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Science, my lad, is made up of mistakes, but they are mistakes 
which it is useful to make, because they lead little by little to the 
truth. 

 
Jules Verne 

 
 
 

Essentially, all models are wrong, but some are useful. 
 

George Edward Pelham Box 
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ABSTRACT 
 

 In this thesis we used dynamical systems methods and numerical 
simulations to study the mechanisms of epileptic oscillations associated with ion 
concentration changes and cerebellar Purkinje cell bimodal behavior. The 
general issue in this work is the interplay between single neuron intrinsic 
properties and synaptic input structure controlling the neuronal excitability. 
 
 In the first part of this thesis we focused on the role of the cellular intrinsic 
properties, their control over the cellular excitability and their response to the 
synaptic inputs. Specifically we asked the question how the cellular changes in 
inhibitory synaptic function might lead to the pathological neural activity. We 
developed a model of seizure initiation in temporal lobe epilepsy. Specifically we 
focused on the role of KCC2 cotransporter that is responsible for maintaining the 
baseline extracellular potassium and intracellular chloride levels in neurons. 
Recent experimental data has shown that this cotransporter is absent in the 
significant group of pyramidal cells in epileptic patients suggesting its 
epileptogenic role. We found that addition of the critical amount of KCC2-
deficient pyramidal cells to the realistic subiculum network can switch the neural 
activity from normal to epileptic oscillations qualitatively reproducing the activity 
recorded in human epileptogenic brain slices. 
 
 In the second part of this thesis we studied how synaptic noise might control 
the Purkinje cell excitability. We investigated the effect of spike inhibition caused 
by noise current injection, so-called inverse stochastic resonance (ISR). This 
effect has been previously found in single neuron models while we provided its 
first experimental evidence. We found that Purkinje cells in brain slices could be 
efficiently inhibited by current noise injections. This effect is well reproduced by 
the phenomenological model fitted for different cells. Using methods of 
information theory we showed that ISR supports an efficient information 
transmission of single Purkinje cells suggesting its role for cerebellar 
computations. 
 
 Keywords: dynamical systems, temporal lobe epilepsy, KCC2 
cotransporter, extracellular potassium, intracellular chloride, GABA reversal, 
cerebellum, Purkinje cells, bimodality, inverse stochastic resonance. 
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RÉSUMÉ 
 

 Dans cette thèse nous avons utilisé des méthodes de systèmes 
dynamiques et des simulations numériques pour étudier les mécanismes 
d'oscillations d'épilepsie associés à des concentrations d’ions dynamiques et au 
comportement bimodal des cellules Purkinje du cervelet. Le propos général de 
ce travail est l'interaction entre les propriétés intrinsèques des neurones simple 
et la structure d'entrée synaptique contrôlant l'excitabilité neuronale. 
 
 Dans la première partie de la thèse nous avons développé un modèle de 
transition de crise épileptique dans le lobe temporal du cerveau. Plus 
précisément nous nous sommes concentrés sur le rôle du cotransporteur KCC2, 
qui est responsable de la maintenance du potassium extracellulaire et du 
chlorure intracellulaire dans les neurones. Des données expérimentales récentes 
ont montré que cette molécule est absente dans un groupe significatif de cellules 
pyramidales dans le tissue neuronal de patients épileptiques suggérant son rôle 
épileptogène. Nous avons trouvé que l'addition d’une quantité critique de cellules 
pyramidale KCC2 déficient au réseau de subiculum, avec une connectivité 
réaliste, peut provoquer la génération d’oscillations pathologiques, similaire aux 
oscillations enregistrées dans des tranches de cerveau épileptogène humaines. 
  
 Dans la seconde partie de la thèse, nous avons étudié le rôle du bruit 
synaptique dans les cellules de Purkinje. Nous avons étudié l'effet de l'inhibition 
de la génération du potentiel d’action provoquée par injection de courant de bruit, 
un phénomène connu comme résonance stochastique inverse (RSI). Cet effet a 
déjà été trouvé dans des modèles neuronaux, et nous avons fournis sa première 
validation expérimentale. Nous avons trouvé que les cellules de Purkinje dans 
des tranches de cerveau peuvent être efficacement inhibées par des injections 
de bruit de courant. Cet effet est bien reproduit par le modèle phénoménologique 
adapté pour différentes cellules. En utilisant des méthodes de la théorie de 
l'information, nous avons montré que RSI prend en charge une transmission 
efficace de l'information des cellules de Purkinje simples suggérant son rôle pour 
les calculs du cervelet. 
 
 Mots-clés: systèmes dynamiques, épilepsie du lobe temporal, KCC2 
cotransporteur, potassium extracellulaire, chlorure intracellulaire, inversion de 
GABA, résonance inverse stochastique, le cervelet, les cellules de Purkinje, 
bimodalité, bruit synaptique. 
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GENERAL INTORODUCTION 
 

 The brain is probably the most complex mechanism we know in nature. It 
posses complex dynamics and organization both on different spatial and 
temporal scales. There is a hierarchy of structural organization of the nervous 
system each with characteristic spatial scale: central nervous system (1 m ), 
subcortical structures (10cm ), sensory maps (1cm ), networks (1mm ), neurons 
(100µm ), synapses (1µm ) and molecules (1 A

!

 - 100nm ). One could build similar 
hierarchy with the temporal scale ranging from milliseconds (spike generation) till 
days and years (long-term plasticity changes). Given such a high degree of 
complexity it is necessary to reduce the brain mechanisms to meaningful and 
understandable concepts on different levels of description. To achieve this long-
term goal theoretical and computational neuroscience aim to uncover the basic 
principles of the nervous system function and organization. Similar to theoretical 
physics it uses mathematical models to investigate the basic mechanisms by 
generalizing and providing explanations for the experimental results. Although 
theoretical physics has hundreds years of modern scientific history, 
computational neuroscience is relatively new field matured only in the end of XX 
century. The theory of dynamical systems that was applied in the present work is 
one of the key conceptual frameworks in computational neuroscience aiming to 
explain the fundamental mechanisms of brain dynamics. 
 
 In first part this thesis we apply the dynamical system approach towards the 
mechanism of brain pathological oscillations observed in epilepsy. We aim to 
investigate the mechanisms of ion concentration changes associated with 
extracellular potassium and intracellular chloride and their role for seizure 
initiation. First we review the modern concepts of ion concentration dynamics 
associated with seizures in CHAPTER I. In this review we discuss known 
mechanisms of slow ion concentration changes of sodium, potassium and 
chloride associated with epileptic seizures. Then we investigate recently found 
pathway related to intracellular chloride regulation in pyramidal cells of human 
subiculum in CHAPTER II. We build the single neuron and neural network model 
to study epileptic oscillations and compare the results with in vitro slice data. 
 
 In the second part of this thesis we use dynamical systems to study the 
bimodal behavior of cerebellar Purkinje cells. Specifically we describe the role of 
synaptic noise provided by the neural network. First we make a short overview of 
neuronal noise and discuss the classical models of neural noise sources and its 
effects on single neurons behavior in CHAPTER III. Since this theme is very 
broad we restrict our description to stochastic and inverse stochastic resonance 
in single cells. In CHAPTER IV we investigate experimentally and theoretically 
using a phenomenological model the role of synaptic noise for Purkinje cells and 
suggest its role for cerebellum function. 
 
 In the final part GENERAL CONCLUSIONS we turn to the contribution of 
these two projects in a broad context. In particular we discuss the role of single 
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neuron nonlinear properties for normal and pathological brain dynamics and 
missing links in biophysical neural models. 
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CHAPTER I 
 ION DYNAMICS DURING EPILEPTIC OSCILLATIONS 

 
 

I.1 Introduction 
 

 This chapter is a review of existing computational models of ion dynamics 
during seizure oscillations and certain related experiments. We mostly 
concentrate on ion concentration changes associated with seizure dynamics. We 
describe known models of intracellular chloride regulation, the interplay between 
potassium and sodium and unified models describing potassium, sodium and 
chloride. In conclusion section we point to the missing mechanisms of the 
existing models and propose the necessary corrections. 

 
Mechanisms of seizure dynamics can be studied on different levels of 

brain organization from single cell up to the whole brain level. Many of these 
mechanisms are very hard to study experimentally since it requires simultaneous 
measurements of brain activity on various spatial and temporal scales. Therefore 
theoretical approaches provide significant insights into the mechanisms of 
epileptic brain dynamics, that could suggest new hypothesis for further 
experimental validation, as reviewed in (Lytton 2009). 

 
Epilepsy is characterized by complex reorganization of neural circuits on 

different scales. These levels include cell death, axon sprouting, alterations in 
synaptic plasticity and intrinsic properties of neurons and glia. As a consequence 
it is very hard to find the key pathological pathways. Therefore detailed 
biophysical models are useful tools to investigate the particular mechanisms of 
epilepsy in neural circuits. 

 
Biophysical models of single neurons mostly rely on conductance-based 

description of the neuronal membrane, initially proposed for squid axon in 1952 
(Hodgkin and Huxley 1952). Hodgkin and Huxley have shown that there are 
minimally two currents – sodium and potassium needed to generate voltage 
oscillations during action potential generation and propagation. Later studies 
identified numerous additional intrinsic currents incorporated into the membrane 
that could substantially change single neuron behavior (Izhikevich 2007). This 
approach is extended for multi-compartmental models describing soma, axon 
and dendritic tree and taking into account spatiotemporal integration of synaptic 
input (Koch and Segev 1998). 

 
To study the pathological changes associated with seizure generation 

using biophysical approach the behavior of the system is analyzed when the 
parameters of interest are varied to mimic the pathological conditions. On the 
other hand variations of the biophysical parameters could be studied to 
determine the desired behavior of the system. A combination of these theoretical 
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approaches helps to properly investigate pathological behavior and form testable 
predictions for new experiments. 

 
Currents passing through ion channels depend on the ion concentrations 

inside and outside of neurons and corresponding electrochemical gradients. In 
the models using conductance-based description of a neuron the ion 
concentrations are usually considered constant due to various homeostatic 
mechanisms such as sodium-potassium pumps, glial buffering and diffusion in 
the extracellular space. Nonetheless in the pathological conditions like epilepsy 
and spreading depression the ion concentrations in the extracellular space and 
inside neurons are substantially altered. This leads to changes in reversal 
potential thus affecting the neural excitability. In this review we show how ion 
concentration changes could favor and potentially trigger seizure activity in 
various epilepsy models. 

 
 

I.2 Intracellular chloride 
 

 Changes in intracellular chloride concentrations have the direct influence on 
the value of GABA reversal potential controlling the efficiency of inhibition 
(Kandel et al. 2000). In the early development GABA reversal potential is mostly 
excitatory due to high intracellular chloride levels due to significant NKCC1 
expression. Later during development in the adult brain GABA becomes 
hyperpolarizing due to NKCC1 down-regulation and KCC2 up-regulation 
(Khalilov et al. 1999). 
 
 During the course of neural activity when the firing-rate is low the change of 
intracellular chloride concentration could be potentially neglected because of 
action of KCC2 cotransporter (Payne et al. 2003). Yet in case of intensive 
GABAergic inhibition the intracellular chloride could substantially accumulate in 
neurons (Kaila and Voipio 1987, Taira et al. 1997). This mechanism provides 
short-time decrease of inhibition at the synapses, a property known as ionic 
plasticity (Jedlička and Backus 2006, Raimondo et al. 2012). In this way the 
intracellular chloride concentration is an important factor shaping the neural 
activity that plays especially important role for epileptic brain dynamics 
characterized by the high firing rates. 
 
 The impairment of intracellular chloride homeostasis due to the KCC2 
absence and/or NKCC1 overexpression has been found in epileptogenic human 
tissue from subiculum (Huberfeld et al. 2007) and cortical peritumoral tissue 
(Pallud et al. 2014). Local changes of intracellular chloride concentration could 
significantly affect the inhibition efficiency of different synapses thus contributing 
to the excitation-inhibition balance (Jedlička and Backus 2006). 
 
 In the single neuron model proposed by (Jedlicka et al. 2011) the authors 
have studied the consequences of GABAergic stimulation in the anatomically 
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realistic model of interneuron from (Gulyas et al. 1999). They have built the 
detailed conductance-based model of the inhibitory cell with passive 
conductances and inhibitory GABA synapses. In this model the radial and 
longitudinal intracellular chloride diffusion was taken into account in the whole 
neuron. They found that prolonged activation of the dendritic GABA synapses 
leads to the substantial increase of intracellular chloride concentration so that 
GABA reversal potential becomes excitatory, Fig.I-1A. This property is especially 
strong for the distal synapses compared to the proximal ones. In a more detailed 
pyramidal cell model taking into account the electrodiffusion and hydrocarbonate 
changes (Doyon et al. 2011) have found similar results indirectly confirmed by 
chloride imaging experiments in cultures. 
 

In the other work Marchetti and colleagues (Marchetti et al. 2005) have 
studied oscillations in the developing chick spinal chord. Using simple mean-field 
model they showed that combination of slow intracellular chloride accumulation 
and synaptic depression could explain the periodic network oscillations, Fig.I-1B. 
In a theoretical study of a spatially connected networks (Rinzel et al. 1998) have 
found that changes in the GABA reversal potential could trigger propagating 
activity waves, which could be potentially related to the giant depolarizing 
potentials during development (Leinekugel et al. 1998). In the further works 
Jeong and Gutkin (Jeong and Gutkin 2007) proposed that changes in GABA 
reversal potential could provoke synchronous in-phase and anti-phase solutions 
in the large neural networks with slow synapses. Taken together these results 
indicate that changes in GABA reversal potential could substantially affect the 
single neuron and network dynamics in different parts of the nervous system. 
 
 Using slice experiments of hippocampal formation it has been observed that 
strong tetanic stimulation leading to seizure-like discharges promotes 
intracellular chloride accumulation measured by chloride imaging, Fig.I-1C, D 
(Isomura et al. 2003). In the later works of this group (Fujiwara-Tsukamoto et al. 
2007) they found that GABA reversal potential becomes depolarizing during 
seizure-like events caused by tetanic stimulation due to chloride accumulation. 
They explained the increase of extracellular potassium and intracellular chloride 
concentration by strong activation of interneurons and pyramidal cells during 
extracellular stimulation. 
 
 Changes of GABA reversal potential due to intracellular chloride 
accumulation has been known for a long time (Kaila and Voipio 1987) in the 
experimental neuroscience. Yet in the theoretical works the role of intracellular 
chloride accumulation received relatively little amount of attention (Jedlička and 
Backus 2006). The single neuron models confirmed that on the single neuron 
level strong GABAergic stimulation leads to the substantial increase of 
intracellular chloride thus reducing the amount of inhibition. While neural  



! 12!

 
 

          
Figure I-1. Intracellular chloride accumulation in neural models and experiments 
A – voltage changes on the distal, middle and proximal dendrites during GABAergic stimulation, 
10 Hz 20 pulses and 13 GABA synapses. On the bottom are present the corresponding chloride 
changes. Spatial plot of the intracellular chloride accumulation after tetanic stimulation using 10 
Hz activation of 13 GABA synapses of the distal dendrite. Color code corresponds to the 
intracellular chloride change. Adapted from (Jedlicka et al. 2011). B – periodic bursting activity 
generated in the population model describing depression and chloride accumulation. Top trace 
– voltage changes, middle trace – intracellular chloride concentration and flux changes, bottom 
– zoom in voltage and depression variable. Adapted from (Marchetti et al. 2005). C – response 
of the pyramidal cell in the hippocampal slice to the strong tetanic stimulation and 
corresponding changes in chloride luminescence measured by MEQ. Colors correspond to the 
probe location in D. Scale bars are 2s and 20 mV. D – one timeframe of chloride imaging with 
probe location; s. r. – stratum radiatum, s. p. – stratum piramidale, s.o. – stratum oriens. Scale 
bar is 10µm . Panels C and D are adapted from (Isomura et al. 2003). 
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network models suggested that increasing GABA reversal potential promotes 
oscillations and synchrony. Thereby the dynamics of intracellular chloride and 
consequent GABA reversal potential changes is an important excitability 
mechanism for normal and pathological oscillations in the nervous system. 
 
 

I.3 Extracellular potassium 
 
 Historically one of the first conductance-based models incorporating the 
dynamic ion concentrations in the context of seizure and spreading depression is 
the model of Kager and colleagues (Kager et al. 2000). In this work they 
constructed the pyramidal cell model consisting of multiple compartments with 5 
ionic currents, sodium-potassium pump and glial uptake on each compartment. 
They based their approach on the CA3 pyramidal cell model from (Traub et al. 
1994), yet included mechanisms of dynamic ion concentrations for sodium and 
potassium, Fig.I-2A. The authors showed that impaired glial uptake and strong 
synaptic stimulation leads to periodic spiking, Fig.I-2B associated with clonic 
epileptoform discharges. In this model they found the regimes associated with 
spreading depression, when neurons move to the depolarization block due to 
high potassium concentrations. 
 
 Based on this approach Bazhenov and colleagues (Bazhenov et al. 2004) 
used reduced model from (Mainen and Sejnowski 1996) to describe the ion 
dynamics including intracellular calcium, extracellular potassium with glial uptake 
and extracellular diffusion (Kager et al. 2000). This model reproduced periodic 
spiking and bursting activity caused by increased potassium concentration, Fig.I-
2C. Compared to the previous studies (Kager et al. 2000) their model was able to 
show periods of bursting and spiking activity in response to current stimulation 
due to internal calcium dynamics and intrinsic currents in pyramidal cells. They 
generalized this model of potassium dynamics using the sparsely connected 
neural network consisting of interneurons and pyramidal cells. This network 
demonstrated an ability to maintain spike-and-wave oscillations in response to 
the current stimulation and subsequent extracellular potassium increase, Fig.I-
2D. They also found that characteristic paroxysmal oscillations could be triggered 
by blockade of glial buffer and/or sodium-potassium pumps. 
 
 In further works of this group they have systematically analyzed the 
pyramidal cell dynamics as a function of intracellular calcium concentration 
(Fröhlich and Bazhenov 2006). They found characteristic transitions between 
bursting and tonic spiking regimes in terms of bifurcation structure of the model. 
In particular they studied the regime of bistability for extracellular potassium 
parameter between 5 and 5.4 mM allowing the pyramidal cell to demonstrate the 
transitions between slow bursting and tonic spiking. They proposed that this 
bistability cold explain the continuous transitions between 
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Figure I-2. Extracellular potassium dynamics in neuron models and experiment 
A – Scheme of pyramidal cell model with the main components. B – simulated seizure-like 
discharge followed by spreading depression in response to injected current, 0.2 nA during 500 
ms. Panels A and B are adapted from (Kager et al. 2000). C – response of the pyramidal cell 
model with dynamic extracellular potassium concentration to the current stimulation during 5 
seconds with the subsequent periodic bursting and spiking activity. D – simulation of the 
network of pyramidal cells and interneurons when cells 35-45 received current stimulation 
during 10th second. Panesl C and D are adapted from (Bazhenov et al. 2004). E – 
simultaneous measures of extracellular potassium (top) and extracellular field potential (bottom) 
during tonic-clonic seizure evoked by electrical stimulation in the pericruciate cortex. Adapted 
from (Sypert and Ward 1974). 
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tonic and clonic phase of spike-and-wave discharges observed in vivo (Fröhlich 
et al. 2008). 
 
 In the later works they have tested the coexistence of healthy and 
pathological activity states in these networks (Fröhlich et al. 2010). They 
systematically studied the role of perturbations such as duration and stimulation 
strength leading to the transition from the normal to pathological state. They 
concluded that synaptic depression, potassium regulation mechanisms, intrinsic 
neuron currents and increase of intracellular chloride could substantially 
contribute to seizure dynamics. 
 
 To illustrate changes of extracellular potassium during seizure activity we 
present the simultaneous measures of extracellular potassium and field potential 
from (Sypert and Ward 1974), Fig.I-2E. In this work the recurrent seizure-like 
events were evoked by tetanic stimulation in cat neocortex. One could see that 
negative deflection of the extracellular field is strongly correlated with the 
extracellular potassium accumulation during seizure activity. There is also 
qualitative match between the time traces of extracellular potassium 
concentration in single neuron and network models and experimental data, Fig.I-
2C, D, E. 
 
 Systematic impairment of extracellular potassium regulation has been 
known as a significant factor contributing to brain pathology for a very long time 
(Grafstein 1956, Fisher et al. 1975). Nonetheless only relatively recent advances 
in neural modeling using anatomically detailed (Kager et al. 2000) or reduced 
(Bazhenov et al. 2004) biophysical models allowed to study the detailed 
mechanisms of excitability associated with ion concentration changes. These 
models provide the insights into the role of extracellular potassium for brain 
pathologies like epilepsy and spreading depression and allow characterizing the 
limits of normal brain physiology. 
 
 

I.4 Potassium and sodium 
 
 In the theoretical works Ullah and colleagues (Ullah et al. 2009, Barreto and 
Cressman 2011) have studied the interplay between intracellular sodium and 
extracellular potassium in single neuron and network models. The single neuron 
model takes into account the dynamics of sodium, potassium and chloride ions 
as well as slow potassium currents. The concentrations were computed using 
equations describing sodium-potassium pump, astrocyte potassium uptake and 
diffusion to the bath and extracellular space. 
 
 In the single neuron proposed in (Ullah et al. 2009) they found regimes of 
periodic spiking and resting activity, Fig.I-3A. Under balance conditions between 
sodium and potassium concentrations, the single neuron is capable to generate 
long periods of tonic spiking and resting state activity with the timescale similar to 
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the transitions between ictal discharges. In this system the extracellular 
potassium plays the role of positive feedback because it increases the reversal 
potential of potassium currents thus increasing the excitability, while intracellular 
sodium plays the role of a negative feedback since its accumulation decreases 
the value of sodium reversal potential needed for action potential generation. In 
this slow oscillatory regime the model is able to demonstrate the depolarization 
block during these oscillations, Fig.I-3A, B, resembling the single neuron 
behavior during seizures (Ziburkus et al. 2006).  
 
 In the companion work they constructed the neural network model (Barreto 
and Cressman, 2011) consisting of 100 pyramidal cells interneurons connected 
with Gaussian synaptic footprint with circular architecture, Fig.I-3C. They 
demonstrated that when the glial potassium uptake is impaired, the activity 
induced by current perturbations leads to periodic seizure-like activity 
characterized by single neuron depolarization block, Fig.I-3D. The overall 
dynamics of this network is similar to the single neuron case characterized by 
periods of tonic spiking and resting state, Fig.I-2A. 
 
 In the experimental work Karus and colleagues (Karus et al. 2015) have 
shown that intracellular sodium concentration is strongly correlated with seizure 
activity, Fig.I-3E. They used sodium imaging to show that this concentration 
significantly accumulates during short and long-lasting seizure episodes in 
pyramidal cells and astrocytes. One could see the correlation between the field 
potential and sodium concentration on the single neuron level during large and 
small epileptic event, Fig.I-3D. They also found that sodium accumulates very 
synchronously in the pyramidal cell population during seizures suggesting that it 
could be responsible for seizure termination as predicted in (Krishnan and 
Bazhenov, 2011). One could compare the time trace of sodium accumulation 
measured experimentally with the one predicted by the model and find a 
qualitative agreement, Fig.I-3A, D, E. 
 
 Addition of intracellular sodium to the extracellular potassium model on 
single neuron and network level revealed new oscillatory regimes associated 
with seizures. Using simulations it has been found that intracellular sodium and 
extracellular potassium are potential mechanisms responsible for autonomous 
transitions between interictal and ictal states. These results suggest the crucial 
role of these ions for generation of slow epileptic oscillations in neural networks. 
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Figure I-3. Dynamics of intracellular sodium and extracellular potassium in models and 
experiment 
A –single neuron patterns and ion concentration changes in single neuron model. B – state 
diagram of the single neuron model from A with corresponding ion concentration changes. 
Panels A and B are adapted from (Ullah et al. 2009). C – Structure of the network model with 
dynamic sodium and potassium concentrations. D – patterns of spontaneous activity of single 
neurons in the network. Panels C and D are adapted from (Barreto and Cressman 2011). E – 
field potential (FP) and single neuron sodium concentration change (calculated from the 
fluorescent signal) during the long epileptoform discharge. F – location of the pyramidal cells 
and astrocytes in the slice. Letters correspond to neurons, numbers to astrocytes. Panels E and 
F are adapted from (Karus et al. 2015). 
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I.5 Potassium, sodium and chloride 
 
 In the later works the group of Maxim Bazhenov included intracellular 
sodium accumulation into the model of spike-and-wave discharges (Krishnan 
and Bazhenov 2011). Similar to the previous studies this model included 
dynamic concentrations of potassium, chloride and sodium and the model of 
KCC2 cotransporter coupled with intracellular chloride concentration. They found 
that including mechanisms of intracellular sodium accumulation stops generation 
of the periodic spike-and-wave discharges after long period of oscillations, Fig.I-
4A. They have found that increased intracellular sodium caused by intensive 
spiking during seizures could also explain the hyperpolarized post-ictal 
depression state in pyramidal cells. Intracellular chloride accumulation in this 
model increased seizure duration. Using methods of bifurcation theory they 
found that generation of seizures and their termination depends on the complex 
interplay of between sodium, potassium and chloride ions, Fig.I-4B. 
 
 In the work of (Wei et al. 2014) they showed that seizures and spreading 
depression could be described as two extreme cases of extracellular potassium 
dysregulation. They extended the modified Hodgkin-Huxley model using the 
conservation law for sodium, potassium and chloride ions and addition of O2-
dependence for the sodium-potassium pump and glia, Fig.I-3C. Similar to the 
works of (Ullah et al. 2009), Fig.I-3B they found a repertoire of dynamical states 
corresponding to seizure-like dynamics and spreading depression. In particular 
they found that spreading depression or seizures could be achieved either by 
manipulations of extracellular potassium or by reduction of oxygen, Fig.I-4D. In 
this work they proposed that seizures or spreading depression is the 
consequence of the conservation law for ions and metabolic processes related to 
oxygen rather than specific property of a neuron model. 
 
 Based on presented computational models of seizure dynamics we 
conclude that epileptic seizures involve the dynamic interplay of sodium, 
potassium and chloride ions as well as metabolic processes. Due to the 
conservation law all these ions should be considered together in one model to 
explain the complex seizure dynamics. Yet comparing these results with the 
previous work (Barreto and Cressman 2011) with only extracellular potassium 
and intracellular sodium one could see that using simplified approximations of 
constant intracellular potassium and extracellular sodium, Fig.I-3A, provides 
substantially similar dynamics to Fig.I-4D. 
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Figure I-4. Ion dynamics of potassium, sodium and chloride in single neuron and neural 
network models 
A – membrane voltage trace of a pyramidal neuron from a small network of 10 PY and 2 IN, red 
is the period of current stimulation, black corresponds to oscillations during seizures, green is 
the end of seizure. B – trajectory of the single neuron in the network on the state diagram for 
extracellular potassium and intracellular sodium, the color code is the same as on A. Panels A 
and B are adapted from (Krishnan and Bazhenov 2011). C – pyramidal cell model scheme with 
ions pumps and cotransporters. D – repertoire of the model dynamic behavior depending on the 
extracellular potassium concentrations and the amount of oxygen in the extracellular solution, 
SS – single spikes, TF – tonic firing, SZ – seizure, SD – spreading depression. Panels C and D 
are adapted from (Wei et al. 2014). 
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I.6 Conclusions 
 

 In this review we described existing mechanisms of slow ion dynamics 
associated with seizure activity in single neuron and neural network models and 
qualitatively compared them with the available experimental data. The model of 
(Jedlicka et al. 2011) and (Doyon et al. 2011) shows that accumulation of 
intracellular chloride caused by GABAergic stimulation substantially modulates 
the amount of inhibition due to GABA reversal potential changes. On the network 
level changes in corresponding GABA reversal potential could provoke rhythm 
generation and synchrony in developing nervous system (Marchetti et al. 2005). 
The works of (Ullah et al. 2009) and (Barreto and Cressman 2011) showed that 
the interplay between sodium and potassium ions provides the mechanism for 
slow oscillations potentially associated with ictal discharges. The model of (Wei 
et al. 2014) predicts that mechanisms of seizure dynamics and spreading 
depression are not specific for a particular neuron model, yet mostly depend on 
the mechanisms of ion regulation, suggesting that seizure oscillations associated 
with ion concentrations is a general phenomena in the nervous system. 
 
 Qualitative comparison of presented models with the available experimental 
data showed that concentration of intracellular chloride (Isomura et al. 2003), 
extracellular potassium (Sypert and Ward 1974) and intracellular sodium (Karus 
et al. 2015) is strongly correlated with seizure activity. Considered computational 
models showed their qualitative agreement with the available data, yet none of 
them was completely verified. All considered models of epileptic oscillations 
assumed that ion concentration changes are causally related to seizure 
generation. While available data does not allow separating whether ion 
concentration changes are the reason or the consequence of epileptic 
oscillations. We believe that taking into account these theoretical considerations 
would help to propose novel experiments to precisely clarify the role of ion 
concentration changes during seizures. 
 
 Nonetheless in the aforementioned models one important link between 
extracellular potassium and intracellular chloride is not properly described. In the 
model of (Krishnan and Bazhenov 2011) changes of GABA reversal potential are 
not affected by GABAergic input and subsequent chloride accumulation. The 
GABAergic current in the model is calculated in the following way: 
 
IGABA = gsyn[O](V −VGABA )  
VGABA = −80mV  
 
 The intracellular chloride accumulates in this model only due to chloride leak 
currents, while GABA reversal potential remains unchanged (Bazhenov et al. 
2004). This property does not allow it to take into account the decrease of 
inhibition in the pyramidal cells caused by intensive GABAergic input (Kaila and 
Voipio 1987, Jedlicka et al. 2011). 
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 The link between potassium and chloride in this model is described using 
the phenomenological equation for chloride extrusion with potassium-dependent 
extrusion constant (Payne, 1997): 
 
dCl_

IN

dt
= −

kCl
F
ICl +

Cl∞IN −Cl
−
IN

τCl

τCl =100 +
τ ∞
Cl

1+ exp({Cl∞IN −K
+
OUT} / τ Kocl )

 

 
 It could properly describe the extrusion rate 1/ τCl  (Payne et al. 2003), yet 
the baseline of chloride concentration Cl∞IN  is fixed regardless of the extracellular 
potassium. This property does not allow this model to take into account the 
baseline chloride concentration as a function KCC2 expression and extracellular 
potassium. Therefore it could not be used to explain the experimental 
observation of depolarizing GABA reversal potential associated with the 
increased intracellular chloride level due to KCC2 pathology (Huberfeld et al. 
2007). 
 
 To take into account this missing link between the extracellular potassium 
and intracellular chloride we added the biophysical model of KCC2 from (Doyon 
et al. 2011) to the existing extracellular potassium model (Bazhenov et al. 2004): 
 
dCl_

IN

dt
= −

kCl
F
ICl + IKCC2

IKCC2 =
Imax (VK −VCl )

(VK −VCl )+V1/2

 

 
 This KCC2 model is substantially similar to the Michaelis-Menten 
description of chloride extrusion (Staley and Proctor 1999). It allows directly link 
the concentration of intracellular chloride with extracellular potassium. It also 
explains both the baseline chloride concentration and chloride extrusion rate. In 
the next section we describe this novel chloride-potassium pathway and apply it 
to explain the epileptic oscillations recorded in human subiculum slices. 
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CHAPTER II 
THE ROLE OF K/Cl HOMEOSTASIS IN HUMAN SUBICULUM 

EPILEPSY 
 
 

II.2 Introduction 
 
 This chapter consists of a manuscript submitted to the Journal of 
Neuroscience. In the II.3 Detailed model description section we provide the 
additional description of models being used in this study. In the II.4 Future 
directions section we review the current problems in the present study and 
discuss ways to solve them. The manuscript is written mostly by myself, yet my 
supervisors, Boris Gutkin and Anton Chizhov as well as collaborators Richard 
Miles and Gilles Huberfeld added substantial corrections. 
 
 The aim of this work is to investigate the role of interneuron inhibition on the 
pyramidal neurons and chloride homeostasis changes for generation of epileptic 
discharges in temporal lobe epilepsy. We followed the conventional «bottom-up» 
approach where we described the system using known biophysical mechanisms 
related to seizure dynamics. Our model was restricted to specifically investigate 
the role of intracellular chloride in pyramidal cells and extracellular potassium 
since it has been found that these pathways are associated with the absence of 
KCC2 cotransporter found in human epileptogenic tissue (Huberfeld et al. 2007). 
In particular we are concentrated on the link between extracellular potassium and 
intracellular chloride, since it has been left open in the recent seizure models 
(Krishnan and Bazhenov 2011). 
 
 We are aware that our model does not fully capture all biophysical 
mechanisms related to seizure dynamics such as changes in pH, extracellular 
volume, oxygen concentration and metabolic activity. These factors undoubtedly 
contribute to seizure dynamics, yet addition of all pathways at once does not 
allow determining the specific role and significance of each mechanism. 
Therefore various pathways should be studied separately in different models to 
determine their relevance. 
 
 We found that absence of KCC2 leads to higher excitability of pyramidal 
cells due to increased resting membrane potential and depolarizing GABA 
reversal potential. These excitability changes lead to higher susceptibility of 
pathological pyramidal cells to generate bursting activity. To study the 
consequences of GABA reversal potential changes we turned to the network 
model representing the local subiculum circuit. Addition of the critical amount of 
pathological pyramidal cells provoked the development of epileptic oscillations 
similar to the recordings from epileptogenic human subiculum. We found that 
epileptic oscillations are robust to synaptic parameter changes and coexist with 
the normal activity in the network. Thereby we characterized the pathological 
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pathway associated with the intracellular chloride that leads to epileptic 
oscillations in human subiculum. 
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II.2 Article 1 
Reduced efficacy of the KCC2 cotransporter promotes 

epileptic oscillations in a subiculum network model 
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II.2.1 Abstract 
 

 The potassium-chloride cotransporter KCC2 is absent or non-functional in a 
minority of the subicular pyramidal cells in the hippocampal tissue from patients 
with pharmacoresistant temporal lobe epilepsies. KCC2 assists in regulating the 
basal intra-neuronal chloride and extracellular potassium levels. The dynamic 
changes in the internal chloride concentrations resulting from the repeated 
activation of GABAergic synapses may switch GABA neurotransmission from 
inhibition to excitation in the pyramidal cells. Such changes could initiate periodic 
bursting in pyramidal cells and contribute to the onset of an ictal epileptic event. 
We developed a biophysical model of a subicular pyramidal cell that incorporates 
the effects of the cotransporter KCC2 on chloride and potassium homeostasis. 
Using a neural network model, we found that decreasing KCC2 activity in a 
critical number of pyramidal cells led to seizure-like field oscillations that are 
linked to increased external potassium and intracellular chloride concentrations. 
This behavior, which is similar to that recorded from the human subiculum, 
suggests that reduced KCC2 cotransporter activity alone may generate ictal 
discharges. 
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II.2.2 Introduction 
 

 Epilepsy is a common, chronic neurological disorder characterized by 
recurring seizures (Ullah and Schiff 2009, Beghi et al. 2005). In many epileptic 
syndromes, treatment with anti-epileptic drugs becomes ineffective over time 
(Beghi et al. 2005). In particular, it has been suggested that defects in chloride 
homeostasis may contribute to the epileptic activities generated in tissue derived 
from patients with temporal lobe epilepsies associated with hippocampal 
sclerosis (Huberfeld et al. 2007) and in the tissue surrounding cortical tumors 
(Pallud et al. 2014). Changes in the expression of potassium-chloride transport 
proteins may be involved. It was found that the absence of KCC2 shifts the 
reversal potential of the GABAergic synaptic events from hyperpolarizing to 
depolarizing in human subicular pyramidal cells (Huberfeld et al. 2007). Of the 
proteins controlling chloride homeostasis, the KCC2 cotransporter maintains 
basal chloride levels using the ionic gradients created by the sodium-potassium 
pump to extrude intracellular chloride and potassium ions to the extracellular 
space (Payne et al. 2003). In addition to these basal effects, experimental (Kaila 
and Voipio 1987) and theoretical studies (Jedlicka et al. 2011), (Doyon et al. 
2011) showed that intense GABAergic stimulation leads to progressive chloride 
accumulation and therefore shifts the reversal potential in a similar manner. 
Thus, intensive activation of GABA synapses combined with impaired KCC2 
cotransporter expression or function may produce seizures. 
 
 Extracellular potassium levels, which affect neuronal excitability, could also 
contribute to seizure generation (Fröhlich et al. 2008). It has been known for 
many years that potassium ions accumulate in the extracellular space during 
seizures (Fertziger 1970) and spreading depression (Grafstein 1956, Kraio and 
Nicholson 1978). It has been suggested that intense neuronal firing could 
increase the extracellular potassium concentrations and create a positive 
feedback that may promote seizure generation. Recent computational models 
that incorporate this feedback with realistic extracellular potassium levels and 
with its control predicted periodic seizure-like firing patterns generated by single 
neurons (Barreto et al, 2009, Hübel and Dahlem 2014, Wei et al. 2014) and by 
recurrent neural networks (Bazhenov et al. 2004, Ullah et al. 2009, Krishnan and 
Bazhenov 2011). 
 
 Homeostasis and the dynamic changes in the chloride and potassium ion 
concentrations during the transition to seizure are not completely understood. 
The model described by Krishnan and Bazhenov (Krishnan and Bazhenov, 2011) 
suggested that the KCC2 extrusion rate could affect the seizure duration. A 
phenomenological model was used to describe the KCC2 activity in pyramidal 
cells; however, this model did not describe the baseline chloride concentration as 
a function of the KCC2 expression level. We propose that KCC2 treatments may 
be improved by using a detailed model that describes how KCC2 controls the 
basal intracellular chloride levels as a function of the external potassium levels 
(Payne 1997, Doyon et al. 2011) and how the cotransporter responds to the 
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dynamic changes in the chloride levels resulting from GABAergic synaptic 
stimulation (Fujiwara-Tsukamoto et al. 2007, Fujiwara-Tsukamoto et al. 2010, 
Isomura et al. 2003). This model may allow us to resolve the question of whether 
the presence of KCC2 has a pro-epileptic effect due to an increase in the 
extracellular potassium levels (Viitanen et al. 2010, Hamidi and Avoli 2015) 
and/or whether its absence is epileptogenic due to intracellular chloride 
accumulation and a depolarizing GABA reversal potential (Cohen et al. 2002, 
Huberfeld et al. 2007). 
 
 Therefore, we constructed an accurate two-compartment model of single 
pyramidal cells and interneurons of the subiculum, with special attention given to 
the effects of KCC2 on potassium and chloride homeostasis. Such neurons were 
incorporated into a neuronal network with realistic values for synaptic 
connectivity and an explicit treatment of ion exchange between the intra-neuronal 
and extracellular space. Neuronal voltages were used to derive the values for the 
local field potential (LFP) generated by the network during normal and epileptic 
activity. We found that the incorporation of KCC2-deficient cells into this network 
reproduced the ictal-like extracellular field potentials recorded in epileptogenic 
slices from the human subiculum. Thus, our results help to resolve the KCC2 
controversy and provide a testable hypothesis for further experimental studies of 
intracellular chloride regulation in pyramidal cells. 
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II.2.3 Materials and Methods 
 
Epileptic tissue: Temporal lobe tissue blocks containing the hippocampus, 
subiculum and part of the entorhinal cortex were obtained from 45 people with 
pharmacoresistant mesial temporal lobe epilepsies associated with hippocampal 
sclerosis (age 18–52 years, seizures for 3–35 years) undergoing resection of the 
amygdala, the hippocampus, and the anterior parahippocampal gyrus, as well as 
occasionally the temporal lobe and the anterior basal and lateral neocortex. All of 
the individuals gave their written informed consent and the study was approved 
by the Comité Consultatif.  
 
Tissue preparation: The post-surgical tissue was transported in a cold, 
oxygenated solution containing 248 mM d-sucrose, 26 mM NaHCO3, 1 mM KCl, 
1 mM CaCl2, 10 mM MgCl2 and 10 mM d-glucose, equilibrated with 5% CO2 in 
95% O2. The hippocampal-subicular-entorhinal cortical slices or isolated 
subicular slices (400 µm thick) were cut with a vibratome (HM650 V, Microm). 
They were maintained at 37 °C, and equilibrated with 5% CO2 in 95% O2 in an 
interface chamber perfused with a solution containing 124 mM NaCl, 26 mM 
NaHCO3, 4 mM KCl, 2 mM MgCl2, 2 mM CaCl2 and 10 mM d-glucose. NBQX 
and d,l-AP5 were used to block glutamatergic signaling, and bicuculline or 
picrotoxin was used to block the GABA-A receptors. Ictal-like activity was 
induced by increasing the external K+ concentration to 8 mM and reducing the 
Mg2+ concentration to 0.25 mM. 
 
Recordings: Up to four tungsten electrodes etched to a tip diameter of ~5 µm 
were used for the extracellular recordings. The signals were amplified 1,000-fold 
and filtered to pass frequencies of 0.1 Hz to 10 kHz (AM systems, 1700). The 
intracellular recordings were made with glass microelectrodes containing 2 M 
potassium acetate and beveled to a resistance of 50–100 MΩ. The signals were 
amplified with an Axoclamp 2B amplifier in current-clamp mode. The intracellular 
and extracellular signals were digitized at 10 kHz with a 12–bit, 16-channel A-D 
converter (Digidata 1200A, Axon Instruments), and monitored and saved to a PC 
with Axoscope (Axon Instruments). 
 
Data analysis: The recordings were analyzed with Clampfit 10 software from 
Spikoscope and programs written in Matlab 2015a. 
 
Simulations: Single neuron and neural network simulations were performed in 
Matlab 2015a using the direct Euler method of integration, with a time step of 
0.05 ms. We ensured that smaller time steps provided substantially similar 
results. The bifurcation analysis was performed in XPPAUT 7.0 and the AUTO 
package. In all simulations, we systematically varied the initial conditions to 
ensure the stability of the numerical results. 
 
Neuron intrinsic properties: Single neuron activity was modeled using the 
conductances derived from previous studies (Mainen and Sejnowski 1996, 
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Krishnan and Bazhenov 2011). The intrinsic currents were selected to represent 
the major currents that contribute to the intrinsic dynamics of the pyramidal cells 
of subiculum (Jung et al. 2001, Staff et al. 2000). Similar to previous studies, we 
used the model of a regular spiking neuron for the pyramidal cells and a fast 
spiking neuron for the interneurons (Mainen and Sejnowski 1996, Bazhenov et 
al. 2004). 
 
 The following equations describe the evolution of voltage over time for these 
two compartments: 
 
CmdVd / dt = −I Intd − g

d
c (Vd −Vs )− Id

leak − I pumpd  
gSc (Vd −Vs ) = −Is

Int − Is
leak − Is

pump
 

 
where Vd  is the voltage of the dendritic compartment, Idleak  includes the sodium, 
potassium, and chloride leak currents (PY: gK = 0.044 , gNa = 0.02 , gCl = 0.01  
mS / cm2 ; IN: gK = 0.035 , gNa = 0.02 , gCl = 0.01  mS / cm2 ), I leaks  includes the sodium 
and potassium leak currents (PY: gNa = 0.019 , gK = 0.042  mS / cm2 ; IN: gNa = 0.019 , 
gK = 0.042 mS / cm2 ), and IdInt  and IsInt  are the sums of the intrinsic currents for the 
axosomatic and dendritic compartments, respectively. Idpump and Ispump  are the sums 
of the Na+ and K+ ion currents ( I pumpNa , I pumpK ) via the Na+-K+ exchange pump for 
each compartment. The axosomatic and dendritic compartments were coupled 
by an axial current (PY: gC =1.65 µS ; IN: gC = 0.5 µS ). The axosomatic currents 
were assumed to be strong enough to instantaneously change the somatic 
membrane voltage such that the axosomatic compartment has no capacitance 
current. The current through the sodium-potassium pump was determined by the 
intracellular sodium (Na+

IN ) and extracellular sodium (Na+
OUT ) concentrations and 

is given by the following equations (Kager et al. 2000): 
 
A =1/ (1+Koα /K +

OUT )2 / (1+ Naiα / Na+
IN )3  

 INapump = 3ImaxA  IKpump = −2ImaxA  
where Koα = 3.5 mM , Naiα = 20 mM , Na+

IN = 20 , and Imax = 25 mA / cm2 . 
 
 The set of intrinsic currents of the dendritic compartment consisted of the 
Id
Int = IHVA + IKCa + IKm + INap + I dNa + ICa + Id

pump + I cd + I leakd  currents for the pyramidal cells 
and the IdInt = Id

pump + Id
c + Id

leak  currents for the interneurons. The intrinsic currents for 
the somatic compartment are described as IdInt = Id

pump + Id
c + Id

leak for the pyramidal 
cells and interneurons, where IsInt  consists of the voltage-gated sodium (PY and 
IN: GNa = 3450  mS / cm2 ) and delayed-rectifier potassium ( GKv = 200 mS / cm2 ) 
currents. The dendritic compartment had a high-threshold calcium current ( IHVA ), 
a calcium-activated potassium current ( IKCa ), a calcium current ( ICa ), a slowly 



! 32!

activating potassium current ( IKm ), voltage-gated and persistent-sodium currents 
( INa  and INap , respectively) (Jung et al. 2001), and leak conductances (PY: 
GK = 0.044 , gNa = 0.02 , gCl = 0.01  mS / cm2 ; IN: GK = 0.035 , GNa = 0.02 , GCl = 0.035  
mS / cm2 ). The full expressions for these current approximations were previously 
described (Mainen and Sejnowski, 1996, Krishnan and Bazhenov 2011). 
 
Ion concentration dynamics: The model included the Ca2+

IN , K +
OUT  and Cl−IN

variable ion concentrations, leak currents, intrinsic currents, pump-mediated 
currents, extracellular diffusions, and glial activities, which determined the 
concentration of each ion. The reversal potentials for potassium and chloride 
were determined from the internal and external ion concentrations using the 
Nernst equation. The concentrations were calculated based on the active 
currents, sodium-potassium exchange pump, KCC2 cotransporter (Doyon et al. 
2011), ion flow between the pyramidal cells and through the extracellular 
compartment (Wei et al., 2014). The evolution of K +

OUT  was modeled similar to 
(Krishnan and Bazhenov 2011), while the extracellular diffusion is modeled using 
a two-dimensional network. The intracellular potassium was set at KIN

+ =150 mM . 
 
dK +

OUT / dt = (kK / Fd)(ΣIK
int + IK

pump − IKCC2 )+G
 

+ Dij /Δx2 (K +
OUT −K

+(i)
OUT )

i=1

4

∑ + dbath /Δl(K +
OUT −Kbath )

 
G = kON / k1N (Bmax −B)− kOFFK

+
OUTB  

dB / dt = kON (Bmax −B)− kOFFK
+
OUTB ,

  
where the conversion factor k=10 103 cm3, F=96489 C/mol , and the ratio between 
the cell volume and extracellular compartment d=0.15. Dij  is the element of 
diffusion matrix D, and Dij = 4×10−6  cm2/s for neighboring neurons (cat neocortex 
data (Fisher et al. 1976)) and Dij = 0  otherwise. Each pyramidal cell has 4 
neighboring cells, Δx = 50 µm  was the mean distance between subicular 
pyramidal cell somata (Huberfeld et al. 2007), dbath = 4×10−7 Hz  is the coefficient 
for diffusion from the bath (Barreto and Cressman 2011, Florence et al. 2009) 
and Δl = 200 µm  is the depth of the neurons in the slice. The external K +

OUT  
concentration was assumed to be uniform in the network and to equilibrate very 
rapidly (Bazhenov et al., 2004). Glial K +

OUT  uptake was modeled by free buffer 
(with total capacity Bmax = 500 mM ) with a concentration B , which bound and 
unbound from K +

OUT  with first-order kinetics, and the rates kON  and kOFF  were 
given by kON = 0.008  and kOFF = kON / (1+ exp(−(K +

OUT −K
+
oth ) /1.15))

,
 (Kager et al. 

2007, Volman et al. 2007). K +
OUT  produced by the interneurons was assumed to 
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be negligible compared to the K +
OUT  produced by the pyramidal cells. In contrast, 

the K +
OUT  concentrations extruded by the pyramidal cells affected other neurons. 

For some simulations, extracellular diffusion from the bath solution to the network 
was set to zero to mimic the in vivo-like conditions. 
 
 The extracellular chloride concentration is assumed to be constant: 
Cl−OUT =130mM . The intracellular chloride Cl−IN  concentration was calculated 
from the following equations: 
 

dClIN / dt = (kCl / F)(ID
Cl + IGABA + IKCC2 )  

IKCC2 = IKCC2 (VK −VCl ) / ((VK −VCl )+V1/2 ) ,
  

where I
Cl
D  is the chloride leak current on the dendrite, IKCC2 = 2µA / cm2

 is the 

maximal current through the KCC2 cotransporter, VK  and VCl  are the reversal 
potentials of potassium and chloride, and V1/2 = 40 mV  is the voltage difference 
when the chloride current reaches its maximal value (Doyon et al. 2011). 
IGABA = giGABAs

i
GABA (V −VGABA )

i
∑  is the sum of the GABAergic currents received by 

the neuron. The KCC2 equation describes the current from the potassium and 
chloride ions via the cotransporter. This current could flow in both directions, 

depending on the sign of (VK −VCl ) . 
 
 The intracellular calcium dynamics was modeled using the following 
equation: 
 
dCa2+

IN / dt = −(5.18×10−5 ) /DCaIHVA + (2.4×10−4 −Ca2+
IN ) / τCa , 

 
where τCa = 800 ms  and DCa = 0.85 cm2mM /µA . 
 
 The reversal potentials for each current were calculated according to the 
Nernst equations and continuously updated based on the internal and external 
ion concentrations: 
 

 VK =
RT
F

ln(K
+
OUT

K +
IN

) , VCl =
RT
F

ln( Cl
−
IN

Cl−OUT
)  and VGABA =

RT
F

ln( Cl−IN + 4HCO−
3IN

Cl−OUT + 4HCO−
3OUT

) , 

 
 where HCO−

3IN =16 mM  and HCO−
3OUT = 26 mM  (Doyon et al., 2011). 

Network and synaptic model: We used 841 pyramidal cells and 225 
interneurons to model the local subiculum network. The number of neurons was 
chosen to match the ratio of 80% excitatory and 20% inhibitory cells in the 
hippocampus. Increasing the overall size of the network had a minimal effect on 
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the network dynamics. The synaptic connectivity between these cells was 
random and based on estimates from the mouse subiculum (Peng et al. 2014): 
PPY−PY = 0.05 , PIN−PY = 0.65 , PPY−IN = 0.3 , PIN−IN = 0.4 . The peak conductances at the 
simulated synapses were randomly distributed with the following means PY-PY: 
1.5nS / cm2  for AMPA and 0.02 nS / cm2  for NMDA; PY-IN: 1 nS / cm2  for AMPA; IN-
PY: 0.7 nS / cm2 for GABA; and IN-IN: 0.5 nS / cm2  for GABA. The variances of the 
distributions of synaptic conductance were equal to 10% of the mean. The 
synaptic parameters were systematically varied to ensure the stability of the 
network activity. Both pyramidal cells and interneurons received a supplementary 
noisy excitatory synaptic input (AMPA) in order to provide spontaneous firing. 
Additional AMPA synaptic currents were modeled by an Ornstein-Uhlenbeck 

process (Renart et al. 2007): τ AMPA
dIAMPA
dt

= −IAMPA +σ E /Iη(t) , where τ AMPA = 5.4 ms , 

σ E = 0.50 µA / cm2  and σ I = 0.60 µA / cm2 . The time course of the currents at the 
AMPA, NMDA and GABA conductance-based synapses followed first-order 
kinetics, similar to those used in (Brunel et al., 2001). 
 
LFP model: We computed a local field potential (LFP) corresponding to the 
activity generated by the neurons of the simulated network similar to (Chizhov 
and Rodrigues 2014). Pyramidal cells were assumed to provide the largest 
component for the LFP signal (Buzsáki et al. 2012). Each pyramidal cell 
generated a dipole ϕ = −k[gSc (V

i
d −V

i
s )] , similar to (Demont-Guignard et al. 2012, 

Wendling et al. 2012), where k = 0.02  is the proportionality coefficient for the 
pyramidal cell layer. A global LFP signal was computed as a superposition by 
assuming that all pyramidal cells contribute equally: LFP = ϕi

i
∑ . 

 
Seizure detection algorithm: The seizure-like events generated by the model 
were detected with an algorithm, which estimated the total power spectrum over 
a time window of 5 seconds. Events exceeding a manually set amplitude 
threshold were classified as seizures. 
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II.2.4 Results 
 
II.2.4.1 Absence of KCC2 leads to a depolarizing GABA reversal 
potential 
 
 Fig.II-1A shows a pyramidal cell, including the intrinsic and synaptic 
conductances on the somatic and dendritic compartments. The active currents 
responsible for spike generation include the calcium currents that contribute to 
burst firing in the subicular pyramidal cells (Jung et al. 2001, Stanford et al. 
2012). In this cell model, the random synaptic currents mediated by AMPA and 
NMDA receptors initiate firing. Each action potential induces an increase in the 
extracellular potassium concentrations in the model. Fig.II-1B shows the major 
ion pathways associated with extracellular potassium and intracellular chloride 
concentrations. Because K +

OUT  affects the reversal potential of all potassium 
currents (see the Materials and Methods), the increase of this parameter 
changes the excitability of the neuron model. At the same time, the sodium-
potassium pump, glial buffer and diffusion to the neighboring cells restore the 
potassium concentration to the physiological level of ~4 mM. Despite the 
complex ion homeostasis mechanisms, the model reached a stable equilibrium 
at physiological ion concentrations. 
 
 In turn, GABA synapse activation results in an increase in the intracellular 
chloride concentrations in the dendrite compartment of the model, Fig.II-1B. The 
intracellular chloride concentration Cl−IN  is then equilibrated by the KCC2 
cotransporter, which extrudes chloride and potassium ions into the extracellular 
space. Thus, the increase in the intracellular chloride concentrations leads to 
higher VGABA  values, thus decreasing the efficacy of inhibition. 
 
 The baseline intracellular chloride level depends on the KCC2 activity in the 
model. In KCC2(+) cells, the baseline chloride concentration became fixed at 
3.46 mM, which corresponds to the GABA reversal potential of VGABA = −78mV . 
The resulting resting membrane potential became equilibrated at -70 mV. In the 
KCC2(-) cells, the intracellular chloride concentration increased to 11.3 mM, 
which corresponds to VGABA = −56mV . In this case, the resting membrane 
potential became stable at -65 mV. Therefore, the absence of KCC2 leads to a 
depolarizing GABA reversal potential and an increased resting membrane 
potential due to the chloride leak currents (Krishnan and Bazhenov, 2011). 
 
 To study the role of intracellular chloride in the inhibitory input, the pyramidal 
cell model was stimulated by a GABA conductance similar to the experiment 
from (Cohen et al. 2002), Fig.II-1C. In this experiment, the membrane potential of 
a neuron was fixed in voltage clamp mode, while the  
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Figure II-1. Absence of KCC2 leads to a depolarizing GABA reversal potential 
 A - Scheme of the PY model with intrinsic currents; B - ion pathways in the single cell model; 
and C - experimental and model voltage traces during GABAergic stimulation. D - amplitude of 
the post-synaptic potential (PSP) during stimulation in the experiment (red and blue dots) and 
model (red and blue lines). The experimental traces in panels C and D are taken from (Cohen et 
al. 2002). 
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excitatory synaptic transmission was blocked by NBQX and APV. Then, 
extracellular stimulation was applied to stimulate the GABAergic neurons. In  
our model, the GABAergic synaptic current caused by extracellular synaptic 
stimulation was calculated using the second order synaptic kinetics from 
(Chizhov 2002). 
 
 To illustrate the dependence of the GABA currents on the presence of 
KCC2, we plotted the amplitude of the postsynaptic potential (PSP) as a function 
of a fixed membrane potential, Fig.II-1D. The characteristic experimental and 
model voltage traces are presented in Fig.II-1C. During GABAergic stimulation, 
the KCC2(+) pyramidal cell is hyperpolarized, while the KCC2(-) cells is 
depolarized. The blue and red lines are the predictions of the model based on 
the PSP amplitude measured in different cells. Thus, the absence of the KCC2 
cotransporter in the model could explain the approximately 22 mV difference in 
the GABA reversal potential of the hyperpolarized and depolarized pyramidal 
cells. 
 
 
II.2.4.2 Single cell consequences of KCC2(-) pathology 
 
 We studied the response of a model neuron to periodic synaptic stimulation 
to investigate the effects of KCC2(-) pathology at the single neuron level. Our 
aim was to mimic the reported responses from animal (Fujiwara-Tsukamoto et 
al., 2007), (Fujiwara-Tsukamoto et al. 2010) or epileptic human hippocampal 
slices (Huberfeld et al. 2011a) maintained in conditions where seizure-like events 
were evoked by extracellular stimulation. 
 
 Fig.II-2A, B present the voltage traces of the KCC2(-) and KCC2(+) cells 
when both of the cells were both periodically stimulated by 5 seconds of 
simultaneous AMPA, GABA and NMDA conductances with a 5 Hz frequency. 
Synaptic stimulation of these cells provoked sustained bursting activity after the 
application of the stimulus. The bursting activity of the KCC2(+) cell, Fig.II-2A, is 
much shorter than that of the KCC2(-) cell, Fig.II-2B. Both voltage traces contain 
a slow depolarization component after stimulation that is caused by extracellular 
potassium accumulation. This slow depolarization constitutes the main excitatory 
effect of extracellular potassium after stimulation. 
 
 The model neuron generated spikes after synaptic stimulation due to the 
increased ion concentrations. To explain this behavior, we plotted concentrations 
computed from the bifurcation analysis on the state diagram. Fig.II-2C shows 
how the intracellular chloride Cl−IN  and extracellular potassium K +

OUT  
concentrations affect the single neurons’ behaviors. The black line corresponds 
to the border dividing the spiking/bursting and resting solutions in the model and 
is calculated as saddle-node bifurcation of a two-parameter diagram. The neuron 
in this region is continuously spiking or bursting. Thus,  
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Figure II-2. Single cell consequences of the KCC2(-) pathology 
A, B - voltage trajectories of the KCC2(-) and KCC2(+) PY models after stimulation with periodic 
AMPA, GABA and NMDA synaptic input for 5 seconds. The bottom panels show the changes in 
the concentrations of the corresponding ion. C - state diagram of the model, and the changes in 
the concentrations of the corresponding ion. The red and blue trajectories correspond to the 
KCC2(-) and KCC2(+) cells, respectively. D - Bursting duration caused by the increased ion 
concentrations after synaptic stimulation. 
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the high concentrations of K +
OUT  and Cl−IN  moved the neurons to the 

spiking/bursting activity regime. The number of spikes during the burst varied 
according to the K +

OUT  concentration (Fröhlich and Bazhenov 2006b). Therefore, 
the last bursts contained only one spike, Fig.II-2A, B. The baseline chloride  
concentration Cl−IN  affects the reversal potential of the chloride leak currents, 
providing additional depolarization for the KCC2(-) cells. Thus the absence of 
KCC2 cotransporter made a neuron more excitable by moving it closer to the 
spiking/bursting area on the state diagram, Fig.II-2C. 
 
 During synaptic stimulation, K +

OUT  and Cl−IN  were increased due to spiking 
and GABAergic stimulation. When the ion concentrations became high enough, 
the cell moved to the spiking/bursting regime of activity, Fig.II-2C. In the KCC2(+) 
cell, the ion equilibrium is lower than the KCC2(-) cell due to the decreased 
intracellular chloride level. Therefore, the same synaptic stimulation moved the 
KCC2(-) cell further into the pathological spiking/bursting region compared to 
KCC2(+) cell. This provoked a longer period of bursting activity in these neurons 
due to the increased chloride ion concentrations. After self-sustained spiking and 
bursting, the activity in both cases returned to baseline Fig.II-2C black dots. 
 
 We evaluated the effect of the KCC2(-) pathology on the various intensities 
of the synaptic input. Stimulation of single KCC2(-) neuron moved the cell to the 
pathological regime for a lower stimulation frequency compared to the KCC2(+) 
neuron. We also found that the duration of the spiking and bursting in the KCC2(-
) cell is much longer compared to that in the KCC2(+) cell. In this way, the 
presence of the KCC2(-) pathology increases the susceptibility of the pyramidal 
cell to generate bursting activity for various stimulation frequencies due to the 
increased intracellular chloride concentration Cl−IN . 
 
 
II.2.4.3 Gamma oscillations in KCC2(+) subiculum circuit 
 
 To study the role of the KCC2 cotransporter in network oscillations, we 
constructed the subiculum circuit network consisting of interneurons (IN) and 
pyramidal cells (PY), see the Materials and Methods. The neurons were sparsely 
connected by conductance-based synapses to represent the local subiculum 
connectivity (Peng et al. 2014). All neurons in the network possessed the same 
dynamic K +

OUT  ion concentration, which affects both the PYs and INs, as well as 
the dynamic chloride concentration Cl−IN  in the pyramidal cells. 
 
 In the presence of external excitation provided by 8 mM potassium and 0.5 
mM magnesium in the bath solution (Huberfeld et al. 2011c), the  
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Figure II-3. Ion concentrations during gamma oscillations in the PY-IN network 
A - raster plot of the pyramidal cell (PY) and interneuron (IN) population (only part of the 
network is shown); B - voltage traces from a representative PY and IN cells; C - K +

OUT  and Cl−IN  
concentrations during network activity; and D – the local field potential (LFP) computed from the 
network and power spectrum of the signal. 
  



! 41!

network model organized into the oscillatory regime, Fig.II-3A. It generated 
stable gamma oscillations with a main frequency of approximately 36 Hz. The 
frequency band of these oscillations is similar to that generated in hippocampal 
slices recorded in subiculum (Jackson et al. 2011, Stanford et al. 2014). 
 
 To illustrate the single neuron behavior during these oscillations, we plotted 
the characteristic recordings from the PY and IN populations, Fig.II-3B.  
We found that the pyramidal cells in the network generated activity with a 9 Hz 
frequency, while the interneurons generated spikes with a frequency of 
approximately 36 Hz. This high firing rate of single cells results from the 
increased potassium concentration that provides substantial excitation for both 
populations. With smaller bath potassium concentrations, for example 4 mM, the 
network activity stops in both populations without additional external input. 
 Pyramidal cell and interneuron spiking during gamma oscillations led to an 
increase in the extracellular potassium and intracellular chloride concentrations. 
After 1-2 minutes of network activity equilibration, the concentrations of K +

OUT  and 
Cl−IN  became stationary near the baseline of 7.96 mM for K +

OUT  and 8.6 mM for 
Cl−IN , Fig.II-3C. During spiking, there are local increases in the K +

OUT  
concentration, yet the concentration quickly equilibrates after each spike is 
generated. The ion concentrations increased slightly during the course of the 
oscillatory cycle, but their concentrations did not increase much higher than the 
baseline levels. Thus, the oscillations provided by the PY-IN network led to 
quasistationary ion concentrations, such that the network activity stayed in the 
physiological regime. 
 
 Synchronous pyramidal cell firing during the gamma oscillations led to 
oscillations of the LFP computed for the PY population (see the Materials and 
Methods, Fig.II-3D). One could see that the single pyramidal cells did not 
generate spikes during each phase of the oscillation, but the entire population 
was engaged in the network oscillatory cycle Fig.II-3C. However, the inhibitory 
cells fired with one spike in almost every cycle of the network oscillation. This 
pyramidal neuron-interneuron interplay during oscillations is a classical example 
of the PING mechanism (Whittington et al. 2000). The frequency of these 
oscillations demonstrated a strong peak at 36 Hz, corresponding to the major 
frequency of PY population firing, Fig.II-3D. 
 
 
II.2.4.4 KCC2(-) pathology in the subiculum circuit 
 
 We implemented a PY-IN network with different numbers of KCC2-deficeint 
cells to study the role of KCC2(-) pyramidal cells in seizure initiation. All neurons 
received an excitation from the external potassium present in the bath 
solution.potassiumwas increased to 8 mM to recreate the experimental 
conditions in slice experiments, see Materials and Methods. The concentration  
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Figure II-4. KCC2(-) pathology in the subiculum circuit 
A - raster plot of the pyramidal cell (PY) and interneuron (IN) populations during seizure 
initiation. B - extracellular potassium K +

OUT  and intracellular chloride Cl−IN  accumulation during 
seizure initiation; C - LFP computed from the network and experimental LFP recordings; and D - 
power spectrum of the LFP model and the experimental recordings. 
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of extracellular potassium in the network was defined both by the network activity 
and bath solution. The KCC2(-) pyramidal cells were randomly located in the 
network space. We performed additional simulations to ensure that the KCC2(-) 
cell clusters did not provide substantially different results (data not shown). The 
initial conditions were set at the baseline ion concentrations for the KCC2(-) and 
KCC2(+) cells, which were calculated from the single neuron model, Fig.II-2C. 
 
 In the simulated network, we found that a 30% addition of KCC2(-) PY cells 
provoked synchronous population bursting similar to epileptic activity, Fig.II-4A. 
The increased intracellular chloride levels in the KCC2(-) cells led to the 
substantial activation of the interneuron population and the corresponding 
GABAergic synapses on the pyramidal cells. This occurred because the KCC2(-) 
cells possess the depolarizing GABA reversal potential. Therefore, these cells 
did not receive inhibition, leading to the generation of stronger spikes compared 
to the KCC2(+) cells. 
 
 As a consequence, the population of IN received substantial excitation from 
these cells, which activated the GABAergic synapses on the pyramidal cells. This 
activation provoked an increase in the intracellular chloride concentration Cl−IN  in 
the pyramidal cells and a simultaneous increase in the K +

OUT  concentration due to 
increased pyramidal cell firing, Fig.II-4C. We found that the increase in the 
extracellular potassium concentration during the transition was relatively minor 
due to rapid diffusion to the bath solution containing 8 mM K +

OUT . However, there 
was a significant accumulation of intracellular chloride in both the KCC2(-) and 
KCC2(+) pyramidal cells, leading to the substantial depolarization of the GABA 
reversal potential. This positive feedback loop between the K +

OUT  and, Cl
−
IN  

concentrations and neuronal firing led to a further increase in excitation and 
synchrony. We should mention that although there were relatively small changes 
in the intracellular chloride concentrations in PY cells, Fig.II-4C, even a 1 mM 
increase led to an approximately 2-3 mV change in the GABA reversal potential. 
These changes substantially decreased the inhibition in the network, resulting in 
an excitation-inhibition imbalance. As a result these changes provoked the 
development of pathological oscillations characterized by synchronous bursting 
in both the PY and IN populations. 
 
 Then, we compared the LFP signal generated by the network with the field 
potential recordings from human subicular tissue during ictal discharge initiation, 
Fig.II-4B. The model LFP is able to capture the general dynamics of seizure 
initiation. Similar to the experimental trace at the beginning of the recording, 
there is strong noisy component of neural activity that gradually transforms into 
periodic population bursting, Fig.II-4A. In the model LFP, these are fast 
oscillations before seizure onset and result from strong pyramidal cell firing. After 
generating these fast oscillations, the network transformed into a 4 Hz oscillatory 
bursting regime, Fig.II-4A. This frequency characterizes the pyramidal cell 
bursting coupled with the LFP deviations in both the model and experiment, see 
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the insets in Fig.II-4B. Before the generation of periodic seizure oscillations, the 
network also generated several non-periodic synchronous population bursts 
resembling the pre-ictal discharges (Huberfeld et al. 2011), Fig.II-4B marked by 
asterisk in the experimental and model traces. These irregular discharges took 
place when the network approached the epileptic attractor, i.e., periodic bursting. 
These discharges were initiated by the recurrent AMPA synapses and terminated 
by the Ca2+-dependent potassium currents. We determined the following 
sequence of events by analyzing our simulations in detail. The random noise 
input firing in a critical subset of neurons to initiate a cascade of firing from the 
recurrent excitatory synapses. This firing increases the Ca2+-dependent 
potassium currents (spike-dependent) and thus decreases the excitability of each 
individual neuron involved in the population burst, eventually preventing them 
from firing in response to the terminating inputs and therefore terminating the 
burst. We predict that one could see the characteristic after-hyperpolarization 
and the corresponding increase in the extracellular potassium levels after each 
burst. Because the population bursts are randomly initiated, we suggest that the 
irregular character of these discharges could be partially explained by the 
synaptic noise present in the pyramidal cells and interneurons (Jirsa et al. 2014). 
 
 We analyzed the normalized power spectrum of the experimental and model 
LFP to compare the seizure dynamics between the model and experiment during 
epileptic oscillations, Fig.II-4D. In both cases, there is strong peak at 4 Hz 
corresponding to the main seizure frequency. The following peaks are the 
harmonics of this frequency. The LFP spectrum of the model is able to capture 
the main frequency peak and 1/f behavior of the signal (Buzsáki et al. 2012). We 
did not compare the frequencies beyond 40 Hz because these oscillations are 
not prominent during seizures. Although the detailed shape of the LFP signal and 
the single neuron voltage trace were not perfectly captured by our model, Fig.II-
4C insets, the dynamics of the LFP signal and power spectrum during the 
seizure oscillations were reasonably matched, Fig.II-4D. 
 
 These results show that accumulation of K +

OUT  and Cl−IN  in the subicular PY-
IN network caused by the KCC2(-) pathology in pyramidal cells can lead to the 
development of seizure activity that is similar to the experimental recordings from 
epileptogenic slices of the human subiculum. 
 
 
II.2.4.5 Analysis of the epileptic oscillations 
 
 We performed simulations for various values of the model parameters to 
analyze the stability of the epileptic oscillations in the network. We incorporated 
30% KCC2(-) pyramidal cells into the PY-IN network and analyzed the emerging 
behavior of the system. To characterize the network excitability, we applied a 
seizure detection algorithm to the LFP generated by the network to capture the 
moment of seizure initiation. 
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 An important characteristic of the pathological oscillations is the frequency 
of population bursts. We should mention that this value might significantly 
change during the course of seizure. Therefore, we only included the initial 
oscillation frequency once seizure has started. This frequency corresponds to the 
peak on the power spectrum during the epileptic oscillations, Fig.II-4D. The 
analysis showed that the frequency decreases with the number of KCC2(-) cells, 
Fig.II-5A. The bursting became longer as the duration of the population burst 
decreased, resulting in an increased inter-burst interval. It should not be 
misinterpreted as a decrease in the seizure activity because the population 
bursts became more prominent due to a longer duration. 
 
 We found that the network with extracellular potassium in the bath is 
tolerant of up 25% pathological KCC2(-) cells in the PY population, Fig.II-5A. A 
smaller number of these cells generate various oscillations within the gamma 
band, Fig.II-3. The seizure activity was not generated when there were fewer 
than this number cells, meaning that the time until seizure transition is formally 
infinite, dashed line in Fig.II-5A. However, epileptic oscillations were produced in 
the network when there was a critical number of KCC2(-) cells. We have found 
that the larger the proportion of KCC2(-) cells, the faster the transition. When 
there are more than 40% KCC2(-) cells in the network, the network switched to 
the pathological regime in less than 5 seconds, Fig.II-5A. 
 
 We examined the stability of the initiation of seizure-like activity with a 
supra-threshold proportion of KCC2(-) cells at varying mean strengths of the 
synaptic conductances. Similar to the other biophysical models, our network has 
a very large number of parameters that determine its dynamic behavior, which 
makes it impossible to study all parameter combinations. For this reason, we 
restricted our analysis to the synaptic conductances as the most important 
determinants of seizure dynamics. 
 
 To calculate the parameter regions that corresponded to the seizure 
oscillations, we analyzed the behavior of the network population with different 
synaptic conductance value combinations, similar to (Marder and Taylor 2011). 
To alter the synaptic connection strength, the mean of the synaptic parameter 
distribution was altered and expressed as a percentage of the initial mean (see 
Materials and Methods and Fig.II-5). We found that there is a large parameter 
region that corresponds to the resting state and epileptic oscillations with 30% 
KCC2(-) cells in the network, Fig.II-5B. An analysis of the network dynamics 
showed that two regions corresponded to the normal and seizure dynamics: in 
the black region, the network generated various !
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Figure II-5. Analysis of the epileptic oscillations 
A - time until seizure initiation and the peak frequency of the network LFP as a function of the 
number of KCC2(-) cells in the network, insets – the characteristic LFP trace. B – LFP peak 
frequency as a function of the AMPA and GABA conductances in the network. C – population 
bursts generated after inhibition was blocked by BIC in the experimental recordings and the 
model. The synaptic conductance varied from 0 to 150%: PY-PY 0 – 2.25 nS / cm2 ; PY-IN 0 – 
1.5 nS / cm2 ; IN-PY 0 – 1.05 nS / cm2 . 
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oscillations of different frequencies, and, in the white region, the network 
generated epileptic oscillations with frequencies between 1 and 10 Hz, 
depending on the parameters. The seizure initiation threshold depended on the 
strength of the recurrent excitation between the AMPA PY-PY pyramidal cells. In 
general, stronger recurrent excitation increased the seizure region, Fig.II-5B. In 
contrast, increasing the mean synaptic excitation strength of the AMPA PY-IN 
inhibitory cells reduced the tendency to produce ictal-like discharges. Similarly, 
increasing the mean inhibitory synapse (GABA IN-PY) strength reduced the 
space corresponding to the epileptic activity, Fig.II-5B. In the absence of any 
KCC2(-) PY cells, the network’s ability to generate seizures was dramatically 
reduced (data not shown).!
 
 Evidently, the parametric analysis requiring the change of the synaptic 
connectivity in the network cannot be produced in the experimental conditions, 
thus making it impossible to compare the results from the model with the 
experimental data. However, for more consistency between the model and the 
experiment, we compared the model with the slice recordings when inhibition 
was blocked by BIC after seizure activity was established in the slice, Fig.II-5C, 
left panel. In this case, the network organized into periodic population bursts with 
a frequency within 1 Hz, similar to previous studies (Traub et al. 1987, de la 
Prida et al. 2006, Huberfeld et al. 2011). In this regime, the field potential 
recordings are completely phase locked with the pyramidal cell activity. We found 
that our network model is able to replicate this activity when inhibition is blocked, 
Fig.II-5C, right. In the network, these bursts were generated from the interplay 
between the recurrent excitation in the PY population and the cell’s intrinsic 
currents I KCa  ICa  (Traub et al. 1987, Jung et al. 2001), which are controlled by the 
Ca2+  dynamics. Even if the shape of the LFP differs from the experimental data 
to some extent, the frequency of the events is well replicated. 
 
 Therefore, we found that the epileptogenic effect of the KCC2(-) cells is 
robust and present in a wide range of synaptic conductances. As expected, the 
amount of synaptic inhibition provided by the population of IN could significantly 
reduce the ability of the network to generate seizures, while the recurrent 
excitation increases the ability of the network to generate seizure activity. 
 
 
II.2.4.6 KCC2(-) pathology in the subiculum circuit with endogenous 
potassium 
 
 In the previous sections, we studied the role of the KCC2(-) pyramidal cells 
in epileptic oscillations in the presence of extracellular potassium in the bath 
solution and the potassium provided by the network activity. It allowed us to 
separate the contribution of K +

OUT  and Cl−IN  to the seizure initiation mechanism. 
On the other hand, in the in vivo-like conditions, the extracellular  
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potassium concentrations primarily depend on the network activity, glial buffering 
and extracellular diffusion (Bazhenov et al. 2004). To recreate this scenario in 
our computational model, we performed simulations in the absence of 
extracellular potassium in the bath. To provide a similar level of depolarization as 
in the network with the bath solution, Fig.II-4, we adjusted the current input to the 
PY and IN populations to generate self-sustained activity within the physiological 
firing rate. 
 
 In the network with endogenous extracellular potassium concentrations, the 
addition of 40% KCC2(-) cells generated epileptic oscillations, Fig.II-6A. Similar 
to the network with extracellular potassium in the bath, Fig.II-4, the intensive 
firing of pathological cells leads to the gradual synchronization of the neurons in 
the network, provoking population bursting activity similar to the ictal discharge. 
 
 The mechanism of ictal activity in this network is described below. Increased 
firing of the pyramidal cells and interneurons induced a progressive increase in 
the K +

OUT  and Cl−IN  concentrations in the network, Fig.II-6C. These changes 
induced an excitation-inhibition imbalance in the network, leading to the 
development of synchronous bursting activity after 12 seconds of simulation. 
After this transition, the extracellular potassium K +

OUT  concentrations rapidly 
increased due to the strong synchronous firing of the PY population. This created 
a positive feedback loop between spiking and the ion concentrations, leading to a 
further increase in excitability and synchronization. At the same time, the 
intracellular chloride concentration Cl−IN  was also elevated due to increased 
interneuron firing, which increased the GABA reversal potential in the PY 
population. 
 
 The synchronous neuronal activity generated large LFP deviations, Fig.II-
6B, similar to the extracellular potassium conditions, Fig.II-4B. The power 
spectrum of the network LFP of the signal shows a clear peak at approximately 8 
Hz, which corresponds to the inter-burst interval (see the inset). There are more 
peaks in the LFP generated by the network during seizure compared to the 
extracellular potassium conditions, Fig.II-4B; however, the power spectrum 
possesses the same general shape. 
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Figure II-6. Addition of KCC2(-) cells to the network with endogenous ion concentrations 
leads to the development of pathological oscillations 
A - raster plot of the pyramidal cell (PY) and interneuron (IN) populations during seizure 
initiation. B - LFP trace computed from the network and the corresponding power spectrum, 
inset – the characteristic pyramidal cell activity during seizure. C - changes in the extracellular 
potassium K +

OUT  and intracellular chloride Cl−IN  concentrations during seizure initiation. D - 
seizure frequency as a function of the amount of KCC2(-) cells in the network, inset – the 
characteristic LFP recording. 
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 Similar to the network with the extracellular potassium in the bath, we found 
that a critical number of pathological KCC2(-) pyramidal cells are necessary for 
seizure initiation, Fig.II-6D. Pathological oscillations develop when there are 
more than 40% of these cells in the network. When there is smaller number of 
these cells, the network is able to tolerate the KCC2(-) pathology. Similar to the 
extracellular potassium condition, Fig.II-5A, the frequency of these oscillations 
decreases with the number of pathological cells in the network. When there are 
more than 90% KCC2(-) cells in the network, the oscillation frequency became 
very low, approximately 0.4 Hz. In this regime, long population bursts are 
generated with this frequency. 
 
 Thus, using the PY-IN cell network with endogenous potassium 
concentrations, we showed that decreasing the activity of the KCC2 
cotransporter in the critical number of pyramidal cells leads to the development 
of seizure-like oscillations due to the accumulation of extracellular potassium and 
intracellular chloride. The removal of potassium from the extracellular 
compartment preserved the effect of synchronization, but shifted the oscillation 
frequency to a higher rate, which required a larger number of KCC2(-) cells to 
initiate seizures. 
 
 
II.2.4.7 Dynamic elimination of the KCC2(-) pathology prevents seizure 
 
 In this section, we study the mechanisms of restoring chloride homeostasis 
in the network with endogenous potassium concentrations. We are interested in 
the effects produced by the recovery of the normal KCC2 function in the KCC2(-) 
pyramidal cells. The network was initialized with the same initial conditions as in 
Fig.II-6 at the end of the simulation to generate epileptic oscillations. After 5 
seconds of seizure activity, the KCC2 function was restored in all KCC2(-) cells, 
causing a gradual decrease of synchrony in the PY and IN populations, Fig.II-7A. 
We found that after 45 seconds of KCC2 restoration, the network activity was 
transformed into the stable asynchronous firing regime, which corresponds to 
normal activity, Fig.II-7B. 
 
 The recovered KCC2 function in the pathological pyramidal cells returned 
the extracellular potassium K +

OUT  and intracellular chloride Cl−IN  concentrations to 
the physiological values of 4.1 mM and 4 mM, respectively, Fig.II-7C. The 
mechanism of this transition is described below. After recovery of the KCC2 
function, the intracellular chloride concentration started to decrease. This, in turn, 
reduced the excitatory drive to the IN population, leading to a further decrease in 
the intracellular chloride concentrations in the KCC2(+) and KCC2(-) pyramidal 
cells. These changes gradually reestablished the excitation-inhibition balance in 
the network and decreased the amount of synchrony between neurons. 
Consequently, the decreased pyramidal cell  
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Figure II-7. Restoration of the KCC2(-) function in the network with realistic ion 
concentrations prevents seizure 
A, B – raster plots of the network activity in the pyramidal cell (PY) and interneuron (IN) 
populations during seizure oscillations are shown on the left and those during the transition to 
the normal activity are shown on the right; the black line at 5 s corresponds to the moment of 
KCC2 restoration. C – changes in the extracellular potassium K +

OUT  and intracellular chloride 
Cl−IN  concentrations after the restoration of the KCC2(-) cells; the black line indicates the 
moment of KCC2 restoration, as in panel A. D – power spectrum of the LFP generated by the 
network during epileptic oscillations and normal activity. 
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firing diminished the extracellular potassium concentrations, leading to the 
complete restoration of normal activity, Fig.II-7A, B. The biphasic decay of the  
extracellular potassium and intracellular chloride concentrations at approximately 
40 s, Fig.II-7C, is explained by the fact that the synchronous bursting regime was 
inhibited at this time point, rapidly reestablishing the ion concentrations. At the 
end of this transition, the concentrations of the chloride and potassium ions 
became equilibrated in all neurons of the network and the  
activity switched to the stable asynchronous firing. We have found that 
restoration of KCC2 leads to the reversal of the activity from epileptic oscillations 
back to normal activity in networks with up to 100% of the pathological pyramidal 
cells (results not shown). Additionally, we simulated the restoration of the KCC2(-
) cells in the network with the extracellular potassium in the bath and found 
similar results. 
 
 To compare the network state during epileptic oscillations following the 
recovery of the KCC2(-) cells, we plotted the corresponding power spectrums of 
the LFP generated by the network, Fig.II-7D. One can observe the characteristic 
peak on the LFP spectrum during seizure activity, which corresponds to the 
period of epileptic bursting, Fig.II-6A. After restoration of the KCC2 function in the 
pathological cells, the network switched to the asynchronous firing, which is 
characterized by a uniform LFP spectrum with the 1/f property (Bédard and 
Destexhe 2009). 
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II.2.5 Discussion 
 
 In the present work, we systematically studied the effect of KCC2 pathology 
found in the pyramidal cells of the human subiculum. We showed that the 
depolarizing GABA responses could be explained by the absence of the KCC2 
cotransporter in the pathological pyramidal cells. Our model suggested that the 
KCC2(-) cells have an increased ability to participate in the self-sustained 
bursting activity caused by the increased extracellular potassium and intracellular 
chloride concentrations. Using a neural network model with realistic subiculum 
connectivity, we showed that addition of the KCC2(-) pyramidal cells to the 
network leads to the development of epileptic oscillations. An analysis of the 
intracellular and extracellular recordings from human subiculum epileptogenic 
slices showed that the power spectrum and the time course of the extracellular 
signal are reproduced by the proposed network model. An analysis of the 
pathological oscillations showed that a critical number of KCC2(-) cells is needed 
for seizure initiation. We found that the epileptic oscillations are robust and 
exhibit a wide range of synaptic conductances. We showed that pathological 
oscillations could be generated in the networks with fixed and endogenous 
potassium concentrations. We found that the restoration of KCC2(-) activity could 
reverse the epileptic oscillations in the network to the normal activity regime. 
These results show that the absence of KCC2 cotransporter in pyramidal cells 
could lead to seizures generation in the epileptic human subiculum. 
 
 
Intracellular chloride homeostasis in pyramidal cells 
 
 The mechanisms of seizure initiation are one of the key questions in 
epilepsy research, for a review see (Zhang et al. 2011). Among other ion 
concentrations, the intracellular chloride homeostasis plays a particularly 
important role in synaptic transmission. Changes in the reversal potential 
substantially affect the efficiency of inhibition (Ben-Ari 2002). Studies on the 
developing brain showed that VGABA  in pyramidal cells is depolarizing due to the 
expression of the NKCC1 cotransporter. Later in development, NKCC1 becomes 
down-regulated, while KCC2 becomes up-regulated, leading to the inhibitory 
effect of GABA (Khalilov et al. 1999, Payne et al. 2003). Further studies showed 
that factors such as pH, and CO2 among others could substantially change the 
value of VGABA  (Dulla et al. 2005) during the course of epileptic activity, including 
febrile seizures (Schuchmann et al. 2009, Tolner et al. 2011). 
 
 Recent studies suggested that local impermeant anions also play an 
important role in determining the baseline chloride concentrations (Glykys et al. 
2014). This mechanism is complementary to the changes in the chloride 
concentration caused by GABA channel activation during synaptic stimulation 
(Fujiwara-Tsukamoto et al. 2007, Isomura et al. 2003). Taken together, these 
findings show that there are multiple factors that contribute to the chloride 
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concentrations in neurons and lead to the changes in the GABA reversal 
potential. Therefore, as shown in the present study, it is important to describe the 
mechanisms of chloride homeostasis in conjunction with the neural dynamics. 
 
 We showed that the depolarizing GABA responses of the pyramidal cells in 
epileptogenic human subiculum could be explained by the absence of the KCC2 
cotransporter. We did not describe the hydrocarbonate changes in our model, 
and its concentration was assumed to be constant. This pathway is not the main 
point of our study, but it could be incorporated into the model including the 
dynamic HCO3 concentrations, similar to (Doyon et al. 2011). Additionally, the 
NKCC1 cotransporter was not present in the model because the experimental 
tissue was derived from adult patients, potentially lacking the NKCC1 in 
pyramidal cells. In testing simulations, we explicitly added NKCC1 to our model 
and found that it led to higher intracellular chloride concentrations (data not 
shown). While the addition of the supplementary mechanisms to the model 
makes the chloride homeostasis more precise we found that the removal of the 
KCC2 alone is sufficient to explain the depolarizing GABA responses in human 
hippocampal tissue (Cohen et al. 2002). 
 
 
The link between the extracellular potassium and intracellular 
chloride concentrations 
 
 The increased excitability resulting from the accumulation of extracellular 
potassium has been extensively studied in a large number of studies (Bazhenov 
et al. 2004, Fröhlich, Bazhenov and Sejnowski 2008, Ullah et al. 2009, Wei et al. 
2014). Although the hypothesis that seizures are triggered by extracellular 
potassium concentration was suggested many years ago (Fertziger 1970), it is 
unclear whether the changes in the potassium concentrations are the reason for 
or a consequence of the epileptic oscillations. 
 
 Our work suggests that the increased extracellular potassium 
concentrations alone did not lead to seizure activity in the epileptogenic human 
subiculum. We showed that in the presence of high potassium in the bath 
solution, the epileptic oscillations could not be generated after the inhibitory 
neurotransmission is blocked by BIC. Instead of epileptic oscillations, the 
network generates periodic population bursts with a frequency that is significantly 
different from epileptic seizures, Fig.II-5C. This result suggests that the increased 
extracellular potassium concentration is not only principle factor contributing to 
seizure dynamics; however, intracellular chloride plays an important role as well. 
 The baseline intracellular chloride concentration significantly determines the 
efficiency of inhibition because it defines the value of the GABA reversal potential 
(Khalilov et al. 1999). Indeed the baseline chloride concentration is tightly linked 
to the extracellular potassium concentration via the KCC2 cotransporter, 
because it operates close to the thermodynamic equilibrium (Payne 1997). Thus, 
even a small increase in the extracellular potassium concentration leads to the 
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significant accumulation of chloride inside the neurons (Payne et al. 2003), thus 
reducing the efficiency of inhibition. 
 
 
The role of the KCC2(-) cells 
 
 We found that the addition of the KCC2(-) cells to the subicular neural 
network with realistic connectivity leads to the development of oscillations that 
are similar to the seizure activity in human subicular slices. The addition of these 
cells leads to the substantial activation of the interneuron population, provoking 
an increase in the intracellular chloride concentrations in the pyramidal cells. As 
a result, it promotes an excitation-inhibition imbalance in the network, leading to 
generation of epileptic oscillations. These results are consistent with the finding 
of strong interneuron firing before seizure initiation (Gnatkovsky et al. 2008). The 
proposed mechanism of chloride accumulation in the pyramidal cells could also 
partially explain the failure of inhibition in the concept of inhibitory restraints 
before seizure initiation (Trevelyan et al. 2007, Schevon et al. 2012). 
 
 These findings predict that in realistic conditions where the ion 
concentrations are the result of network activity, the accumulation of both 
potassium and chloride could provoke seizure initiation in the local subicular 
network, Fig.II-6. Simultaneous measurements of the intracellular chloride and 
extracellular potassium concentrations are needed to support or falsify this 
hypothesis of seizure initiation. We suggest that new experiments on slices with 
well-controlled potassium concentrations combined with chloride imaging would 
help to support our predictions. 
 
 We found that the pathological KCC2(-) pyramidal cells possess higher 
chloride concentrations than the KCC2(+) cells, resulting in a higher resting 
potential and GABA reversal potential. This higher chloride concentration leads 
to the increased excitability of these cells. We hypothesize that the increased 
firing of these pathological cells would strengthen the synaptic connections 
between due to synaptic plasticity and lead to further epileptogenic activity in the 
KCC2(-) population. Further connectivity studies are needed to verify this 
prediction. 
 
 Additionally, we have found that restoring the KCC2 function of the 
pathological pyramidal cells leads to the restoration of the normal network 
activity, Fig.II-7. Indeed, we found that restoration of the KCC2 function in up to 
100% of pathological cells in the network effectively blocks seizure activity. 
These results suggest that pharmacological strategies aimed at restoring or 
strengthening chloride homeostasis in pyramidal cells would be very efficient in 
preventing seizure activity. 
 
 
Conclusions 
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 Epilepsy is a complex disease of the brain that involves dynamic 
interactions of different components of the nervous system, from single 
molecules and neurons to the areas of the cortex and hemispheres. Due to the 
highly complex epileptic dynamics in the brain, it is necessary to incorporate 
experimental measurements into computational models to form rigorous and 
testable predictions (Lytton 2009, Ullah and Schiff 2009). Recent theoretical 
studies suggested that it would be hard to identify a single exceptional 
mechanism that leads to seizure; however, seizure dynamics involves multiple 
mechanisms (Jirsa et al. 2014, Proix et al. 2014, Naze et al. 2015). Nonetheless, 
we believe that studying the different pathways using theoretical models would 
help us to understand the general mechanisms underlying this complex disease. 
 
 In the present study, we have characterized one pathological pathway 
associated with chloride homeostasis in the human subiculum. Recent studies 
from epileptogenic peritumoral tissue (Pallud et al. 2014) suggested that KCC2 
pathology is more general and is not restricted to the subiculum. Thus, studies 
regarding the role of chloride homeostasis deserve more attention in the context 
of pathological network dynamics combined with experimental studies. We 
believe that further investigation of the role of inhibition will lead to a deeper 
understanding of the epilepsy mechanisms, resulting in the successful discovery 
of new anti-epileptic treatments. 
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II.3 Detailed model description 
 

Since Material and methods part is very small in the paper, we provide the 
full description of the model in the present section. We characterize single 
neuron model used for pyramidal cell and interneurons, subiculum connectivity 
structure, KCC2 model, extracellular potassium diffusion, formulate the LFP 
model and describe seizure detection algorithm. In the end of this section we 
provide the information about pharmacology of the ictal events in human 
subiculum slice recordings. 

 
 

II.3.1 Seizure pharmacology 
 

In order to clarify the role of synaptic mechanisms involved into seizure 
generation, we show the effects of various synaptic blockers for generation of the 
ictal discharges, Fig.II-8 (Huberfeld et al. 2011). Seizure activity was induced by 
application of 0.25 Mg2+ and 8 mM of K+ to the extracellular solution. After 30 
minutes of extracellular solution application the recurrent ictal discharges 
became established, Fig.II-8A. 

 
One can see that ictal discharges depend on the GABAergic 

neurotransmission since the pathological rhythm disappears after the blockade of 
inhibition by GABA-A, Fig.II-8B. This leads to generation of the population spikes 
similar to the Pre-Ictal Discharges (PID) happening before seizure initiation, 
Fig.II-8A (Huberfeld et al. 2011). Once established the PIDs did not depend on 
the NMDA and GABA neurotransmission, Fig.II-8C. But these discharges 
crucially depended on the recurrent AMPA synapses, Fig.II-8D, since they 
became completely blocked after the application of the NBQX, Fig.II-8D. 

 
Thereby we conclude that generation of ictal discharges depend both on 

extracellular ion concentrations and synaptic neurotransmission via AMPA, 
GABA and NMDA synapses. If one of these components is missing, the ictal 
discharges could not be spontaneously generated in the slice. 
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Figure II-8. Extracellular (E) and Intracellular (I) recordings from epileptogenic human 
subiculum slices 
A – two ictal events with preceding PIDs induced by 0.25 Mg2+ and 8 mM of K+ in the 
extracellular solution. B – Blockade of GABA-A receptors by 20 µM of BIC suppressed the ictal 
events. C – blockade of NMDA receptors by 100 µM  of D-L-AP5 suppressed the ictal events, 
but did not block the PIDs. D – blockade of AMPA receptors by 20 µM of NBQX suppressed 
both PID and Ictal discharges. Adapted from (Huberfeld et al. 2011). 
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II.3.2 Pyramidal cell and interneuron model 
 

To model the behavior of the pyramidal cell and interneurons we use the 
models known from the literature (Mainen and Sejnowski 1996, Bazhenov et al. 
2004, Fröhlich and Bazhenov 2006). For pyramidal cells we use the current set 
known for intrinsically bursting pyramidal cells of subiculum (Jung et al. 2001, 
Staff et al. 2000) and for the interneuron we use the model of fast spiking 
interneuron (Krishnan and Bazhenov 2011). The pyramidal and interneuron 
models differ by the amount of intrinsic currents and coupling conductances 
between soma and dendrite. The scheme of these models is present on Fig.II-9. 

 

   
 

Figure II-9. Intrinsic currents in the single neuron models 
 A, B – the schemes of pyramidal cell and interneuron models with corresponding intrinsic 
currents, cotransporters, ion pumps and synapses. 
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I iint
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ICl Σ= gCl (V D− VCl )+ I GABA

 IKΣ = gLK (VS −VK )+GL
K (VD −VK )+ IKv / 200 + IKCa + IKm  

G = koff (Bmax −Bs)−
kon
k1
BsK +

OUT  

dBs / dt = koff (Bmax −Bs)− konBsK
+
OUT  

kon =
koff

1+ exp(−{K +
OUT −K

+
Th} /1.08)

 

 
 

Synaptic currents 
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IAMPA = (VD −VAMPA ) siAMPAg
i
AMPA

i=1

CAMPA

∑                  ds jAMPA / dt = −
s jAMPA
τ AMPA

+ δ
k
∑ (t − t kj )  

 

IGABA = (VD −VGABA ) siGABAg
i
GABA

i=1

CGABA

∑                   ds jGABA / dt = −
s jGABA
τGABA

+ δ
k
∑ (t − t kj )  

 

INMDA =
(VD −VNMDA )

(1+Mg2+
OUT exp(−0.062VD ) / 3.57)

siNMDAg
i
NMDA

i=1

CNMDA

∑  

ds jNMDA / dt = −
s jNMDA
τ decay
NMDA

+αx j (1− s
j
NMDA )  

dx j / dt = −
x j

τ rise
NMDA

+ δ
k
∑ (t − t kj )  

 
 

Synaptic noise 
 

τ AMPA
dIAMPA
dt

= −IAMPA +σ AMPAξ (t) , where ξ (t)  is the white noise the mean 0 and 

variance 1. 
 

 
Pyramidal cell parameters 

 
Mg+

OUT = 0.25mM , Cl−OUT =130mM , Mg+
OUT = 0.25mM , HCO3−IN =16mM , HCO3−OUT = 26mM

, kK =10 1000cm3 , kCl =100 1000cm3 , Ki =150mM , d = 0.15m , Na+
OUT =130mM , 

Na+
IN = 20mM , Cm = 0.75µF / cm2 , kT / F = 26.63mV , gDC = 0.60mS / cm2 , gSC =100mS / cm2 , 

GNa = 3450mS / cm2 , GKv = 200mS / cm2 , gLK = 0.042mS / cm2 , gLNa = 0.0198mS / cm2 , 
GNaD =1.1mS / cm2 , GNapD = 3.5mS / cm2 , GHVA = 0.0195mS / cm2 , GL

K = 0.044mS / cm2 , 
GL

Cl = 0.01mS / cm2 , GL
Na = 0.02mS / cm2 , GNaD =1.1mS / cm2 , VCa =140mV , τCa =1000ms , 

DCa = 0.85cm2mM /µA , GKCa = 2.5mS / cm2 , GKm = 0.01mS / cm2 , K +
α = 3.5mM , Na+

α = 20mM
, I Smax = 25µA / cm2 , I Dmax = 25µA / cm2 , KTh

+ =15mM , koff = 0.0008mM −1ms−1 , kOFF =1mM −1 , 
Bmax = 500mM , k1 =1mM −1 . 

 
 
 
 

Interneuron parameters 
 

Cl−OUT =130mM , Cl−IN = 3.70mM , Ki =150mM , kK =10 1000cm3 , kCl =100 1000cm3 , 
d = 0.15m , Na+

OUT =130mM , Na+
IN = 20mM , Cm = 0.75µF / cm2 , kT / F = 26.63mV , 
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gDC = 2mS / cm2 , gSC =100mS / cm2 , GNa = 3450mS / cm2 , GKv = 200mS / cm2 , 
GL

K = 0.035mS / cm2 , GL
Cl = 0.01mS / cm2 , GL

Na = 0.02mS / cm2 , gLNa = 0.0198mS / cm2 , 
gLK = 0.042mS / cm2 , K +

α = 3.5mM , Na+
α = 20mM , I Smax = 25µA / cm2 . 

 
 

Synaptic parameters 
 

VAMPA = 0mV , VNMDA = 0mV  τ AMPA = 5.4ms , σ PY
AMPA = 0.5µA / cm2 , σ IN

AMPA = 0.6µA / cm2 . 
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II.3.3 Subiculum connectivity 
 

We approximate the local connectivity structure based on work of (Peng et 
al. 2014). They performed the detailed path-clamp study on the mouse 
subiculum circuitry. The resulting scheme of connections is present on in Fig.II-
10. 

 
One can see that subiculum consists of two populations of pyramidal cells 

of regularly spiking and intrinsically bursting neurons. These pyramidal cell 
populations have different amount of connections with the interneurons, yet their 
recurrent connectivity is very similar. Surprisingly this study did not find any 
connections from bursting neurons to regularly spiking pyramidal cells. 

 
We should admit the exact ratio of spiking-to-bursting pyramidal cells is a 

subject of controversy. The proportion of these cells in human subiculum tissue 
is close to 50/50 (Huberfeld et al. 2007), yet additional studies are needed to 
clearly determine this ratio. Also it is known that in conditions of the increased 
potassium regular spiking cells could be transformed into bursting cells (Fröhlich 
and Bazhenov 2006). 

 
Taking into account these considerations we construct the local subiculum 

network that consist of regularly spiking pyramidal cells that could be turned into 
the bursting mode due to increased potassium concentrations. Thus in our 
network model we describe populations of PY and IN neurons with connection 
probabilities taken from Fig.II-10 for R and IN cells. 

 
The resulting network structure for PY and IN population is summarized on 

Fig.II-11. For clarity we depict the representative network that consist of 80 
pyramidal cells and 20 interneurons and show the connectivity matrix, Fig.II-11 
B. In the simulations we describe PY and IN populations that consist of 841 and 
225 neurons with the same connection probabilities. 
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Figure II-10. Connectivity structure of mice subiculum 
A – populations of regularly spiking (R), intrinsically bursting (B) pyramidal cells and 
interneurons (IN). Arrows and percent indicate the direction and probability of connections. B – 
the probability of connections calculated for different amount of recorded cells. Adapted from 
(Peng et al. 2014). 
 
 
 
 

 

 
 

Figure II-11. Connectivity structure of the network model 
A – connectivity structure of the neural network model consisting of pyramidal cells (PY) and 
interneurons (IN). B –connectivity matrix of the neural network of 80 PY and 20 IN with 
connection probabilities from Fig.II-10A (R and IN cells), white square – connection, black 
square – no connection. 
  



! 67!

According to this connectivity structure we assigned AMPA conductances 
for PY-PY and PY-IN connections, NMDA conductances for PY-PY connections 
and GABA conductances for IN-PY and IN-IN connections. The values for 
conductances are taken from a normal distribution with fixed mean and variance. 

 
 

Synaptic conductances 
 

PY-PY: gAMPA ~ N(1.5, 0.15) nS / cm2 , gNMDA ~ N(0.02, 0.002) nS / cm2  
PY-IN: gAMPA ~ N(1, 0.1) nS / cm2  
IN-PY: gGABA ~ N(0.7, 0.07) nS / cm2  
IN-IN: gGABA ~ N(0.5, 0.05) nS / cm2

 
 
N(µ,σ )  corresponds to the normal distribution with the mean µ  and variance σ . 
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II.3.4 Kation chloride cotransporter model 
 

Kation chloride cotransporters are the class of membrane proteins that use 
the potassium gradients to regulate the baseline chloride concentrations in 
various cells. In the nervous system these proteins play especially an important 
role since they maintain the baseline chloride concentration in neurons. They use 
potassium gradient created by sodium-potassium pump to transport ions to 
transport chloride ions. The cotransporters do not use energy to transport 
chloride ions because they always transfer ions with different charges so that the 
total charge does not change. It allows to perform the transport without energy 
loss. There are different types of cotransporters and exchanges and here we 
show their brief classification. The NKCC transfers Na+, K+ and 2Cl- ions into the 
cells, anion exchangers transfers Cl- and HCO3

- in opposite directions; sodium-
dependent anion exchangers transfer Na+, HCO3

- and H+ and Cl- ions in opposite 
direction; and KCC transfer K+ and Cl- ions to the same direction (Payne et al. 
2003). 

 
Kation chloride cotransporter 2 (KCC2) is an important part of the chloride 

cotransporter family. It is widely expressed in the central nervous system, where 
it regulates the baseline chloride homeostasis in neurons. The cotransporter is 
crucial component for the normal brain function since KCC2 knockout mice die 
immediately after birth due to excitatory activity of GABA and glycine. 

 

 
 

Figure II-12. The illustration of the KCC2 mechanism 
Arrows indicate the direction of the ion transfer. Adapted from (Payne et al. 2003). 

 
To illustrate the mechanism of KCC2 ion extrusion, we show it on the 

scheme, Fig.II-12. The baseline chloride concentration is the result of interaction 
of multiple factors such as inside and outside concentration of HCO3

-, Cl-, 
glycine, and K+, dendrite size, diffusion as well as GABA-A activity, yet the KCC2 
provides the most substantial contribution for reduction of the baseline chloride 
level (Doyon et al. 2011). In the present model the KCC2 action is described 
using the following model. 

 

IKCC2 =
Imax (VK −VCl )

(VK −VCl )+V1/2 ,  
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VK =
RT
F

log(K
+
OUT

K +
IN

) , VCl =
RT
F

log( Cl
−
IN

Cl−OUT
)
 

 
One could see that the current via KCC2 depends on the voltage 

difference between Nernst potential of VCl  chloride and VK  potassium. Thereby 
depending on this difference the current via KCC2 could be inward or outward. In 
this way baseline chloride and potassium concentration could significantly 
change the rate of chloride and potassium extrusion into the extracellular space 
(Payne 1997). 

 
KCC2 parameters: Imax = 2µA / cm2 , V1/2 = 40mV . 
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II.3.5. Potassium diffusion model 
 

In order to take into account the propagation of potassium in the 
extracellular space we consider the diffusion process between cells. In this 
network all pyramidal cells are connected with 4 neighbors. It allows potassium 
to propagate in the network between the neurons. For clarity we show the matrix 
only for 25-neuron network, yet in the simulations we used 841-neuron network. 
The pyramidal cell placement in the network space is present on Fig.II-13A. 

 
The extracellular potassium concentration is described by the following 

reaction-diffusion equation for the neural network with continuous potassium 
concentration: 

 
∂K +

OUT

∂t
=
kK
Fd

(IKΣ + I pump
NaK − IKCC2 )+G +ε(∂

2K +
OUT

∂x2 +
∂2K +

OUT

∂y2 )
 

(1) 

 
Since the considered neural network of subiculum represents the local 

circuit, we have taken into account the periodic border conditions to compensate 
for K +

OUT  flow through the borders, Fig.II-13A. 
 

∂K +
OUT

∂x I

= −
∂K +

OUT

∂x III

, ∂K
+
OUT

∂y II

= −
∂K +

OUT

∂y IV

  (2) 

 
We interpret these conditions as putting the local neural network into a 

larger one, which is also engaged into epileptic oscillations and hence has similar 
potassium concentration. 

 
We apply the following discretization to solve the ODE, equation (1). We 

assume that neurons are equally spaced on the X-Y grid (i and j indexes), Fig.II-
13B. This leads to the following discrete approximation of the Laplace operator: 

 
∂2K +

OUT

∂x2 +
∂2K +

OUT

∂y2 =
K +

OUT (i+1, j ) − 2K +
OUT (i, j ) +K +

OUT (i−1, j )

Δx2 +
 

+
K +

OUT (i, j+1) − 2K +
OUT (i, j ) +K +

OUT (i, j−1)

Δy2  

since Δy = Δx  it becomes 
 
∂2K +

OUT

∂x2 +
∂2K +

OUT

∂y2 =
K +

OUT (i+1, j ) +K +
OUT (i−1, j ) +K +

OUT (i, j+1) +K +
OUT (i, j−1) − 4K +

OUT (i, j )

Δx2          (3) 
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Figure II-13. Extracellular potassium diffusion in the neural network model 
A – location of PY cells in the network and direction of the K +

OUT  diffusion. I, II, III and IV 
corresponds to the border neurons (periodic border conditions are not shown). B – adjacency 
matrix D  of the PY cell location in the network in A, white square – connection (1), black square 
– no connection (0). 

 
Thereby inserting equation (3) into (1) and using the border conditions, 

equation (2) we write down the discrete approximation for reaction-diffusion 
equation describing the extracellular potassium concentration: 

 
dK +

OUT

dt
=
kK
Fd

(IKΣ + I pump
NaK − IKCC2 )+G

 
+
ε
Δx2 (K +

OUT (i+1, j ) +K +
OUT (i−1, j ) +K +

OUT (i, j+1) +K +
OUT (i, j−1) − 4K +

OUT (i, j ) )
                            (4) 

 
Using adjacency matrix D  for the neural network, Fig.II-13B, we rewrite 

this expression for the i-th neuron: 
 

dK (i)
OUT

dt
=
kK
Fd

(IK (i)
Σ + I pump

NaK (i) − I (i)
KCC2 )+G +

ε
Δx2 ( DikK

(k )
OUT

k=1

N 2

∑ − 4K (i)
OUT )               (5) 

 
The last term corresponds to potassium diffusion between the pyramidal 

cells in the network, where ε  corresponds to the value of the diffusion coefficient 

and Dik  is the element from the unitary adjacency matrix D  , Fig.II-13B, 
describing the i-th pyramidal cell location in the network space, Fig.II-13A. 

 
To simulate the network with extracellular potassium we add the term 

corresponding to the diffusion from the bath solution equal for all neurons in the 
network: 

 
dK (i)

OUT

dt
=
kK
Fd

(IK (i)
Σ + I pump

NaK (i) − I (i)
KCC2 )+G +

ε
Δx2 ( DikK

(k )
OUT

k=1

N 2

∑ − 4K (i)
OUT )
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+
εbath
Δx2

slice

(Kbath −K
(i)
OUT )                     (6)

 
 

It describes the diffusion of extracellular potassium from a large external 
reservoir to take into account the effect of high potassium concentration in the 
bath. εbath  corresponds to the diffusion coefficient from the bath and xslice  is the 
depth of neurons in the slice. 

 
Diffusion parameters: ε = 4 ⋅10−6cm2 / s ,εbath = 4 ⋅10−7cm2 / s , Δx = 50µm ,

Δxslice = 200µm . 
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II.3.6 Local field potential model 
 

The derivation of the LFP model is taken from (Chizhov and Rodrigues 
2014) and adapted to the neural network. In order to construct a model of the 
extracellular potential measured on layered neural structures, we make the 
following assumptions: 1- the neurons are homogeneously distributed on a two-
dimensional grid; 2 - only one-type (pyramidal) cells influence the extracellular 
potential (Bédard et al. 2004); 3 - the complexities of neuronal dendritic trees can 
be neglected and single equivalent dendrites are aligned in vertical direction; 4 - 
the extracellular potential changes are negligible for transmembrane potential 
calculations. Note that in this derivation only synaptic activities are included, i.e. 
no active ionic currents are considered and compartments are passive. 

 
 

Distributed neuron model 
 

 We model a neuron as a passive cylindrical dendrite with the soma at one 
extreme, i.e. as a boundary condition. Therefore the neuron is considered a 
passive cable aligned along the vertical coordinate , with soma at  and the 
end of the dendrite at  (Fig.II-14A). Synaptic currents input into the soma, 

, and at the end of the dendrite, . The cable equation for the membrane 
potential  along the distributed model neuron is 

 

 (1) 

 
 where  is the radius of the dendrite,  is the specific intracellular resistivity. 
The transmembrane current  is a sum of a leakage and capacity terms, i.e. 
 

 (2) 

 
where  is the specific leak conductance,  is the specific capacitance. The 
voltage  is assumed to be measured from the resting level. 
 

Under current clamp mode boundary conditions at the soma take the 
following form: 

 

 (3) 
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where we use the notation  for the measurable somatic voltage;  is 
the total current flowing through somatic membrane;  is the somatic 
membrane area. At the end of the dendrite boundary conditions take the form: 
 

 (4) 

 
 

Extracellular field potential 
 

Note from Equation (3) that the total transmembrane current  in one-
compartment models consisting of only somas is always zero. Because  is the 
source that determines LFP, the one-compartment consideration leads to 0 as an 
estimate of LFP. In order to get the next level approximation, we derive the LFP 
equation resulting from the DN model. Following the work of (Nicholson and 
Llinas 1971) we consider a cylindrical layer of radius a1 (Fig.II-14A), where 
neurons are homogeneously distributed with the density  per cortical area, their 
dendrites are aligned along the radial coordinate  from 0 to L. Our goal is to 
estimate the extracellular potential  at the axis of symmetry. 

 

 
 

Figure II-14. Local field potential model 
A – distributed neuron model where field potential is estimated on the central axis. B –field 
potential estimation from the neural network with neurons located on the grid. 
 

Extracellular potential in a conductive medium is calculated as a 
superposition of current sources and described by the Poisson equation 
(Nicholson 1973): 
 

 (5) 
 where  is the average of the inward currents per unit volume;  is the mean 
conductivity of extracellular medium, assumed to be a constant tensor. For a 1-d 
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source function  distributed in the cylinder, the solution of Equation (5) for 
the extracellular potential at z=z0 is given by the convolution (Nicholson and 
Llinas 1971):  
 

 (6) 

 
with the kernel that reflects the potential of a unit charge distributed on a disk 
with radius a1:s 
 

 (7) 

 
 
Assuming a1>>L, we get  
 

 (7’) 

 
For the system of distributed parallel dendrites (i.e. DN model) with boundary 
sources at z=0 and z=L: 
 

                               (8) 
 

After substitution (7’) and (8) into (6), the potential  becomes:  
 

    (9) 

 
Now we notice that the transmembrane current  may be calculated from (1). 
Thus substituting the first term in equation (1), in commas is rewritten and then 
integrated by parts with the boundary conditions defined in equations (3-4), as 
follows: 
 

 

Inserting this expression into equation (9),  is obtained as 
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                                      (10) 

 
Considering the particular depths of somas (z0=0) and above dendrites (z0≥L), 
the somatic and dendritic extracellular potentials are 
 

φ(t, 0) = −φ(t,L) =
p

2σ ri
(V (t,L)−V (t, 0)) =ϕDN                                           (11) 

 
Note that the extracellular potentials at the levels of somas and synapses 

are opposite in signs. As follows from equation (10), the distribution of ϕDN  along 
z-axis is a linear combination of the signals.  
 
In the discrete approximation the single neuron contribution to the LFP 
corresponds is approximated using phenomenological coefficient k . 
 
ϕ = k[gSc (Vd −Vs )] (12) 
 

 
In case of neural network the total amount of LFP signal measured on the 

electrode is approximated by the linear sum of all dipoles ϕ  generated by the 
network, Fig.II-14B: 
 

LFP = ϕi
i=1

N

∑  (13) 

 
This network LFP approximation is roughly consistent with the depth multi-

electrode measurements (Sargsyan et al. 2001). It reveals the main intracellular 
term contributing to the LFP as a voltage difference between soma and dendrite, 
which is zero term in one-compartment models. This approximation is also 
consistent with the dipole LFP approximation from (Wendling et al. 2012, Buzsáki 
et al. 2012). 
 
 LFP parameter k is matched manually to approximate the amplitude of the 
experimental field potential. In all network simulations it is taken equal to 
0.02µA /mV . 
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II.3.7 Seizure detection algorithm 
 

In order to monitor the network state during simulations we developed 
simple algorithm for seizure detection. This algorithm scans the LFP spectrum 
with the time window of 5 second and estimates the amplitude of the major 
frequency on the power spectrum. If the amplitude of the major oscillation 
frequency is larger than threshold, the activity is classified as seizure. The values 
of threshold as well as time window are set manually to properly classify seizure 
activity based on visual introspection. 

 
 

 
 

Figure II-15. Seizure detection algorithm 
On the top and middle are present the frequency and value of maximal peak of oscillation 
frequency in the power spectrum (not shown) estimated with 5 second window. On the bottom 
is present the LFP generated by the network with extracellular potassium when seizure is 
initiated due to presence of 30% KCC2(-) cells. 
 
 
 

To illustrate the results of the algorithm we apply it for the synthetic LFP 
generated by PY-IN network during seizure initiation, Fig.II-15. The blue dots on 
the top and middle traces show the moments when seizure was detected in the 
time series using 5 seconds window. The seizure threshold is set to 36. One 
could see that between 15 and 20 seconds the algorithm detects seizure activity. 
It shows that the peak amplitude is around 100 at 20 second, which means that 
seizure was initiated on the previous 5 seconds interval, i.e. between 15 and 20 
seconds. One could see that there are also strong oscillations on the previous 
interval between 10 and 15 seconds, yet these oscillations do not have strong 
enough amplitude therefore they are not classified as seizure activity. We also 
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tested the algorithm to detect seizures in the experimental LFP recordings and 
found similar results, yet threshold and time window were tuned differently 
  



! 79!

II.4 Future directions 
 

 In this section we discuss the unsolved question in the present research and 
future directions for the next studies. In particular we discuss the following topics: 
KCC2 controversy, propagation of seizure activity, high frequency oscillations, 
mechanisms of seizure termination and links between biophysical and mean-field 
models. 
 

 
KCC2 controversy 

 
 In the present model we investigated the consequences of KCC2 pathology 
in pyramidal cells of subiculum. It is known that the KCC2 might have both pro-
epileptogenic and anti-epileptogenic action due to the extrusion of potassium 
ions into the extracellular space. Recent experimental work of Hamidi and Avoli 
(Hamidi and Avoli, 2015) showed that blockade of KCC2 reverses the activity 
from ictal to inter-ictal in the rat brain slices from piriform and entorhinal cortices. 
They proposed that down-regulation of KCC2 does not play the pro-epileptogenic 
role, yet it is a compensatory mechanism to prevent seizures. This interpretation 
contradicts the idea of pro-epileptic absence of KCC2 in the pyramidal cells 
found by Huberfeld and colleagues (Huberfeld et al. 2007, Huberfeld et al. 2011, 
Pallud et al. 2014). 
 
 The role of KCC2 for seizure generation is two-fold. At one side it regulates 
the baseline chloride concentration, that affects the efficiency of inhibition at the 
single cell level and on the other hand it contributes to the extracellular 
potassium concentration influencing the whole network. Both these mechanisms 
are important for maintaining the excitation-inhibition balance in the network, yet 
their role and significance might be different depending on the local circuit 
properties. One potential way to solve this controversy with the given model is to 
analyze the network behavior for different levels of KCC2 strength to find 
parameter regimes where KCC2 could be pro- or antiepileptic. 
 
 In our model of KCC2 we have taken into account the increase of 
extracellular potassium due to the KCC2 extrusion (Viitanen et al. 2010). Yet we 
have not found the significant increase of extracellular potassium due to KCC2 
extrusion, consistently with (Doyon et al. 2011). The strength of KCC2 
cotransporter in the model was motivated by measurements of GABA reversal 
potential in pyramidal cells (Fig.II-1). There are additional factors to be taken into 
account in a more detailed single neuron model such as surface of the pyramidal 
cell, amount of KCC2 expression in different parts of a neuron, location of GABA-
A synapses and dendritic structure. We suggest that these specific details of 
neurons could play an important the role for determining the amount of 
extracellular potassium produced by KCC2. Therefore further experimental 
measurements of extracellular potassium combined with the detailed modeling 
are needed to properly explain consequences of KCC2 blockade. 
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Propagation of seizure activity 
 

In our model of seizure initiation we restricted our analysis to the local 
random network without spatial connectivity. It was motivated by the fact that 
subiculum spatial connectivity is not known so well; yet the properties of a local 
circuitry are better estimated (Peng et al. 2014). As a drawback the proposed 
model does not allow to study the mechanisms of seizure propagation and 
spatiotemporal aspects of seizure dynamics. 

 
Addition of the spatial extent to the model would help to test the hypothesis 

of extracellular potassium and intracellular chloride accumulation as factors 
contributing to seizure propagation. We speculate that intracellular chloride 
accumulation due to KCC2 pathology could be a candidate mechanism for failure 
of inhibitory restraints during seizure propagation in the cortex (Schevon et al. 
2012, Trevelyan et al. 2007). 

 
The spatiotemporal model could clarify the mechanisms inter-ictal and pre-

ictal discharge propagation (Huberfeld et al. 2011). In particular could help to 
explain the delay between interneuron and pyramidal cell firing during the inter-
ictal discharges (Cohen et al. 2002). In the recent computational works the 
mechanisms of seizure propagation have been studied in the topographically 
connected neural networks of leaky integrate-and-fire neurons (Hall and 
Kuhlmann 2013, Ursino and La Cara 2006). In these works the traveling and 
spiral waves were analyzed in response to the current stimulation. The authors 
speculated that these spatiotemporal activity patterns could play an important 
role for seizure propagation. We suggest that considering more biophysically 
realistic neurons with intrinsic bursting mechanisms would help to generate 
seizure-specific patterns of the neural activity allowing the detailed comparison 
with the LFP and Ca2+ imaging data. 

 
 

High frequency oscillations 
 

High frequency oscillations (HFO) or ripples are extracellularly recorded 
events occupying the frequency band of 8-200 Hz recorded extracellularly in 
normal hippocampus and parahippocampal structures. They are believed to 
reflect the inhibitory field potentials during the neural activity. These oscillations 
potentially represent the long-range synchronization of neuron clusters. HFO in 
the range of 250-600 Hz are considered to be pathological and are usually 
recorded in hippocampus of patients with temporal lobe epilepsy. Yet clear 
distinction between the normal and pathological activity could not be made based 
only on the frequency content of HFO, since the anatomical location also plays 
an important role (Engel et al. 2009). 
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The conclusion from unit and field potential recordings in rodents and 
humans is that fast ripples represent the neural activity during population spikes 
from clusters of abnormal synchronously bursting neurons in contrast to ripples 
representing field potentials of summated inhibitory post-synaptic potentials 
(Bragin et al. 2002). Despite the fact that HFO are definitely related to seizure 
dynamics and have an important prognostic value for seizure detection, their 
casual relation for seizure initiation is not direct (Quilichini et al. 2012). 

 
In the proposed model we have not found HFO during transition to seizure 

activity. We hypothesize that it might be related to the fact that our model 
represents the local circuit, while spatially distinct neuron clusters are 
responsible for generation HFO (Bragin et al. 2002). We suggest that including 
the spatial structure into the network model would help to reproduce this activity. 

 
 

Mechanisms of seizure termination 
 

In this work we concentrated on the mechanisms of seizure initiation 
associated with chloride accumulation in the pyramidal cells. Yet our model could 
be extended to take into account the mechanisms of seizure termination. In 
theoretical studies has been proposed that dynamics of intracellular sodium Na+

IN  
could play an important role for seizure termination (Krishnan and Bazhenov 
2011, CHAPTER I). Recent imaging studies (Karus et al. 2015) found strong 
sodium accumulation in pyramidal cells during epileptoform activity suggesting 
the role of this ion for seizure termination. But additional research is needed to 
clarify the significance of this mechanism. Another pathways associated with 
seizure termination such as inactivation of Na+-channels (Bazhenov et al. 2004), 
activation of Ca2+ and Na+ dependent potassium currents (Timofeev and Steriade 
2004) or exhaustion of metabolic resources (Yamada et al. 2001, Kirchner et al. 
2006) could also play an important role. 

 
In some simulations we included the mechanism of intracellular sodium 

accumulation. We found periods of bursting and resting state activity in the 
pyramidal cells model with dynamic Na+

IN  and K +
OUT  concentrations similar to the 

results of (Barreto and Cressman 2011). Although in the network level we did not 
manage to find the regimes of network activity corresponding to recurrent 
seizures. We believe that additional parameter tuning could help to solve this 
problem in the next version of the model. 

 
 

Biophysical and mean field models 
 

Traditionally two approaches have been developed to describe neural 
activity. The mean field or neural mass models describe the behavior of large 
populations of neurons in terms of global variables and parameters such as 
population firing-rate, average synaptic gain etc. (Wilson and Cowan 1972, 
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Chizhov and Graham 2007) for a review see (Deco et al. 2008). This approach 
has the advantage that it uses smaller parameter set compared to the 
biophysical model. It allows to explicitly analyzing these models, which makes it 
easier to interpret. These mean field models have been successfully applied to 
study the neural activity during epilepsy (Wendling et al. 2002, Touboul et al. 
2011, Bartolomei et al. 2014). 

 
Despite advantages this approach such as mathematical simplicity and 

applicability to EEG and LFP signals, these models have serious drawbacks. The 
major problem is that they do not provide the detailed physiological interpretation 
of their parameters since they operate with the macroscopic variables. These 
macroscopic characteristics could be hardly translated into the level of neural 
networks and single neuron biophysics. It makes it hard to interpret the results of 
these models when searching for a particular pharmacological strategy against 
seizures. 

 
On the other hand the biophysical single neuron and neural network 

models are specifically designed to study the mechanisms of pathology on the 
cellular level. However despite having the physiological interpretation, these 
models have very large parameter sets that does not allow using them to study 
the network behavior for all possible parameter combinations (Marder and 
Taylor, 2011). 

 
To partially solve these questions (Naze et al. 2015) made an attempt to 

link the abstract mean-field model called epileptor (Jirsa et al. 2014) with the 
neural network approach. This problem has been partially solved for all-to-all 
connected network of Morris-Lecar and Hindmarch-Rose neurons, yet additional 
work is needed to move these models towards more biological realism. 

 
We believe that mapping between neural mass and biophysical models 

would allow to restrict the parameter sets for biophysical models and to provide 
the physiological interpretation of the mean-field models. In particular we suggest 
that incorporating the slow processes of intracellular chloride accumulation into 
mean field description like epileptor would help to generalize the mechanisms of 
seizure initiation and propagation. 
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CHAPTER III 
NOISE-INDUCED PHENOMENA IN SINGLE NEURONS 

 
 

III.1 Introduction 
 
 This chapter is a review of the neural mechanisms associated with the 
stochastic processes present in the nervous system. Since this theme is a broad 
topic in neuroscience, we will concentrate on the role of noise in single neuron 
dynamics and computation. We will describe the classical models of neural noise 
sources, mechanisms of stochastic resonance, and a recently found 
phenomenon, the inverse stochastic resonance, which appears in models of 
single neurons and networks. 
 
 The brain is noisy due to various internal and external factors (Ermentrout et 
al. 2008). For example, if we measure the single cell activity in the MT area of 
the visual cortex in response to the same moving dot stimuli, we will see that the 
responses of cells are highly variable across the experimental trials  (Shadlen 
and Newsome, 1998). Such variability is a common feature of cortical activity 
(Destexhe et al. 2003). This variability strictly contrasts with artificial systems like 
computers, where moving of a mouse would lead to the same cursor movement 
with almost 100% reliability. If computers were as reliable as neural systems, it 
would be impossible to use them for any computation. In contrast, the variability 
in the nervous system seems to be its immanent property (London et al. 2010). 
 
 Usually noise is considered to be an unwanted property that precludes the 
transmission of information. Neural systems should get rid of noise using multiple 
strategies, while recent research has established that noise could be also 
beneficial for detecting weak periodic signals via stochastic resonance effect 
(Wiesenfeld and Moss 1995). In essence stochastic resonance (SR) is the 
phenomenon by which the addition of noise allows the system to become 
entrained into periodic oscillations, which are not possible without such a 
stochastic input. This phenomenon is well known in a wide range of physical 
systems, while SR was first proposed to explain the Earth’s ice ages (Benzi et al. 
1982, Benzi et al. 1999). In these pioneer works they proposed the general 
mechanism for how weather perturbations could be amplified by periodic 
fluctuations of the environment and lead to ice age epochs. SR has also been 
found in neural systems such as the crayfish mechanoreceptor (Douglass et al. 
1993) and in realistic models of neocortical pyramidal cells (Rudolph and 
Destexhe, 2001). 
 
  Another phenomenon related to SR that has been recently identified is the 
so-called inverse stochastic resonance (ISR). This phenomenon lies in the fact 
that addition of noise into the system prevents the generation of periodic 
oscillations, making it inverse to SR. While this phenomenon has been found so 
far in single neuron models (Gutkin and Tuckwell, 2009) and in small networks 
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(Tuckwell et al. 2009), the experimental evidence for this effect has not been 
presented yet. 
 
 
 

III.2 Neural noise sources 
 
 The nervous system possesses many different forms of noise. At the single 
neuron level, it is usually the result of spontaneous mediator release, thermal 
noise, stochastic channel opening, and irregular synaptic activity (Softky and 
Koch 1993, Kandel et al. 2000). All these noise sources lead to high fluctuations 
in the membrane potentials of principal neurons. It has been shown that, in 
pyramidal cells of the visual cortex, up to 80% of noise fluctuations could be 
explained by the synaptic noise generated by excitatory and inhibitory 
conductances in vivo (Paré et al. 1998, Bower, 2013). How could neurons 
integrate the synaptic input in such noisy conditions is a problem that has been 
identified since early studies (Barrett and Crill 1974).!
 
 Several experimental preparations have shown that cortical neurons are 
always entrained into generation of irregular activity even without the 
presentation of any sensory stimulation (for a review, see El Boustani et al. 
2007). This phenomenon could play an important role for information processing 
of natural stimuli in different sensory modalities. From an anatomical point of 
view, pyramidal cells receive thousands of synaptic inputs from other neurons, 
and these inputs lead to high fluctuations in the membrane potentials of neurons 
(Destexhe et al. 2003). Since neurons receive both excitation and inhibition from 
the network, the neural activity should be balanced at the single neuron level 
(Okun and Lampl, 2009). In the pioneer work of Vreeswijk and Sompolinsky 
(Vreeswijk and Sompolinsky 1998) it was showed theoretically that such a 
balance between excitation and inhibition could naturally emerge in large 
networks of excitatory and inhibitory neurons coupled by sparse synapses. This 
finding allowed to explain single neuron voltage fluctuations, asynchronous firing, 
and balanced input to neurons, Fig.III-1A, B. Notably, asynchronous activity in 
balanced networks does not require the addition of noise to generate the 
stochastic spike trains. The asynchronous state in these neural networks results 
from the nature of chaotic dynamics. 
 
 Later works have proposed that cortical pyramidal cells operate in a high-
conductance regime, characterized by large excitatory and inhibitory 
conductances (Destexhe et al. 2003). They discovered that pyramidal cells in cat 
neocortex operate in inhibition-dominated regime in awake and sleeping states 
(Rudolph et al. 2007). In this regime, inhibitory conductances provide the largest 
contribution to membrane potential fluctuations, and spiking is possible only if 
inhibition is reduced, because that causes an increase of  
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Figure III-1. Asynchronous and high conductance state in the neural network models 
A – raster plot of a network of 100 representative neurons from 10000 neural network in the 
asynchronous state, adapted from (Ostojic, 2014). B – excitatory (positive) and inhibitory 
(negative) current and their sum (middle) received by the representative neuron from in the 
network in the balanced state. At the bottom the characteristic spike train is shown. Figure 
adapted from (van Vreeswijk and Sompolinsky, 1996). C – excitatory (top) and inhibitory 
(bottom) conductances received by the neuron in the 10000 neuron network with inhibition-
dominated regime. Bottom – the corresponding increase of synaptic conductances and their 
sum during spike generation. Adapted from (El Boustani et al. 2007). 
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synaptic excitation, Fig.III-1 C. The authors found that this regime could be well 
reproduced in models of large networks generating self-sustained irregular states 
(El Boustani et al. 2007). These results suggested that most of the spikes in the 
neocortex are the result of recurrent network activity, and not directly evoked by 
external stimuli (Destexhe and Rudolph-Lilith 2012). 
 
 Balanced networks (Vreeswijk and Sompolinsky 1998) and networks 
operating at a high-conductance state (El Boustani et al. 2007) showed that 
synaptic noise in single neurons is not a side effect of neural dynamics, but an 
emerging (network) phenomenon in the nervous system. Since most of the 
membrane potential fluctuations are the result of noisy input from the network, 
they can be reasonably approximated by a stochastic process (Bower 2013). 
Stochastic inputs into the neuron could be beneficial for single neuron 
computation. It has been shown that synaptic noise could lead to increased 
responsiveness to the subthreshold inputs (Hô and Destexhe 2000), make the 
synapses location-independent (Rudolph and Destexhe 2003), increase temporal 
processing for coincidence detection (Softky and Koch 1993, Destexhe et al. 
2003), modulate single neuron intrinsic properties (Wolfart et al. 2005), and 
improve the reliability of spike trains (Mainen and Sejnowski 1995). Various 
consequences of synaptic noise are well summarized in (Destexhe and Rudolph-
Lilith 2012, Bower, 2013). In the next sections we will specifically concentrate on 
the effect that SR and ISR has on single neurons. 
 
 

III.3 Stochastic resonance 
 
 The term SR was initially introduced in the context of statistical physics 
(Benzi et al. 1982) , but it quickly received a lot of interest in biological fields. 
Classical SR is observed when noise is added to the system allowing the input 
signal to be detected in the output by looking at the signal-no-noise (SNR) ratio.!
 
 In single neurons, SR has been studied in different animals and various 
parts of the nervous system. SR been found in multimodal neurons of the shark 
sensory system (Braun et al. 1994) and it has been shown to facilitate  the 
processing of information about temperature and electrical fields. SR has also 
been found in the auditory system of crickets and shown to allow auditory 
neurons  selective to frequencies centered at 23Hz to efficiently process 
information about possible predators, Fig.III-2A. In an experiment by Levin and 
Miller (1996) the addition of white noise to  a periodic stimulus lead to the SNR 
peak measured on the power spectrum, Fig.III-2B.!
 
 Cortical neurons are definitely different from neurons in sensory systems 
(Douglass et al. 1993, Braun et al. 1994, Levin and Miller, 1996). In cortical cells, 
“noise” received by neurons is not external, but generated by the network itself. 
Due to the complex synaptic organization of the mammalian neocortex, it is not 
feasible yet to directly measure SR in single neurons during in vivo cortical 
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processing. For this reason, a realistic model of neocortical pyramidal cell and 
synaptic input has been proposed to explain SR (Rudolph and Destexhe 2001). 
The neuron in this model receives synaptic input from  thousands of realistic 
conductance-based synapses on the dendritic tree and soma and the periodic 
synaptic input, Fig.III-2C. These synapses are activated by the Poisson statistics, 
which gives rise to noisy synaptic input. Depending on the amount of synaptic 
noise, the periodic input is efficiently amplified, such that the number of emitted 
spikes during the up-phase of the oscillation increases with respect to the noise-
free case (Fig.III-2 D).!
 
 One could see that SR phenomenon is present in neurons, yet whether it 
has the functional role should depend on the particular system. Choosing the 
proper SNR metric is indeed crucial, since it implies a particular computation 
performed by neurons that is not always precisely defined in neural systems 
(McDonnell and Ward 2011). The notion of SNR came from artificial systems and 
it is not clear how well it could be applied for biological computations. Usually the 
power spectrum of the output signal is used to locate the resonance, and then 
the SNR is computed for different noise variances. Noise can be considered 
harmful for particular computations but beneficial for others, therefore the 
definition of noise and signal in single neurons should be carefully chosen.!
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Figure III-2. Stochastic resonance of single neurons 
A – power spectrum calculated for a spike train of a neuron in the cricket auditory system in 
response to stimulation of a 23 Hz sine wave signal with superimposed white noise stimuli 
(inset). B – signal-to-noise ratio (SNR) calculated as a peak on the power spectrum from A for 
different noise variances. Panels A and B are adapted from (Levin and Miller 1996). C – single 
neuron model of the pyramidal cell from cat visual cortex V1 (Rudolph and Destexhe 2001). 
Neuron receives 3376 GABA synapses on the whole dendritic tree and 16563 AMPA synapses 
located on the dendritic tree except at the somatic proximal region to mimic realistic cortical 
connectivity, shaded area. D – signal-to-noise ratio (SNR) calculated as the number of 
additional spikes generated by the neuron when stimulated in response to cosine stimuli and 
synaptic conductance noise. Panels C and D are adapted from (Rudolph and Destexhe 2001). 
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III.4 Inverse stochastic resonance 
 
 In the work of (Tuckwell and Gutkin 2008)  it was shown that white noise of 
a particular variance could efficiently terminate firing in a  simple network 
consisting of two quadratic integrate-and-fire neurons, Fig.III-3A. The reason for 
this phenomenon is that the phase space of the coupled system has a resting 
state attractor, even in the presence of input currents. Once the system trajectory 
moves into this attractor, Fig.III-3B, spiking activity stops and the network 
remains silent indefinitely. This effect constitutes the inhibition of neuronal 
spiking by noisy input. Interestingly the phenomenon in this two-neuron network 
was observed for both type I and type II neurons (Izhikevich 2007).!
 
 Later network models of working memory consisting of quadratic integrate-
and-fire neurons showed that noise inhibition could help terminating pathologic 
memories due to ISR (Dipoppa and Gutkin 2013). Similar effects have been 
discovered in the classical Hodgkin-Huxley (HH) model (Gutkin and Tuckwell, 
2009, Uzuntarla et al. 2012). Gutkin and Tuckwell have found that when the 
neuron receives white noise stimuli, the model becomes efficiently inhibited for a 
particular noise variance, when the mean is near the subthreshould regime, 
Fig.III-3C. To quantify noise inhibition, they proposed to measure the number of 
spikes generated by the model in response to the current noise stimulation, 
Fig.III-3D. This curve has a characteristic dip, when noise variance is optimal for 
inhibition. It was proposed to call this effect the inverse stochastic resonance 
(ISR), since the input-output characteristic of the system, i.e., the number of 
spikes emitted as a function of the noise variance is reduced. It is inverse to the 
classic SR, in which the input-output characteristic is enhanced for a particular 
noise variance. In subsequent works, ISR was found to be sensitive to 
correlations in the noise input when modeled by an Ornstein-Uhlenbeck process 
(Guo 2011). Guo has found that increasing the correlation time constant alters 
the location of the minimum of the characteristic ISR curve by moving it towards 
larger noise variances, Fig.III-3D.!
 
 We should say that, in all aforementioned works, the ISR has been found in 
computational models of single neurons and networks, while there was no direct 
measurements of the ISR has been present in real neurons. On the other hand 
ISR requires specific parameter tuning for the noise variance and input mean. 
Despite the fact that it has been observed in the classical HH model, its 
relevance in real neurons is not clear, since the ISR requires specific input 
characteristics, while it has been observed that real single neurons do not seem 
to require detailed parameter tuning (Prinz et al. 2004, Marder and Taylor 2011). 
Thus, experimental evidence should be presented to confirm the existence of 
ISR and its relevance for neural computations. On the other hand the general 
mechanisms of ISR such as existence of two solutions !
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Figure III-3. Inverse stochastic resonance in single neuron and network models 
A – time series of quadratic integrate-and-fire neurons in the network when both of them receive 
noise with the variance σ . B – trajectory of neurons in the phase space, central point 
corresponds to the resting state. Panels A and B are adapted from (Gutkin et al. 2008). C – 
Voltage trajectories of Hodgkin-Huxley (HH) model when stimulated by current noise with the 
mean µ = 6.8pA  and different variances, σ = 0.5pA  corresponds to the noise variance optimal 
for inhibition. D – number of spikes N  generated in the HH model during 1000 ms when it 
receives the white noise with the mean µ  and noise variance σ . Panels C and D are adapted 
from (Gutkin and Tuckwell 2009). 
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for one parameter set, i.e. bistability suggest that it could be also found in other 
systems having similar properties. 

 
 

III.5 Conclusions 
 

 In this brief review we covered the role of noise in single neuron and 
network models. Neural network models (van Vreeswijk and Sompolinsky 1996) 
and (El Boustani et al. 2007) provide the insights into how the synaptic noise 
received by neurons could be generated in the central nervous system. This 
noise could enhance the input-output properties of information transmission of 
single neurons via SR effect (Rudolph and Destexhe 2001). In the sensory 
nervous systems, SR could also play the role for detecting and amplifying the 
biologically relevant signals (Wiesenfeld and Moss 1995). Related to the SR 
phenomenon, ISR has been recently identified only in the models of single 
neurons (Gutkin and Tuckwell, 2009, Tuckwell and Jost 2010) and neural 
networks (Gutkin et al. 2008, Dipoppa and Gutkin 2013). In spite of its potential 
functional role, ISR has not been properly studied yet. 
 
 Identifying the constructive role of noise does not provide an answer for the 
question of why neural systems could take advantage of it (McDonnell and Ward 
2011). One could use the evolutionary argument that noise is an unavoidable 
property of the environment, as well as an inherent ingredient of organisms, due 
to the various biophysical and biochemical constraints governing at the single 
cell and system levels (Tsimring 2014).  We could therefore speculate that 
evolutionary pressure gave advantage to neural systems that could benefit from 
noise for useful computations, for example, favoring those single neurons 
properties that lead to better predator detection in the environment (Levin and 
Miller 1996).!
 
 In the next section we shall study the role of synaptic noise in cerebellar 
Purkinje cells. We will show that ISR takes place in the cerebellum and allows 
cerebellar neurons to optimally transmit information about stimuli. 
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CHAPTER IV 
 INVERSE STOCHASTIC RESONANCE 

 
 

IV.1 Introduction 
 
 This chapter mostly consists of a paper submitted to the PLOS 
Computational Biology. In the IV.3 Detailed model description we provide 
additional information about the model and algorithms being used in this study. In 
IV.4 Future directions section we discuss the unsolved problems raised in this 
research and potential ways to deal with them. The manuscript is written together 
with Sarah Rieubland and Arnd Roth, while Boris Gutkin and Michael Häuser 
added substantial corrections. 
 
 The overall aim of this work is to provide the theoretical explanation for 
effect of current noise inhibition, so-called inverse stochastic resonance (ISR) 
found in the Purkinje cells. It has been initially discovered in a small network of 
two quadratic integrate-and-fire neurons (Tuckwell 2008) and then in a classical 
Hodgkin-Huxley model (Gutkin et al. 2009). The name of this effect is derived 
from the classical stochastic resonance (SR) known in the nonlinear dynamics 
for a long time (Rouvas-Nicolis et al. 2007). In case of SR the input-output 
characteristic of the system shows the peak for particular noise variance, while in 
case of ISR there is dip of output firing-rate, therefore it is called inverse. The 
ISR has been studied theoretically, in (Gutkin et al. 2008, Tuckwell et al. 2009, 
Tuckwell and Jost 2010) yet it has not been shown that it is present in the 
nervous system and what functional role it could play. 
 
 According to the previous theoretical works it was predicted that the ISR 
should be present in dynamical systems with a subcritical Andronov-Hopf 
bifurcation that allows the bistability between resting and periodic spiking 
solutions. Initially the ISR has been found in 4-dimensional Hodgkin-Huxley 
system. Since it is not trivial to visualize the dynamics of more than two 
variables, we decided to use minimal system to describe the ISR. This motivated 
us to use the adaptive exponential integrate-and-fire model from (Brette and 
Gerstner 2005). It is two-dimensional that allows to apply the phase-plane 
analysis and posses the nonlinearity needed to describe the bifurcation between 
resting state and spiking (Touboul and Brette 2008). Apart from the theoretical 
tractability the parameters of this model could be extracted from the 
electrophysiological recordings (Badel et al. 2008). These two arguments 
motivated us to use this model to describe the ISR in the Purkinje cells. 
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IV.2.1 Abstract 
 

 Purkinje neurons play an important role in cerebellar computation since 
their axons are the only projection from the cerebellar cortex to deeper cerebellar 
structures. They have complex internal dynamics, which allow them to fire 
spontaneously, display bistability and also to be involved in network phenomena 
such as high frequency oscillations and travelling waves. Purkinje cells exhibit 
type II excitability, which can be revealed by a discontinuity in their f-I curves. We 
show that this excitability mechanism allows Purkinje cells to be efficiently 
inhibited by noise of particular variance, a phenomenon known as inverse 
stochastic resonance (ISR). While ISR has been described in theoretical models 
of single neurons, here we provide the first experimental evidence for this effect. 
We find that an adaptive exponential integrate-and-fire model fitted to the basic 
Purkinje cell characteristics using a modified dynamic IV method displays ISR 
and bistability between the resting state and a repetitive activity limit cycle. ISR 
allows the Purkinje cell to operate in different functional regimes: the all-or-none 
toggle or the linear filter mode, depending on the variance of the synaptic input. 
We propose that synaptic noise allows Purkinje cells to quickly switch between 
these functional regimes. Using mutual information analysis, we demonstrate 
that ISR can lead to an optimal information transfer between the input and output 
spike train of the Purkinje cell. These results provide the first experimental 
evidence for ISR and suggest a functional role for ISR in cerebellar information 
processing. 
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IV.2.2 Author Summary 

 How individual neurons generate output spikes in response to the various 
combinations of inputs they receive is a central issue in contemporary 
neuroscience. Due to their large dendritic tree and complex intrinsic properties, 
cerebellar Purkinje cells are an important model system to study this input-output 
transformation. Here we examine how noise can change the parameters of this 
transformation. In experiments we found that spike generation in Purkinje cells 
can be efficiently inhibited by noise of a particular amplitude. This effect is called 
inverse stochastic resonance (ISR) and has previously been described only in 
theoretical models of single neurons. We explain the mechanism underlying ISR 
using a simple model fitted to match the properties of individual Purkinje cells, 
which were characterized experimentally. We found that ISR is present in 
cerebellar Purkinje cells when the mean input current is near threshold for spike 
generation. ISR can be explained by the co-existence of resting and spiking 
solutions of the simple model. Changing the input noise variance provides a 
flexible mechanism to change the lifetime of the resting and spiking states, 
suggesting a mechanism for a tunable filter with long time constants 
implemented by a Purkinje cell population in the cerebellum. Finally, ISR leads to 
optimal information transfer from the input to the output of a Purkinje cell. 

 
 

IV.2.3 Introduction 
 

Understanding the way neurons integrate synaptic inputs and provide 
appropriate outputs are crucial steps in the process of understanding neural 
circuits and relating their function to the function of specific brain areas. The 
cerebellar circuit is believed to be involved in ongoing motor control and motor 
learning, and an increasing amount of evidence suggests that it is the primary 
location of motor memories (Attwell et al. 2001). Purkinje neurons play a central 
role in the cerebellum, as they gather thousands of excitatory and inhibitory 
synaptic inputs from the molecular layer and provide the sole output of the 
cerebellar cortex. Describing and modeling the spiking response of Purkinje cells 
to synaptic inputs is therefore central to understanding cerebellar information 
processing. 

 
Purkinje cells are spontaneously active even in the absence of synaptic 

input (Häusser and Clark 1997). It has been proposed that this notable intrinsic 
property is tightly linked to their type II excitability (Williams et al. 2002, 
Fernandez et al. 2007), which is manifested by the non-zero minimum firing 
frequency in response to tonic current injection, and the characteristic 
discontinuity in the frequency-current relationship. This property is thought to be 
due to voltage-gated ion channels, such as resurgent sodium currents (Khaliq et 
al. 2003) or hyperpolarization-activated currents (!ℎ) (Williams et al. 2002), which 
are active at rest. Such intrinsic mechanisms also underlie the ability of Purkinje 
cells to switch between spontaneous firing (up states) and quiet periods (down 
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states). These have been observed in vitro (Llinas and Sugimori 1980, Williams 
et al. 2002) and in vivo in anaesthetized (Loewenstein et al. 2005) and awake 
animals (Yartsev et al. 2009). The transition between these two states can be 
controlled by climbing fiber synaptic input (Loewenstein et al. 2005, Yartsev et al. 
2009) or by molecular layer interneuron input (Oldfield et al. 2010). However, the 
presence of these up and down states in awake animals has been controversial 
(see Discussion). 

 
 While the existence of up and down states is a consequence of the 

intrinsic biophysics underlying the type II excitability of Purkinje cells 
(Loewenstein et al. 2005, Fernandez et al. 2007), we can nevertheless expect 
synaptic input, specifically random noise-like synaptic inputs, to play an important 
role in patterning such firing behavior. An interesting dynamical phenomenon, 
inverse stochastic resonance (ISR), has been described recently in persistently 
periodically firing model neurons: variance-dependent inhibition of spiking in 
response to noise stimulation, including purely excitatory noise (Tuckwell et al. 
2009). The unique defining characteristic of ISR is that inhibition of spiking shows 
a nonlinear tuning with respect to input noise statistics, notably the variance. This 
phenomenon was first identified in computational models of bistable recurrent 
neural circuits, where the bistability was between a persistent spiking and 
quiescent states (Gutkin et al. 2009), Gutkin and Tuckwell 2009) and later shown 
in a single bistable neuron model (Gutkin et al. 2008). The key to ISR is the 
bistability between a steady state (“rest”) and a periodic activity state (“spiking”), 
a characteristic of systems with sub-ctritical Andronov-Hopf bifurcations. 
Interestingly, ISR appears to be robust to changes in noise color (Guo 2011) and 
has also been demonstrated in spatially extended models of action potential 
propagation (Tuckwell and Jost 2010). Further analysis showed that ISR should 
be a generic phenomenon in dynamical systems with steady-state/limit cycle 
multi-stability, yet so far no direct experimental measurement of ISR has been 
reported (but see (Paydarfar et al. 2006) for hints of ISR in squid axons). Here 
we provide, to the best of our knowledge, the first experimental characterization 
of ISR in neuronal responses. 

 
In this study we demonstrate ISR experimentally in Purkinje neurons and 

study its implications for cerebellar information processing. We find that Purkinje 
cells recorded in cerebellar slices show clear evidence for ISR. Their firing is 
reduced or can even be stopped in response to noisy current injection, with a 
nonlinear dependence of the firing rate on noise variance, which is characteristic 
for ISR. We further demonstrate that an empirically-based adaptive exponential 
integrate-and-fire model, quantitatively parameterized to fit Purkinje cell data 
using a modified dynamic IV method, reproduces both the bistability and ISR 
behavior of Purkinje cells. Finally, we show that the optimal noise variance for 
ISR also yields a local maximum in mutual information between the input and 
output spike train. Under these conditions, ISR leads to optimal inhibition of self-
sustained spiking and thus provides the highest information transmission 
capacity for transient synaptic stimuli. 
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IV.2.4 Materials and Methods 
 
Slice preparation and patch-clamp recording: 250-300 �m thick parasagittal 
slices of cerebellar cortex were made from 18-24 day old Sprague Dawley rats 
by standard techniques (Davie et al. 2006). Briefly, rats were anaesthetized with 
isofluorane for several minutes and decapitated in accordance with Home Office 
regulations. Slices were cut using a vibrating slicer (Leica VT1200S), after z-axis 
vibration was minimized to  < 0.1!!". The slices were incubated in carbogen-
saturated ACSF at 34oC for 30 min and then at room temperature for at least 30 
min before use within four hours. Standard ACSF contained (in !") 125 NaCl, 
2.5 KCl, 2 CaCl2, 1 MgCl2, 25 NaHC03, 1.25 NaH2PO4 and 25 D-glucose (final 
osmolarity 310!!!"#/!") and bubbled with carbogen (95% oxygen, 5% carbon 
dioxide), giving a pH of 7.4. Slices were placed in a standard ACSF-perfused 
bath at 32-34 °C and visualized with an upright microscope (Zeiss Axioskop) 
using infrared-differential interference contrast optics, optimized as described 
previously (Davie et al. 2006). Whole-cell current-clamp recording were made 
from the soma using Axoclamp 2A, 2B or Multiclamp 700B amplifiers. Glass 
pipettes (4-7 M�) were filled with intracellular solution containing (in mM): 130 
K-methanesulfate, 10 HEPES, 7 KCl, 0.05 EGTA, 2 Na2ATP, 2 MgATP and 0.5 
Na2GTP, titrated with KOH to pH 7.2. Compensation for the access resistance of 
the pipette and for the capacitance of the pipette were performed and monitored 
throughout the recording. Recordings were abandoned when the resistance 
exceeded 40!!". The recorded potential and current were filtered at 3 or 10!!"# 
and digitized at 50!!"#. Single patch-clamp recordings were performed using the 
electrode for both injection of current and recording of the voltage, for the ISR 
and hysteresis experiments. For the dynamic IV method and fitting parameters to 
the model, simultaneous double patch-clamp recordings were made at the soma, 
using one electrode to inject the current and one to record the voltage. The 
current and voltage were recorded by the amplifier and acquired by using 
Axograph (www.axograph.com/). The traces were then imported into Igor Pro for 
analysis. 
 
Bistability and ISR analysis: To test for inverse stochastic resonance (ISR), 
current injection protocols were composed of series of 0.5 − 1!! periods of noise 
followed by 0.5 − 1!! period without noise. The injected noise waveforms were 
generated by an Ornstein-Uhlenbeck process: 
 
! !"!" = ! − ! + 2!!!!(0,1)              (1) 
 
where ! is the mean, ! the variance, and !(0,1) a Gaussian white noise process 
with zero mean and variance equal to 1. For these protocols, the time constant 
was τ = 2 ms, the noise amplitude !  varied in the range of 0 − 500!!", with a 
step size of ∆! = 20, 50 or 100!!". The mean changed with the holding current 
!!" = −500 − 0!!", and was adapted for each cell to explore particularly the 
region of bistability. The resulting firing frequency ! during the noise injection 
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period and the mean noise amplitude ! were used to generate the ISR curve. All 
the curves measured with a holding current in the bistability range or higher (with 
non-zero firing rate at zero noise amplitude !(! = 0) ≠ 0)) were averaged and 
smoothed with a Gaussian filter with a width similar to the step size in noise 
amplitude (10 or 20 pA). The optimal noise amplitude for reduction in firing!!!"#! 
was obtained for each cell as the minimum of the ISR curve, and the step noise 
amplitude of the stimulation provided the measurement error. 
 
 As the bistability of Purkinje cells is history dependent, it was necessary to 
measure the ISR curves in comparable conditions (silent or firing). We injected a 
noise waveform with linearly increasing and decreasing amplitudes (0.5!!"/!, 
Fig.IV-8E). We analyzed the firing frequency in intervals of 200!!" , and 
separated intervals where the cell was firing in the previous intervals, and 
intervals where the cell was previously silent. For each category, we obtained the 
ISR curves by performing a running average (bin size = 20!!A, Fig.IV-8F). 
 
 To characterize the bistability of Purkinje cells, slow ramps of current were 
injected (0.9!!"/!), ascending for 1!! and descending for 1!!, and repeated 10 
times. The cell was first hyperpolarized to -65!!" to stop firing. For each spike, 
the instantaneous frequency and the instantaneous injected current was 
calculated. The range of bistability was quantified as the difference between the 
frequency of the first spike (during the ascending ramp of current, fup,) and the 
last spike (during the descending ramp fdown) ∆! = !!" − !!"#$ , and as the 
difference of injected current for the first and last spike ∆! = !!" − !!"#$. 
 
The dynamic IV method: The dynamic IV method developed by (Badel et al. 
2008) is based on a simple representation of neuronal biophysics, where 
subthreshold injected current (!!") is split into ionic transmembrane current (!!) 
and capacitive current (!!). In addition, the neuron receives noisy current input 
(!!"#$%) from background synaptic activity and other sources of high frequency 
noise. This can be rearranged to find the ionic current flowing through the 
neuronal membrane. Thus, by injecting a rapidly fluctuating current !!"  to a 
neuron, the relationship between ionic current and voltage, during physiological 
spike generation, can be found. 
 
!! !, ! = !!" ! − ! !"

!" + !!"#$%     (2) 
 
 The injected noise current was the sum of two waveforms generated by 
Ornstein-Uhlenbeck processes (equation 1), with time constants !!"#$ = !3!!", 
!!"#$ = !10!!" (mimicking excitatory and inhibitory synaptic currents (Badel et al. 
2008)). Two different amplitudes of noise were used, ! = 153!!" or ! = 235!!", 
and the mean was adapted according to the injected holding current. Individual 
protocols were composed of 500!!" without noise followed by 20!! of the noise 
waveform. The membrane potential V was recorded in response to the noisy 
current injection, and the ionic transmembrane current !!  was calculated by 
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subtracting the capacitive current IC from the injected current Iin (equation 2). The 
after-hyperpolarization and the initial repolarization phase of each action 
potential ( 10!!"  after the peak) were excluded from the analysis. As the 
distribution of the data points is approximately Gaussian for a given voltage, the 
dynamic IV curve can be defined as the average of !! versus ! (Fig.IV-3C): 
 
!!"# ! = !"#$[!!(!, !)]     (3) 
 
 The capacitance (used to evaluate the capacitive current) was estimated by 
minimizing the variance of !! within individual voltage bins. Equation (2) can be 
transformed by inserting the estimated capacitance !!: 
 
!!"
!!
− !"

!" =
!!
! +

!
!!
− !

! !!! − !!"#$%
!     (4) 

 
The variance of this function is:  
!"#[!!"!! −

!"
!"]! = !"#[!!! ]! + (

!
!!
− !

!)
!!"#[!!"]! + !"#[!!"#$%! ]! (5) 

 
When (1/Ce-1/C) becomes zero, i.e. the estimated capacitance is correct, this 
variance is minimized. 
 
 The dynamic IV curve can be transformed into an integrate-and-fire (IF) type 
neuronal model, with voltage dynamics of the type shown in equation (6), where 
!(!) is a nonlinear function of voltage: 
 
!"
!" = ! ! + !(!)

!        (6) 
 
!(!) is related to the dynamic IV curve by equation (7): 
 
! ! = − !!"#(!)

!                            (7) 
 
 The experimentally derived −!!"#(!)/! curve can be fitted with a function 
!(!) describing an exponential integrate-and-fire (EIF) model (Fourcaud-Trocme 
et al. 2003), containing a linear part and an exponential rise to the action 
potential (Fig.IV-3D): 
 
! ! = !

!!
(!! − ! +�!exp!(!!!

!

�!
))   (8) 

 
The parameters are membrane time constant !!, resting potential !!, threshold 
potential !!, and spike slope factor �!.  
 
aEIF model: The exponential integrate-and-fire model with adaptation (Badel et 
al. 2008) is defined by: 
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! !"
!" = −!! ! − !! + !!�!!

!!!!
�! − ! + !!"(!) (9) 

!! !"
!" = ! ! − !! − !             (10) 

!"!! > !!"#$% then ! → !! and ! → !! 
 
where !  is the capacitance, !!  is the leak reversal potential, !!  is the leak 
conductance, !! is the threshold potential, �! is the spike slope factor, !! is the 
membrane potential reset after a spike, ! is the adaptation current, ! is the level 
of subthreshold adaptation, !!  is the adaptation time constant and !  is the 
adaptation current reset after a spike, !!"#$% is the conditional threshold for spike 
generation (!!"#$% = 0). 
 
Simulations: All simulations were done in Matlab R2014b using the forward 
Euler method with an integration step of 0.1!!". We confirmed that this 
integration step produces stable numerical results. The bifurcation and phase-
plane analyses were carried out in XPPAUT 7.0. 
 
Parameter fitting for the aEIF model: Fitting electrophysiology data of Purkinje 
cells to an aEIF model was achieved using a combination of the dynamic IV 
method and the procedure used for fitting an aEIF model to synthetic data 
described in (Brette and Gerstner 2010). 
 
 
Passive parameters 
 
 A good estimate of the membrane time constant !! of the Purkinje cell is 
obtained by fitting the late phase of the voltage response to a short current pulse 
(0.5!!", 1!!") (Roth and Häusser 2001), Fig.IV-9. As the aEIF remains a single 
compartment model, we use the approximation of the capacitance obtained 
using the dynamic IV method (although not optimal, as the somato-dendritic 
coupling of Purkinje cells is high). The reversal potential !! is also best estimated 
using the dynamic IV method, as the cell is spontaneously active. We estimate 
the value for the leak conductance at the soma and proximal dendrite using the 
membrane time constant and the capacitance according to !! = ! !!. 

 
 
 
 
 

Subthreshold adaptation 
 
 The subthreshold adaptation parameter ! was determined as follows: when 
the potential ! is fixed, the adaptation current ! is close to !(! − !!!). Therefore 
the linear part of the dynamic IV curve (apart from the exponential term) is: 
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!!"# = !! + ! (! − !!)     (11) 
We obtain the parameter !  by subtracting the leak conductance !!  from the 
slope fitted to the linear part of the dynamic IV curve. 
 
 
Spike-triggered adaptation 
 
 To determine the contribution of spike-triggered adaptation, we use the 
voltage response to noise injection in a similar way as for constructing the 
dynamic IV curve. Far away from threshold, the adaptation current is: 
 
! = −!!" − ! !"

!" − !!(! − !!)    (12) 
 
This estimate is composed of the spike-triggered adaptation !!"#$%  and the 
subthreshold adaptation !(! − !!!). We can express !!"#$% as: 
 
!!"#$% = −!!" − ! !"

!" − !! + ! (! − !!)  (13) 
 
We plotted the estimated !!"#$%  against time since the last action potential 
(Fig.IV-3E). The distribution of the data points is approximately Gaussian for a 
given time. Therefore we defined the time course of the spike-triggered 
adaptation after a spike as the average of !!"#$% versus time. The curve can be 
fitted by a single exponential yielding an estimate of the time constant !! and the 
value of the spike-triggered adaptation reset !, with !!"#$% ! = 0 = ! (Fig.IV-3F). 
 
 The parameters of the aEIF model were set to the values determined by 
fitting data from a representative Purkinje cell. A variation of the parameters 
within the range occurring in the Purkinje cell population was performed to 
determine their influence on the ISR range. We note that all occurring parameter 
combinations were restricted to !!! >

!!
!!

 , corresponding to type II excitability 

(Fig.IV-4D). The representative parameters were: 
 
!! = 268!!", !! != !−51.31!!", !! = !−53.23!!", Δ! !!= !0.85!!", !! != !8.47!!!", 
!! = !37.79!!", !! = !441.12!!", !! !!= !20.76!!". 
 
 Noise stimulus was modeled as ! ! = !!"#$ + !!"#$% ! , where !!"#$  is 
constant and !!"#$% !  is current noise with zero mean generated using an 
Ornstein-Uhlenbeck process with amplitude ! and time constant τ! = 2!ms. 
 
 Noise stimulus with an additional timed excitatory synaptic input was 
modeled as I t = I!"#$ + I!"#$% t + I!"# t , where I!"# t  is the biexponential 
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excitatory synaptic input, described as the solution of the equation: 
 

!!!!
!!
!"! !!"# + !! + !!

!
!" !!"# + !!"# = !" 1 − !!" ! ! − !!" ! !!,!!  

 
where !!" is the stimulation time, !" is the amplitude of the stimulus, and 
 

! !!,!! = !
!!!!!

!!
!!

!!
!!!!! − !!

!!

!!
!!!!!     (14) 

 
with rise time constant !! = 1.5!!" and decay time constant !! = 10!!". 
 
 
ISR Range 
 
 To estimate the ISR range in the parameter space, we rescaled the aEIF 
model in the following way (Touboul and Brette, 2008): 
 
!!
!! = −! + !! − ! + !      (15) 
 
! !!

!! = −!! − !      (16) 
 

where ! = !! !! , ! = ! !! , ! = !
!!!!

+ 1 + !
!!

!!!!!
!!

, ! = !
!!

, ! = !
!!!!

, 

!!"#$ = !!"#"$!!!
!!

, ! = !!!!
!!

, ! = !!! !!!!!
!!!!

 

 
 The bistability range in the model is defined similarly as for the recorded 
Purkinje cells, by the following expression: ∆! = !!" − !!"#$ , where !!" 
corresponds to the minimal current needed to elicit a spike when the model starts 
from the rest state and !!"#$ is the maximal current at which the spiking stops 
given that the model starts in the periodic spiking state, Fig.IV-4D. The value of 
!!" is referred to as the rheobase current, and for the aEIF model possessing 
type II excitability it has the following analytical expression (Touboul and Brette 
2008): 
 
!!" = !! + ! !! − !! − !! + !!!"# 1 + !!

!!
+ !!!! !

!!
− !!

!!
   (17) 
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Probability of Spiking 
 
 The probability of spiking is proportional to the fraction of time the 
trajectory spends in the region of V-w phase space leading to a spike. We 
measured the amount of time !!"#$ the aEIF model has spent in the basin of 
attraction of a stable fixed point. Then the probability of being in the rest state is 
calculated as !! = !!"#$

! , where ! is the total integration time. There are only two 
states in the phase space of aEIF model: spiking and rest. Therefore the 
probability of spiking is calculated as !!" = 1 − !!. 
 
 For simulations with Ornstein-Uhlenbeck noise, the probabilities and 
averaged firing rates were calculated after 20 repetitions with duration of 30!! 
each. We tested longer simulations and found that 30!! ensures an accurate and 
stable estimate. For simulations with excitatory biexponential input (equation 14), 
the probabilities !!"  were calculated in bins of 20!!"  in 1000  sweeps with a 
duration of 6!! each. 
 
 
Mutual information rate 
 
 To calculate the mutual information rate (MI) between the input and output 
spike trains we used the context tree weighting algorithm as described in 
(London et al. 2002). We simulated the aEIF model, extracted the input and 
output spike times, and then used the algorithm with bin size b = 25 ms and 
depth parameter D = 40 bins, corresponding to a time window of 1 s. The total 
duration of a sweep was 1,000 s. The algorithm was used 10 times for each data 
point to provide a reliable estimate of mutual information. 
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IV.2.5 Results 
 
IV.2.5.1 Purkinje cells exhibit inverse stochastic resonance (ISR) 
 
 To test whether Purkinje cells (PCs) exhibit inverse stochastic resonance, 
we made patch-clamp recordings from PCs in rat cerebellar slices. We injected 
noisy current waveforms and observed the resulting firing behavior (Fig.IV-1A). 
The noise protocol consisted of a series of ten 1!! noise periods alternating with 
1!! rest periods. The noise waveform was generated by an Ornstein-Uhlenbeck 
process with time constant t = 2 ms and increasing amplitude  ! to represent the 
synaptic currents received by the cell (see Methods). We observed that the firing 
frequency of PCs is initially reduced in response to increasing noise amplitude. 
This counter-intuitive effect is characteristic of ISR, where the relationship 
between firing rate and noise amplitude has a minimum, or “tuning” (here at 
amplitude  !! = 100!"; Fig.IV-1B). All Purkinje cells tested exhibited ISR, and the 
optimal noise level for firing rate inhibition for the population was !!!"# = !152 ±
64!!" (n = 19, Fig.IV-1C). However, ISR is variable across cells, and some cells 
can be fully silenced in response to optimal noise amplitude injection (Fig.IV-
SIC). In that case, the cell is generally silenced even during periods with no noise 
injection, if they follow periods with optimal amplitude noise. This shows that the 
firing rate in one interval is not only determined by the noise amplitude and mean 
(holding current), but also by the cell’s activity in the previous interval. 
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Figure IV-1. Cerebellar Purkinje cell show inverse stochastic resonance (ISR)  
A. Whole-cell patch-clamp recording from a Purkinje cell in a cerebellar slice, showing 
current injection of 1!! noise waveform periods with increasing amplitude, and recorded 
membrane potential !!. Holding current is !! = !−290!". The firing rate of the Purkinje 
cell (PC) is reduced for intermediary noise amplitude. B. Firing frequency during 1!! 
noise injection vs. noise amplitude σ corresponding to the trace in A. Error bars are 
standard deviation. The firing rate is minimum for σ=100pA. C. The ISR is observed in 
all Purkinje cells tested. Summary of optimal noise amplitude σ= 152.60 ± 64.42 pA 
(n=19). D. ISR curve of a different PC, generated with a current injection protocol of 
continuously changing noise amplitude and for a series of holding current, exploring the 
full range of the f-I curve (E). The firing rate is most reduced when the cell is 
hyperpolarized to the edge of the f-I curve step. The optimal noise amplitude for 
inhibition of firing is σ=200pA. E. Frequency vs. current generated with steps current 
injection of 1!!. The color code corresponds to the region explored for the ISR curve in 
D. 
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 ISR appears to mediate transitions between a firing state and a silent state. 
To account for the resulting history dependence, we injected a noise waveform 
with continuously changing noise amplitude (Methods, Fig.IV-SIE), and 
generated ISR curves using only intervals in which the cell is initially in the firing 
state (Fig.IV-1D, SIF). We observed that the optimal noise amplitude ! 
consistently reduces the firing rate across a range of mean holding currents. 
However, the reduction is most pronounced when the cell is hyperpolarized 
relative to its resting membrane potential (holding current !!" != !−290!!"  for 
traces in Fig.IV-1A, B). When the cell is hyperpolarized sufficiently to prevent 
firing, the noise injection then acts in the expected way  
 
and the firing rate only increases (Fig.IV-1D, !!" != −400!!"). In this case, the 
noise amplitude needs to be large enough to bring the cell to threshold. We 
observe that there is an optimal holding current for which the cell’s firing rate is 
reduced the most (!!" != !−350!!", red), as there is an optimal noise level !!"#. 
This phenomenon is qualitatively similar to the previously reported ISR in the 
Hodgkin-Huxley neuron model (Gutkin and Tuckwell 2009). As Purkinje cells 
have type II excitability, we observe in particular that the optimal holding current 
corresponds to the region of the “discontinuity” in the f-I curve (red in Fig.IV-1E). 
It appears therefore that the ISR phenomenon is linked to the bistability of 
Purkinje cells. 
 
 
IV.2.5.2 ISR parameters are related to Purkinje cell bistability 
 
 We examined the link between the Purkinje cell intrinsic property of 
bistability and the modulation of firing by noise. Type II excitability is traditionally 
characterized by a step or discontinuity in the f-I curve (Fig.IV-1E), as opposed to 
the continuous f-I curve of type I excitability (Touboul and Brette 2008). However, 
we observed that different Purkinje cells can show a wide range of type II 
behavior. The firing rate hysteresis in response to slow ramps of current allows a 
more precise characterization of this property than f-I curves (Williams et al. 
2002). Cells were held at −65!!"  to prevent spontaneous firing and an 
ascending and descending (0.9!"/!) ramp of current was injected (Fig.IV-2A). 
The first spike occurs at a different instantaneous frequency and current than the 
last spike (Fig.IV-2B). This hysteresis illustrates that the cell is in a different 
condition during the ascending and descending phases of the ramp. 
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Figure IV-2. Experimental characterization of Purkinje cell bistability 
A. Whole-cell patch-clamp recording from a Purkinje cell, showing a representative hysteresis 
measurement with slow current ramp injection (0.9!!"/!) ascending (red) and descending 
(blue), and the resulting PC membrane potential firing. B. Instantaneous firing frequency and 
current for each spike. Linear fit of the ascending ramp (red) and the descending ramp (blue) 
are averages of 10!. trials C. Characterization of the hysteresis using the difference in frequency 
between first and last spike Δ! and difference in current Δ! and population data. The color code 
illustrates the region explored for the ISR curve. Red corresponds to both the hysteresis and the 
optimal ISR (Fig1 C, D). D. Correlation between the width of the hysteresis range Δ! and the 
optimal noise level for ISR!!!"#. Error bars are standard deviation, !! = !0.79 n= 19. 
  



! 118!

 We quantified the difference between the instantaneous frequency of the 
first spike (ascending) and the last spike (descending) (Δ!) and the difference of 
injected current for first and last spike  (Δ!; Fig.IV-2C). Across a population of 
Purkinje cells, we observed a wide range of hysteresis parameters Δ! = 38.17 ±
!19.12!Hz , Δ! = !110.28!± !84.57!pA  (mean ± S.D., n=34). Hysteresis as 
characterized by these parameters offers a quantification of the degree of 
bistability of individual Purkinje cells. Using the same color code for the 
hysteresis plot (Fig.IV-2C) and the ISR curve (Fig.IV-1D), we highlight the 
suspected link between the two phenomena. The inhibition of firing in response 
to noisy input is indeed more pronounced when the cell is hyperpolarized to the 
hysteresis region where both spiking and rest states can exist. To illustrate this 
relationship empirically, we compared the hysteresis parameters with the 
parameters of ISR. We found a correlation between the width of the hysteresis 
range Δ! and the optimal noise amplitude (R2 = 0.79; n = 19 cells) (Fig.IV-2D). 
This suggests that the noise amplitude required for ISR is on the order of the 
difference in the holding currents at which the cell makes transitions from the 
firing to the silent state and vice versa. 
 
 
IV.2.5.3 An adaptive exponential integrate-and-fire (aEIF) model 
describes Purkinje cell firing 
 
 We employed a reduced model approach to understand the relationship 
between the intrinsic property of bistability and ISR. Our choice of a minimal 
spiking neuron model, which can describe the bistability of Purkinje cells was 
motivated by several requirements. The model should have sufficiently rich 
dynamics to account for the bimodal behavior of Purkinje neurons, and be of 
sufficiently low dimensionality to allow analytical insights. The adaptive 
exponential integrate-and-fire model (aEIF) was chosen since it can reproduce a 
range of different firing regimes including type II excitability (Touboul and Brette 
2008) and we can quantitatively fit the parameters of the model to 
electrophysiological data from individual PCs. The aEIF also allows a detailed 
examination of the links between hysteresis, bistability and ISR. In order to 
quantitative fit the model to the experimental data, we used the dynamic IV 
method (Badel et al. 2008) for the parameters of the basic aEIF model together 
with a modified version of this method for the adaptation parameters (see 
Methods for details). Briefly, the dynamic IV method relies on accessing passive 
and active membrane mechanisms during physiological spike generation. It 
provides a simple representation of the ionic transmembrane current !!  as a 
function of the injected current !!"  and membrane potential ! by subtracting the 
capacitive current  from !!". 
 

 !! !, ! = !!" ! − ! !"
!" + !!"#$%   (19) 
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Figure IV-3. aEIF model fitting procedure to Purkinje cell experimental data 
A. Double somatic whole-cell patch-clamp recording from a representative Purkinje cell: one 
electrode for current injection and one for voltage recording (scale bar: 100µm ). B. Traces of 
injected noise current !!" ! , recorded membrane potential !! ! , in spontaneously active PC, 
calculated membrane current !! ! , and calculated spike-dependent adaptation current !!" ! . 
C. !! vs. !! and dynamic IV curve as the average over !!. Error bars are SEM. Inset the 
distribution of points at !!  = -52mV is Gaussian.  D. Fitting the dynamic IV curve !(!) =
−!!"#/!  with the EIF model function. Parameters are; resting potential !! membrane time 
constant !! , threshold potential !! , and spike slope factor Δ! . Error bars are SD. Inset. 
Capacitance determination by minimizing the variance of !! . E. Spike triggered adaptation 
!!"(!) plotted versus time after the last spike. Error bars are SEM. Inset the distribution of 
points at !=12ms is Gaussian. F. The spike-triggered adaptation is fitted to a single exponential, 
with time constant !! and !!" (t=0) = b. Error bars are SD. 
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In order to mimic excitatory and inhibitory synaptic currents, the injected 
current was a sum of two Ornstein-Uhlenbeck processes with time constants 
!!"#$ = !3!!" , !!!"#$ = 10!!"  (Badel et al. 2008). Measuring the membrane 
potential using an electrode while simultaneously injecting current can be 
inaccurate because of the voltage drop across the electrode. Therefore, to 
measure the true membrane potential !, we performed double somatic patch-
clamp recordings from PCs in slices (Fig.IV-3A). The ionic current through the 
membrane !!! was calculated using equation (2) and plotted against the voltage 
(Fig.IV-3B, C). The distribution of the !!! data points is Gaussian for a given 
voltage (Fig.IV-3C, inset), the dynamic IV curve is therefore defined as the 
average of !!!  versus !  (Fig.IV-3D). The capacitance can be estimated by 
minimizing the variance of !!!  within individual voltage bins (Fig.IV-3D, inset) 
(see Materials and Methods). The dynamic IV curve can be readily transformed 
into an integrate-and-fire (IF) type neuronal model, where !(!) is a nonlinear 
function of voltage. 

 
 ! ! = !

!!
(!! − ! +�!exp!(!!!

!

�!
)   (20) 

 
 The experimentally derived ! ! = !−!!"#(!)/! curve can therefore be fitted 
with a function !(!)! describing an exponential integrate-and-fire (EIF) model 
(Fourcaud-Trocme et al. 2003), with parameters membrane time constant !!, 
resting potential  !!, threshold potential !!, and spike slope factor !! . Average 
values for our PCs were: ! = !195.4!± !53.3!!" , !! != !−51.9!± !1.9!!" , 
!! != !−54.1!± !!2.3!!", �! !!= !1.0!± !!0.2!!", !! != !4.4!± !1.2!!" (n = 7 cells). 
 
 It is interesting to note the difference between the dynamic IV of PCs and 
those previously reported for pyramidal cells (Badel et al. 2008). The 
spontaneous, self-sustained, activity of PCs means that the IV dynamic curve 
sits above zero, and !! never effectively reaches the resting potential !!. The 
aEIF model with these parameters is spontaneously active but it is not able to 
show type II excitability. To account for this essential property, we chose to 
extend the model with voltage-dependent adaptation. The method we used to fit 
the adaptation is inspired by the procedure used for fitting an aEIF model to 
synthetic data as described in (Brette and Gerstner 2010). Since the PC is 
spontaneously active, the classical dynamic IV method yielded a good 
approximation of the capacitance and reversal potential !!. (for more details see 
Supplementary materials). However, the time constant determined by the 
dynamic IV method in Purkinje cells reflects the only fast time constant of a soma 
while the total membrane time constant, needed for the aEIF, depends on the 
large proximal dendrite as well. To compensate for this issue we estimate the full 
membrane time constant !! of Purkinje cell by fitting the voltage response to a 
short current pulse (0.5 ms, 1 nA), Fig.IV-9A (Roth and Häusser 2001). From 
this, we can estimate the value for the leak conductance !! at the soma and 
proximal dendrite, using the membrane time constant and the capacitance 
!! != !!/!!. We determine the subthreshold adaptation parameter ! using the 



! 121!

same approximation as in (Brette and Gerstner 2010, Materials and Methods): by 
subtracting the leak conductance !! from the slope fitted on the linear part of the 
dynamic IV curve. 
 
 The voltage-dependent adaptation strength is the key parameter for type II 
excitability. To define it, we followed a method similar to the dynamic IV. To 
access the contribution of spike-triggered adaptation, we rearranged equation 
(13) using the approximation (see Materials and Methods): 
 
!!"#$% = −!!" − ! !"

!" − !! + ! (! − !!)   (21) 
 
 As !!"#$% is triggered at each spike, we plotted the estimated !!"#$% against the 
time since the last action potential (Fig.IV-3E). The distribution of the data points is 
Gaussian for a given time (Fig.IV-3E, inset). Therefore we defined the time course of 
the spike-triggered adaptation after a spike as the average of !!"!"# versus time. The 
curve can be fitted by a single exponential that yields an estimate of the time constant 
!!. The adaptation parameters fitted to data from PCs were !! = !36.1!± !6.3!!",!!! =
!408.0!± !!128.0!!", !! !!= !14.8!± !!6.3!!" (n = 7). The threshold parameters �! and !!  
are not influenced by adaptation, and were therefore used as fitted with the dynamic IV 
method. 
 
 
IV.2.5.4 The aEIF model reproduces Purkinje cell bistability and ISR 
 
 We used the empirically fitted adaptive exponential integrate-and-fire 
model (aEIF) to describe simple spike firing of a Purkinje cell in response to 
noise steps of increasing amplitude (see Fig.IV-4A). The parameters of the 
model are quantitatively fitted for each cell using the modified dynamic I-V 
method as described above. All simulations were done for a set of the 
parameters representing one typical Purkinje cell, cell 1, Fig.IV-1A, B. 
 
 The response of the model to current ramps showed clear hysteresis of the 
firing rate as a function of the current (Fig.IV-4C). The mechanism for this 
hysteresis is fairly straightforward:  the threshold for spike generation in the aEIF 
(and by extension in the PC) depends on the adaptation variable (Touboul and 
Brette 2008). Since adaptation increases with each successive spike, the current 
threshold also increases: it has a higher value when the last spike in the train is 
produced as compared to the first spike. This explains the different thresholds for 
the symmetric upstroke and downstroke of the current injection ramp. 
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Figure IV-4. Hysteresis and ISR of the aEIF model 
A Voltage response of the aEIF model to Ornstein-Uhlenbeck current noise injection with 
increasing amplitude. B. Mean firing-rate of the aEIF model in response to current noise 
stimulation with amplitude ! and mean  ! (color code). C. Hysteresis of the aEIF model. Top. 
Voltage response to ascending (red) and descending (blue) ramp of current. Bottom. 
Instantaneous firing-rate vs instantaneous injected current. Color code is the same as in B. D. 
Parameter space of the rescaled aEIF model, white region - type I excitability, gray region – 
type II excitability. The 7 fitted cells are in type II region. E, F.  Dependence of the hysteresis 
size Δ! on the parameters ! = !!/!! (E) and ! = !/!! (F). 
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 Next we examined the firing rate responses of the model to current noise 
generated as in the experiment (Fig.IV-4B). The mean of the input was chosen to 
be within the hysteresis range to reproduce the experimental conditions. When 
the mean input current was close to −150!!" the model demonstrated strong 
inhibition of firing by the injected noise. While extremely weak noise did not have 
much effect on spiking, noise with an optimal variance around 30!!" (that is still 
relatively small) efficiently switched the system from spiking to the rest state. 
Once an up-to-down transition occurred, the amount of current needed to elicit 
new spikes increased. This was due to the asymmetrical shape of the basin of 
attraction for the stable fixed point (see Section 5 below). Therefore, at the 
optimal noise variance the model preferentially remained in the resting state for 
an extended period of time. Interestingly, the variance of the noise optimal for 
spike-inhibition was unable to switch the model back from the rest state to the 
spiking state, hence we observe virtually no spontaneous down-to-up transitions. 
Noise with a sufficiently large variance was able to switch the system between 
spiking and rest. This variance-dependent inhibition by noise current led to 
dependence between the mean firing rate and noise variance that had a clear 
minimum (Fig.IV-4B). 
 
 When the mean input current was outside the hysteresis region, this effect 
markedly decreased, or no ISR was observed. In the range above the hysteresis 
region (input current mean approx. −100!"), this happened because the model 
was monostable, continuously spiking and the input noise resulted in a weak 
modulation of the firing pattern. When the input was below the hysteresis range, 
near −200!", the aEIF model preferentially stayed in the rest state at low noise 
values and spiked only if the input noise had a large enough variance (i.e. the 
spikes were directly evoked by the noise excursions above spike threshold). 
 
 To estimate the strength of ISR as a function of the model parameters and 
clarify the most important parameter combinations we rescaled  the model (see 
Materials and Methods). This allowed us to significantly reduce the number of 
parameters. We estimated the bistability region of the rescaled aEIF model in 
terms of the hysteresis range Δ! = !!" + !!"#$ , i.e. the difference between 
threshold currents in the up-and-down ramp. The larger this difference, the 
stronger was the bistability and the more ISR would be present (meaning that the 
minimum of the firing rate vs. noise amplitude curve was deeper). According to 
our analysis the key parameters of the model are the voltage-dependent 
adaptation and the adaptation time constant. We found an approximately linear 
relationship with the range of bistability for the adaptation time constant ! (Fig.IV-
4E) as well as for the adaptation parameter ! (Fig.IV-4F). This implied that the 
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larger and the slower the adaptation, is the more prominent the difference 
between !!" and !!"#$, and accordingly the larger the ISR range and the stronger 
the bistability. In conclusion, ISR is present for a wide parameter range as long 
as the model exhibits type II behavior. 
 
 Although the aEIF model can exhibit either type I or type II excitability 
depending on the parameter values (A and T) (Touboul and Brette 2008), our 
experimental results from 7 Purkinje cells showed that all measured neurons 
possess type II excitability in the model parameter space (Fig.IV-4D). However, 
the size of the hysteresis region and the amplitude of the minimal firing frequency 
varied from cell to cell. 
 
 
IV.2.5.5 Bifurcation analysis of the aEIF model 
 
 To understand the behavior of the model related to ISR, we examined the 
phase space of the model. The phase space of the model when the input mean 
is in the hysteresis (equivalently: bistability) regime consists of two areas: the 
basin of attraction of a stable fixed point and the spike generation area (Fig.IV-
5A). The drop-like set marked by the solid black line corresponds to the basin of 
attraction of a stable fixed point, the rest state. When a trajectory initiates in this 
region the system moves to the stable fixed point, e.g. the blue trajectory. 
Outside of this region all trajectories are spiking, for example the red trajectory. 
After each spike the system is immediately reset to !!"#"$, so that the attraction 
basin is not crossed (dashed line). This implies that when the voltage of the 
model is transiently perturbed outside the droplet region, the model will continue 
spiking. This kind of behavior constitutes the bistability in the model, i.e. the 
coexistence of a spiking (limit-cycle) and a resting-state attractor for the same 
parameter set. 
 
 To obtain a more general picture of the mechanism underlying bistability 
we performed a bifurcation analysis of the model. Fig.IV-5B shows the bifurcation 
diagram of the aEIF model (in the V-I plane) in the subthreshold regime (i.e. the 
bifurcation of the steady states). There are two fixed points corresponding to 
stable and unstable equilibria or fixed points in Fig.IV-5B. When the input current 
! gradually increases, the rest fixed point loses stability via an Andronov-Hopf 
bifurcation (HB), which accounts for type II excitability. Due to the intersection of 
the nullclines there are two unstable equilibria after  
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Figure IV-5. Bifurcation diagram and phase plane of the aEIF model 
A. Phase-plane of the model. Gray lines are the null-clines of the model. Drop-like set (black) 
corresponds to the basin of attraction of a stable fixed point. Red and blue trajectories 
correspond to rest and spiking respectively (inset). B. Bifurcation diagram of the aEIF model. 
Solid and thin lines represent stable and unstable fixed points for different values of !. Inset 
shows the intersection of the null-clines before and after HB point. Point corresponds to 
Andronov-Hopf Bifurcation (HB). C. Probability of spiking during the stimulation by noise with 
various means (compare with Fig4B). D, E, F. Phase plane of the model with the corresponding 
trajectories and voltage traces (inset) when stimulated by Ornstein-Uhlenbeck noise for 
1000!!" with the mean ! = −150!!" and amplitudes ! = 10!!", 30!!"! and 60!!". 
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the HB point which merge and disappear at higher values of input current ! (see 
insets). At higher input currents, there are no fixed points and there is only a 
spiking regime in the model. We can see that in the input ranges where ISR is 
present, the model has a stable equilibrium (a focus) and an unstable fixed point: 
this is a clear signature of the bistability as the upper unstable point corresponds 
to the voltage projection of the separatrix (see above) between the rest and the 
periodic processions toward the spiking threshold and the voltage reset. 
 
 To study the probability of transition to spiking we performed multiple 
numerical simulations when the model was stimulated by current noise with 
various means and amplitudes (variances). The resulting probability is shown in 
Fig.IV-5C. The comparison of this spiking probability and the mean firing rate 
(Fig.IV-4B) shows that these dependences have essentially the same shape. 
The similarity indicates that the mean firing-rate represents the balance of the 
probabilities of down-to-up and up-to-down state transitions. When the mean 
current is within the bistability range, there is strong inhibition of spiking near 
30!!" noise variance (red dot). For noise near 10 pA variance (green dot) the 
model preferentially stays in the spiking basin of attraction. However, when the 
noise amplitude becomes large (60pA; red dot) we observe random noise-driven 
crossings of the separatrix and transitions between spiking and rest. For still 
larger values of noise variance there is an increase in spiking probability, as it 
would be expected from a noise-driven threshold system. When the mean input 
current is beyond or below the bistability region ! = [−100!",−200!"], there is 
no significant inhibition of spiking (and so no ISR; Fig.IV-5C, dashed and dotted 
lines). Fig.IV-5D–F show the trajectories in phase space for mean current within 
the bistability range and three different values of noise variance. In all cases 
initial conditions were initialized in the spiking region and then the model was 
stimulated with noise input with various amplitudes. This illustrates directly the 
phenomenon of ISR tuning as summarized in Fig.IV-5C. 
 
 
IV.2.5.6 Functional role of ISR 
 
 Bistability can significantly influence the output spike pattern and the 
response of a PC to external input. As discussed in the previous section, 
bistability and ISR can be explained using an aEIF model, implying that only the 
spike generating mechanism and a slow voltage-dependent adaptation are 
necessary for the phenomenon. In this section we investigate the role of 
bistability for processing of a transient external input when different levels of 
synaptic noise are present. Our goal is to examine if there is a link between ISR 
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and the ability of the PC to respond to aspects of the incoming transient input (i.e. 
the signal). 
 
 To study the role of ISR for the input-output relationship of PCs, the model 
was held in the bistability range by adjusting the mean input current, and 
received two additional inputs: ongoing synaptic current noise and a brief 
excitatory current pulse (the signal) at a pre-set time (see Materials and 
Methods). To examine the input-output function of the model, we computed 
peristimulus time histograms (PSTHs, Fig.IV-6). Since we were interested in 
understanding the role played by the ISR in the stimulus-induced transitions from 
the quiescent to the spiking state, initially the model was set in the rest state in all 
simulations. 
 
 In the case of low noise amplitude (Fig.IV-6A), the model remained in the 
rest state before the arrival of the excitatory signal input, and hence the spiking 
probability was zero before the signal input; the basin of attraction of the rest 
fixed point is larger than the fluctuations induced by the noise. In this case the 
short synaptic excitatory input lad to a clear sharp transition to the spiking state 
(Fig.IV-6A). Once initiated, this spiking was not effectively inhibited by low-
amplitude synaptic noise. Therefore the model remained tonically spiking after 
the application of the excitatory stimulus. In this situation the model acted as a 
latch, where the persistent spiking indicated that a stimulus has  
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Figure IV-6. ISR transforms brief inputs into long-term firing states depending on 
background noise 
A, B, C. Characteristic voltage traces of the aEIF model in response to a single synaptic 
excitatory input in the presence of different levels of background noise with amplitude 
! = 10!!", 30!!"!and 60!!". Bottom. Corresponding probability of spiking for a range of 
input amplitudes (color code). D. Maximal probability of state transition vs. synaptic 
input amplitude for 3 background noise amplitudes, E. Decay time constant for the 
duration of the spiking state induced by the synaptic input of 100!!". Remark: two 
points corresponding to ! = 0!!", 100!!" are not on E plot because for ! = 0!!" the 
duration of stimulus-induced spiking state is infinite, while for ! = 100!!" the duration of 
this state could not be distinguished from the firing baseline. 
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occurred at some point in the past. Had the model started in the spiking regime, 
the transient excitatory stimulus could switch it from spiking to rest (simulations 
not shown). 
 
 When the noise amplitude was optimal for inhibition (Fig.IV-6B), the model 
remained mostly in the rest state before application of the excitatory stimulus due 
to the ISR. Therefore the probability of spiking before the arrival of the signal 
input was small. When the transient stimulus was applied it led to an increase of 
spiking probability and a finite number of periodic spikes were triggered. After the 
end of the transient stimulus, the spiking probability gradually decreased to zero 
due to noise-induced inhibition indicative of ISR. Hence at optimal ISR noise 
amplitude, the model produced a transient spiking response to the transient 
stimulus, yet with a duration of the response that was significantly longer than the 
stimulus itself. Moreover, the probability of the response was related to the 
stimulus amplitude. Hence, the timing of the input and its amplitude could be 
decoded from the PC spiking activity. 
 
 In the case of high noise amplitude the model randomly switched between 
spiking and rest (Fig.IV-6C). This led to constant baseline probability of ~0.5 for 
spiking even in the absence of the stimulus. Once a stimulus was applied, it 
increased the probability of spiking compared to the baseline. The spiking 
probability decayed back to the baseline more rapidly than in the case of optimal 
noise amplitude for inhibition. Note that while there were spikes that were directly 
triggered by the transient stimulus, these spikes are hardly distinguishable from 
random spiking caused by the large amplitude noise. In this case the model 
acted neither as a latch nor is it able to signal the transient stimulus amplitude 
with any fidelity. 
 
 We summarize the noise-dependent effect on the response to the transient 
signal by plotting the peak probability of spiking as a function of the signal input 
amplitude, a signature of the input-output relation of the model (Fig.IV-6D). At 
low noise amplitude the input-output relation is close to all-or-none, but with 
noise amplitude in the optimal ISR range, the response becomes more 
proportional to the input amplitude (a flatter sigmoid). Above the ISR range, the 
input-output relation is almost flat (little information in the output about the input). 
For the optimal noise amplitude (red curve Fig.IV-6D) we see a sigmoid 
response behavior depending on the input amplitude. Below ~50!!" the model 
does not respond to the excitatory input by spiking because the input is not 
strong enough to bring the model out of the rest state. The peak probability 
saturates after ~125!!" amplitude. This means that beyond this value the model 
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becomes insensitive to the amplitude of the input and will respond with the same 
amount of spiking even for larger amplitudes of the excitatory input. 
 
 Next we study the duration of a spiking state caused by signal input stimuli. 
Fig.IV-6E shows the decay time constant of the spiking probability triggered by 
the transient input signal  (Fig.IV-6A-C). For low values of synaptic noise, 
! = 10!!"  the model spikes for long periods of up to >1000 seconds. As noise 
amplitude increases, it significantly shortens the duration of the spiking induced 
by the stimulus. The reason for this effect is the following. As the noise variance 
approaches the ISR region (30 pA variance; green asterisk Fig.IV-6E), the 
lifetime of the spiking state decreases, because the noise turns off the stimulus-
evoked persistent firing after which the model stays quiet. When noise increases 
beyond ISR-optimal variance, the model starts generating spikes that are not 
evoked by the stimulus (Fig.IV-6E, blue asterisk). This leads to lower values of 
the decay time constant as the model is switched ever more quickly between 
spiking and silent states by the noise. 
 
 We suggest that this may be a viable mechanism by which synaptic noise 
may control the duration of spiking responses induced by the external stimulus. 
In the low noise regime, spiking induced by the external stimulus would lead to 
long-lived spiking states, while in the presence of progressively stronger synaptic 
noise, the duration of the spiking state would become progressively shorter. In 
general, the probability of spiking in a PC population receiving the same single 
stimulus decays exponentially, but with different time constants set by the noise 
amplitude. Thus, in the optimal ISR noise regime the cell acts as a quasi-linear 
filter of the input, while in the low noise regime it acts as a memory device. 
Changing noise variance rapidly switches the cell from one mode to the other. 
Thus, the amplitude of the synaptic noise provided by ongoing parallel fiber input 
could provide rapid mechanism to set the duration of a spiking state caused by 
external signal stimuli such as a synchronous volley of parallel fiber input. 
 
 
IV.2.5.7 ISR optimizes information transfer 
 
 We showed in the previous sections that ISR significantly modulates the 
persistent and stimulus-evoked firing in the experiment and the quantitative 
model of a PC. Here we examine how ISR affects the transfer of information 
across a PC for a series of input signals similar those shown in Fig.IV-6. To do  
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Figure IV-7. ISR leads to local optimum of mutual information between the input and 
output spike-train. 
A, B, C. Voltage traces of the aEIF model in response to series of synaptic excitatory 
inputs, in addition to background stimulation noise with amplitude ! = 10!!", 30!!"! and 
60!!", input amplitude Am=100pA. Top. Corresponding voltage trace. Bottom. Input to 
the model. D. Mutual Information of the input and output spike train of the aEIF model. 
MI is computed for the full value of mutual information; MIDU for DOWN-UP transitions, 
MIUD for UP-DOWN transitions. E. MI as a function of the decay time constant (duration 
of a spiking), Fig.IV-6E. Remark for E: two points corresponding to ! = 0!!", 100!!" are 
not on E plot similar to Fig.IV-6E. For ! = 0!!" the duration of stimulus-induced spiking 
state is infinite, while for ! = 100!!" the duration of this state could not be distinguished 
from the firing baseline. 
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so we take advantage of our quantitatively based aEIF model. The input for 
these numerical experiments consisted of synaptic noise with a parametrically 
adjusted amplitude and a Poisson signal spike train of 1Hz mean rate. This 
stimulus frequency is chosen for its relevance to the behavioral timescale 
(Yartsev et al. 2009). Depending on the synaptic noise amplitude, the state of the 
PC model can switch between periodic spiking (up state) and rest (down state) in 
response the incoming inputs (Fig.IV-7A-C). 
 
 In the case of low variance noise, with the cell starting in the down state, 
the synchronous synaptic input can trigger an up state, which persists until the 
next one (Fig.IV-7A). Given that the cell is in the up state, this next input then 
provokes the transition to the down state. This up-down transition will depend on 
the proper timing (or the relative phase of the spiking trajectory of the model) of 
an input: most efficient were  
inputs that were time at a phase when the trajectory is close to the basin of 
attraction of a stable fixed point (Fig.IV-5A). The down-up transitions did not 
depend on the specific timing of the input because the trajectory stayed in the 
resting state basin of attraction and did not have any definable phase in its noise 
driven fluctuations. Thus, a series of signal inputs caused continuous switching 
of the system back and forth between up and down states (Fig.IV-7A). 
 
 When the noise variance was optimal for ISR (Fig.IV-7B), the cell 
demonstrated a characteristic type of behavior. Due to the noise-induced 
inhibition of sustained firing, the model was in the resting state most of the time. 
Even when the initial conditions were chosen in the up state, the model quickly 
switched to the down state (Fig.IV-6B). Once the external input was present, it 
brought the cell to spiking and the model stayed in the up state for ~1 sec (decay 
time constant, Fig.IV-6E) followed by a transition to the down state because of 
the ISR effect. Thus, ISR ensured a resting baseline with minimal spurious 
spiking before the subsequent external inputs, making the firing output sparse 
and causing the onset of spiking to be related to the onset of the signal stimuli. 
 
 In case of strong synaptic noise, the cell is switching between up and down 
states even in the absence of external stimuli (Fig.IV-7C). In this case an 
external stimulus leads to an increased probability of spiking compared to the 
baseline (Fig.IV-6C). However, these additional spikes are rare compared to 
random firing caused by noise (Fig.IV-7C). To study the efficiency of information 
transfer of the PC model we measured the mutual information rate between the 
input and output spike train for different levels of synaptic noise variance and 
input amplitudes. Fig.IV-7D shows the mutual information rate for different input 
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amplitudes ranging from subthreshold (0 - 90 pA) to suprathreshold (100 – 150 
pA) as a function of noise amplitude. A peak in MI appears around ! = 30!!" for 
a range of input amplitudes. This corresponds to the ISR noise variance optimal 
for inhibition. For the subthreshold input amplitudes this peak is global, while for 
the suprathreshold amplitudes it becomes local. 
 
 The presence of the MI peak for subthreshold input is the consequence of 
the classical stochastic resonance (SR) effect that has been extensively studied 
(McDonnell and Ward 2011). The contribution of ISR to this effect is the following. 
When the noise amplitude is optimal for inhibition, it provides a stable down state 
for a cell in the absence of an input. In this case the incoming input is amplified 
by noise due to the SR effect and will trigger spiking, i.e. produce an up state. 
Then due to the influence of ISR this stimulus-induced spiking will terminate 
before the next input. This leads to a strong temporal association between the 
input and output spike trains. Each input spike will correspond to a ~1 second 
(decay time constant, Fig.IV-6E) spike train in the output with a high probability. 
After each input spike the cell will return to the down state due to ISR. This leads 
to the mutual information peak near the noise amplitude optimal for the ISR. 
 
 In the case of suprathreshold input, the MI was maximal for zero noise 
variance because a strong input could reliably trigger up and down transitions. In 
this case the noise plays mostly a disruptive role because it adds additional 
spurious output spikes unassociated with the input stimuli. However, in the 
presence of ISR the number of these spikes is smaller since synaptic noise 
prepares the baseline, setting the spontaneous spiking activity close to zero, 
thereby making the input and output spike train temporally associated. Therefore 
we observe a local peak of MI associated with ISR even for the suprathreshold 
input amplitudes. 
 
 To study the relationship between the duration of a spiking state and 
mutual information we combine the time constant estimation (Fig.IV-6E) with our 
mutual information measure (Fig.IV-7D). As shown in Fig.IV-7E, a peak near 1 
second spiking duration is present for all input amplitudes, which is the 
consequence of ISR. Similar to Fig.IV-7D, this MI peak is global for the 
subthreshold input and becomes local for suprathreshold input. For subthreshold 
input, this means that the synaptic noise amplitude optimal for ISR corresponds 
to the optimal duration of the spiking state for information transfer measured by 
the output spikes, and for both types of input, long durations of the spiking state 
can coexist with high rates of information transfer. 
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IV.2.6 Discussion 
 

 We have characterized the effects of noise on the dynamical response 
regimes of cerebellar Purkinje neurons. We showed experimentally that simple 
spike firing in Purkinje cells can be efficiently inhibited by noisy input current if its 
variance is within a specific range, a phenomenon called inverse stochastic 
resonance (ISR). We then used an adaptive exponential integrate-and-fire (aEIF) 
model to quantitatively fit experimental data on subthreshold and spiking 
behavior of individual Purkinje cells using a modified dynamic IV method. For 
each cell, the resulting aEIF models exhibited parameter combinations 
generating bistable behavior. We found a good qualitative match between ISR 
measured experimentally in our Purkinje cells and in the aEIF model in terms of 
the hysteresis of the relation between firing rate and current, and the shape of 
the ISR curve. Analysis of the model revealed that ISR can be explained by the 
coexistence of a spiking and a resting state attractor. Using numerical 
simulations we showed that synaptic noise allows the Purkinje cell to switch 
between spiking up and silent down states, with their durations determined by 
the variance of the synaptic noise input. Our simulations further showed that ISR 
allows the PC to respond to transient inputs like a tunable filter, whose time 
constant can be set by the noise variance in a wide range, from a memory-toggle 
mode to a rapid filter mode.  Finally, we show that a noise variance, which is 
optimal for ISR, leads to a local maximum of mutual information rate between the 
input and output spike train. These findings show that ISR is present in Purkinje 
cells and suggest possible roles for ISR in information processing in the 
cerebellar cortex. 
 
 
Purkinje cells display ISR 
 
 Traditionally, noise has been seen as enhancing neural responses by 
increasing the probability of crossing the spiking threshold, and increasing the 
reliability of the spike train (Mainen and Sejnowski 1995). Furthermore, a 
nonlinear relationship was found between various measures of signal 
transmission (usually for a subthreshold stimulus) and the noise amplitude, a 
phenomenon known as stochastic resonance (SR). Much work on SR has 
identified the various stimulus and neuronal conditions for its existence, and 
potential functional roles (for a review see (McDonnell and Ward 2011). 
 
 A related, yet distinct phenomenon, where noise selectively decreases the 
probability of spiking, or converts persistent spiking activity into a short-lived 
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transient followed by long-term quiescence has only recently been identified. 
This effect has become known as inverse stochastic resonance (Gutkin et al. 
2009). Initially described in bistable networks of spiking neurons (Gutkin et al. 
2008), this phenomenon has subsequently been observed and analyzed in single 
neuron models, including in spatially extended ones (Tuckwell and Jost 2010). At 
optimal noise amplitude, the duration of the transient intrinsic activity is 
minimized as the noise effectively quenches the neuronal response. Modeling 
work suggested that bistability is a necessary condition, while simulations of 
compartmental models proposed that ISR results from noise injection at the site 
of spike generation. Further work showed that colored noise is more efficient at 
producing ISR when compared to white noise (Guo 2011), thereby hinting that 
synaptic noise may be particularly efficient at producing ISR in bistable neuronal 
systems. To our knowledge, the functional significance of ISR has not yet been 
analyzed, with the exception of (Dipoppa and Gutkin 2013) where ISR was 
suggested to play a role in limiting the duration of pathological working memories. 
Experimentally, signatures of noise-induced quenching of periodic activity were 
observed in the classical squid axon preparation (Paydarfar et al. 2006), where 
noise injection effectively stopped repetitive spiking, yet no tuning properties of 
the noise amplitude were noted. 
 
 In this study we present several lines of experimental evidence for ISR in 
cerebellar Purkinje cells. We found that simple spike firing in these neurons can 
be efficiently inhibited by current noise injections to the soma when the mean of 
the input current is in the subthreshold range (Fig.IV-1D, E). To quantify this 
effect we measured the average firing frequency as a function of the input noise 
variance. We found the characteristic minima of the firing rate for particular noise 
amplitudes, which are optimal for ISR in different neurons (Fig.IV-1B, C). Notably 
we observed that all Purkinje cells we studied displayed ISR (Fig.IV-1C). 
 
 To identify the range of the mean input current for which ISR can be 
observed, we applied a symmetric current ramp protocol (Fig.IV-2A, B). We 
found that the area of hysteresis between the ascending and descending 
instantaneous f-I curves indicates the range of mean currents at which ISR is 
present (Fig.IV-1D). This hysteresis, which can be defined as the difference in 
currents (∆I) between the first and last spike in response to the symmetric ramp, 
measures the degree of bistability of a particular cell. We found a strongly 
positive correlation between the degree of bistability of an individual Purkinje cell 
and the noise amplitude, which is optimal for ISR in this cell. This argues for a 
strong link between ISR and the bistable behavior of Purkinje cells. 
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 This hysteresis is also the reason why the occupancy of up and down 
states during noisy current injection is history-dependent (Fig.IV-1A). Thus, 
simple noise injection protocols such as the one in Fig.IV-1A cannot cleanly 
separate the steady-state ISR effect and the memory effect. We therefore 
switched to a noise injection protocol in which noise variance continuously 
changes (Suppl. SI). The results obtained by brief constant-variance noise 
injections (Fig.IV-1A) and the continuous noise protocol show a similar 
dependence of ISR on noise variance (Fig.IV-8B, D, F). 
 
 The visibility of Purkinje cell bistability in firing patterns of Purkinje cells 
recorded in vivo varies depending on experimental conditions, animal species 
and different regions of the cerebellum (Schonewille et al. 2006, Zhou et al. 
2015). There is evidence for up and down states in ketamine-anesthetized rats 
(Rokni et al. 2009) and in awake behaving cats (Yartsev et al. 2009). The 
presence of patterns and pauses in Purkinje cell simple spike activity in vivo 
could be interpreted to result in part from their bistable behavior (Regan et al. 
2007). On the other hand, recordings from Purkinje cells in the lateral and 
intermediate regions of the cerebellum concerned with arm movements do not 
show obvious up and down states (Norris et al. 2004, Roitman et al. 2009). 
 
 One possible solution of this controversy is that different degrees of 
visibility of Purkinje cell bistability can be explained by different neuromodulatory 
states in the cerebellum (Rokni et al. 2009). For example (Williams et al. 2002) 
have shown that serotonin can transform a tonically spiking Purkinje cell into one, 
which displays bistability. There is evidence that other biophysical mechanisms 
could regulate Purkinje cell bistability: for example, Bergmann glia could change 
the extracellular K+ concentration by Ca2+-dependent K+ uptake (Wang et al. 
2012) thus modulating the Purkinje cell excitability. Another possible explanation 
is that the properties of Purkinje cells could be different in various cerebellar 
zones (Urbano et al. 2006, Zhou et al. 2015). Also, our data demonstrates that 
Purkinje cells can exhibit various amounts of bistability (Fig.IV-2C and Fig.IV-4D), 
which may represent diversity both within and across different zones of the 
cerebellum. 
 
 As we show in this study, changing the mean and the standard deviation of 
the synaptic input current is a very fast way to move Purkinje cells in and out of 
the range of bistability. Thus, even if bistability is not always engaged and overtly 
visible in vivo (Schonewille et al. 2006), it is nevertheless likely that the 
underlying mechanisms are continuously present, and can influence Purkinje cell 
firing and network function in the cerebellum (Loewenstein et al. 2005). 
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ISR in the Purkinje cell model 
 
 Several detailed Purkinje cell models capturing the membrane properties 
as well as an anatomical structure of these neurons have been published, e.g. 
(Leigh et al. 1993, Roth and Häusser 2001). Usually such models have 
numerous state variables describing the membrane potential and voltage-gated 
conductances in multiple compartments. The advantage of their biological 
realism is balanced by the large number of variables and parameters they 
contain. This high dimensionality does not allow a straightforward application of 
dynamical system theory to gain insight into the mechanisms of excitability, 
which makes the interpretation of these models at times difficult. 
 
 For this reason we decided to use a reduced minimal model, the adaptive 
integrate and fire (aEIF) model, to study ISR and bistability. The advantage of 
this model is that it is well studied in terms of dynamical system analysis 
(Touboul and Brette 2008) and further relates to the normal form reductions of 
higher-dimensional models (including those with multiple compartments), making 
it in a sense a canonical model of spike generation. This allows us to use the 
dynamical system approach to analyze the model behavior. Despite the relative 
simplicity of the aEIF model, the estimation of the model parameters from 
experimental data is still a challenging task. Recently, the dynamic IV method 
(Badel et al. 2008) has been described to identify the parameters of aEIF models 
from intracellular recordings. Although it has not been used for spontaneously 
firing neurons, such as Purkinje cells, we show that it can be successfully applied 
to these neurons after necessary modifications of the dynamic IV method (see 
Materials and Methods). 
 
 We found that an aEIF model with the parameters provided by a modified 
dynamic IV method allows us to qualitatively reproduce ISR and the hysteresis of 
the firing rate of the Purkinje cell. Remaining quantitative differences are likely to 
be due to the dynamic IV procedure, which does not allow us to estimate 
parameters related to the dendrite. This might be negligible for neurons with a 
relatively small dendritic tree (Badel et al. 2008), but for Purkinje cells it 
represents a problem. To compensate for this issue we have included a passive 
dendrite in the aEIF model and estimated the dendrite parameters (Supp. II). We 
have found that ISR effect is still present in the model with a passive dendrite, 
but the shape of the ISR curve becomes wider, which makes the model more 
consistent with the experimental data. We argue that using a two-compartment 
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aEIF model would allow a quantitative match of the experimental ISR curve, but 
in a two-compartment aEIF model it is more difficult to precisely estimate the 
necessary parameters from somatic intracellular recordings. 
 
 The aEIF model has a very rich repertoire of dynamical states and can be 
tuned to reproduce the spiking behavior of many different neurons (Badel et al. 
2008). The relevant property for bistability and ISR is type II excitability, due to 
the presence of a Andronov-Hopf bifurcation. This bifurcation is responsible for 
the transition from the rest state to the spiking state and backwards. Crucially, it 
allows the model to have a spiking and a resting state attractor for the same 
parameter set. We show that the bimodal behavior of Purkinje cells as well as 
ISR can be explained by this bistability of the aEIF model solutions. When the 
initial conditions are set inside the rest state attractor, the model will come to the 
resting state, while in all other cases the model will continuously generate spikes 
(Fig.IV-5A). The key parameter for bistability in the model is the mean of the 
input current. If it is in the bistable region of the f-I curve, then the model displays 
bistability most clearly in the presence of noise (Fig.IV-4C). 
 
 When the model is in this regime, synaptic noise of particular amplitude is 
able to move the system preferentially to the basin of attraction of the rest state. 
This happens because the shape of the basin of attraction provides non-
symmetric probabilities for up-to-down and down-to-up transitions. In the case of 
ISR, the probability of down-to-up transitions becomes very low, reducing the 
occupancy of the spiking state. This leads to a “latch” effect – once the system 
moves to the basin of attraction of the rest state, it cannot go back because the 
noise amplitude is not strong enough. Essentially this mechanism constitutes the 
main explanation for the ISR effect. Thus, ISR is possible only if the model is 
bistable. Rescaling of the model revealed the key parameter combinations 
responsible for bistability and ISR, such as adaptation and its timescale (Fig.IV-
4D, E, F). 
 
 
Functional consequences of ISR 
 
 The function of cerebellar Purkinje cells is often considered in the context of 
adaptive filter models of the cerebellum (Dean and Porrill 2011, Dean et al. 
2010). A key property in this framework is the linearity of the input-output relation 
of Purkinje cells. Our data shows that above the minimum firing frequency, the 
relationship between the input current and the output firing rate is highly linear 
(Fig.IV-2B). This is in line with previous findings (Walter and Khodakhah 2006), 
as well as with the linear phase response curve behavior of Purkinje cells (Phoka 
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et al. 2010, Couto et al. 2015). On the other hand, the step-linear shape of the f-I 
curve, which is a hallmark of the type II excitability of Purkinje cells, and the 
binary nature of the bistable behavior underlying ISR appear to contradict the 
idea that Purkinje cells perform linear transformations of their inputs. Since we 
show that Purkinje cells can operate in both regimes depending on the input 
current (Fig.IV-2B), and the bistable behavior is stochastic, we suggest that this 
apparent contradiction can be resolved at the level of populations of Purkinje 
cells. We show that the size of the region of bistability varies in different Purkinje 
cells, as does the absolute position of the steps in the f-I curve. It is also likely 
that different Purkinje cells in a population receive background synaptic input 
with different mean and variance, for example due to variability in the local 
structure of the feedforward inhibition circuit represented by molecular layer 
interneurons. This diversity in the intrinsic properties and the synaptic input in a 
population of Purkinje cells could result in an approximately linear input-output 
relation at the population level. 
 
 In addition to this approximate linearity, behaviorally relevant adaptive filters 
need to implement time constants, which are much longer than the typical 
membrane constants of single Purkinje cells or other cerebellar neurons. The up 
and down states with their potentially long lifetimes could provide the necessary 
mechanism for filters with long time constants. Furthermore, our model suggests 
that the lifetime (in a single Purkinje cell) or the filter time constant (in a 
population of Purkinje cells) can be regulated by changing the variance of the 
input noise (Fig.IV-6E). An alternative interpretation of the potentially long 
lifetimes of up and down states is that they could implement a form of short-term 
memory. This is in line with a recent study (Clopath et al. 2012) which showed 
that bistability of Purkinje cells can increase their pattern storage capacity. 
Tunable Purkinje cell bistability could also be involved in generating the 
conditioned responses observed in (Johansson et al. 2014). 
 
 We propose the following mechanism of up and down state transitions in 
ISR. When synaptic noise is optimal for inhibition (Fig.IV-6B), the Purkinje cell 
preferentially stays in the resting state in the absence of specific signal stimuli. 
Once the neuron receives a strong external signal input, it brings the cell to the 
spiking state. The duration of this induced spiking can last up to several seconds, 
which is much longer than the membrane time constant of the Purkinje cell 
(Fig.IV-6B). Eventually, the cell stops firing due to ISR and thus prepares for the 
next signal input. Thereby, when the noise variance is optimal for ISR, the 
Purkinje cell acts as a filter with a long time constant because a brief external 
input can trigger a long-lasting up state. In this case, input noise optimal for ISR 
plays two roles. First, it prepares the baseline for the next input due to the 
inhibition of spiking. Second, it sets the mean lifetime of the up state, and 
therefore the time constant of the filter. 
 
 For noise amplitudes below the ISR peak, the lifetimes of the up and down 
states increase further, leading to a different mode of operation of the Purkinje 
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cell. In this mode, most transitions from up to down and from down to up are 
triggered by external signal inputs (Fig.IV-6A). In this regime, the Purkinje cell 
acts like a toggle switch (Loewenstein et al. 2005). Thus, the amount of synaptic 
noise provided by parallel fiber input can tune Purkinje cell responses in a wide 
range between a toggle and a linear filter mode. This mode switch could occur at 
a very fast time scale, since the noise level in the parallel fiber population can 
change quickly. However, once the synaptic noise variance becomes too large 
(Fig.IV-6C and Fig.IV-7C), most transitions between spiking and rest are 
triggered by the noise, and the Purkinje cell cannot reliably perform either of the 
two modes of operation. 
 
 To quantify how different input noise levels affect the information 
transmission capacity of the Purkinje cell, and to examine the potential role of 
ISR in information processing in the cerebellum, we estimated the mutual 
information between a signal input spike train and the output spike train of the 
Purkinje cell model at different levels of noise variance. We found that for the 
noise amplitude optimal for ISR, the mutual information rate has a local optimum, 
indicating that synaptic noise of particular amplitude can significantly enhance 
the transmission of information across the Purkinje cell to downstream neurons. 
In summary, ISR could provide a mechanism for setting both the time constants 
of temporal filters implemented by the firing of a Purkinje cell population, and the 
maximum rate of information that Purkinje cells can pass on to downstream 
targets. 
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IV.2.7 Supplementary information 

 
 
Figure IV-8. History dependence of the ISR curve 
A. Current injection of 1!! noise waveform periods for Cell 1, as in Fig.IV-1B. B. Firing frequency 
vs noise amplitude σ  for five different holding current Iin. C. Current injection of 1!!  noise 
waveform periods for a different cell (Cell 2) with a more pronounced bistability. The firing 
frequency during each noise period is influenced by the state of the cell (firing or silent). D. The 
firing frequency vs noise amplitude σ for three different holding currents Iin illustrates the history 
dependence of the ISR curves. E. Current injection of noise waveform with linearly increasing 
and decreasing amplitude for Cell 3. Periods of 200 ms duration were separated according to 
the state (firing or silent) of the previous interval. F. Firing frequency vs. noise amplitude σ for 
the two categories. Continuous curves are running averages. 
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Figure IV-9. ISR and dendrite filtering 
A. Experimental determination of dendritic filtering properties. Voltage response of a Purkinje 
cell (black) to a short current pulse (0.5!!", 1!!"), fitted with a biexponential function with time 
constants !! and !! (red). B. Mean firing rate in the experiment and the aEIF model in response 
to current noise stimulation, using the estimated dendrite filter parameters, gC =10.2nS . C. Mean 
firing rate of the aEIF model with optimized gC = 7.5nS  to quantitatively match the experimental 
ISR. 
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The effect of dendrites on ISR in Purkinje cells 
 
 For all simulations in the main text we use the single-compartment aEIF 
model. Using the dynamic IV method (see Materials and Methods), we estimated 
the parameters of the aEIF model for different Purkinje cells. However, fitting of 
the parameters of an aEIF model based on data obtained with somatic 
recordings describes mostly the somatic properties of a neuron. This leads to the 
discrepancy between the optimal noise levels for the single-compartment model 
and actual data (compare Fig.IV-1B and Fig.IV-4B; model based on recordings 
from the same cell). This discrepancy is expected because the single-
compartment aEIF model does not include the dendrite compartment. Since they 
have an important role in in the biophysics of Purkinje cells, here we determine 
the implications of including the dendrites in a reduced model and evaluate the 
role of dendrites for the ISR phenomenon. 
 
 While it is a single-compartment model, we want to take advantage of the 
aEIF model to allow phase-plane analysis, rather than fitting a two-compartment 
model or using the biophysically detailed approach, which could not be studied 
analytically. To compensate for the absence of a dendrite in the aEIF model, we 
add a passive dendrite compartment to it. Then we estimate the parameters of 
the dendrite using the impulse response of a Purkinje cell, use these parameters 
in the aEIF model, and show that ISR is still present. 
 
 
Two-compartment model 
 
 To evaluate the role of dendrites in the aEIF model, we first consider a 
two-compartment model in the passive regime. It makes it analytically easier to 
start with this passive case that corresponds to the subthreshould behavior of the 
membrane potential. Then we will use this estimation in the following subsection. 
 Here are the two equations describing the current balance in the somatic 
and dendritic compartment of the model: 
 

     (S1) 
 
where  corresponds to the somatic voltage and  is the voltage of the 

Cm
dVD
dt

= −gl (VD −Em )− gc
(1− p)

(VD −VS )

Cm
dVS
dt

= −gl (VS −Em )− gc
p

(VS −VD )+ Iin (t)

VS VD
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dendritic compartment, and where  is the membrane capacitance. The 

parameter 
 
represents the somatic surface area  as a fraction of the 

total surface area of the soma and dendrites, + ,  is the coupling 
conductance between the compartments and   is the leak conductance. Since 
(S1) is a system of linear differential equations, it can be solved analytically by 
subtraction of the second equation from the first, followed by integrating the 
system: 
 

    

       (S2) 

 

where  and . This describes the voltage difference 

between the somatic and dendritic compartments in the subthreshold regime. 
 The following dendrite estimation is strictly valid only in the subthreshold 
regime. When the voltage goes beyond the threshold it becomes incorrect. But 
given that most of the time the membrane potential is subthreshold (Fig.IV-5), 
and the action potential upstroke is very fast because of the exponential term, we 
assume here that this approximation is sufficient to capture the main effect of a 
passive dendrite. 
 
 
Estimation of dendrite parameters 
 
 To estimate the parameters of the Purkinje cell dendrite, we approximate 
the cell as a two-compartment model as described in the previous section. Then 
we aim to determine the kernel response to an infinitely short current injection as 
in (Clopath et al. 2007). Experimentally, we inject a brief current pulse (duration 
dur = 0.5 ms and amplitude 1 nA) into the soma and measure the somatic 
voltage response, which is then fitted by the kernel response  (Fig.IV-9A). 
This kernel can be derived analytically from (S1) in the following form (for details 
see (Gerstner and Kistler 2002)): 
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 (S3) 

 
where  is the membrane time constant,  is the coupling time constant,  is 
the somatic capacitance,  is the duration of the pulse, and p is the relative 
somatic surface area. 
 
 We fit the experimentally measured voltage response with this 
biexponential kernel with (Cm, p, , ) as free parameters. Since the Purkinje 
cell has a large dendritic tree, the single pulse response consists of two phases: 
fast equilibration of membrane potential between the somatic and dendritic 
compartment via the coupling conductance, and slow discharging of the 
membrane potential in the entire neuron towards the resting potential via the leak 
conductance. The coupling conductance between two compartments is then 

defined as . 

 
Table of parameters. 

!! !! !! ! dur I 
66.97pF 32.91ms 0.70ms 0.07 0.5ms 1nA 

 
 
The effect of dendrites on ISR 
 As mentioned above, the aEIF model contains only one single 
compartment. In this section we use the passive dendrite model derived in the 
previous section and include it into the aEIF model. To achieve this, we add the 
dendritic term that represents the passive filtering property of the dendritic 
compartment, as described in (S1-S2): 
 

 (S4) 

        (S5) 

 
 As it is not possible to experimentally determine all the parameters of the 
spiking aEIF model and the dendritic parameters of a Purkinje cell at the same 
time, we follow an ad hoc strategy: we use both the parameters of the simple 
aEIF model fitted to data from a Purkinje cell (see Materials and Methods) and 
the dendritic parameters determined for the same cell, as described above. 

K(t) =
I
Cm

e
−t 1

τ s
+

1
τ c

"

#
$

%

&
'

e
t
τ s e

dur
τ c −1

"

#
$$

%

&
''(p−1)τ c + e

t
τ c e

dur
τ s −1

"

#
$$

%

&
'' pτ s

"

#
$
$

%

&
'
'

τ S τ c Cm

dur

τ S τ c

gC =Cmp(1− p)( 1
τC

−
1
τ S

)

C dV
dt

= −gL (V −EL )+ gLΔTe
V−VT

ΔT −w+ I(t)− gC
pCm

e
−
t
τC I(τ )e

τ
τC dτ

0

t
∫

τ w
dw
dt

= a(V −EL )−w



! 146!

 
 The addition of an effective dendrite compartment brings an additional 
current to the aEIF model as  is replaced by 
 

       (S6) 
 
 The additional current represented by the integral term significantly changes 
the total input to the cell. It provides a current sink, which is dependent on the 
input. This significantly reduces the total amount of input current. It becomes 
necessary to compensate for this current sink to keep the model within the same 
ISR range as the aEIF model without a dendrite. 
 
 
Dendrite compensation 
 
 We are motivated by the fact that in the experiment it is relatively easy to 
change the mean of the input current  compared to changing other 
parameters. Therefore we develop a compensation model that keeps the aEIF 
model tuning in the same bistability range as if the dendrite was not present. 
 
 First let us consider the external input to the aEIF model (S4) that can be 
decomposed into two components: 
 

         (S7) 
 
where  corresponds to the constant current while  is the noise part, 
with Ornstein-Uhlenbeck noise . We use the following analytical expression 
to keep the model within the same mean of an input current tuned for ISR: 
 

         (S8) 

 

where  is the total conductance. Thus, the compensated input to 

the aEIF model will be  
 

         (S9) 
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 After this compensation, the aEIF model with a dendrite is again able to 
display ISR because the bistability range of input current is preserved (Fig.IV-9B). 
Addition of a dendrite with compensation indeed changes the shape of the ISR 
curve. These changes are expected from the compensation model we use. The 
mean of a compensated input (S6) is tuned in the bistability regime. But the 
variance of the noise component stays the same. This leads to changes in 
variance tuning because the total input to the model including noise will be 
filtered by the dendrite. It results in a smaller effective noise variance because of 
the attenuation by the dendrite, and shifts the ISR region to the right since the 
effective noise amplitude will be lower (Fig.IV-9B). 
 
 Unfortunately, fitting an aEIF model using the dynamic IV procedure is not 
perfect because it takes into account not only the somatic properties of a cell, but 
partially also the dendrite (Badel et al. 2008). To separately estimate the dendrite 
parameters of the Purkinje cell we use the impulse response of the cell (Fig.IV-
9A). Then we use the aEIF model with mean current compensation and dendrite 
parameters estimated from the experiment. As a consequence, the dendrite 
effect is taken into account twice – using the dynamic IV fitting and the impulse 
response of the cell. This leads to the quantitative mismatch between the 
experimentally measured ISR and model ISR (Fig.IV-9B). Since the dendrite is 
overestimated in the model, we reduce the coupling conductance from 10.2 
nS to 7.5 nS (Fig.IV-9C). This allows a more precise quantitative match between 
the experimental and model ISR. 
 
 In the previous sections we have shown that ISR is still present in the aEIF 
model even if the effects of a dendrite are included. But the mean input current 
has to be rescaled according to the dendrite parameters. Indeed, addition of the 
dendrite changes the tuning for the ISR, shifting the optimal noise amplitude to 
values more similar to those observed experimentally. It is likely that fitting the 
parameters of a two-compartment or multicompartmental model to the data 
would probably lead to an even better quantitative match between the 
experiment and the model. But unfortunately it would not be amenable to phase 
plane analysis. 
  

gC
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IV.3 Detailed model description 
 

 In this section we provide the additional information about the computational 
models used in this project. In particular we describe the bifurcation structure and 
the phase plane analysis of the aEIF model, mutual information algorithm used in 
information analysis and an estimation of the synaptic input to the Purkinje cell. 
 
 

IV.3.1 Adaptive exponential integrate-and-fire model 
 

 The biophysics of neurons is well understood in terms of channels, currents, 
conductances and membrane properties. Since the discovery of (Hodgkin and 
Huxley 1952) a lot of important mechanisms modulating single neuron behavior 
were to the singe neuron description (Koch and Segev 1998). Despite the fact 
that these mechanisms are well understood in terms of neuron biophysics, 
studying all of them at once even in the mathematical models is a challenging 
task. The drawback of the detailed biophysical models is that they have very 
large parameter and variable sets, which does not allow to completely study their 
behavior for all possible parameter combinations (Marder and Taylor 2011). 
 
 To partially solve this problem several authors have introduced the minimal 
approach towards single neuron computation (Izhikevich 2003, Brette and 
Gerstner 2005). They proposed minimal two-dimensional models to describe the 
single neuron behavior. Despite their simplicity minimal models are able to 
capture multiple dynamic behaviors of single neurons, such as regular spiking, 
spike-frequency adaptation and bursting. Comparisons with the Hodgkin-Huxley 
models and single neuron recordings showed that these models are capable to 
properly match up to 98% of spike times in response to the in vivo-like current 
noise stimuli (Brette and Gerstner 2010). 
 
 Generally speaking all these two-dimensional models are the class of 
models described by the following equation dV / dt = F(v)−w+ I , where F is a 
smooth convex function with negative derivative at −∞  and infinite at +∞  
(Touboul 2008). In this section we describe the bifurcation properties of the aEIF 
model belonging to this class and used in our study.  
 
 Most of the results in this section are taken from (Touboul and Brette 2008). 
We decided to add it to this chapter to make the model description presented in 
the paper more consistent. We describe only the subthreshould behavior of the 
aEIF model. The information about firing behavior of the model could be found in 
the following works (Gerstner and Brette 2009, Brette and Gerstner 2010). 
 
 
aEIF model equations and rescaling 
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 The original aEIF model is described using two variables describing the 
membrane potential V  and adaptation current w. The dynamics of the system is 
governed by equations (1-2): 
 

C dV
dt

= −gL (V −EL )+ gLΔT exp(V −V
T

ΔT

)−w+ I   (1) 

τ w
dw
dt

= a(V −EL )−w       (2) 

if V ≥ Tr  then V =Vreset  and w = w+ b    (3) 
 
 Once the membrane potential V  is close to VT  enough it starts to grow 
rapidly due to the exponential term. This divergence models the initial phase of 
spike. Once the membrane potential reaches the upper threshold Tr , V  is reset, 
while the adaptation variable w  is increased in according to the equation (3). 
 
 The physiological interpretation of this model is the following V  describes 
the membrane potential difference between the inside and outside of the neuron 
membrane. The current passing through the membrane consist of capacitance, 
ionic and injected current to the cell. w  describes the adaptation currents present 
in the neuron. This current increases with each spike providing the negative 
current to the voltage equation (1). Thus this current provides a negative 
feedback, which results with a decrease of a spiking frequency adapting the 
neuron spiking towards the input. 
 
 The exponent in equation (1) describes an action of a sodium channel by 
neglecting sodium inactivation and assuming infinitely fast activation. Since the 
activation function is described using Boltzmann functions (Izhikevich 2007), the 
approximated current is exponential near spike initiation therefore it is 
approximated using the exponent with ΔT  slope factor. The second variable, 
equation (2) could model the spike-triggered adaptation for a > 0  or dendritic 
compartment for a < 0 . The coupling variable a  could result from the linearization 
of potassium ion channel or from the axial conductance in case of dendritic 
compartment. 
 

Model parameters and dimensionality 
C  gL  EL  ΔT  VT  τ w  a  Vreset  b  I 
pF  nS  mV  mV  mV  ms  nS  mV  pA  pA  
 
 The aEIF model with 9 parameters could be rescaled to 5 parameter 
combinations describing the essential properties of the model (Touboul and 
Brette, 2008). Equations (4-6) describe the dynamics of the rescaled model.  
 
dV
dt

= −V + eV −w+ I      (4) 
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τ
dw
dt

= aV −w       (5) 

if V ≥ Tr  -> V =Vreset  and w = w+ b   (6) 
 
 In these equations membrane potential and adaptation variables should be 
rescaled in the following way: 
 

V =
V −VT

ΔT

      (7) 

w =
w+ a(EL −V

T )
gLΔT

     (8) 

 
 The dynamics of the model then depends on the following parameter 
combinations. 

 
Parameter combinations 
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 In the following sections we will use the rescaled version of the aEIF model, 
equations (4-6) to show the excitability properties of this system. 
 
 
Null-clines and excitability types 
 
 The dynamics of the model in the phase space (V , w ) is defined by the 
number and type of the fixed points, which could be found as intersections of two 
null-clines, equations (1-2). 
 

w = −gL (V −EL )+ gLΔT exp(V −V
T

ΔT

)+ I  (9)  V-nullcline 

w = a(V −EL )       (10)  w-nullcline 
 
 The first equation (9) is a convex function because of an exponential term, 
while the second equation (10) is just a linear function. The mutual positions of 
the nullclines is controlled by the amount of the injected current I , which is the 
parameter determining the null-cline intersection. When I  is negative, the 
nullclines intersection gives the two fixed points. When I  is increasing the 
system looses its stability via one of the following mechanisms  
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Figure IV-10. Nullclines and phase portrait of the aEIF model 
A, B - the nullcline position in case of intersection and without it, correspondingly. Horizontal 
and vertical axes correspond to V  and w . Adapted from (Touboul and Brette, 2008). 

 
 

 
 
Figure IV-11. Excitability of the aEIF model 

A, B – phase portrait and F-I curve of the system with type I excitability ( a
gL

<
τ w
τ m

). C, D – the 

same for type II excitability ( a
gL

>
τ w
τ m

). Arrows indicate the direction of the vector field. Adapted 

from (Touboul and Brette 2008). 
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depending on the model parameters. 
 

 If a
gL

<
τ w
τm

 the aEIF model undergoes a saddle-node bifurcation (SN), i.e. 

stable and unstable points merge and disappear, Fig.IV-12A. This mechanism of 
loosing stability determines the type I excitability of the model meaning that the 
current-frequency, i.e. F-I curve, is continuous, Fig.IV-12B. It happens because 
the vector field is arbitrarily small near the bifurcation point, so the trajectory 
could  
When the input current I  increases the V-nullcline goes up and fixed points goes 
from 2 to zero. Thereby the trajectories move from rest to spiking. The excitability 
properties of the model depend on the mechanism of this transition as well as the 
bifurcation structure of the model. 
 
 When a

gL
>
τ w
τ m

 the system undergoes the Andronov-Hopf bifurcation (HB) 

before the SN bifurcation. It means that the stable point becomes unstable 
before merging with the saddle point, Fig.IV-12C. This property of loosing 
stability is responsible for type II excitability of the model, meaning that the F-I 
curve is discontinuous, Fig.IV-12D. It means that there is a sharp input threshold 
after which the firin-rate suddenly jumps from zero. 
 
 In the limit case when a

gL
=
τ w
τ m

 there is a Bogdanov-Takens bifurcation. It has 

co-dimension two meaning that to achieve this point two parameters should be 
changed simultaneously a  and I . At the bifurcation point the family of unstable 
periodic orbits generated around the HB collides with the SN fixed point and 
disappears via saddle-homoclinic bifurcation. This bifurcation is very specific for 
the parameter choices therefore we do not show its phase portrait. 
 
 
Rheobase current 
 
 Rheobase current is defined as a minimum current injected to the neuron, 
which results in successful spike generation. It is the first point when the stable 
fixed point becomes unstable, which depends on the excitability type of the 
model. 
 
 For type I excitability it is calculated at the point of SN bifurcation, when the 
nullclines have one intersection point: 
 

I Irh = (gL + a)[VT −EL −ΔT +ΔT log(1+
a
gL

)]  

 
 For type II excitability it corresponds to HB point: 
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I IIrh = (gL + a)[VT −EL −ΔT +ΔT log(1+
τm
τ w

)]+ΔTgL ( a
gL

+
τm
τ w

)  

 SN bifurcation also occurs in type II excitability. It happens when the input 
current I  same rheobase current for type I excitability. 
 
 
Model threshold 
 
 Usually threshold for action potential generation is described as a voltage-
threshold, although this threshold is not a particular model parameter. Single 
parameter for the threshold is possible only the linear integrate-and-fire model 
where it could be easily calculated analytically. In the nonlinear neural models 
such as aEIF the threshold corresponds to the separatrix in the phase space 
separating resting and spiking solutions. Therefore the area in the phase space 
where the trajectory crosses the separatrix corresponds to the threshold. 
 
 Nevertheless it is possible to determine the voltage threshold for a 
stationary voltage as a maximum voltage reached when I < I I ,IIrh . Due to 
nonlinearity this voltage threshold depends on the excitability type. It is defined 
as follows: 
  
type I      type II 
 VTHR =VT +ΔT log(1+1/ gL )    VTHR =VT +ΔT log(1+τm / τ w )  
 
 
Subthreshould oscillations 
 
 Since the aEIF model is dissipative system with a strong leak current all the 
subthreshould oscillations are damped and self-sustained oscillations are not 
possible in this model (Touboul 2008). Depending on parameter combinations 
a / gL  and τm / τ w , the aEIF model could have type I or II excitability, Fig.IV-12A.  
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Figure IV-12. Subthreshould oscillation regimes of the aEIF model 
A – parameter space of the model, blue – resonator, green – integrator, red – mixed mode. B, C 
– oscillations for type II and I excitability, trajectory in the phase space on the left, voltage V 
trajectory as a function of time. Adapted from (Touboul and Brette 2008). 
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 The dynamics of the system near the threshold is determined by the 
eigenvalues. When the eigenvalues are complex, there are subthreshould 
oscillations near the resting state. In this regime the model oscillates when it is 
perturbed around the rest, Fig.IV-12B. The behavior of the model in this regime 
is called resonator since it demonstrates the resonance for the oscillatory input. 
When the eigenvalues are real and negative, local perturbations from the resting 
state will decay exponentially without oscillations, Fig.IV-12B. In this regime the 
model behavior is called integrator because there is no resonant input frequency 
and therefore it could only integrate the input.  For the particular choice of model 
parameters there is also a mixed regime, Fig.IV-12A. In this regime the aEIF 
model behaves like an integrator or resonator depending on the amplitude of the 
input (Touboul and Brette 2008). 
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IV.3.2 Mutual information estimation algorithm 
 

 In this section we provide a short description of a Mutual Information (MI) 
algorithm used from the work of (London et al. 2002). Full description is present 
in the supplementary of the corresponding paper. Here we describe only the 
general framework of this method. 
 
 A first step to estimate the mutual information is to digitalize a spike train, 
Fig.IV-13A with the bin size Δt  starting from the same time point. Then the MI 
algorithm operates with the digitalized spike trains. We applied it for the spike 
trains generated by the aEIF model for various noise variances and input 
amplitudes. The characteristic spike train of the aEIF model is present on Fig.IV-
13B. 
 
 MI is estimated using the standard formula applied for single neuron input 
INn  and output OUTn  spike trains of the length n : 
 
MI(INn,OUTn ) = H (OUTn )−H (OUTn IN n

)  
 
where H (OUTn )  and H (OUTn IN n

)  corresponds to the estimated entropy of OUTn  
and INn  spike trains. To illustrate this point we consider the spike train as 
H (OUTn IN n

) = (x1, x2,..., xn ) , where xi ∈ {0,1}  corresponds to the i-th bin. The 
corresponding string describes one realization of the stochastic process 
xi = {xi}i=1

n . Then for an infinitely long spike train we could write the following 
expression using MacMillan-Brieman theorem: 
 

−
1
n

log2 p(x1, x2,..., xn ) n"→" ∞
" →""" H  

 
It means that Shennon information entropy approaches the entropy rate H  of X, 
where p(x1, x2,..., xn )  is the probability to obtain the string (x1, x2,..., xn )  as a realization 
of X. Since p(x1, x2,..., xn )  is not known from one sequence we use an estimator 
p(x1, x2,..., xn ) : 
 

Hn = −
1
n

log2 p(x1, x2,..., xn )  

 
 Given that the probability p(x1, x2,..., xn )  is not known, there is need to use an 
algorithm to estimate all possible Markov processes with the length of D  bins. 
The context-tree weighting algorithm proposed by (Willems et al. 1995) provides 
such estimation. This algorithm creates the binary tree based on the digitalized 
spike train and estimates the entropy of the source that is most likely to generate 
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the sequence (x1, x2,..., xn ) . The same method is applied for estimation of the 
conditional entropy. Then the difference between the maximal entropy estimation 
for the output and input entropy corresponds to the mutual information between 
the spike trains. Since the algorithm does not always provide exactly the same 
estimate for different runs, the results should be averaged. 
 
 The general problem of the entropy estimators is under-sampling. If the 
spike-train is very long, the difference between the various entropy sources 
becomes negligible. While in the experimental conditions as well as in time-
constrained simulations the sample size is always fixed. Therefore there is a 
need to use maximally efficient algorithms to estimate entropy from the available 
sequences. The context-dependent tree algorithm and corresponding mutual 
information estimate provides an efficient way to measure information content for 
the digitalized neurophysiological signal like spike-trains. 
 
 Parameters of MI algorithm: b = 25ms  - bin size, D =1000ms  or 40 bins – 
length of the suffix-tree, T =1000s  - length of the input and output spike train, N =10  - 
the number of algorithm runs for MI average. 
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Figure IV-13. Mutual information measure in a single neuron model 
A – neuron model with the input and output spike train. Adapted from (London et al. 2002). On 
the left is present the model receiving the background synaptic input and input spike-train. Input 
and output spike trains are digitalized. Compressed output corresponds to the full entropy 
calculated according to the compression rule table, green digits. Conditional entropy is 
calculated based on the input-output table, black digits. The difference between the full and 
conditional entropy corresponds to the mutual information. B –characteristic spike train of the 
aEIF model in response to the input stimuli and synaptic noise during 10 seconds. Upper trace 
– voltage trajectory of the model, middle trace – input spike train (Poisson process, 1 Hz), 
bottom trace – synaptic noise at the ISR amplitude, σ = 30pA . 
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IV.3.3 Synaptic noise estimation for Purkinje cell 
 

 Since we do not have explicit data about the Parallel Fiber (PF) input to the 
Purkinje cell, we use the theoretical considerations to calculate the synaptic 
noise produced by PF synapses. We take the following assumptions: 1) firing on 
PF synapses is uncorrelated therefore could be well approximated using the 
independent Poisson process; 2) the synaptic strength is normally distributed in 
the synaptic population; 3) all PF synapses have same similar kinetics 4) all 
synapses have the same release probability. Using these assumptions we 
describe the following characteristic monosynaptic EPSP using the biexponential 
function: 
 

EPSP = A[exp(−
t − tpre
τ r

)+ exp(−
t − tpre
τ d

)]
 

 
where tst  - is the timing of the presynaptic spike, A = 0.13pA  - is the maximal 
EPSC amplitude, τ r = 0.2ms , τ D = 2ms  - are the corresponding rise and decay 
time constants. These parameters are chosen to match the EPSC waveform 
produced by the activation of a single granule cell (Isope and Barbour. 2002). 
The characteristic EPSC calculated with these parameters is present on Fig.IV-
14A. 
 
 Assuming that parallel fibers fire independently and share substantially the 
same properties we derive the following expression for the EPSPs sum 
generated by the parallel fiber synapses: 
 

EPSPs = EPSPi
i=1

M

∑
 

M = N F Pr R T
  

where N =150 000  is the average number of parallel fiber synapses on Purkinje 
cell (Wilms and Häusser 2015), F = 0.01  is the fraction of spontaneously active 
synapses (Wilms et al. 2006), Pr = 0.44  is the single synapse release probability 
(Valera et al. 2012), R =1Hz  is the average synapse rate (Wilms et al. 2006) and 
T =1s  is the period of simulation. 
 
 The resulting sum of EPSCs is present on Fig.IV-14B. One can see that 
resulting synaptic input resembles the colored noise. The mean µ  of the signal is 
equal to 15.78 pA and variance σ  to 91.74 pA. The current noise variance 
optimal for inhibition in the ISR experiments varied between 20 to 400 pA for 
different cells, Fig.IV-1C. One can see that the amount of analytically calculated 
current noise fits well within the range of noise variance optimal for ISR. These  
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Figure IV-14. Calculation of parallel fiber input to the Purkinje cell 
 A – EPSC single EPSC formed by a single parallel fiber synapse. B – sum of EPSCs provided 
by the parallel fiber synapses. 
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theoretical considerations show that it is generally possible to observe the ISR 
for the physiological range of parallel fiber activity. 
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IV.4 Future directions 
 

 In this section we discuss the unsolved questions raised in this research 
and potential ways to solve these problems. We discuss the following topics: 
fitting of the two-compartment model to Pukinje cells, the model of realistic 
synaptic noise and the links between biophysical and phenomenological models. 
 
 

Fitting of two-compartment model to Purkinje cells 
 

 Initially the procedure of dynamic I-V has been developed for the pyramidal 
cells (Badel et al. 2008) possessing relatively small dendritic tree compared to 
the Purkinje cells. The role of dendrites in these neurons could be partially taken 
into account by single compartment aEIF model in the form of adaptation. While 
for large neurons it represents the problem since the neuron dendritic tree could 
not be well approximated only by adaptation properties. To take into account the 
complete influence of dendrites one could use the two-compartment aEIF model 
(Clopath et al. 2007). When the two-compartment aEIF model is used together 
with dynamic I-V the influence of the dendritic tree is taken into account twice, 
first in the form of adaptation and second in form of dendrite compartment. We 
found that application of such model leads to the overestimation of the dendritic 
tree, Fig.IV-9. The consequence of this dendrite overrepresentation in the model 
is that the ISR curve could not be perfectly matched with the experimental data. 
Yet we showed that manual compensation for the soma-dendrite coupling within 
the reasonable range of dendric conductance could compensate for this effect. 
Therefore we conclude that to properly describe the Purkinje cell behavior using 
aEIF model it is necessary to perform additional modifications for the dynamic I-V 
method. This would allow to use the dynamic I-V method to describe the 
behavior of large neurons such as Purkinje cells. 
 
 

Model of realistic synaptic noise 
 

 In this work we provided estimation of the synaptic input received by the 
Purkinje cell via parallel fibers input (IV.3.3 Synaptic noise estimation for Purkinje 
cell). We followed multiple assumptions about the synaptic input such as 
independence, equal summation of EPSPs and the similar kinetics. Using these 
approximations allowed us to consider the input to the Purkinje cell in the form of 
synaptic noise, which could be approximated using Ornstein-Uhlenbeck process. 
 
 In this description we intentionally excluded a lot of complexity of the 
realistic synaptic input received by the Purkinje cell. In particular we did not 
include the spatial location of the synapses. While it is known that it could play 
the substantial role for synaptic integration (Remme et al. 2009, Bollman et al. 
2009). We suggest that that the next logical step is to consider the Purkinje cell 
model with the detailed dendritic tree with spatially distributed synapses where 
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synapse location is taken from available Ca2+ imaging data (Wilms and Häusser 
2015). This would allow to find the regimes of synaptic activity where noise 
approximation of the synaptic input (Renart et al. 2007, Gerstner and Kistler 
2002) correctly describes the input to the Purkinje cell. 
 
 

Biophysical and phenomenological models 
 
 In our framework we restricted description of the Purkinje cell dynamics 
using the phenomenological aEIF model. We are aware that realistic dynamics of 
the Purkinje cell could not be completely described using this approach. For 
example the depolarizing plateau characteristic for bistability could not be 
explained using simple aEIF model since there is no dynamic mechanism for it. If 
this dynamics need to be taken into account, it is possible to use models with 
more complex nonlinearity to explain this particular property (Loewenstein et al. 
2005). 
 
 On the other hand it has been proposed that neural circuits could generate 
very similar behavior for a broad range of biophysical parameters in single 
neurons and small networks (Prinz et al. 2004, Marder and Taylor 2011). While 
application of the minimal models allows getting insights into the low-dimensional 
dynamical system responsible for complex single neuron behavior (Izhikevich 
2007). The major drawback of this approach is that it could not provide explicit 
predictions in terms single neuron biophysics. To our knowledge there is no 
widely accepted method to link parameters of the phenomenological and 
biophysical single neuron models, except the dynamic I-V (Badel et al. 2008). 
We propose that combination of these models could help to solve these 
problems. In such top-down approach the minimal model should be used to tune 
parameters of the biophysical one to match the dynamic behavior. This would 
allow to restrict the biophysical parameters of the realistic models and find 
regions in the parameter space corresponding to the desired dynamic behavior. 
Finding this match could help to provide explicit predictions in terms of single 
neuron biophysics that could be then tested experimentally. For example this 
approach could be used in the present aEIF model in conjunction with the 
detailed Purkinje cell model from (Häusser and Roth 2001) to identify biophysical 
constrains for ISR and bistability. We believe that developing this hybrid 
approach could provide better links between the phenomenological and 
biophysical models. 
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GENERAL CONCLUSIONS 
 
 Historically much of research in computational neuroscience concerned the 
dynamics of single neurons and networks using simplified models of neurons 
such as leaky integrate-and-fire, e. g. (Brunel, 2000, Brunel et al. 2001, Brunel 
and Rossum, 2007) or even more abstract threshold neurons (Hopfield, 1982, 
Dayan and Abbott, 2001). Despite the advantages of these models such as 
simplicity and theoretical tractability, this minimalistic approach does not take into 
account several important features of the neuronal membrane, such as threshold 
variability (y Arcas et al, 2003, Platkiewicz and Brette 2011, Chizhov et al. 2014) 
and adaptive properties (Maravall et al. 2007, Gutkin and Zeldenrust 2014). 
 
 On the other hand a significant body of research has been devoted to the 
development of a very detailed models of single neurons and networks, e.g. 
(Traub et al, 1991, Markram 2006). The advantage of the biological plausibility of 
these models is compensated by the high degree of complexity. Large numbers 
of variables and parameter sets do not allow application of theoretical tools such 
as phase plane analysis and bifurcation theory to get the insights into the 
detailed mechanisms of neural excitability on a single cell and neural network 
level. 
 
 Besides that it has been proposed that despite large number of parameters 
in the biological neural models their dynamics takes place only a limited region of 
the parameter space (Prinz et al. 2004, Marder and Taylor 2011). It other words 
general properties of model solutions are very robust to parameter changes, 
showing that there is a map towards low-dimensional models preserving the 
general properties of the detailed ones (Izhikevich 2003, Fairhall and 
Sompolinsky 2014). Therefore we conclude that in neural modeling it is 
necessary to keep the balance between the biological plausibility to provide 
testable experimental predictions and model simplicity to allow gaining the 
insights into the generic mechanisms of excitability. 
 
 In the first part of this thesis we showed that combination of single neuron 
bursting properties due to internal Ca2+ dynamics and network recurrent 
excitation plays an important role for generation of epileptic oscillations. When 
excitation-inhibition balance is impaired due to intracellular chloride accumulation 
the recurrent excitation and pyramidal cell bursting currents provoke generation 
of hyper-synchronous epileptic bursts (CHAPTER II) similar to other epilepsy 
models (Bazhenov et al. 2004, Krishnan and Bazhenov, 2011). Unlike the known 
models we emphasize the role of coupled dynamics of extracellular potassium 
and intracellular chloride in seizure initiation. Thus we conclude that single 
neuron sub-threshold nonlinearity provided by slow Ca2+-dependent potassium 
currents are important for seizure generation in temporal lobe epilepsy. 
 
 In the second part of this thesis we showed that adaptation properties of 
Purkinje cells allow these neurons to display the inverse stochastic resonance, 
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bistability and firing-rate hysteresis (CHAPTER IV). Without correct description of 
adaptation and action potential nonlinearity of the neuronal membrane it is 
impossible to explain these effects found experimentally. An ability of the brain to 
adapt its activity to changes in the environment is a generic property of the 
nervous system (Fairhall et al. 2001). On the single cell level such adaptation is 
usually the result of multiple slow potassium currents (Benda and Herz 2003, 
Izhikevich 2007, Buchin and Chizhov, 2010). 
 
 On the other hand the significance of subthreshold single neuron nonlinear 
properties is still an open question in computational neuroscience. Classical 
models of cortical dynamics such as balanced networks (van Vreeswijk and 
Sompolinsky, 1996) and network models of high-conductance state (Boustani et 
al. 2007) do not explicitly take them into account (CHAPTER III) and implicitly 
argue that such properties may not be of importance. While even if certain 
properties of cortical dynamics could be explained without membrane 
nonlinearities, there are regimes of input integration requiring the complex 
threshold, which could not be fully explained by fixed threshold integrate-and-fire 
model (y Arcas et al. 2003). 
 
 Another relatively unexplored topic in computational models of neural 
systems is related to ion concentration changes in the brain. In the majority of 
biophysical models these concentrations are assumed to be constant due to 
various homeostatic mechanisms. These assumptions seems to be reasonable 
for the normal brain function, yet in the case of epilepsy and spreading 
depression the ion concentrations become an important factor determining the 
neural excitability (Fröhlich et al. 2008, Bazhenov et al. 2004). Despite the fact 
that potassium concentration changes are known to be associated with 
spreading depression and seizures for a! long time (Grafstein, 1956, Sypert and 
Ward, 1974), only recently computational models started taking these pathways 
into account (CHAPTER I). In our model of seizure initiation we propose that 
increased activation GABAergic synapses leads to intracellular chloride 
accumulation thereby provoking seizure onset in a realistic neural network model 
(CHAPTER II). Moreover recent works (Jedlička and Backus, 2006, Raimondo et 
al. 2012) suggested that intracellular chloride could also serve as a mechanism 
of short-time inhibitory plasticity, so-called “ionic plasticity” even during 
physiological regimes of interneuron activity. Thus we suggest that incorporation 
of ion concentration changes into biophysical models of single cells and networks 
deserves more attention in case of normal and pathological brain dynamics. 
 
 In conclusion, in this thesis we have developed two projects. In the first one 
we proposed a novel mechanism of intracellular chloride accumulation in 
pyramidal cells of human subiculum related to temporal lobe epilepsy. This 
model predicts that accumulation of intracellular chloride could provoke seizure 
initiation in temporal lobe epilepsy. We showed that restoration of the KCC2 
cotransporter blocks the seizure activity in the realistic neural network of 
subiculum, suggesting that restoration of chloride homeostasis could be an 
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efficient strategy against seizure initiation. In the second project we showed that 
cerebellar Purkinje cells could be efficiently inhibited by noise, a phenomenon 
known as inverse stochastic resonance. This noise inhibition is explained by 
coexistence of spiking and resting state solution near Andronov-Hopf bifurcation. 
We found that inverse stochastic resonance allows a neuron to optimally transmit 
information about the input stimuli leading to the peak of mutual information 
between the input and output spike train. We conclude that the results of this 
thesis show the importance of single neuron subthreshold nonlinearity and 
adaptation properties in case of normal and pathological brain dynamics. 
 
 The work on this thesis generated many ideas about future research 
directions. We propose that development of spatially structured networks 
possessing chloride accumulation mechanism would help to explain the 
mechanisms of inhibitory restrains proposed in (Trevelyan et al. 2007, Schevon 
et al. 2012) controlling seizure propagation in the cortex (CHAPTER II, II.4 
Future directions). Development of the cerebellum network model possessing 
the inverse stochastic resonance would help to justify the adaptive filter model of 
cerebellum (Dean and Porrill 2011) requiring adjustable properties potentially 
implemented by the spiking state of a Purkinje cell population. Also the 
recordings of the Purkinje cell synaptic input in vivo similar to (Wilms and Häuser 
2015) are needed to justify the presence and importance of inverse stochastic 
resonance in physiological conditions (CHAPTER IV, IV.4 Future directions). 
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