoux
(2013) using a different learning dataset. In priming studies, Parviz, Johnson, Johnson,
and Brock (2011) showed that LSA predicted the strength of the neurological N400 signal
(sensitive to semantic relatedness). In this model, a word is represented by a vector. Each
cell in this vector represents a context and the value corresponds to the number of times
the word is uttered in this context. Thus, the model takes as input a matrix consisting
of rows representing word types and columns representing contexts in which tokens of the

word type occur (Figure 2.15).

Context

The context is defined as a time window that should be aligned, in principle, with a set of
utterances that form a meaningful event. However, there is no obvious way to decide what
constitutes a coherent and independent event. It can vary in size depending on the level of
specificity and detail required. Moreover, there is no unequivocal way to detect the event’s
boundaries. Very often, spontaneous discussions (as the ones recorded in the corpora) move
from topic to topic in a rather continuous way, and speakers may talk about many things
at the same time or talk about the same thing for a long period of time. Rather than
segmenting the corpora into events whose significance may vary subjectively, I followed Roy
et al. (2015) in setting a fixed contextual window. Here I define this window as a fixed

number of utterances, and I take this number as a parameter in the model.
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Semantic dimension

As the input matrix is usually sparse and noisy, LSA makes the assumption that there is a
set of few underlying variables that encompass the meaning that can be expressed in a given
language. Thus, the set of initial contexts is reduced to a fewer set of semantic dimensions
over which all words’ meanings are distributed. This is achieved through a matrix algebra
technique that consists in factoring the initial matrix (Singular Value Decomposition), re-
ranking the dimensions according to the values of the resulting diagonal matrix (Singular
values), and truncating them to the desired number of semantic dimensions (Landauer
& Dumais, 1997). The number of these semantic dimensions is considered as another
parameter in this study. The semantic similarity of two words can be obtained in the reduced

semantic space by computing the cosine of the angle formed by their vectors (Figure 2.15).

SDT-p

In Fourtassi and Dupoux (2013) (paper in Appendix I), we conducted a comprehensive
study of both parameters (size of the context and the number of semantic dimensions) and
their effect on learning word similarity. More importantly, we developed a technique to
set these parameters in an unsupervised way. The method consists in deriving a corpus-
based quantity (named SDT-p), which measures the stability of the semantic space under
different parameter settings. We showed that it predicted accurately the outcome of two
human-data-based evaluation methods (the TOEFL synonym test, and word ranks in the
word association norms collected by Nelson et al. (1998)). Figure 2.16 shows the evolution
SDT-p as a function of the number of utterances to be taken as a unit of context, averaging
over values of semantic dimensions ranging from 5 to 500. Conversely, Figure 2.17 shows
the evolution of SDT-p as a function of the number of semantic dimensions, averaging over
values of context size ranging from 5 utterances to 500. From these figures, we see that

both corpora show an optimal behaviour with a context size of about 50 utterances and a
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semantic dimension of 100. Unless otherwise mentioned, we will use these values of LSA to

study the properties of our data in the next chapter.
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Figure 2.16: SDT-p as a function of the number of utterances to be taken as a unit of
context, averaging over values of semantic dimensions ranging from 5 to 500.
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Figure 2.17: SDT-p as a function of the number of semantic dimensions, averaging over

values of context size ranging from 5 utterances to 500
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To learn the phonemes of their native language, infants have to undo the irrelevant vari-
ation in the input, i.e., the variation that does not cue meaning. Variation could be due to
a wide variety of sources such as low level acoustic noise, different properties of the speaker
that affect the signal (such as identity, age, sex, mood, or speed), and systematic variation
governed by various linguistic rules. As I mentioned in the previous chapter, the present
work focuses on systematic variation due to contextual allophones.

In infant studies, learning phonetic categories is experimentally probed through percep-
tual sensitivity to sound contrasts. Difference in sounds that instantiates two different
phonemes (e.g., ta-da) is perceived better than difference that falls under the same phone-
mic category (e.g., ta-ta). Using such a testing paradigm, it has been shown that babies
start with a quasi-universal ability to perceive sounds, and, by their first birthday, become
less sensitive to the sounds that do not exist in their native language (J. Werker and Tees
(1984); but see Narayan et al. (2010) and Sundara et al. (2006)). Moreover, studies found
that, around the same age, infants become less sensitive to sound contrasts that do exist
in their native language, but do not cue meaning (i.e., allophones) (see Seidl and Cristia
(2012) for a review). This phenomenon (sometimes referred to as perceptual reorganiza-
tion) depends naturally on the native language of the baby. In fact, as we saw earlier,
sound contrasts that are allophonic in a given language might be phonemic in another one.
For example, ([I] vs. [r]) is allophonic in Japanese but phonemic in English, and ([p] vs.
[p"]) is allophonic in English but phonemic in Thai. It follows that the babies’ perceptual
reorganization depends on aspects of the input that are specific to their native language.
In what follows, I identify some of those aspects, which I call ‘cues to phonemicity’ (but
see Chapter 1 for a more comprehensive list). I chose to test, as a bottom-up mechanism,
the acoustic similarity, and as a top-down mechanism, the word-form similarity cue. I will
also introduce two implementations of the semantic-similarity-based mechanism proposed

in Section 1.4.5.
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3.1 Cues to phonemicity

3.1.1 Acoustic similarity

The acoustic cue is based on the assumption that instances of the same phoneme (i.e.,
allophones) are likely to be acoustically more similar than instances of different phonemes.
Linguists such as Trubetzkoy (1939) noted that acoustic similarity is not always a valid cue
to phonemicity. In fact, there are cases where very similar phones are judged by native
speakers as belonging to different phonemes (as in the case of unreleased voiced/voiceless
stops in English, e.g., “cap” vs. “cab”). Conversely, there are cases where very dissimilar
phones are felt by native speakers as belonging to the same phonemes (such as [t] and [?] in
English). Nonetheless, it is generally accepted that the acoustic cue plays a significant role
in early phonetic category learning (Maye et al. (2002); Vallabha et al. (2007); McMurray
et al. (2009) to cite but a few). In the particular case of allophonic variation, acoustic
salience was proposed as a cue which biases infants’ attention towards phonemic contrasts,
and away from allophonic contrasts (Cristia & Seidl, 2014).

Acoustic similarity will be tested in Experiment 1. As our input contains phones trained
with acoustic models (see Chapter 2), I will take as a measure of similarity the distance
between the acoustic models of each pair of phones. In technical terms, the 3-state HMMs of
a given pair of allophones are aligned with Dynamic Time Warping (DTW), using Kullback-
Leibler divergence as a local distance between pairs of emitting states (where each state is
approximated by a single non-diagonal Gaussian). The perceptual distance is defined as
the sum of local KL measures between states that correspond to the optimal path provided

by DTW.

3.1.2 Word-form similarity cue

The word-form similarity cue is based on the work of Martin et al. (2013). It rests on

the intuition that true lexical minimal pairs (/baet/ vs /paet/) are not very frequent in
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languages, as compared to minimal pairs due to mere allophonic variation ([baet] vs [bae?]).
In fact, allophones create alternants of the same lexical items systematically. For instance,
the surface form of the first and final phoneme of a word is conditioned by the adjacent
sounds. For example, since the English /t/ has many allophones such as [t"], [?] (glottal
stop) and [c] (flap), the word “bat” may take many forms (i.e., minimal variants) such as
[baeth], [bae?] and [bar] depending on the phonetic properties of the following segment.
Learning based on the lexical cue can proceed as follows. If learners find a minimal pair of
words differing in the first or last segments (e.g., [baet"] and [bae?]) then they can consider
these two segments (e.g., [t"], [?]) as allophones. Conversely, if a pair of phones is not
forming any minimal pair, then they can consider it as phonemic. This binary strategy
clearly gives rise to false alarms in the case of true minimal pairs like “bat” and “pat”,
where the phones /b/ and /p/ would be mistakenly considered as allophonic to each other.
However, Martin et al.’s work suggests that their strategy yields good results because correct
decisions outnumbers false ones in corpora of natural speech, especially when the number of
allophones is relatively high. In order to mitigate the problem of false alarms, one solution
was proposed by Boruta (2011). It consists of a continuous version of the binary measure
introduced in Martin et al. (2013). For each pair of phones, instead of looking for the
presence or absence of a minimal pair, the learner counts the total number of those minimal
pairs. The higher this number, the more the pair of phones is likely to be considered as
allophonic. More precisely, for a pair of phones, say X and Y, the new cue is defined as
the number of lexical minimal pairs that vary on the first segment (XA, YA) or the last
segment (AX, AY), where A stands for the rest of the word. Using the word-form similarity
cue in learning phonetic categories is consistent with experimental findings. For example
Feldman, Myers, et al. (2013) showed that 8 month-old infants pay attention to word level
information, and demonstrated that they do not discriminate between sound contrasts that

occur in minimal pairs (as suggested by the word-form similarity cue), and, conversely,
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discriminate contrasts that occur in non-minimal pairs.

3.1.3 Semantic similarity cues

The semantic similarity cue is based on the intuition that true minimal pairs (e.g., /bat/
and /pat/) are associated with different semantic events, whereas allophonic alternants of
the same word (e.g., [baet"] and [bae?]) are expected to co-occur with similar events. As
I explained in Chapters 1 and 2, semantic similarity need not rest on a fully developed
referential mapping between a word and a unique referent. It can be derived even from an
ambiguous situation where words are characterized by features of the general context. For
instance, according to the distributional hypothesis, people can develop a sense of semantic
similarity of words through keeping track of their co-occurring words.

There are two ‘intuitive’ way one can define a semantic similarity cue, building on the

word-form cue:

e Semantic similarity cue 1: one way consists in mapping each pair of phones to the
average semantic similarity of the lexical minimal pairs it forms. We know that the
vectorial representation of a given word (e.g., wi), allows us to measure its semantic
similarity to any other word (e.g., wg) by computing the cosine of the angle formed

1. For each pair of phones (X,Y), instead of counting the

by their respective vectors
number of minimal pairs of the form (AX,AY) or (XA,YA) as in the word-form sim-
ilarity cue, we simply compute the average semantic similarity of these pairs. The

higher the average semantic similarity, the more the model is likely to classify (X,Y)

as allophonic.

e Semantic similarity cue 2: alternatively, we can define a semantic cue through

computing the sum of minimal pairs (as in the lexical cue), but “weighted” with their

—

c . . . . . — YHRTY
!This is equivalent to performing a normalized dot product since we have Cos(w1,w2) = %
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semantic similarity values, as follows:

— —

Sem(X,Y) = Z cos(A?X, A}) + Z cos()?A, Y?l)

For every minimal pair, the lexical cue is incremented by one, whereas the semantic

cue is incremented by one times the cosine of the angle formed by this pair.

Learning based on the semantic similarity cue could be based on the perceptual learning
mechanism known as ‘acquired distinctiveness/equivalence’. In fact, it was observed that
pairing two target stimuli with different events enhances their perceptual differentiation
(acquired distinctiveness), whereas pairing two target stimuli with similar events, impairs
their subsequent differentiation (acquired equivalence) (Lawrence, 1949; Hall, 1991). As I
mentioned in Chapter 1, this mechanism has been tested in the context of phonetic category
learning by Yeung and Werker (2009). In Chapter 6, I will provide a generalization to this
experiment, in which learning will not be limited to ‘same’/‘different’ targets, but extended

to a graded semantic similarity scale.

3.2 Task and Evaluation

For each corpus, I first list all possible combinations of pairs of allophones. Some of these
pairs are allophones of the same phoneme and are labeled “0” (allophonic), and others are
allophones of different phonemes and are labeled “1” (phonemic). Second, each pair of
allophones is given a score from the cue that is being tested. The scores are normalized,
and vary continuously from 0 to 1. Figure 3.1 gives an illustration of a typical distribution
of allophonic and phonemic contrasts, according to a given cue. The evaluation is a bit
tricky. Even though the task is clearly a binary classification, the cues are continuous.
We cannot evaluate the classifier in the usual sense (i.e., count the number of hits and
false alarms) unless we set a threshold. Nonetheless, there is no purely objective way to

set such a threshold because it depends on whether we are statistically “conservative” or
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Figure 3.1: An illustration of a typical distribution of allophonic/phonemic contrasts, ac-
cording to a given indicator of phonemicity. The evaluation of the classification depends on
where the threshold is set. On the left, we have a rather “conservative” threshold, and on
the right we have a rather “liberal” threshold.

“liberal”. In the first case, we tend to have as many ‘correct rejections’ as possible. We will
set the threshold more on the right, but we will also have many ‘misses’ (Figure 3.1, left).
In the second case, we tend to have as many ‘hits’ as possible. We will set the threshold
more on the left and, consequently, end up with many ‘false alarms’ (Figure 3.1, right).
In order to get around this somewhat arbitrary decision, I use a standard technique in
signal detection theory called the Receiver Operating Characteristic (ROC). This technique
consists of a graph that illustrates the evolution of the proportion of hits as a function of
the proportion of false alarms, when we vary the discrimination threshold. Figure 3.2 gives
an example of three different classifiers, and Figure 3.3, their corresponding ROC curves.
We see that the better the classifier, the less overlap there is between the two distributions,
and, interestingly, the further its ROC curve is from the diagonal. In fact, the diagonal
represents the ROC curve of a random classifier: the proportion of hits is in nowhere superior
or inferior to that of false alarms. This fact is quantified in signal detection theory through
measuring the Area Under the ROC curve (AUROC). When using normalized units, the
random classifier has an AUROC of 0.5 (as the curve is identical to the diagonal), and the
ideal classifier has an AUROC of 1 (as the curve is the furthest from the diagonal). It turn
out AUROC has a probabilistic interpretation: it is equal to the probability that a classifier

will rank a randomly chosen instance from the right distribution higher than a randomly
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Figure 3.3: The ROC curves corresponding to the three classifiers above. The hatched area
represents the Area Under the ROC curve (AUROC) of the ‘bad’ model. Adapted from
Weiss (2008).

chosen instance from the left distribution. In our case, the AUROC reflects the probability

that a given cue ranks a random allophonic pair higher than a random phonemic pair.

3.3 Experiment 1

In this first experiment, we test the cues introduced above with the English and Japanese

data, and we report the scores obtained using the evaluation procedure described above.
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3.3.1 Results

In Table 3.1, I report the scores obtained with the acoustic cue. For obvious reasons, the
acoustic cue cannot be computed with artificial allophones, but only with the allophones

generated using trained acoustic models (HMMs).

Allo./phoneme English Japanese
2 0.919 0.918
4 0.912 0.886
8 0.878 0.866
16 0.947 0.881

Table 3.1: The AUROC of the acoustic cue as a function of the average number of allophones
per phoneme.

I report in Table 3.2 the scores obtained with the word-form similarity cues: the original
one introduced in Martin et al. (2013), and the improved continuous version proposed by
Boruta (2011). We tested both the lexicon transcribed using artificial allophones, and the
lexicon transcribed using HTK based allophonic categories. Similarly, Table 3.3 shows the
results obtained with the semantic similarity cues. We tested both versions of the cue, the
one based on average semantic similarity, and the one based on semantic weighing of the

word-form similarity cue.

Random Allophones HTK Allophones
Martin et al. Boruta Martin et al. Boruta
Allo. /phoneme Eng. | Japa. | Eng. | Japa. | Eng. | Japa. | Eng. | Japa.
2 0.753 | 0.540 | 0.954 | 0.986 | 0.555 | 0.404 | 0.609 | 0.441
4 0.803 | 0.583 | 0.964 | 0.981 | 0.578 | 0.486 | 0.608 | 0.515
8 0.848 | 0.676 | 0.965 | 0.955 | 0.576 | 0.523 | 0.583 | 0.538
16 0.900 | 0.774 | 0.967 | 0.910 | 0.572 | 0.542 | 0.573 | 0.547

Table 3.2: The AUROC of the word-form similarity cues as a function of the average number
of allophones per phoneme, using both artificial allophones and HTK-based allophones, and
using the gold segmentation.
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Random Allophones HTK Allophones
Semantic 1 Semantic 2 Semantic 1 Semantic 2
Allo./phoneme Eng. | Japa. | Eng. | Japa. | Eng. | Japa. | Eng. | Japa.
2 0.925 | 0977 | 0.803 | 0.560 | 0.638 | 0.488 | 0.649 | 0.472
4 0.897 | 0.930 | 0.786 | 0.574 | 0.629 | 0.546 | 0.638 | 0.547
8 0.911 | 0.900 | 0.749 | 0.647 | 0.593 | 0.558 | 0.595 | 0.560
16 0.922 | 0.881 | 0.712 | 0.655 | 0.567 | 0.559 | 0.567 | 0.560

Table 3.3: The AUROC of the semantic cues as a function of the average number of allo-
phones per phoneme, using both artificial allophones and HTK-based allophones, and using
the gold segmentation.

3.3.2 Discussion

The acoustic score is very accurate (all the scores are around 0.9) for both languages and
quite robust to variation. The case of top down cues presents an interesting asymmetry
between random and HTK allophones. For the word-form similarity cue, I found, in the
case of artificial allophones, a pattern similar to that reported in Martin et al. (2013) using
Japanese and Dutch corpora. In fact, the cue’s performance starts low, and improves as we
increase the allophonic complexity. I also replicated the finding reported in Boruta (2011)
where the continuous version of the cue was shown to outperform the original binary one.
However, the case of HTK allophones is very different, with both cues performing almost
at chance levell Boruta (2012) reported similar low values when using the HTK phones
and the CSJ corpus. Here we confirm the same surprising result with a different corpus
in a different language. The results obtained with the semantic cues follow generally a
similar pattern: an almost chance performance with HTK allophones, and a relatively good
performance with Random allophones. As it is consistent across corpora, this asymmetry is
unlikely to be the result of an idiosyncratic property of the corpus, as suggested by Boruta
(2012). It is now clear that the observed discrepancy is rather due to the way the allophones

are generated. This will be discussed in the next section.
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3.4 The scope of top-down cues

Top down cues represent the feedback loop in the interactive scenario sketched in Chapter
1, Figure 1.8. However, the feedback is viable only to the extent that low-level information
percolates properly into the high level. For instance, if we want to determine the phonemic
status of a sound contrast, we might want to know how this contrast affects the lexicon,
i.e., whether it forms a minimal pair (e.g [keet] vs [baet] for the contrast [k] / [b]), or an
allomorphic pair (e.g [keet?] vs [kee?] for the contrast [t"] / [?]). But what happens when
a sound contrast does not surface at all as a lexical information, that is, when there is
no evidence of this contrast forming a minimal or an allomorphic pair? An example of
this situation is the English sounds [h] and [y], which occur in different syllable positions.
Should we consider them as allophones of the same phoneme, or as two different phonemes?
All phonological theories put them in separate categories, but based on purely low-level
considerations, such as the acoustic similarity criterion. We can also find the opposite
situation where an allophonic contrast that occurs in complementary distribution (e.g., the
English sounds [p] and [p"]) does not necessarily generate an allomorphic pair (later in this
section, I will give two reasons this might occur). In such a situation, and contrary to
the first example, linguists would consider the sounds as allophones of the same phoneme,
based, again, on the phonetic proximity of the contrast, which is a bottom-up criterion.
It follows that top-down cues do not cover all cues, but only a subset of the data that
percolates into high linguistic levels. The rest of the pairs, which generate neither minimal
nor allomorphic pairs are fundamentally beyond their direct? scope, and are probably better
learned through bottom-up means. I will refer to those as “invisible” pairs, since they are

invisible to the lexicon in the sense I just explained.

2] said “direct” since I am not considering here the possibility of generalization across phonetic features,
but see Maye et al. (2008) and Calamaro & Jarosz (2015).
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3.4.1 Invisible pairs and the phonemic status

Random Allophones | HTK Allophones
Allo./phoneme English Japanese | English  Japanese
2 02.4 00.0 54.5 60.0
4 02.5 00.0 61.5 72.1
8 03.5 00.5 75.8 78.9
16 04.2 07.4 81.8 84.0

Table 3.4: Proportion (in %) of invisible allophonic contrasts out of the total number of
allophonic contrasts.

In top-down cues defined above and in previous studies (Martin et al., 2013; Boruta,
2011, 2012), invisible pairs are automatically set to 1, meaning that they are necessary
phonemic (because 1 is the highest possible value in the interval [0,1]). This is a correct
decision for ([h] vs [g]), but not for an allophonic invisible pair (e.g., [p] vs [p"], assuming
they dont emerge as an allomorphic lexical pair). This assumption in the way lexical top
down cues were defined was made (usually in an implicit way) based on statistical evidence
from the corpora tested, namely the fact that the number of invisible pairs (especially
allophonic ones) is negligible. To what extent does this assumption hold for Random and
HTK allophones? In table 4, I show the proportion of invisible allophonic contrasts (e.g., [p]
vs [p"]) out of the total number of allophonic contrasts. In the case of artificial allophones,
this proportion varies between 2.4% and 4.2% in English, and between 0% and 7.4% in
Japanese. These proportions of bad decisions (in signal detection terms, they represent
‘false alarms’) can indeed be considered negligible. The same thing cannot be said about
HTK allophones where the number of invisible allophonic pairs varies between 54% and 82
% in English, and between 60% and 84% in Japanese. These high proportions mean that
the overwhelming majority of allophonic contrasts will necessarily be labeled as phonemic,

which is a mistake!

There are basically two factors that could explain why an allophonic contrast would be
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invisible to the lexicon. The first factor is of a statistical nature, and consists in the fact
that the edges of the word with the underlying phoneme do not appear in enough contexts
to generate the corresponding allomorphs. This happens, for instance, when the corpus is
so small that no word ending with, say, the French /g/ (e.g. /Knanar/), appears in both
voiced and voiceless contexts, to trigger both the voiced allophone [g] and the voiceless
one [x] as in the allomorphic pair [Knanag] vs. [Knanay]. However, I could not find any
trivial reason why this would affect differently corpora based on Random vs. HTK-based
allophones. The Second factor consists in the fact that some allophones are triggered on
maximally different contexts (on the right and the left) as illustrated in the allophonic rule

of Figure 3.4. When the set of contexts A doesnt overlap with C, and B does not overlap

[ /A_B
g {[Pz]/C_D

Figure 3.4: Example of an allophonic rule

with D, it becomes impossible for the contrast ([p;], [p2]) to surface as an allomorphic pair
of the form ([Xp1] vs. [Xp2]) (1), or the form ([p;X] vs. [p2X]) (2) (where X stands for
the rest of the word). The reason is simply because allophones have to share at least one
triggering context to be able to form allomorphic variants of the same word. The shared
context should be that of the penultimate segment of the word in the case of an allomorphic
pair of the form (1), and the second segment in the case of an allomorphic pair of the form
(2). In Appendix D, I explain, using a concrete toy example, why this is more likely to
happen in a realistic procedure that makes use of acoustic/phonetic similarity (such as HTK

software).
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3.4.2 The proportion of invisible pairs in natural speech

In Table 3.5, I computed the proportion of invisible pairs (out of the total number of
pairs) as a function of the average number of allophones per phoneme. As we can see, this
proportion increases when we increase the number of allophones. To test if this proportion
is constrained by the size of the corpora used in this study, I varied the amount of data
available to the learner from 1 hour of speech to 40 hours. The observed monotonic decrease
in Table 3.6 suggests that invisible pairs can, by extrapolation, be reduced beyond the
numbers obtained in Table 3.5, where speech corpora in both English and Japanese are

limited to 40 hours of speech.

Allo./phoneme English Japanese
2 65.3 41.6
4 76.4 69.7
8 90.2 83.3
16 95.4 91.9

Table 3.5: The proportion (in %) of invisible pairs as a function of the average number of
allophone per phoneme, generated by HTK.

Corpus size (hours) English Japanese
1 77.8 68.7
2 76.9 62.8
) 74.1 56.9
10 70.6 53.0
20 68.5 46.3
40 65.3 41.6
o0 58.9 19.0

Table 3.6: The proportion (in %) of visible pairs as a function of the size of the corpus, in
the case of 2 allophones/phoneme in average (generated using HTK)

Is there an inferior limit to this subset of pairs, or can we reduce them (with more data)

to zero? To answer this question, I generated an artificial corpus that uses the same lex-
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icon in both languages, but with all possible word orders so as to maximize the contexts
for words’ edges. This artificial corpus decreases the proportion of invisible pairs down to
about 58.9% in English and 19 % in Japanese. This non-zero limit is consistent with the
explanation provided in the previous subsection and Appendix D. In fact, even under all
possible triggering contexts, there is still an irreducible set of invisible pairs whose context

triggering sets are not overlapping.

To sum up, I investigated in this section the systematic discrepancy in performance when
the cues to phonemicity are tested with either Random allophones or HTK-based allo-
phones. The investigation dealt with the nature of the interface formed by the phonetic
representation and the corresponding lexicon. To this end, I introduced the notion of ‘in-
visible pairs’, a notion that translates the fact that some phone pairs generate a minimal
or allomorphic pair (visible), and other phone pairs do not (invisible). I argued for the fact
that top-down cues cannot be used universally to learn the phonemic status of all sound
contrasts. In particular, the approximation that consists in considering all invisible pairs
as phonemic, does not scale-up to realistic input (i.e., HTK-based allophones), causing sys-
tematic classification errors. In experiment 2, I will test a prediction that follows from this
analysis. In fact, if top-down cues are mainly compromised by invisible pairs, then they

should perform well on the set of visible pairs.

3.5 Experiment 2

In this experiment I apply top down cues to the subset of visible pairs. I test the effect
of the average number of allophones per phoneme, in the case where top-down cues are
computed using the ideal segmentation, the output of unsupervised segmentation, and a
completely random segmentation. Note that, in this new framing, Martin et al.’s cue is

completely uninformative since it assigns the same value to all visible pairs, it was therefore
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ideal unsupervised random

[ ]
é
o
7
!
®»
).'
ysi|bu3

S N = —0— — —¢ - ®- Lexical

=8 - Semantic1

—e— Semantic2

asauedepr

.1 I I | | I I I
) 3 > NI 3 ® "o q x > "o

Allophones/Phoneme

Figure 3.5: The AUROC of top down cues as a function of the average number of allophones
per phoneme, and as a function of the quality of the segmentation: ideal, unsupervised and
random

omitted from the analysis. The remaining cues are the continuous word-form similarity cue

(Boruta, 2011, 2012), and the semantic similarity cues (this study).

3.5.1 Results

As predicted by the hypothesis developed in Section 3.4, the overall accuracy of the cues
on the subset of visible pairs is quite high, even in the case of unsupervised and random
segmentation (Figure 3.5). The word-form similarity cue is robust to extreme variation and
to segmentation errors. It performs pretty well on high allophonic complexities and almost
regardless of the quality of the segmentation. The associated AUROC generally remains
above the decent value of 0.7 (chance level is 0.5). In contrast, the semantic similarity cue
1 gets better when the allophonic complexity decreases. It performs relatively well on an

intermediate quality segmentation (unsupervised), but falls down to around chance in the
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case of random segmentation. Finally, the semantic similarity cue 2 tends to combine the
advantages of the word-form similarity cue and the semantic similarity cue 1, at both the
level of allophonic variation and the segmentation quality. In order to see how the cues
perform with different amount of learning data, I show in Figure 3.6 and Figure 3.7 the
scores for portions of the corpora inferior to 40 hours of speech (the approximate original
size in both languages). I focused on the two interesting cases where the semantic cue 1
performs better than the word-form cue, i.e., the case of 2 and 4 allophones per phoneme
in average, respectively. The results tend to mimic the trends obtained with allophonic
complexity. The lexical cue is, again, highly robust to the scarcity of the data, the semantic
cue 1 tends to do better when data increases, and the semantic cue 2 does well whenever

one of the other cues shows a high performance.

3.5.2 Discussion

Although not perfect, the lexical cue is robust to high allophonic complexity, extreme
segmentation errors (random), and to the scarcity of the data. This, in part, replicates the
finding of Martin et al. (2013) and Boruta (2011) where the word-form similarity cue was
shown to perform well with high allophonic complexity and relatively bad word segmentation
(N-grams). The semantic cue 1, in contrast, depends on all the above dimensions. In fact, it
only becomes interesting (i.e., trumps the word-form cue) when data is sufficient, reasonably
segmented and presenting relatively low variation. In fact, these are all cases where word
co-occurrence statistics becomes consistent enough to accurately indicate word similarity.
When the allophonic complexity is high, the frequency with which each word type appears
is low, let alone the frequency of its co-occurrence with other words. Similarly when the
amount of data is small, words do not co-occur in enough contexts to lead to a reliable word
similarity pattern, and when the segmentation is random, it is obvious that the resulting

words would not co-occur in a consistent fashion. The pattern of the semantic cue 2 is very
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Figure 3.6: The AUROC of top down cues as a function of the size of data available to the
learner, in the case of 2 allophones per phoneme, and as a function of the quality of the
segmentation: ideal, unsupervised and random
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interesting. It seems to maintain the robustness of the lexical cue to extreme situations,
while showing performance generally higher than both the word-form cue and semantic cue
1. This naturally follows from the definition of the cue, which could be seen as an intuitive

combination of the word-form cue and the semantic cue 1.

3.6 General discussion

This chapter dealt with the question of phoneme learning, as characterized by the learner’s
differentiated sensitivity to phonemic vs. allophonic contrasts. It investigated various as-
pects of the input that might bias the learner’s attention towards phonemic contrasts, and
away from allophonic contrasts. As a bottom-up cue, I tested the acoustic similarity be-
tween phone pairs. The cue gives high scores, allowing the model to distinguish accurately
between relevant and irrelevant variations. In top down cues, I distinguished between the
word-form similarity cue introduced in (Martin et al., 2013), and the two semantic cues
introduced in this study. The word-form cue fares relatively well under extreme conditions,
whereas the semantic cue 1 requires some degree of intelligibility in the input to trump the
word-form cue. In fact, the semantic cue 1 performs well under the conditions that allow
the model to learn a consistent pattern of word co-occurrence. Finally, the semantic cue
2 could be seen as a form of combination between the word-form cue and semantic cue 1.
It benefits from the strengths of both cues, in that it resists to extreme conditions, and
gives generally very high scores. Nonetheless, the scope of top-down cues is restricted to
pairs of sound that percolate into the lexical level, giving rise to either a minimal pair or
an allomorphic pair. In fact, top-down information boils down to knowing whether two
word-forms are instances of the same lexical item (variation is considered allophonic), or to
two different lexical items (variation is then considered phonemic). Phonetic variation that,
for some reason, does not cause lexical variation (such as the English [h] vs. [g] ) is, in this

particular sense, “invisible” to the lexicon, and is better learned through bottom-up means.
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Such form of ‘division of labour’ between top-down and bottom-up cues is not unusual in
phonological theories. For instance, although they both occur in complementary distribu-
tions and do not generate lexical minimal pairs, the English pair ([h] vs. [y]) is treated
differently from the pair ([p] vs. [p"]), based on a bottom-up criterion. The present study
makes the suggestion that this division of labour also makes sense in the perspective of a
learning theory.

The chapter also addressed the chicken-and-egg problem of phoneme learning (Fourtassi
& Dupoux, 2014). In fact, phonemes are classically defined by their ability to contrast
word meanings (Trubetzkoy, 1939), and therefore, require semantic top-down information.
However, since the quality of the semantic representation depends on the quality of the
phonemic representation that is used to build the lexicon, we face a circularity problem.
In this chapter, I proposed a way to break the circularity by building approximate repre-
sentation at different linguistic levels. The infants’ initial attunement to language specific
categories was represented in a way that mirrors the linguistic and statistical properties
of the speech. I showed in Chapter 2 that this detailed (proto-phonemic) inventory en-
abled word segmentation from continuous transcribed speech, but resulted in a low quality
lexicon 2.14. The poorly segmented corpus was used here to derive a semantic similarity
metrics between pairs of words, based on their co-occurrence statistics. The results showed
that information from the derived lexicon and semantics, albeit very rudimentary, helped
discriminate between allophonic and phonemic contrasts, with a high degree of accuracy.
Thus, this work strongly supports the claim that the lexicon and semantics play a role in
the refinement of the phonemic inventory (Feldman, Myers, et al., 2013; Frank, Feldman,
& Goldwater, 2014), and, more importantly, that this role remains functional under more
realistic assumptions (i.e., unsupervised word segmentation and ambiguous semantics). We
also found that lexical and semantic information were not redundant and could be usefully

combined, as we can see from the performance of the semantic cue 2. That being said,
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this work relies on the assumption that infants start with initial perceptual categories (al-
lophones), but I did not show how such categories could be constructed from raw speech.
More work is needed to explore the robustness of the model when these units are learned in
an unsupervised fashion (Lee & Glass, 2012; Huijbregts, McLaren, & van Leeuwen, 2011;
Jansen & Church, 2011; Varadarajan et al., 2008).

Finally, this work could be seen as a proof of principle for a learning mechanism, whereby
phonemes emerge from the interaction of low level perceptual categories, word-forms, and
semantics (see J. Werker and Curtin (2005) for a similar theoretical proposition). One
question remained unanswered though. In fact, even if we know how phonetic categories
are organized in the perceptual space, we still need to know how many categories are relevant
in a particular language (i.e., where to stop the categorization process). The next chapter
proposes a solution to this problem, through the notion of Semantic Consistency. In brief,
it is suggested that the optimal level of clustering is also a level that globally optimizes
the semantic consistency of lexical categories. Too broad allophonic categories result in
many incoherent homophones, but too detailed allophonic categories result in unnecessary
synonymous. Somewhere in the middle, the optimal number of phonemes optimizes the

consistency and the parsimony of the lexicon.
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Phoneme learning 2: the number

of categories
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The previous chapter dealt with perceptual reorganization of sounds. I identified cues in
the input that purport to account for the fact that phonemic sound contrasts end up being
perceived better than allophonic contrasts. The derivation and evaluation of these cues were
designed with the perspective of a rather ‘soft decision’ model. That is, for a given pair of
phones, the cues provided a continuous measure that indicated the degree of phonemicity
of this pair. At the evaluation level, even if the cues were compared against a binary gold
standard (0 for allophonic, 1 for phonemic), I did not fix a particular threshold of “con-
trastiveness”. Rather, I used the AUROC technique that spans all possible thresholds and
provides a kind of summary evaluation of the cues under different thresholds. Nonetheless,
to acquire the sound inventory of their native language, infants should also learn the ‘hard
decision’. They should be able, not only to tell how phonemic a contrast is, but also to
learn how much phonemicity is contrastive.

If we approach the problem of phoneme learning through clustering analysis, then we can
draw an interesting parallel between, on the one hand, the continuous cues and the ‘distance
function’, and, on the other hand, the threshold of contrastiveness and the ‘number of
clusters’. In clustering analysis we usually need both the distance function and the number
of clusters to perform the task successfully. I assume, similarly, that phoneme acquisition
requires learning an additional parameter that specifies the number of contrastive units in

the sound inventory.

4.1 Problem specification

4.1.1 Learning as optimization

How do learners converge on the number of phonemes in their native language? Suppose
we start with a continuous measure that reflects the degree of phonemicity of various sound

contrasts. This continuous information is not enough to tell us where to draw the functional
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boundary. One thing we can do, instead, is to form a hierarchy of clusters, i.e., to group
phones into varying numbers of nested categories. Then learning can be characterized as
an ‘optimization problem’: which level of clustering is the optimal one, given the set of
possible clusterings? To answer this question, we first need to specify the sense in which
the phonemic level is supposed to be optimal. In machine learning terms, we need to define
a real valued ‘objective function’ f, whose optimum is achieved by phonemes. In a formal
sense, if C' refers to the set of potential clusterings, and c,py, stands for the phonemic level
of clustering, then we should have f(c) < f(cphm), for all ¢ in C.

Framed in this way, the phonemic representation becomes a special case that results from
a particular choice of the objective function. Different objective functions can, in principle,
be defined for various representations of the data. For example, a coarse-grained inventory
composed of consonants and vowels (2 categories) can result from an objective function
linked to the task of (re)syllabification, and a fine-grained representation composed of al-
lophones can result from an objective function linked to the task of perception/production
of allophonic rules'. Here we are looking for an objective function that results in an inter-
mediate level of clustering (phonemes), and whose task is to represent and contrast lexical
meanings.

In order to simulate the learning situation of the baby, the objective function that leads
to the phonemic representation should not be endowed with any prior knowledge about the
lexicon. In machine learning terms, the procedure should be unsupervised. Nonetheless,
given that phonemes are supposed to represent lexical meaning, how is it possible to learn
them without supervised information that specifies, for instance, whether two word-forms
represent one or two lexical items? In the modeling literature, many of the proposed
strategies fall under one of two extremes. In the first one, we suppose a staged approach

to language learning and assume that the learner settles on the sound inventory before

!This framing is compatible with developmental data showing that babies are able to access different
representations of the input depending on the task (Werker and Curtin, 2005)
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learning the words, or the words’ meanings. According to this view, no top-down feedback
information is possible. In the other extreme, we usually assume a fully developed lexicon,
and use it to learn the lower units of speech. Obviously, neither of these extremes can be
taken as a realistic learning mechanism (See Chapter 1 for a detailed discussion). In the
following, I propose an intermediate solution, which neither precludes the effect of words,
nor presupposes their full development. More precisely, I make the assumption that a
candidate representation at the low level (i.e., a phonological analysis) can percolate into
the high level (i.e., lexicon). Thus, the top-down effect can take place through evaluating the
induced lexicons, and using this evaluation to select the optimal phonological interpretation

of the input.

4.1.2 Semantic Consistency

A candidate phonological analysis vary in theory from coarse-grained (e.g., consonants/vowels)
to fine-grained (e.g., detailed allophones). When used to represent words, they give rise to
lexicons with different ‘resolutions’. Suppose, for example, that the learner hears the follow-
ing acoustically detailed word instances: [kee?], [keet?], [bae?] and [baet"]. The learners can,
a priori, identify these instances as four lexical items (i.e., /kee?/, /kaet/, /bae?/, /beet?/),
if they choose a fine phonological interpretation. They can also identify them as two lexical
items (i.e., /keet/, /baet/) if they choose an intermediate level of phonological analysis, or
one item (i.e., /CVC/) if they choose a coarse analysis. Crucially, these lexicons will have
different distributional and semantic properties, which I propose to characterize as follows.
Suppose that each word token w is associated with a semantic representation SR(w), and
suppose we have a similarity function Sim defined over the set of pairs of semantic repre-
sentations. The Semantic Consistency of a word type W (hereafter, SC(W)) can be defined

as the average similarity of all pairs of word tokens (w, w’) that belong to the word category
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W, according to a given phonological analysis. It is computed as follows:

SC(W) = i > Sim(SR(w), SR(w'))
(w,w’)eW?2

A word whose instances share consistently similar semantic feature has a high Semantic
Consistency value. For example, if most tokens of the word “breakfast” are uttered in
the kitchen, in the morning, and co-occur consistently with words such as “food”, “eat”,
“bread”... then its SC score will be high. If, in contrast, the tokens of the word occur in
many locations, at different times of the day, and with unrelated words, then its SC score

will be low (e.g., a function word like “the”).

In the following section, I explain how key concepts (such as ‘phonological analysis’,
‘induced lexicon’ and ‘semantic consistency’) will be implemented and tested in our modeling

scheme.

4.2 Representations

4.2.1 Levels of phonological analysis

We generate different levels of phonological analyses for English and Japanese data, start-
ing from the ideal (i.e., phonemic) inventory. To generate categories coarser than the
phonemes, I collapsed the segments in English from 41 phonemes to 19, then to 10, 4 and 2.
Similarly, I collapsed the segments in Japanese from 25 to 13, 8, 4 and 2 (see Annexe E for
the details of this hierarchical clustering). To generate categories finer than the phonemes,
I consider contextual allophones. As explained in Chapter 2, a given phoneme is split into
possibly several allophones as a function of its left and/or right phonetic context. In order
to generate these allophones in a phonetically and acoustically controlled fashion, I followed
the HTK procedure (see Chapter 2). I generated inventories of various sizes (from 2 to 16

times the size of the phonemic inventory). Note that the size of an inventory increases as a
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Figure 4.1: Upon hearing the sound “cat”, the English-learning infant can a priori represent
it through phonetic categories at different resolutions (different phonological analyses). The
challenge is to select the “optimal” level of representation

function of the phonetic detail considered.

4.2.2 Induced lexicon

I transcribed the corpora using each of these alternate inventories. The resulting lexicon
has, therefore, a representation that varies along the phonological analysis on which it is
based. For example, the lexical item “cat” can have the following representations: /CVC/,
/keet/, or /keet?/ (Figure 4.1) Moreover, in order to approximate infants’ early segmen-
tation of words, I, similarly, followed the procedure described in Chapter 2, and used the
state-of-the-art unsupervised word segmentation model called Adaptor Grammar (M. John-
son et al., 2007) to segment the corpora transcribed with different inventories. Figure 4.2
shows the token F-score of word segmentation in each case. The F-score is computed by
comparing the segmentation under a given inventory with the ideal segmentation under the
same inventory. It shows that the segmentation is optimal for the phonemic inventory in
the case of Japanese, and with the slightly coarser grained inventory in the case of English.

The segmentation performance drops for both finer- and coarser-grained inventories. The

76



CHAPTER 4.

English Japanese

o
o
1

Token F—score
o
>
1

I
[N
1

T
10 100 10 100
Inventory size

Figure 4.2: Token F-score of optimal segmentations of English and Japanese corpora tran-
scribed with inventories of different sizes, using a collocation adaptor grammar model. The
red color refers to the phonemic inventory.

fact that the phonemic inventory leads to an almost optimal segmentation is an encour-
aging result. However, information about the segmentation performance was based on the
comparison with the ideal segmentation, to which, the learner does not have access. My
objective, in what follows, will be to obtain the phonemic inventory as an optimal value of

a rather unsupervised evaluation metrics (based on the notion of semantic consistency).

4.2.3 Semantic Consistency

As explained earlier in this dissertation, I use word co-occurrence as a proxy for the general
multi-modal semantic context, and Latent Semantic Analysis as a modeling framework.
Remember that in LSA, a word is represented by its frequency distribution over different
contexts (time windows). LSA allows us to compute the semantic similarity between words
(the cosine between word vectors in the semantic space). Two words have a high semantic
similarity if they have similar distributions, i.e., if they co-occur in most contexts.

The idea, as formalized in Subsection 4.1.2, is to probe the semantic consistency of word
types by measuring the extent to which their tokens are semantically similar to each other.

In our modeling framework (i.e., LSA), it is easier to derive representations for word types,
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than to derive representations for word tokens. Therefore, I chose to replace the notion
of a token by the more general (and more flexible) concept of a sub-type. As its naming
suggests, a sub-type of a word type is a subset of its tokens. For example, the type /keet/
has [kee?] and [kaet"] as possible sub-types. In the following section, I describe two ways one
can derive sub-types from the vectorial representation of a type, and I test their subsequent

effect on learning the phonemic inventory.

4.3 Experiments

4.3.1 Experiment 1: Random partitioning

In this experiment, I propose to derive sub-types through partitioning the set of tokens
in two random subsets. It is illustrated schematically in Figure 4.3, and it is computed
as follows. For each level of phonetic clustering, a corpus is generated by transcribing its
utterances according to the phonetic inventory at hand. From this original corpus I derive
a “sub-corpus”, where each word type is randomly replaced by one of two lexical variants.
For example, the label of the word ‘cat’ is replaced in the sub-corpus by two different labels:
‘caty’ or ‘caty’. Thus, each word that occurs at least twice is duplicated, and each variant (or
sub-type) appears with roughly half of the frequency of the original word. After applying
LSA to the derived corpus, we obtain for each word type vector (e.g., th) two sub-type
vectors ( ccﬁl and CCng). The semantic consistency of a word type is simply the cosine of
the angle formed by the two sub-vectors in the semantic space.

In order to obtain a semantic consistency score for the entire lexicon, I test how the mea-
sure of semantic consistency allows us to distinguish sub-types from random pairs of words.
To this end, I use the Receiver Operating Characteristic curve to compare the distribution
of cosine distances across the entire list of sub-types to that of an equivalent number of

random pairs. From this curve, I derive the Area Under the ROC curve (AUROC). The
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Figure 4.3: Schematic description of sub-type derivation and SC score computation, using
random partitioning.

resulting score can be interpreted as the probability that, given two pairs of words, of which
one is a sub-type pair, the pairs are correctly identified based on semantic similarity. A value
of 0.5 represents pure chance, and a value of 1 represents perfect performance. Note that
the SC score depends on the LSA parameters: the size of the context and the dimensions
of the semantic space. We thus test the robustness of the score when we vary these param-
eters. For each representation of the lexicon, we compute different SC scores for values of
context size ranging from 5 and 500 utterances, and for semantic space dimensions ranging
from 5 to 500 dimensions. In Chapter 2 (Figure 2.16 and Figure 2.17), I showed that these
values cover a reasonable portion of the parameter space (STD-p tends to decrease at both
endpoints). Finally, we distinguish three kinds of segmentations: ideal, unsupervised and

random.
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Figure 4.4: Semantic Consistency scores across different phonetic inventories and different
levels of word segmentation, using Random Partitioning. The white points and error bars
show the means and standard errors over different parameter settings. The black points
refers to the phonemic inventory of each language

Results and discussion

Results are shown in Figure 4.4. As expected, for unsupervised and ideal segmenta-
tion, the score peaks at the phonemic inventory of each language (41 in English and 25 in
Japanese). The absence of such peak in the random segmentation demonstrates that the
result is not a mere artifact of the way the phonetic inventories were generated, but, rather,
a consequence of the way this variation affects the semantic representation of the lexicon.
When the inventory is small, the lexicon is less semantically coherent, since it has more
homophones. For example, in an inventory composed of coarse-grained natural classes, two
words that have rather orthogonal semantics, like /kaet/ and /beeg/, will be treated as
tokens of the same type, since all the consonants belong to the class of stops. This type
will not have a consistent distribution, since it occurs in contexts that are not necessarily
semantically related.

Fine-grained inventories, on the other hand, increase the number of types, which therefore

occur with a lower frequency. This makes the contextual representation statistically sparse.
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Figure 4.5: Histogram of the SC score peaks across different parameter settings, using
Random Partitioning. The red arrows point towards the phonemic inventory.

For example, the case of maximal variation leads to a token/type ratio inferior to 3 in the
English corpus (compared to 30 in the phonemic inventory) and a ratio inferior to 6 in the
Japanese corpus (compared to 33 in the phonemic inventory). Such level of detail eventually
affects the semantic coherence of types, since the surrounding context will tend to differ
from token to token.

For a given inventory, the SC score distinguishes between ideal and supervised segmen-
tations on the one hand, and random segmentation on the other. The reason is apparent:
the distribution of a type across contexts will not be consistent in the case of a random
segmentation. However, the SC score does not distinguish consistently between ideal and
unsupervised segmentations. Figure 4.4 also indicates that the utility of the SC score in
picking out the best representation for the lexicon is relatively independent of the parame-
ter settings (the error bars are over runs with different parameters). Figure 4.5 shows the
histograms of the SC score peaks across different parameters. That is, for each value of

context size and semantic dimension, I select the inventory at which the SC score peaks,
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and increment it by one. The resulting histograms show that, indeed, the SC score enables
us to select the right inventory without any parameter tuning.

In order to test the effect of the data size on learning, I derived scores for different portions
of the data, ranging from 100% (about 50.000 utterances) to 0.1% (about 50 utterances).
Results are shown in Figure 4.6. The model succeeds in learning the phonemic inventory
starting from 5.000 utterances, and becomes completely uninformative with 50 utterances,
a case in which values tend to fluctuate around chance level. The case of 500 utterances is
interesting. Though the scores are not around chance, they do not peak at the phonemic
inventory, but at the next coarse-grained inventory in both English and Japanese. This

problem will be explained and addressed in the discussion of the next experiment.

4.3.2 Experiment 2: nested-category-based partitioning

In this experiment, we use another method to derive sub-types. This method consists
in basing the partitioning of the set of tokens on nested phonetic representations. An
illustration is given in Figure 4.7, and it proceeds as follows.

A corpus is generated for each level of phonetic clustering, as in the previous method. Now
instead of deriving a sub-corpus, I simply consider the corpus generated by the directly
lower phonetic level, consisting of a finer grained inventory. For a given word type at the
high level (e.g., “cat”), its occurrences are matched with their equivalents at the low level
(e.g., “ca[?]” or “ca[t"]”). Thus, each word type at one level is now mapped to its sub-types
on the lower levels. The number of sub-types can vary from one to many, depending on the
segments composing the word, and more precisely, on how many contextual allophones they
have. The semantic consistency of a word type is the average cosine distance of all possible
pairs of sub-types. In order to characterize the semantic consistency of the entire induced
lexicon, I compare the distribution of sub-type pairs sampled from word types, to that of

an equivalent number of random pairs of words. I finally compute the resulting AUROC
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Figure 4.6: Semantic Consistency score of lexicons represented with different phonetic in-
ventories, and for corpus sizes ranging from 100% (about 50.000 utterances) to 0.1% (50
utterances). The SC score is computed using random partitioning, and the ideal word
segmentation. The white points refer to the individual scores using different parameter set-
tings, the red points to the phonemic inventory, and the blue to the means of the individual
scores.
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Figure 4.7: Schematic description of sub-types’ derivation and Semantic Consistency score
computation, using nested-category-based partitioning.

that I take as the final SC score of the induced lexicon. As in the previous experiment, for
each representation of the lexicon we compute different SC scores for values of context size
ranging from 5 and 500 utterances, and for semantic space dimensions ranging, similarly,
from 5 to 500 dimensions. As for word segmentation, the nested-category-based partitioning
requires an exact match between tokens at different hierarchical levels, i.e., the segmentation
should remain the same. So, unlike the previous experiment, the SC scores will be computed

only for the ideal segmentation.

Results and discussion

Results are shown in Figure 4.8. The SC score peaks at the phonemic inventory in the
case of English, and at both the phonemic and the slightly finer grained (2 allophones per
phoneme) inventories in the case of Japanese. Similar to the previous experiment, we show
in Figure 4.9 the histograms of the peak values across different parameter settings. In the

case of English, the histogram selects unequivocally the phonemic inventory. In the case of
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Figure 4.8: Semantic Consistency score of lexicons represented with different phonetic in-
ventories and ideal segmentation, using nested-category partitioning. The points and error
bars show the means and standard errors over different parameter settings. The red colors
refers to the phonemic inventory of each language.

Japanese, there is a slight preference for phonemes over the next finer grained level (we will
discuss this case later in this section).

As in the previous experiment, the semantic consistency tends to decrease as the inventory
size exceeds that of phonemes, which is, similarly, due to an increasingly higher statistical
sparsity of sub-types. In contrast, the small inventories do not decrease continuously from
the peak, as was observed with the random partitioning. In fact, they show here an in-
teresting asymmetry with the big inventories, being all almost at chance level (below 0.6).
In order to understand why we get the asymmetry in the case of nested-category-based
partitioning and not in the case of random partitioning, we examine the case of coarse
representations in a deeper way than we did in the analysis of Experiment 1. Take the
example of the words “cat” and “bag”, which have orthogonal meanings, and suppose we
are evaluating a coarse phonological analysis where both words have the same represen-
tation (e.g., /SVS/, where S refers to the category of stop consonants, and V to vowels).

When splitting the set of tokens of the word type SVS in a random fashion, both sub-types
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Figure 4.9: Histogram of the SC-score peaks across different parameter settings, using
nested-category partitioning. The red arrows point towards the phonemic inventory.

(SVS; and SVS3) will end up having a mix of “cat”s and “bags”s. The semantic similarity
of these sub-types will be different from that of two random word types (e.g., SVS; and
SVSV;), but because they have a less differentiated representation than the original words,
this difference will be a bit smaller, leading to a slightly lower SC score. The coarser the
representation, the more semantically unrelated words will be contained in a given word
type, and the less differentiated the resulting sub-types will get from a random pair, leading
to the observed continuously decreasing SC score.

In contrast, if the splitting is performed based on nested representations, the sub-types
will be orthogonally different words, the moment we get down from the phonemes. If we
take our previous example, the sub-types of the word SVS will not consist of a mix of both
“cat”’s and “bat”s as in the random partitioning case, they will, in contrast, be exactly
SVS;=“cat” and SVSes= “bag” (or the other way around), which represents basically a
random pair of words. This explains why the SC score is almost at chance level starting
from the first inventory below the phonemic one, hence the asymmetry. As we can see
from the results, this property is interesting since it allows for a clearer distinction between

coarse and phonemic analyses. Moreover, as we can see in Figure 4.10, the asymmetry helps
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in addressing the problem we faced with small portions of data in Experiment 1. In fact,
when we derive scores for different portions of the corpora, we get, similarly, a successful
learning with 5.000 utterances, and random fluctuation with 50 utterances. However, unlike
Experiment 1, learning becomes possible even with 500 utterances.

Now we get back to the particular case of Japanese data where the SC score peaks at
both the phonemic and the next finer grained level. Here, thanks again to the asymmetry,
phonemes stand out as the optimal choice when we take into account both semantic con-
sistency and economy in representational resources. In fact, the learner can be understood

to be seeking the least number of categories that maximizes the consistency of the lexicon.

4.4 General discussion

In this chapter, I investigated a learning mechanism that learners might use to make the
‘hard decision’ of phoneme acquisition, i.e., deciding on the threshold that results in the
adequate representational resolution. I framed this learning as an optimization problem:
learners are understood as trying out many hypotheses and selecting the optimal one, i.e.,
the one with the most semantically consistent lexicon. The mechanism does not purport to
account for how a representation is constructed (I assumed that the cues to phonemicity,
which play here the role of the distant function, are perfect), but rather for how it per-
forms, compared to other possible representations. Such framing is common in language
acquisition research. For example, Chomsky (1965) suggested that the mind is equipped
with a Language Acquisition Device (LAD), which has “a method for selecting one of the
(presumably, infinitely many) hypotheses that are allowed, and that are compatible with
the primary linguistic data”. Although they generally disagree with Chomsky on the degree
of innateness and learning, Bayesian psychologists frame the question is a similar fashion.

In fact, we can read in Chater and Manning (2006) the following:

From a Bayesian standpoint, each candidate grammar is associated with a
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Figure 4.10: Semantic Consistency score of lexicons represented with different phonetic
inventories, and for corpus sizes ranging from 100% (about 50.000 utterances) to 0.1%
(50 utterances). The SC score is computed using nested-category partitioning, and the
ideal word segmentation. The white points refer to the individual scores using different
parameter settings, the red points to the phonemic inventory, and the blue to the means of
the individual scores
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prior probability; and these probabilities will be modified by experience us-
ing Bayesian updating [...]. The learner will presumably choose a language with
high, and perhaps the highest, posterior probability.

By analogy to the Bayesian framework, the Semantic Consistency score can be seen as
the equivalent of the posterior probability, operating in a space of hypotheses, where a
hypothesis is defined as a particular phonological analysis of the input, associated with its
corresponding distribution over semantic contexts.

The philosophy behind the SC score is that infants are learning and optimizing an entire
system, rather than learning different sub-levels in isolation (learning phonemes, then word-
forms, then semantics). In particular, I assume that phoneme learning is driven by the need
to make sense of the input, the selection pressure coming from the process of extracting
meaning. The quality of a phonological analysis is measured by the semantic consistency
of the lexicon that it induces. Crucially, though it makes use of higher linguistic levels, the
SC score does not require them to be fully developed, tolerating to a relatively high extent,
segmentation errors and semantic ambiguity.

I characterized the semantic consistency of a word by the distributional consistency of
its tokens, and I implemented this idea through using the more general notion of “sub-
type”, defined as a subset of the word’s tokens. I tested a learning mechanism wherein
sub-types are obtained based on random partitioning in Experiment 1, and on nested pho-
netic representations in Experiment 2. Both methods allow for the correct selection of
the phonemic analysis, when the learning data is relatively big (around 5.000 utterances).
However, the interesting asymmetry found in Experiment 2 (between inventories smaller
and bigger than the phonemes) allows for successful learning even with a small dataset
(around 500 utterances). Deriving sub-types according to nested categories is, arguably,
more compatible with developmental data, showing that infants can access different levels
of acoustic/phonetic representations (McMurray & Aslin, 2005; White & Morgan, 2008).

In simple terms, this means that babies are more likely to test phonological analyses that
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fall under phonetically-informed boundaries (e.g., [kee?] and [keet"]), than to test randomly
picked representations (e.g., two sub-types composed, each, of a mix of both [kee?] and
[kaet")).

Last but not least, we found the utility of the SC score in picking out the best represen-
tation to be independent of the parameter setting to a large extent, and to operate with
minimal, if any, external supervision. This contrasts with learning models based on the
Expectation Maximization (EM) categorization algorithm, where the number of categories
is specified in advance (de Boer & Kuhl, 2003), and with Bayesian models based on the
Dirichlet Process (Feldman, Griffiths, et al., 2013), which require the specification of a
hyper-parameter (concentration parameter) that monitors the number of categories. It is
also worth mentioning that Vallabha et al. (2007) proposed a learning algorithm similar to
EM, which provides an automatic way to infer the number of categories: the models starts
with a high number of phonetic categories, and eliminates, over learning, the ones whose
frequency drops below a predefined threshold. Note, however, that these comparisons are
undertaken here only qualitatively. No precise quantitative comparison between the learn-
ing mechanism I propose and these models can be made, since they differ on the type of

variation considered in learning.
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Human experiments
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While the computational part showed how the learning mechanism scales up to a realistic
input, this part will provide support for the cognitive plausibility of the mechanism by testing
human learners in a controlled setting. In Chapter 1, I mentioned that the mechanism is
based on 4 basic assumptions. The first one assumes that infants pay attention to fine
grained phonetic categories (Werker & Tees, 1984; White & Morgan, 2008; McMurray &
Aslin, 2005 to cite but a few). The second assumption supposes that learners rely on their
fine-grained perception to segment and store lexical items (see for instance, Houston &
Jusczyk, 2000 and Curtin et al. 2001). The third assumption posits that learners are able
to infer a sense of semantic similarity from co-occurrence statistics, and the fourth, that
this semantic similarity can help with determining the phonemic status of phones.

If the first two assumptions have received significant empirical support, the last two have
not. Chapter 5 and 6 try to fill this gap in the literature by providing experimental support

for, respectively, the third and fourth assumptions.
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Learning semantic similarity

through word co-occurrence
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5.1 Introduction

How do children learn the meanings of words in their native language? This question has
intrigued a lot of scholars studying human language acquisition. Quine (1960) famously
noted the difficulty of this process. In fact, every naming situation is ambiguous. For ex-
ample, if I utter the word gavagai and point to a rabbit, you may possibly infer that I mean
the rabbit, the rabbit’s ear, or its tail or color,...etc. A popular proposal in the language
acquisition literature suggests that, even if one naming situation is ambiguous, being ex-
posed to many situations allows the learner to narrow down, over time, the set of possible
word-object mappings (e.g., Pinker, 1989). This proposed learning mechanism has come to
be called Cross-Situational Learning (hereafter, XSL). Laboratory experiments have shown
that humans are cognitively equipped to learn in this way. For example, L. Smith and Yu
(2008) presented adults with trials that simulated real world uncertainty: each trial was
composed of a set of words and a set of objects, in such a way that no single trial had
enough information about the precise mappings. However, after being exposed to many
of such trials, participants were eventually able to name the objects with a better-than-
chance performance. Many experiments replicated this effect with adults, children and
infants (Suanda, Mugwanya, & Namy, 2014; Vlach & Johnson, 2013; Yu & Smith, 2007).
Subsequent research tried to characterize the algorithmic underpinnings of XSL. Some ex-
periments suggested that learners accumulate in a parallel fashion all statistical regularities
about word-object co-occurrences, and they use them to gradually reduce ambiguity across
learning situations (McMurray, Horst, & Samuelson, 2012; Vouloumanos, 2008; Yurovsky,
Yu, & Smith, 2013). Other experiments suggested that learners maintain, instead, a single
hypothesis about the referent of a given word. New evidence either corroborate this hypoth-
esis or contradict it (Medina, Snedeker, Trueswell, & Gleitman, 2011; Trueswell, Medina,
Hafri, & Gleitman, 2013). Yurovsky and Frank (2015) proposed a synthesis of both ac-

counts, whereby the learner choice’s to adopt one of the two learning strategies depend on
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the complexity of the learning situation.

This being said, XSL is unlikely to be the unique mechanism of word learning at work.
First, real learning situations are much more ambiguous than typical simulated situations
used in laboratory experiments. When subjects are tested in a more realistic learning
context, the load on memory increases and, therefore, the ability to make use of the available
visual information diminishes (Medina et al., 2011; Yurovsky & Frank, 2015).

Second, XSL assumes a perfect covariance between words and their referents. This as-
sumption does not take into account the fact that words —in real situations— are sometimes
uttered in the absence of their referents (e.g. when talking about past events, “remember
that cat?”). In this experiment, I propose a statistical learning mechanism that purports
to complements XSL, through relying on cues from the concomitant linguistic information,

and more precisely on word co-occurrence.

5.2 Word co-occurrence and semantic similarity

Typical XSL settings assume that words occur in isolation. In real learning contexts,
however, words are embedded in natural speech, and have various distributional properties.
In particular, semantically similar words tend to co-occur more often than semantically
unrelated words. For example, the word “ball” and “play” tend to co-occur more often
than “ball” and “eat”. This fact is documented in linguistics under the name of the ‘dis-
tributional hypothesis’ (hereafter, DH) (Harris, 1954), and has been popularized by Firth’s
famous quote “You shall know a word by the company it keeps” (Firth, 1957). The distri-
butional hypothesis is also the basis for distributional semantics, the sub-field of computa-
tional linguistics that aims at characterizing words’ similarity, based on their distributional
properties in large text corpora. Tools from the field of distributional semantics such as
Latent Semantic Analysis, (Landauer & Dumais, 1997), Topic Models (Blei, Ng, & Jordan,

2003), or more recently Neural Networks (Mikolov, Karafiat, Burget, Cernocky, & Khudan-
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pur, 2010) have proved to be very effective in modeling human word similarity judgement
(Griffiths et al., 2007; Baroni & Lenci, 2010; Fourtassi & Dupoux, 2013; Parviz et al., 2011).
Moreover, we saw in the computational part of this dissertation that distributional semantic

models can be useful in modeling phoneme learning.

5.3 Zero-shot learning

Learning through DH typically require a large corpus, especially if nothing is known about
the language. Here, we explore the case where some words are already known and only one
word is learned through DH. This corresponds to the so-called ‘zero-shot learning’ situation.

An interesting example of this situation has been given by Socher, Ganjoo, Manning, and
Ng (2013). They built a model that can map a label to a picture even if this mapping was
not seen in training! More precisely, using the CIFAR-10 dataset, the model was first trained
to map 8 out of the 10 labels (“automobile, “airplane, “ship, “horse, “bird, “dog, “deer,
“frog ) in the dataset, to their visual instances. The remaining labels (“cat and “truck)
were omitted and reserved for the zero-shot analysis. Second, they used a distributional
semantic model (based on Neural Networks) to obtain vector representations for the entire
set of labels (i.e., including “cat and “track) based on their co-occurrence statistics in a
large text corpus (Wikipedia text). When tested on it ability to classify a new picture (a
cat or a truck) under either the label of “truck” or “cat”, the model performed with a high
accuracy, using only the patterns of co-occurrence among labels, and the semantic similarity
between the new and old pictures. For example, when presented with the picture of a cat,
the model has to classify it as “cat” or “truck”. The models makes the link between the
picture of the cat and that of a similar picture (e.g. dog), and chooses the label that is
more related to the label of this similar picture, i.e., “cat”. In fact, “cat” co-occurs more
often with “dog” than with, say, “airplane”. Therefore the label “cat” is favored over the

alternative label (i.e., “truck”).
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The conditions of zero-shot learning are often met in the context of word acquisition. For
instance, this corresponds to the (rather ubiquitous) situation where an unknown word is
heard in the absence of its visual referent. Therefore, I suggest that the learner can go about
it in a way that mimics the mechanism of zero-shot learning. In the following, we test this
hypothesis with adults, following closely the spirit of the model developed by Socher et al.

(2013).

5.4 Method

The experiment consists of 4 parts:
1. Referential familiarization

2. Learning consolidation

3. Distributional familiarization
4. Semantic generalization

The referential familiarization and consolidation consists in explicitly teaching subjects
the association between words in an artificial language and their referents. In the dis-
tributional familiarization, participants hear ‘sentences’ made of words from this artificial
language without visual referents; some of these words have already been introduced in
the referential familiarization, and some are new words. Crucially, the new words co-occur
consistently with words of the same semantic category. Finally, the semantic generaliza-
tion phase tests whether subjects can rely on distributional information alone to infer the
semantic category of the new words, without any prior informative referential situation.

Below is a detailed description of each part of the experimental procedure.
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Figure 5.1: Referential familiarization. Participants are presented with multiple series of
word-objects pairings. The objects belong to the category of animals or the category of
vehicles.

Part 1: Referential familiarization

In this phase of the experiment(Figure 5.1), participants are taught the pairing of 4 words
in an artificial language' with 4 objects. The objects belong to either the category of vehicles
(car, motorcycle) or the category of animals (deer, swan). Participants see a picture of the
referent on the screen and hear its label simultaneously. There are 3 trials, each consists of

a randomized presentation of the series of 4 pairings.

Part 2: Learning consolidation

The purpose of this phase is to consolidate and strengthen the participants’ knowledge
about the 4 word-object pairings (Figure 5.2). Participants are tested using a Two Alter-
native Forced Choice paradigm (2AFC). They are presented with a series of trials where
they hear a label (pibu, nulo, romu or komi) and are shown two objects; one of which is the
correct referent, and the other belongs to other semantic category. Crucially, after they have

made a choice, they get a feedback on their answers (“correct” /“wrong”). Participants are

!The audio stimuli were graciously provided by Naomi Feldman
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presented with 16 questions of this sort, which correspond to the combinatorial possibilities
of forming pairs of items from one semantic category with items from the other category (4
cases), in conjunction with the order of the visual presentation of the referents (4 x 2 cases)

and the item being labeled (4 x 2 x 2 = 16 cases in total).

) “pibu”?

) “komi”?

Figure 5.2: Learning consolidation. Two-Alternative Forced Choice paradigm (2AFC), with
feedback.

Part 3: Distributional familiarization

Distributional familiarization follows the referential training and consolidation. Partici-
pants listen to ‘sentences’ made of words from this artificial language without any visual
referent. As explained in Figure 5.3, each sentence consists of 3 words. Two of which are
known words from one semantic category, i.e., either romu and komi (animals) or pibu and
nulo (vehicles). The third word is a new artificial word that consistently co-occurs with
them. The new words are guta and lita. The way guta/lita are distributed with either
(romu, komi) or (pibu, nulo) was counterbalanced across participants so as to avoid differ-
ent sorts of linguistic and perceptual biases that may arise from the way the stimulus is
organized. There is a 750 ms pause between words, and 2500 ms pause between sentences.

There are 16 sentences in total, 8 for each semantic context; (romu, komi) and (pibu, nulo).
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Words within sentences are randomized and the semantic context is alternated during the

exposure.
2500 ms
) 0)
‘“romu” “nulo” 750 ms
) 0)
“komi” “pibu”
0) 0)
ugutan "lita"

Figure 5.3: Distributional familiarization. Sequences of words are presented with no visual
referents. Two new words (“guta” and “lita”) are introduced and co-occur consistently with
the words corresponding to one of the two semantic categories (“romu” and “komi” for the
category of animals, and “nulo” and “pibu” for the category of vehicles)

Part 4: Testing semantic generalization

Participants are presented again with a two alternative forced choice. As explained pre-
viously in the learning consolidation phase, they hear a label and they are asked to choose
between two objects, but here participants do not get feedback on their answers. We are
particularly interested in how participants respond in the situation where they hear the new
labels (guta or lita) and are presented with two new objects that represent a new animal
(squirrel) and a new vehicle (trolley). Participants have never been shown the referen-
tial mapping of the new words, so their answer would reveal whether distributional learning
alone had helped them infer semantic knowledge about the word (i.e., the semantic category
of the referent). This test phase is composed of 4 questions about the new labels/objects,

varying the visual order of the objects (1 x 2) and the object being named (1 x 2 x 2 =4
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cases in total), in addition to 4 selected filler questions about the old words/objects used in
the referential training. I separated trials of the new objects from trials of the old objects

so as to avoid any form of cross-situational learning during the test phase.

Procedure

As shown in Figure 5.4, participants are first trained on the pairing of 4 artificial words
with their referents (part 1 and 2). Then they are exposed to 2 blocks of distributional
familiarization that combine both old and new words in a distributionally coherent fash-
ion (part 3), and they are tested 3 times (part 4): before any exposure to distributional

information and after each block of exposure.

Figure 5.4: Order of exposure of the experimental settings. Participants are trained refer-
entially once (part 1 and part 2), distributionally twice (part 3). They are tested in three
sessions (part 4): before and after each block of distributional learning

Population and rejection criterion

50 Participants were recruited on-line through Amazon Mechanical Turk. I included in the

analysis participants whose total score on the filler questions during the testing phases (i.e.,
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part 4) were above chance level. This is a way to select only subjects who paid attention

during the training parts. 2 participants was excluded based on this criterion.

5.5 Results and Analysis

Figure 5.5 shows the proportion of correct answers on both filler and target questions,
as a function of the testing session. In the filler condition, answers were almost perfect in
the three conditions (before exposure, after one block, and after two blocks of exposure to
part 3). This shows that participants have reliably learned the association between words
and their referents during the training phase, and that this learning was not affected by
subsequent exposure to distributional information. In the target condition (new words), and
before distributional training (i.e., session 0), subjects were at chance level (M = 50.5%
of correct answers). In fact, a one sample t-test comparing the mean against chance (i.e,
50%) gives a t(47) = 0.083 with p-value = 0.93. The absence of learning is a predictable
result since participants had no prior cue about the relevant object mapping. However,
after one and two blocks of distributional training, subjects were significantly above chance
level. A one sample t-test gives, respectively, for session 1 an average of correct answers
M = 72.4%, with t(47) = 3.942 (p < 0.001), and for session 2, an average of M = 68.2%,
with ¢(47) = 2.852 (p = 0.006). In order to compare the behaviour of the participants before
and after distributional training, I performed a paired t-test. For session 0 vs. session 1,
there is a significant change, the difference mean is equal to M = 0.218, with ¢(47) = 2.99
(p < 0.01). Similarly, for session 0 vs. session 2, the difference mean is M = 0.177,
with £(47) = 2.238 (p = 0.029). However, between session 1 and session 2, the difference
mean M = 0.041 is not significant, t(47) = 0.662, p = 0.51. This shows that most of the
learning occurs during the first block of distributional exposure. Additional training does
not significantly improve learning (if anything, it seems to slightly decrease the average of

correct responses).
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Figure 5.5: proportion of correct answers in filler condition (known words) and target
condition (new words), before any distributional exposure (session 0) and after the first and
second block of exposure (session 1 and 2)

5.6 Discussion

The results show that, when learning the meaning of words, people are sensitive, not only
to the co-occurrence of words and objects (as suggested in XSL), but also to co-occurrence
statistics between words themselves (i.e., DH). More importantly, I showed that these two
sensitivities interact in a way that mimics a machine learning mechanism called zero-shot
learning. In fact, participants in our experiment were able to guess the semantic category
of a new word through the semantic properties of the words with which it co-occurred
consistently. Participants knew beforehand that they would be introduced to an artificial
language and that they would have to learn the meaning of words in this language, but
they were not explicitly instructed about the fact that words that co-occur in the same
sentences are supposed to have similar meanings. Participants have spontaneously turned
to co-occurrence in order to cue semantic similarity, and infer the category of the ambiguous

words.
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Although we used an artificial language whose ‘sentences’ fall short, on many aspects,
of real speech, this work provides evidence for the cognitive plausibility of this learning
mechanism, much in the spirit of the statistical learning literature (e.g., L. Smith & Yu,
2008; J. R. Saffran et al., 1996). If it scales up to real languages, this word-word co-
occurrence mechanism would prove crucial in complementing word-object co-occurrence
mechanisms. In fact, most word-object co-occurrence learning strategies (e.g. XSL) assume
that words covary perfectly with their referents. This assumption is not always correct. For
example, when talking about a past event, the conversation may not match the immediate
visual context. In contrast, words used in a given conversation, be it about present, past or
future events, normally co-occur in a coherent fashion. The learner can rely on this intrinsic
property of speech to bring about robustness to the learning process. For example, suppose
the learner, while at home, hears a discussion about the last visit to the “zoo”. XSL learning,
if operating alone, would be confusing. In contrast, if XSL operates in concert with DH, the
learner would tend, if in doubt, to link a new word (e.g., “z00”) not to some surrounding
object, but to other co-occurring words, which are likely to be zoo-related words (such
as “animals”, “bird” and “monkey”). Further work is needed to characterize the precise
conditions under which learners would rather switch to the word-word co-occurrence cue to
infer meaning.

Moreover, the proposed mechanism can help the learners develop an early semantic rep-
resentation for words with a rather abstract meaning. Abstract words (e.g., verbs) are
learned later in development than words with salient concrete referents (e.g., “ball”) (e.g.,
Bergelson & Swingley, 2013). They are considered as “harder” to learn because there is
no obvious or/and lasting correspondence between the word and the physical environment
(Gleitman, Cassidy, Papafragou, Nappa, & Trueswell, 2005), and because they probably
require advanced social and intention-reading skills (Tomasello, 2001), or the development

of syntactic structures (Gleitman et al., 2005). Nonetheless, this experiment suggests that,
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before babies become efficient at acquiring abstract words, they have what it takes to begin
characterizing them through concrete (and more easily learnable) words with which they
co-occur. Suppose the learner hears the word “play” occur consistently with known concrete

words such as “toy”

and “ball”, and the word “eat” co-occur with words such as “spoon”
and “apple”. Even though, at an early age, they might lack a fully developed representation
for these abstract words, they can a priori infer that one of them is more related to the
context of play, and the other, to the context of eating. It is true that, in these particular
examples, verbs have a significant concrete (or ‘observable’) dimension, and can therefore

)

be characterized by visual input as well. For instance, the word “play” can be associated

with both the co-occurring concrete words (e.g., “toy”) and the corresponding visual input
(e.g., a toy). However, for verbs with a high degree of abstractness (“think”, "believe”, “re-
member”,..) learners are generally more sensitive to linguistic cues (Papafragou, Cassidy,
& Gleitman, 2005). More work is needed to investigate the extent to which infants relay on
co-occurrence information to develop an early semantic representation for abstract verbs.
Finally, during the write-up of this paper, it came to our knowledge that Ouyang, Borodit-
sky, and Frank (in press) conducted an experiment that shared many similarities with ours.
However, it also presented interesting differences both in terms of the experimental setup
and the results. Ouyand at al. exposed adult participants to auditory sentences from a
MNPQ language. It is an artificial language where sentences take the form of “M and N” or
“P and Q”. Ms and Ps are used as context words, whereas Ns and Qs are target words. We
believe there are two crucial differences between the two experiments. First, the context
words (M and P) were composed of a mix of various proportions of real English words
or non-words. In our experiment, they were all non-words. Second and more important,
Ouyang et al. (in press) followed the spirit of MNPQ’s paradigm in keeping constant the

order of the words in the sentences, that is, M and P always occurring first in the sentence,

and N and Q always occurring last. Our experiment was more faithful to the hypothesis of

105



CHAPTER 5.

bag-of-words, which is crucial in distributional semantic models: order within a particular
semantic context (e.g., a sentence) is irrelevant. It was therefore randomized across trials.
Interestingly, although none of the context words we used were known words, we obtained
a high learning rate. In contrast, Ouyang et al. (in press) obtained successful learning only
when most of the context words were familiar English words. A plausible explanation for
this difference is that, in the case of MNPQ language, participants have two possible learn-
ing dimensions: learning the positional patterns (what word comes first, and what words
comes last) and learning the co-occurrence patterns (what couple of words co-occurred with
each other). In fact, it has been shown that when both positional and co-occurrence cues are
available, participant tend focus on the first ones (K. Smith, 1966). By using familiar words,
Ouyang et al. (in press) showed that participants were more likely to learn co-occurrence
patterns, probably through alleviating part of the memory constraint. In our case, the
positional patterns was random, which left participants with only one learning dimension
(i.e., co-occurrence pattern).

To conclude, this chapter provided a cognitive proof of principle to the third assumption
of the dissertation, according to which an early sense of semantic similarity can be learned
through sensitivity to word co-occurrence in speech. In the next chapter, I will deal with
the other major assumption, which posits a close relationship between semantic similarity

judgement and phonemic categorization.
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6.1 Introduction

Word learning can be characterized as a mapping between two categories: The phono-
logical category and the meaning category. Learning the phonological category of a word
consists in acquiring its phonemic representation, i.e., being able to recognize different re-
alizations of a word-form as the same, ignoring irrelevant variation (such as difference in
talker, speech rate, emotion, and linguistic context) (Kuhl, 2004). For example, in English
one has to interpret the forms [kaet"] and [kee?] as variation of the same word /keet/, and the
forms [kee?] and [bee?] as instances of different words, i.e., /keet/ and /beet/. Learning the
meaning category requires, upon hearing a few examples of a word paired with an object,
to determine an accurate semantic category for the word. For example, one has to learn
that /keet/ can refer to cats of different colors and sizes, but not to dogs (Bloom, 2000).

The classic view of early word learning assumes that the processes of learning phonology
and of learning meanings can be studied independently. This division follows from the
assumption that infants master the phonological properties of the word-form much earlier
in development than when they start mapping these forms to meanings (i.e., semantics).
According to this view, word-form can influence the later development of meaning, but
not the other way around. Indeed, there is a wealth of studies documenting this one-way
influence (see Vouloumanos and Waxman (2014) for a review). For instance, Fulkerson
and Waxman (2007) showed that infants as young as 6 months of age were able to form
a ‘meaning’ category related to dinosaurs when they were familiarized with pictures of
different dinosaurs paired with the same word (“Look at the tomal”). If, instead, the
pictures were paired with a sequence of tones (non-speech like form), babies did not succeed
in the categorization task. word-forms act therefore as an “invitation to form [semantic]
categories” (Waxman & Markow, 1995). However, as I mentioned earlier, recent findings
have started to challenge the received timeline of word learning. On the one hand, infants

start mapping form to meaning very early in life (Tincoff & Jusczyk, 1999; Bergelson &
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Swingley, 2012), even before their perception becomes attuned to the sounds of their native
language (J. Werker & Tees, 1984). On the other hand, the phonological representation of
word-forms continues developing beyond the critical age of perceptual attunement (Stager
& Werker, 1997). Thus, the developmental trajectory of phonology and meaning overlaps.
Infants do not wait to have completed one to start the other, rather, they learn form and
meaning in a parallel fashion. This suggests that phonology and semantics influence each

other throughout the learning process (Figure 0.1).

6.2 Semantic similarity and the phonemic status

Yeung and Werker (2009) provided experimental evidence for a top down effect where
semantics does influence phonology in infants by as early as 9 months of age (see Chapter
1 for a detailed description of the experiment). The experiment suggests that babies are
sensitive to semantic cues, and are willing to adapt their phonological analysis of word-
forms accordingly. Here we investigate whether the top-down effect shown in Yeung and
Werker (2009) is modulated by the similarity of the referents, as was in fact suggested in the
computational part of this dissertation. In Chapter 3, I assumed that the phonemic status of
phones varies as a function of the semantic relatedness of the corresponding minimal words,
and in Chapter 4, I posited that candidate phonological analyses are assessed through the
semantic coherence they induce at the lexical level. In both situations, indeed, I assumed
an underlying close relationship between the semantic and the phonemic spaces: semantic
similarity is understood as modulating the phonemic status of phones.

In the light of this, I test the hypothesis according to which, the willingness to adopt a
phonological analysis of a given word-form is closely related to the willingness to extend the
meaning of its referent. Imagine, for instance, that the learner is in a situation where she
has to decide if a pair of similar word-forms [X] vs. [Y] (e.g., [keet?], [kae?]) correspond to

one or two lexical items (i.e., if the variation is allophonic or phonemic), and suppose that
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[X] and [Y] are respectively paired with objects A and B. I suggest that the phonological
analysis of [X]/[Y] is modulated by the propensity of the learner to treat A and B as possible
members of the same meaning category. The more A and B are semantically related, the
more they can form a valid meaning category, and the more the phonological interpretation
of [X]/[Y] tends towards allophony. Conversely, the more A and B are semantically distant,
the more it becomes difficult to put them in one single meaning category, and the more the

phonological analysis of [X]/[Y] tends towards phonemicity (Figure 6.1).

Phonological space Semantic space

High

Allophonic
S. relatedness

Low

Phonemic S. relatedness

Figure 6.1: Word learning as a mapping between a phonological category and a meaning
category. Green circles refer to correct generalizations: the referents have a high semantic
relatedness, therefore, variation is analyzed as allophonic. The red circles refer to wrong
generalizations: the referents have a low semantic relatedness, therefore, variation is ana-
lyzed as phonemic

In order to investigate this hypothesis, I test adults in an experimental paradigm similar to
that of Yeung and Werker (2009). However, here the semantic relatedness of the referents

will be varied in a continuous way.
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6.3 Method

The experiment consists of a training phase and a testing phase. First, Participants are
trained to learn the pairing between a minimal pair in an artificial language and objects
with various degrees of semantic similarity. Second, they are tested over these words in
a same-different task. The audio stimuli used in this experiment are identical to the ones
used in Feldman, Myers, et al. (2013), and consists of (gutah, gutaw) a minimal pair that
constitutes the target of the training phase, (litah, litaw) a minimal pair that varies along
the same vowel contrast. It is used in the test phase to probe generalization. Finally pibu
and komi are used as filler words to monitor the subjects’ attendance to the task. Note that
the minimal pairs vary along a vowel contrast that is neither too acoustically similar, nor
too different. In fact, depending on the dialect, these two vowels can be treated by English
native speakers as belonging to one or two categories (Labov, 1991). This is supposed to put
the participants in a rather flexible situation where they can switch between phonological
interpretations on the basis of the properties of the input.

In the training phase, the target words (gutah/gutaw) were paired with two objects whose
semantic similarity was varied across 5 groups (Figure 6.2). In all groups, one member of
the minimal pair (e.g., gutah) was paired with a picture of a ‘cow’. The second member
(i.e., gutah) was paired with a referent whose semantic similarity with the first referent
varies on a five-step scale, from very similar, in the first group (another token of the same
category, i.e., a different cow), to very different (a car), in the fifth group. The filler words
were paired in all groups with the pictures of a house and a book (Figure 6.3).

During the training phase, participants hear the word and see the corresponding object
simultaneously. They were exposed to 3 series composed each of a randomized presentation
of the 4 word-object pairings (targets and fillers). In the test phase, participants hear a series
of trials composed of two word tokens, and are asked to judge if these tokens correspond

to different words in this artificial language (phonemic interpretation), or if they represent
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Semantic distance

o |

all groups group 1 group 2 group 3 group 4 group 5
“gutah” “gutaw”
<) <)

Figure 6.2: target word-object association between the minimal pair (“gutah” /“gutaw”) and
a pair of referents with different levels of semantic similarity. The first referent represents
a cow, the second referent represents, respectively, another cow, a buffalo, a deer, a bird,
and a car.

a mere phonetic variation of the same word (allophonic interpretation). Participants were
tested on 3 kinds of word pairs: the fillers (komi and pibu), the minimal pair used in the
training phase (gutah and gutaw), and a new minimal pair that has not been heard by the
participants before, but varies along the same vowel contrast (litah and litaw). Half of the
trials consisted of exactly same words (e.g., komi-komi, gutah-gutah, litaw-litaw) and the
other half, of different words (e.g., komi-pibu, gutah-gutaw, litah-litaw). For both same and
different trials, participants have to answer by ‘same’ or ‘different’, according to their own
phonological analysis. The order of the presentation was randomized between same and
different. Participants were tested twice, once before the training phase and once after the

training.

Participants and the rejection criterion:

150 Participants were recruited online through Amazon Mechanical Turk (30/ condition).
We included in the analysis participants whose score on the filler questions were above

chance level. This is a way to select only subjects who paid attention during the training
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all groups all groups
“pibu!! “komiﬂ
<) <)

Figure 6.3: filler word-object pairings. “pibu” and “komi” were paired with a picture
representing a house and a book. The pairing was kept the same across all groups.

phase. Based on this criterion, 3 subjects were excluded (2 from group 3, and 1 from group

5).

6.4 Results and Analysis

Figure 6.4 shows the proportion of time participants answered ‘same’ on same-trials (e.g.,
gutah-gutah, litaw-litaw), both before and after training. As expected, participants were
almost at ceiling, i.e., they answered ‘same’ almost systematically when they heard a pair
of identical word tokens. I analyse the more interesting case of different-trials (e.g., gutah-
gutaw, litaw-litah), which probes the participants’ subjective judgement of whether a pair
of slightly different word tokens belong to one or two lexical items (Figure 6.5). A 2 x
5 testing session (before vs. after) x condition (semantic similarity ranging from 1 to
5) mixed design ANOVA was conducted. I obtained a main effect of condition in both
the case of learning (gutah vs. gutaw) (F(4,139) = 3.092, p = 0.017), and the case of
generalization (litah vs. litaw) (F(4,139) = 5.104, p = 0.029). I also obtained a main effect
of testing session in the case of learning (F'(4,139) = 5.10, p = 0.025), but not in the case

of generalization. Moreover, a significant session by condition interaction was obtained in
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Figure 6.4: Proportion of ‘same’ answers on same-trials of both the minimal pair used in the
training (gutah- gutah, gutaw-gutaw) and the new minimal pair (litah-litah, litaw- litaw),
as a function of the similarity of the two referents in training. The semantic similarity
ranges from 1 (the most similar) to 5 (the least similar). The dotted line represents chance.

learning (F'(4,139) = 4.52, p = 0.001) but not in generalization. Paired t-tests of the simple
effects of testing session at each level of semantic similarity reveals, in the case of learning,
a significant decrease in ‘different’ answers after training in condition 1 (¢(29) = 2.53,
p = 0.016), and a significant increase in condition 4 and 5, with, respectively, ¢(29) = 3.12
(p =0.004) and ¢(28) = 2.11 (p < 0.05). In the case of generalization however, none of the
semantic conditions present a significant difference (although the mean differences follow,
overall, a similar trend to that of learning) (see Figure 6.5).

Now I examine the effect of condition after training (obviously, there is no effect of se-
mantic condition before training) (Figure 6.6). First, we compared responses to chance
level. Responses below chance translate the fact that participants picked an ‘allophonic’
analysis of the phonetic variation. Conversely, responses above chance mean that partici-
pants chose a ‘phonemic’ interpretation of the phonetic variation. In the case of learning,

responses were significantly below chance level in group 1 with ¢(29) = 3.12 (p = 0.004),
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Figure 6.5: Proportion of ‘different’ on different-trials including both the minimal pair used
in the training (“gutah” vs. “gutaw”), and the new minimal pair (“litah” vs. “litaw”),
before and after the pairing with two referents with various degrees of semantic similarity,
ranging from 1 (the most similar) to 5 (the least similar). The dotted line represents chance
level

and significantly above chance in group 4 and 5, with respectively, t(29) = 2.69 (p = 0.01)
and t(29) = 3.55 (p = 0.001). There is a significant difference between group 1 and groups
3, 4 and 5, with, respectively, t(54) = 3.12 (p = 0.003), t(58) = 4.1 (p < 0.001) and
t(57) = 4.71 (p < 0.001), and a difference between group 2 and groups 4 and 5, with respec-
tively t(57) = 2.05 (p < 0.05) and ¢(56) = 2.58 (p = 0.01). In the case of generalization,
participants were below chance in group 1 and 2 with respectively ¢(29) = 2.06 (p < 0.05)
and t(29) = 2.06 (p < 0.05). They were above chance in group 5 with #(28) = 2.91
(p < 0.007). There is a borderline significant difference between group 1 and groups 3 and
4 with respectively, ¢(55) = 2 (p = 0.051) and #(58) = 1.85 (p = 0.068), and a significant
difference with group 5 with ¢(57) = 3.5 (p < 0.001). A similar difference was found between

group 2, and groups 3 and 4 on the one hand, and group 5 on the other hand.
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Figure 6.6: Proportion of ‘different’ answers on different-trials including both the minimal
pair used in the training (“gutah” vs. “gutaw”) and the new minimal pair (“litah” vs.
“litaw”), as a function of the similarity of the two referents in training. The semantic
similarity ranges from 1 (the most similar) to 5 (the least similar). The dotted line represents
chance level

Second I tested the effect of semantic similarity gradient on the phonemic interpretation.
To this end, I fitted a linear regression on groups 2 to 5 (excluding group 1 where the
referents have the same label)!. We get significant scores both in the case of learning
F(1,115) = 7.2 (p = 0.008 and R? = 0.06), and the case of generalization F(1,115) = 9.916

(p = 0.002 and R? = 0.08).

6.5 Discussion

The results of this experiment provide empirical evidence for the fourth assumption of
the dissertation, according to which, the words’ semantic similarity (and not just words’
identity, as in Yeung and Werker (2009)) shape the phonetic space according to the relevant

(i.e., phonemic) dimensions. In fact, participants were more likely to choose an allophonic

1T excluded the case of tokens belonging to the same category to show that the effect is not majorly
driven by the label’s identity (i.e., ‘cow’). Note that a regression including group 1 also yielded statistically
significant scores.
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analysis of a minimal word-form pair when the corresponding semantic referents were more
semantically related, and a phonemic analysis when the referents were less semantically
related.

Comparing the participants’ responses before and after training revealed a significant
interaction with the semantic condition in the case of learning, which translated into signif-
icant decrease in discrimination when the referents were more semantically related (group
1), and significant increase when the referents were more semantically distant (group 4 and
5). In order to explain these results, two mechanisms can be put forward. The first one
is similar to the mechanism of acquired distinctiveness, according to which, pairing two
target stimuli with distinct events enhances their differentiation. The second one is akin
to acquired equivalence, which expresses the converse of the first mechanism, i.e., pairing
two target stimuli with similar events impairs the participants’ subsequent differentiation
(Lawrence, 1949; Hall, 1991). The experiment of Yeung and Werker (2009) provided ev-
idence for the first mechanism in learning phonemes. The present work suggests that,
actually, both mechanisms can take place. In fact, the results of the linear regressions
go even further than this dichotomy between acquired distinctiveness/equivalence. They
suggest that a more complex interaction is at work, involving a richer scale of semantic sim-
ilarity (not jute the binary distinction of ‘same’/ ‘different’), which affects in a seemingly
continuous way the corresponding sale of phonological analysis. Note, however, that testing
does not consist of a purely perceptual task, as in Yeung and Werker (2009) with infant
learners. Here, I followed Feldman, Myers, et al. (2013) in asking the adult participants
explicitly to determine if the phonetic variation corresponds to relevant or irrelevant distinc-
tion in this particular artificial language. The reason was to avoid any ambiguity as to how
participants were supposed to answer. In the usual same-different task, some participants
may understand ‘same’ as ‘exactly the same’, and others as ‘functionally the same’, and

the same thing can be said for the case of ‘different’. I chose to specify to the participants
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that their answers should be based on functional similarity, rather than perceptual one.
The former is, arguably, more relevant to the task of phoneme learning. In fact, many
experiments have shown that people are able to access fine-grained variation even within
phonemic categories (McMurray, Tanenhaus, & Aslin, 2002; McMurray & Aslin, 2005) (See
Appendix F for the instructions given to participants in the testing phase).

The effect of semantic similarity on the phonological interpretation was tested for both
the pair used in training, and the new minimal pair that varies along the same vowel
contrast, used to probe the participants’ ability to generalize. The effect was, nonetheless,
more robust in learning than in generalization. Although the mean difference follows a
trend similar to that of learning, the interaction did not reach significance. Moreover,
despite the fact that the linear regression on responses after training was significant for
both learning and generalization, we note, however, that semantic relatedness affects the
phonological analysis in a finer way in learning. In fact, there is an increase in mean response
with every increase in semantic similarity, whereas generalization lags behind (there is
an increase in mean response every other step on the semantic scale). This difference
in the rate of learning and generalization cannot be explained by theories proposing a
purely abstract representational system (e.g., featural theories of representation such as
Chomsky and Halle (1968)), otherwise learners would have been able to perform similarly
regardless of the specific word context in which the phonetic variation occurred, i.e., the first
syllable of the word (gu or li). Although some degree of abstraction is necessary to explain
the presence of the effect in the case of generalization, the difference observed between
learning and generalization shows that even abstract representations, e.g., phonemes, can
incorporate contextual detail such as the word context in which the phoneme occurred (see
E. D. Thiessen and Yee (2010) for a similar conclusion).

On a last note, realize that in order to study the effect of semantic relatedness on the

phonological analysis, I assumed, for the seek of simplicity, a perfect semantic representation
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(every word-form was unambiguously mapped to a unique referent). It remains to be
shown that the effect holds even when the semantic representation is ambiguous. Escudero,
Mulak, and Vlach (2010) showed that human learners can encode fine phonetic details while
tracking word-referent co-occurrence statistics. Following this work, future research will test
whether the phonological analysis of a minimal word-form pair is modulated by the semantic
relatedness of their statistical distributions, using either visual stimuli of potential referents
(as in typical cross-situational learning) or, more importantly, only the co-occurring words

(as in Chapter 5).
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Conclusion and Future work

The present dissertation explored the interaction between phoneme learning and word
meaning learning. These learning problems have typically been considered independently,
but new findings have pointed out that this assumption is problematic in many regards
(Bergelson & Swingley, 2012; Stager & Werker, 1997; Varadarajan et al., 2008). I proposed
a new mechanism, in which the process of learning phonemes benefits from the top-down
constraint of early semantics, albeit ambiguous and rudimentary.

In the computational part, I selected two cues that are believed to shape the learn-
ers’ early sensitivity to phonemic contrast: a bottom-up cue (acoustic similarity) and a
top-down cue (word-form similarity). I compared their performance to that of two imple-
mentations of the semantic-similarity-based mechanism. The results showed that these cues
can play complementary roles. The word-form cue fares relatively well under extreme con-
ditions, whereas the first semantic cue requires a reasonable degree of intelligibility in the
input. Information from both cues combine in the second semantic cue, which was shown
to be resistant to extreme conditions while achieving a high degree of accuracy. Phonetic
contrasts that do not cause lexical variation (such as the English [h] vs. [g] ) remain out

of the top-down cues’ reach, and are, therefore, better learned through bottom-up means
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(acoustic similarity). These bottom-up and top-down cues provide continuous measure of
phonemicity, and are a priori insufficient to acquire the phonemic inventory. In fact, the
learners should be able, not only to tell how phonemic a pair of phone is, but also to decide
whether this amount of phonemicity is contrastive in their native language. This ques-
tion was addressed through another implementation of the learning mechanism, in which
different candidate phonological analyses (which varied from fine- to coarse-grained) were
assessed through the quality of the lexicon they induced, and more precisely, through the
degree of semantic coherence of this induced lexicon. The mechanism enabled us to pick
out the correct (i.e., phonemic) analysis of the input, while operating with minimal, if any,
external supervision.

In sum, the computational part dealt with the problem of phoneme learning by isolating
two different, but complementary, aspects. In Chapter 3, I modeled the perceptual reorga-
nization in terms of continuous cues to phonemicity, abstracting away from the question of
drawing the functional (i.e., contrastive) boundary. In Chapter 4, I showed that the right
phonological interpretation (defining the functional boundaries and, for instance, the num-
ber of categories) can be derived when perceptual organization is assumed to be perfect. In
a future work, I will bring together both aspects of phoneme learning in one computational
model, which can proceed as follows. Starting from a large number of allophones that model
the diversity of sounds present in a given language, a phone-phone similarity matrix will be
computed, integrating cues from acoustics, word-forms and semantics (based on evidence
from chapter 3). Categories of these phones will be made hierarchically based on this global
similarity metrics, and the right level will be selected according to the intrinsic semantic
consistency metrics (SC score defined in chapter 4). The model will aim at providing a
self-sufficient account of phoneme learning starting from a contextual variation. I will, in
addition, explore ways the model could be extended to include unsupervised discovery of

contextual allophones from raw speech.
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The computational part showed how the proposed mechanism can scale up to a realistic
input, but it abstracted away from the cognitive limitations of the learner (memory con-
straints, limited attentional resources, cognitive biases,..). The behavioral part aimed,
therefore, at providing support for the psychological plausibility of the main assumptions
made in the learning mechanism. These assumptions (which were used throughout the
computational part) can be summarized in the following. First, I assumed that infants pay
attention to fine grained phonetic categories (J. Werker & Tees, 1984; White & Morgan,
2008; McMurray & Aslin, 2005). Second, I supposed that learners rely on their fine-grained
perception to segment and store lexical items (Houston & Jusczyk, 2000; Curtin et al.,
2001). Third, I assumed that learners are able to infer a sense of semantic similarity from
co-occurrence statistics, and fourth, that this semantic similarity helps with determining
the phonemic status of phones. If the first two assumptions have received significant em-
pirical support, the last two have not. In Chapter 5, I provided evidence for the fact that
human subjects are capable of developing a sense of semantic similarity for word-forms,
without any informative word-object mapping situation. Participants were able to infer the
semantic category of a new word through the semantic properties of the words with which
it co-occurred consistently. In Chapter 6, I showed that human subjects demonstrated a
graded sensitive to the semantic similarity of the referents, and crucially, that this graded
sensitivity affected continuously the corresponding phonological analyses. Participants were
more likely to choose an allophonic analysis of a minimal word-form pair when the corre-
sponding semantic referents were more semantically related, and a phonemic analysis when
the referents were less semantically related. However, for the seek of simplicity, I assumed a
perfect semantic representation (every word-form was unambiguously mapped to a unique
referent). In a future work, I will explore ways to bring together the experimental paradigm
of Chapter 5 and that of Chapter 6 in one task, which would probe whether semantic

similarity modulates the phonological analysis even when the semantic representation is
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ambiguous, and particularly, when it is derived in a rather distributional fashion, as in
Chapter 5. Moreover, I will explore ways this work could to extended to infant studies. For
instance, Appendix G proposes a detailed description of how the experiment in Chapter 6

could be adapted to infant testing paradigms.
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Pre-processing of the CSJ corpus

Some of the segments included in the CSJ phonetic annotation do not represent real
contrastive elements, others are noisy events or abstract placeholders that are inappropriate
for the purpose of acoustic model training. Therefore, I performed further pre-processing in
order to obtain a true phonemic inventory that we can use in our modeling work, following,

in this regard, mostly the steps of Boruta (2012).

e CSJ denotes phonetic palatalization with distinct labels (e.g., [kj]). As this is just
an allophonic variation, I mapped the palatalized segments to their corresponding

phonemes (e.g., /k/).

e Besides phonetic palatalization, there is what is called in the CSJ documentation
phonological palatalization, which is phonemic as exemplified by the minimal pair:
/ko/ (“child”) and /kyo/ (“hugeness”). In this case, the cluster (e.g., [ky]) was mapped
onto two phonemes consisting of the plain version of the consonant (e.g., /k/) and
the yod (relabeled /j/). Similarly, voiceless alveolar sibilant affricate (i.e., /ts/) was

mapped onto the two corresponding phonemes.

e Vowel length is phonemic in Japanese. It has five vowel qualities ([i], [a], [u], [o], and

[e]) and CSJ uses an abstract moraic chroneme [H] to denote the second half of the
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long vowels. The long vowels were set apart from the short ones by mapping the
sequences [iH], [aH]|, [uH], [oH], and [eH] onto the atomic labels /i:/, /a:/, /ui/, /o:/

and /er/.

e Consonant length (gemination) is also phonemic in Japanese. The abstract moraic
obstruent [Q] was used in the CSJ corpus to denote the second half of a geminate.
Here a geminate consonant (e.g., [niQpoN]; ‘Japan’) was mapped to to a sequence of

two instances of the obstruent at hand (/nippoN/).

Other minor codings:

e The voiceless bilabial fricative [F] and the glottal fricative [h] are allophones in Japanese.

They were mapped onto the phoneme /h/.

e Tags at the phonemic level that denote hesitations ([VN]) or unidentifiable consonants

and vowels ([?] and [FV]) were collapsed into one single “Noise” label.

e Segments that are heavily underrepresented, and which therefore represent no statis-
tical or distributional interest, were also collapsed into the same “Noise” label. These

segments are [kw], [Fy], and [v] with, respectively 1,1, and 2 occurrences.
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HTK phonetic decision tree

Questions on contexts used in HTK’s decision-tree state-tying procedure. All questions
were input to the system in the order specified in this table, and each question was duplicated
to account for phonemes preceding and following contexts. Table B.1 shows the questions

for Japanese data, and Table B.2 shows the questions for English data.
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Question Set of context phonemes
1 Consonant? {p, b, m, t,d, n, s, z, 1, k, g, v, w, N, h}
2 Vowel? {a, e, i, 0, u, a1, e, i1, o1, u}
3 Voiced consonant ? {b,m, d, n, zr,g v, w, N}
4 Stop consonant? {p, b, t, d, k, g}
5 Alveolar consonant? {n, t, d, s, z, r}
6 Short vowel? {a, e, i, 0, u}
7 Long vowel? {az, e1,, i1, o1, u}
8 Voiceless consonant? {p, t, k, s, h}
9 Close vowel? {i, u, i, u}
10 Mid vowel? {e, o, ez, o}
11 Front vowel? {i, i1, e, e1}
12 Back vowel? {o, oz, u, u}
13 Nasal consonant? {n ,m, N}
14 Bilabial consonant? {m, p, b}
15 Velar consonant? {k, g, w}
16 Fricative consonant? {s, z, h}
17 Approximant consonant? {y, w}
18 Vowel quality [a]? {a, a:}
19 Vowel quality [e]? {e, e}
20 Vowel quality [i]? {i, it}
21 Vowel quality [o]? {o, o1}
22 Vowel quality [u]? {u, u}
23 Flap consonant? {r}
24 Uvular consonant? {N}
25 Glottal consonant? {h}
26 Silence? {<s>}

Table B.1: Questions on contexts used in HTK’s decision-tree state-tying procedure.
Japanese data
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Question Set of context phonemes
1 Consonant? {b, p, d, t, g, k, v, f, dh, th, z, s, zh, sh, jh, ch, m, em, n,
en, ng, r, 1, el, w, y, hh }
2 Voiced consonant ? {b, d, g, v, dh, z, zh, jh, m, em, n, en, ng, r, 1, el, w, y}
3 Vowel? {aa, ae, ay, aw, oy, ow, eh, ey, er, ah, uw, uh, ih, iy}
4  Fricative consonant? {s, sh, z, f, v, zh, th, dh, hh}
5  Alveolar consonant? {t, d, s, z, n, en, 1, el, r}
6  Mid vowel? {er, ey, eh, ow, oy}
7  Nasal consonant? {m, n, ng, en, em}
8  Stop consonant? {p, b, t, d, k, g}
9  Front vowel? {iy, ih, ey, eh, ae}
10 Open vowel? {ae, aa, ay, aw, ah}
11 Diphthong vowel? {ay, aw, oy, ey, ow}
12 Back vowel? {ow, uw, uh, aa}
13 Post-alveolar consonant? {sh, zh, r, ch, jh}
14 Bilabial consonant? {p, b, m, em}
15 Close vowel? {iy, ih, uw, uh}
16 Velar consonant? {k, g, ng, w}
17 Approximant consonant? {w, y, r}
18 Affricate consonant? {ch, jh}
19 Central vowel? {ah, er}
20 Dental consonant? {th, dh}
21 Labio-dental consonant?  {f, v}
22 Palatal consonant? {yv}
23 Glottal consonant? {hh}
24 Silence? {<s>}

Table B.2: Questions on contexts used in HTK’s decision-tree state-tying procedure. English

data.
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Allophones and sensitivity to

frequency and variation

Here I compare Random and HTK-based allophones with respect to their sensitivity to
frequency and variation. In the case of Random allophones, phonemes get split based on
random partitioning of contexts. The occurrence of a given phoneme in a linguistic context
once, is sufficient to instantiate the corresponding allophonic category. Thus, Random
allophones are only sensitive to variation in the linguistic context, but not to the frequency
of occurrence in this context. In the case of HTK-allophones, phonemes get split based
on a combination of linguistic-based similarity rules and acoustic models. The resulting
inventory of allophones reflects an interesting trade-off between linguistic, acoustic and
statistical considerations. Thus we suspect the HTK-based allophones to be sensitive to
both variation and frequency.

We quantify this observation through testing how variation and frequency fare in predict-
ing the global number of allophones per phoneme in each case. Context variation will be
characterized by the total number of attested contexts, and the frequency of occurrence by

the global frequency of the phoneme.!

!This assumption, i.e., characterising variation and frequency of occurrence as, respectively, the global
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I ran a multilinear regression model specified as follows:

nbrAllo(p) = a + 51 freq(p) + BanbrCont(p)

Where nbrAll stands for the number of allophones that a phoneme p gets, freq(p) is
the frequency of the phoneme in the corpus, and nbrCont(p) is the number of linguistic
contexts in which the phoneme occurs. Remember that a linguistic context is defined as the
pair composed of the preceding and the following segments. For example, in the utterance
“look!” (phonemically represented as l:uh:k) the phoneme /uh/ occurs in the context 1_k.

As the number of attested contexts depends obviously on the frequency, the predictive
variables must present some degree of collinearity. In fact the Pearson coefficient gives
a value of R = 0.69 in the case of the Buckeye corpus and R = 0.53 in the case of the
CSJ corpus. Nonetheless, such amount of collinearity is unlikely to affect adversely the
estimation of regression statistics. In fact, Tolerance to collinearity is equal to 1 — R? = 0.53
in English and 0.70 in Japanese, a number higher than the thresholds used in the literature,
which varies from 0.1 (e.g., Tabachnick & Fidell, 2001) to 0.25 (Huber & Stephens, 1993).

After running the model in the case of HTK allophones, using an allophonic complexity
equal to 32 times the size of the phonemic inventory, we get for the CSJ corpus: F(2,22) =
94.45 (p = 1.591e-11 and R? = 0.895), indicating that we should clearly reject the null
hypothesis that the variable freq and nbrCont have no effect on nbrAllo. The results
also show that the variable freq is significantly controlling for the variable nbrCont (p =
1.46e — 09), and nbrCont is significantly controlling for freq (p < 0.0113). For the Buckeye
corpus we get a similar pattern: F(2,38) = 35.86 (p = 1.782¢-09 and R? = 0.653) (thus
rejecting the null hypothesis). As in Japanese, freq is significantly controlling for the

nbrCont (p = 0.0001), and nbrCont is significantly controlling for freq (p = 0.0297).

number of attested contexts and the global frequency of the phoneme, is not perfect. A phoneme may occur
in different contexts which can still be similar to each other, or occur with a high global frequency, but in
only a few linguistic contexts. However, we consider this global variables to be reasonable proxies to our
notions of variation and frequency of occurrence.
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When we run the model on the artificial allophones, we get in the case of CSJ corpus:
F(2,22) = 2.248 (p = 0.1293 and R? = 0.169), which means that we cannot reject the null
hypothesis according to which frequency and the number of attested contexts have no effect
on the resulting number of allophones. When we run two separate linear models, using either
freq or nbrCont, we get a significant score F(1,23) = 4.66 (p = 0.041 and R? = 0.168)
in the case of nbrCont, but not in the case of freq, where the score is F(1,23) = 0.88
(p = 0.357). As for the artificial allophones of the Buckeye corpus, the model gives a
significant score F(2,38) = 8.966 (p < 6.46e-04 and R? = 0.32), the nbrCont variable had a
coefficient significantly different from zero (p = 0.00406), but not the coefficient associated
with the variable freq (p ~ 1), indicating that the effect is attributed mainly to the number
of attested contexts.

To sum up, analysis of the HT'K-based allophones shows that the number of allophones
per phoneme is reliably predicted by both the frequency of the phoneme and the number of
contexts in which this phoneme occurs. In contrast, analysis of artificial allophones shows
that the number of allophones depends on the number of attested contexts, but not on the

frequency of the phoneme.
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How HTK-based allophones affect

the phonemic classification

One factor that explains why an allophonic contrast would be invisible to the lexicon
consists in the fact that some allophones are triggered on maximally different contexts (on

the right and the left) as illustrated in the allophonic rule of Figure D.1.

[ /A_B
& {[pgl/C_D

Figure D.1: example of an allophonic rule

When the set of contexts A doesnt overlap with C, and B does not overlap with D, it
becomes impossible for the contrast ([p1], [p2]) to surface as an allomorphic pair of the form
([Xp1] vs. [Xp2]) (1), or the form ([p1X] vs. [p2X]) (2), where X refers to the rest of the
word. The reason is simply because allophones have to share at least one triggering context
to be able to form allomorphic variants of the same word. The shared context should be
that of the penultimate segment of the word in the case of an allomorphic pair of the form

(1), and the second segment in the case of an allomorphic pair of the form (2).
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When asked to split the set of contexts in two distinct categories that trigger either [p]
or [p2] (this corresponds to the sets A__B and C__D in the example above), the random
procedure will often make A overlap with C and B overlap with D, since this procedure is
completely oblivious to the acoustic/phonetic similarity. This makes it always possible for
a pair of allophones to generate a pair of lexical allomorphs.

To illustrate this, here is a simple example. Suppose we have a toy language composed

of the following phonemic inventory:

P ={a,b,c,d}

The set of possible contexts corresponds to the set of all possible pairs of phonemes, i.e.,

the left context and the right context. We have 16 pairs, detailed in the following set:

C={a_a,a_b,a_c,a_d,b_a,b_bb_c,b_d,c_a,c_b,c_c,c_d,d_a,d_b,d_c,d_d}

A random partitioning in two triggering sets of contexts gives, for example, the two

following sets:

A__B={a_a,b_bb_c,c_a,c_b,c_d,d_c,d_d}

C_D={a_b,a_c,a_d,b_a,b_d,c_a,d_a,d_b}

As you can see, A_ B and C__D present overlaps on both sides. For instance, all
phonemes (a, b, ¢ and d) occur in both A and C, and in both B and D. We can, in principle,
find allomorphic pairs of the form [Xp;)] vs. [Xpso] or the form [p;X] vs. [p2X] (where the
phoneme /p/ belongs to the set {a,b,c,d}). For example, we can have the allomorphic pair

[abcpi] / [abepe], since the pair (pi,p2) shares the context ‘c’ on the left (ie., c € A N
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C). Similarly, we can have a pair of the second form [p;bca] / [pa2bcal, since the allophones
share the context ‘b’ on the right (i.e., b € B N D).

The case of HTK allophones is different. The procedure of context splitting is not ran-
dom, but performed based on phonetic and acoustic considerations (see Chapter 2). This
procedure, contrary to the random one, tends to maximize within-category similarity, and
maximize between-category distance, resulting in less overlaps. If we take our previous

example, a possible context splitting can take the following form:

A__B={a_a,a_b,a_c,a_d}

C_D={b_a,b_bb_c,b_d,c_a,c_b,c_c,c_d,d_a,d_b,d_c,d_d}

This happens, for instance, when the phoneme ‘a’, as a left context, triggers instances of
the phoneme /p/ whose acoustic models are so similar to each other, and so different from
the rest of the instances, that HTK will put the corresponding contexts into one category
(here A), and the rest of contexts in a separate category. Thus, there is no overlap between
the left triggering context of the allophones (A N C = {)). The probability of finding an
allomorphic pair of the form [Xpi] vs [Xp2] is, therefore, zero. Note however, that in this
toy example, there is still the possibility of finding an allomorphic pair of the form [p;X] vs
[p2X]. Nonetheless, in real HTK splitting, phonemes tend either to have many allophones
(the frequent ones), or to have none (the infrequent ones) even with inventory sizes as small
as 2 allophones/phoneme in average (Figure D.2). In fact, the more allophones a phoneme
has, the bigger the chance is to end up with non-overlapping triggering categories, and
consequently, the more invisible allophonic pairs we will have. This general trends can also
be observed in Table 3.5 where the number of invisible pairs increases as a function of the
average number of allophones per phoneme.

To sum up, one factor explaining the discrepancy in performance between random and
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6

auopnmes/phoneme

allophones/phoneme

2+
1+

ih | rown hen gsh thuh wdh y hhjhemb d g f k p
phoneme phoneme

Figure D.2: The number of allophones for each phoneme in English data (left) and Japanese
data (right), in the case of 2 allophones per phoneme in average.

HTK allophones lies in the fact that invisible allophonic pairs are more frequent in the
latter, since it takes into account phonetic/acoustic similarity. The invisible pairs are au-
tomatically set to O in top down cues, which translates systematically into false alarms in

the classification task.
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Levels of phonetic clustering

To generate categories coarser than the phonemes, I collapsed the segments in Japanese
from 25 to 13, 8, 4 and 2 (Figure E.1). Similarly, I collapsed the segments in English from

41 phonemes to 19, then to 10, 4 and 2 (Figure E.2).
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Inventory (25) H1 (13) H2 (8) H3 (4) H4 (2)
a A Open Vowel Vowel
a:

e E Mid

e:

o o]

o:

i | Close

i

u U

u:

m Nasals Nasal Nasal Consonant
n

N

b B Stop Obstruent

p

d D

t

g G

k

s z Fricative

z

h H

r Flap Flap Sonorant

y Approximant Approximant

w

Figure E.1: Hierarchical clustering of Japanese phonemes.
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Inventory (41) H (19) H (10) H(4) H(2)
ae A Open Vowel Vowel
ah
aa
eh E Mid
er
iy Close
ih
uw u
uh
ay Di Di
aw
oy
ow
ey
m M Nasal Nasal Consonant
em
n N
en
ng ng
b B Stops Obstruent
p
d D
1
g G
k
ch CH Affricate
ih
f F Fricative
v
th Th
dnh
s Z
z
sh Zh
zh
hh hh
r Approximant Approximant Sonorant
w
¥
| L Lateral
el
Figure E.2: Hierarchical clustering of English phonemes.
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Instructions to participants

Below are the instruction givens to participants in the testing phase of the experiment of

Chapter 6.

“You will listen to pairs of words from an artificial language. You should decide if they are
same or different. The words can be different in the language even if they are similar (like
the pair CAP-GAP in the English language). Conversely, they can be same (ex: GAP-GAP

in the English language) even if they are pronounced slightly differently!”
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Extension to infant studies

In this appendix, I propose a detailed description of how the experiment in Chapter 6 could
be adapted to infant testing paradigms. The mechanism suggests that different phonological
analyses of the form are assessed based on the coherence of the semantic categories they

induce. We can break this down into three basic psychological assumptions:

1. Children can access different possible phonological analyses of the form (regardless of

whether or not these analyses are relevant to identify words).

2. Children can assess meaning coherence (the category of cats is more semantically
coherent that the category of both cats and bats, which is more coherent than the

category of cats, cows and cars).

3. Each phonological analysis accessed thanks to (1) is assessed top-down, through (2).

The first assumption has already been given empirical support (J. Werker & Tees, 1984;
McMurray & Aslin, 2005). The second and the third have yet to be tested. In what follows,
I will propose a way to test if babies are sensitive to different levels of semantic coherence
(Experiment 1), and whether this sensitivity is used to identify words in an ambiguous

learning situation (Experiment 2).
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Participants In each experimental condition, we can test a group of 40 18 month-old
infants (32 + 20% drop-out). Infants at this age were shown to be at crucial transition in
phonological learning, interpreting phonological variation appropriately in some contexts
but not others (Swingley & Aslin, 2007). Interestingly, this age also corresponds to quali-

tative and quantitative changes in semantic learning (Nazzi & Bertoncini, 2003).

Experiment 1 : sensitivity to semantic coherence

Upon hearing a few examples of a word paired with an object, children are generally
able to determine an accurate semantic category for the word, extending the meaning from
the single object they see (for example, they learn that /keet/ can refer to cats of different
colors and sizes, but not to dogs). Researchers have identified different semantic features
that children bring to this task, two of which have received a lot of attention: the shape
bias (Landau, Smith, & Jones, 1988) and the taxonomic bias (Markman, 1991).

I will use these documented features to manipulate the semantic coherence of a pair
of objects at 3 levels. The first pair will consist of two similar objects (e.g., two cats),
the second and third will be composed of two objects that vary, respectively, along the
dimension of shape (e.g., a cat and a cow), and along both shape and taxonomy (e.g., a
cat and a car). I propose to probe infants’ graded sensitivity to semantic coherence in
a naming extension task, using looking time as a behavioral index. This method has
been successfully used before as a fine-grained behavioral tool to investigate sensitivity to
different degrees of phonetic mismatch; e.g., McMurray and Aslin (2005) and White et al.

(2008).

Experimental paradigm and procedure I will use an adapted version of the switch
paradigm (Werker, Cohen, Lloyd, Casasola, & Stager, 1998). Babies are first habituated
to the mapping between a non familiar word-form (e.g., zem) and a novel object. In the

test phase, they are presented with different trials where they hear the same word-form

141



APPENDIX G.

and they see objects that differ from the initial object in a graded way, along both shape
and taxonomy. If children exhibit graded sensitivity to the degree of semantic mismatch,
we expect them to show increases in looking time as the distance between
the original and new object increases. Figure G.1 provides an illustration of the
experimental design (here we used familiar items for ease of explanation, the real experiment

will consist of novel referents).

PHASE Habituation Test

WORD-FORM “zem” “zem” “zem” “zem”
REFERENT kﬂ"r 54 k‘j"’r 54

MISMATCH Same 1 feature 2 features

(shape) (shape+taxonomy)

Figure G.1: An illustration of the proposed experimental dessign.

Experiment 2: coherence modulates the phonological interpretation

Experiment 1 tests sensitivity to semantic coherence in young children; experiment 2
will test if this sensitivity modulates the phonological interpretation, as predicted by our
mechanism. To this end, we can use a task similar to that of Werker et al. (1998). Infants
are tested on their ability to map a minimal pair (e.g., “bin” /“din”) to two different objects.
Success at this task requires that infants be able to identify the difference between the two
sounds as lexically contrastive, rather than considering it as mere variation of the same
word. I vary the semantic coherence of the objects as explained in Experiment 1, and I
predict that the more semantically distant the referents are, the less likely infants are to
consider them as a plausible single meaning for one word; their phonological processing will,

therefore, favor the two word interpretation.
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Experimental paradigm and procedure we can use the looking-while-listening paradigm
(Fernald, Zangl, Portillo, & Marchman, 2008), since it has been shown to provide a more
precise and fine-grained test of learning than the paradigm originally introduced by Werker
et al. (1998). In the habituation phase, children will be taught the pairing between two
words that differ minimally (“bin”/“din”) and two objects. I vary the semantic coherence
of that pair of objects as described in Experiment 2. One condition will have a pair of
referents with one degree of semantic mismatch, and the other condition will have a pair of
referents with 2 degrees of mismatch. In the test phase, children in each condition will hear
one label (“bin” or “din”) and see the two objects simultaneously. If babies have learned
correctly the mapping between the words and the objects, they are expected to look longer
to the correct object when they hear its label. I expect children’s looking time at the correct
object to correlate with the semantic coherence of the referents. This would provide sup-
port for the hypothesis that semantic coherence modulates the phonological interpretation

of word-forms.
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Abstract

Cross-linguistic studies on unsupervised
word segmentation have consistently
shown that English is easier to segment
than other languages. In this paper, we
propose an explanation of this finding
based on the notion of segmentation
ambiguity. We show that English has a
very low segmentation ambiguity com-
pared to Japanese and that this difference
correlates with the segmentation perfor-
mance in a unigram model. We suggest
that segmentation ambiguity is linked
to a trade-off between syllable structure
complexity and word length distribution.

1 Introduction

During the course of language acquisition, in-
fants must learn to segment words from continu-
ous speech. Experimental studies show that they
start doing so from around 7.5 months of age
(Jusczyk and Aslin, 1995). Further studies indi-
cate that infants are sensitive to a number of word
boundary cues, like prosody (Jusczyk et al., 1999;
Mattys et al., 1999), transition probabilities (Saf-
fran et al., 1996; Pelucchi et al., 2009), phonotac-
tics (Mattys et al., 2001), coarticulation (Johnson
and Jusczyk, 2001) and combine these cues with
different weights (Weiss et al., 2010).
Computational models of word segmentation
have played a major role in assessing the relevance
and reliability of different statistical cues present
in the speech input. Some of these models focus
mainly on boundary detection, and assess differ-
ent strategies to identify them (Christiansen et al.,
1998; Xanthos, 2004; Swingley, 2005; Daland and
Pierrehumbert, 2011). Other models, sometimes
called lexicon-building algorithms, learn the lexi-
con and the segmentation at the same time and use
knowledge about the extracted lexicon to segment

1

novel utterances. State-of-the-art lexicon-building
segmentation algorithms are typically reported to
yield better performance than word boundary de-
tection algorithms (Brent, 1999; Venkataraman,
2001; Batchelder, 2002; Goldwater, 2007; John-
son, 2008b; Fleck, 2008; Blanchard et al., 2010).

As seen in Table 1, however, the performance
varies considerably across languages with English
winning by a high margin. This raises a general-
izability issue for NLP applications, but also for
the modeling of language acquisition since, obvi-
ously, it is not the case that in some languages,
infants fail to acquire an adult lexicon. Are these
performance differences only due to the fact that
the algorithms might be optimized for English? Or
do they also reflect some intrinsic linguistic differ-
ences between languages?

Lang.  F-score Model Reference
English  0.89 AG Johnson (2009)
Chinese 0.77 AG Johnson (2010)
Spanish  0.58 DP Bigram Fleck (2008)
Arabic 0.56 WordEnds Fleck (2008)
Sesotho  0.55 AG Johnson (2008)
Japanese 0.55 BootLex Batchelder (2002)
French 0.54 NGS-u Boruta (2011)

Table 1: State-of-the-art unsupervised segmentation scores

for eight languages.

The aim of the present work is to understand
why English usually scores better than other lan-
guages, as far as unsupervised segmentation is
concerned. As a comparison point, we chose
Japanese because it is among the languages that
have given the poorest word segmentation scores.
In fact, Boruta et al. (2011) found an F-score
around 0.41 using both Brent (1999)’s MBDP-1
and Venkataraman (2001)’s NGS-u models, and
Batchelder (2002) found an F-score that goes
from 0.40 to 0.55 depending on the corpus used.
Japanese also differs typologically from English
along several phonological dimensions such as
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number of syllabic types, phonotactic constraints
and rhythmic structure. Although most lexicon-
building segmentation algorithms do not attempt
to model these dimensions, they still might be rel-
evant to speech segmentation and help explain the
performance difference.

The structure of the paper is as follows. First,
we present the class of lexical-building segmen-
tation algorithm that we use in this paper (Adap-
tor Grammar), and our English and Japanese cor-
pora. We then present data replicating the basic
finding that segmentation performance is better for
English than for Japanese. We then explore the hy-
pothesis that this finding is due to an intrinsic dif-
ference in segmentation ambiguity in the two lan-
guages, and suggest that the source of this differ-
ence rests in the structure of the phonological lexi-
con in the two languages. Finally, we use these in-
sights to try and reduce the gap between Japanese
and English segmentation through a modification
of the Unigram model where multiple linguistic
levels are learned jointly.

2 Computational Framework and
Corpora

2.1 Adaptor Grammar

In this study, we use the Adaptor Grammar frame-
work (Johnson et al., 2007) to test different mod-
els of word segmentation on English and Japanese
Corpora. This framework makes it possible to
express a class of hierarchical non-parametric
Bayesian models using an extension of probabilis-
tic context-free grammars called Adaptor Gram-
mar (AG). It allows one to easily define models
that incorporate different assumptions about lin-
guistic structure and is therefore a useful practical
tool for exploring different hypotheses about word
segmentation (Johnson, 2008b; Johnson, 2008a;
Johnson et al., 2010; Borschinger et al., 2012).

For mathematical details and a description of
the inference procedure for AGs, we refer the
reader to Johnson et al. (2007). Briefly, AG uses
the non-parametric Pitman-Yor-Process (Pitman
and Yor, 1997) which, as in Minimum Descrip-
tion lengths models, finds a compact representa-
tion of the input by re-using frequent structures
(here, words).

2.2 Corpora

In the present study, we used both Child Di-
rected Speech (CDS) and Adult Directed Speech

(ADS) corpora. English CDS was derived from
the Bernstein-Ratner corpus (Bernstein-Ratner,
1987), which consists in transcribed verbal inter-
action of parents with nine children between 1
and 2 years of age. We used the 9,790 utter-
ances that were phonemically transcribed by Brent
and Cartwright (1996). Japanese CDS consists in
the first 10, 000 utterances of the Hamasaki cor-
pus (Hamasaki, 2002). It provides a phonemic
transcript of spontaneous speech to a single child
collected from when the child was 2 up to when
it was 3.5 years old. Both CDS corpora are avail-
able from the CHILDES database (MacWhinney,
2000).

As for English ADS, we used the first 10,000
utterances of the Buckeye Speech Corpus (Pitt et
al., 2007) which consists in spontaneous conver-
sations with 40 speakers in American English. To
make it comparable to the other corpora in this
paper, we only used the idealized phonemic tran-
scription. Finally, for Japanese ADS, we used
the first 10,000 utterances of a phonemic tran-
scription of the Corpus of Spontaneous Japanese
(Maekawa et al., 2000). It consists of recorded
spontaneous conversations, or public speeches in
different fields ranging from engineering to hu-
manities. For each corpus, we present elementary
statistics in Table 2.

3 Unsupervised segmentation with the
Unigram Model

3.1 Setup

In this experiment we used the Adaptor Gram-
mar framework to implement a Unigram model of
word segmentation (Johnson et al., 2007). This
model has been shown to be equivalent to the orig-
inal MBDP-1 segmentation model (see Goldwater
(2007)). The model is defined as:

Utterance — Word"
Word — Phonemet

In the AG framework, an underlined non-
terminal indicates that this non-terminal is
adapted, i.e. that the AG will cache (and learn
probabilities for) entire sub-trees rooted in this
non-terminal. Here, Word is the only unit that the
model effectively learns, and there are no depen-
dencies between the words to be learned. This
grammar states that an utterance must be analyzed
in terms of one or more Words, where a Word is a



Corpus Child Directed Speech ~ Adult Directed Speech
English  Japanese English Japanese
Tokens
Utterances 9,790 10,000 10,000 10,000
Words 33,399 27,362 57,185 87,156
Phonemes 95, 809 108,427 183,196 289,264
Types
Words 1,321 2,389 3,708 4,206
Phonemes 50 30 44 25
Average Lengths
Words per utterance 3.41 2.74 5.72 8.72
Phonemes per utterance ~ 9.79 10.84 18.32 28.93
Phonemes per word 2.87 3.96 3.20 3.32

Table 2 : Characteristics of phonemically transcribed corpora

sequence of Phonemes.

We ran the model twice on each corpus for
2,000 iterations with hyper-parameter sampling
and we collected samples throughout the process,
following the methodology of Johnson and Gold-
water (2009)!. For evaluation, we performed their
Minimum Bayes Risk decoding using the col-
lected samples to get a single score.

3.2 Evaluation

For the evaluation, we used the same measures as
Brent (1999), Venkataraman (2001) and Goldwa-
ter (2007), namely token Precision (P), Recall (R)
and F-score (F). Precision is defined as the num-
ber of correct word tokens found out of all tokens
posited. Recall is the number of correct word to-
kens found out of all tokens in the gold standard.
The F-score is defined as the harmonic mean of
Precision and Recall , F' = Q;i’;%R.

We will refer to these scores as the segmentation
scores. In addition, we define similar measures for
word boundaries and word types in the lexicon.

3.3 Results and discussion

The results are shown in Table 3. As expected,
the model yields substantially better scores in En-
glish than Japanese, for both CDS and ADS. In
addition, we found that in both languages, ADS
yields slightly worse results than CDS. This is to
be expected because ADS uses between 60% and
300% longer utterances than CDS, and as a result
presents the learner with a more difficult segmen-
tation problem. Moreover, ADS includes between

"We used incremental initialization

70% and 280% more word types than CDS, mak-
ing it a more difficult lexical learning problem.
Note, however, that despite these large differences
in corpus statistics, the difference in segmentation
performance between ADS and CDS are small
compared to the differences between Japanese and
English.

An error analysis on English data shows that
most errors come from the Unigram model mistak-
ing high frequency collocations for single words
(see also Goldwater (2007)). This leads to an
under-segmentation of chunks like “a boy” or “is
it” 2. Yet, the model also tends to break off fre-
quent morphological affixes, especially “-ing” and
“-s” , leading to an over-segmentation of words
like “talk ing” or “black s”.

Similarly, Japanese data shows both over-
and under-segmentation errors. However, over-
segmentation is more severe than for English, as
it does not only affect affixes, but surfaces as
breaking apart multi-syllabic words. In addition,
Japanese segmentation faces another kind of er-
ror which acts across word boundaries. For exam-
ple, “ni kashite” is segmented as “nika shite” and
“nurete inakatta” as “nure tei na katta”. This leads
to an output lexicon that, on the one hand, allows
for a more compact analysis of the corpus than
the true lexicon: the number of word types drops
from 2,389 to 1,463 in CDS and from 4,206 to
2,372 in ADS although the average token length —
and consequently, overall number of tokens — does
not change as dramatically, dropping from 3.96 to

%For ease of presentation, we use orthography to present
examples although all experiments are run on phonemic tran-
scripts.



Child Directed Speech

Adult Directed Speech

English

Japanese

English Japanese

F P R F P

R F P R F P R

Segmentation 0.77 0.76 0.77 0.55 0.51
0.87 087 0.88 0.72 0.63 0.83 086 0.81
0.62 0.65 059 033 043 026 041

Boundaries
Lexicon

0.61 0.69 066 0.73 050 048 0.52
091 0.76 0.74 0.79
048 036 030 042 0.23

Table 3 : Word segmentation scores of the Unigram model

3.31 for CDS and from 3.32 to 3.12 in ADS. On
the other hand, however, most of the output lex-
icon items are not valid Japanese words and this
leads to the bad lexicon F-scores. This, in turn,
leads to the bad overall segmentation performance.

In brief, we have shown that, across two dif-
ferent corpora, English yields consistently better
segmentation results than Japanese for the Uni-
gram model. This confirms and extends the results
of Boruta et al. (2011) and Batchelder (2002). It
strongly suggests that the difference is neither due
to a specific choice of model nor to particularities
of the corpora, but reflects a fundamental property
of these two languages.

In the following section, we introduce the no-
tion of segmentation ambiguity, it to English and
Japanese data, and show that it correlates with seg-
mentation performance.

4 Intrinsic Segmentation Ambiguity

Lexicon-based segmentation algorithms like
MBDP-1, NGS-u and the AG Unigram model
learn the lexicon and the segmentation at the
same time. This makes it difficult, in case of
poor performance, to see whether the problem
comes from the intrinsic segmentability of the
language or from the quality of the extracted
lexicon. Our claim is that Japanese is intrinsically
more difficult to segment than English, even when
a good lexicon is already assumed. We explore
this hypothesis by studying segmentation alone,
assuming a perfect (Gold) lexicon.

4.1 Segmentation ambiguity

Without any information, a string of N phonemes
could be segmented in 2/V~! ways. When a lexi-
con is provided, the set of possible segmentations
is reduced to a smaller number. To illustrate this,
suppose we have to segment the input utterance:

/ay s k riy m/ 3, and that the lexicon contains the
following words : /ay/ (I), /s k r iy m/ (scream),
fay s/ (ice), /k r iy m/ (cream). Only two segmen-
tations are possible : /ay skriym/ (I scream) and
/ays kriym/ (ice cream).

We are interested in the ambiguity generated by
the different possible parses that result from such a
supervised segmentation. In order to quantify this
idea in general, we define a Normalized Segmenta-
tion Entropy. To do this, we need to assign a prob-
ability to every possible segmentation. To this end,
we use a unigram model where the probability of a
lexical item is its normalized frequency in the cor-
pus and the probability of a parse is the product
of the probabilities of its terms. In order to obtain
a measure that does not depend on the utterance
length, we normalize by the number of possible
boundaries in the utterance. So for an utterance of
length N, the Normalized Segmentation Entropy
(NSE) is computed using Shannon formula (Shan-
non, 1948) as follows:

NSE = —¥; Pilogs(P;) /(N - 1)

where P; is the probability of the parse i .

For CDS data we found Normalized Segmen-
tation Entropies of 0.0021 bits for English and
0.0156 bits for Japanese. In ADS data we
found similar results with 0.0032 bits for English
and 0.0275 bits for Japanese. This means that
Japanese needs between 7 and 8 times more bits
than English to encode segmentation information.
This is a very large difference, which is of the
same magnitude in CDS and ADS. These differ-
ences clearly show that intrinsically, Japanese is
more ambiguous than English with regards to seg-
mentation.

One can refine this analysis by distinguishing
two sources of ambiguity: ambiguity across word
boundaries, as in “’ice cream / [ay s] [k r iy m]”

3We use ARPABET notation to represent phonemic input.
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Figure 1 : Correlation between Normalized Segmentation Entropy (in bits) and the segmentation F-score for CDS (left) and
ADS (Right)

vs ”I scream / [ay] [s k r iy m]”. And ambigu-
ity within the lexicon, that occurs when a lexical
item is composed of two or more sub-words (like
in “Butterfly”).

Since we are mainly investigating lexicon-
building models, it is important to measure the am-
biguity within the lexicon itself, in the ideal case
where this lexicon is perfect. To this end, we com-
puted the average number of segmentations for a
lexicon item. For example, the word “butterfly”
has two possible segmentations : the original word
“butterfly” and a segmentation comprising the two
sub-words : “butter” and “fly”. For English to-
kens, we found an average of 1.039 in CDS and
1.057 in ADS. For Japanese tokens, we found an
average of 1.811 in CDS and 1.978 in ADS. En-
glish’s averages are close to 1, indicating that it
doesn’t exhibit lexicon ambiguity. Japanese, how-
ever, has averages close to 2 which means that lex-
ical ambiguity is quite systematic in both CDS and
ADS.

4.2 Segmentation ambiguity and supervised
segmentation

The intrinsic ambiguity in Japanese only shows
that a given sentence has multiple possible seg-
mentations. What remains to be demonstrated is
that these multiple segmentations result in system-
atic segmentation errors. To do this we propose
a supervised segmentation algorithm that enumer-
ates all possible segmentations of an utterance
based on the gold lexicon, and selects the segmen-
tation with the highest probability. In CDS data,
this algorithm yields a segmentation F-score equal
to 0.99 for English and 0.95 for Japanese. In ADS
we find an F-score of 0.96 for English and 0.93 for
Japanese. These results show that lexical informa-
tion alone plus word frequency eliminates almost

all segmentation errors in English, especially for
CDS. As for Japanese, even if the scores remain
impressively high, the lexicon alone is not suffi-
cient to eliminate all the errors. In other words,
even with a gold lexicon, English remains easier
to segment than Japanese.

To quantify the link between segmentation en-
tropy and segmentation errors, we binned the sen-
tences of our corpus in 10 bins according to the
Normalized Segmentation Entropy, and correlate
this with the average segmentation F-score for
each bin. As shown Figure 1, we found significant
correlations: (R = —0.86, p < 0.001) for CDS
and (R = —0.93, p < 0.001) for ADS, showing
that segmentation ambiguity has a strong effect
even on supervised segmentation scores. The cor-
relation within language was also significant but
only in the Japanese data : R = —0.70 for CDS
and R = —0.62 for ADS.

Next, we explore one possible reason for this
structural difference between Japanese and En-
glish, especially at the level of the lexicon.

4.3 Syllable structure and lexical
composition of Japanese and English

One of the most salient differences between En-
glish and Japanese phonology concerns their syl-
lable structure. This is illustrated in Figure 2
(above), where we plotted the frequency of the dif-
ferent syllabic structures of monosyllabic tokens
in English and Japanese CDS. The statistics show
that English has a very rich syllabic composition
where a diversity of consonant clusters is allowed,
whereas Japanese syllable structure is quite simple
and mostly composed of the default CV type. This
difference is bound to have an effect on the struc-
ture of the lexicon. Indeed, Japanese has to use
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Figure 2 : Trade-off between the complexity of syllable structure (above) and the word token length in terms of syllables
(below) for English and Japanese CDS.

multisyllabic words in order to achieve a large size
lexicon, whereas, in principle, English could use
mostly monosyllables. In Figure 2 (below) we dis-
play the distribution of word length as measured
in syllables in the two languages for the CDS cor-
pora. The English data is indeed mostly composed
of mono-syllabic words whereas the Japanese one
is made of words of more varied lengths. Overall,
we have documented a trade-off between the di-
versity of syllable structure on the one hand, and
the diversity of word lengths on the other (see Ta-
ble 4 for a summary of this tradeoff expressed in
terms of entropy).

CDS ADS
Eng. Jap. Eng. Jap.
Syllable types 2.40 1.38 2.58 1.03
Token lengths 0.62 2.04 0.99 1.69

Table 4 : Entropies of syllable types and token lengths in
terms of syllables (in bits)

We suggest that this trade-off is responsible for
the difference in the lexicon ambiguity across the
two languages. Specifically, the combination of
a small number of syllable types and, as a conse-
quence, the tendency for multi-syllabic word types
in Japanese makes it likely that a long word will
be composed of smaller ones. This cannot happen
very often in English, since most words are mono-
syllabic, and words smaller than a syllable are not
allowed.

5 Improving Japanese unsupervised
segmentation

We showed in the previous section that ambigu-
ity impacts segmentation even with a gold lexicon,
mainly because the lexicon itself could be ambigu-
ous. In an unsupervised segmentation setting, the
problem is worse because ambiguity within and
across word boundaries leads to a bad lexicon,
which in turn results in more segmentation errors.
In this section, we explore the possibility of miti-
gating some of these negative consequences.

In section 3, we saw that when the Unigram
model tries to learn Japanese words, it produces an
output lexicon composed of both over- and under-
segmented words in addition to words that re-
sult from a segmentation across word boundaries.
One way to address this is by learning multiple
kinds of units jointly, rather than just words; in-
deed, previous work has shown that richer mod-
els with multiple levels improve segmentation for
English (Johnson, 2008a; Johnson and Goldwater,
2009).

5.1 Two dependency levels

As a first step, we will allow the model to not
just learn words but to also memorize sequences of
words. Johnson (2008a) introduced these units as
“collocations” but we choose to use the more neu-
tral notion of level for reasons that become clear
shortly. Concretely, the grammar is:



CDS ADS
English Japanese English Japanese
F P R F P R F P R F P R

Level 1

Segmentation 0.81 0.77 086 042 033 055 0.70 0.63 0.78 042 0.35 0.50

Boundaries 091 0.84 098 0.63 047 096 086 0.76 098 0.73 0.61 0.90

Lexicon 064 079 054 0.18 055 0.10 036 056 0.26 0.15 0.68 0.08
Level 2

Segmentation 0.33 045 026 059 0.65 053 050 0.60 043 045 0.54 0.38

Boundaries 056 098 040 0.71 0.87 060 0.76 095 064 0.73 0.92 0.60

Lexicon 036 025 059 047 044 049 046 038 056 043 0.37 0.50

Table 5 : Word segmentation scores of the two levels model

Utterance — level2"
level2 — levell™
levell — Phoneme

+

We run this model under the same conditions
as the Unigram model but evaluate two different
situations. The model has no inductive bias that
would force it to equate levell with words, rather
than level2. Consequently, we evaluate the seg-
mentation that is the result of taking there to be a
boundary between every levell constituent (Level
1 in Table 5) and between every level2 constituent
(Level 2 in Table 5 ). From these results , we see
that English data has better scores when the lower
level represents the Word unit and when the higher
level captures regularities above the word. How-
ever, Japanese data is best segmented when the
higher level is the Word unit and the lower level
captures sub-word regularities.

Level 1 generally tends to over-segment utter-
ances as can be seen by comparing the Boundary
Recall and Precision scores (Goldwater, 2007). In
fact when the Recall is much higher than the Pre-
cision, we can say that the model has a tendency
to over-segment. Conversely, we see that Level 2
tends to under-segment utterances as the Bound-
ary Precision is higher than the Recall.

Over-segmentation at Level 1 seems to benefit
English since it counteracts the tendency of the
Unigram model to cluster high frequency colloca-
tions. As far as segmentation is concerned, this
effect seems to outweigh the negative effect of
breaking words apart (especially in CDS), as En-
glish words are mostly monosyllabic.

For Japanese, under-segmentation at Level 2

seems to be slightly less harmful than over-
segmentation at Level 1, as it prevents, to some
extent, multi-syllabic words to be split. However,
the scores are not very different from the ones we
had with the Unigram model and slightly worse
for the ADS. What seems to be missing is an inter-
mediate level where over- and under-segmentation
would counteract one another.

5.2 Three dependency levels

We add a third dependency level to our model as
follows :

Utterance — level3™
level3 — level2™
level2 — levell™
levell — Phoneme

+

As with the previous model, we test each of the
three levels as the word unit, the results are shown
in Table 6.

Except for English CDS, all the corpora
have their best scores with this intermediate
level. Level 1 tends to over-segment Japanese
utterances into syllables and English utterances
into morphemes. Level 3, however, tends to
highly under-segment both languages. English
CDS seems to be already under-segmented at
Level 2, very likely caused by the large number
of word collocations like is-it” and “what-is”,
an observation also made by Borschinger et al.
(2012) using different English CDS corpora.
English ADS is quantitatively more sensitive to
over-segmentation than CDS mainly because it
has a richer morphological structure and relatively
longer words in terms of syllables (Table 4).



CDS ADS
English Japanese English Japanese
F P R F P R F P R F P R

Level 1

Segmentation 0.79 0.74 085 027 020 041 035 028 048 037 030 047

Boundaries 0.89 081 099 056 039 099 068 052 099 070 0.57 093

Lexicon 0.58 0.76 046 0.10 047 0.05 0.13 039 0.07 0.10 0.70 0.05
Level 2

Segmentation 049 0.60 042 0.70 0.70 0.70 0.77 0.76 0.79 0.60 0.65 0.55

Boundaries 0.71 097 056 081 0.82 0.81 090 0.88 092 0.81 090 0.74

Lexicon 0.51 041 064 053 059 047 058 0.69 050 051 057 046
Level 3

Segmentation 0.18 031 0.12 039 053 030 043 055 036 028 042 021

Boundaries 026 099 0.15 046 093 031 071 098 0.55 059 096 043

Lexicon 0.17 0.10 038 032 025 041 037 028 051 027 020 042

Table 6 : Word segmentation scores of the three levels model

6 Conclusion

In this paper we identified a property of lan-
guage, segmentation ambiguity, which we quan-
tified through Normalized Segmentation Entropy.
We showed that this quantity predicts performance
in a supervised segmentation task.

With this tool we found that English was in-
trinsically less ambiguous than Japanese, account-
ing for the systematic difference found in this pa-
per. More generally, we suspect that Segmentation
Ambiguity would, to some extent, explain much
of the difference observed across languages (Ta-
ble 1). Further work needs to be carried out to test
the robustness of this hypothesis on a larger scale.

We showed that allowing the system to learn
at multiple levels of structure generally improves
performance, and compensates partially for the
negative effect of segmentation ambiguity on un-
supervised segmentation (where a bad lexicon am-
plifies the effect of segmentation ambiguity). Yet,
we end up with a situation where the best level of
structure may not be the same across corpora or
languages, which raises the question as to how to
determine which level is the correct lexical level,
i.e., the level that can sustain successful grammat-
ical and semantic learning. Further research is
needed to answer this question.

Generally speaking, ambiguity is a challenge in
many speech and language processing tasks: for
example part-of-speech tagging and word sense

disambiguation tackle lexical ambiguity, proba-
bilistic parsing deals with syntactic ambiguity and
speech act interpretation deals with pragmatic am-
biguities. However, to our knowledge, ambiguity
has rarely been considered as a serious problem in
word segmentation tasks.

As we have shown, the lexicon-based approach
does not completely solve the segmentation am-
biguity problem since the lexicon itself could be
more or less ambiguous depending on the lan-
guage. Evidently, however, infants in all lan-
guages manage to overcome this ambiguity. It has
to be the case, therefore, that they solve this prob-
lem through the use of alternative strategies, for
instance by relying on sub-lexical cues (see Jarosz
and Johnson (2013)) or by incorporating semantic
or syntactic constraints (Johnson et al., 2010). It
remains a major challenge to integrate these strate-
gies within a common model that can learn with
comparable performance across typologically dis-
tinct languages.
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Abstract

Evaluation methods for Distributional Se-
mantic Models typically rely on behav-
iorally derived gold standards. These
methods are difficult to deploy in lan-
guages with scarce linguistic/behavioral
resources. We introduce a corpus-based
measure that evaluates the stability of the
lexical semantic similarity space using a
pseudo-synonym same-different detection
task and no external resources. We show
that it enables to predict two behavior-
based measures across a range of parame-
ters in a Latent Semantic Analysis model.

1 Introduction

Distributional Semantic Models (DSM) can be
traced back to the hypothesis proposed by Harris
(1954) whereby the meaning of a word can be in-
ferred from its context. Several implementations
of Harris’s hypothesis have been proposed in the
last two decades (see Turney and Pantel (2010) for
a review), but comparatively little has been done
to develop reliable evaluation tools for these im-
plementations. Models evaluation is however an
issue of crucial importance for practical applica-
tions, i.g., when trying to optimally set the model’s
parameters for a given task, and for theoretical rea-
sons, i.g., when using such models to approximate
semantic knowledge.

Some evaluation techniques involve assigning
probabilities to different models given the ob-
served corpus and applying maximum likelihood
estimation (Lewandowsky and Farrell, 2011).
However, computational complexity may prevent
the application of such techniques, besides these
probabilities may not be the best predictor for the
model performance on a specific task (Blei, 2012).
Other commonly used methods evaluate DSMs by
comparing their semantic representation to a be-
haviorally derived gold standard. Some standards

are derived from the TOEFL synonym test (Lan-
daver and Dumais, 1997), or the Nelson word
associations norms (Nelson et al., 1998). Oth-
ers use results from semantic priming experiments
(Hutchison et al., 2008) or lexical substitutions er-
rors (Andrews et al., 2009). Baroni and Lenci
(2011) set up a more refined gold standard for En-
glish specifying different kinds of semantic rela-
tionship based on dictionary resources (like Word-
Net and ConceptNet).

These behavior-based evaluation methods are
all resource intensive, requiring either linguistic
expertise or human-generated data. Such meth-
ods might not always be available, especially in
languages with fewer resources than English. In
this situation, researchers usually select a small set
of high-frequency target words and examine their
nearest neighbors (the most similar to the target)
using their own intuition. This is used in partic-
ular to set the model parameters. However, this
rather informal method represents a “cherry pick-
ing” risk (Kievit-Kylar and Jones, 2012), besides
it is only possible for languages that the researcher
speaks.

Here we introduce a method that aims at pro-
viding a rapid and quantitative evaluation for
DSMs using an internal gold standard and re-
quiring no external resources. It is based on a
simple same-different task which detects pseudo-
synonyms randomly introduced in the corpus. We
claim that this measure evaluates the intrinsic
ability of the model to capture lexical semantic
similarity. We validate it against two behavior-
based evaluations (Free association norms and the
TOEFL synonym test) on semantic representa-
tions extracted from a Wikipedia corpus using one
of the most commonly used distributional seman-
tic models : the Latent Semantic Analysis (LSA,
Landauer and Dumais (1997)).

In this model, we construct a word-document
matrix. Each word is represented by a row, and
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each document is represented by a column. Each
matrix cell indicates the occurrence frequency of
a given word in a given context. Singular value
decomposition (a kind of matrix factorization) is
used to extract a reduced representation by trun-
cating the matrix to a certain size (which we call
the semantic dimension of the model). The cosine
of the angle between vectors of the resulting space
is used to measure the semantic similarity between
words. Two words end up with similar vectors if
they co-occur multiple times in similar contexts.

2 Experiment

We constructed three successively larger corpora
of 1, 2 and 4 million words by randomly select-
ing articles from the original “Wikicorpus” made
freely available on the internet by Reese et al.
(2010). Wikicorpus is itself based on articles from
the collaborative encyclopedia Wikipedia. We se-
lected the upper bound of 4 M words to be com-
parable with the typical corpus size used in theo-
retical studies on LSA (see for instance Landauer
and Dumais (1997) and Griffiths et al. (2007)). For
each corpus, we kept only words that occurred at
least 10 times and we excluded a stop list of high
frequency words with no conceptual content such
as: the, of, to, and ... This left us with a vocab-
ulary of 8 643, 14 147 and 23 130 words respec-
tively. For the simulations, we used the free soft-
ware Gensim (Rehtifek and Sojka, 2010) that pro-
vides an online Python implementation of LSA.

We first reproduced the results of Griffiths et al.
(2007), from which we derived the behavior-based
measure. Then, we computed our corpus-based
measure with the same models.

2.1 The behavior-based measure

Following Griffiths et al. (2007), we used the
free association norms collected by Nelson et al.
(1998) as a gold standard to study the psychologi-
cal relevance of the LSA semantic representation.
The norms were constructed by asking more than
6000 participants to produce the first word that
came to mind in response to a cue word. The
participants were presented with 5,019 stimulus
words and the responses (word associates) were
ordered by the frequency with which they were
named. The overlap between the words used in
the norms and the vocabulary of our smallest cor-
pus was 1093 words. We used only this restricted
overlap in our experiment.

In order to evaluate the performance of LSA
models in reproducing these human generated
data, we used the same measure as in Griffiths
etal. (2007): the median rank of the first associates
of a word in the semantic space. This was done in
three steps : 1) for each word cue W, we sorted
the list of the remaining words W; in the overlap
set, based on their LSA cosine similarity with that
cue: cos(LSA(W.), LSA(W;)), with highest co-
sine ranked first. 2) We found the ranks of the first
three associates for that cue in that list. 3) We ap-
plied 1) and 2) to all words in the overlap set and
we computed the median rank for each of the first
three associates.

Griffiths et al. (2007) tested a set of seman-
tic dimensions going from 100 to 700. We ex-
tended the range of dimensions by testing the
following set : [2,5,10,20,30,40,50,100, 200,
300,400,500,600,700,800,1000]. We also manip-
ulated the number of successive sentences to be
taken as defining the context of a given word (doc-
ument size), which we varied from 1 to 100.

In Figure 1 we show the results for the 4 M size
corpus with 10 sentences long documents.
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Figure 1 : The median rank of the three associates as a

function of the semantic dimensions (lower is better)

For the smaller corpora we found similar results
as we can see from Table 1 where the scores rep-
resent the median rank averaged over the set of
dimensions ranging from 10 to 1000. As found
in Griffiths et al. (2007), the median rank measure
predicts the order of the first three associates in the
norms.

In the rest of the article, we will need to char-
acterize the semantic model by a single value. In-
stead of taking the median rank of only one of the
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Size associate 1 associate 2 associate 3

1M 78.21 152.18 169.07
2M 57.38 114.57 131
4 M 54.57 96.5 121.57

Table 1 : The median rank of the first three associates for

different sizes

associates, we will consider a more reliable mea-
sure by averaging over the median ranks of the
three associates across the overlap set. We will
call this measure the Median Rank.

2.2 The Pseudo-synonym detection task

The measure we introduce in this part is based
on a Same-Different Task (SDT). It is described
schematically in Figure 2, and is computed as
follows: for each corpus, we generate a Pseudo-
Synonym-corpus (PS-corpus) where each word in
the overlap set is randomly replaced by one of two
lexical variants. For example, the word “Art” is
replaced in the PS-corpus by “Art;” or “Arty”. In
the derived corpus, therefore, the overlap lexicon
is twice as big, because each word is duplicated
and each variant appears roughly with half of the
frequency of the original word.

The Same-Different Task is set up as follows: a
pair of words is selected at random in the derived
corpus, and the task is to decide whether they are
variants of one another or not, only based on their
cosine distances. Using standard signal detection
techniques, it is possible to use the distribution
of cosine distances across the entire list of word
pairs in the overlap set to compute a Receiver
Operating Characteristic Curve (Fawcett, 2006),
from which one derives the area under the curve.
We will call this measure : SDT-p. It can be
interpreted as the probability that given two pairs
of words, of which only one is a pseudo-synonym
pair, the pairs are correctly identified based on
cosine distance only. A value of 0.5 represents
pure chance and a value of 1 represents perfect
performance.

It is worth mentioning that the idea of gen-
erating pseudo-synonyms could be seen as the
opposite of the “pseudo-word” task used in
evaluating word sense disambiguation models
(see for instance Gale et al. (1992) and Dagan
et al. (1997)). In this task, two different words
wi and wy are combined to form one ambiguous
pseudo-word Wio = {w;,ws} which replaces

both wy and ws in the test set.

We now have two measures evaluating the
quality of a given semantic representation: The
Median Rank (behavior-based) and the SDT-p
(corpus-based). Can we use the latter to predict
the former? To answer this question, we compared
the performance of both measures across differ-
ent semantic models, document lengths and cor-
pus sizes.

3 Results

In Figure 3 (left), we show the results of the
behavior-based Median Rank measure, obtained
from the three corpora across a number of seman-
tic dimensions. The best results are obtained with
a few hundred dimensions. It is important to high-
light the fact that small differences between high
dimensional models do not necessarily reflect a
difference in the quality of the semantic repre-
sentation. In this regard, Landauer and Dumais
(1997) argued that very small changes in com-
puted cosines can in some cases alter the LSA or-
dering of the words and hence affect the perfor-
mance score. Therefore only big differences in the
Median Ranks could be explained as a real dif-
ference in the overall quality of the models. The
global trend we obtained is consistent with the re-
sults in Griffiths et al. (2007) and with the findings
in Landauer and Dumais (1997) where maximum
performance for a different task (TOEFL synonym
test) was obtained over a broad region around 300
dimensions.
Besides the effect of dimensionality, Figure 3 (left)
indicates that performance gets better as we in-
crease the corpus size.
In Figure 3 (right) we show the corresponding re-
sults for the corpus-based SDT-p measure. We can
see that SDT-p shows a parallel set of results and
correctly predicts both the effect of dimensionality
and the effect of corpus size. Indeed, the general
trend is quite similar to the one described with the
Median Rank in that the best performance is ob-
tained for a few hundred dimensions and the three
curves show a better score for large corpora.
Figure 4 shows the effect of document length on
the Median Rank and SDT-p. For both measures,
we computed these scores and averaged them over
the three corpora and the range of dimensions go-
ing from 100 to 1000. As we can see, SDT-p pre-
dicts the psychological optimal document length,
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SDT-p

which is about 10 sentences per document. In the
corpus we used, this gives on average of about 170
words/document. This value confirms the intuition
of Landauer and Dumais (1997) who used a para-
graph of about 150 word/document in their model.

Finally, Figure 5 (left) summarizes the entire
set of results. It shows the overall correlation
between SDT-p and the Median Rank. One
point in the graph corresponds to a particular
choice of semantic dimension, document length
and corpus size. To measure the correlation, we
use the Maximal Information Coefficient (MIC)
recently introduced by Reshef et al. (2011). This
measure captures a wide range of dependencies
between two variables both functional and not.
For functional and non-linear associations it gives
a score that roughly equals the coefficient of
determination (R?) of the data relative to the
regression function. For our data this correlation
measure yields a score of MIC = 0.677 with
(p < 1079).

In order to see how the SDT-p measure would
correlate with another human-generated bench-
mark, we ran an additional experiment using the
TOEFL synonym test (Landauer and Dumais,
1997) as gold standard. It contains a list of
80 questions consisting of a probe word and
four answers (only one of which is defined as
the correct synonym). We tested the effect of
semantic dimensionality on a 6 M word sized
Wikipedia corpus where documents contained
respectively 2, 10 and 100 sentences for each
series of runs. We kept only the questions for
which the probes and the 4 answers all appeared
in the corpus vocabulary. This left us with a
set of 43 questions. We computed the response
of the model on a probe word by selecting the
answer word with which it had the smallest cosine

angle. The best performance (65.1% correct) was
obtained with 600 dimensions. This is similar
to the result reported in Landauer and Dumais
(1997) where the best performance obtained was
64.4% (compared to 64.5% produced by non-
native English speakers applying to US colleges).
The correlation with SDT-p is shown in Figure
5 (right). Here again, our corpus-based measure
predicts the general trend of the behavior-based
measure: higher values of SDT-p correspond
to higher percentage of correct answers. The
correlation yields a score of M IC = 0.675 with
(p < 1076).

In both experiments, we used the overlap set of
the gold standard with the Wikicorpus to compute
the SDT-p measure. However, as the main idea
is to apply this evaluation method to corpora for
which there is no available human-generated gold
standards, we computed new correlations using a
SDT-p measure computed, this time, over a set
of randomly selected words. For this purpose we
used the 4M corpus with 10 sentences long docu-
ments and we varied the semantic dimensions. We
used the Median Rank computed with the Free as-
sociation norms as a behavior-based measure.

We tested both the effect of frequency and size:
we varied the set size from 100 to 1000 words
which we randomly selected from three frequency
ranges : higher than 400, between 40 and 400 and
between 40 and 1. We chose the limit of 400 so
that we can have at least 1000 words in the first
range. On the other hand, we did not consider
words which occur only once because the SDT-p
requires at least two instances of a word to gener-
ate a pseudo-synonym.

The correlation scores are shown in Table 2.
Based on the MIC correlation measure, mid-
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Freq. x 1 <x<40 40 < z < 400 x > 400 All | Overlap

Size 100 | 500 | 1000 | 100 500 | 1000 | 100 | 500 | 1000 | ~4M| 1093

MIC 0.311]0.219| 0.549* | 0.549* | 0.717* | 0.717* | 0.311 | 0.205 | 0.419 | 0.549* | 0.717*
*:p < 0.05

Table 2 : Correlation scores of the Median Rank with the SDT-p measure computed over randomly selected words from the

corpus, the whole lexicon and the overlap with the free association norms. We test the effect of frequency and set size.

frequency words yield better scores. The corre-
lations are as high as the one computed with the
overlap even with a half size set (500 words).
The overlap is itself mostly composed of mid-
frequency words, but we made sure that the ran-
dom test sets have no more than 10% of their
words in the overlap. Mid-frequency words are
known to be the best predictors of the conceptual
content of a corpus, very common and very rare
terms have a weaker discriminating or “resolving”
power (Luhn, 1958).

4 Discussion

We found that SDT-p enables to predict the out-
come of behavior-based evaluation methods with
reasonable accuracy across a range of parameters
of a LSA model. It could therefore be used as a
proxy when human-generated data are not avail-
able. When faced with a new corpus and a task
involving similarity between words, one could im-
plement this rather straightforward method in or-
der, for instance, to set the semantic model param-
eters.

The method could also be used to compare the
performance of different distributional semantic
models, because it does not depend on a partic-
ular format for semantic representation. All that is
required is the existence of a semantic similarity
measure between pairs of words. However, fur-
ther work is needed to evaluate the robustness of
this measure in models other than LSA.

It is important to keep in mind that the correla-
tion of our measure with the behavior-based meth-
ods only indicates that SDT-p can be trusted, to
some extent, in evaluating these semantic tasks.
It does not necessarily validate its ability to as-
sess the entire semantic structure of a distribu-
tional model. Indeed, the behavior-based methods
are dependent on particular tasks (i.g., generating
associates, or responding to a multiple choice syn-
onym test) hence they represent only an indirect
evaluation of a model, viewed through these spe-
cific tasks.

It is worth mentioning that Baroni and Lenci

(2011) introduced a comprehensive technique that
tries to assess simultaneously a variety of seman-
tic relations like meronymy, hypernymy and coor-
dination. Our measure does not enable us to as-
sess these relations, but it could provide a valu-
able tool to explore other fine-grained features of
the semantic structure. Indeed, while we intro-
duced SDT-p as a global measure over a set of test
words, it can also be computed word by word. In-
deed, we can compute how well a given seman-
tic model can detect that “Art¢;” and “Arty” are
the same word, by comparing their semantic dis-
tance to that of random pairs of words. Such a
word-specific measure could assess the semantic
stability of different parts of the lexicon such as
concrete vs. abstract word categories, or the distri-
bution properties of different linguistic categories
(verb, adjectives, ..). Future work is needed to as-
sess the extent to which the SDT-p measure and
its word-level variant provide a general framework
for DSMs evaluation without external resources.
Finally, one concern that could be raised by our
method is the fact that splitting words may affect
the semantic structure of the model we want to as-
sess because it may alter the lexical distribution in
the corpus, resulting in unnaturally sparse statis-
tics. There is in fact evidence that corpus attributes
can have a big effect on the extracted model (Srid-
haran and Murphy, 2012; Lindsey et al., 2007).
However, as shown by the high correlation scores,
the introduced pseudo-synonyms do not seem to
have a dramatic effect on the model, at least as far
as the derived SDT-p measure and its predictive
power is concerned. Moreover, we showed that in
order to apply the method, we do not need to use
the whole lexicon, on the contrary, a small test set
of about 500 random mid-frequency words (which
represents less than 2.5 % of the total vocabulary)
was shown to lead to better results. However, even
if the results are not directly affected in our case,
future work needs to investigate the exact effect
word splitting may have on the semantic model.
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