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1
INTRODUCTION

"I start writing when I
overcome my disgust with
literature."

Danilo Kiš

During the last decade, few technologies have qualified as quantum
information processing platforms. Universal quantum computing re-
quires numbers of qubits that are not yet available, but well controlled
quantum systems exist, that offer a variety of controlled interactions
that can be used to build Hamiltonians by design. In 2017, arguably
the most advanced technologies are trapped ions and superconducting
circuits. Trapped ions currently offer long coherence times and high
fidelity quantum gates. However, the scalability of these processors
presents an outstanding challenge that seems difficult to overcome.
In contrast, superconducting circuits offer more freedom in their im-
plementation and a wide range of reachable coupling strengths.
A key element in the superconducting circuit toolbox is the Joseph-

son mixer. It is a superconducting device that performs three-wave
mixing at microwave frequencies [1]. Though it has been conceived
with a primary focus on quantum limited parametric amplification,
it has subsequently been demonstrated to perform entanglement gen-
eration [2], efficient coherent frequency conversion [3], directional am-
plification [4], circulation [5] and quantum state storage [6].
All of these operations constitute the elementary building blocks

for many quantum information protocols. They can be combined in
order to tailor a desired Hamiltonian, which opens a way towards ana-
log quantum simulation. Hamiltonian of a system of interest can be
decomposed into pieces that can be mapped onto different operating
regimes of the Josephson mixer. An example of such a Hamiltonian,
that is hard to realize experimentally, is that of two ultrastrongly cou-
pled bosonic modes. In the first part of this thesis, we have explored
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a scheme that permits mapping an ultrastrongly coupled system onto
a doubly pumped Josephson mixer.
Besides, the ability to create and distribute entanglement and store

and release on demand arbitrary quantum states, qualifies Joseph-
son mixer for a quantum node of a modular quantum network [7].
Microwave resonators coupled by the JRM can straightforwardly be
coupled to superconducting qubits, which further increases their con-
trollability. In the second part of this thesis, we have investigated
few different architectures for a quantum node based on a Josephson
mixer.
However, all of these well understood operations, that result from

the parametric interaction provided by the JRM, emerge in the regime
of linear response of the resonators. In the third part of this thesis, we
go a step further and explore the regime of the saturated non-linearity
in which parametric self-oscillation emerges.

1.1 josephson mixer

The Josephson parametric converter (JPC) was first built at Yale in
2010, as a first phase-preserving amplifier operating near the quantum
limit in the microwave frequency range [8, 9]. It is based on a Joseph-
son Ring Modulator (JRM), which is a nonlinear element consisting
of four Josephson junctions in a Wheatstone bridge configuration. Its
tunable upgrade, called the Josephson mixer, was subsequently built
in our group in 2012 by shunting the Josephson ring with inductances.
The Josephson mixer consists of three spatially and spectrally sep-

arated modes a, b and p, that interact through a three-wave mixing
interaction Hamiltonian

Ĥ = h̄ωaâ
†â+ h̄ωbb̂

†b̂+ h̄χ(p+ p∗)(â+ â†)(b̂+ b̂†), (1)

where â and b̂ are annihilation operators for the fundamental modes of
two microwave resonators coupled by a Josephson ring, and |p| is the
amplitude of the classical pump tone that is applied far off-resonance
on the common mode of the Josephson mixer. It is the frequency of
this pump tone that distinguishes particular operating modes of the
Josephson mixer.

When the pump is applied at a frequency that is the sum of the
resonance frequencies of the modes a and b, ωp = ωB = ωa + ωb, in
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the rotating wave approximation the three-wave mixing interaction
simplifies to the parametric down conversion

Ĥamp = h̄gB(âb̂+ â†b̂†), (2)

where gB = χ|pB| is the coupling rate of the amplification pump
that we refer to as "blue". In this regime, when a signal is sent to
one of the input ports of modes a or b, the Josephson mixer acts as
a quantum-limited amplifier. When additionally modes a and b are
driven by vacuum fluctuations only, the two output fields are in an
Einstein-Podolsky-Rosen (EPR) state, as illustrated in Fig. 1a.

On the other hand, when the pump tone is applied at the difference
frequency ωp = ωR = ωa − ωb, the interaction becomes that of the
parametric frequency conversion

Ĥconv = h̄gR(âb̂
† + â†b̂). (3)

where gR = χ|pR| is the coupling rate of the "red" conversion pump.
Interestingly, using these two well-controllable operating modes, the
Josephson mixer can be mapped onto a complex quantum problem,
such as the ultrastrongly coupled bosonic modes, in order to mimic
its dynamics.

1.2 simulating the ultrastrong coupling

Coupled light and matter modes have been relentlessly providing
questions for physicists. Depending on the coupling strength, differ-
ent phenomena of interest emerge. Whereas the weak coupling has
enabled to spy on a quantum system without destroying its quan-
tum nature, in the strong coupling regime, the two systems form
hybridized excited states that are a precious resource for quantum
information applications.
Strong light-matter coupling corresponds to the situation where the

coupling rate between the light and matter modes is larger then the
dissipation rates of each of the interacting parts. In this regime, exci-
tations can be coherently exchanged between the interacting systems
before they decay. Nowadays, this type of coupling can be systemat-
ically reached in various physical systems [10, 11, 12, 13]. Neverthe-
less, making the coupling rate as strong as the oscillation rates of the
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modes is still a challenging task. This regime, first introduced by Ciuti
in 2004 [14], is commonly referred to as the ultrastrong coupling.
There, owing to the breakdown of the rotating wave approxima-

tion, that is commonly used to describe behavior of strongly coupled
systems, new quantum phenomena, such as generation of non classi-
cal radiation and entanglement in the ground state, are expected to
develop. This fact has motivated experimental realizations of such ul-
trastrong interaction in various physical systems, ranging from cavity
polaritons [15], superconducting circuits [16] and cavity magnons [17].
Most of these works are focused on coupling a two-level system to a
harmonic oscillator. Conversely, ultrastrong coupling of two harmonic
oscillators was realized by coupling a collective cyclotron resonance
in a 2DEG to a THz cavity mode in Houston [18] and to a THz light
mode of a split ring resonator in Zurich [19].
All of these experimental realizations demonstrated spectroscopic

signatures of the ultrastrong coupling, but insight into the ground
state properties and its dynamics are still out of reach in genuine
experiments. Nevertheless they can be reached using quantum sim-
ulation. In the case of a two-level system coupled to a harmonic os-
cillator, both analog [20] and digital [21] quantum simulation were
recently performed.
In Chapter 2, we propose a scheme that uses the Josephson mixer to

perform an analog simulation of two ultrastrongly coupled harmonic
oscillators. Experimental evidence of the signatures of the highly
non-classical ground state is presented in Chapter 3. The simulation
scheme is based on the application of two transversal microwave drive
tones used to engineer the desired effective Hamiltonian. Indeed, two
interacting bosonic modes a and b are described by the Hamiltonian

Ĥ = h̄ωaâ
†â+ h̄ωbb̂

†b̂+ g(â+ â†)(b̂+ b̂†). (4)

They are in the ultrastrong coupling regime if the coupling rate g
is not only larger than the dissipation rates κa and κb but is also
comparable to the resonance frequencies of the interacting systems
g > 0.1ωa,b.
As it is not straightforward to increase the coupling rate, we re-

alize an effective ultrastrong coupling by choosing a rotating frame
in which the effective mode frequencies are smaller then the coupling
rate g. This is done by simultaneously applying the amplification and
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(a)

(b)

Figure 1: (a) Schematic representation of the Josephson mixer pumped only
with the blue amplification pump. Measured quadrature statistics
reveal signature of a two-mode squeezed EPR state. (b) Josephson
mixer pumped simultaneously with "blue" amplification and "red"
conversion pumps. Measured quadrature statistics reveal both sin-
gle mode and two mode squeezing, which is a signature of effective
ultrastrong coupling.

the conversion pump on the Josephson mixer. The full interaction
Hamiltonian is then

Ĥint = Ĥamp + Ĥconv = gB(âb̂+ â†b̂†) + gR(âb̂
† + â†b̂). (5)

For equal coupling rates of the two pump tones, gB = gR = g, the
interaction Hamiltonian is

Ĥint = g(â+ â†)(b̂+ b̂†). (6)

We have shown that detuning the amplification pump by 2δ, gives
the effective frequencies −δ to the effective modes. For δ < g, we
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Figure 2: Spectroscopic evidence of the ultrastrong coupling. (a) Measured
power spectral density of the ground state radiation. (b) Expected
average number of photons in the outgoing mode. Each of the two
resonances exhibits Rabi splitting proportional to the coupling
rate g.

have thus constructed an effective system of two ultrastrongly coupled
harmonic oscillators.
We have experimentally evidenced a few signatures of ultrastrong

coupling. First, as shown in Fig. 1b, radiation emitted from the
ground state presents both single mode and two mode squeezing. Sec-
ond, spectroscopic evidence of the Rabi splitting is shown in Fig. 2a.
The expected spectra calculated in the quantum Langevin equation
formalism are shown in Fig. 2b.

1.3 node for a microwave quantum network

The idea of a modular quantum network, consisting of nodes formed
by clusters of trapped atoms or ions connected by photonic quantum
channels, has been present since the 90s [22]. Recent improvements in
performance of superconducting qubits have put forward the prospect
of local microwave quantum processors based on superconducting cir-
cuits, equipped with microwave to optical photon transducers, possi-
bly built on optomechanical systems, that enable long distance con-
nections through optical photons. Transposing the modular architec-
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ture of a quantum network to that of a microwave quantum processor
[7] even emerges as an alternative approach to the surface code [23].
In a quantum network or a quantum processor of modules, the

nodes contain at least one logical memory qubit and one communica-
tion qubit that enables information exchange with other modules. As
a single harmonic oscillator offers as many states as a full qubit regis-
ter [24], implementation of a protected logical qubit as a microwave
resonator appears as an interesting solution to reduce the system
complexity.

(a)

(b)

Figure 3: (a) Schematic of a quantum node based on a Josephson mixer.
It consists of a communication buffer resonator a and a memory
resonator m coupled through a Josephson ring. Transmon qubit is
integrated into the memory mode. (b) Schematic of a device with
a qubit readout mode r separate from the photon storage mode
m and a photograph of the bottom half of the fully 3D device.

In the second part of this thesis, we show that the Josephson mixer
fulfils all the requirements for a quantum node of a modular quantum
network. During my PhD, we have designed and tested three different
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architectures of the quantum node. The first architecture, schemati-
cally represented in Fig. 3a, is based on the quantum memory realized
by Flurin et al. [6] and consists of a Josephson ring coupling a 2D
low Q resonator a that acts as a communication device, and a 3D
high Q resonator m that plays the role of the memory. We have in-
tegrated a transmon qubit to the memory mode to enable efficient
cavity readout and gain controllability over the system state. Indeed,
preparation of non-Gaussian states such as Schrödinger cat states
requires introducing a nonlinearity to the harmonic oscillator.
As we have found that the lifetime of the memory mode was lower

than expected, we pursued an exhaustive study of dissipation sources
in 3D structures. This led us to the conclusion that losses are domi-
nated by the 2D/3D interfaces, that necessarily involve holes in the
3D cavity walls, wire bonds for the planar resonators and non-convex
3D cavities. In order to improve this first architecture and in partic-
ular the memory lifetime, we have made a few changes in the design.
First, we have implemented a qubit readout resonator separately from
the photon storage mode, as shown in Fig. 3b. Second, we have real-
ized in parallel a fully 3D design and a fully 2D design, in order to
bypass the transitions between the two different architectures. Prelim-
inary results for both of these architectures are exposed in Chapter 6,
although this project is still ongoing in our group.

1.4 injection locking in conversion

Injection locking is a commonly used technique for narrowing the
emission linewidth [25] and improving coherence of a laser [26]. It
relies on the injection of a tone that stimulates the emission of the
system at the input frequency. It has recently been demonstrated in
various systems ranging from a semiconductor double-quantum-dot
micromaser [27], an ac Josephson junction laser [28] and a trapped
ion phonon laser [29]. In the part iii of this thesis, we apply this
technique in a specific operating regime of a Josephson mixer, that
is the parametric self-oscillation.
Indeed, in the first two parts of this thesis, we have made use of

the Josephson mixer as an amplifier and frequency converter. Both
of these operating regimes can be described in the context of linear
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resonator response to the perturbation by the pump tone. For large
pump powers though, behavior of this rich device radically changes.

(a)

(b)

Figure 4: (a) Schematic representation of the Josephson mixer pumped only
with the strong amplification pump at frequency ωa + ωb above
the parametric instability threshold. Measured quadrature statis-
tics reveal unlocked self-oscillating state. (b) An additionnal small
tone is injected on a conversion pump frequency ωa−ωb. Measured
quadrature statistics reveal phase locked coherent state.

For low amplifying pump powers, the resonators dissipate the exci-
tations created by amplification of the vacuum fluctuations at a rate
that is larger than their creation rate. The device acts as a linear am-
plifier and the cavity hosts amplified version of vacuum fluctuations.
Beyond an instability threshold, that corresponds to the total dissi-

pation rate that equals the insertion rate of the photons in the cavity,
the intracavity field acquires a finite amplitude corresponding to the
square root of the mean photon number in the resonator. The phase
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of this field however presents a continuous degeneracy, as can be seen
in Fig. 4a. This behavior is referred to as self-oscillation.
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Figure 5: Phase of the natural emission field at frequency ωe compared to
the phase of the field injected at frequency ωin (a) in the unlocked
regime and (b) in the injection locked regime. (c) and (d) Emitted
radiation spectra of the modes a and b, locked by the conversion
pump tone.

We have first studied the onset of parametric oscillation as a func-
tion of the detuning of the amplification pump tone and the stability
of the empty cavity state. It gave us insight into bistability regions,
where both the empty cavity and self-oscillating solution simultane-
ously exist. This results from the competition of the two stabilizing
mechanisms that are the Kerr effect and pump depletion.
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We then studied the phase dynamics in the self-oscillation regime.
Inspired by the injection locking technique used with optical lasers,
we show that field emitted at frequency ωe from both non-degenerate
modes a and b of the Josephson mixer can be locked by a signal
injected at frequency ωin on one of the two modes, as illustrated
in Fig. 5a and Fig. 5b. Interestingly, owing to the four-wave-mixing
interaction of the Kerr effect, the emission field can be locked in a
non standard way using the conversion pump.
Emitted radiation spectra, shown in Fig. 5c for the mode a and

Fig. 5d for the mode b reveal injection locking for the input frequen-
cies in the proximity of the parametric conversion frequency. These
spectra, including sideband positions, can be understood and repro-
duced using the standard Adler theory for lasers and an effective
locking frequency produced in a Kerr four-wave interaction, show in
a red dashed line.
Finally, we conclude this thesis with the part iv, where some of the

main experimental techniques used for all the presented experiments
are described.
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Part I

U LT R A S T RO N G C O U P L I N G





2
S IMULATING ULTRASTRONG COUPL ING

"Without a revolutionary
theory there cannot be a
revolutionary movement."

Vladimir Ilyich Lenin

2.1 state of the art

2.1.1 Light Matter Coupling

The role of quantum mechanics in the description of the interaction
between light and matter was acknowledged since the early days of
the quantum theory and is known as quantum electrodynamics. In its
simplest modeling, both light and matter modes have a resonance fre-
quency ω that characterizes their internal dynamics and a dissipation
rate κ that quantifies their interaction with the environment. The in-
teraction between the modes can be quantified by defining a coupling
rate g that corresponds to the exchange rate of excitation quanta
between modes. The ratio of the coupling and dissipation rates de-
fines the weak coupling regime where g < κ and the strong coupling
regime where g > κ. Then at resonance the collective light-matter
excitations have an energy separation of 2g called the vacuum Rabi
splitting.
The realization of the strong coupling regime represents an impor-

tant milestone in physics as it has given rise to the field of cavity
quantum electrodynamics (CQED). It began with Rydberg atoms in
cavity [30, 31, 32] but is now reached in a broad range of systems such
as trapped ions [33, 34], NV centers [35, 36], mechanical oscillators
[37], silicon donors, spin qubits, quantum dots [38] etc. In 2004, the
strong coupling was demonstrated between a superconducting qubit
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Figure 6: Light-matter coupling regimes parametrized by the dissipation
rate κ, coupling rate g and resonance frequency ω.

and a cavity by Wallraff et al. [11], which started the field of circuit
quantum electrodynamics (cQED).
When strongly coupled, the two interacting systems can coherently

exchange an excitation faster than they dissipate, which results in en-
tangled excited hybrid states of light and matter. By consequence,
light and matter cannot be considered as separate entities any more
and the energy spectrum of the coupled system is split into two sep-
arated resonances, which correspond to collective excitations of the
coupled light-matter system, called the upper and lower polaritons.
Furthermore, if the coupling is still increased and becomes of the order
of the frequencies of the interacting systems themselves, a different
and much less explored regime is reached: the ultrastrong coupling
(USC). In this regime, the standard rotating wave approximation,
that is used to model the system’s dynamics, breaks down, which
means that the number of excitations is not conserved anymore and
even the ground state effectively appears as populated and hybridized
with the other mode.

Ultrastrong coupling has been predicted in 2004 for polaritons [14],
where it has first been experimentally demonstrated as well [15],
thanks to the giant dipole moments of intersubband transitions in
quantum wells that give rise to large coupling constants. Recently,
few experiments have been realized with superconducting circuits,
that have exploited the extraordinarily large magnetic moments of
particular artificial atoms based on Josephson junctions, called flux
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qubits. All of these experiments can be described by the quantum
Rabi model.

2.1.2 Quantum Rabi Model

The quantum Rabi model (QRM) considers a two-level system,
or a qubit, coupled to a single quantized electromagnetic mode. It
applies for a variety of physical systems, including cavity QED, the
interaction between light and trapped ions or quantum dots, and the
interaction between microwaves and superconducting qubits in circuit
QED. The general Hamiltonian of the QRM is

1
h̄
ĤQRM = ωq

σ̂z
2 + ωaâ

†â+ gσ̂x(â
† + â), (7)

where â† and â are creation and annihilation operators for the electro-
magnetic (cavity) mode and σ̂x = σ̂++ σ̂− and σ̂z are Pauli operators
for the two-level system

σz =

1 0
0 −1

 , σ− =

0 0
1 0

 , σ+ =

1 0
0 0

 . (8)

The first term in Eq. (7) corresponds to the free Hamiltonian of the
qubit with frequency ωq and the second to the field at the cavity reso-
nance frequency ωa. The last term represents the transverse coupling
between the qubit and the resonator field with coupling strength g.
It is useful to expand the Hamiltonian Eq.(7) as

1
h̄
ĤQRM = ωq

σ̂z
2 + ωaâ

†â+ g(σ̂−â
† + σ̂+â+ σ̂+â

† + σ̂−â). (9)

For coupling rate g � ω, this model can be simplified by going from
Schrödinger to interaction picture, where the last two interaction
terms in Eq. (9) that simultaneously excite or de-excite both the
atom and the cavity can be neglected by making the rotating wave
approximation (RWA). We then obtain the Jaynes-Cummings (JC)
Hamiltonian

1
h̄
ĤJC = ωq

σ̂z
2 + ωaâ

†â+ g(σ̂−â
† + σ̂+â). (10)

Although it accurately predicts a wide range of experiments in weak
and strong coupling regimes, its validity breaks down for the ultra-
strong coupling, where the full QRM Hamiltonian has to be taken into
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account. However, exactly solving the quantum Rabi model is a dif-
ficult problem as its state space is infinite-dimensional. Even though
the model has been known for over 70 years, an analytical solution to
it, given in the form of transcendental functions, has only been cal-
culated in 2011 [39]. However, its spectrum and eigenfunctions can
be more easily found by numerical diagonalization in a truncated,
finite-dimensional Hilbert space. Using this method, we compare the
numerical solutions for eigenstates of the JC and full QRM Hamilto-
nian as shown in Fig. 7.

Jaynes-Cummings model 

Quantum Rabi model

(a)

Jaynes-Cummings model 

Quantum Rabi model

(b)

Figure 7: (a) Mean number of photons in the cavity in the ground state
〈â†â〉 and (b) occupation probability of the excited state of the
qubit 〈σ̂z〉2 are plotted as a function of coupling rate g for the
Jaynes-Cummings Hamiltonian using RWA and for the full Quan-
tum Rabi model Hamiltonian. In this simulation, cavity and qubit
are on resonance.

For small couplings g/ωa,q � 1, the cavity occupation in the
ground state is low, 〈â†â〉 � 1, such that it can be well approxi-
mated by the Jaynes-Cummings Hamiltonian, whose ground state
is vacuum. However, for coupling g/ωa,q . 1, the difference between
the two models in Fig. 7 indicates that the counter-propagating terms
cannot be neglected anymore. Indeed, for g/ωa,q > 1, the eigenmodes
of the Jaynes-Cummings Hamiltonian are |e0〉±|g1〉2 , so that the mean
occupation number for both qubit and cavity is 0.5. In the QRM how-
ever, more excitations can be created in the cavity and the average
number of photons is higher. For large enough coupling, its ground
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state is not the standard vacuum but a maximally entangled state of
the photon field and the atom.
The validity of the quantum Rabi model is remarkably large. Even

tough it describes the simple case of a two-level system interacting
with a single bosonic mode, its predictions apply for the couplings
g/ωa,q � 1 where the multilevel structure of the interacting atom
has to be taken into account [40].
The ultrastrong coupling regime has recently raised a lot of interest

as it gives rise to a variety of new and unexplored quantum processes.
As number of excitations is not conserved, multiphoton Rabi oscilla-
tions become possible, where multiple photons excite the qubit and a
single photon can excite multiple qubits [41]. Furthermore, frequency
conversion of photons can be realized if a single qubit is coupled ultra-
strongly to two resonator modes [42]. Finally, USC has several poten-
tial applications in quantum computing, such as ultra fast quantum
gates [43], protected quantum computation with multiple resonators
[44] and quantum memories [45].
All of these perspectives have motivated experimental efforts to

realize genuine ultrastrongly coupled systems. Some of them are sum-
marized in Table 1.
Quantum Rabi model in the ultrastrong coupling regime has been

experimentally realized in several types of systems that include semi-
conductor quantum wells [15, 48, 47], organic molecules [46], YIG
sphere in a magnetic-field-focusing resonator with photon-magnon
and magnon-magnon couplings [17] and superconducting circuits [49,
16, 50, 51]. All of these experiments have demonstrated spectroscopic
signatures of mode hybridization, yet, demonstrating the ground-
state entanglement and large ground-state photon numbers that can
arise in the QRM is an open challenge in USC research. An alterna-
tive approach has thus been adopted with superconducting circuits,
which is to perform quantum simulations of the dynamics of an USC
system.

2.1.2.1 Quantum Simulators

The idea behind the quantum simulation, originally proposed by
Feynman in 1982 [52], is to map a well-controllable artificial quantum
system onto a complex quantum problem of interest in order to mimic
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system experiment ωr/2π g/ωr

superconducting
circuits [16] 5.7 GHz 1.34

organic molecules
[46] 530 THz 0.32

semiconductor po-
laritons [47] 670 GHz 0.27

CQED magnons
[17] 20 GHz 0.1

Table 1: Exemples of experimental realizations of the quantum Rabi model
in different systems with the resonance frequency ωr and the rela-
tive coupling g/ωr.

its dynamics. Since both systems are described by the same equations
of motion, the solution of the studied quantum problem is deduced
by observing the time evolution of the artificially built model system,
thus exploiting its intrinsic quantumness. This procedure is referred
to as analog quantum simulation.
In the particular case where the complex quantum problem of inter-

est is a system of two ultrastrongly coupled modes, the analog quan-
tum simulation relies on properly driving strongly interacting systems
so that they effectively behave as ultrastrongly coupled modes and ex-
hibit the corresponding characteristic features. The use of an analog
simulator is thus restricted to a particular problem, or class of prob-
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lems, because there has to be a direct mapping between the state and
the dynamics of the simulated system and those of the simulator.
Different approach is adopted in digital quantum simulators, where

any complex Hamiltonian of interest can be simulated by decompos-
ing it onto sequences of discrete interaction components, from which
the evolution of the artificial Hamiltonian can be synthesized. A uni-
versal set of quantum operations or gates can be performed, which
enables an execution of a stroboscopic sequence of quantum gates,
that approximate the dynamics of the simulated system. This proce-
dure allows access to more exotic dynamics than the simulator can
realize naturally.
Quantum simulators, both analog [20] and digital [21], have re-

cently been used to probe the dynamics of the QRM and the exotic
properties of its ground state. They have enabled the first detection
of a time domain signature of the USC as well as of the entanglement
in the ground state. The quantum hardware used in both experiments
were superconducting circuits.

2.1.3 USC of two bosonic modes

What happens if, instead of an atom in the cavity, we consider two
cavities that are ultrastrongly coupled? The electromagnetic field of
each cavity can be decomposed into field modes, to each of which a
quantum harmonic oscillator is associated. The Hamiltonian of two
coupled modes is

1
h̄
Ĥ = ωaâ

†â+ ωbb̂
†b̂+ g(â† + â)(b̂† + b̂), (11)

where â and b̂ are bosonic operators that annihilate one excitation at
frequency ωa or ωb in the corresponding bosonic mode. These modes
can be compared to mechanical oscillators such as two springs with
masses attached to their ends and coupled through a third spring as
schematically represented in Fig. 8.
The classical Hamiltonian of this mechanical system is

H =
1
2kx

2
a +

p2
a

2m +
1
2kx

2
b +

p2
b

2m +
1
2km(xa − xb)

2, (12)

where the xa,b and pa,b are positions and momenta of resonators a
and b with equal spring stiffnesses ka = kb = k and equal masses
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Figure 8: Mechanical oscillator coupled to a two level system as in the quan-
tum Rabi model and two coupled mechanical oscillators analogous
to two coupled bosonic modes. Note that the stiffness km of the
middle spring is larger than stiffness k of each of the springs
of the two oscillators. The resonance frequencies are given by
ωa,b =

√
k

ma,b
.

ma = mb = m connected through a spring of stiffness km. Due to the
interaction term, the effective spring stiffnesses are modified and the
Hamiltonian reads

H =
1
2 (k+ km)x

2
a +

p2
a

2m +
1
2 (k+ km)x

2
b +

p2
b

2m − kmxaxb. (13)

For the quantum mechanical resonators, the positions and momenta
can be mapped on operators that we can be quantified, so that the
interaction term becomes

Ĥint = −kmx̂ax̂b = −kmxZPFa xZPFb (â+ â†)(b̂+ b̂†), (14)

where xZPFa = xZPFb = xZPF =
√

h̄
2mωr =

√
h̄

2m

√
m

k+km
are the

zero point fluctuations. This interaction is equivalent to that of two
bosonic modes a and b coupled at a rate g such that

h̄g = −kmx2
ZPF = −km

h̄

2m

√
m

k+ km
, (15)

for two oscillators of resonance frequencies

ωr =

√
k+ km
m

. (16)

22



In order to test the validity of this model, it is interesting to notice
that the situation where the coupling rate reaches half of the reso-
nance frequency

g
ωr
2

= 1 =

km
2

1√
m(k+km)

1
2

√
k+km
m

=
km

k+ km
, (17)

is equivalent to km → ∞, which corresponds to the ultrastrong cou-
pling. Furthermore, a coupling stronger than this limit is equivalent
to a negative stiffness k as

g >
ωr
2 ⇔ km > k+ km, (18)

or k < 0, which doesn’t not correspond to a physical situation. A
natural limit thus emerges for a maximum reachable coupling as the
model breaks down for g > ωr

2 . An equivalent theoretical coupling
limit has been demonstrated for the quantum Rabi model as well [53],
where 2g . √ωaωq for a two-level system of resonance frequency ωq
coupled to an oscillator of resonance frequency ωa.
Indeed, for a coupling rate g comparable to the resonance frequen-

cies ωa,b, all the terms in the interaction Hamiltonian need to be taken
into account, so that

1
h̄
Ĥint = g(âb̂† + â†b̂+ âb̂+ â†b̂†). (19)

Due to the last two terms in this development, the number of exci-
tations in the system 〈N̂〉 = 〈â†â+ b̂†b̂〉 is not a conserved quantity
because [N̂ , Ĥ ] 6= 0. By consequence, the ground state is populated
with virtual photons that exhibit quantum correlations or entangle-
ment [54].
This Hamiltonian has been experimentally realized by coupling a

collective cyclotron resonance in a 2DEG to THz photons in a pho-
tonic crystal cavity [18]. Counter propagating terms in Hamiltonian
had to be kept in order to reproduce the observed anticrossing of po-
lariton branches, which constitutes a convincing spectroscopic proof
of the USC with the coupling g/ω ∼ 0.12. Stronger coupling rates,
g/ω ∼ 0.87, were reached by replacing the cavity by a split-ring res-
onator [19], whereas shaping the vacuum mode enabled reaching the
record value of g/ω ∼ 1.43 [55].
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 With RWA

Full Hamiltonian

(a)

 With RWA

Full Hamiltonian

(b)

Figure 9: (a) Average number of photons in the ground state of each of
the two coupled bosonic modes as a function of the coupling rate
g. In this simulation, the two modes are degenerate, so that the
mean occupation is the same for both of them. With RWA, the
number of excitations is expected to be conserved and the mean
number of photons is zero. However, taking the full Hamiltonian
into account, we see that the ground state is populated when the
coupling is increased. (b) Zoom into smaller couplings. The photon
population become non negligeable already for g/ωa ' 0.1.

In order to go beyond the spectroscopic signature of mode hy-
bridization in USC and demonstrate the quantum correlations in the
ground state, we have realized an analog quantum simulation of two
ultrastrongly coupled bosonic modes. The coupling in simulation be-
ing tunable, it allows us to study the transition from strong to ul-
trastrong coupling. More importantly, it gives us access to the field
radiated from the ground state which allows up to probe its highly
non classical nature.

2.2 constructing an effective ultrastrong coupling
hamiltonian

In this section we propose a simulation scheme to engineer an effec-
tive ultrastrong coupling Hamiltonian. It is based on the application
of two microwave drive tones and can be used as a tool to demon-
strate the squeezing properties of the system in its ground state. The
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quantum hardware of the simulator used for the physical implemen-
tation is a cQED setup embedding a superconducting circuit called
the Josephson Mixer.

2.2.1 Josephson Mixer

Parametric amplifiers based on Josephson junctions have first been
introduced by Yurke and collaborators in 1980s [56] and following
their work, several designs have been developed [57, 58]. They can
be categorized into phase-preserving and phase-sensitive amplifiers.
Those belonging to the first group amplify both quadratures of the
signal while adding the minimum amount of noise allowed by quan-
tum mechanics. Phase-sensitive amplifiers though can amplify one
quadrature without adding any noise to it, while attenuating the
conjugate quadrature. They thus create squeezed electromagnetic
field. The Josephson Mixer [1] is a tunable upgrade of the Josephson
Parametric Converter, first built at Yale in 2010 [8, 9] as a phase-
preserving microwave parametric amplifier operating at the quantum
limit of added noise. Since then it has been vastly studied and demon-
strated to be used as entanglement generator [2], frequency converter
[3], directional amplifier [4], circulator [5] and quantum memory [6].
It consists of two superconducting λ/2 microwave resonators coupled
through the Josephson Ring Modulator (JRM), that is through a
loop of four identical Josephson junctions, threaded by an applied
magnetic flux. The JRM realizes a three-wave-mixing parametric in-
teraction between the resonator modes.
Josephson junctions are superconducting tunnel junctions that be-

have as pure nonlinear inductors with inductance LJ = ϕ0
I0 cos δ , where

ϕ0 = h̄
2e is the reduced flux quantum, I0 is the critical current of the

junctions and δ is the phase difference between the two superconduct-
ing electrodes of the junction.
In order to increase the frequency tunability and extend the sta-

bility range of the JRM by avoiding the phase-slips [59], the ring is
shunted with four large and thus very weakly nonlinear Josephson
junctions, acting as inductors.
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Figure 10: Shunted Josephson Ring Modulator is a ring of four Josephson
junctions (red), that provide nonlinearity for the parametric in-
teraction. It is shunted with four larger and less inductive Joseph-
son junctions (yellow) that behave like pure linear inductors. The
whole loop is threaded by an externally applied magnetic flux
ϕext.

The Hamiltonian of such shunted Josephson ring is

ĤJRM =− 4EJ cos ϕa2 cos ϕb2 cosϕc cos ϕext4
− 4EJ sin ϕa2 sin ϕb2 sinϕc sin ϕext4 (20)

+
1
4E

shunt
J (ϕ2

a + ϕ2
b + 2ϕ2

c),

where EJ = ϕ0I0 is the Josephson energy of a ring junction (red),
EshuntJ = ϕ0I0 is the Josephson energy of a shunting junction (yellow)
and ϕext is the magnetic flux threading the loop. ϕa,b,c are the normal
modes of the JRM, that can be deduced from the ring symmetries
and can be written as a function of the reduced fluxes in the nodes
of the ring, ϕ1,2,3,4, as

ϕa = ϕ1 −ϕ3

ϕb = ϕ2 −ϕ4

ϕc = ϕ1−ϕ4
2 + ϕ3−ϕ2

2

(21)

We refer to the modes a and b as differential modes, and to the mode
c as the common mode. Note that in the ring Hamiltonian, we have
neglected the inductance of the wires in the loop, that are in series
with Josephson junctions. To see how to add these inductances in the
model, on can refer to the PhD thesis of Emmanuel Flurin [60].
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Figure 11: Lumped circuit model of the Josephson Mixer. Φa and Φb are
the two differential λ/2 modes and Φc is the common excitation
mode.

The Josephson Mixer is a circuit consisting of the JRM embedded
between two microwave resonators a and b. In the lumped circuit
model, these resonators can be represented as LC oscillators, with
inductances La,b given by the length of the wire and capacitances
Ca,b, as shown in Fig. 11. Normal modes of the entire circuit, Φa,b,c,
have the same symmetries as the normal modes of the ring and can be
related to them through the participation ratios of the ring inductance
in the total mode inductance

ξa,b,c(ϕext) = ϕ0
ϕa,b,c
Φa,b,c

=
LJRMa,b,c (ϕext)

La,b,c + LJRMa,b,c (ϕext)
, (22)

where LJRMa,b,c (ϕext) = ϕ2
0(
∂2HJRM
∂ϕ2

a,b,c
)−1 are the inductances of the modes

a, b, c of the JRM and La,b,c are the wire inductances for each mode,
such that LJRMa,b,c (ϕext)+La,b,c = Ltota,b,c(ϕext) are the total inductances
of the modes a, b and c of the circuit.
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Unshunted Josephson Ring

Hamiltonian
ĤJRM = −4EJ [cos ϕa2 cos ϕb2 cosϕc cos (ϕext+2nπ

4 )]

−4EJ [sin ϕa
2 sin ϕb

2 sinϕc sin (ϕext+2nπ
4 )]

Hamiltonian
for
ϕa,b,c � 1

ĤJRM = −EJ sin (ϕext4 + nπ2 )ϕaϕbϕc

+EJ cos (ϕext+2nπ
4 )[ϕ

2
a

2 +
ϕ2
b

2 + 2ϕ2
c − 4]

ring modes
inductances

LJRMa,b (ϕext) =
ϕ2

0
EJ cos(ϕext+2nπ

4 )

stability
condition

n such that LJRMc (ϕext) =
ϕ2

0
4EJ cos(ϕext+2nπ

4 )
> 0

degeneracy 4 different possible flux configurations indexed by n

Table 2: Summary of useful expressions for an unshunted JRM.

Shunted Josephson Ring

Hamiltonian
ĤJRM = −4EJ [cos ϕa2 cos ϕb2 cosϕc cos (ϕext4 )]

−4EJ [sin ϕa
2 sin ϕb

2 sinϕc sin (ϕext4 )]

+ 1
4E

shunt
J [ϕ2

a + ϕ2
b + 2ϕ2

c ]

Hamiltonian
for
ϕa,b,c � 1

ĤJRM = −EJ sin (ϕext4 )ϕaϕbϕc

+[EJ cos (ϕext4 ) +
EshuntJ

2 ](ϕ
2
a

2 +
ϕ2
b

2 )

+2[EJ cos (ϕext4 ) +
EshuntJ

4 ]ϕ2
c

−4EJ cos
(ϕext

4
)

ring modes
inductances

LJRMa,b (ϕext) =
ϕ2

0
Eshunt
J

2 +EJ cos(ϕext4 )

stability
condition

n such that LJRMc (ϕext) =
ϕ2

0
EshuntJ +4EJ cos(ϕext4 )

> 0

degeneracy lifted degeneracy

Table 3: Summary of useful expressions for a shunted JRM.
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For small phase differences the non-linear Hamiltonian of the ring
can be expanded to the third order

ĤJRM =− 4EJ cos ϕext4 +EJ cos ϕext4 (
ϕ2
a

2 +
ϕ2
b

2 + 2ϕ2
c)

−EJϕaϕbϕc sin ϕext4 (23)

+
1
4E

shunt
J (ϕ2

a + ϕ2
b + 2ϕ2

c) +O(|ϕ|4).

The first term corresponds to the rest energy of the ring, the second
to the inductive energy of the junctions, the last term to the energy of
the shunt inductances. The particularity of the Josephson Ring is that
the only third order term is the pure three-wave mixing term ϕaϕbϕc
that is at the origin of the parametric interaction. From here, fields
are quantized by introduction of creation and annihilation operators
of excitations in modes a, b, and c

Φa =
√

h̄Za
2 (â+ â†)

Φb =
√

h̄Zb
2 (b̂+ b̂†)

Φc =
√

h̄Zc
2 (ĉ+ ĉ†),

(24)

where Za,b,c are the mode impedances. At third order, the Hamilto-
nian of a Josephson Mixer can thus be written as

1
h̄
Ĥ = ωaâ

†â+ ωbb̂
†b̂+ ωcĉ

†ĉ+ χ(ĉ† + ĉ)(â† + â)(b̂† + b̂), (25)

where we have defined the coupling term

χ =
1

2ϕ0LJ
ξaξbξc

√
h̄

2 ZaZbZc sin ϕext4 (26)

and resonance frequencies ωa,b,c =
√

Za,b,c
Ltot
a,b,c

. Natural modes frequencies
are renormalized by the presence of ring junctions and the shunting
junctions that modify the total inductance of the modes. The most
frequently used expressions for shunted and unshunted JRM are sum-
marized in Table 2 and Table 3.

2.2.2 Amplification mode

Josephson Mixer is commonly used as a quantum limited amplifer.
This is done by applying a time-dependent drive of the amplitude |p|
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on a common mode c in an off-resonant way. The Hamiltonian then
becomes

1
h̄
Ĥ = ωaâ

†â+ ωbb̂
†b̂+ χ(p∗ + p)(â† + â)(b̂† + b̂). (27)

This driving field excites the circuit and provides energy for paramet-
ric processes. It is called a pump tone and can be treated classically
in the stiff pump regime, which occurs when it is driven far from any
resonance frequency.

Figure 12: Schematic of the Josephson Mixer. Two λ/2 resonators a and b
are coupled through a shunted JRM. A pump tone of the ampli-
tude p is applied off-resonantly on the common mode c.

If the circuit is pumped at a frequency that is equal to the sum
of the frequencies of the two oscillators, ωp = ωa + ωb, the rapidly
oscillating terms in the interaction Hamiltonian can be neglected, so
that it simplifies to the parametric down conversion or amplification
Hamiltonian

1
h̄
Ĥamp = χpB(âb̂+ â†b̂†), (28)

where pB is the real amplitude of the so called blue pump (the blue
color evoking large frequencies in the visible electromagnetic spec-
trum). The interaction term pB â

†b̂† describes the annihilation of one
pump photon at frequency ωp and simultaneous creation of a pair of
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photons at frequencies ωa and ωb. It is this term that gives rise to
parametric amplification and that enables the Josephson Mixer to be
used for the readout of superconducting qubits with the measurement
efficiency of order 1.
If this interaction is turned on with the two oscillators in the vac-

uum state, it results in a creation of quantum correlated radiation at
frequencies ωa and ωb. The two outgoing modes are then prepared in
a particular two-mode-squeezed state

|EPR〉 = era
†b†−r∗ab |0, 0〉 = 1

cosh(r)
∑
k

tanh(r)k |k, k〉 , (29)

where r is a squeezing parameter that satisfies

cosh(r) =
√
G =

κaκb + 4χ2|pB|2

κaκb − 4χ2|pB|2
, (30)

and
√
G is the direct amplitude gain of the Josephson Mixer. This

state was first introduced by Einstein, Podolsky and Rosen (EPR)
in their original formulation of the nonlocality paradox [61]. They
argued that, if Alice and Bob share this type of two-mode squeezed
state, and Alice performs either a position or momentum measure-
ment on her part of the state, she remotely prepares either a state
with a certain position or one with a certain momentum at Bob’s lo-
cation, no matter how distant it is. It is what Einstein called "spooky
action at a distance".
To quantify the parametric coupling strength between a and b parts,

it is convenient to introduce a dimensionless variable such as cooper-
ativity

C =
4|χpB|2
κaκb

. (31)

The amplitude gain then reads
√
G =

1 +C

1−C . (32)

It diverges when C → 1, which corresponds to the limit χ|pB| →√
κaκb
2 where the parametric down conversion rate exactly compen-

sates the total dissipation of the resonator.
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In order to characterize a Josephson Mixer, we begin by measuring
the complex reflexion coefficient on the mode a

ra[ω] =
κa − κlossa + 2i(ω− ωa)
κa + κlossa − 2i(ω− ωa)

(33)

while sweeping the external flux ϕext. This enables us to determine
the resonance frequency ωa at a given flux, as well as the coupling κa
of the mode a to the transmission line and the total internal losses
κlossa . We procede in the same way for the mode b. The flux tunability
of the frequency is related to the inductance tunability through the
participation ratio of the ring inductance in the total mode induc-
tance

ωa,b(ϕext) =
1√

Ltota,b(ϕext)Ca,b
(34)

=
1√

(La,b + LJRMa,b (ϕext))Ca,b

=
1√

(La,b + ξa,bL
tot
a,b(ϕext))Ca,b

(35)

≈ ωmaxa,b (1− 1
2ξa,b(ϕext))
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Figure 13: Measured resonance frequency dependence on the external flux
for the mode b. The external flux is created by applying voltage
Vcoil on a coil in the proximity of the Josephson Mixer.

Flux dependence of the resonance frequency is shown in Fig. 13.
Different arches correspond to different flux distributions between
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Figure 14: Measured resonance frequency dependence on the external flux
for the two modes a and b during the final cool-down. The third
size of arches indicates that there was an asymetry between the
subloops of the JRM during this meaurement run. The black
point at zero applied voltage corresponds to the external flux at
which the USC experiment was done. The resonance frequencies
at this flux were ωa = 2π× 8.5 GHz and ωb = 2π× 6.5 GHz.

the four subloops. The big arches correspond to the symmetric flux
distribution, where the fluxes are equally distributed between the
subloops and all flow in the same direction. Smaller arches correspond
to different broken symmetries, flux direction, flux amplitude etc. Due
to the stability condition Lc(ϕext) > 0, the symmetric configuration
is stable for −4 EJ

EshuntJ

cos
(ϕext

4
)
> 1. The frequency of the shunted

JRM can thus be tuned over a range of fluxes given [62] by

ϕext ∈ [0,ϕcrossoverext ] (36)

where ϕcrossoverext is given by −4 EJ
EshuntJ

cos
(ϕext

4
)
= 1. To maximize

the three-wave mixing Hamiltonian, −EJ sin
(ϕext

4
)
ϕaϕbϕc and mini-

mize the Kerr terms, we would like to set a magnetic field such that
ϕext = 2π. However, for the JRM used in this experiment, the ratio
EJ/EshuntJ was such that ϕcrossoverext ' 2π and two flux configurations
are metastable at this external flux point (see Fig. 14). Thus, we chose
another flux point on the bigger arch that maximizes the gain.
From the phase dependence of the reflected signal we determined

the resonance frequencies at this flux to be ωa = 2π × 8.5 GHz and
ωb = 2π × 6.5 GHz, and the dissipation rates κa = 2π × 17.6 MHz
and κb = 2π× 21 MHz. The ring of the Josephson Mixer used in this
experiment can be seen in Fig. 15.
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10µm

Figure 15: Optical microscope image of the JRM embeded in the Joseph-
son Mixer used in the USC experiment. Four smaller Josephson
junctions can be seen in the corners of the ring, and four bigger
Josephson junctions are shunting the ring.

We measure the power spectral density of the outgoing mode with
the pump tuned on and with the pump turned off. We subtract the
later from the former in order to get rid of the noise added by the
chain of amplifiers. Then in the added noise spectrum, we see that
vacuum fluctuations are amplified at the resonance frequency of the
mode ωa, as shown in Fig. 17. The coupling gB = χ|pB| linearly
increases with the pump amplitude until the onset of the paramet-
ric oscillation regime where more excitations are produced than the
system can dissipate so that it begins to lase. The Josephson Mixer
is used in this regime as a quantum limited amplifier of dynamical
bandwidth

γ(G) ∼ 2κaκb√
G(κa + κb)

=
γ0√
G

(37)

that is inversely proportional to the amplitude gain
√
G, at large gain.

For a given flux, the bandwidth gives the tunability of the amplifier.
By detuning the pump frequency, we can amplify the signal within
the bandwidth of the amplifier (see Fig. 16). If we further detune the
pump, we realize an unexplored regime of off-resonant pumping that
will be discussed in the following section, since it will be key to our
simulation of USC.
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Figure 16: Pumping scheme in amplification mode. The two resonant modes
a and b are represented by their Lorentzian response functions.
The pump tone applied at the sum of their resonance frequencies
provides the energy for the amplification process and determines
the amplitude gain. The pump can be applied in the vicinity
of ωa + ωb given by γ0 = 2κaκb

κa+κb
' κa. A signal injected on

the mode a at the frequency ω1 will be amplified at that same
frequency and converted to the mode b at the frequency ωc − ω1
within the amplifier bandwidth. If the pump is applied with a
detuning 2δ > 2κ, we are in a non standard regime of off-resonant
pumping.

2.2.3 Off-resonant pumping

Realization of the effective ultrastrong coupling requires a non stan-
dard way of pumping a Josephson Mixer, that is at a pump frequency
detuned by 2δ, with δ > κa,κb. In this section, we are going to study
the dynamics of the system in this new regime.
As such a detuned pump tone oscillates at frequency ωp = ωa+ωb+

2δ, when we neglect the rapidly oscillating terms, the Hamiltonian of
Eq. (27) simplifies to

1
h̄
Ĥ = ωaâ

†â+ ωbb̂
†b̂+ χpB(â

†b̂†e−2iδt + âb̂e2iδt) (38)

We can now define new annihilation operators that rotate at fre-
quency δ with respect to â and b̂â→ âe−iδt

b̂→ b̂e−iδt

35



ωa
0

2π

8.44 8.46 8.48 8.50 8.52

0

1

2

3

4

5

6

ω

2π
(GHz)

S
a
O
N
-
S
a
O
F
F
(1
0-
16
W
H
z-
1
)

(a)

parametric
oscillation

gB = 2π × 57 MHz B

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

2

4

6

8

10

12

B(a.u.)

g B
/2
π
(M
H
z)

Wednesday 5 July 17

(b)

Figure 17: (a) Added power spectral density of the mode a measured close
to the resonance frequency ωa for several values of the amplitude
of the blue pump pB (dots) and corresponding average emission
rate calculated with input-output theory (line). Each color cor-
responds to an amplitude given in (b). (b) The parametric down
conversion rate gB determined from emission spectra linearly in-
creases with pump amplitude pB until the threshold of paramet-
ric oscillation.
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Figure 18: (a) Resonance frequency of the mode a determined from the mea-
sured power spectral density as a function of the pump amplitude
decreases owing to the Kerr effect. Red dots are in the paramet-
ric oscillation regime. (b) Resonance frequency of the mode b in-
creases with pump amplitude. The color encoding for the pump
amplitude is the same as in the Fig. 17.

so that in the reference frame rotating at ωa,b + δ the Hamiltonian
becomes

1
h̄
Ĥ = −δâ†â− δb̂†b̂+ gB(â

†b̂† + âb̂), (39)
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where we have defined gB = χpB as the parametric down conversion
coupling rate.

2.2.3.1 Input - Output Theory

In this section we will use the input-output formalism [63] first
introduced by Gardiner and Collett in 1985 [64] to describe the dissi-
pative dynamics of the intracavity fields under the atypical detuned
blue pumping described in the previous section, and relate their evo-
lution to the propagating input and output fields. By means of quan-
tum Langevin equations, we take into account the coupling of the
intracavity fields to the frequency dependent dissipation baths

∂a
∂t =

i
h̄ [H, a]− κa

2 a+
√
κaain

∂b
∂t =

i
h̄ [H, b]− κb

2 b+
√
κbbin,

(40)

which for the Hamiltonian 39 gives
∂a(t)
∂t = iδa(t)− igBb(t)† − κa

2 a(t) +
√
κaain(t)

∂b(t)
∂t = iδb(t)− igBa(t)† − κb

2 b(t) +
√
κbbin(t)

(41)

By the definition of a Fourier transform

1√
2π

∫
a(t)e−iωtdt = a[ω], (42)

for the Fourier transform of a hermitian conjugate we have

1√
2π

∫
a(t)†e−iωtdt =

1√
2π

( ∫
a(t)eiωtdt

)†
= a[−ω]†. (43)

Fourier transforms of the Langevin equations are thusiωa[ω] = iδa[ω]− igBb[−ω]† − κa
2 a[ω] +

√
κaain[ω]

iωb[ω] = iδb[ω]− igBa[−ω]† − κb
2 b[ω] +

√
κbbin[ω].

(44)

By taking the hermitian conjugate of the second equation and then
evaluating it at −ω we obtain

iωb[−ω]† = −iδb[−ω]†+ igBa[ω]−
κb
2 b[−ω]

†+
√
κbbin[−ω]†, (45)
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so that finally

b[−ω]† = igB
i(ω+ δ) + κb/2a[ω] +

√
κb

i(ω+ δ) + κb/2bin[−ω]
†. (46)

We can now inject this expression in the equation for a

a[ω]
[
iω− iδ+κa/2− g2

B

iω+ iδ + κb/2
]
=

−igB
√
κb

iω+ iδ + κb/2bin[−ω]
†+
√
κaain[ω],

(47)

and finally we obtain

a[ω] =
i(ω+ δ) + κb/2

(i(ω− δ) + κa/2)(i(ω+ δ) + κb/2)− g2
B

√
κaain[ω]

+
−igB

√
κb

(i(ω− δ) + κa/2)(i(ω+ δ) + κb/2)− g2
B

bin[−ω]†.

We can put this expression in a more compact form

a[ω] = P [ω]ain[ω] +Q[ω]bin[−ω]†, (48)

such that the amplitude of the outgoing mode can be written as

aout[ω] =
√
κaa[ω]− ain[ω] (49)

= (
√
κaP [ω]− 1)ain[ω] +

√
κaQ[ω]bin[−ω]†. (50)

Input modes being in vacuum

〈ain[ω]†ain[ω′]〉 = 0
〈bin[−ω]bin[−ω′]†〉 = δ(ω− ω′)
〈bin[−ω]ain[ω′]〉 = 0
〈ain[ω]†bin[−ω′]†〉 = 0,

we find for the mean number of photons in the outgoing mode

〈âout[ω]†âout[ω′]〉 = κa|Q[ω]|2δ(ω− ω′) (51)

=
g2
Bκaκb

[(ω+ δ)κa2 + (ω− δ)κb2 ]2 + [κa2
κb
2 − g

2
B + (δ2 − ω2)]2

δ(ω− ω′)
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Figure 19: Measured power spectral density for the outgoing mode a for
the detuned blue pump (points) and mean number of photons
calculated from the Eq. (52) (line), with corresponding coupling
gB . There are two Loretzian peaks at ωa and ωa + 2δ, with δ =
2π × 26 MHz. These frequencies correspond to −δ and δ in the
simulation frame rotating at ωa+ δ. Note that one peak is higher
than the other one because κa < κb.

Indeed the spectral noise density measured by a spectrum analyzer
at room temperature corresponds to the output noise Var(aout) =
1
2〈â
†
outâout + âoutâ

†
out〉 which is linearly amplified by the chain of am-

plifiers at the output line with a gain Gchain and with extra noise
Schain. When the pump is turned on, power spectral density reads

SONaout [ω] = Gchain h̄ωa
1
2〈â
†
outâout + âoutâ

†
out〉+ Schain (52)

= Gchain h̄ωa〈â†outâout〉+ Svac + Schain (53)

where Svac is the power spectral density of a vaccum state. When the
pump is turned off

SOFFaout [ω] = Svac + Schain (54)

so that the added power spectral density gives the emitted number
of photons amplified by the gain of the chain of amplifiers

SONaout [ω]− S
OFF
aout [ω] = Gchain h̄ωa〈â†outâout〉. (55)

We see from Eq. (52) that the emission spectrum qualitatively
changes drastically, compared to the pumping within the bandwidth
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(Fig. 17). There are two Lorentzian peaks centered at ωa and ωa+ 2δ
effectively corresponding to ±δ in a reference frame rotating at ωa+ δ,
as can be seen Fig. 19. We use this expression to determine the pa-
rameter gB from the measured power spectra. The theory agrees with
the measured noise raise and enables us to link the pump amplitude
pB and the corresponding parametric down conversion rate gB.
Furthermore, with a finite detuning of the pump frequency, the

self-oscillation threshold is displaced to higher pump powers. This
enables us to reach the higher gB regimes, that is not accessible at
zero detuning because they were beyond the onset of the parametric
oscillation (see Fig. 20).
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Figure 20: Coupling rate gB for different pump detunings δ/2π going from
0 to 25 MHz. For high applied pump amplitudes AB , the cou-
pling diverges from the expected linear dependence in amplitude,
though we have checked that the input power is linearly propor-
tional to the square of this requested amplitude.

2.2.4 Off-resonant amplification

In the previous section, we have seen how the emission spectrum
of the Josephson Mixer changes in the off-resonant pumping regime.
There was no signal injected in the circuit, and the energy brought by
the pump was used to amplify the vacuum fluctuations. In this section,
we are going to see how the amplification and gain characteristcs of
the Josephson Mixer change when the pump is detuned, while a finite
signal is injected into the mode a.
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Figure 21: Reflection coefficient |ra[ω]| measured with a Vector Network
Analyzer (VNA) around the resonance frequency ωa as a function
of the applied pump power PB , for different detunings δ. For
δ = 0, there is one peak at ωa. The resonance frequency decreases
at high powers due to the Kerr effect. For finite detuning δ, there
are two peaks at ωa and ωa + 2δ.

From the expression (50) that we found for the outgoing mode
aout[ω] with the input-output theory, we can write the reflection co-
efficient

ra[ω] =
aout[ω]

ain[ω]
=
√
κaP [ω]− 1 (56)

=
[i(ω+ δ) + κb

2 ][i(ω− δ) + κa
2 ] + g2

B

[i(ω+ δ) + κb
2 ][−i(ω− δ) + κa

2 ]− g2
B

Note that this expression is valid in the reference frame rotating at
ωa + δ. To describe the reflection coefficient measured in the labora-
tory frame, the transformation ω → ω − ωa − δ has to be done such
that

ra[ω] =
[i(ω− ωa) + κb

2 ][i(ω− ωa − 2δ) + κa
2 ] + g2

B

[i(ω− ωa) + κb
2 ][−i(ω− ωa − 2δ) + κa

2 ]− g2
B

(57)

In Fig. 22c, we see that this gain can be reached for detuning δ
going from -50 to 50 MHz which corresponds to a pump frequency
in the range of 200 MHz. This result is compared to the gain pre-
dicted from the input-output theory in Fig. 22d. The smallest pump
power needs to be applied for zero detuning. There is an asymmetry
for ±δ that is not reproduced by theory (see Fig. 21). The onset of
parametric oscillation is at lower powers for negative detunings, wich
prevents reaching higher gains at negative detunings. This can be
seen in Fig. 23.
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Figure 22: (a) Pump amplitude needed to obtain the gain of 3 dB, as a func-
tion of pump frequency. (b) gB = χpB needed for max(G[ω]) = 3
dB. (c) Measured gain as a function of signal frequency fa = ωa

2π
and pump detuning δ. For every detuning, the pump amplitude
pB is tuned so that the maximum gain max(G[ω]) = 3 dB. For
detuning δ < κ, there is one peak at ω = ωa. For δ > κ, there are
two discernable peaks at ωa and ωa + 2δ. Detuning δ can take
both positive and negative values. (d) Expected gain G(ω) from
the input-output theory, such that the maximum gain for that
power is 3 dB.

This function has maxima at ωa and ωa + 2δ. We use a vector
network analyzer (VNA) to measure |ra[ω]| around ωa and deduce the
gain G[ω] at frequency ω, given by

√
G[ω] = |ra[ω]|ON/|ra[ω]|OFF .

The pump frequency is set to fB = fa + fb + 2δ and detuning δ/2π
is varied from −50 MHz to 50 MHz. For each detuning, the applied
pump power is swept from -30 dBm to 10 dBm. Gain as a function of
the pump power is shown in Fig. 21 for δ/2π = −30 MHz, 0 and 30
MHz. The pump power that gives the maximum gain max(G[ω]) = 3
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Figure 23: Measured gain in dB as a function of signal frequency fa = ωa
2π

and pump detuning δ. For every detuning, the pump amplitude
pB is tuned so that the maximum gain max(G[ω]) = 15 dB. For
detuning δ < κ, there is one peak at ω = ωa. For δ > κ, there
are two discernable peaks at ωa and ωa + 2δ.

dBm is indicated by a dashed black line. The abrupt gain extinction
corresponds to an instable regime that will be discussed in the next
chapter.
Furthermore, we can determine the parameter gB by matching the

expectation from Eq. 57 to the measured complex reflection coefficient
Fig. 21. Coupling rate gB for different pump detunings δ is shown in
Fig. 24.

2.2.5 Two tone pumping

We describe here the main technique we proposed in Ref. [65] to
realise an analog simulation of the ultrastrong coupling between two
bosonic modes. We simultaneously apply two pumps, a detuned "blue"
amplification pump at ωB = ωa + ωb + 2δ and a "red" conversion
pump at ωR = ωa − ωb. The Hamiltonian now reads

1
h̄
Ĥ = ωaâ

†â+ ωbb̂
†b̂+ Ĥint, (58)
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Figure 24: Coupling rate gB extracted from the reflection coefficient mea-
surements for different pump detunings δ/2π = 0, 15 and 30 MHz.
For finite detunings, at small applied pump amplitudes there is
no gain, so gB is found to be zero. As in Fig. 20, gB is linear in
pump amplitude until the onset of parametric oscillation.

with

1
h̄
Ĥint = χ(p∗B + pB)(â

†+ â)(b̂†+ b̂)+χ(p∗R+ pR)(â
†+ â)(b̂†+ b̂).

(59)

Ĥint can be simplified in the RWA by neglecting the fast oscillating
terms. We find

1
h̄
Ĥint = χpB(â

†b̂†e−2iδ + âb̂e2iδ) + χpR(âb̂
† + â†b̂). (60)

Now by tuning the coupling of the two pumps to be equal, χpR =

χpB = g, in a frame rotating at ωa,b + δ, we obtain the Hamiltonian
of two effective modes with resonance frequencies −δ coupled at a
rate g

1
h̄
Ĥeff = −δâ†â− δb̂†b̂+ g(â† + â)(b̂† + b̂). (61)

Since δ can be chosen arbitrarily, it is possible to reach a regime
where κ < g < δ. The two modes are then in the ultrastrong cou-
pling regime. Our approach is therefore similar to the analog quan-
tum simulation of ultra strong coupling between a two level system
and a resonator [20]. By applying a set of pump tones we create

44



two effective modes whose frequencies are smaller than the genuine
coupling rate g.
Furthermore, this configuration offers the proper level of control on

the coupling strength through the pump amplitude, which enables us
to study the transition from strong to ultrastrong coupling.

2.2.5.1 Kerr effect

The effective USC Hamiltonian Eq. (61) in a rotating frame has
been derived from a three wave mixing Hamiltonian in the laboratory
frame. However, the fourth order non-linear terms that were neglected
in the expansion of the JRM Hamiltonian Eq. (21) give rise to a Kerr
effect that shifts the modes resonances. The additional Kerr term
reads

1
h̄
HKerr = Kaa(a

†)2a2 +Kbb(b
†)2b2 +Kaba

†ab†b

+Kap(pB + p∗B + pR + p∗R)
2(a+ a†)2 (62)

+Kbp(pB + p∗B + pR + p∗R)
2(b+ b†)2 (63)

where

Kaa = −
1

256ξ
5
aωa

Za
ZQ

LJRM (ϕext)

LJ (ϕext)
(64)

Kbb = −
1

256ξ
5
bωb

Zb
ZQ

LJRM (ϕext)

LJ (ϕext)

Kap = −
1
64ωaξa

|ϕp|2

|pB|2
LJRM (ϕext)

LJ (ϕext)

Kbp = −
1
64ωbξb

|ϕp|2

|pB|2
LJRM (ϕext)

LJ (ϕext)

The complete derivation of these expressions can be found in the
thesis of Emmanuel Flurin [60].
If we keep only the non-oscillating terms in the RWA we obtain

1
h̄
HKerr = Kaa(a

†)2a2 +Kbb(b
†)2b2 +Kaba

†ab†b

+Kap(2|pB|2a†a+ 2|pR|2a†a+ pRpBa
†a† + p∗Rp

∗
Baa)

+Kbp(2|pB|2b†b+ 2|pR|2b†b+ pRp
∗
Bbb+ p∗RpBb

†b†)

In the following section, we will add the Kerr nonlinearity into our
input-output theory model in order to take into account the frequency
shift that emerges from it at high pump powers.
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2.2.5.2 Input-Output Theory with Kerr terms

The self-Kerr terms Kaa and Kbb are much weaker than the cross-
Kerr terms and can thus be neglected. The one-color pump terms
only renormalize the resonance frequencies of the modes

1
h̄
H = [−δ + 2Kap(|pB|2 + |pR|2)]a†a+ [−δ + 2Kbp(|pB|2 + |pR|2)]b†b

+ gB(ab+ a†b†) + gR(ab
† + a†b) (65)

+Kap(pRpBa
†a† + p∗Rp

∗
Baa) +Kbp(pRp

∗
Bbb+ p∗RpBb

†b†)

So by definingδ(|pB|, |pR|) = δ− 2Kap(|pB|2 + |pR|2)→ δa

δ(|pB|, |pR|) = δ− 2Kbp(|pB|2 + |pR|2)→ δb

(66)

we can write
1
h̄
H = −δaa†a− δbb†b+ gB(ab+ a†b†) + gR(ab

† + a†b)

+Kap(pRpBa
†a† + p∗Rp

∗
Baa) +Kbp(pRp

∗
Bbb+ p∗RpBb

†b†)

We can then write the quantum Langevin equations in frequency
domain(iω− iδa +

κa
2 )a[ω] = −igBb[−ω]† − igRb[ω]− iKappRpBa[−ω]† +

√
κaain[ω]

(iω− iδb + κb
2 )b[ω] = −igBa[−ω]† − igRa[ω]− iKbpp

∗
RpBb[−ω]† +

√
κbbin[ω]

(67)

whose hermitian conjugates evaluated at −ω are(iω+ iδa +
κa
2 )a[−ω]† = igBb[ω] + igRb[−ω]† + iKapp

∗
Rp
∗
Ba[ω] +

√
κaain[−ω]†

(iω+ iδb +
κb
2 )b[−ω]† = igBa[ω] + igRa[−ω]† + iKbppRp

∗
Bb[ω] +

√
κbbin[−ω]†

(68)

We can write this system in a matrix form

M


a[ω]

b[ω]

a[−ω]†

b[−ω]†

 = D


ain[ω]

bin[ω]

ain[−ω]†

bin[−ω]†
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with

M =


i(ω− δa) + κa

2 igR iKappRpB igB

igR i(ω− δb) + κb
2 igB iKbpp

∗
RpB

−iKapp
∗
Rp
∗
B −igB i(ω+ δa) +

κa
2 −igR

−igB −iKbppRp
∗
B −igR i(ω+ δb) +

κb
2


(69)

and

D =



√
κa 0 0 0
0 √

κb 0 0
0 0 √

κa 0
0 0 0 √

κb

 (70)

We then use a numerical solver to calculate the inverse of the matrix
M so that the solution is given by F = M−1D, whose elements fi,j
give us the desired expression for a

a[ω] = f11ain[ω] + f12bin[ω] + f13ain[−ω]† + f14bin[−ω]† (71)

Finally the average rate of photons emitted from the mode a is

〈a†out[ω]aout[ω′]〉 = κa〈a[ω]†a[ω′]〉
= κa(|f13|2〈ain[−ω]ain[−ω′]†〉+ |f14|2〈bin[−ω]bin[−ω′]†〉)
= κa(|f13|2 + |f14|2)δ(ω− ω′) (72)

We have checked that these relations satisfy commutation relation
[a†out[ω], aout[ω′]] = δ(ω− ω′).

2.3 ground state in usc

In this section we look into different signature properties of the
ground state of two ultrastrongly coupled bosonic modes.

2.3.1 Two mode squeezing

One of the peculiarities of a pair of ultrastrongly coupled bosonic
modes is that its ground state is a two-mode squeezed state. To

47



demonstrate this, we can rewrite the Hamiltonian of two genuinely
ultrastrongly coupled bosonic modes (Eq. (11)) in terms of two col-
lective modes operators m̂ = 1√

2 (â+ b̂) and n̂ = 1√
2 (â− b̂)

1
h̄
Ĥ = (ω+ g)m̂†m̂+(ω− g)n̂†n̂+ g

2 ((m̂
†)2 + m̂2)− g2 ((n̂

†)2 + n̂2),

(73)

where we have considered the case of two degenerate modes such
that ωa = ωb = ω. The unitary time evolution generated by this
interaction Hamiltonian is

Û(t) = e−
i
h̄
Ĥintt = e−i

g
2 [(m̂

†)2+m̂2−(n̂†)2−n̂2]t (74)

Setting − igt
2 = ζ = reiφ, where ζ is the complex squeezing parameter

and r and φ are real numbers. This evolution is equivalent to the
squeezing operator

Ŝ(ζ) = eζm̂
2−ζ∗(m̂†)2e−ζn̂

2+ζ∗(n̂†)2 (75)

In the Heisenberg picture, the time evolution of m̂ and m̂† is given
by 

˙̂m = i
h̄ [Ĥ, m̂] = i[ g2 (m̂

†)2, m̂] = igm̂† = ζm̂†

˙̂m† = i
h̄ [Ĥ, m̂†] = ζm̂

(76)

The evolution of the field quadrature observables X̂m = m̂+m̂†√
2 and

P̂m = m̂−m̂†√
2i is thus

˙̂Xm = ζX̂m

˙̂Pm = −ζP̂m
(77)

such thatX̂m(t) = X̂m(0)eζt

P̂m(t) = P̂m(0)e−ζt
(78)

and similarilyX̂n(t) = X̂n(0)e−ζt

P̂n(t) = P̂n(0)eζt
(79)
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which finally implies〈X
2
m〉 = 〈P 2

n〉 = R2

2

〈P 2
m〉 = 〈X2

n〉 = 1
2R2 ,

(80)

where R = er. Thus for R > 1 the mode m is momentum squeezed
and position anti-squeezed, and the opposite for mode n. Indeed, the
standard deviations for the two field quadratures obey the Heisenberg
uncertainty relation 〈X2〉〈P 2〉 = 1

4 , while at the same time one of the
quadratures’ standard deviation is smaller than that of the vacuum,
〈X2〉vac = 〈P 2〉vac = 1

2 and the other one necessarily bigger.
As modes m and n are hybrid, X̂n = X̂a−X̂b√

2 and P̂n = P̂a+P̂b√
2 ,

their squeezing corresponds to a two-mode relative position squeezing
and total momentum anti-squeezing in the original basis. In general,
the two-mode squeezed vacuum does not imply squeezing in each
individual mode. On the contrary

〈X2
a〉 =

〈X2
m +X2

n〉
2 =

1
2
[ 1
2R2 +

R2

2
]
=

1 +R4

4R2 , (81)

which means that 〈X2
a〉 > 1

2 for any R 6= 1. Indeed, the uncertainty of
individual quadratures increases compared to vacuum, while that of
the difference of position observables as well as the sum of momentum
observables decreases. In the next section, we will see that in the case
of USC ground state, the situation is different.

2.3.2 Single mode squeezing

Another signature of the ultrastrong coupling is the presence of sin-
gle mode squeezing in the output radiation fields of both modes. We
can see this by identifying the two eigenmodes of the system, which
are called polaritons in the case of a genuine light-matter interaction.
The annihilation operators p̂1 and p̂2 of the two eigenmodes, defined
as p̂1 |GS〉 = p̂2 |GS〉 = 0, can be expressed as linear combinations of
the original operators â, â† and b̂, b̂†

p̂1,2 = t1,2â+ u1,2b̂+ v1,2â
† +w1,2b̂

†, (82)
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where the coefficients t1,2,u1,2, v1,2 and w1,2 are obtained by diagonal-
izing the Hopfield matrix [66] for the Hamiltonian of Eq.(11). These
coefficients are

~p1 =
1√
N1



√
(δ−2g)δ+δ

g − 1

−
√

(δ−2g)δ+δ
g + 1
−1
1

 (83)

and

~p2 =
1√
N2



√
(δ+2g)δ+δ

g + 1

−
√

(δ+2g)δ+δ
g + 1
1
1

 (84)

with eigenvalues

ω1,2 =
√
(δ± g)δ. (85)

N1,2 are the normalization coefficients, such that the condition |t1,2|2 +
|u1,2|2− |v1,2|2− |w1,2|2 = 1 is satisfied, imposed by the commutation
relation for bosonic operators. The expressions of eigenmode opera-
tors and eigenvalues determine validity of our model, that treats the
nonlinear Hamiltonian up to the third order. As a matter of fact, from
Eqs. (83) and (85), it can be seen that for the coupling rate larger
than half of the effective mode frequency, g > δ/2, the model is not
valid anymore. This limit has also been demonstrated and discussed
in the section 2.1.3 in analogy with mechanical resonators.
The Gaussian ground state |GS〉 is fully caracterized by the covari-

ance matrix V = {〈xixj + xjxi〉|GS〉 − 〈xi〉|GS〉〈xj〉|GS〉} in the basis
{x1,x2,x3,x4} = {X̂a, P̂a, X̂b, P̂b} and noise properties of the original
modes a and b in the ground state are given by the elements of the
covariance matrix.

2.3.3 Revealing the ground state correlations

Nevertheless, experimentally evidencing the nature of the ground
state is not straightforward. While the ground state of an ultra-

50



strongly coupled system is populated with correlated pairs of pho-
tons, these excitations are virtual and cannot escape from the cavity.
Indeed, owing to the energy conservation requirements, for an input
field in the vacuum state, the output is always in the vacuum state
as well and no radiation is emitted [67].
As a matter of fact, for genuine USC, the outgoing fields are related

to incoming fields by a symplectic matrix U
aout[ω]

aout[−ω]†

bout[ω]

bout[−ω]†

 = U


ain[ω]

ain[−ω]†

bin[ω]

bin[−ω]†

 .

As all the real excitations of the considered baths have by definition
positive frequency, for ω > 0, the outgoing modes simplify to

aout[ω > 0] = u11ain[ω] + u13bin[ω] (86)

and

bout[ω > 0] = u31ain[ω] + u33bin[ω] (87)

If both input states are vacuum, then the output is necessarily
vacuum too, because

ain |0〉 = bin |0〉 = 0. (88)

It has been theoretically shown that an ancilla two-level system can
be coupled to a bosonic mode ultrastrongly coupled to a bath of two-
level systems, such that its Lamb shift can be used to probe the exotic
ground state in a non-destructive manner [68]. However, in order to
release the bound photons into extra-cavity radiation that can be
experimentally observed, one possible solution is to modulate in time
the coupling rate g between the two modes in a nonadiabatic way [69].
When the interaction is abruptly switched-off, the energy contained
in the virtual excitations of the ground state is released in the form
of real excitations, until the system relaxes into its new ground state,
the vacuum state. This situation is illustrated in Fig. 25a.
This fast-modulation method is analogous to the dynamical Casimir

effect [70], where, if an artificial mirror moves at speed v that is not
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t0

real USC

(a)

t0

not USC
in

laboratory 
frame

(b)

t0

effective
USC

in
rotating 
frame

(c)

Figure 25: Schemes of three models describing two interacting bosonic
modes that are coupled to an environment, in which a squeezed
field is emitted. (a) In the case of genuine USC, the coupling
needs to be abruptly swiched-off in order to release the ground
field virtual excitations. (b) In the laboratory frame, coupling
rate is time modulated. (c) In the rotating frame of the simu-
lation, coupling is constant, but the dissipation rate is non-zero
even at negative frequencies.

negligible compared to the effective speed of light c, the field cannot
adjust smoothly and can be non-adiabatically excited out of the vac-
uum. Vacuum fluctuations induce screening currents in mirrors that
emit electromagnetic radiation consisting of real excitations.
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The key is thus in the ultra-fast time modulation which is not easy
to realize experimentally. Furthermore, in physical implementations
of light-matter coupling, measuring the corresponding correlations
between the two output channels of both bosonic modes seems cur-
rently out of reach, since matter excitations, such as in an electron
gas of quantum wells, decay through a non-radiative channel.
This is why an analog quantum simulation is a good candidate to

study the ground state properties of an ultrastrongly coupled system.
Whereas in the laboratory frame the coupling rate is time modulated
(see Fig. 25b), in the rotating frame of the simulation, the coupling
is constant, but due to the shift of the zero frequency in the rotating
frame of the simulation, the coupling to the environment is non-zero
even at negative frequencies (Fig. 25c). Their contribution to the
emitted field thus cannot be neglected as

aout[ω > 0] = u11ain[ω] + u12bin[ω] + u13ain[−ω]†+ u14bin[−ω]†

(89)

and the emitted photon rate is

〈aout[−ω]†aout[ω]〉 6= 0. (90)

Effective USC in a rotating frame thus allows access to the emitted
radiation that carries trace of the intracavity field. In the following
chapter, we are going to experimentally characterize both two-mode
and single-mode squeezing in the case of such effective USC realized
with a Josephson Mixer.

2.4 conclusion

The main results of this chapter are:

• Description of a scheme that maps a three-wave mixing de-
vice, such as a Josephson mixer, simultaneously driven with
two pump tones, onto a system of two bosonic modes in the
ultrastrong coupling regime.

• Characterization of properties of the radiation emitted in the
laboratory frame from the ground state of such an effective
ultrastrongly coupled system.
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3
EXPERIMENTALLY EVIDENCING S IGNATURES
OF THE ULTRASTRONG COUPL ING

"If you know where it’s going
it’s not worth doing."

Frank Gehry

In Chapter 2 we have shown that starting from a three wave mix-
ing Hamiltonian in the strong coupling regime, we can build an effec-
tive ultrastrong coupling between two bosonic modes a and b. When
modes a and b are in the vacuum state at the input, the two effective
modes are in their ground state and the output ports are in an un-
usual two-mode state, where each mode is squeezed vacuum, while the
two modes are quantum correlated. Moreover, the predicted squeez-
ing occurs between two propagating modes that are separated both
in space and frequency. In this chapter, we are going to present an
experimental evidence of the predicted ground state properties in the
USC regime.

3.1 spectral evidence of mode hybridization

The USC simulation frame rotates at frequency ωa,b + δ with re-
spect to the laboratory frame (Eq. (39)). Thus the positive and nega-
tive parts of the frequency spectrum in the rotating frame correspond
to measurable noise powers at positive frequencies in the laboratory
frame. We first perform a measurement of the power spectral density
around the effective frequencies −δ and δ, i.e. ωa,b + δ± δ in the lab-
oratory frame, while tuning the transition from strong to ultrastrong
coupling. As the detuning of the blue pump δ defines the resonance
frequencies of the effective modes, it has to be small enough so that
it is possible to reach the effective ultrastrong coupling g . δ/2. De-
spite that, it has to be larger than the dissipation rates of the modes,
in order to satisfy the strong coupling condition and be in the band
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resolved regime. Dissipation rates being κa = 2π × 17.6 MHz and
κb = 2π× 21 MHz, we opt for δ = 2π× 26 MHz.
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Figure 26: (a) Measured power spectral density on the output port of mode
a as a function of frequency ω and red pump amplitude AR in
the proximity of the resonance frequency ωa of the mode a. The
coupling of the blue pump is fixed to gB = 2π × 12 MHz. (b)
The corresponding mean rate of emitted photons predicted from
the input-output model Eq. (72).
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Figure 27: (a) Coupling rate gR as a function of the applied pump amplitude
AR inferred from the mean number of photons emitted from the
mode a calculated with the Eq. (72), matched to the measured
power spectral density shown in (b). Pump amplitude is color
encoded. The deviation from the linear dependence comes in part
from the saturation of the amplifier on the input pump line.
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We start by setting the coupling rate of the blue pump to gB =

2π × 12 MHz which corresponds to gB = 0.46δ for our choice of δ.
In this first measurement the red pump is turned off. The spectra
then develop a resonance at ω = ±δ, symmetrically for positive and
negative frequencies in the simulation frame. This resonance occurs at
the transition frequency δ of the effectively degenerate modes a and b.
As the coupling rate of the red pump gR is turned on and progressively
increased, both the resonance at δ and its image at −δ split into two,
leading to a total of four peaks, as shown in Fig. 27 for mode a and
Fig. 33 for mode b. Note that the two central peaks are much more
pronounced then the external ones. This splitting is equivalent to the
vacuum Rabi splitting in the case of a two level system coupled to
a harmonic oscillator, observed in a physically ultrastrongly coupled
light-matter systems [49, 50, 15].
As the splitting increases with gR, two out of four resonance fre-

quencies in the rotating frame shift towards ω = 0. This can be seen
as two peaks getting closer to the origin, corresponding to the reso-
nance frequency and its image on the negative part of the spectrum.
When the USC simulation condition is reached, gR ' gB ∼ 0.46δ, the
two peaks merge at the origin and the resonance occurs at ω = 0.
There are no longer four peaks but only three, and the one at the
origin is expected to correspond to the largest amount of two-mode
squeezing [65].
The limit gR = gB = g = δ/2 corresponds to the maximum cou-

pling that can be obtained between two mechanical oscillators cou-
pled through a spring (see Eq. (18)). For this reason, in the follow-
ing sections we will mainly focus on the physically relevant regime
gB,R < δ/2. At larger pump powers, the higher order terms in the
Josephson Mixer Hamiltonian change the picture anyway.

This observation of a hybridization of the two modes constitutes
a first convincing evidence of the USC regime. The second signature
we will be looking for is the single and two mode squeezing of the
radiation emitted when the system is in its ground state.
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Figure 28: (a) Measured power spectral density on port b as a function of
frequency ω and red pump amplitude AR in the proximity of
the resonance frequency ωb of the mode b. (b) Corresponding
expectation value of the photon emission rate calculated from
the input-output model.
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Figure 29: (a) Coupling rate gR as a function of the applied pump amplitude
AR inferred from the mean number of photons emitted from the
mode b calculated with the Eq. (72), matched to the measured
power spectral density shown in (b). Pump amplitude is color
encoded.

3.2 characterization of entanglement and squeez-
ing

One way to demonstrate entanglement is to use an entanglement
witness as in ref. [2] where two continuously generated entangled
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modes are recombined on a second Josephson mixer. By measuring
the decrease of the noise at the output of the witness below what is
classically allowed for a separable state, one can infer that the input
state presents entanglement [2, 60].
A more direct approach is to use a fast acquisition board to per-

form a brute-force noise correlation measurement. This strategy con-
sists in recording the distributions of the measurement outcomes of
all four quadratures of the two-mode state at room temperature on
a large number of realizations. The measured photon field statistics
can then be related to generalized quasi-probability distributions and
statistical moments. This method has been used to demonstrate en-
tanglement in a number of experiments [71, 72, 73, 74]. Indeed, by
performing a full joint tomography of the two-mode state, we can in-
fer the covariance matrix, which contains all the information needed
to calculate the amount of single and two-mode squeezing [75]. Two
schemes for field quadrature measurement can be used to characterize
itinerant microwave fields, the homodyne and the heterodyne detec-
tions.

3.2.1 Homodyne detection

In the homodyne detection setup, only one generalized field quadra-
ture X̂θ = 1

2 (Âoute
−iθ + Â†oute

iθ) of the output field Âout is mea-
sured. The cosine component of the field X̂θ=0 = X̂ can be de-
fined as a position variable and the sine component X̂θ=π

2
= P̂

as a momentum variable. Then the detected signal field V (t) =

Xa cos(ωat) + Pa sin(ωat) is analogically multiplied by a strong ref-
erence tone at the same frequency ωa using a microwave mixer. The
reference tone,Aref cos(ωat+ θ) is provided by a local oscillator (LO).
Therefore by filtering out the high frequency component and measur-
ing the average value of the output voltage, an outcome proportional
to Xθ is obtained. Finally by varying the phase θ of the local os-
cillator, the angle of the quadrature to measure can be chosen such
that the whole phase space is spanned [71]. From the measurement
outcomes, the probability density function P (Xθ) for measuring a
particular value of Xθ can be deduced. Note that this technique dif-
fers from its counterpart in visible optics where photodiodes are used
instead of voltmeters.
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The goal of quantum state reconstruction is to estimate the density
matrix ρab which characterizes the joint state of the propagating field
modes aout and bout. This is experimentally achieved by preparing
many times the state that we want to characterize and performing a
set of measurements on these states, which contain information about
diagonal and off-diagonal elements of the joint density matrix ρab.
In the particular case where measured observables are field quadra-

tures, measurement results are directly related to the phase space
distributions such as the Husimi-Q function Qρa(α) = 1

π 〈α| ρa |α〉 or
Wigner function Wρa(α) = 2

πTr[eiπâ
†âD†(α)ρaD(α)]. In the case of

homodyne detection of a single mode, the measured probability den-
sity function, P (Xθ) =

∫
dXθ+π/2W (Xθ,Xθ+π/2), is the marginal

of the Wigner function W . Wigner function is a quasi-probability
distribution, it is normalized to one, but it is generally non-positive.
Measured P (Xθ) are thus projections of the Wigner function which
can be used to reconstruct it by spanning the angle θ. A method such
as maximum-likelihood can be used to infer the quantum state from
the Wigner function obtained from a homodyne measurement.

3.2.2 Heterodyne detection

In our experiment we use the heterodyne detection setup, where
the two canonically conjugate field quadratures X̂ and P̂ are mea-
sured simultaneously, so that all the information needed for complete
quantum state reconstruction is acquired. The Husimi-Q function nat-
urally emerges from the heterodyne measurement and generates the
anti-normally ordered moments

〈an(a†)m〉 =
∫
α
(α∗)mαnQ(α). (91)

Being the expectation value of an observable, it is a directly mea-
surable quantity. The Q distribution is positive, bounded by 1/π
and normalized,

∫
d2αQ(α) = 1. For coherent states, the Husimi-Q

function is a two-dimensional Gaussian distribution with variance 1
centered around the amplitude of the coherent state. Half of these
fluctuations correspond to the intrinsic vacuum fluctuations of the
quantum field, while the other half come from the minimal added
uncertainty when directly measuring a Q function, which requires
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(a)

(b)

Figure 30: Wigner functions of (a) a statistical mixture state of density ma-
trix ρmix = |α〉〈α|+|−α〉〈−α|

2 and (b) of a coherent superposition
cat state ρcat = (|α〉+|−α〉)(〈α|+〈−α|)

2 for α ∈ {1, 2, 3}. The interfer-
ences around the origin appear as easily distinguishable feature
for the cat state.

the simultaneous detection of two non-commuting field quadratures
(phase-preserving amplification) [76]. One quadrature can in princi-
ple be measured without added noise (phase-sensitive amplification),
but not both. Note however that no information is lost on the input
state [77].
The state of a single mode of the radiation field belongs to an infi-

nite dimensional Hilbert space. This makes it in principle impossible
to exactly reconstruct any state, because an infinite amount of in-
formation needs to be acquired. Nevertheless, it is often possible to
reduce the relevant state space by measuring a finite set of moments.
For instance, coherent, thermal and squeezed states can all be char-
acterized by a finite set of moments. Actually, all of these states are
Gaussian [78], thus the statistical moments up to the second order de-
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(a)

(b)

Figure 31: Husimi functions of (a) a statistical mixture state of density
matrix ρmix = |α〉〈α|+|−α〉〈−α|

2 and (b) of a coherent superpo-
sition cat state ρcat = (|α〉+|−α〉)(〈α|+〈−α|)

2 for α ∈ {1, 2, 3}. Even
though Husimi function is bijective to the density matrix just as
the Wigner function, the distinguishable features are much less
clear. Precision of 1/

√
α is needed to distinguish between the

two states.

termine all of their higher order moments. The two-mode phase space
distribution is thus fully determined by the 4× 4 covariance matrix
V, which describes the joint statistics of the amplitude fluctuations
of the two modes.
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3.2.3 ON-OFF measurements

As microwave frequencies oscillate too rapidly to directly measure
and process the electric field electronically1, another purpose of het-
erodyne mixing is to down shift the signal to a frequency range that
can be resolved by commercial acquisition boards. This can be done
by mixing the signal with a LO reference tone at a slightly detuned
frequency ωa + ωh. The resulting signal on the output of mode a os-
cillating at frequency ωh can be recorded using an analog to digital
converter (ADC) and numerically demodulated. However, the sensi-
tivity of the ADC is such that it requires large amplitude fields of the
order of Volts, which contain a macroscopic number of photons per
sampling time, so that a linear amplification stage is needed on the
output line. Such an amplification stage necessarily adds some ther-
mal noise which implies that the complex amplitude of the detected
field reads

Âout =
√
Gchainâout +

√
Gchain − 1ĥ† = X̂ + iP̂ , (92)

where Gchain is the gain of the chain of amplifiers and ĥ is an ad-
ditional bosonic mode accounting for the noise added by the chain,
dominated by the noise added by a High Electron Mobility Transis-
tors (HEMT) cryogenic amplifier from Caltech university [79], [80]. In
order to get rid of this uncorrelated noise and extract the tiny signal
corresponding to the quantum microwave field, we are going to use
the ON-OFF subtraction technique as illustrated in Fig. 32.
Signal is recorded with pumps turned on and immediately after

with pumps turned off and this is repeated to acquire measurement
statistics. Finally histogram of values measured with pumps turned
off is subtracted from the one with pumps turned on. This technique
also allows to compensate residual gain fluctuations that are slower
than the measurement repetition rate.

3.2.4 Calibration of the quadrature measurements

In order to demonstrate squeezing and entanglement, it is neces-
sary to calibrate the quadrature measurements. By measuring the

1 Although owing to technological developments, this is rapidly changing and could
be wrong a few years from now.
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ON OFF ON -  OFF

Figure 32: ON-OFF subtraction technique. The detected signal is domi-
nated by added uncorrelated noise (yellow), which hides the
squeezed vacuum (purple) when the pumping is turned ON, or
the vacuum fluctuations (red), when the pumping is turned OFF.

total noise power at the end of the detection setup as a function
of the gain of the Josephson Mixer, the total amplifying chain gain
can be estimated, from the Josephson Mixer input to the measure-
ment apparatus. To verify that the amplifying chain gain is constant
and doesn’t depend on the applied pump amplitudes, we have sent
a strong, far detuned reference tone on the input port and measured
its refection amplitude as a function of different blue and red pump
amplitudes. We found the reflection amplitude to be constant within
0.6 %.
From the Eq. (92), the variance of the detected signal reads [76]

〈ÂoutÂ†out〉 = Gchain〈âoutâ†out〉+ (Gchain − 1)〈ĥ†ĥ〉 (93)

The variance of the noise bosonic mode ĥ is taken in a thermal state,
whereas the variance of the propagating mode aout depends on the
state of the Josephson Mixer. When the amplification pump is turned
on, the mean value 〈âoutâ†out〉 is calculated on a squeezed vacuum
state, while when the pump is turned off, the output mode is in
vacuum. If both input modes are assumed to be in the vacuum, for a
given gain of the Josephson Mixer GJM

〈âoutâ†out〉ON = GJM 〈âinâ†in〉+ (GJM − 1)〈b̂†inb̂in〉 (94)
= GJM

so that

〈ÂoutÂ†out〉ON = GchainGJM + (Gchain − 1)〈ĥ†ĥ〉 (95)
= GchainGJM + (Gchain − 1)〈ĥ†ĥ〉 (96)
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On the other hand, when the amplifying pump is turned off, the
variance of the detected signal becomes

〈ÂoutÂ†out〉OFF = Gchain〈âinâ†in〉+ (Gchain − 1)〈ĥ†ĥ〉 (97)
= Gchain + (Gchain − 1)〈ĥ†ĥ〉

Finally we can find the gain of the amplification chain

Gchain =
1

GJM − 1
[
〈ÂoutÂ†out〉ON − 〈ÂoutÂ

†
out〉OFF

]
(98)
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Figure 33: (a) Measured Josephson Mixer gain GJM as a function of ap-
plied pump amplitude AB . The full line corresponds to expected
gain for the Jospehson Mixer Eq. (99). (b) Determination of the
amplifying chain gain for different values of the amplifying pump
and thus Josephson Mixer gain. We take the mean value of the
values corresponding to Josephson Mixer gains up to 10 dB. For
higher gains, Kerr effect becomes important and it is harder to
estimate the gain properly.

We first measure the gain of the Josephson Mixer GJM using a
Vector Network Analizer (VNA) for different pump amplitudes AB,
as shown in Fig. 33a. It is reproduced by

GJM = (
1 + ρ2

1− ρ2 )
2, (99)

where ρ = AB
Ath and Ath is the threshold amplitude. Then, for those

same pump amplitudes, we prepare EPR state and measure the quadra-
tures for the two mode a and b using a fast acquisition card. From
the measurement statistics we determine the variance in ON and OFF
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state 〈ÂoutÂ†out〉 = 〈X̂aX̂
†
a〉+ 〈P̂aP̂ †a 〉. Finally we calculate Gchain =

Ga for mode a and Gb for mode b. The estimated amplification chain
gain for the two modes as a function of blue pump amplitudes is
shown in Fig. 33b.
There is an important uncertainty attached to the estimation of

Ga and Gb. Although these gains are expected to be independent
of the pump amplitudes as shown by the lack of dependance of the
amplitude of the reflected tone out of resonance, the calculated val-
ues of both Ga and Gb decrease at high pump amplitudes. It can be
explained by the saturation of room temperature amplifiers by the
strong pump tone. Also, at high gains, close to the parametric oscil-
lation threshold, there is an uncertainty attached to the estimation
of the gain as the Kerr effect becomes important. We thus only take
into account the values obtained at lower pump amplitudes where
amplification is linear. Taking the mean value for Jospehson Mixer
gains up to 10 dB, we obtain Ga = 4.15× 10−8 and Gb = 9.25× 10−8.

3.2.5 EPR state

We first calibrate our technique for squeezing detection by prepar-
ing an EPR two-mode squeezed state (Eq.(29)) in the standard res-
onant amplification pumping scheme [2]. By applying just the blue
pump on resonance, the EPR state is created between the propa-
gating modes aout and bout. Indeed, there are few different ways to
prepare a two-mode squeezed state that are summarized in Table 4.
By mixing a single mode squeezed state with a vacuum state at

the same frequency in a beamsplitter, two spectrally degenerate but
spatially separated entangled fields are created. The two mode squeez-
ing is then limited to 3 dB. In the microwave domain, the squeezed
state can be produced using a Josephson Parametric Amplifier (JPA)
that performs a squeezing operation on the incident vacuum state,
Ŝ(ξ) |0〉, where Ŝ(ξ) = e

1
2 ξ
∗â2− 1

2 ξ(â
†)2 is the single mode squeezing

operator. Alternatively, two identical single-mode squeezed states can
be recombined on a beamsplitter in order to increase the amount of
entanglement. For the optical frequencies, squeezing is created in op-
tical parametric oscillators (OPO) that consist of an optical resonator
and a nonlinear crystal that provides a Kerr nonlinearity. Two identi-
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two-mode
squeezing spatially degenerate spatially non degener-

ate (EPR)

spectrally
degenerate

single-mode squeez-

ing

JPA + BS [73, 81, 82]
NOPO + BS [83, 84]

spectrally
non-
degenerate

JPA [72]
Josephson Mixer [2]

Table 4: Different realizations of two mode squeezing.

cal OPOs can thus be driven by the same LO and their output fields
recombined on a beamsplitter in order to create two-mode squeezing.
Moreover, a JPA can be used to create entanglement between two

spatially degenerate but spectrally separated modes [72], as illus-
trated in Table 4. However, the Josephson Mixer is unique in its
ability to create both spectrally and spatially non degenerate two-
mode squeezing. As a matter of fact, when the amplification pump
tone is applied at the sum frequency ωp = ωa + ωb, with both modes
initially in vacuum state, an EPR pair is generated through sponta-
neous parametric down-conversion and distributed between modes a
and b. As the entangled field continuously leaks out in the propagat-
ing modes aout and bout, the two propagating modes are entangled as
well.
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In order to determine the elements of the covariance matrix, we de-
tect the four quadrature components and store the marginal distribu-
tions of their values in two-dimensional histograms for the six possible
pairs of components {Xa,Pa}, {Xb,Pb}, {Xa,Pb}, {Xb,Pa}, {Xa,Xb}
and {Pa,Pb}. For each pair we acquire a reference histogram with the
pump turned OFF, which characterizes the quadrature distribution
of the effective noise mode h (Eq.(92)). This reference histogram is
then subtracted from the histogram acquired with the pump turned
ON [72]. The pulse sequence used in the experiment can be seen in
Fig. 34a.
A square pump pulse is applied at the sum frequency ωp = ωa +

ωb = 2π × 15.0 GHz for 2.5 µs. The pump amplitude is set to Ap =
0.145 corresponding to the gain of Josephson Mixer GJM = 16.15 dB
and the coupling rate gB = 2π × 8.5 MHz. Signal from the outgoing
mode aout are recorded for 1 µs at ωa = 2π× 8.5 GHz, and from the
mode bout at ωb = 2π × 6.5 GHz. After 2 µs, the signal is recorded
with pumps turned off. The whole sequence lasts 10 µs and is repeated
106 times. This enables elimination of the low frequency fluctuations
in signal (ω < 2π× 100 kHz).
When the pump tone is turned off, measured noise modes are de-

scribed by perfectly circular Gaussian distributions of variance σOFF ,
as can be seen in Fig. 34b. In the histograms with pumps turned on,
there is a tendency that can be recognized between the same quadra-
tures of the two modes a and b, but the signal is however dominated
by the added noise.
On the other hand, the subtraction between all the pairs of his-

tograms exhibits clearly distinguishable features. Sub-systems them-
selves contain no quantum signatures in their self-correlations, but
observed cross-quadrature correlations indicate presence of two-mode
squeezing. This means that although none of the quadratures X̂a, X̂b,
P̂a, P̂b is squeezed itself, quantum correlations are present in the col-
lective variables, and particularly in the relative position X̂a− X̂b and
the total momentum P̂a+ P̂b, which are squeezed below the standard
vacuum limit of σvac = 1

4 .
Actually, for the single mode histograms {Xa,Pa} and {Xb,Pb},

we observe a phase independent increase in the quadrature fluctu-
ations, implying a higher probability to measure larger quadrature
amplitudes. This feature corresponds to the phase-insensitive amplifi-
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cation of the vacuum in each of the individual modes a and b. However,
for the {Xa,Xb} and {Pa,Pb} histograms, we find an increase in the
fluctuations along the diagonal, indicated by the positive valued re-
gions in the histogram differences and a decrease in the fluctuations
in the perpendicular direction. Both of these observed features are
characteristic of a two-mode squeezed state.
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Figure 34: (a) Pulse sequence used in the experiment. Measured quadrature
histograms in the EPR state with entangling pump (b) turned
OFF, (c) turned ON and (d) subtraction between ON and OFF
histograms for 6 different quadrature pairs. Each bin is 1×1 wide
and the color bars are expressed in number of counts.70



3.2.6 Pulsed measurement of the USC ground state

The simulation of the USC requires simultaneous pumping with
a detuned blue pump and a resonant red pump. Phases of the RF
sources that are used to produce these pump tones can drift in time,
and the relative phase acquired over the total duration of a mea-
surement can be non negligible, as a single measurement is repeated
5× 105 times in order to acquire statistics. A strategy we use to keep
the two pump tones well locked in phase is to create them by mixing
two RF tones produced by two sources whose frequencies are set to
ωa + ∆ + δ and ωb − ∆ + δ, such that their sum gives the blue de-
tuned pump ωB = ωa + ωb + 2δ and their difference is ωa − ωb + 2∆.
The latter is then mixed with a tone oscillating at 2∆ created by an
Arbitrary Wave Generator (AWG), in order to pulse the red pump
ωR = ωa−ωb, as schematically represented in Fig. 35. The blue pump
is pulsed using an RF switch.

AWG ADCADC RF
switch

Figure 35: Heterodyne detection setup used for the pulsed off-resonant
pumping required for the analog USC simulation.
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The purpose of the offset ∆ is to avoid a possible leakage of the
LO tone at ωa,b + δ into the system, because it could interfere with
the output field which is at the same frequency as the one at which
the field is expected to be squeezed. The offset ∆ thus has to be large
enough to avoid the risk of interference with the signal, but small
enough to be in the bandwidth of the ADC, because as we will see,
it will set the heterodyning frequency.
The field is predicted to be maximally squeezed at frequency ωa,b+

δ in the laboratory frame, corresponding to ω = 0 in the analog
simulation frame. For instance, for the mode a, the outgoing signal
at frequency ωa+ δ is multiplied by a LO tone at ωa+ δ+ ∆, so that
the resulting signal carrier oscillates at ∆ = 2π× 125 MHz. Since the
observables X̂a = Re[âout] and P̂a = Im[âout] associated with these
quadratures do not commute, the signal needs to be split in two parts
so that the quadratures are detected separately.

3.2.7 Emission radiation of the USC ground state

The covariance matrix V = {〈xixj + xjxi〉|GS〉 − 〈xi〉|GS〉〈xj〉|GS〉}
in the basis {x1,x2,x3,x4} = {Xa,Pa,Xb,Pb} can be put in the form

V =

 α χ

χT β

 (100)

where 2× 2 matrices α and β are single-mode covariance matrices
for modes a and b. They can be independently diagonalized, so that
we can determine the amount of squeezing of each of the propagating
modes aout and bout from their eigenvalues σmina , σmaxa , σminb and σmaxb .
In order to quantify the squeezing and check that the variance of the
squeezed quadrature decreases bellow that of the vacuum fluctuations,
we use the measure of squeezing

rmina,b = 10 log10

[ σmina,b
Gchain

− ( σOFFGchain
− σvac)

σvac

]
(101)

where σvac = 1
4 is the variance of the vacuum fluctuations and σOFF

is the variance of the detected signal when the pumps are turned
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off. Note that σOFF
Gchain

− σvac corresponds to the noise added by the
amplification chain referred to the input. It is subtracted from the
variance of the measured signal in order to recover the variance of
the propagating field before the noisy amplifying chain.
Subtracted histograms for the USC interaction turned ON and

OFF, shown in Fig. 36b are radically different than in the case of
the EPR state, shown in Fig. 34. In the ground state of the effective
USC, correlations are present both between the two quadratures of
each of the modes a and b, as well as between the two modes.
We can study the transition from strong to ultrastrong coupling

regime by measuring single-mode and two-mode squeezing as a func-
tion of the applied pump amplitudes.

3.2.7.1 Single mode squeezing

We have measured the single-mode squeezing for both modes a
and b, for coupling rates of the blue and the red pump going from
0 to δ/2. For each pair of pump amplitudes, 106 measurements of
the field quadratures were performed, each measurement followed by
the reference measurement with pumps turned off. Finally, from mea-
sured quadrature distributions, squeezing parameter rmina,b is deduced
for each pair of pump amplitudes. It is shown in Fig. 37 as a function
of coupling rates of the two pumps.
Since bandwidths of modes given by dissipation rates κa,b are not

negligible compared to the detuning δ, when only the blue pump is
applied, the process resembles the creation of an EPR state. When
the other mode is traced out, the density matrix describing each
of the subsystems is that of a thermal state. Their variances are
thus increased compared to that of the vacuum, and the squeezing
parameter is positive. This corresponds to the red region in each of
the plots in Fig. 37.
However, when the amplitude of the red pump is progressively

increased, the noise in one field quadrature progressively decreases,
reaching the squeezing of−1 dB for the mode a and−2.5 dB (Fig. 37a)
for the mode b (Fig. 37a). This asymmetry is due to the difference
between the dissipation rates of the two modes, κa/2π = 17.6 MHz
and κb/2π = 25 MHz, and is reproduced by theory (Fig. 37c, 37d).
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ON OFF

measure

pulse sequence duration

(a)

(b)

Figure 36: (a) Pulse sequence used for the ON-OFF subtraction. (b) Sub-
tracted histograms with USC interaction turned ON and OFF
for 6 different quadrature pairs in the ground state. Correlations
are visible both on the single mode quadratures and between the
two delocalized propagating modes. Bins are 1× 1 wide and the
color bars are expressed in number of counts.

The antisqueezing of the conjugate quadrature in the basis that
diagonalizes single-mode covariance matrices α and β reads

rmaxa,b = 10 log10

[ σmaxa,b
Gchain

− ( σOFFGchain
− σvac)

σvac

]
. (102)
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Figure 37: Measured single-mode squeezing on modes a (a) and b (b).
Squeezing parameter rmin in dB is plotted as a function of pump
coupling rates gB and gR determined from noise measurements
(see Fig. 20 and Fig. 29a). (c) Corresponding predicted single-
mode squeezing from input-output theory for the mode a and
(d) for the mode b.

It is shown in Fig. 38, as a function of coupling rates gB and gR of
the two pumps. When only the conversion pump is turned on, the
variance remains constant as both modes are in vacuum. When the
amplifying pump is turned on, there is more noise added to the mode
b than to the mode a, because it is more coupled to the transmission
line.
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Figure 38: Measured single mode anti-squeezing on modes a (a) and b (b).
Antisqueezing parameter rmaxa,b in dB is plotted as a function of
pump coupling rates gB and gR determined from noise measure-
ments Fig. 20 and Fig. 29a. (c) Predicted antisqueezing from
input-output theory for the mode a and (d) for the mode b.
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3.2.7.2 Two-mode squeezing

Two-mode squeezing can be characterized by considering the vari-
ance of collective variables such as Xa −Xb, Xa +Xb, Pa − Pb and
Pa+Pb. Measured variances of the total momentum and relative posi-
tion are shown in Fig. 39, together with expected variances calculated
in the quantum Langevin equation formalism. Similarly, measured
variances and their expectations for the complementary antisqueezed
collective quadratures, that is relative momentum and total position,
are shown in Fig. 40.
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Figure 39: (a) Measured variance of the total momentum and (b) of the
relative position. (c) and (d) Expectation values for the variances
of the collective squeezed variables calculated using the input-
output theory. Note that there is more squeezing in the total
momentum than in the relative position.

The determination of a squeezing parameter is highly sensitive to
gains Ga and Gb of the amplification setups. The uncertainty on
their exact values at high pump amplitudes thus leads to a large
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Figure 40: (a) Measured variance of the total position and (b) of the relative
momentum. (c) and (d) Expectation values for the variances of
the collective antisqueezed variables calculated using the input-
output theory.

uncertainty on the squeezing parameter. In practice, the calculated
squeezing parameter takes imaginary values for some high values of
the pump amplitudes. We have checked however that even with the
least favorable values for Ga and Gb, the variance of the squeezed
collective variables goes bellow that of the vacuum fluctuations.
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3.3 quadrature resolved spectroscopy

In this section we present an improvement on the measured power
spectral density as shown in Fig. 29b, where the noise is measured
separately for each quadrature of the field as a function of frequency.
Characteristic features are predicted for the dependence of the sin-
gle mode squeezing parameter as a function of frequency, which this
measurement aims at demonstrating.
In order to measure the noise on a particular quadrature at a given

frequency δω in the simulation frame (ωa + δ + δω in the lab frame
for port a), we first numerically demodulate the signal on a port
at the level of the ADC at frequency ∆ − δω (see Fig. 35) for two
orthogonal quadratures, say x and y. With a varying frequency, the
phase reference is ill defined but it is possible to calculate the variance
σ(θ) = (cos(θ)x+ sin(θ)y)2 for any phase θ. In Fig. 41, we show the
maximal and minimal variances σ(θ) as a function of frequency re-
ferred to the variance obtained with the pump turned off (0 dB). We
have checked that minimal and maximal variances are obtained for
orthogonal quadratures as expected for Gaussian states. This proce-
dure is equivalent to calculating the eigenvalues of the full covariance
matrix in the measurement basis xa,b and ya,b for a and b modes.
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Figure 41: Measured minimum and maximum variance σmin and σmax as
a function of frequency δω in the proximity of the origin of the
rotating frame, corresponding to ωa + δ in the laboratory frame.
Figures (a) and (b) correspond to two different values of the
coupling rate of the blue pump gB . Full line corresponds to the
expectation values calculated using the input-output theory.
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In Fig. 41, we show the measured and predicted variances as a
function of frequency for two values of the blue pump amplitude
in a regime where gB . δ/2. Below vacuum squeezing (σmin < 1)
can be observed over a range of frequencies comparable to 2δ and
a characteristic bump can be observed over the same bandwidth for
the antisqueezing component (σmax).

3.4 conclusion

The main results of this chapter are:

• Spectroscopic detection of frequency splitting as a function of
coupling rate, with demonstrated coupling rates g of the order
of the effective frequencies δ.

• Measurement of quadrature statistics for the emitted radiation
in the effective ultrastrong coupling regime and detection of
both the single mode and the two mode squeezing that go below
the variance of the vacuum fluctuations.

• Measurement of single mode quadrature squeezing and anti-
squeezing as a function of frequency.
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Part II

Q U A N T U M N O D E





4
QUANTUM NODE FOR QUANTUM
INFORMATION PROCESS ING

"The day science begins to
study non-physical
phenomena, it will make
more progress in one decade
than in all the previous
centuries of its existence."

Nikola Tesla

Building a large scale quantum computer capable of performing
fault tolerant quantum information processing requires long coher-
ence lifetime of quantum bits. To extend the lifetimes, the best solu-
tion known up to date is the quantum error correction (QEC) [85, 86].
It requires errors to be sparse, below a certain threshold, so that they
can be identified and corrected. This threshold and thus the efficiency
and complexity of QEC depend on the circuit architectures.
One of the most popular architectures, inspired by that of classi-

cal processors, are stabilizer codes. The idea here is to redundantly
encode information in a register consisting of many qubits and thus
offering a large Hilbert space. A particular stabilizer code, called a sur-
face code, is commonly adopted with superconducting circuits [87, 88].
The main challenge with this architecture consists in building a pro-
cessor with 100 or even 1000 qubits, which is beyond the current state
of the art, as well as monitoring all the decoherence channels brought
by every qubit in order to detect the error syndromes.
An alternative is a modular architecture consisting of smaller in-

terconnected registers. Each register should contain a memory qubit
that stores the signal and performs local error correction, and commu-
nication qubits that interact with other modules [7]. Modular quan-
tum networks are expected to have reduced undesired cross-talk and
minimize error propagation [89]. Theoretical work has shown that
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relatively high threshold for error rates within each module can be
tolerated even with noisy quantum communication channels [90].
A promising implementation of modular architecture for a future

quantum network is based on quantum nodes connected through pho-
tonic channels [91]. Thanks to their rapid propagation and the ability
to be guided through optical fibres with limited loss, optical photons
are good candidates for communicating quantum information over
long distances. Superconducting qubits on the other hand, have much
smaller energy level separations, so that they couple to microwave
photons. This qualifies them as a candidate for building a microwave
quantum network.
In such quantum network composed of many quantum nodes and

channels, quantum interconnects are essential to reversibly convert
quantum states from one physical system to another [89]. A mi-
crowave quantum node should generate and distribute microwave
entangled fields while enabling control of their emission and recep-
tion over time [22]. This second functionality is that of a quantum
memory.
In this chapter we will first review different existing implementa-

tions of a microwave quantum node with various long lived hybrid
systems and we will in particular focus on the use of microwave res-
onators as quantum memories. Then, we will explain how coupling
such a memory resonator to a qubit can enable preparation of arbi-
trary quantum states, as well as their readout. Finally, we will show
how a microwave quantum node can be implemented using microwave
resonators coupled through a Josephson ring modulator, a device
called Josephson Parametric Converter.

4.1 microwave quantum nodes: state of the art

Coupling of microwaves to various systems has been demonstrated
over the past few years. By consequence, different hybrid systems
have been developed by coupling Josephson circuits to highly coherent
systems for quantum state storage. Some examples are summed up
in Table 5. We will briefly review the most promising ones.
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system experiment ts

NV centers [35] ∼ 200 ns

magnons [92] ∼ 700 ns

mechanical
resonator [93] ∼ 90 µs

piezoelectric
resonator [94] 17 µs

coaxial
λ/4

resonator
[95] 1.33 ms

Table 5: Examples of experimental realizations of a microwave quantum
memory with different physical systems.
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4.1.1 Spin ensemble memories

Spin ensemble based quantummemories for superconducting qubits
were built both at CEA Saclay [35] and Atsugi in Japan [36] by cou-
pling a superconducting qubit to a spin ensemble of Nitrogen Va-
cancy (NV) centers in diamond. Although the coupling rate g of one
individual microscopic system, such as a single NV spin, to a super-
conducting circuit is too weak for quantum information applications
1, ensemble of N such systems is enhanced by collective effects and
coupled at a rate

√
Ng. In the low excitation limit this collective

variable behaves as a harmonic oscillator, which enables coherent ex-
change of a single quantum of energy between the qubit and the
macroscopic ensemble of NV centers. Any arbitrary quantum state of
the microwave field can thus be mapped on the coherent state of the
spin ensemble. However, the storage time of this memory is limited
by two phenomena. On one side the electronic spin of the NV cen-
ter is coupled through the hyperfine interaction to the nuclear spin
of 14N . This hyperfine structure causes an interference effect result-
ing in short spin dephasing times, ultimately limiting the fidelity of
the memory storage-retrieval process. On the other side, each indi-
vidual spin experiences a different local magnetic environment which
results in an inhomogeneous broadening of the spin ensemble reso-
nance. Clever manipulations can however use these effects to realize
multimode storage [97].
Finally, although the collective coupling in enhanced with the num-

ber of spins N , when this number becomes important, the spin-spin
interactions degrade the coherence time. A trade off thus needs to be
made on the number of spins between large coupling and long coher-
ence times. An alternative and counterintuitive approach consists in
introducing a strong exchange between the neighboring spins and is
adopted with ferromagnetic magnons.

4.1.2 Ferromagnetic magnons memories

Magnons are quanta of collective excitation modes in ordered spin
systems such as a ferromagnets. In ordered systems, the spin dynam-

1 Although works in this direction are very promising [96].
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ics is dominated by the strong spin-spin exchange and dipolar inter-
actions. This results in narrow linewidth magnetostatic modes which
are thus good candidates for high quality long lived quantum memo-
ries. In the Tokyo group, strong coherent coupling has been realized
between a single magnon excitation of a yttrium iron garnet (YIG)
ferromagnet and a superconducting qubit, mediated by the virtual
photon excitation of a microwave cavity [92].
Recently, a big step was made towards encoding the state of a

qubit into a superposition of magnon coherent states in a magne-
tostatic mode, when strong dispersive regime was demonstrated in
quantum magnonics [98]. Moreover, bidirectional conversion has been
realized between microwave and optical photons in macroscopic YIG
sphere [99]. This opened the path towards the transfer of quantum
states between superconducting qubits and photons in optical fibers,
even tough the maximum achieved photon conversion efficiency was
quite small, of the order of 10−10. As a matter of fact, frequency con-
version of electromagnetic field requires some nonlinear interaction,
such as χ(2) nonlinearity in ferroelectric crystals like LN and KTP, or
Josephson nonlinearity in parametric amplifiers based on Josephson
junctions. In the case of the conversion from microwave to optical
photons, the difficulty is that the nonlinearity is often small.
The YIG based converter consists of a microwave cavity and a mag-

netostatic mode called the Kittel mode, that are strongly coupled.
An itinerant microwave field mode is then coupled to the converter
through the microwave cavity mode, whereas a traveling optical field
mode is coupled to the converter through the Kittel mode. The lim-
iting factor for the conversion efficiency is the small magnon-light
coupling.
In the following section, we will review the currently most efficient

and promising platform for quantum transducers between spectrally
distant frequency domains, that is based on optomechanical devices.

4.1.3 Hybrid Optomechanical Quantum Node

Since the quantum ground state cooling of mechanical resonators
has been demonstrated in 2011 at Boulder [100] and at Pasadena
[101], optomechanical systems have entered the scene of possible
building blocks for quantum information processing networks.
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Figure 42: Hybrid optomechanical quantum node is composed of a mechan-
ical oscillator that is simultaneously coupled to an optical and
a microwave cavity, thus allowing entanglement distribution and
quantum states conversion across the through different ranges of
electromagnetic spectrum.

Optomechanical coupling is mediated by the radiation pressure ex-
erted by the light on a mechanical resonator. The interaction is thus
proportional to the number of photons in the cavity and to the me-
chanical displacement, such that the interaction Hamiltonian reads

Ĥint = h̄gâ†â(b̂+ b̂†), (103)

where â is the annihilation operator for microwave cavity photons
and b̂ is the annihilation operator for mechanical phonons, such that
the position of the mechanical resonator is defined as x̂ = xzpf (b̂+

b̂†). The strong coherent field â can be split in the average coherent
amplitude 〈â〉 = α and the fluctuating term δâ

â = 〈â〉+ δâ, (104)

so that the Hamiltonian can be linearized

Ĥint = h̄g(α+ δâ)†(α+ δâ)(b̂+ b̂†) (105)

and then expended in powers of α. The |α|2 term is an offset coming
from the average radiation pressure 〈F 〉 = h̄|α|2g

xZPF
. Assuming that

α =
√
N is real and neglecting the second order term in δâ†δâ, the

Hamiltonian finally reads

Ĥint = h̄g
√
N(δâ† + δâ)(b̂+ b̂†). (106)
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The cavity is driven at ωa+∆, where ωa is the resonance frequency of
the optical cavity and ∆ is the detuning of the laser to the cavity. If the
detuning is set to the frequency of the mechanical mode, ∆ = ωb, the
interaction Hamiltonian simplifies to the parametric down-conversion
Hamiltonian

Ĥpdc = h̄g
√
N(δâ†b̂† + δâb̂), (107)

equivalent to the parametric amplification Hamiltonian of the Joseph-
son Ring Modulator. Similarly, by setting the detuning to ∆ = −ωb,
the beam-splitter Hamiltonian is obtained

Ĥbs = h̄g
√
N(δâ†b̂+ δâb̂†), (108)

equivalent to the parametric conversion of the Josephson Ring Mod-
ulator.
The two necessary requirements for a quantum node are thus ful-

filled and their implementation was experimentally demonstrated, the
entanglement distribution [74] and the coherent state transfer be-
tween the microwaves and the mechanical resonator [93, 102]. Fur-
thermore, as mechanical oscillators combine high quality factors with
low resonance frequencies, they are a promising candidate for long
lived quantum memories.
Similarly to magnons, phonons in nanomechanical devices are spa-

tially extended collective excitations that interact coherently both
with microwave and optical degrees of freedom. The Boulder group
demonstrated record conversion efficiency of 0.1 between microwaves
and optical photons on a bandwidth of 30 kHz [103].
Finally, piezoelectric materials can be used to achieve strong cou-

pling between single electrical and mechanical excitations. Recently,
the Yale group has demonstrated strong coupling between a supercon-
ducting qubit and the phonon modes of an acoustic wave resonator
using an aluminum nitride (AlN) piezoelectric transducer [94].

4.1.4 Microwave cavities

A straightforward approach for a quantum node design is a full mi-
crowave architecture, where a superconducting microwave resonator
is used for quantum state storage. Indeed, superconducting resonators
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have a very weak Kerr effect nonlinearity and are orders of magni-
tude more frequency tunable then mechanical resonators. They are
also routinely coupled to superconducting qubits and have small in-
trinsic losses.
There are two broad categories of superconducting microwave res-

onators, 2D planar on chip resonators and 3D cavities. They will
be analyzed in more details in the section 4.2. Quantum memories
have been realized with both 2D and 3D microwave resonators. Pla-
nar microwave resonator memories were realized at UCSB [104] and
at Chalmers [105]. In both cases, tunable coupling was integrated
through a superconducting quantum interference device (SQUID),
whose inductance can be controlled by an externally applied mag-
netic flux bias.
The Yale group has recently developed a robust 3D architecture

based on a λ/4 coaxial section [95]. Thanks to a design that does
not involve connecting parts with seams, which were identified as the
main source of losses and decoherence, it has enabled reaching record
storage time of a ms. Note that in another context, microwave cavities
reach a fraction of a second lifetime in CQED [106].

4.2 microwave resonators

4.2.1 Planar microwave resonators

In planar resonators, photons are confined in one dimension and
travel along a transmission line. The transverse dimension can be
much smaller than the wavelength, which enables very strong cou-
pling to mesoscopic objects.
Planar resonators come in several geometries. For the samples used

in the experiments described in this thesis we used microstrip and
coplanar waveguide (CPW) geometries. Microstrip transmission lines
consist of a conductive strip of width w and thickness t and a wider
ground plane, separated by a dielectric substrate of height h and
relative permittivity εr, as shown in Fig. 43 (a). When w < h, an
approximate expression for the characteristic impedance of microstrip
transmission line [107] is

Zµs0 =
60
√
εeff

ln
(

8 h
w

+ 0.25w
h

)
, (109)
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(a)

(b)

Figure 43: (a) Schematic of the microstrip geometry. Side view is shown
on the left and the top view on the right. White area is the
substrate and red areas are superconducting films. (b) Schematic
of the CPW geometry. These systems are microwave analogs of
a Fabry-Perot cavity, where the cuts in the central conductor
play the role of mirrors. The size of the cut, that is the value of
capacitance, determines the transparence of the mirror.

where the effective dielectric constant is

εeff =
εr + 1

2 +
εr − 1

2 [(1 + 12 h
w
)−

1
2 + 0.04(1− w

h
)2]. (110)

As some of the field lines are in the dielectric region and some are
in the air, and εairr = 1, the effective dielectric constant satisfies

1 < εeff < εr. (111)

CPW transmission line consists of a conductor separated from a
pair of equidistant ground planes on the two sides, all on the same
side of the substrate. The substrate should be thick enough so that
electromagnetic fields die out before they get out of it.
For both microstrip and CPW, the resonator is created by inter-

rupting the transmission line which creates the impedance discontinu-
ities. This causes microwaves to reflect, like in a Fabry-Perot cavity.
The fundamental mode is a λ/2 mode, corresponding to the length
of the resonator equal to half of the wavelength. These are thus dis-
tributed resonators, their size is comparable to their wavelength.
By opposition, lumped or compact resonators are much smaller

then the resonance wavelength. Typically they consist of a largely
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inductive region in parallel with a largely capacitive region. Induc-
tance can take shape of a very thin wire, while compact capacitor
can be build of two large plates separated by a dielectric, or by two
interdigitated comb structures.
The main limitation of all the planar architectures comes from

the fact that they concentrate the electromagnetic energy near the
surface of the dielectric substrate which induces losses and limits the
coherence times [108, 109, 110, 111]. Various defects in amorphous
dielectric material act as macroscopic two-level systems and induce
discrete dissipation mechanisms. To increase the quality factor of the
resonator, one strategy is to store the energy in the air. This can be
done with three dimensional rectangular waveguide resonators.

4.2.2 Rectangular waveguide microwave resonators

Alternatively, microwave resonators can be realized as cavities in
bulk metal such as copper or aluminum. The electric and magnetic
fields are then stored inside of the cavity and coupling is realized
through a small aperture in the cavity wall. The resonant modes of
a rectangular cavity are transverse electrical TEmnl and transverse
magnetic TMmnl modes, where the indices m,n, l refer to the number
of variations in the standing wave pattern in directions x, y, z. For
a cavity of dimensions a × b × d, as in the Fig. 44, the resonance
frequency for TEmnl mode is

fmnl =
c

2π√µrεr

√
(
mπ

a
)2 + (

nπ

b
)2 + (

lπ

d
)2. (112)

If d < b < a, the lowest frequency resonant mode will be TE110, which
is typically chosen to be the memory mode in our experiments.
The 3D resonators have the advantage of reaching very high qual-

ity factors, enabling storage times almost of the order of seconds
[106]. However, their coherence was observed to decrease by orders of
magnitude when they are coupled to planar superconducting circuits
[112, 6], which introduce additional dissipation mechanisms such as
substrate loss and mechanical instability. Most importantly, 3D cavi-
ties have to be assembled from parts in order to allow for integration
of Josephson junction based circuits on chips. This introduces dissi-
pative seams that have been identified as a main source of dissipation
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Figure 44: TE110 mode of a rectangular waveguide cavity.

[113, 114]. Our experiments have confirmed this, as it will be discussed
in Section 5.6.

4.2.3 Equivalent LC resonator

Independently of their planar or 3D implementation, the fundamen-
tal mode of microwave resonators can be represented by the equiva-
lent LC circuit shown in Fig. 45. The Hamiltonian of the equivalent
dissipationless LC circuit reads

Ĥ =
q̂2

2C +
φ̂2

2L , (113)

where flux operator φ̂ and charge operator q̂ are conjugate observables
and satisfy the commutation relation

[φ̂, q̂] = i h̄. (114)

Thus by defining the annihilation operator

â =

√
1

2 h̄Z0
φ̂+ i

√
Z0
2 h̄ q̂, (115)

the Hamiltonian (113) can be quantized into the Hamiltonian of the
quantum harmonic oscillator

Ĥ = h̄ω0(â
†â+

1
2 ), (116)

of resonance frequency ω0 = 1/
√
LC and characteristic impedance

Z0 =
√

L
C as shown in Fig. 45.
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(a) (b)

Figure 45: (a) LC resonator equivalent of the microwave cavity mode. φ is
the magnetic flux threading the inductor and q is the charge on
the electrode of the capacitor. (b) The energy dispersion of this
system is that of a quantum harmonic oscillator.

As quantum harmonic oscillator has an infinite dimensional Hilbert
state, it can be used for redundant quantum information encoding
[24]. Using a microwave cavity mode for a microwave quantum mem-
ory, rather then a multiqubit register, presents other advantages as
well. Contrary to adding more qubits to a register, the number of de-
coherence channels does not increase when more photons are added
to the cavity.
On the other hand, a linear system such as a harmonic oscillator

allows only the preparation of coherent states using classical drives. In
the following section, we will explain how resonantly coupling a qubit
to a microwave resonator allows to gain controllability over it and
prepare arbitrary quantum states. We will also present two models
used to describe the system of a qubit coupled to a cavity mode and
make predictions of the system parameters relevant for the design of
the experiment.

4.3 coupling a qubit to a cavity

4.3.1 Transmon qubit

Superconducting qubits are based on Josephson junctions, made of
two superconducting electrodes separated by a thin insulating layer,
that allows the Cooper pairs to tunnel through. In our experiments,
we use aluminum that is a superconductor at temperatures bellow 1K
and whose oxyde, Al2O3, is an insulator used for the tunnel barrier.
For fabrication details, see section 8. Transmon is a type of super-
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conducting qubit that consists of a single small Josephson junction
between two capacitive antennas. It is described by the Hamiltonian

Ĥ = 4EC(n̂− ng)2 −EJ cos δ̂, (117)

where δ̂ = φ̂
ϕ0

is the dimensionless superconducting phase difference
and n̂ is the excess number of Cooper pairs on one of the electrodes.
The charge energy reads

EC =
e2

2C , (118)

where C is the total capacitance between the electrodes and ng is the
offset pair charge. This Hamiltonian can be expanded to

Ĥ = 4EC(n̂− ng)2 +EJ
δ̂2

2 + Ĥ1, (119)

where Ĥ1 is the purely nonlinear perturbation that reads to the fourth
order

Ĥ1 = −EJ24 δ̂
4. (120)

Josephson junction is equivalent to a nonlinear inductor of induc-
tance LJ =

ϕ2
0

EJ
, where EJ is the Josephson energy. Transmon qubit

can thus be represented by an equivalent LC circuit shown in Fig. 46.
It is the electrical equivalent of the harmonic oscillator, but the non-
linearity of the inductance makes its energy levels anharmonic, i.e.
not regularly spaced.
Hamiltonian (117) describes a general Cooper Pair Box (CPB)

qubit. Coherence times of qubits are limited by either dissipation
T1 or dephasing Tφ. Dissipation sets the limit T2 = 2T1 on coherence
time, but supplementary decoherence channels coming from charge,
flux or current fluctuations prevent this limit from being reached, so
that in general 1

T2
= 1

2T1
+ 1

Tφ
. The main source of decoherence for

CPB qubits is the charge noise coming from the fluctuations of the
charge offset ng. A transmon is a CPB qubit with a significantly in-
creased ratio of Josephson energy and charging energy EJ

EC
∼ 40− 100,

which results in drastically decreased sensitivity to the charge noise
and improved coherence time [115, 116], making it one of the favorite
qubit flavors for quantum information applications.
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(a) (b)

Figure 46: (a) Equivalent LC circuit of a Josephson junction. Transmon
qubit is obtained by shunting the junction with a large capaci-
tor formed by two big superconducting antennas. (b) Transmon
energy levels in its electromagnetic phase potential.

However, the gain in the charge noise insensitivity is paid by the
loss of anharmonicity. The anharmonicity of the qubit, α = ωef −ωge
is essential to reduce the many-level system to a quantum two level
system that can be selectively addressed.
It stems from the perturbative treatment of Hamiltonain (117),

that the anharmonicity to the leading order is given by the charge en-
ergy, h̄α ' EC and the relative anharmonicity αr = α

Eeg
' ( 8EJ

EC
)−

1
2 .

The loss in anharmonicity is thus described only by a weak power law
in EJ

EC
, so that there is an attainable regime where the anharmonicity

is much larger then the linewidth given by the dissipation. This is the
transmon regime.

4.3.2 3D transmon

The integration of a transmon in a 3D resonator was done simi-
larly to the design developed by Paik et al. [117]. The so called 3D
transmon has become very popular as its coherence time is increased
by an order of magnitude compared to a qubit coupled to a planar
resonator. This is due to the fact that 3D cavities have larger mode
volumes than the planar ones, which results in reduced energy stor-
age in lossy materials such as dielectric substrates. By consequence,
the qubit is less sensitive to the poor dielectric quality of the surfaces
and material interfaces.
On the other hand, the electric field created by a single photon

is reduced compared to the more confined planar architecture, which
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makes it more challenging to reach the strong coupling. This is solved
by making the electrodes of the qubit significantly larger than in a
conventional 2D transmon qubit, so that the dipole moment of the
qubit is increased. Usually the qubit is placed in the center of the
cavity, at the antinode of the TE110 mode, so that their coupling is
maximized. This minimizes the coupling to the mode TE120 as well,
as it has an antinode in the center of the cavity.

4.4 transmon coupled to a cavity

Strictly speaking, transmon in a cavity is a weakly nonlinear mode
coupled to a continuum of cavity modes. Whereas the CPB Hamil-
tonian (117) is exactly solvable in terms of Mathieu functions [115],
approximations have to be made to find solutions when it is coupled
to a discretized environment. Traditionally, the approximation that
is made is single mode Jaynes-Cummings method.

4.4.1 Jaynes-Cummings method in the strong dispersive coupling
limit

Jaynes-Cummings method consists in considering an infinitely an-
harmonic transmon, such that it can be modeled by a pure two-level
system, coupled to a single cavity mode. In other words, a supposi-
tion is made that all the other cavity modes are far detuned and can
be neglected. The system is then described by the Jaynes-Cummings
Hamiltonian (10), that in the dispersive limit [115], ωa − ωq � g

simplifies to

Ĥ = h̄ωaâ
†â+ h̄

ωq
2 σ̂z − h̄χâ†â |e〉 〈e| , (121)

where ωa is the frequency of the fundamental cavity mode, ωq is the
qubit frequency, g is their coupling rate and χ is the dispersive shift
or cavity pull. For a true two-level qubit,

χ =
g2

∆
, (122)
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where we have introduced the detuning ∆ = ωa − ωq. On the other
hand, for the transmon qubit which is only weakly anharmonic [115],
the dispersive shift reads

χ =
2g2

∆
2α

∆− α
. (123)

Qubit and cavity modes are entangled through the cross-Kerr term
− h̄χâ†â |e〉 〈e| in the Hamiltonian (121), which can be rewritten as

Ĥ = h̄â†â(ωa − χ |e〉 〈e|) + h̄
ωq
2 σ̂z, (124)

where the first term shows that the cavity frequency depends on the
state of the qubit,ω

g
a = ωa for qubit in state |g〉

ωea = ωa − χ for qubit in state |e〉 ,
(125)

and can be used for the purpose of qubit readout. Furthermore, by
putting Hamiltonian (121) in the form

Ĥ = h̄ωaâ
†â+ h̄

ωq
2 |g〉 〈g| − h̄(

ωq
2 + χâ†â) |e〉 〈e| , (126)

we can see that the frequency of the qubit as well depends on the
mean number of photons in the cavity 〈â†â〉, which can be used for
the photon number counting or cavity state readout. For instance,
when the cavity is in the Fock state |n〉, frequency of the qubit is

ωnq = ωq − nχ. (127)

The qubit and cavity lifetimes are related as well through the Pur-
cell effect, that corresponds to the relaxation of the qubit by the
emission of a photon in the cavity, that is afterwards emitted in the
cavity dissipation channels. In the perturbative treatment of Hamilto-
nian (121), expanding in powers of g

∆ , the Purcell rate for dispersive
decay is found to be

γ1,Purcell = κ
g2

∆2 , (128)

where κ is the average photon loss rate of the cavity. The Purcell rate
sets the bound on the relaxation time T1 of the qubit

T1 =
1

γ1,Purcell + γ1,non radiative
, (129)
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where γ1,non radiative corresponds to other decoherence channels of the
qubit. This approximation gives an excellent estimation in the case
of a single-mode cavity, but 3D cavity has many independent spatial
modes that can couple strongly to the qubit and induce its decay. In
particular, the single mode approximation was shown to break down
at qubit frequencies larger then the cavity frequency where measured
times T1 deviate considerably from those predicted by Eq. (128) [118].
We can conclude that for strong couplings, the interaction with the

higher excited states of the transmon and other cavity modes has to
be accounted for.

4.4.2 Black Box Quantization (BBQ)

An alternative method, called the Black Box Quantization method
(BBQ), was developed at Yale by Nigg et al. [119]. Within this ap-
proach, the electromagnetic environment of the qubit is treated as
a linearized system of harmonic oscillators. The impedance of the
linear part of the circuit, including the linear part of the Josephson
inductance is

Z(ω) =
M∑
p=1

(
jωCp +

1
jωLp

+
1
Rp

)−1
, (130)

where M is the number of modes and j = −i. Resonance frequencies
of the linear circuit are then found as the real parts of the zeros of
the admittance Y (ω) = Z(ω)−1. The Hamiltonian of the total circuit
including the Josephson junction is

Ĥ =
∑
p

h̄ωpn̂p +
∑
p

∆pn̂p +
1
2
∑
pp′

h̄χpp′ n̂pn̂p′ , (131)

where n̂p = â†pâp is the number operator for the mode p and ∆p
is the correction to the Lamb shift for the mode frequencies. The
oscillators inherit some anharmonicity from the Josephson junction,
so that presence of photons in the mode p shifts the frequencies of
the modes p′ through dispersive shift

χpp′ = 2√χppχp′p′ , (132)

where χpp′ = αp is the anharmonicity of the mode p given by

αp = χpp = −
Lp
LJ

CJ
Cp

EC . (133)
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The qubit frequency can be found as

ωq =
1
h̄

√
8EJEC . (134)

The lifetime of the mode p is given by

κp = ωp
Zp
Rp

, (135)

where the losses Rp and the capacitances Cp of the mode p can be
found from the linear environment admittance Y at the frequency of
the modeRp =

1
Re[Y (ωp)]

Cp =
1
2 Im[Y ′(ωp)].

(136)

We can then deduce the relationship between qubit T1 due to spon-
taneous emission and admittance of the linear environment is

T1 =
1
γ1

=
CJ

Re[Y (ωq)]
. (137)

This method is suitable for weakly nonlinear circuits, such as those
coupled to a transmon, for which the normal modes of the linearized
classical circuit provide a good basis in the quantum case. In section
10.1 we will discuss how both of these methods, the single mode
Jaynes-Cummings method and the Black Box Quantization, can be
used to predict the relevant parameters of the system, design the
experiment and calculate the geometrical constraints.

4.4.3 Arbitrary quantum state preparation with a coupled cavity-
qubit system

In this section we will explain how a system of two parametrically
coupled harmonic oscillators, one of which is also coupled to a qubit,
allows preparation of an arbitrary quantum state.
Parametric coupling between the two oscillators, buffer a and mem-

orym, that can be realized using a Josephson ring, allows preparation
of an entangled EPR state

|EPR〉 =
∑
k

ck |k, k〉 , (138)
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Figure 47: Quantum state preparation protocol.

where ck = tanh(r)k cosh(r)−1 and r is the squeezing parameter.
Then using the entanglement between the qubit and the memory
field, an arbitrary set of selective π pulses can be performed on the
qubit, conditioned on the number of photons in the cavity k, such
that the state of the system becomes∑

k

ck |k, k, 0〉 →
[
cn |n,n〉+ cm |m,m〉

]
⊗ |1〉 (139)

+
∑

k 6=n,m
ck |k, k, 0〉

Finally, by post-selecting on the measurement outcomes where the
qubit is found in the excited state |1〉, the state cn |n,n〉+ cm |m,m〉
is prepared with probability |cn|2 + |cm|2.
Interestingly, the buffer mode a can be strongly coupled to a trans-

mission line, so that its field rapidly leaks to the propagating mode.
The effective EPR state is then between the stationary memory mode
and the mode propagating in the transmission line. By performing lo-
cal operations on the qubit, the propagating mode can remotely be
prepared in an arbitrary quantum state.
A variation on this protocol is entanglement concentration from

continuous to discrete variables [120]. The purpose of entanglement
distillation is to extract a maximally entangled state from a collection
of less entangled states. In the case of continuous variables, it can be
for example a conversion from EPR to a Bell state. This protocol
can be used as an entanglement resource for repeaters in quantum
communication.
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4.5 quantum node based on josephson parametric
converter

Two main required functionalities for a quantum node are genera-
tion and distribution of entanglement and time control of field recep-
tion and emission. Both of them are enabled by the parametric in-
teraction such as the one provided by the Josephson Ring Modulator
(JRM). As already discussed in Chapter 2, entanglement distribution
can be obtained by applying the amplifying pump on the coupled res-
onators in the ground state, which results in an EPR state (Eq. 29).
If one of the resonators is strongly coupled to a transmission line, the
field can continuously leak out to it, such that the final state is an en-
tangled EPR state between the field propagating in the transmission
line and the stationary field in the second resonator isolated from the
environment.
Time controlled field reception and emission to and from a high

quality resonator enables realization of quantum information storage.
It requires coherent state conversion of the propagating field to the
stationary memory mode. As first demonstrated at Yale [121], such
a lossless frequency conversion can be performed by a JRM between
its two modes.
We have seen in section 2.2.1 that in a device such as Joseph-

son Mixer or Josephson Parametric Converter (JPC), two planar res-
onators are coupled through a JRM. The equivalent LC circuit for a
JPC is shown in Fig. 48. To realize a quantum memory device, low
quality resonator a, of resonance frequency ωa is strongly coupled to
the transmission line, and we refer to it as a buffer resonator. The
high quality memory resonator m, of resonance frequency ωm is de-
coupled from the environment, such that its losses are decreased and
storage time maximized.
The Hamiltonian of this circuit reads

1
h̄
Ĥ = ωaâ

†â+ ωmm̂
†m̂+ χ(p∗ + p)(â† + â)(m̂† + m̂), (140)

where â and m̂ are annihilation operators for the buffer and memory
modes.
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Figure 48: Equivalent LC circuit for a JPC. Buffer mode with a resonance
frequency ωa and memory mode with resonance frequency ωm
are coupled by a ring of four Josephson junction that realizes
the three-wave mixing. An external pump tone is applied at fre-
quency ωp.

When the pump is applied at the difference of the frequencies of
the two resonators ωp = ωa − ωm, the three wave mixing interaction
Hamiltonian simplifies to the parametric conversion Hamiltonian

1
h̄
Ĥconv = χ|p|(âm̂† + â†m̂), (141)

where χ|p| corresponds to the conversion rate between modes a and
m. This rate can be time controlled through the pump amplitude |p|,
such that the coupling can be turned on and off on demand. If the
buffer mode is strongly coupled to the transmission line, the itinerant
field ain can be captured to the memory and retrieved at a later time
in the output mode aout.
With coupling and dissipation rates κa and κlossa for the buffer mode

and κm and κlossm for the memory mode, we can write the Langevin
equations

∂â
∂t =

i
h̄ [Ĥ, â]− κa+κlossa

2 â+
√
κaâin

∂m̂
∂t = i

h̄ [Ĥ, m̂]− κm+κlossm
2 m̂+

√
κmm̂in,

(142)

which for the conversion interaction Hamiltonian Eq. (141) become,


∂â
∂t = −

i
h̄ωaâ−

i
h̄ |χp|m̂−

κa+κlossa
2 â+

√
κaâin

∂m̂
∂t = − i

h̄ωmm̂−
i
h̄ |χp|â−

κm+κlossm
2 m̂+

√
κmm̂in.

(143)
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Then using the input/output relation √κaâ = âin + âout, the com-
plex reflection coefficient on the buffer mode a can be deduced

ra[ω] =
〈âout[ω]〉
〈âin[ω]〉

(144)

= −
(ω− ωa + iκm+κlossm

2 )(ω− ωa − iκa−κ
loss
a

2 )− |χp|2

(ω− ωa + iκm+κlossm
2 )(ω− ωa + iκa+κ

loss
a

2 )− |χp|2
.

(145)

The amplitude and phase of the complex reflection coefficient on
the buffer resonator bring information on the coupling strength to the
memory mode. The coupling between the two resonators can then be
parametrized by cooperativity

C =
4|χp|2
κtota κtotm

(146)

where κtota,m = κa,m + κlossa,m, which is the ratio between the conversion
rate and total environmental decoherence rate. It can be controled
through the pump amplitude |p|. Using cooperativity as coupling
strength parameter, we can distinguish different regimes [60]

• For C < κm
κa

, resonators are effectively decoupled.

• C = 1 corresponds to the critical coupling regime, where all the
signal that enters in the buffer resonator gets converted to the
memory mode.

• For κa
κm

< C, the two resonators are in the strong coupling
regime and their fundametal modes are hybridized.

Efficient signal capture to the memory mode, as well as its storage
and release back to the transmission line, require the two resonators
to be in the strong coupling regime. In the following chapter, I will
present few experimental implementations of this system that I have
realized during my PhD.
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4.6 conclusion

The main points of this chapter are:

• Review of the state of the art in microwave quantum nodes.

• Description of the quantum node with a transmon qubit em-
bedded in the memory mode.
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5
BUILD ING A QUANTUM NODE

"Another flaw in the human
character is that everybody
wants to build and nobody
wants to do maintenance."

Kurt Vonnegut

In this chapter I will present an implementation of a quantum node
based on a Josephson Parametric Converter. For this realization, we
have built up on a design for the quantum memory experiment by
Flurin et al. [6]. In the first part of this chapter I will explain the
functioning principle of the quantum memory, discuss the limiting
factors for its lifetime and possible solutions to improve it.
As already discussed in section 4.4.1, dispersively coupling a qubit

to a cavity offers controllability over the cavity state. Preparation
of non-Gaussian states such as Fock states or Schrödinger cat states,
that are of interest for quantum computing, requires introducing some
quantum non-linearity that can be provided by the Josephson junc-
tion of the qubit. In the second part of this chapter, I will explain
how we integrated a transmon qubit in the 3D storage resonator and
worked towards protected quantum computing with microwave fields
[122].

5.1 microwave quantum memory

5.1.1 Experimental design

The quantum memory we have built is based on the Josephson
Parametric Converter (JPC), a device consisting of two microwave
resonators coupled through an unshunted JRM. JPC is an extremely
versatile circuit. It is commonly used as a quantum limited amplifier,
typically for the qubit readout in quantum information experiments
with superconducting circuits. For this purpose, the circuit is designed
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such that the two resonating modes a and b are strongly coupled to
the transmission line, so that the product

√
gain × bandwidth of the

amplifier is maximized. The couplings κa and κb of the resonators a
and b to their corresponding transmission lines are then of the order
of 200 MHz.
For the analog quantum simulation of the USC, presented in Chap-

ter 2 and Chapter 3, a Josephson Mixer, which is a tunable derivative
of the JPC with a shunted JRM, was used as the quantum hardware.
For this use, the coupling to transmission lines was decreased below
the frequencies δ of the effective modes, such that κa,κb < δ in order
to have high quality modes.
In the quantum node experiment, the mode a, that we will refer to

as buffer mode, is strongly coupled to the transmission line, so that it
can efficiently catch the propagating field ain. The memory mode m
on the other hand is weakly coupled to a transmission line, in order
to limit the dissipation channels to the environment and increase its
coherence time (Fig. 49). The coupling and dissipation rates of the
buffer mode κa and κlossa and of the memory mode κm and κlossm thus
satisfy κa � κlossa ,κlossm > κm.

Figure 49: Schematic of the quantum memory.

In order to further ensure high coherence time for the memory
mode, it is realized as the fundamental TE110 mode of a 3D super-
conducting bulk aluminum cavity. The 3D cavity is mounted from
three parts, shown in Fig. 50, from left to right, the lid, top and
bottom of the cavity. When closed together, the top and the bottom
parts form a cavity of dimensions (27.4× 14.2× 27) mm.
The buffer mode on the other hand is a planar λ/2 microstrip res-

onator, shown in Fig. 51. The difficulty thus consists in coupling an
on chip mode to a 3D mode through a Josephson ring. Furthermore,
the ring requires a magnetic flux bias, so that the chip cannot be
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14.2 mm

27.4 mm 27 mm

chimneysaccess for the coil

Figure 50: Three parts constituting the 3D memory cavity, from left to right,
the lid, the top and the bottom part. The top part contains two
chimneys with apertures on the top that allow for the coupling
to the buffer resonator. The cylindrical whole that can be seen
in the lid allows for insertion of a coil that provides the magnetic
flux bias for the Josephson ring.

placed inside of the superconducting aluminum which expels the ex-
ternally applied magnetic field due to Meissner effect (see Ref. [123]
for another design).

1mm 50µm 5µm
(a) (b) (c)

Figure 51: (a) Picture of the sapphire chip hosting the aluminum circuit
consisting of the Josephson ring, buffer resonator and the anten-
nas. (b) and (c) Optical microscope images of the Josephson ring
coupling the horizontal buffer mode to the vertical antenna.

Buffer resonator and Josephson ring are realized on a sapphire chip
that is placed outside of the memory cavity, between the top part
and the lid. The 3D cavity is not convex, it has two chimneys with
apertures on the top. The coupling is mediated by planar antennas,
that are symmetrically aligned on the apertures above the chimneys,
as can be seen in the left picture in Fig. 52 and Fig. 53. Field is more
strongly confined in the smaller volume of the chimneys, enabling the
strong coupling to the antenna mode. To determine the capacitive
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coupling κc through the antennas, we use Ansys HFSS simulator, as
shown in Fig. 53.

Figure 52: Left : Picture of closed top and bottom parts of the 3D cavity
with the sapphire chip inserted on the top. Josephson ring cou-
ples the on chip 2D buffer resonator to a 3D memory resonator
via symmetric antennas. Right : Picture of the entire device ready
to be mounted in the cryostat. A copper lid containing a super-
conducting coil for magnetic flux bias is placed on the top of the
chip with the Josephson ring. It is also used to attach the device
to the base temperature stage of the dilution refrigerator.

(a) (b)

Figure 53: (a) Vectorial representation and (b) amplitude of the electric
field of the TE110 mode, used as a memory mode, simulated us-
ing Ansys HFSS software. The field is concentrated in the chim-
neys which enables for the strong coupling to the planar buffer
resonator.
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The effective input/output coupling rate to the memory then reads
[60]

γmio =
κa
2

1−
√√√√1− 4

κ2
a(

1
κ2
c
+ 1

4|χp|2 )

. (147)

A direct access to the memory mode is realized by drilling a hole in
the side wall of the cavity and inserting an SMA connector whose pin
dips into the cavity and interacts capacitively with the cavity mode.
The length of the pin determines the coupling to the transmission
line and it is chosen such that the coupling is smaller than the in-
trinsic losses, so that the quality factor of the memory mode is not
degraded. The memory cavity field can then be probed by measuring
the complex reflection coefficient on this direct undercoupled port

rm[ω] =
κm − κlossm + 2i(ω− ωm)
κm + κlossm − 2i(ω− ωm)

. (148)

From the amplitude and phase of the measured reflection coefficient
we can determine the resonance frequency of the memory mode, as
well as coupling and dissipation rates. As we will see in the following
section, all of these depend on the surface quality of the cavity walls
but also on the presence or not of the transmon and its substrate in
the cavity.

5.1.2 Conversion to the memory mode

Parametric conversion from buffer to memory mode is character-
ized by measuring the reflection coefficient on the buffer resonator us-
ing a Vector Network Analyzer (VNA), while tuning the amplitude of
the conversion pump. From the reflected signal with the pump turned
off, we determine the coupling and dissipation rates for the buffer res-
onator κa = 2π× 16.8 MHz and κlossa < 2π× 1 MHz. Similarly, from
the reflection on the memory port, we measure κm = 2π × 60 kHz
and κlossm = 2π × 170 kHz. This loss rate is higher then expected for
the 3D bulk aluminum cavities. In a later measurement run, after an
acid clean of the surface, κlossm = 2π× 40 MHz was measured.
Measured complex reflection coefficient for increasing conversion

pump amplitude |p| is shown in quadrature phase space in Fig. 54,
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together with the theoretical reflection expected from the Langevin
equations.
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Figure 54: (a) Measured reflection coefficient for increasing pump ampli-
tude that is color encoded. (b) Corresponding reflexion coefficient
from input-output model Eq. (145) for cooperativity going from
0 to 16.7. The big loop corresponds to the resonance of the buffer
mode and the small loop of increasing size to the resonance of
the memory mode.

When the pump is turned off, there is just one big loop in the
quadrature phase space, corresponding to 2π phase shift coming from
the resonance of the buffer mode. When the pump is turned on, the
coupling to the memory resonator is activated and a second loop, cor-
responding to the memory resonator, appears in the quadrature phase
space. The size of the second loop indicates the coupling strength. For
instance, the smaller loop that goes through the origin corresponds
to the critical coupling C = 1. Finally, the strong coupling regime is
reached when the size of the smaller loop approaches the size of the
bigger one. The maximum cooperativity we reach is C = 16.7.

5.1.3 Mode identification using Kerr shift

A certain number of other pump frequencies induce conversion to
various modes. These modes can be identified by analyzing the cross-
Kerr shift between the pump and buffer modes. This procedure is
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summarized in Table 6. The pump is applied at frequency ωp and the
reflection coefficient is measured on the buffer mode as a function of
frequency, in the proximity of the buffer resonance frequency ωa =

2π × 10.863 GHz. If the pump tone is applied in the proximity of
a conversion frequency to an eigenmode of the system, a cross-Kerr
shift is induced on the buffer mode. Then if we increase the pump
frequency by ∆ωp, the shift of the buffer frequency ∆ωa indicates the
relation between the frequencies of the pump ωp, buffer ωa and the
mode to which the signal is converted ωc.

ωp
2π (GHz) ∆ωp

∆ωa frequency relation ωc
2π (GHz) mode

6.565 1 ωp = ωa − ωc 4.298 antenna
4.09 1 ωp = ωa − ωc 6.77 common mode
9.292 −1 ωp = ωc − ωa 20.155 3rd cavity mode
1.573 −1 ωp = ωc − ωa 12.436 2nd cavity mode
7.5 −1

2 ωp =
1
2 (ωc − ωa) 25.86

Table 6: Mode identification using Kerr shift

Interestingly, this method allows identification of higher oder inter-
actions as well. A frequency shift ratio ∆ωp

∆ωa = −1
2 indicates a process

where two pump photons and one buffer photon are invested to create
one photon in the conversion mode, i.e. Hint ∝ p̂p̂âĉ†, where ĉ† is the
creation operator of the mode in which the signal is converted.

5.2 adding a transmon qubit to the memory

In the previous section, we have shown that strong coupling can be
obtained with this unconventional hybrid 2D/3D architecture. The
design is thus promising for efficient memory storage. However, the
realization of a fully controllable quantum node still requires a qubit.
In this section I will explain how we integrated a transmon qubit in
the previously described quantum memory device.
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Figure 55: Schematic of the 3D architecture for the quantum node experi-
ment. Transmon qubit shown in green is capacitively coupled to
the memory resonator.

Figure 56: Photo of the bottom part of the 3D aluminum memory cavity
with a pocket hosting the transmon qubit on a sapphire chip.

5.2.1 Aluminum cavity with qubit

The coupling of the transmon qubit to the memory mode is realized
by inserting the sapphire chip hosting the qubit between the top and
bottom parts of the 3D cavity. The bottom part has a pocket that
can host the chip as shown in Fig. 56. The cavity is cut in the middle,
so that the qubit lays in the antinode of the fundamental cavity mode
and their coupling is maximized. A bisected cavity is shown in Fig. 52,
with a qubit on a sapphire chip laying across the plane of cut. An
indium seam used to quench the connection can be seen surrounding
the cavity.
We begin by measuring the reflection on the direct port to the mem-

ory mode, whose amplitude and phase are shown in Fig. 57. We can
first observe that there is not one resonance but three, corresponding
to the memory mode dressed by a thermally excited qubit. This is
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Figure 57: (a) Amplitude and (b) phase of the reflection coefficient on the
aluminum memory cavity. The red line correspond to Eq.(149).

due to the fact that the effective temperature of the qubit’s environ-
ment is comparable to its transition frequency, so that we find it with
finite probabilities in its ground, first and second excited state. These
probabilities, pg = 1− pe − pf , pe and pf , for the qubit to be respec-
tively in the ground, first and second excited states, are determined
by matching the measured reflection coefficient with

rm = pg
κm − κlossm + 2i(ω− ωm)
κm + κlossm − 2i(ω− ωm)

+ pe
κm − κlossm + 2i(ω− ωm + χmq)

κm + κlossm − 2i(ω− ωm + χmq)

+ pf
κm − κlossm + 2i(ω− ωm + 2χmq − α)
κm + κlossm − 2i(ω− ωm + 2χmq − α)

, (149)

where χmq is the pull between the qubit and the memory mode and
α is the anharmonicity of the qubit. We find pe = 0.17 and pf = 0.06.
Furthermore, we can determine from this measurement the coupling
and dissipation rates of the memory resonator, κm = 2π × 76 kHz
and κlossm = 2π × 207 kHz. Similarly, by measuring the reflection on
the buffer resonator, we find κa = 2π× 8 MHz and κlossa = 2π× 31
MHz.
We can first notice that the losses of the memory resonator have

increased compared to the measurement without the qubit. However,
there is an important uncertainty attached to this number. Indeed, it
was not reproducible from one cooldown to another and even during
one measurement run it has been observed to fluctuate up to 20%.
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There are few reasons for excessive 3D cavity dissipation. For clarity,
they are summarized in Table 7. First, surface can get contaminated
during the insertion of the sapphire chip. We have already seen that
an acid clean of the surface can improve its dissipation rate by a fac-
tor of 4. Second, a mechanical instability due to a large number of
components and connects can cause fluctuations both of the cavity
frequency and its dissipation rate. Finally, different isolated compo-
nents are thermalized at the base cryostat temperature using highly
thermally conducting copper lines. However, in superconductors such
as aluminum, the main mechanism for heat transfer is phonon-phonon
scattering. When aluminum is cooled down, its thermal conductivity
decreases abruptly when it transits at its critical temperature. As bulk
aluminum cavities contain large amounts of superconductor, it takes
longer to thermalize them to cryogenic temperatures. Badly thermal-
ized pockets are thus suspected to cause frequency and dissipation
fluctuations as well.

memory losses buffer losses
surface polution 2D/3D connectors

mechanical instability ground plane continuity
Al thermalization impedance mismatch

Table 7: Sources of dissipation in the hybrid 2D/3D quantum node with an
aluminum 3D memory cavity.

More importantly, the dissipation rate of the buffer resonator is
found to exceed its coupling rate to the transmission line. This rate
is not reproducible from one cool-down to another and it is found to
vary by almost two orders of magnitude. There are few explanations
for such excessive losses.
First, the buffer resonator is differentially biased by the microwave

launchers at the 3D/2D interface. The outer shell of the SMA con-
nectors that are used to connect the transmission lines to the circuit
is made in brass. The connectors are inserted into the brass pock-
ets in the holes made in the aluminum cavity and soldered to insure
the ground plane continuity. However, the contact between these two
materials appears to be prone to losses and mechanical instability.
Second, the ground plane of the microstrip buffer resonator is real-
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ized as 500 nm thick layer of silver on the back side of the sapphire
substrate. The ground plane continuity can be damaged by a bad
metallic contact between the silver and aluminum surfaces. Finally,
we suspect that there is an impedance mismatch between the SMA
connectors and the base stage circulators that causes a spurious re-
flection that is manifested as a frequency independent offset in the
phase of the reflection coefficient. This would have the same effect
to the reflection coefficient as intense losses of the buffer resonator,
but we cannot distinguish between these two effects during a single
measurement run.
Due to the excessive losses of the buffer resonator, the resonator

is undercoupled, which is undermining the realization of an efficient
quantum memory. In order to circumvent this problem, we replaced
the aluminum cavity by one in copper.

5.2.2 Lead plated copper cavity with qubit

The primary motivation for replacing the aluminum cavity by the
one in copper was to decrease the losses of the buffer resonator. From
the previous experience in our group, soldering brass connectors on
copper revealed itself much easier and less prone to losses than in the
case of aluminum. Furthermore, we expected the continuity of the
ground plane to be better with a copper surface.
Additional motivation comes from the qubit thermalization. One of

the consequences of the bad thermalization of superconducting bulk
aluminum is that the effective temperature of the qubit environment
can be increased. A normal metal such as copper would insure better
and faster thermalization of the qubit environment and of the qubit
itself.
Although it is advantageous to have a normal metal bulk, the inte-

rior of the cavity should be superconducting in order to avoid losses
due to the finite conductivity of the metal and maintain the high
quality factor of the resonator [124].
This issue is resolved by electrodepositing a thin layer of lead, which

becomes superconducting below 7.2 K, on the interior of a bulk copper
cavity, as shown in Fig. 58b. The lead plating process that we use is
described in Section 8.2.
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(a) (b)

Figure 58: (a) Photograph of the copper cavity with a JPC on its top. JPC
is connected through PCBs on left and right to the SMA connec-
tors that insure its connection to transmission lines and a hybrid
coupler. (b) Top and bottom parts of the lead plated copper
cavity. Sapphire chip hosting the transmon qubit is inserted be-
tween the two cavity parts that are afterwards screwed together
and quenched using an Indium seal.

Amplitude and phase of the reflection coefficient measured on the
direct access port to the memory cavity are shown in Fig. 59. Contrary
to what we expected, the thermal population of the qubit excited
states is not negligible. It can be explained by the transmission lines
that were not well thermalized between the cryostat stages or by a
bad mechanical anchoring of the transmon chip.
Similarly, by measuring the signal reflected on the buffer mode,

we find the resonance frequency ωa, coupling and decoherence rates
κa and κlossa of the buffer resonator. From these measurements, we
find the conversion pump frequency ωp = ωa − ωm = 2π× 1.12 GHz.
System parameters determined from these reflection measurements
are summarized in Table 8 in comparison to the same parameters
for the aluminum cavity. Both dissipation rates for the buffer and
memory modes are improved by an order of magnitude. Thermal
population of the excited qubit levels is not improved tough.
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Figure 59: (a) Amplitude and (b) phase of the reflection coefficient on the
lead plated copper memory cavity. The red lines correspond to
Eq. 149.

cavity Al Cu/Pb
ωa 2π× 9.401 GHz 2π× 8.68 GHz
κa 2π× 8 MHz 2π× 5 MHz
κlossa 2π× 31 MHz 2π× 3 MHz
ωm 2π× 7.69866 GHz 2π× 7.56412 GHz
κm 2π× 76 kHz 2π× 59 kHz
κlossm 2π× 207 kHz 2π× 70 kHz
pg 0.77 0.75
pe 0.17 0.19
pf 0.06 0.06
χmq 2π× 3.3 MHz 2π× 5.3 MHz
α 2π× 0.2 MHz 2π× 0.4 MHz

Table 8: Comparison of the system parameters determined from reflection
measurements for the aluminum cavity coupled to a qubit and a
lead plated copper cavity coupled to a qubit.

We then measure the reflection on buffer resonator with the con-
version pump turned on. It is plotted in polar coordinates for the
maximum cooperativity C we could reach in Fig. 60c. There are two
small loops which correspond to the memory mode dressed by a qubit
in the ground state and in the excited state. Qubit being in thermal
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Figure 60: (a) Amplitude, (b) phase and (c) quadratures of the average mea-
sured reflection coefficient for the memory containing a qubit.
The two small loops correspond to the memory dressed by a
qubit either in the ground state or in the excited state. This
measurement corresponds to the maximum cooperativity C ob-
tained with the lead plated copper cavity containing a transmon
qubit.

state, average conversion is not efficient and we do not reach the
strong coupling regime. This is due to the fact that for 30% of real-
izations, pump, which is applied at frequency ωp = ωa − ωgm, is not
resonant with the transition frequency.
Following experiments described in this chapter are done using the

lead plated copper memory cavity.
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5.3 quantum memory

In this section we demonstrate the first task that the quantum
node is required to execute, which is the on demand data storage,
with time controlled capture and release of the propagating field.

The pulse sequence used for this experiment is shown in Fig. 61a.
It consists in sending a 500 ns pulse signal on the buffer mode and
applying the conversion pump for 1 µs to let the signal go into the
memory mode. The pump is then turned off for the time duration ∆t
which is the storage time of the signal. Finally the pump is turned on
a second time for 1 µs to release the signal out of the memory to the
buffer mode and consequently to the transmission line. The output
field from the buffer mode a is measured during 1 µs using a fast data
acquisition card with sampling time of 2 ns.
Amplitude of the measured signal is shown in Fig. 61b for ∆t = 500

ns. Most of the incoming signal gets reflected on the buffer resonator
and only the small exponentially decaying signal measured 500 ns
later corresponds to the field that has been stored in the memory
and released after 500 ns. This low capture efficiency is due to the
fact that the signal pulse in this measurement was square shaped. It
can however be improved by temporally shaping the signal [6].
The exponential envelope of the signal released from the memory,

shown in Fig. 61d, reveals the access time of 136 ns. The access time
determines the duration of writing and reading operations in the mem-
ory, that should be as fast as possible compared to the memory life-
time in order to allow a maximum number of operations. Memory
lifetime is determined by performing the capture and release pulse
sequence for different storage times ∆t. We define the capture effi-
ciency as the ratio between the total integrated amplitude of the
output field after the storage for time ∆t and the total output field
without storage

η =

∫ t0+∆t+T
t0+∆t |aout|2dt∫ t0+T
t0

|aout|2OFFdt
, (150)

where |aout|OFF is the measured amplitude of the output field with
the pump turned off. It is integrated from the time t0 when the signal
from the microwave source arrives to the sample at the base tempera-
ture stage of the cryostat, until the time t0 + T , where T = 500 ns is
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Figure 61: (a) Pulse sequence for the signal capture and release measure-
ment. (b) Time trace of the measured amplitude of the output
field for ∆t = 1µs. (c) Time trace of the measured amplitude of
the output field with the pump turned off. (d) Time envelope
of the measured amplitude of the signal released from memory.
The full line corresponds to |aout|(t0 + ∆t)e−

t−t0−∆t
τ the access

time τ =136 ns. (e) Efficiency as a function of the storage time ∆t.
Full line corresponds to η(∆t = 0)e−

∆t
τm with the initial efficiency

η(∆t = 0) = 0.015 and the memory lifetime τm = 1.52 µs.

the duration of the square pulse that we send. From the exponentially
decaying efficiency we find the memory lifetime τm = 1.52 µs.
This lifetime is shorter than what can be achieved with supercon-

ducting resonators where a 3D cavity coupled to a qubit has been
observed to reach the lifetime of 1 ms [95]. As discussed in section 5.6,
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it was limited by the non-convex architecture of the 3D cavity and
the presence of cuts and apertures for the chip integration.

5.4 characterizing the qubit

5.4.1 Transmission through frequency conversion

The frequency conversion opens up a new possibility to probe the
qubit-cavity system. The signal at frequency ωc is injected on the
memory resonator on a range of frequencies in the proximity of the
buffer resonance frequency ωm. Then by continuously applying the
conversion pump ωp = ωa−ωm, one can monitor the field transmitted
from the memory to the buffer at the buffer output, at frequency
ωc + ωp.
The complex transmission coefficient through frequency conversion

expected from the Langevin equations Eq. (142) reads

t[ω] =
〈âout〉
〈m̂in〉

(151)

=
i|χp|√κaκm

(ω− ωm − iκm+κlossm
2 )(ω− ωa − iκa+κ

loss
a

2 )− |χp|2
.

The measured amplitude of the transmitted field is shown in Fig. 62b.
To determine the transition frequency of the qubit, we make use of

the fact that the cavity transmittance is dependent on the qubit state.
We do a continuous wave measurement with Vector Network Analyzer
(VNA) as shown in Fig. 63. We measure the signal transmitted from
the memory to the buffer mode through frequency conversion just as
in Fig. 62b, but we add a supplementary drive at frequency ωd that
we sweep in the range of frequencies around the resonance frequency
of the qubit expected from its geometrical characteristics.
For few different drive frequencies we observe hybridization of the

dressed cavity resonances. This measurement enables us to deduce
the qubit frequency ωq = ωeg = 2π× 5.204 GHz.
In order to probe the qubit, we realize a heterodyne setup shown in

Fig. 64, that allows the measurement of the field transmitted from the
memory to the buffer mode by the parametric frequency conversion.
The signal is now injected on the buffer resonator, while the conver-
sion pump is applied on the JPC so that the signal is converted from
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pe 0.19
pf 0.06
χmq 2π× 4.7 MHz
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Figure 62: (a) Schematic of transmission through frequency conversion mea-
surement. The signal is sent to the direct memory port at fre-
quency ωc in the proximity of the memory resonance frequency
ωm and the outgoing field from the buffer mode a is measured
at up-converted frequency ωc + ωp. (b) Measured amplitude of
the signal transmitted through conversion from memory to buffer
resonator as a function of memory probing frequency. Red line
corresponds to the Eq. (142) with the fit parameters summarized
the table on the right.

the buffer to the memory resonator. Finally the signal outgoing from
the memory mode is down-converted and digitized using an analog
to digital converter (ADC).
We use the qubit state dependent cavity transmittance to measure

the qubit. We apply a tone at the frequency of the cavity dressed
by the qubit in its ground state ωgm and measure how much of the
signal is transmitted. If we get a relatively large transmission, we can
infer that the qubit must be in the ground state, while a relatively
small signal indicates that the qubit is excited. In order to increase
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Figure 63: Measured amplitude of the signal transmitted through conversion
from memory to buffer resonator as a function of memory probing
frequency ωc and continuous qubit drive frequency ωd.

AWG ADC

Figure 64: Schematic of the heterodyne measurement of the signal transmit-
ted through frequency conversion from the buffer to the memory
mode.

the contrast, we initialize the measurement by forcing the warm qubit
from the thermal equilibrium state to the ground state using a reset
protocol detailed in section 5.4.2.
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Figure 65: Amplitude of the signal transmitted by conversion from buffer
to the memory as a function of frequency, for the qubit initially
prepared in the ground state using the cooling protocol (red) and
in the excited state (black).

The qubit state measurement using cavity transmission is demon-
strated in Fig. 65. Red plot corresponds to the measurement with
the qubit cooled into the ground state using the reset protocol. The
highest transmission peak is at the frequency ωgm, even though there
is some residual transmission at the frequency of the cavity dressed
by the excited qubit ωem due to the fact that the reset protocol is not
absolutely efficient. The black plot on the other hand corresponds
to the qubit prepared in the excited state with a π/2 pulse applied
at the end of the cooling sequence. The highest transmission peak
is then at ωem, although there is a finite probability for the qubit to
decay during the measurement, resulting in an additional peak for
the black curve at the ground state cavity frequency ωgm.
The qubit lifetime measurement is shown in Fig. 66a. It consists

in performing a calibrated π pulse and measuring the qubit state
dependant transmission after waiting time ∆t. For ∆t = 0, the cavity
transmission measured at ωem corresponds to the qubit in its excited
state and for ∆t → ∞ for the qubit in its ground state. From the
exponential decay of transmission coefficient with the delay time, we
find T1 = 10.5 µs.
The decoherence time T2 is found from the Ramsey measurement

as shown in the Fig. 66b. The pulse sequence consists in a first π
2

pulse on the qubit, followed by the free evolution during time ∆t and
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Figure 66: Transmon qubit characterization measurements. (a) The qubit
lifetime T1 is measured by performing a π pulse and measuring
the energy decay. The full red line corresponds to T1 = 10.5 µs.
(b) Ramsey pulse sequence and the measured amplitude of the
transmission at frequency ωem = 7.558 GHz as a function of time
delay between the two π

2 pulses. The full red line corresponds to
T2 = 1.4 µs

a second π
2 pulse preceding the measurement of the state of the qubit.

From the exponential decay of the coherences, we find T2 = 1.4 µs.

5.4.2 DDROP cooling protocol

When the thermal environment of the qubit is hot on the scale
of the transition frequency of the qubit, it is interesting to use an
active reset protocol to force the qubit into a known pure state or a
ground state. A protocol called the Double Drive Reset of Population
(DDROP) was proposed and demonstrated by the Devoret group in
2013 [125].

DDROP cooling pulse sequence consists in simultaneously applying
two microwave drives on the qubit-cavity system for a time of few κ−1.
One drive is applied at ω0

eg, that is at the transition frequency of the
qubit when there are no photons in the cavity. The second drive is
applied with amplitude εc at ωgm, that is at the cavity frequency when
the qubit is in the ground state.
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Figure 67: DDROP cooling sequence and the measured cavity transmission
with the qubit in thermal equilibrium is shown in black, and with
qubit cooled by DDROP procedure in red.

The first tone drives the Rabi oscillations |0, g〉 ↔ |0, e〉 at ΩR

in order to accelerate the dynamics of the qubit. The second drive
populates the cavity with photons when the qubit is in the ground
state such that |0, g〉 → |α, g〉. It prepares the state |α, g〉, that once
the drives are turned off relaxes to |0, g〉 in few κ−1.
Cavity transmission as a function of frequency is shown in Fig. 67

for the qubit in thermal equilibrium in black and for the qubit initial-
ized to the ground state using the DDROP protocol in red. The red
plot has higher transmission at ωgm and decreased transmission at ωem
indicating that the probability to find the qubit in the ground state
is increased compared to the thermal equilibrium. We thus initialized
all the measurements that we have performed with this protocol in
order the contrast in qubit state dependent transmission and increase
the readout efficiency.

5.5 qubit as an ancilla for the quantum node

In this section we will look into the dispersive coupling of the mem-
ory mode and the qubit as a resource for the quantum state control
and measurement.
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5.5.1 Dressed qubit spectroscopy

Let’s consider the dispersively coupled system of the memory cavity
and transmon qubit, in the presence of driving fields for both the
qubit and the memory cavity modes. The Hamiltonian of this system
reads

Ĥ = h̄ωmm̂
†m̂+ h̄

ωq
2 σ̂z − h̄χmqm̂

†m̂ |e〉 〈e| (152)

+ h̄(εce
−iωctâ† + ε∗ce

iωctâ) + h̄(εde
−iωdtσ̂+ + ε∗de

iωdtσ̂−),

where εc and εd are respectively the amplitudes of the cavity and
qubit drives at frequencies ωc and ωd.
As the memory cavity-qubit pull is larger than dissipation rates of

both the qubit and the memory mode, χmq � γ1,κm, the system is
in the resolved photon number regime, as can be seen in Fig. 68. The
measured amplitude of the transmitted signal is shown as a function
of the frequency of the continuous wave qubit drive ωd and the am-
plitude εc of the second continuous wave cavity drive at frequency ωc.
The memory cavity is probed at frequency ωgm, such that the trans-
mission decreases when the probability for the qubit to be excited
increases.
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Figure 68: Spectroscopy of a qubit dressed with cavity photons.

The frequency of the qubit drive ωd, represented in the horizon-
tal axis of the Fig. 68, is swept in the proximity of the bare qubit
frequency ωq = 2π × 5.205 GHz. When there are no photons in the
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cavity, for εc = 0, the qubit is excited only when ωd = ωq. When
the amplitude of the cavity drive is increased, such that there is k
photons in the memory cavity, the resonances appear for qubit drive
frequencies ωd = ωq − kχqm. Furthermore, the resonances shift to-
wards the lower frequencies due to a non-linear effect induced by the
driving field.
Another interesting feature is the presence of transmission that is

even higher than that of the cavity dressed by the qubit in its ground
state, measured at ωd = ωq for large values of the cavity drive ampli-
tude εc. It corresponds to the increased population of the ground state
of the qubit compared to that of the thermal equilibrium in which
the measurement is initiated. Indeed, this measurement involves the
same drives that are used for the DDROP protocol and they generate
cooling of the qubit.
This measurement has shown that as the system is in the sideband

resolved regime, by applying the drive at frequency ωd = ωq − kχmq,
transitions |g, k〉 ↔ |e, k〉, of the qubit dressed by k photons, can be
selectively driven. In the next section, we will use this regime to cali-
brate selective πk pulses conditioned on the number of photons in the
cavity that are a necessary building block for quantum information
protocoles such as the remote state preparation protocol described in
section 47.

5.5.2 Fock state occupation probabilities for a coherent state

Let’s suppose that we want to know if there are n photons in the
cavity. A way to ask this question using the qubit as an ancilla, is to
apply a π pulse on the qubit at frequency ωq − nχmq, which is the
frequency of the qubit dressed by n photons. We can then measure
the qubit and if we find it in the excited state, we can deduce that the
π pulse worked because there were n photons in the cavity. The pulse
needs to be long enough to be spectrally selective and not excite the
qubit dressed by n± 1 photons. We can also ask more complicated
and less restrictive questions, such as if there are either n or n+ 1
photons in the cavity and post select on the memory in the state
ρm = |n〉 〈n|+ |n+ 1〉 〈n+ 1|.
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In order to calibrate the conditioned πn pulses, we first measure
the probabilities Pn for the memory field described by density matrix
ρm to host n photons

Pn = Tr(ρm |n〉 〈n|). (153)

In the case of the memory mode in the coherent state of amplitude
α, ρm = |α〉 〈α|, these probabilities are

Pn(α) = e−|α|
2 |α|2n

n!
. (154)

The pulse sequence used for the measurement is shown in Fig. 69.
First, the memory cavity is prepared in the coherent state |α〉 by
applying a 300 ns gaussian displacement pulse D(α) of amplitude εc
at frequency ωm, on the memory in vacuum state.
Second, a π pulse is applied to the qubit at frequency ωq − nχmq

for n ∈ {0, 5}. In order to have the spectral pulse selectivity larger
than 90%, the bandwidth of the gaussian envelope is set such that

1− e−
χ2
mq

2σ2 > 0.9.
Finally, the cavity transmission is measured at readout frequency

ωm to deduce the state of the qubit. As in the previous cavity trans-
mission measurements, we measure the transmission through frequency
conversion from the buffer to the memory resonator. We thus turn on
the conversion pump 500 ns before we turn on the readout. The aver-
age transmission as a function of the amplitude of the displacement
field εc is shown in Fig. 69.
This measurement allows us to calibrate the amplitude of the dis-

placement tone εc in a number of photons. The amplitude for which
the transmission reaches the smallest value is the one for which the
probability to excite the qubit with the pulse πn is the highest, so it
corresponds to n = |α|2 photons in the cavity.
The red curve corresponding to no photons in the cavity reaches

higher transmission values for large εc. This is due to the fact that
qubit is initially not in the ground state but in a thermal equilibrium,
with probability pe = 0.17 to be in the excited state. With probability
pe then the system starts in the state |e, 0〉 and the displacement tone
does not displace the cavity. However the final π0 pulse brings the
system to |g, 0〉. This is equivalent to DDROP cooling procedure and
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Figure 69: Pulse sequence and measured amplitude of the transmission coef-
ficient at readout frequency ωm and π pulse applied at ωq−nχmq
for color encoded Fock states n ∈ {0, 5}, as a function of the cav-
ity displacement rate εc. Black reference curve corresponds to the
measurement without any qubit pulse drive.

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

α

P
n

Figure 70: Fock state probabilities deduced from measured transmission, as
a function of the amplitude of the coherent displacement α. Full
lines correspond to the Poisson distribution Pn(α) = e−|α|

2 |α|2n
n! .

increases the population of the ground state, so that the transmission
is higher.
Fock state probabilities deduced from the transmission measure-

ment with π pulses conditioned on the number of photons in the
cavity are shown in Fig. 70, plotted as a function of the amplitude of
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the coherent cavity displacement α =
√
n. The full lines correspond

to the Poisson distribution Eq. 154.

5.6 limiting factors of the hybrid 2d/3d quantum
node

In this chapter we have presented a hybrid architecture of the quan-
tum node, based on a Josephson Parametric Converter coupling a low
quality 2D buffer mode to a high quality 3D memory mode. Although
we have successfully coupled a qubit to the memory mode and demon-
strated cavity photon number dependent qubit rotations, there are a
few limiting factors that make this device not suitable for the quan-
tum node.
First, the qubit readout in this architecture can be done either

by qubit state dependent transmission through frequency conversion
from buffer to the memory mode, or by qubit state dependent reflec-
tion on the direct port to the memory. However, both of these are
slow as they are limited by the coupling of the direct memory port.
This port is undercoupled in order not to degrade the quality factor
of the storage mode, and as the coupling is small, the π pulses have
to be long. As we will see in the next chapter, this can be solved
by adding a supplementary resonator, strongly coupled to the qubit,
whose only purpose is to measure its state and reinitialize it to the
ground state.
Second difficulty is obtaining the frequency tunability. The main

disadvantage of the 3D architecture is the rigidity of its design. Fre-
quency tunability is most commonly obtained using the flux modula-
tion of a squid or Josephson ring. Magnetic flux is commonly applied
either through fast on chip DC lines or using an external magnetic
field. In the case of 3D cavities both of these are challenging. In-
tegrating fast flux lines necessarily involves making holes or cuts in
the cavity walls, which decreases its quality factor. External magnetic
field on the other hand is expelled from the cavity as they are realized
in superconducting material. We have opted for the second solution,
with the external magnetic field produced by applying a voltage on
a NbTi superconducting coil that is fixed above the superconducting
cavity and the Josephson ring that was situated outside of the cavity
and coupled to it through apertures in the cavity walls.
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metal Al Al Al Al Cu/Pb
JRM yes no no yes yes
qubit no no no yes yes

κlossm
2π (kHz) 50-200 30-100 1 50-200 70

Q 4.5× 104 8× 104 6× 106 3.5× 104 105

Table 9: Measured dissipation rates and quality factors for different test
3D cavities coupled or not to superconducting circuits. Ranges of
values obtained during different cool-downs are shown for the non-
reproducible values. JPC chip is represented in yellow and qubit
chip in green.

In order to identify the limiting sources of losses in our device,
we have done a series of tests summarized in Table 9. By putting
two cavity bottoms together, that do not include any chimneys nor
apertures, losses comparable to those of compact convex 3D cavities
are obtained. This result points out that the main sources of losses
are different cuts and seams needed to integrate the JPC and the
transmon, although the presence of sapphire substrate is evidenced
to introduce further losses as well.
We can conclude that hybrid 2D/3D architecture is prone to exces-

sive losses. To address this problem and increase the lifetime of the
storage mode, we have thus adopted two different strategies, that will
be presented in the following chapter.
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5.7 conclusion

The main results of this chapter are:

• Demonstration of a qubit in the photon number resolved regime
coupled to the memory of a quantum node.

• Characterization of a lead plated copper cavity.

• Population reset protocol for the 3D transmon qubit of the
quantum node.

• Characterization of losses in 3D microwave cavities and deter-
mination of the limiting factors for the hybrid 2D/3D quantum
node architecture.
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6
QUANTUM NODE ARCHITECTURES

"One’s destination is never a
place but rather a new way of
looking at things."

Henry Miller

In the previous chapter we have seen that transitions between 2D
and 3D resonators in the hybrid architecture engender dissipation
and uncontrolled losses. In this chapter we will present two differ-
ent solutions that bypass the 2D/3D interconnects, first a fully 3D
waveguide architecture and then a fully 2D CPW geometry.

6.1 fully 3d waveguide architecture

3D cavities have been demonstrated in multiple experiments to
improve coherence times by orders of magnitude, both of the cavity
itself and of the 3D transmon qubits embedded inside of them. This
is why the first strategy we adopt consists in a fully 3D architecture.

6.1.1 Separate photon storage and qubit readout modes

As discussed in the previous chapter, counting the number of pho-
tons in the memory cavity consists in selective, photon number condi-
tioned excitation of the qubit, followed by the qubit readout. However,
the qubit measurement requires the cavity to be in an empty state,
which necessitates waiting for few lifetimes of the memory mode for
the cavity to empty out. It is thus interesting to completely decouple
the detection setup from the system by adding a third resonator that
is strongly coupled to the qubit and whose unique role is to efficiently
measure and reset it [126]. A scheme with separated photon storage
and qubit readout modes is represented in Fig. 71.
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Figure 71: Schematic of the three resonators architecture with buffer res-
onator a and memory resonator m coupled through a JRM, and
a separate cavity r for the qubit readout.

The Hamiltonian of the system reads

Ĥ = h̄ωaâ
†â+ h̄ωmm̂

†m̂+ h̄ωrr̂
†r̂ (155)

+ h̄
ωq
2 σ̂z − h̄χmqm̂

†m̂ |e〉 〈e| − h̄χrq r̂
†r̂ |e〉 〈e| ,

where χmq is the pull between the memory mode and the qubit and
χrq between the readout mode and the qubit. These parameters have
to satisfy a few contraints in order to enable both the dispersive
readout and arbitrary state preparation. While the photocounting
requires the qubit-memory cavity pull to be large enough such that
system is in the photon number resolved regime, χmq > κm,κq, it
should still be sufficiently small so that a π pulse spectrally large
enough to address the qubit dressed by the first∼10 photon states can
be performed. Similarly, qubit-readout cavity pull should be larger
than the cavity linewidth χrq & κr to optimize the readout strength.
In the following section we will see how the system is designed to
respect these requirements.

6.1.2 Fully 3D design

Both the memory and the readout resonators are implemented as
3D cavities, with a transmon qubit located in the tunnel in the bulk
metal between the two, similarly to the architecture developed by the
Yale group [112].

For a 3D cavity coupled to a planar JPC, the main source of de-
coherence are the interconnects that transition between the coaxial
microwave environment of the transmission lines, and planar and 3D
microwave environments of the resonators. In this full 3D design, the
JPC is wirelessly embedded inside of a cavity, similarly to the wire-

138



less Josephson amplifier implemented by the Yale group [127]. The
bottom half of the device is shown in Fig. 72.

(a) (b)

Figure 72: (a) CATIA drawing and (b) photograph of the bottom half of the
three-cavity cQED device with the left cavity hosting the buffer
resonator a, the memory cavity m in the middle and the readout
cavity r on the right. Two sapphire chips are placed between the
top and the bottom parts. The left chip carries a microstrip buffer
resonator a with a JRM in the middle, coupling it to a planar
antenna that dips through the left tunnel into the memory cavity.
The right sapphire chip hosts the transmon that couples to the
memory cavity on its left and to the readout cavity on its right.
Josephson junction of the qubit is located in the tunnel in the
bulk metal.

The three cavities are machined in copper and the plan is to ul-
timately electroplate the memory cavity with lead in order to get a
high Q factor. The left cavity has the dimensions of a rectangular
WR62 waveguide and its top part contains an iris whose dimensions
were chosen to enable strong coupling of the buffer resonator situated
in this cavity to the transmission line. The iris is backed by a waveg-
uide to SMA adapter, that connects the device to the input coaxial
transmission line.
Buffer mode a is a planar resonator realized in microstrip architec-

ture on a sapphire chip with a gold ground plane strip on its back.
The HFSS simulations that we have done, showed that the microstrip
ground plane is necessary because due to the ground plane defined by
the walls of the waveguide cavity, the buffer mode impedance would
be very large, which would result in the buffer mode resonating at
a frequency too high and too detuned from the qubit to obtain the
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strong coupling, even if the resonator extends on the whole width of
the cavity. Furthermore, as we will see in the next section, the buffer
resonance would be too high for the bandwidth of the waveguide cav-
ity. The width of the ground plane is 10 times larger than the width
of the buffer antenna, but is chosen small compared to the length of
the cavity to avoid spurious reflection of the incoming field ain on
it. The buffer mode is coupled directly to the propagating mode of
the rectangular waveguide through dipole antennas, which eliminate
the need for PCB and wirebonds. This is a great simplification in the
impedance perceived by the device compared to the hybrid 2D/3D
architecture. The coupling is maximized by setting the distance be-
tween the bottom wall of the rectangular waveguide cavity and the
sapphire chip to the quarter wavelength of the lowest propagating
mode. The bottom wall is an effective shorted termination, such that
the buffer resonator is at an electric field antinode of the standing
wave.

The signal propagating down the rectangular waveguide cavity ex-
cites the differential mode across the buffer resonator which elimi-
nates the need for hybrid couplers used in previous experiments to
distribute the field with differential polarization. Hybrid couplers are
lossy and cumbersome elements which makes the design where they
are not necessary very appealing. In this design however, a hybrid
coupler is still used for the pump tone. Full cryostat wiring is shown
in Fig. 95. Pump field is applied through two symmetrical pins that
dip on the two sides of the rectangular waveguide cavity aligned with
the dipole coupling antennas of the buffer resonator. One of the SMA
cables for the pump excitation can be seen on the closed device in
Fig. 73b.
Josephson Ring Modulator (JRM) is located in the middle of the

buffer resonator. As the cavity is made of copper, the JRM can be
unobstructedly flux biased with an external magnetic field. JRM cou-
ples the buffer mode to an antenna, which extends through a tunnel
in the bulk metal to the memory cavity. Memory cavity, in the mid-
dle in Fig. 72 has no direct ports to the environment. Before the
final cool down, it can be selectively lead plated using the electrode-
position technique developed for the previously studied architecture.
As the lead oxydizes quickly and its oxyde is not superconducting,
the lead plating is not done for the calibration measurement runs.
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(a) (b)

Figure 73: (a) Top and bottom halves of the three-cavity cQED device. (b)
Closed device with waveguide to SMA adapter used to differen-
tially excite the buffer mode. One of the two pump ports is visible
on the front side.

The difficulty compared to the previous design is that the coupling
between the antenna and the memory mode is done asymmetrically,
with only one arm of the antenna coupling to the memory field on one
side of the JRM. By consequence, JRM does not perceive the same
impedance on both sides. To remedy this, we have made one arm of
the antenna longer than the other one. The optimal length difference
was simulated using HFSS software by maximizing the quality factor
of the memory mode. This issue will be discussed in more details in
section 6.1.6.
Finally, the cavity on the right in Fig. 72 is the qubit readout cav-

ity. The junction of the qubit is located in the tunnel between the
memory and readout cavities, and couples to them with two antennas
whose lengths were determined in electromagnetic HFSS simulations
to ensure strong dispersive coupling. An iris in the bottom of the
readout cavity connects it to the transmission line through a waveg-
uide to SMA connector. The size of the iris was determined in HFSS
simulations to allow for strong coupling.
Both the buffer and readout modes are addressed by waveguide

transmission lines. In the following section, we will explain how waveg-
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uides can be used as a filtering tool to extend the lifetimes of the
qubit and the memory cavity without compromising on the readout
efficiency.

6.1.3 Waveguide filtering

The 3D architecture has the advantage of being compatible with
microwave waveguides. Microwave waveguides are metallic transmis-
sion lines used at microwave frequencies. The maximum wavelength
a rectangular waveguide can support is given by twice the length of
the longer dimension of the cross-section, labeled d in Fig. 74a. Close
to that cutoff, they thus act as high-pass filters with a lower cutoff
frequency fc = c

2d , where c is the speed of light.
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Figure 74: (a) Cross-section of a waveguide with largest supported wave-
length mode TE10. Planar λ2 buffer mode is represented in yellow.
(b) Measured transmission and reflection coefficients for WR62
waveguide with cutoff frequency fc = 9.5 GHz.

By designing the readout cavity and buffer resonators such that
their resonance frequencies satisfy ωr,ωa > 2π × fc, we ensure that
they can propagate in the waveguide without dissipation. On the
other hand, waveguides can be used to filter out the qubit and mem-
ory modes that are designed to resonate bellow the cutoff frequency
ωq,ωm < 2π × fc. In this experiment we use the WR62 waveguides.
Reflection and transmission coefficients for this waveguide measured
at room temperature are shown in Fig. 74b, with the cutoff frequency
fc = 9.5 GHz.
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In fact, rectangular waveguides behave rather like bandpass than
high pass filters. The accepted limits of operation, where losses are
negligible, are approximately between 125% and 189% of the lower
cutoff frequency, that is 12.4 GHz to 18 GHz for WR62 waveguide.
This sets an additional constraint for the frequency of the buffer mode,
which made it necessary to realize it as a compact, lumped element
resonator.

6.1.4 Lumped buffer resonator

Planar buffer resonator is oriented in the direction of the shorter di-
mension of the waveguide cross-section as shown on Fig. 74a. It is thus
differentially polarized by the fundamental TE10 mode propagating
in the rectangular waveguide. The minimum resonance frequency a
distributed λ

2 buffer mode can take is given by the maximum possible
length of the resonator, that is λa

2 = d
2 (see Fig. 72). The minimum

buffer frequency is then twice the lower cutoff frequency

fmina =
c

λa
=
c

d
= 2fc > 189% fc, (156)

which places it outside of the waveguide bandwidth.
Having the buffer resonance frequency outside of the waveguide

bandwidth would attenuate the propagating signal and make strong
coupling to the buffer mode unattainable. One possible strategy to
reduce the resonance frequency of the buffer mode is to increase the ef-
fective length of the distributed resonator by creating meanders. This
approach has an important drawback which is the spectral crowding
coming from the multiple spurious modes due to the signal reflections
at bending points which induce impedance discontinuities in this ge-
ometry without an infinite ground plane. An alternative approach is
concentrating the inductance and capacitance of the buffer mode in a
smaller region by making a compact or lumped resonator. As a clean
spectral environment reduces the number of unwanted decoherence
channels, we opt for the second approach.
The size of the lumped buffer resonator is reduced to the size of

the Josephson ring. Most of the buffer inductance La comes from the
wires of the ring, which is shunted by four identical capacitors Cs,
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Figure 75: Equivalent circuit of the lumped buffer resonator with four large
shunting capacitors Cs. Josephson ring couples the buffer mode
to an asymmetric antenna mode, that capacitively couples to the
memory resonator. L1 and L2 are inductances of the two arms of
the antenna. Capacitors Cc couple the compact buffer resonator
to the dipole antennas that couple it to the incoming signal field.

as shown in the Fig. 75. The differential eigenmode of this circuit is
given by

ωa =
1√

(La + LJRM )Cs
, (157)

where LJRM is the effective inductance of the Josephson ring. Cou-
pling capacitors Cc couple the buffer resonator to the antennas, that
mediate the coupling to the waveguide. Both the shunting and cou-
pling capacitors are realized in the interdigitated architecture as shown
in Fig. 76a.
Unlike the microstrip resonator, the lumped buffer resonator does

not have higher harmonic resonances. By consequence, the pump ap-
plied at frequency ωa+ ωm can be considered stiff to a good approxi-
mation. Furthermore, lumped resonators have higher internal quality
factors than the microstrip ones likely due to the absence of the dipole
radiation on the edges.
On the other hand, capacitances larger then 0.5 pF are difficult

to achieve using the interdigitated configuration, which makes some
frequencies unattainable [128]. Furthermore, the interdigitated ca-
pacitors present some parasitic capacitances and inductances, which
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(a)

(b) (c)

Figure 76: (a) Electron lithography drawing of the Josephson ring shunted
by four large capacitors an coupled through two smaller capaci-
tors to the antennas. (b) Optical microscope image of the lumped
buffer resonator with the four shunting capacitors in the corners.
(c) Optical microscope image of the Josephson ring shunted by
meanders that acts as linear inductors.

makes their scaling to match a given frequency not straightforward.
This is why we use a microwave simulation tool called qucs [129]. In
a simulation explained in more details in section 10.2, we have fixed
the buffer resonance frequency to a value of ωa = 2π × 13.1 GHz
within the waveguide bandwidth and for fixed length of wires and
thus fixed buffer impedance, we have done a parametric optimization
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on the shunting and coupling capacitances Cs and Cc. We determine
Cs = 145 fF and Cc = 71.5 fF.
To a good approximation, the capacitance of an interdigitated ca-

pacitor is given by [130]

C =
ε

h
S, (158)

where S = lx × lz is the surface of the capacitor, ε is the electric
permittivity and h = d + w where d is the distance between two
neighboring fingers and w is the width of an individual finger, as
shown in Fig. 77. This enables us to roughly determine the size and
number of fingers for the capacitors.

Figure 77: Schematic of an interdigitated capacitor. The total surface S =

lx × lz, the width of one finger w and the distance between two
neighboring fingers h−w to a good approximation determine the
total capacitance.

For the sample used in this experiment, there are N = lz
2h = 8

fingers for each plate of both the shunting and the coupling capacitor.
Their dimensions are lx ×w = (220× 5) µm for the shunting capaci-
tors and (110× 5) µm for the coupling capacitors, as can be seen in
Fig. 76.

6.1.5 Vanishing Kerr shift

We have created an atypical Josephson mixer, where a Josephson
ring couples one lumped resonator to a 3D resonator. We characterize
this device by measuring the signal reflected on the buffer resonator
while sweeping the current through the magnetic coil Icoil. From the
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reflected signal dependance in frequency, we determine the buffer res-
onance frequency as a function of flux bias, see Fig. 78.
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Figure 78: (a) Measured buffer resonance frequency as a function of the cur-
rent in the magnetic coil. Red dots correspond to a measurement
with high probe power P = 5 dBm and black dots to a mea-
surement with low probe power P = −40 dBm. They intersect
at "sweet flux points" where the cross Kerr shift induced by the
pump tone is vanishing. (b) Frequency shift due to the self-Kerr
effect as a function of the current in the magnetic coil.

As explained in the section 2.2.2 on the Josephson mixer, there is a
critical flux at which a shunted Josephson ring switches from the sym-
metric to a broken symmetry flux configuration in the ring subloops.

147



The two flux configurations correspond to two sizes of the arches that
are observed in the flux dependance of the eigenfrequencies. The ir-
regularity of the pattern is due to imperfections in the areas of the
subloops of the Josephson ring and inequality of the junction sizes
[122].
The measurement is done at two different probe powers shown

in black and red in Fig. 78a. For no bias current Icoil = 0, and at
probe power P = −40 dBm referred to the output of the signal
generator, resonance frequency of the buffer mode is found to be
ωa = 2π× 13.164 GHz, the coupling rate is κa = 2π× 30.5 MHz and
the dissipation rate is κlossa < 2π× 1 MHz. At high probe power, the
resonance frequency shifts due to the self-Kerr effect. For the Joseph-
son ring shunted by inductances though, the Kerr term in Hamilto-
nian has a cosinusoïdal dependance on the external magnetic flux
ϕext, see Table 3. There are thus certain "sweet points", correspond-
ing to ϕext = 2π, at which this term goes to zero and the Kerr shift
vanishes, as can be seen in Fig. 78b. This is an important advantage
of the Josephson mixer employed for the quantum node, compared to
other simpler sources of nonlinear interaction such as a single Joseph-
son junction of a transmon qubit [131], that were used to perform
efficient release of multiphoton quantum states, but not yet the sig-
nal capture.
Vanishing Kerr shift presents few benefits for quantum node re-

alization. First, operating the quantum node requires fast switching
between the amplification and conversion regimes. As the pump tones
used in these two regimes are spectrally far from each other, they re-
quire powers that can differ by orders of magnitude. By consequence,
if the Kerr term is non zero, frequencies of the modes coupled to the
nonlinearity shift between the amplification and conversion regimes.
Few feedback steps are thus needed to adjust the frequency and the
amplitude of the pump tone. Working at the "sweet flux" where the
Kerr shift vanishes greatly simplifies this routine.
Furthermore, capture efficiency Eq. (150) of the signal incoming

to the memory mode is limited by the Kerr effect. Indeed, when
a gaussian shaped signal wavepacket starts entering the cavity, the
resonance frequency of the memory mode shifts due to the self-Kerr
effect. The pump amplitude and frequency would thus have to be
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adapted while the signal is entering in order to match its amplitude
and obtain the maximum efficiency η = 1.

6.1.6 Asymmetric coupling to the memory mode

The coupling between the buffer and memory modes is mediated by
an asymmetric antenna through a tunnel in the copper bulk between
the two cavities. The size of the tunnel is small, so that it doesn’t
introduce losses to the memory mode. However, buffer and antenna
are on the same chip and the chip needs to be wide enough to support
the large antennas for the strong coupling κa of the buffer to the
transmission line. This is why the chip has a nontrivial shape that
can be seen in Fig. 79. The chip is laser cut because dicing only
allows rectangular shape for samples. Laser cutting is made possible
by using a sapphire substrate that is only 150 µm thick. E-beam
lithography resists are deposited on the sapphire wafer previous to the
laser cutting because the shape of a single chip does not allow for the
spin coating. E-beam resists are protected from the contamination
during the laser cutting step by a thick UVIII resist that can be
selectively removed using the IPA.

Figure 79: JPC with a lumped buffer resonator on a laser cut sapphire sub-
strate.

Amplitudes of the electric field of the system eigenmodes, simulated
with the HFSS software, are shown in Fig. 80. The memory mode
shown in Fig. 80b is delocalized on the planar antenna that couples
it to the JRM. Simulated frequency of the memory mode is ωm =

2π× 8.14 GHz.
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(a) (b)

Figure 80: Amplitude of the electric field simulated using Ansys HFSS soft-
ware for (a) the buffer λ

2 mode and (b) the fundamental mode of
the memory cavity.

As there is no direct port that allows probing the memory mode,
we resort to an indirect probing technique that makes use of the Kerr
shift. We measure the reflection coefficient on the buffer resonator
while sweeping the frequency of a strong pump tone. When the pump
tone is resonant with one of the eignemodes of the system, a cross
Kerr shift is induced on the buffer mode, as can be seen in Fig. 81.
This measurement is an indirect way to determine the frequencies of
the eigenmodes of the system. Guided by the expected value from
the electromagnetic simulation, we find the memory mode at ωm =

2π× 8.106 GHz. These two measurements allow us to determine the
pump frequency for the parametric conversion between the buffer and
memory modes ωp = ωa − ωm = 2π× 5.058 GHz.

6.1.7 Conversion pump

The pump tone is applied through symmetrical pins that dip into
the waveguide cavity right above the antennas of the lumped buffer
resonator in order to excite the common mode of the Josephson mixer.
However, the cutoff frequency of this waveguide being 9.5 GHz, the
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Figure 81: Measured buffer frequency as a function of the frequency of the
pump tone. When the pump frequency is resonant with an eigen-
mode of the system, noticeable Kerr shift is induced on the buffer
mode.

conversion pump frequency is well below the waveguide bandwidth
and there is a considerable attenuation of the signals propagating at
lower frequencies. During the first measurement run, we understood
that even at the maximum pump power that we could send using a
microwave source backed by a room temperature amplifier, we could
not succeed in inducing the conversion to the memory mode. In an-
other measurement run, the pins for the pump tone were made much
longer and curved such that they come to the immediate proximity
of the buffer resonator. However, in this configuration, the incoming
signal gets reflected on the pins resulting in a Fano resonance on the
buffer mode.
On the other hand, for a pump tone at frequency ωp = 2π× 7.927

GHz, a phase roll of 4π at buffer frequency shown in Fig. 82 indicates
a conversion to a high frequency mode, ωp = ωmode − ωa. This is an
encouraging result because it means that by changing the dimensions
of the memory cavity in order to lower its resonance frequency such
that ωa−ωm & 2π× 7.9 GHz, the problem of pump tone attenuation
would be solved.
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Figure 82: Phase of the measured reflection on the buffer mode with the
conversion pump turned on at a frequency corresponding to a
conversion from the buffer to a high frequency mode. The phase
roll of 4π indicates the strong coupling regime.

6.1.8 Conclusion on the full 3D geometry

Most of the building blocks of this complex device were demon-
strated to operate as expected. The memory mode has been indirectly
observed at the resonance frequency expected from the electromag-
netic simulations, but the conversion to memory mode couldn’t be
attained because the pump tone was filtered out by the waveguide.
However, a signature of frequency conversion to a high frequency
mode in the strong coupling regime has been observed. This shows
that the architecture could be modified to enable quantum node im-
plementation by setting the memory mode at a lower frequency.
In parallel with this design, we have realized another solution which

is a full 2D architecture.

6.2 2d coplanar waveguide architecture

An alternative strategy to disposing of 2D/3D interconnects and
the dissipation that comes with them is going full 2D. Even though
this approach lacks the clean electromagnetic environment that comes
with the 3D cavity, it has a lot of other advantages.
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First, nanofabrication recipes are well known and changes in the
design can be incorporated much more readily than in the case of
3D cavities that have to be machined in the bulk metal. Second, the
devices are much less cumbersome, especially with the new proposals
of integrating on chip microwave components such as circulators and
microwave switches [5, 132]. Finally, a great progress in the under-
standing of sources of decoherence has been made, in particular iden-
tifying the locations of the TLSs as metal-substrate and substrate-air
interfaces [133]. This has lead to emergence of techniques to reduce
their impact that enabled achieving quality factors of 106.
During the writing of this thesis, the full 2D quantum node project

is still in a stage of preliminary measurements. Few considerations
concerning the circuit design and simulations prior to the experiment
will be detailed here.

6.2.1 Circuit design

In the previous experiments described in this thesis, planar res-
onators were fabricated in a microstrip architecture. This architec-
ture is convenient for the Josephson mixer, however, when it comes
to optimizing the resonator lifetime, it is not the most competitive
one. Indeed, microstrip resonators have large radiation losses due to
the large electric dipole induced between the strip and the ground
that is radiating at the extremities of the resonator. In the CPW ar-
chitecture on the other hand, the dipole moment vanishes due to the
ground plane that is surrounding the resonator on both sides.

Figure 83: Cross section of CPW resonators with different gap widths. Par-
ticipation ratio of the surface of the dielectric substrate is more
important for smaller gaps.
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The quantum node circuit described in this section is realized in
CPW architecture. The schematic of the experiment is the same as
the one described in Fig. 71. Buffer mode is strongly coupled to the
transmission line through the port that can be seen on the top left
in Fig. 84. Frequency tunability of the device is ensured by a large
participation ratio of the variable inductance of the Josephson ring,
controlled by magnetic flux, in the total inductance of the buffer
resonator. The tunability can thus be increased by decreasing the
geometric inductance of the buffer resonator, which is equivalent to
decreasing its impedance as Z =

√
L
C . This can be done by decreasing

the size of the gap between the resonator and the surrounding ground
plane. The fabrication technique that uses a laser writer sets this gap
to the minimum value of 10 µm.
However, small gaps concentrate the electric field lines in the prox-

imity of the lossy metal-substrate and substrate-air interfaces, as il-
lustrated in Fig. 83, which makes them detrimental for the coherence
of the resonator [134]. Increasing the gap decreases the participation
ratio of the dielectric surface and by consequence increases the quality
factor of the resonator. In a recent systematic study at UCSB it was
found that quality factor saturates around the gap width of 50 µm
where the other loss mechanisms such as radiation become dominant
[135]. The gap for the memory resonator, for which the quality factor
needs to be maximized, is fixed to 60 µm.
A transmon qubit is capacitively coupled to the memory mode with

one antenna and to the readout mode with the other antenna. Geo-
metrical parameters that determine the coupling, such as the antenna
dimensions and the distance to the resonators were simulated using
the Sonnet software. It is an electromagnetic solver for high frequency
RF and microwave analysis. Simulated current distributions for four
eigenmodes are shown in Fig. 84.
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Figure 84: Current amplitude simulated using Sonnet. (a) λ/2 mode of the
buffer resonator, (b) λ/2 mode of the memory resonator, (c) λ/2
mode of the readout resonator and (b) common mode of the JPC.

6.3 conclusion

Quantum node based on a Josephson mixer is an ongoing project in
our group. Its first experimental realization, where a single cavity was
used both for the photon storage and qubit readout gave encouraging
preliminary results for the arbitrary state preparation. In this chapter
we have presented two upgraded realizations.
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The main results of this chapter are:

• Josephson mixer with a JRM shunted by inductances was used
instead of a Josephson Parametric Converter, in order to enable
cancelling out the Kerr shift and increase the efficiency of the
quantum memory. A qubit readout mode separate from the
photon storage mode was added.

• Design and realization of a fully 3D waveguide quantum node.
A wireless Josephson mixer addressed by microwave waveguides
with a lumped buffer mode was integrated in this architecture.

• Design and simulation of a fully 2D CPW quantum node.
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Part III

PA R A M E T R I C O S C I L L AT I O N





7
PARAMETRIC OSC ILLAT ION

"There’s a crack in
everything, that’s how the
light gets in."

Leonard Cohen

Parametric interaction in a Josephson mixer provides quantum lim-
ited parametric amplification, as well as noise squeezing and para-
metric frequency conversion between modes. All of these applications
are in the pumping regime of the linear resonator response. In this
regime the stiff pump approximation applies, and the pump tone can
be treated as a classical drive connected to a large classical energy
reservoir. As such a reservoir cannot be easily depleted, the pump is
unaffected by the amplification process.
However, for strong pump powers, a strongly non-linear high-gain

amplification regime is attained. This nonlinearity limits the gain
and squeezing at the threshold, and also saturates the parametric
instability such that above the parametric instability threshold a self-
oscillation regime is established. This regime is equivalent to the las-
ing regime in optics.
This transition occurs when the effective coupling rate, that is the

insertion rate of photons in the modes, equals the loss rate of pho-
tons from the cavity [136]. In this regime, the amplified signal power
becomes a considerable fraction of the pump power, so that the stiff
pump approximation breaks down. In the soft pump regime, the in-
teraction between the pump and the signal leads to pump depletion,
which gives rise to spontaneous oscillation.

Interestingly, the non linear evolution leading to the parametric
oscillation can also be provided by a strong Kerr effect instead of the
pump depletion.
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7.1 parametric instability

In this section we will be interested in the boundary between the
parametric amplification and the self-oscillation. We will define the
parametric instability threshold above which the linear response of
the oscillator tends to diverge at its resonance frequency.
As already seen in Chapter 2, when a Josephson mixer is pumped

at frequency ωa + ωb + 2δ, its Hamiltonian in the frame rotating at
ωa,b + δ reads

Ĥ = − h̄δâ†â− h̄δb̂†b̂+ h̄χ|pB|(âb̂+ â†b̂†), (159)

where pB is the amplitude of the so called blue detuned pump, and
the Langevin equations can be put in the matrix form

∂

∂t

 â
b̂†

 =M

 â
b̂†

+

√κaâin√
κbb̂
†
in

 , (160)

with

M =

iδ− κa
2 −iχ|pB|

iχ|pB| −iδ− κb
2

 . (161)

For zero mean input fields 〈ain〉 = 〈bin〉 = 0, a trivial solution to this
system is the empty cavity state 〈a〉 = 〈b〉 = 0. In the linear amplifica-
tion regime this solution is stable, as the cavity quickly dissipates the
amplified input vacuum fluctuations. When the system is pumped so
strongly that amplification of the vacuum fluctuations creates more
excitations than the system can dissipate, new stationary solutions
emerge. The instability threshold can thus be found by studying the
stability of the empty cavity state. The stability condition can be
found by diagonalizing the matrix M

Det(M + i∆) = 0, (162)

which gives

[δ + i
κa
2 + ∆][δ− iκb2 − ∆] = |χpB|2. (163)
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Stability condition reads Im∆ < 0 [137], so that the parametric insta-
bility threshold is given by Im∆ = 0. At threshold, Eq. (163) can be
solved independently for the real and imaginary parts, giving∆ = κa−κb

κa+κb
δ

|χpthB |2 = κaκb
4 + δ2[1− (κa−κbκa+κb

)2].
(164)

The second equation defines the threshold pump amplitude |pthB |.
At zero pump detuning, δ = 0, we find the minimum threshold
|χpthB |2 = 4κaκb corresponding to the cooperativity C = 1. Beyond
this threshold, an empty cavity state still exists as an instable solu-
tion, whereas self-sustained parametric oscillation emerges as a new
stable solution, with complex amplitudes given by a non-linear solu-
tion to Eq. 160a = a0e

iθa

b = b0e
iθb ,

(165)

where amplitudes a0 and b0 are well defined whereas phases θa and
θb present a continuous degeneracy.
Using the same device as in part i, we first measure the power

spectral density of the emitted field from the mode a as a function of
the pump power for different pump detunings δ. We then determine
the self-oscillation threshold as a function of the detuning, as shown
in Fig. 85. There is an asymmetry for positive and negative values of
δ which comes from the Kerr effect. In fact, the effective detunings
renormalized by self Kerr Kaa and cross-Kerr Kab for the two modes
are δa = δ +Kaa|a|2 +Kab|b|2

δb = δ +Kbb|b|2 +Kab|a|2.
(166)

Indeed, Kerr effect stabilizes negative detunings such that there is a
region of bistability for the empty cavity and self-oscillating solutions
[137].
In the following, we measure the emitted quadrature statistics as

shown in Fig. 86 below the instability threshold and in Fig. 87 in the
parametric self-oscillation regime. The Josephson mixer, with zero
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Figure 85: Measured parametric oscillation threshold pump amplitude as a
function of the pump detuning δ. Full red line corresponds to
Eq. (164) up to an attenuation factor. The pump amplitude is
measured at the output of the signal generator, which far exceeds
the one at the input of the Josephson mixer.

mean fields at the input, is pumped with zero pump detuning δ =

0, at ωp = ωa + ωb. The signal emitted from each of the modes a
and b is mixed with an external local oscillator and the resulting
quadrature components are digitized with a fast acquisition board.
In the parametric amplification regime, the output field is described
by a Gaussian distribution centered around the origin. The variance
of a single mode a or b is that of the vacuum fluctuations amplified by
the Josephson mixer and with the thermal noise added by the chain
of amplifiers, as shown in Fig. 86. In the cross-quadrature planes,
signature of two-mode squeezing can be seen [72, 73, 6]. Here we
have chosen a pump phase such that the correlations are only visible
in the Xa −Xb and Pa − Pb planes. However this choice is arbitrary
and with another phase correlations would be visible in all the cross-
quadrature planes.
In the parametric oscillation regime, the emission amplitude abruptly

increases, as can be seen in Fig. 87. The amplitude is constant and
reveals the square root of the mean number of photons in the intra-
resonator mode, a0 =

√
Na. On the other hand, only the sum of the

two phases Θ = θa + θb is constant, but each of the phases θa and
θb can take a continuum of values. As we will see in the following
section, the phase of the emitted field can be locked by injecting a
small resonant signal.
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Figure 86: Field quadrature histograms of the output fields measured in the
linear amplification regime. They correspond to a stable empty
cavity state with a signature of two-mode squeezing that can be
seen in the cross-quadrature histograms.
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Figure 87: Field quadrature histograms of the output fields measured in the
parametric self-oscillation regime. Pump phase was chosen such
that the correlations are only visible in the Xa−Xb and Pa−Pb
planes.
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7.2 injection locking

Injection locking is one of the techniques commonly used with op-
tical laser diodes to obtain narrow linewidths and increase frequency
resolution and stability [138]. This technique relies on the injection
of a tone at frequency ωin, which stimulates the emission of the atom,
natural or artificial, at this injected frequency. This results in the
narrowing of the emission spectrum.
Competition between spontaneous and stimulated emission sets a

lower limit on the laser linewidth, first calculated by Schawlow and
Townes (ST) [139]. In solid-state and semiconducting lasers, charge
noise fluctuations induce broadening of the emission peak such that
natural linewidths are 10-100 times larger than the ST limit.
Recently injection locking has been demonstrated with semicon-

ductor double quantum dot micromaser [27], as well as with an ac
Josephson junction laser [28] and trapped-ion phonon laser [29].

7.2.1 Injection locking theory

Time dependent complex amplitude of the cavity output field is

α(t) = X(t) + iP (t) = |α|eiωint+iφ(t), (167)

where φ(t) = φe(t)− φin is the relative phase of the emitted field φe
and injected field φin, as shown in Fig. 88a. The time evolution of
the relative phase is described by the Adler equation

dφ

dt
+ (ωin − ωe) = −

∆ωin
2 sinφ, (168)

where ωe is the natural emission frequency and ∆ωin is the range
of injection frequencies on which the emission field can get locked.
When |ωin − ωe| < ∆ωin

2 , there is a static solution to this equation,
that reads

φ = arcsin
[2(ωe − ωin)

∆ωin

]
, (169)

so that the phase of the emitted field gets locked to the phase of the
injected field, as shown in Fig. 88b.
When the injection tone at frequency ωin is detuned by few linewidths

from the natural emission frequency ωe, this last one is pulled and
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locked to the injection tone if its amplitude is large enough. The fre-
quency range ∆ωin over which the emission can be injection locked
increases with the power of the injected tone

∆ωin ∝
√
Pin, (170)

as was first predicted by Adler [140]. At low injection tone powers,
mean number of photons in the cavity is smaller than 1 and the
emission is not affected by the injection.

(a) (b)

Figure 88: (a) In the unlocked regime, the phase of the natural emission
field at frequency ωe is fluctuating with respect to the phase of
the injection tone at frequency ωin. (b) In the injection locked
regime, the relative phase φ between the emission and injection
is fixed.

Outside of the injection locking range, i.e. for |ωin − ωe| > ∆ωin
2 ,

solution of the Adler equation Eq. (168) is given by

tan φ(t)2 = − ωb
ωe − ωin

tan ωbt2 −
∆ωin

2(ωe − ωin)
, (171)

where ωb is the beating frequency and it reads

ωb = (ωe − ωin)

√
1−

( ∆ωin
2

ωe − ωin

)2
. (172)

In the transient regime, the emission frequency is pulled towards the
injection frequency

ωe = ωin + ωb. (173)
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General solution for the complex cavity field amplitude in the tran-
sient regime is

α = |α|ei(ωin+ωb)t
∞∑

n=−∞
ane

inωbt, (174)

where an are the expansion coefficients that can be analytically cal-
culated [141]. There is thus a set of emission frequencies ωne given by

ωne = ωin + (n+ 1)ωb, (175)

where n = 0 corresponds to the pulled emission frequency and n =

±1,±2 etc. correspond to higher order distortion sidebands. Note
that n = −1 corresponds to the injection tone.

7.2.2 Standard injection locking of a Josephson mixer

The Josephson mixer is pumped above self-oscillation threshold at
the blue pump amplification frequency ωB = 2π × 14.92 GHz and
power PB = −16 dBm. A weak injection tone at frequency ωin is
applied on resonance on the mode a and its power is swept from -83
to -53 dBm referred to the output of the signal generator. Measured
quadrature statistics for four powers of injected signal are shown in
Fig. 89 which puts in evidence the transition from the phase unlocked
to the phase locked regime. Note that there is approximately 50 dB
of attenuation on the amplification pump line between the signal
generator and the device, and 70 dB on the signal line (see Fig. 93).
In the following measurement, the power of the injected signal is

fixed to Pin = −35 dBm and its frequency is swept in the range
of 50 MHz in proximity of the resonance frequency ωa. Measured
power spectral density of the field propagating from the mode a is
shown in Fig. 90c. Dashed red line corresponds to Eq. (175) with
the injection locking range ∆ωin = 4.8 MHz. This range however is
predicted by the Adler theory to depend on the injected power. To
experimentally verify this dependence, we repeat the power spectral
density measurement as a function of the frequency of the injection
tone for increasing injected powers and for four different amplification
frequencies. Injection locking range determined by matching Eq. (175)
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Figure 89: Measured quadrature statistics for modes (a) a and (b) b for the
pump power fixed in the self-oscillation regime and for four differ-
ent powers of the small signal injected on resonance on the mode
a. Field quadrature axes are calibrated in number of photons. (c)
and (d) Average of the complex amplitudes of the field emitted
from modes a and b as a function of the injected signal power.

to these measurements is shown in Fig. 91. Full line corresponds to
power dependence Eq. (170).
Interstingly, JPC being a non-degenerate amplifier, emission of the

mode a can be locked by a signal injected on the mode b, as shown
in Fig. 90d. The slope of the emission peak in the injection locking
range is -1 as opposed to 1 in the case of locking with a signal injected
on the mode a. The effective injection locking frequency is then

ω̃in = ωB − ωin. (176)

167



8.44 8.45 8.46 8.47 8.48

8.44

8.45

8.46

8.47

8.48

ωin
2 π

(GHz)

ω 2
π
(G
H
z)

-80

-70

-60

-50

-40

-30

-20

(a)

-80

-70

-60

-50

-40

-30

-20

6.45 6.46 6.47 6.48

8.44

8.45

8.46

8.47

8.48

ωin
2 π

(GHz)

ω 2
π

(G
H
z)

(b)

-80

-70

-60

-50

-40

-30

-20

8.44 8.45 8.46 8.47 8.48

8.44

8.45

8.46

8.47

8.48

ωin
2 π

(GHz)

ω 2
π
(G
H
z)

(c)

6.45 6.46 6.47 6.48

8.44

8.45

8.46

8.47

8.48

ωin
2 π

(GHz)

ω 2
π

(G
H
z)

-80

-70

-60

-50

-40

-30

-20

(d)

Figure 90: Measured power spectral density Sa(ω) of the radiation emitted
from the mode a, plotted as a function of the frequency ω and
frequency ωin of the locking tone injected on (a) mode a and (b)
mode b. The power and frequency of the amplification pump are
fixed, PB = 16 dBm and ωB = 2π × 14.93 GHz. Injection tone
power is Pin = −35 dBm. Red line corresponds to Eq. (175) for
(a) and Eq. (177) for (b).

and frequencies of the emission peaks read

ωne = ω̃in + n(ωa − ω̃in)

√
1−

( ∆ωin
2

ωa − ω̃in

)2
. (177)

Note that there is no conversion pump applied in this measurement.
The two intracavity fields of the resonators a and b interact only
through the downconversion of the amplification pump tone, which
results in phase locking of the cavity field of the resonator a to the
field of the resonator b.
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Figure 91: Injection locking range determined by matching Eq. (175) to
the measured power spectral density of the emitted radia-
tion, as a function of the injected power. Different colors cor-
respond to different amplification pump frequencies ωB =

2π × 14.925, 14.93, 14.935, 14.94 GHz. Full line corresponds to
Eq. (170).

7.2.3 Injection locking in conversion

In this section, we present an atypical injection locking scheme,
which makes use of four-wave mixing in a Josephson mixer.

As already seen in Eq. (63), when two pumps are simultaneously
applied at frequencies ωa + ωb and ωa − ωb, two additional terms do
not vanish in RWA and contribute to the interaction Hamiltonian

Ĥtwo pumps = h̄Kapp̂B p̂Râ
†â† + h̄Kbpp̂B p̂

†
Rb̂
†b̂†, (178)

where p̂B and p̂R and annihilation operators for the blue parametric
amplification and red conversion pumps. The first process of Eq. (178)
corresponds to a coherent conversion of one pump photon at ωB =

ωa + ωb and one injected photon at ωin = ωa − ωb to two photons
in the resonator a at ωa. Frequency of the effective injection locking
tone is then given by

ω̃in =
ωin + ωB

2 , (179)

and frequencies of the emission peaks read

ωne = ω̃in + n(ωa − ω̃in)

√
1−

( ∆ωin
4

ωa − ω̃in

)2
. (180)
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Figure 92: Measured power spectral density (a) Sa(ω) of radiation emitted
from the mode a and (b) Sb(ω) from the mode b, as a function of
frequency ω and frequency of the locking tone ωin injected on the
pump port in the proximity of the conversion pump frequency.
Red dashed line corresponds to Eq. (180) with effective injection
frequency given by Eq. (179) for (c) and (181) for (d). The power
and frequency of the amplification pump are fixed, PB = 16 dBm
and ωB = 2π × 14.9 GHz. Injection tone power is Pin = −28
dBm.

Similarly, the second process of Eq. 178 corresponds to a coherent
conversion of one pump photon at ωB = ωa + ωb to one photon at
the injection frequency ωin = ωa − ωb and to two photons in the
resonator b at ωb. For the field emitted from the mode b, the effective
injection frequency is thus given by

ω̃in =
−ωin + ωB

2 . (181)

Measured power spectral densities of the fields emitted from modes a
and b as a function of frequency and frequency of the injection tone
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are shown in Fig. 92. Spectra similar to those for the standard injec-
tion locking scheme develop with few differences. As locking in con-
version requires two pump photons to create one signal photon, the
slope of the n = 0 harmonic is 1

2 for the mode a and −1
2 for the mode

b. Moreover, the injection locking range ∆ωe = ∆ωin
2 . With these two

considerations taken into account, the positions of sidebands given
by Eq. (180) reproduce well the measured ones.

7.3 conclusion

The main results of this chapter are:

• Determination of the parametric self-oscillation threshold for a
Josephson mixer as a function of pump detuning.

• Demonstration of phase locking of the radiation of both non-
degenerate modes of the Josephson mixer, by signal injection
on one of the modes.

• Demonstration of the injection locking of the emission of the
two modes of the Josephson mixer through a four-wave mixing
Kerr effect.

• Description of the emission spectra in the injection locking
regime and in its proximity using the Adler theory for lasers.
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E X P E R I M E N TA L T E C H N I Q U E S





8
DEVICE FABRICATION

"What is the shape of this
problem?"

Louise Bourgeois

8.1 nanofabrication

All the samples discussed in this thesis contained Josephson junc-
tions made using the Dolan bridge technique, as we have used a 30 keV
Raith e-beam writer for e-beam lithography. Note that with a 100 keV
e-beam writer, a bridge free technique could be used [142]. Depending
on the experiment, samples were realized on sapphire or silicon sub-
strate. Thermal conductivity of sapphire being 5 times smaller than
that of silicon, baking time on a hot plate for the e-beam lithography
resist was longer for sapphire substrates, as indicated in Table 12.
Samples are summarized in Table 10. All the steps involving metal
evaporation, including the angle evaporation for the Dolan bridge
shadow technique, are performed in a Plassys e-beam evaporator in
the clean room of University Paris Diderot.

experiment substrate Rt

JM USC Si 300 - 400 Ω

transmon quantum node sapphire 5 - 10 kΩ

microstrip JPC hybrid quantum node sapphire 300 - 400 Ω

lumped JPC full 3D quantum node sapphire 300 - 400 Ω

CPW JM CPW quantum node Si 300 - 400 Ω

Table 10: Samples, substrates and room temperature resistances Rt of the
Josephson junctions.
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Most of the fabrication steps were the same for all types of samples,
with some additional steps for CPW samples compared to microstrip
ones. In order to avoid redundancy, processes for each type of sample
are summarized in Table 11, and then detailed one by one further in
the text.

Josephson
mixer, mi-
crostrip JPC,
lumped JPC

transmon CPW JM

substrate
cleaning

substrate
cleaning

substrate
cleaning

ground plane
deposition Nb sputtering

positive resist
deposition
laser writer
lithography

development

etching
positive resist
deposition

positive resist
deposition

positive resist
deposition

electron beam
lithography

electron beam
lithography

electron beam
lithography

development development development
e-beam
evaporation
Al/AlOx/Al

e-beam
evaporation
Al/AlOx/Al

e-beam
evaporation
Al/AlOx/Al

lift-off in hot
acetone

lift-off in hot
acetone

lift-off in hot
acetone

Table 11: Fabrication steps for different samples.

176



Substrate cleaning

• 10 min sonicator in acetone

• IPA rinse

• 10 min oxygen plasma cleaning using reactive ion etching (RIE)

Ground plane deposition

• for microstrip samples: ground plane consists of 500 nm of
gold, evaporated on the back side of the substrate using an e-
beam evaporator. Before this step, a thick layer of PMMA resist
is deposited on the front side to protect it from dirt.

• for CPW samples: 150 nm of Nb are deposited on the entire
front side of the substrate using sputtering.

The next three fabrication steps, i.e. optical lithography, develop-
ment and etching are only performed for CPW samples in order to
etch the gaps for the resonators in Nb. The first two steps are per-
formed at College de France clean room facility. Development is done
after the transport between different facilities in order to avoid sur-
face contamination and in particular dirt deposition in the narrow
gaps.

Optical lithography resist deposition

• 1 drop of S1813, spin for 10 s at 1000 rpm, then spin for 30s at
2000 rpm

• bake for 1 min on a hot plate at 115°C

Laser writer lithography

• performed using microtech LW405-B+ laser writer in the clean
room facility at Collège de France

• 490 mJ/cm2

Development

• AZ726 for 90 s

• H2O rinse
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Etching

• dry etching with CF4 for 60s using RIE

• remove the remaining resist using acetone and IPA

Positive electron sensitive resist deposition

Amplifiers, both shunted and unshunted, require junctions that are
weakly nonlinear compared to those of a transmon qubit. Josephson
inductance being inversely proportional to the surface of the junction
A, LJ ∝ 1

A , junctions need to be large ( ' few µm2). This is ob-
tained by suspending the Dolan bridge over a larger height than for
smaller junctions, so that a larger area is in its shadow during the
angle evaporation. For amplifiers, two layers of MAA are deposited,
followed by one layer of PMMA so that the total polymer height is
∼1200 nm. For transmon fabrication, one layer of MAA is deposited
prior to one layer of PMMA giving the total polymer height of ∼ 700
nm. Baking time is the same for MAA and PMMA and is given for
different substrates in Table 12.

substrate bake time
Si 3 min

sapphire 4 min

Table 12: Baking time for different substrates.

• dry for 2 min on a hot plate at 185°C

• 1 min cooling

• 3 drops of MAA, spin for 60s, speed 4000 rpm, acceleration 4000
rpm/s

• bake on a hot plate at 185°C

• 1 min cooling

• 3 drops of MAA, spin for 60s, speed 4000 rpm, acceleration 4000
rpm/s

• bake on a hot plate at 185°C

• 1 min cooling

178



• 3 drops of PMMA, spin for 60s, speed 4000 rpm, acceleration
4000 rpm/s

• bake on a hot plate at 185°C

Electron beam lithography

E-beam lithography is performed on a Raith e-beam writer. The
whole pattern is done in a single lithography step. Current is mea-
sured in the Faraday cage immediately prior to the lithography.

device aperture dose current
JRM amplifiers 7.5 µm 283 µC/cm2 ∼ 25 pA

junction transmon 7.5 µm 283 µC/cm2 ∼ 25 pA
resonators amplifiers 120 µm 283 µC/cm2 ∼ 6 nA
antennas transmon 120 µm 283 µC/cm2 ∼ 6 nA

Table 13: Angle evaporation parameters for different samples.

Development

• 35 s in a MIBK 1:3 IPA

• IPA rinse

Aluminum deposition

Josephson junctions are formed in two aluminum deposition steps
at two different angles, separated by an oxidation step. Evaporation
angles and heights of the layers depend on the sample and are sum-
marized in Table 14. The main steps of the process are

• pumping for 45 min until pressure p < 3× 10−6 mbar is reached
in the evaporation chamber

• Al evaporation of thickness h1 at angle θ1, at a rate 1 nm/s

• static oxidation for 7 min at 20 mbar in a O2 1:4 Ar atmosphere

• Al evaporation of thickness h2 at angle θ2, at a rate 1 nm/s
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JJ size resist θ1 θ2 h1 h2

small MAA/PMMA -30° 30° 35 nm 100 nm
large MAA/MAA/PMMA -35° 35° 100 nm 130 nm

Table 14: Angle evaporation parameters for different samples.

Lift off

• 15 minutes in acetone heated to 40 °C

• IPA rinse

8.2 lead plating the cavity

Coating copper cavities in thin layers of superconducting materials
has already proven to give exceptionally coherent resonators. In the
Haroche group in Paris, coherence time τc = 130 ms at resonance
frequency ωc = 2π× 51 GHz was obtained by sputtering a thin layer
of Niobium on copper mirrors of a Fabry-Perrot cavity, giving record
quality factor Q = 4.2× 1010 at the single photon level [106].
However, due to their aspect ratio, sputtering technique cannot be

used on rectangular microwave waveguide cavities. Electrodeposition
on the other side can be used independently of the geometry of the
cavity and appears thus as a good solution for microwave cavities with
strong geometrical constraints. Lead has already been demonstrated
to give quality factors of Q = 3.7× 1010 when electrodeposited on
copper cavities [124]. What is more, electroplating enables deposition
of thicker layers of superconductor, whereas thicknesses that can be
obtained by evaporation are limited to few hundreds of nanometers.
In this section we describe the protocol used for the cavity for the
quantum node experiment.

Surface preparation

• solvent cleaning: 10 min sonication in acetone followed by IPA
rinse and N2 dry.

• acid cleaning: 10 min in nitric acid at 2 mol.l−1 at 40°C followed
by a water rinse.

180



Solution

• 10g of PbO powder

• 100 ml of distilled water

• 28.6 g of methanesulfonic acid

• 70 ml of distilled water

• agitate the solution

• 0.5 g of polyethylene glycol

• 0.5 g of gelatine previously dissolved in 2 ml of distilled water
at 50°C.

A DC source is mounted in series with a 10 Ω resistance, lead
cathode and copper cavity anode. Cavity is placed in the solution
and lead cathode is placed inside of the cavity. A magnetic stirrer is
used to improve the convective transport of lead in the solution. The
whole process takes few minutes.

After being taken out of the solution, the cavity is rinsed with
water and dried using nitrogen flow. As lead oxidizes very quickly,
the cavity needs to be either immediately mounted in the cryostat or
kept in the vacuum chamber.

181





9
LOW TEMPERATURE MEASUREMENTS

"It’s not just music, it’s
techno."

Laurent Garnier

9.1 cryogenics and wiring

Typical resonance frequencies of superconducting qubits and res-
onators range between 5 and 10 GHz. In order to witness non-classical
behavior, and detect and process single microwave photons, the en-
ergy of thermal excitations of the environment has to be much smaller
than the energy of one photon. This condition reads

kBT � h̄ωr, (182)

where kB is the Boltzmann constant and ωr is the typical resonance
frequency. Reaching quantum regime with microwave photons thus
requires environment temperature T � 200 mK. These temperatures
can be obtained using dilution refrigerators.
All of the experiments described in this thesis were realized in a

Cryoconcept dry dilution refrigerator with base temperature of 37 mK.
Full cryostat wiring for the ultrastrong coupling and injection locking
experiments is shown in Fig. 93, for the hybrid 2D/3D quantum node
experiment in Fig. 94 and for the full 3D quantum node experiment
in Fig. 95. Most of the wiring at higher temperature stages is identi-
cal. Input lines are attenuated using XMA attenuators to reduce the
thermal noise. For the input lines, cupronickel (CuNi) and stainless
steel coaxial cables with low thermal conductivity are used between
different temperature stages of the cryostat in order to minimize the
heat exchange. At the base temperature stage of the cryostat, cop-
per coaxial cables are used between different microwave elements. All
the microwave components are thermalized one by one using highly
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conductive copper wires. For the output lines, between the base tem-
perature stage and the HEMT amplifier, superconducting NbTi coax-
ial cables were used to minimize both the signal dissipation and the
temperature exchange between the cryostat stages. Above the HEMT
amplifier stainless steel cables were used up to the room temperature
stage.
A superconducting coil used for the external magnetic flux was

biased through a twisted pair strongly filtered using a homemade
Ecosorb filter.
At the base temperature stage, 180°-hybrid couplers are used to

distribute the signal with either differential symmetry from the port
∆ or common symmetry from the port Σ. The former one is used to
address the two resonators and the later one to off resonantly address
the common mode at the pump frequency.
Finally, a cryoperm magnetic shield is used to isolate the sample

from residual magnetic fields. For the optimum performance, a su-
perconducting aluminum foil is used to cover the cryoperm box both
from the outside and the inside.

9.2 room temperature measurements and waveguide
filtering

Microwave pulses are generated by mixing a continuous local os-
cillator (LO) tone with a square shaped or gaussian shaped pulse
generated by the Arbitrary Wave Generator Tektronix AWG5014B.
Squeezing measurements being very sensitive to the leaking LO

signal, we use few stages of filtering after the mixer. Commercial
Mini-Circuits filters are followed by micromachined cavity filters and
rectangular waveguide filters. Cavity filters consist of a cylindrical
cavity machined on purpose to be resonant with the signal and are
used in transmission to attenuate the high frequency leaking tones.
Rectangular waveguides are used as high pass filters.
The output signal is down converted by mixing with the LO tone

and then digitized using a 2 channel ATS9351 waveform digitizer by
Alazar.
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Figure 93: Cryostat wiring used for the ultrastrong coupling and injection
locking experiments. Microwave signals ain and bin are sent to the
sample through input lines attenuated with XMA attenuators.
Reflected signals aout and bout are amplified by HEMT cryogenic
amplifiers from Caltech. Isolation is provided by two Pamtech
8-12 GHz circulators in series.
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Figure 94: Cryostat wiring used for the hybrid 2D/3D quantum node exper-
iment.
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so that the sample holder for the Josephson mixer used in the
ultrastrong coupling experiment is visible.
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10
ELECTROMAGNETIC S IMULATIONS

"Consistency is the
playground of the dull
minds."

Yuval Noah Harari

Few different electromagnetic simulation tools were used to design
the experiments performed during this PhD thesis. In this chapter we
will focus on Ansys HFSS software, used for 3D structures and qucs
software, used for planar samples.

10.1 hfss

High Frequency Structure Simulator (HFSS) is a software from An-
sys that uses finite elements method to perform 3D electromagnetic
simulations. It can be used in two modes, the eigenmodal and the
driven modal regime.

The eigenmodal regime calculates the resonance frequencies of the
whole system and allows the visualization of the vector fields corre-
sponding to each resonance. All the metallic surfaces are defined as
perfectly conducting boundaries and the Josephson junction is ap-
proximated by a pure linear inductor.
The driven modal regime enables simulation of a reflection measure-

ment on a surface defined as a waveport or a transmission measure-
ment between two waveports. It can be used to calculate the coupling
of a resonator to a transmission line by fitting the phase roll of the
reflected signal.

10.1.1 Single mode Jaynes-Cummings method

One method that we used to predict the coupling between the
cavity and the qubit relies on the single mode Jaynes-Cummings ap-
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Figure 97: Frequencies of the first three eigenmodes of the system simulated
using HFSS, as a function of the Josephson inductance LJ . The
nonlinear qubit mode at frequency ωq presents an anticrossing
with the fundamental cavity mode at frequency ωc.

proximation. Even though computationally it is not the most efficient
method, it gives good predictions for a simple system of a transmon
coupled to a single cavity. Transmon is simulated by a purely induc-
tive lumped element, galvanically connected to two planar antennas
that are defined as perfect conductors. It is placed on a sapphire sub-
strate with a corresponding tangent loss, which enables including the
dielectric dissipation in the model. Finally the chip is placed in the
middle of a perfectly conducting box with the dimensions of the 3D
cavity. The eigenmodal regime is used to simulate the eigenfrequencies
of the qubit-cavity system for different values of the Josephson induc-
tance assigned to the lumped element. The first three levels are shown
in Fig. 97. Fundamental cavity mode is constant at ωc = 2π×7.9 GHz
and the second cavity mode at 12.3 GHz. The frequency of the qubit
is ωq ∝ 1√

LJ
. For a given Josephson inductance LJ , the dispersive

detuning between the cavity and the qubit is

∆(LJ ) = ωc − ωq(LJ ). (183)

For a cavity-qubit system described by a Jaynes-Cummings Hamilto-
nian

Ĥ = h̄ωcĉ
†ĉ+ h̄ωqd̂

†d̂+ h̄g(ĉ†d̂+ ĉd̂†), (184)

where c and d are respectively cavity and qubit annihilation operators,
at resonance ωc ' ωq, eigenvalues read ω̃c ' ωc+ g for the cavity-like
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mode and ω̃q = ωq − g for the qubit like mode. The coupling is thus
given by half of the minimum detuning at the anticrossing

g =
1
2min[ωm(LJ )− ωq(LJ )]. (185)

Finally we can find the qubit-cavity pull

χcq(LJ ) = 2EC
g2

∆(LJ )2 . (186)

This method requires finding the eigenmodes for ∼ 10 values of LJ ,
which makes is not efficient in terms of computation time. Further-
more, the validity of the Jaynes-Cummings approximations breaks
down when more cavity modes come into play, for instance when
qubit is strongly coupled to separate storage and readout modes.
We have also used another simulation method, based on the work

by Minev, Leghtas et al, in prep., that will not be described here. It
relies on the calculation of the participation ratio of the electromag-
netic energy stored in the Josephson junction and the total energy
of the mode. We found a good agreement with the predictions of the
Jaynes-Cummings method, while it is much more computationally ef-
ficient because it requires performing the eigenmode simulation only
for one value of the Josephson inductance LJ .

10.1.2 Full 3D device design

Designing a complex device such as the full 3D quantum node
requires few simulation steps in different regimes. They are briefly
explained in this section.

1. Buffer resonance frequency is simulated as a function of the
shunting lumped element capacitors in the eigenmodal regime.

2. Iris size between the waveguide cavity and the waveguide-to-
SMA adapter is simulated in the driven modal regime to obtain
the buffer coupling rate κa ' 2π × 100 MHz. The reflection
is simulated with the waveport on the SMA connector. The
coupling also depends on the size of the antennas.

3. Coupling of the buffer to the memory cavity is simulated as a
function of the antenna length in the driven modal regime.
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4. Quality factor of the memory cavity is simulated as a function
of the opposite antenna length in the eigenmodal regime.

5. Couplings between the qubit and the memory and readout cavi-
ties are simulated in the eigenmodal regime in Jaynes-Cummings
approximation and using the participation ratio of the Joseph-
son junction in the memory and readout modes.

6. Iris size between the waveguide and the readout cavity is simu-
lated in the driven modal regime to obtain the coupling rate of
the readout mode to the transmission line κr ' 2π × 1.5 MHz.
The reflection is simulated with the waveport on the top of the
waveguide.

10.2 qucs

For electromagnetic simulations of the 2D circuits and in particular
the lumped element buffer resonator, we have used qucs software.
Quite Universal Circuit Simulator (qucs) is an opensource electronic
circuit simulator. Among different analysis types that it supports,
there is the S parameter simulation as a function of frequency, that
can be used to determine the resonance frequencies of the circuit, as
well as the coupling rates to the transmission line.

We input in the simulator the equivalent circuit for the lumped
buffer resonator coupled to a Josephson ring shunted by central in-
ductances, as shown in Fig. 98.
Ring junctions are approximated to the first order by pure induc-

tors LJ = 0.12 nH. The ring is shunted by meander inductances
L = 30 pH. The inductances of the wires are estimated from the
length of the wire L = l × 1 nH.mm−1. In order to obtain the re-
sponse function, the circuit is differentially excited by a 180°-hybrid
coupler. Phase of the S parameter is shown in Fig. 99. From this
simulation, we were able to estimate the capacitances for the lumped
buffer resonator needed for its resonance frequency to be in the de-
sired range for the experiment.
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Figure 98: The equivalent circuit used for the simulation of the lumped
buffer resonator coupled to a Josephson ring shunted by induc-
tances.

Figure 99: Simulated reflection on the lumped buffer resonator coupled to
a Josephson ring shunted by inductances.
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11
SUMMARY AND CONCLUS IONS

"Last words are for fools who
haven’t said enough."

Karl Marx

The potential of superconducting circuits for Hamiltonians built by
design, due to their high degree of control, has been recognized for
more than a decade now and is being actively exploited for quantum
information applications. During my thesis, I have used a particular
superconducting circuit called the Josephson mixer for few different
applications.
In the first part of my thesis I presented a scheme that maps a

three-wave mixing device, such as a Josephson mixer, simultaneously
driven with two pump tones, onto a system of two bosonic modes in
the ultrastrong coupling regime. We have theoretically demonstrated
that radiation emitted in the laboratory frame from the ground state
of such an effective ultrastrongly coupled system is characterized
by single-mode and two-mode squeezing. We have implemented this
scheme with a Josephson mixer which enabled us to experimentally
characterize the ground state of an effective system of ultrastrongly
coupled harmonic oscillators. By measuring the emitted radiation, we
have performed a spectroscopic detection of frequency splitting as a
function of coupling rate, with demonstrated coupling rates of the or-
der of the effective frequencies. Furthermore, we have measured the
quadrature statistics for the emitted radiation and detected both the
single mode and the two mode squeezing that go below the variance
of the vacuum fluctuations.
In the second part of this thesis, we have emphasized the possibility

to use the Josephson mixer for a quantum node of a potential future
modular microwave quantum network. We first compared the Joseph-
son mixer to the other existing quantum microwave nodes based on
various mesoscopic systems and then showed that a Josephson mixer
coupled to a transmon can perform any set of operations required
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from such a quantum node. We have experimentally realized such
a device in three different architectures, that we have characterized
and compared. In particular, we have presented an analysis of differ-
ent sources of losses in 3D microwave cavities and determination of
the limiting factors for the hybrid 2D/3D quantum node architecture.
Finally in the last part of this thesis, we have investigated the

regime of parametric oscillation for a non-degenerate parametric am-
plifier such as a Josephson mixer. We have studied the onset of this
regime as a function of pump detuning and compared it to recent
theoretical predictions. In this regime, we have demonstrated phase
locking of the radiation of both non-degenerate modes of the Joseph-
son mixer, by signal injection on one of the modes. Finally, we have
demonstrated a novel injection locking technique, characteristic for a
non-degenerate amplifier that relies on the four-wave mixing in such
a device.
In conclusion, although it is mostly used as a parametric amplifier

and frequency converter, the Josephson mixer is a highly versatile
tool that can be used as a quantum simulation platform as well as
a building block for a microwave quantum network. As illustrated
by the injection locking through four-wave mixing experiment, the
physics behind this device is extremely rich, and the higher order
mixing terms that it provides can be explored and used as ressources
for quantum information and simulation.
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Résumé 

Les circuits supraconducteurs sont 
parmi les technologies de l'information 
quantique les plus avancées. Ils ont 
aujourd'hui atteint la maturité qui offre 
un grand degré de contrôle et une large 
gamme d'interactions qui peuvent être 
précisément réalisées sur mesure. Le 
mixeur Josephson est un exemple de 
circuit supraconducteur qui effectue le 
mixage à trois ondes aux fréquences 
micro-ondes. 

Dans cette thèse, trois expériences, où 
le mixeur Josephson est utilisé pour 
trois applications différentes sont 
décrites. D'abord, nous avons réalisé le 
couplage ultrafort effectif entre deux 
modes bosoniques afin d'étudier les 
propriétés de l'état fondamental de ce 
système, tels que le squeezing à un 
mode et à deux modes du champ radié. 
Ensuite, nous avons construit un nœud 
quant ique , capab le de c réer e t 
distribuer de l'intrication sur un réseau 
quantique micro-onde, alors que de 
stocker et relâcher de l'information 
quantique à la demande. Nous avons 
intégré un qubit de mesure dans ce 
dispositif pour augmenter le degré de 
contrôle sur son état quantique. 
Finalement, nous avons poussé le 
mixeur Josephson au delà du seuil de 
l'oscillation paramétrique, où nous 
a v o n s d é m o n t r é u n e t e c h n i q u e 
inhabituel le de verrouil lage par 
injection en conversion de fréquence 
dans ce dispositif non-dégénéré. 
 

Abstract 

Superconducting circuits stand among 
the most advanced quantum information 
processing platforms. They have 
nowadays reached a maturity that offers 
a high level of controllability and a large 
variety of interactions that can be 
precisely designed on demand. The 
Josephson mixer is one such 
superconducting device that performs 
three-wave mixing at microwave 
frequencies. 

In this thesis, we describe three 
experiments in which the Josephson 
mixer was used for different 
applications. First, we have realized an 
effective ultrastrong coupling of two 
bosonic modes that allowed us to study 
the ground state properties of this 
system, such as the single mode and the 
two mode squeezing of the emitted 
radiation. Second, we have built a 
quantum node, able to generate and 
distribute entanglement over a 
microwave quantum network, as well as 
to store and release quantum information 
on demand. We have integrated an 
ancilla qubit to this device in order to 
increase the degree of control over the 
quantum state of the system. Finally, we 
have pushed the Josephson mixer 
beyond the parametric oscillation 
threshold, where we have demonstrated 
an atypical  injection locking technique 
that relies on coherent frequency 
conversion in this non-degenerate 
device. 
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