C. A. Angell, Formation of Glasses from Liquids and Biopolymers, Science, vol.267, issue.5206, pp.1924-1935, 1995.
DOI : 10.1126/science.267.5206.1924

P. G. Debenedetti and F. H. Stillinger, Supercooled liquids and the glass transition, Nature, vol.102, issue.6825, p.259, 2001.
DOI : 10.1021/jp973144h

B. Allen and J. L. Feldman, Thermal conductivity of disordered harmonic solids, Physical Review B, vol.140, issue.17, p.12581, 1993.
DOI : 10.1103/PhysRev.140.A2031

G. Baldi, V. M. Giordano, G. Monaco, F. Sette, E. Fabiani et al., Thermal conductivity and terahertz vibrational dynamics of vitreous silica, Physical Review B, vol.4, issue.295, p.214309, 2008.
DOI : 10.1103/PhysRevB.48.12589

R. C. Zeller and R. O. , Thermal Conductivity and Specific Heat of Noncrystalline Solids, Physical Review B, vol.50, issue.6, p.2029, 1971.
DOI : 10.1063/1.1670984

W. A. Phillips, Two-level states in glasses, Reports on Progress in Physics, vol.50, issue.12, p.1657, 1987.
DOI : 10.1088/0034-4885/50/12/003

U. Buchenau, N. Nucker, and A. J. Dianoux, Neutron Scattering Study of the Low-Frequency Vibrations in Vitreous Silica, Physical Review Letters, vol.25, issue.24, p.2316, 1984.
DOI : 10.1080/14786437208229210

S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, Origin of the Boson Peak in Systems with Lattice Disorder, Physical Review Letters, vol.62, issue.7, p.1255, 2001.
DOI : 10.1103/PhysRevB.62.3223

W. Schirmacher, Thermal conductivity of glassy materials and the ???boson peak", Europhysics Letters (EPL), vol.73, issue.6, p.892, 2006.
DOI : 10.1209/epl/i2005-10471-9

M. I. Klinger, Separation of soft-mode and acoustic dynamics in the boson peak of glasses: vast difference in high-pressure effects, Journal of Non-Crystalline Solids, vol.293, issue.295, pp.293-295345, 2001.
DOI : 10.1016/S0022-3093(01)00685-8

V. L. Gurevich, D. A. Parshin, and H. R. Schober, Pressure dependence of the boson peak in glasses, Physical Review B, vol.62, issue.264, p.14209, 2005.
DOI : 10.1103/PhysRevB.34.5665

E. Duval, A. Boukenter, and T. Achibat, Vibrational dynamics and the structure of glasses, Journal of Physics: Condensed Matter, vol.2, issue.51, p.10227, 1990.
DOI : 10.1088/0953-8984/2/51/001

B. Rossi, G. Viliani, E. Duval, L. Angelani, and W. Garber, Temperature-dependent vibrational heterogeneities in harmonic glasses, Europhysics Letters (EPL), vol.71, issue.2, p.256, 2005.
DOI : 10.1209/epl/i2004-10535-4

F. Leonforte, R. Boissie, A. Tanguy, J. P. Wittmer, and J. L. Barrat, Continuum limit of amorphous elastic bodies. III. Three-dimensional systems, Physical Review B, vol.48, issue.22, p.224206, 2005.
DOI : 10.1063/1.478340

URL : https://hal.archives-ouvertes.fr/hal-00004977

F. Leonforte, A. Tanguy, J. P. Wittmer, and J. L. Barrat, Inhomogeneous Elastic Response of Silica Glass, Physical Review Letters, vol.267, issue.5, p.55501, 2006.
DOI : 10.1103/PhysRevB.50.13105

URL : https://hal.archives-ouvertes.fr/hal-00068895

A. Chumakov, G. Monaco, A. Fontana, A. Bosak, R. Hermann et al., Role of Disorder in the Thermodynamics and Atomic Dynamics of Glasses, Physical Review Letters, vol.112, issue.2, p.25502, 2014.
DOI : 10.1103/PhysRevB.84.052201

T. Otomo, M. Arai, Y. Inamura, J. Suck, S. Bennington et al., Observation of collective excitations in the amorphous alloy Ni 67 Zr 33, J. Non-Cryst. Solids, vol.613, p.232, 1998.

T. Scopigno, J. Suck, R. Angelini, F. Albergamo, and G. Ruocco, High-Frequency Dynamics in Metallic Glasses, Physical Review Letters, vol.19, issue.13, p.135501, 2006.
DOI : 10.1103/PhysRevLett.92.025503

URL : http://arxiv.org/pdf/cond-mat/0603251

G. Monaco and V. M. Giordano, Breakdown of the Debye approximation for the acoustic modes with nanometric wavelengths in glasses, Proceedings of the National Academy of Sciences, vol.97, issue.13, p.3659, 2009.
DOI : 10.1103/PhysRevLett.97.135501

G. Baldi, V. M. Giordano, G. Monaco, and B. Ruta, Sound Attenuation at Terahertz Frequencies and the Boson Peak of Vitreous Silica, Physical Review Letters, vol.1, issue.19, 2010.
DOI : 10.1103/PhysRevB.71.172201

B. Ruta, G. Baldi, V. M. Giordano, F. Scarponi, D. Fioretto et al., Acoustic excitations in glassy sorbitol and their relation with the fragility and the boson peak, The Journal of Chemical Physics, vol.46, issue.21, p.214502, 2012.
DOI : 10.1103/PhysRevB.81.100202

G. Monaco and S. Mossa, Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale, Proceedings of the National Academy of Sciences, vol.117, issue.1092, p.16907, 2009.
DOI : 10.1006/jcph.1995.1039

H. Mizuno, S. Mossa, and J. Barrat, Measuring spatial distribution of the local elastic modulus in glasses, Physical Review E, vol.87, issue.4, p.42306, 2013.
DOI : 10.1103/PhysRevE.81.011804

H. Mizuno, S. Mossa, and J. Barrat, Elastic heterogeneity, vibrational states, and thermal conductivity across an amorphisation transition, EPL (Europhysics Letters), vol.104, issue.5, p.56001, 2013.
DOI : 10.1209/0295-5075/104/56001

URL : https://hal.archives-ouvertes.fr/hal-00960739

H. Mizuno, S. Mossa, and J. Barrat, Acoustic excitations and elastic heterogeneities in disordered solids, Proceedings of the National Academy of Sciences, vol.110, issue.21, pp.11949-11954, 2014.
DOI : 10.1103/PhysRevLett.110.185503

URL : https://hal.archives-ouvertes.fr/hal-01091774

H. Mizuno, S. Mossa, and J. Barrat, Beating the amorphous limit in thermal conductivity by superlattices design, Scientific Reports, vol.89, issue.317, p.14116, 2015.
DOI : 10.1103/PhysRevB.89.014303

URL : https://hal.archives-ouvertes.fr/cea-01734605

T. Ichitsubo, S. Hosokawa, K. Matsuda, E. Matsubara, N. Nishiyama et al., Nanoscale elastic inhomogeneity of a Pd-based metallic glass: Sound velocity from ultrasonic and inelastic x-ray scattering experiments, Physical Review B, vol.307, issue.310, p.140201, 2007.
DOI : 10.1103/PhysRevLett.98.025501

T. Ichitsubo, W. Itaka, E. Matsubara, H. Kato, S. Biwa et al., Elastic inhomogeneity and acoustic phonons in Pd-, Pt-, and Zr-based metallic glasses, Physical Review B, vol.24, issue.17, p.172201, 2010.
DOI : 10.1103/PhysRevLett.96.045502

U. Mizutani, M. Tanaka, and H. Sato, Studies of negative TCR and electronic structure of nonmagnetic metallic glasses based on Y and La, Journal of Physics F: Metal Physics, vol.17, issue.1, pp.131-141, 1987.
DOI : 10.1088/0305-4608/17/1/019

U. Mizutani, Electron transport properties of non-magnetic metallic glasses, Materials Science and Engineering, vol.99, issue.1-2, pp.165-173, 1988.
DOI : 10.1016/0025-5416(88)90315-1

U. Mizutani, Introduction to the electron therory of metals, 2001.

N. Mott, Conduction in glasses containing transition metal ions, Journal of Non-Crystalline Solids, vol.1, issue.1, 1968.
DOI : 10.1016/0022-3093(68)90002-1

N. F. Mott, Conduction in non-crystalline materials, Philosophical Magazine, vol.24, issue.160, p.835, 1969.
DOI : 10.1103/PhysRev.148.741

URL : http://www.tandfonline.com/doi/pdf/10.1080/14786436908216338?needAccess=true

M. H. Cohen, H. Fritzsche, and S. R. Ovinsky, Simple Band Model for Amorphous Semiconducting Alloys, Physical Review Letters, vol.3, issue.20, p.221065, 1969.
DOI : 10.1149/1.2426182

M. Kastner, D. Adler, and H. Fritzsche, Valence-Alternation Model for Localized Gap States in Lone-Pair Semiconductors, Physical Review Letters, vol.21, issue.22, p.1504, 1976.
DOI : 10.1016/0022-3093(76)90099-5

R. M. Hill, Poole-Frenkel conduction in amorphous solids, Philosophical Magazine, vol.34, issue.181, pp.59-86, 1971.
DOI : 10.1063/1.1702682

]. D. Ielmini, Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices, Journal of Applied Physics, vol.138, issue.5, p.54517, 2007.
DOI : 10.1038/nmat1350

E. Octavi, J. M. Semonin, S. Luther, H. Choi, J. Chen et al., Peak external photocurrent quantum efficiency exceeding 100% via meg in a quantum dot solar cell, Science, issue.6062, pp.3341530-1533, 2011.

C. Fan and A. Inoue, Improvement of Mechanical Properties by Precipitation of Nanoscale Compound Particles in Zr–Cu–Pd–Al Amorphous Alloys, Materials Transactions, JIM, vol.38, issue.12, pp.1040-1046, 1997.
DOI : 10.2320/matertrans1989.38.1040

K. Hajlaoui, A. R. Yavari, A. Lemoulec, W. J. Botta, F. G. Vaughan et al., Plasticity induced by nanoparticle dispersions in bulk metallic glasses, Journal of Non-Crystalline Solids, vol.353, issue.3, pp.327-331, 2007.
DOI : 10.1016/j.jnoncrysol.2006.10.011

URL : https://hal.archives-ouvertes.fr/hal-00196357

S. Lee, M. Huh, E. Fleury, and J. Lee, Crystallization-induced plasticity of Cu???Zr containing bulk amorphous alloys, Acta Materialia, vol.54, issue.2, pp.349-355, 2006.
DOI : 10.1016/j.actamat.2005.09.007

H. Chen, Y. He, G. J. Shiflet, and S. J. Poon, Mechanical properties of partially crystallized aluminum based metallic glasses, Scripta Metallurgica et Materialia, vol.25, issue.6, p.1421, 1991.
DOI : 10.1016/0956-716X(91)90426-2

Y. H. Kim, A. Inoue, and T. Masumoto, Ultrahigh tensile strengths of Al 88 Y 2 Ni 9 M 1 (M=Mn or Fe) amorphous alloys containing finely dispersed fcc-Al particles, Mater. Trans. JIM, p.31747, 1990.

W. Liu, X. Yana, G. Chen, and Z. Rena, Recent advances in thermoelectric nanocomposites, Nano Energy, vol.1, issue.1, pp.42-56, 2012.
DOI : 10.1016/j.nanoen.2011.10.001

URL : http://dspace.mit.edu/bitstream/1721.1/110472/1/Paper13_W.%20S.%20Liu_Nano%20Energy.pdf

Z. Wang, J. E. Alaniz, W. Jang, J. E. Garay, and C. Dames, Thermal Conductivity of Nanocrystalline Silicon: Importance of Grain Size and Frequency-Dependent Mean Free Paths, Nano Letters, vol.11, issue.6, p.2206, 2011.
DOI : 10.1021/nl1045395

Y. Nakamura, M. Isogawa, T. Ueda, S. Yamasaka, H. Matsui et al., Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material, Nano Energy, vol.12, pp.845-851, 2015.
DOI : 10.1016/j.nanoen.2014.11.029

A. Miura, S. Zhou, T. Nozaki, and J. Shiomi, Crystalline???Amorphous Silicon Nanocomposites with Reduced Thermal Conductivity for Bulk Thermoelectrics, Applied Materials and interfaces, pp.13484-13489, 2015.
DOI : 10.1021/acsami.5b02537

T. J. Zhu, F. Yan, X. B. Zhao, S. N. Zhang, Y. Chen et al., nanocomposites with amorphous/nanocrystal hybrid structure, Journal of Physics D: Applied Physics, vol.40, issue.19, pp.6094-6097, 2007.
DOI : 10.1088/0022-3727/40/19/049

K. Pietrak and T. S. Wisniewski, A review of models for effective thermal conductivity of composite materials, Journal of Power Technology, vol.95, issue.1, pp.14-24, 2015.

W. J. Abbe, A note on the kapitza resistance, Il Nuovo Cimento B Series 10, vol.8, issue.1, p.187, 1968.
DOI : 10.1139/p59-037

D. Checke and H. Ettinger, The Kapitza resistance and phonon reflectivity between solids and liquid helium, Journal of Low Temperature Physics, vol.36, issue.1-2, pp.121-137, 1979.
DOI : 10.1007/BF00174916

W. Eisenmenger, Phonon Scattering in Condensed Matter V, volume p. 194, 1986.

H. Y. Bai, C. Z. Tong, and P. Zheng, Electrical resistivity in Zr 48 Nb 8 Cu 12 Fe 8 Be 24 glassy and crystallized alloys, Journal of Applied Physics, issue.3, p.951269, 2004.

Y. K. Kuo, K. M. Sivakumar, C. A. Su, C. N. Ku, S. T. Lin et al., Measurement of low-temperature transport properties of Cu-based Cu-Zr-Ti bulk metallic glass, Physical Review B, vol.10, issue.296, p.14208, 2006.
DOI : 10.1103/PhysRevB.53.181

J. Z. Jiang, W. Roseker, C. S. Jacobsen, and G. F. Goya, alloys, Journal of Physics: Condensed Matter, vol.15, issue.50, pp.8713-8718, 2003.
DOI : 10.1088/0953-8984/15/50/005

URL : https://hal.archives-ouvertes.fr/jpa-00225297

D. Z. Hu, X. M. Lu, J. S. Zhu, and F. Yan, Study on the crystallization by an electrical resistance measurement in Ge 2 Sb 2 Te 5 and N-doped Ge 2 Sb 2 Te 5 films, J. Appl. Phys, vol.102, p.1135507, 2007.

J. B. Vaney, G. Delaizir, E. Alleno, O. Rouleau, A. Piarristeguy et al., A comprehensive study of the crystallization of Cu???As???Te glasses: microstructure and thermoelectric properties, Journal of Materials Chemistry A, vol.23, issue.28, p.8190, 2013.
DOI : 10.1063/1.1702301

URL : https://hal.archives-ouvertes.fr/hal-00824217

J. Lingner, M. Letz, and G. Jakob, SrTiO3 glass???ceramics as oxide thermoelectrics, Journal of Materials Science, vol.66, issue.12, pp.2812-2816, 2013.
DOI : 10.1016/j.scriptamat.2012.03.002

M. Jost, J. Lingner, M. Letz, and G. Jakob, glass-ceramics, Semiconductor Science and Technology, vol.29, issue.12, p.124011, 2014.
DOI : 10.1088/0268-1242/29/12/124011

S. V. Novikov, A. T. Burkov, and J. Schumann, Enhancement of thermoelectric properties in nanocrystalline M???Si thin film composites (M=Cr, Mn), Journal of Alloys and Compounds, vol.557, pp.239-243, 2013.
DOI : 10.1016/j.jallcom.2012.12.088

A. T. Burkov, S. V. Novikov, V. V. Khovaylo, and J. Schumann, Energy filtering enhancement of thermoelectric performance of nanocrystalline Cr 1???x Si x composites, Journal of Alloys and Compounds, vol.691, pp.89-94, 2017.
DOI : 10.1016/j.jallcom.2016.08.117

B. Liu, N. Zuo, and F. Ye, Abnormal change of electrical resistivity in the Cu 46 Zr 46 Al 8 bulk metallic glass during crystallization, Materials Letters, vol.171, pp.285-288, 2016.
DOI : 10.1016/j.matlet.2016.02.117

Y. C. Dou, X. Y. Qin, D. Li, L. L. Li, T. H. Zou et al., nanoparticles, Journal of Applied Physics, vol.114, issue.4, p.44906, 2013.
DOI : 10.1038/nature11439

R. Landauer, The Electrical Resistance of Binary Metallic Mixtures, Journal of Applied Physics, vol.78, issue.7, p.779, 1952.
DOI : 10.1002/zaac.19120780102

S. Gravier, P. Donnadieu, S. Lay, B. Doisneau, F. Bley et al., Evaluation of the crystal volume fraction in a partially nanocrystallized bulk metallic glass, Journal of Alloys and Compounds, vol.504, pp.226-229, 2010.
DOI : 10.1016/j.jallcom.2010.05.008

URL : https://hal.archives-ouvertes.fr/hal-00581442

E. G. Fu, J. Carter, M. Martin, G. Xie, X. Zhang et al., Ar-ion-milling-induced structural changes of Cu50Zr45Ti5 metallic glass, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.268, issue.6, p.545, 2010.
DOI : 10.1016/j.nimb.2009.12.007

D. Nagahama, T. Ohkubo, T. Mukai, and K. Hono, Characterization of Nanocrystal Dispersed Cu<SUB>60</SUB>Zr<SUB>30</SUB>Ti<SUB>10</SUB> Metallic Glass, MATERIALS TRANSACTIONS, vol.46, issue.6, p.1264, 2005.
DOI : 10.2320/matertrans.46.1264

T. Brink, M. Peterlechner, H. Risner, K. Albe, and G. Wilde, Influence of Crystalline Nanoprecipitates on Shear-Band Propagation in Cu-Zr-Based Metallic Glasses, Physical Review Applied, vol.5, issue.5, p.54005, 2016.
DOI : 10.1126/science.1076652

E. Alleno, Mesure des coefficients de transport thermique et électrique dans les matériaux thermoélectriques massifs : principes et pratiques. Ecole thématique "Thermoélectricité" -Carcans- Maubuisson, 2008.

C. Williams and H. Wickramasinghe, Scanning thermal profiler, Applied Physics Letters, vol.41, issue.23, p.1587, 1986.
DOI : 10.1063/1.94865

B. Cretin, S. Gomes, N. Trannoy, and P. Vairac, Scanning thermal microscopy, Microscale and nanoscale heat transfer, edition, pp.181-238, 2007.

S. Gomès, A. Assy, and P. Chapuis, Scanning thermal microscopy: A review, physica status solidi (a), vol.4, issue.10, p.477, 2015.
DOI : 10.1038/nnano.2009.287

L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, vol.30, issue.1, p.98, 1967.
DOI : 10.1016/0031-8914(64)90224-1

H. Frank, T. A. Stillinger, and . Weber, Computer simulation of local order in condensed phases of silicon, Physical Review B, vol.31, issue.8, pp.5262-5271, 1985.

L. Pizzagalli, J. Godet, J. Guénolé, S. Brochard, E. Holmstrom et al., A new parametrization of the Stillinger???Weber potential for an improved description of defects and plasticity of silicon, Journal of Physics: Condensed Matter, vol.25, issue.5, p.25055801, 2013.
DOI : 10.1088/0953-8984/25/5/055801

Y. M. Beltukov, V. I. Kozub, and D. A. Parshin, Ioffe-Regel criterion and diffusion of vibrations in random lattices, Physical Review B, vol.93, issue.13, p.134203, 2013.
DOI : 10.1103/PhysRevLett.83.5583

T. Damart, V. M. Giordano, and A. Tanguy, -Si, Physical Review B, vol.92, issue.9, p.94201, 2015.
DOI : 10.1038/srep01407

P. K. Schelling, S. R. Phillpot, and P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Physical Review B, vol.70, issue.14, p.144306, 2002.
DOI : 10.1103/PhysRevLett.70.3764

K. Termentzidis and S. Merabia, Molecular Dynamics Simulations and Thermal Transport at the Nano-Scale
DOI : 10.5772/36936

R. Kubo, The fluctuation-dissipation theorem, Reports on Progress in Physics, vol.29, issue.1, p.255, 1966.
DOI : 10.1088/0034-4885/29/1/306

A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, vol.48, issue.1, pp.279-306, 2000.
DOI : 10.1016/S1359-6454(99)00300-6

C. A. Schuh, T. C. Hufnagel, and U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Materialia, vol.55, issue.12, pp.4067-4109, 2007.
DOI : 10.1016/j.actamat.2007.01.052

W. H. Wang, C. Dong, and C. H. Shek, Bulk metallic glasses, Materials Science and Engineering: R: Reports, vol.44, issue.2-3, pp.45-89, 2004.
DOI : 10.1016/j.mser.2004.03.001

URL : https://hal.archives-ouvertes.fr/hal-00388885

W. Klement, R. H. Willens, and P. Duwez, Non-crystalline Structure in Solidified Gold???Silicon Alloys, Nature, vol.31, issue.4740, pp.869-870, 1960.
DOI : 10.1107/S0365110X55001321

A. Inoue, K. Ohtera, K. Kita, and T. Masumoto, New Amorphous Mg-Ce-Ni Alloys with High Strength and Good Ductility, Japanese Journal of Applied Physics, vol.27, issue.Part 2, No. 12, pp.2248-2251, 1988.
DOI : 10.1143/JJAP.27.L2248

A. Inoue, T. Zhang, and T. Masumoto, Zr&ndash;Al&ndash;Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region, Materials Transactions, JIM, vol.31, issue.3, p.177, 1990.
DOI : 10.2320/matertrans1989.31.177

URL : https://www.jstage.jst.go.jp/article/matertrans1989/31/3/31_3_177/_pdf

A. L. Peker and W. L. Johnson, A highly processable metallic glass

A. Inoue, N. Nishiyama, and H. M. Kimura, Preparation and Thermal Stability of Bulk Amorphous Pd<SUB>40</SUB>Cu<SUB>30</SUB>Ni<SUB>10</SUB>P<SUB>20</SUB> Alloy Cylinder of 72 mm in Diameter, Materials Transactions, JIM, vol.38, issue.2, p.179, 1997.
DOI : 10.2320/matertrans1989.38.179

A. Inoue, T. Zhang, and T. Itoi, New Fe&ndash;Co&ndash;Ni&ndash;Zr&ndash;B Amorphous Alloys with Wide Supercooled Liquid Regions and Good Soft Magnetic Properties, Materials Transactions, JIM, vol.38, issue.4, p.359, 1997.
DOI : 10.2320/matertrans1989.38.359

URL : https://www.jstage.jst.go.jp/article/matertrans1989/38/4/38_4_359/_pdf

M. Yamasaki, S. Kagao, Y. Kawamura, and K. Yoshimura, Thermal diffusivity and conductivity of supercooled liquid in Zr41Ti14Cu12Ni10Be23 metallic glass, Applied Physics Letters, vol.24, issue.23, p.4653, 2004.
DOI : 10.1007/BF01441589

U. Harms, T. D. Shen, and R. B. Schwarz, Thermal conductivity of Pd40Ni40???xCuxP20 metallic glasses, Scripta Materialia, vol.47, issue.6, pp.411-414, 2002.
DOI : 10.1016/S1359-6462(02)00160-4

R. Y. Umetsu, R. Tu, and T. Goto, Thermal and Electrical Transport Properties of Zr-Based Bulk Metallic Glassy Alloys with High Glass-Forming Ability, MATERIALS TRANSACTIONS, vol.53, issue.10, pp.531721-1725, 2012.
DOI : 10.2320/matertrans.M2012163

J. I. Langford and A. J. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, Journal of Applied Crystallography, vol.11, issue.2, pp.102-113, 1978.
DOI : 10.1107/S0021889878012844

Z. Zhou, C. Uher, D. Xu, W. L. Johnson, W. Gannon et al., On the existence of Einstein oscillators and thermal conductivity in bulk metallic glass, Applied Physics Letters, vol.89, issue.3, p.31924, 2006.
DOI : 10.1103/PhysRevB.59.8626

H. Gleiter, Nanocrystalline materials, Progress in Materials Science, vol.33, issue.4, pp.223-315, 1989.
DOI : 10.1016/0079-6425(89)90001-7

V. M. Giordano and G. Monaco, Fingerprints of order and disorder on the high-frequency dynamics of liquids, Proceedings of the National Academy of Sciences, vol.72, issue.17, p.21985, 2010.
DOI : 10.1103/PhysRevB.72.224206

A. Bosak, M. Krisch, I. Fischer, S. Huotari, and G. Monaco, Inelastic x-ray scattering from polycrystalline materials at low momentum transfer, Physical Review B, vol.143, issue.144, p.64106, 2007.
DOI : 10.1103/PhysRevB.5.4951

T. Ichitsubo, H. Kato, E. Matsubara, S. Biwa, S. Hosokawa et al., Static heterogeneity in metallic glasses and its correlation to physical properties, Journal of Non-Crystalline Solids, vol.357, issue.2, pp.494-500, 2011.
DOI : 10.1016/j.jnoncrysol.2010.06.056

D. Crespo, P. Bruna, A. Valles, and E. Pineda, Phonon dispersion relation of metallic glasses, Physical Review B, vol.94, issue.14, p.144205, 2016.
DOI : 10.1063/1.4939676

M. Idriss, F. Célarié, Y. Yokoyama, F. Tessier, and T. , Evolution of the elastic modulus of Zr???Cu???Al BMGs during annealing treatment and crystallization: Role of Zr/Cu ratio, Journal of Non-Crystalline Solids, vol.421, pp.35-40, 2015.
DOI : 10.1016/j.jnoncrysol.2015.04.028

URL : https://hal.archives-ouvertes.fr/hal-01150390

G. E. Abrosimova, N. P. Kobelev, E. L. Kolyvanov, and V. A. Khonik, The influence of heat treatment on the ultrasonic velocity and elastic moduli of a Zr-Cu-Ni-Al-Ti bulk metallic glass, Physics of the Solid State, vol.76, issue.1, pp.461859-1862, 2004.
DOI : 10.1557/S0883769400053252

G. E. Abrosimova, N. P. Kobelev, E. L. Kolyvanov, V. A. Khonik, V. M. Levin et al., Effect of heat treatment on the elastic characteristics of a bulk amorphous

H. F. Poulsen, J. A. Wert, J. Neuefeind, V. Honkimaki, and M. Daymond, Measuring strain distributions in amorphous materials, Nature Materials, vol.215, issue.1, p.33, 2005.
DOI : 10.1524/zpch.2001.215.11.1419

T. C. Hufnagel and R. T. Ott, Structural aspects of elastic deformation of a metallic glass, Physical Review B, vol.226, issue.228, p.64204, 2006.
DOI : 10.1016/j.actamat.2004.09.005

C. Kittel, Introduction to Solid State Physics, 1996.

B. Rufflé, M. Foret, E. Courtens, R. Vacher, and G. Monaco, Observation of the Onset of Strong Scattering on High Frequency Acoustic Phonons in Densified Silica Glass, Physical Review Letters, vol.86, issue.264, p.95502, 2003.
DOI : 10.1103/PhysRevLett.86.3803

B. Rufflé, G. Guimbretière, E. Courtens, R. Vacher, and G. Monaco, Glass-Specific Behavior in the Damping of Acousticlike Vibrations, Physical Review Letters, vol.4, issue.4, p.45502, 2006.
DOI : 10.1088/0034-4885/64/11/203

Y. Li, P. Yu, and H. Y. Bai, Study on the boson peak in bulk metallic glasses, Journal of Applied Physics, vol.104, issue.1, p.13520, 2008.
DOI : 10.1016/S0022-3093(97)00457-2

M. Wuttig and N. Yamada, Phase-change materials for rewriteable data storage, Nature Materials, vol.6, issue.11, p.824, 2007.
DOI : 10.1557/mrs2004.236

T. Tuma, A. Pantazi, M. L. Gallo, A. Sebastian, and E. Eleftheriou, Stochastic phase-change neurons, Nature Nanotechnology, vol.1, issue.8, p.693, 2016.
DOI : 10.1038/nphys2566

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata et al., High Speed Overwritable Phase Change Optical Disk Material, Japanese Journal of Applied Physics, vol.26, issue.S4, pp.61-66, 1987.
DOI : 10.7567/JJAPS.26S4.61

S. Raoux, Phase Change Materials, Annual Review of Materials Research, vol.39, issue.1, pp.25-48, 2009.
DOI : 10.1146/annurev-matsci-082908-145405

URL : https://hal.archives-ouvertes.fr/hal-01081911

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry, Nature Materials, vol.10, issue.228, p.279, 2012.
DOI : 10.1038/nmat3134

G. C. Sosso, G. Miceli, S. Caravati, F. Giberti, J. Behler et al., Fast Crystallization of the Phase Change Compound GeTe by Large-Scale Molecular Dynamics Simulations, The Journal of Physical Chemistry Letters, vol.4, issue.24, pp.4241-4246, 2013.
DOI : 10.1021/jz402268v

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer et al., A map for phase-change materials, Nature Materials, vol.4342, issue.12, p.972, 2008.
DOI : 10.1103/PhysRevB.55.10355

. Do, M. Lencer, M. Salinga, and . Wuttig, Design rules for phase-change materials in data storage applications, Adv. Mater, vol.23, issue.18, pp.2030-2058, 2011.

S. Caravati and M. Bernasconi, Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials, Applied Physics Letters, vol.91, issue.17, p.171906, 2007.
DOI : 10.1107/S0021889800019993

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga et al., Understanding the phase-change mechanism of rewritable optical media, Nature Materials, vol.58, issue.10, pp.703-708, 2004.
DOI : 10.1103/PhysRevB.58.7565

S. Kohara, K. Kato, S. Kimura, H. Tanaka, T. Usuki et al., Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states, Structural basis for the fast phase change of Ge 2 Sb 2 Te 5 : Ring statistics analogy between the crystal and amorphous states, p.201910, 2006.
DOI : 10.1088/0953-8984/17/5/009

T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, and H. Hashimoto, Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase, Crystal structure of GeTe and Ge 2 Sb 2 Te 5 meta-stable phase, pp.258-261, 2000.
DOI : 10.1016/S0040-6090(99)01090-1

T. Chattopadhyay, J. X. Boucherlet, H. G. Von, and . Schnering, Neutron diffraction study on the structural phase transition in GeTe, Journal of Physics C: Solid State Physics, vol.20, issue.10, p.1431, 1987.
DOI : 10.1088/0022-3719/20/10/012

J. F. Da-silva, A. Walsh, and H. Lee, compounds, Physical Review B, vol.77, issue.22, p.224111, 2008.
DOI : 10.1116/1.1430249

URL : https://hal.archives-ouvertes.fr/hal-01496667

A. V. Kolobov and J. Tominaga, Local structure of crystallized GeTe films, Applied Physics Letters, vol.53, issue.3, p.382, 2003.
DOI : 10.1063/1.1314323

A. V. Kolobov, P. Fons, J. Tominaga, A. I. Frenkel, A. L. Ankudinov et al., Why Phase-Change Media Are Fast and Stable: A New Approach to an Old Problem, Japanese Journal of Applied Physics, vol.44, issue.5B, p.3345, 2005.
DOI : 10.1143/JJAP.44.3345

G. B. Beneventi, E. Gourvest, A. Fantini, L. Perniola, V. Sousa et al., On Carbon doping to improve GeTe-based Phase-Change Memory data retention at high temperature, 2010 IEEE International Memory Workshop, pp.1-4, 2010.
DOI : 10.1109/IMW.2010.5488328

U. D. Wdowik, K. Parlinski, S. Rols, and T. Chatterji, Soft-phonon mediated structural phase transition in GeTe, Physical Review B, vol.89, issue.22, p.224306, 2014.
DOI : 10.1103/PhysRevB.13.1216

E. F. Steigmeier and G. Harbeke, Soft phonon mode and ferroelectricity in GeTe, Solid State Comm, pp.1275-1279, 1970.
DOI : 10.1016/0038-1098(70)90619-8

P. Fons, A. V. Kolobov, M. , J. Tominaga, K. S. Andrikopoulos et al., Phase transition in crystalline GeTe: Pitfalls of averaging effects, Physical Review B, vol.82, issue.15, p.155209, 2010.
DOI : 10.1103/PhysRevB.75.144106

G. E. Ghezzi, J. Y. Raty, S. Maitrejean, A. Roule, E. Elkaim et al., Effect of carbon doping on the structure of amorphous GeTe phase change material, Applied Physics Letters, vol.99, issue.15, p.151906, 2011.
DOI : 10.1016/j.actamat.2011.03.057

URL : https://hal.archives-ouvertes.fr/hal-01067601

R. Fallica, E. Varesi, L. Fumagalli, S. Spadoni, M. Longo et al., Effect of nitrogen doping on the thermal conductivity of GeTe thin films, physica status solidi (RRL) - Rapid Research Letters, vol.98, issue.12, pp.1107-1111, 2013.
DOI : 10.1063/1.3574366

J. Raty, P. Noé, G. Ghezzi, S. Maitrejean, C. Bichara et al., Vibrational properties and stabilization mechanism of the amorphous phase of doped GeTe, Physical Review B, vol.88, issue.1, p.14203, 2013.
DOI : 10.1103/PhysRevB.44.94

URL : https://hal.archives-ouvertes.fr/hal-00914730

G. B. Beneventi, L. Perniola, V. Sousa, E. Gourvest, S. Maitrejean et al., Carbon-doped GeTe: A promising material for phase-change memories. Solid-State Electronics, pp.65-66197, 2011.

E. Gourvest, Développement et élaboration par MOCVD de matériaux à changement de phase é base d'alliages GeTe: applications aux mémoires embarquées par la microélectronique, 2010.

A. Kusiak, J. L. Battaglia, P. Noé, V. Sousa, and F. Fillot, Thermal conductivity of carbon doped GeTe thin films in amorphous and crystalline state measured by modulated photo thermal radiometry, Journal of Physics: Conference Series, vol.745, p.32104, 2016.
DOI : 10.1088/1742-6596/745/3/032104

J. H. Park, S. Kim, J. H. Kim, Z. Wu, S. L. Cho et al., Reduction of RESET current in phase change memory devices by carbon doping in GeSbTe films, Journal of Applied Physics, vol.117, issue.11, p.115703, 2015.
DOI : 10.1063/1.2722203

K. L. Chopra and S. K. Bahl, Thermopower behavior of amorphous versus crystalline Ge and GeTe films. Thins Solid Films, p.211, 1972.

D. Ielmini, Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses, Physical Review B, vol.45, issue.3, p.35308, 2008.
DOI : 10.1063/1.117196

G. C. Vezzoli, P. J. Walsh, and L. W. Doremus, Threshold switching and the on-state in non-crystalline chalcogenide semiconductors, Journal of Non-Crystalline Solids, vol.18, issue.3, pp.333-373, 1975.
DOI : 10.1016/0022-3093(75)90138-6

A. E. Owen and J. M. Robertson, Electronic conduction and switching in chalcogenide glasses, IEEE Transactions on Electron Devices, vol.20, issue.2, p.105, 1973.
DOI : 10.1109/T-ED.1973.17617

K. E. Petersen and D. Adler, A model for the on state of amorphous chalcogenide threshold switches, Journal of Applied Physics, vol.25, issue.2, p.925, 1979.
DOI : 10.1063/1.1655264

J. A. Diosdado, P. Ashwin, K. I. Kohary, and C. D. Wright, Threshold switching via electric field induced crystallization in phase-change memory devices, Applied Physics Letters, vol.100, issue.25, p.253105, 2012.
DOI : 10.1063/1.4729551.2

F. Zipoli, D. Krebs, and A. Curioni, Structural origin of resistance drift in amorphous GeTe, Physical Review B, vol.93, issue.11, p.115201, 2016.
DOI : 10.1016/j.sse.2011.06.029

M. Boniardi, D. Ielmini, S. Lavizzari, A. L. Lacaita, A. Redaelli et al., Statistics of Resistance Drift Due to Structural Relaxation in Phase-Change Memory Arrays, IEEE Transactions on Electron Devices, vol.57, issue.10, pp.2690-2696, 2010.
DOI : 10.1109/TED.2010.2058771

A. H. Edwards, A. C. Pineda, P. A. Schultz, M. G. Martin, A. P. Thompson et al., Electronic structure of intrinsic defects in crystalline germanium telluride, Physical Review B, vol.276, issue.4, p.45210, 2006.
DOI : 10.1063/1.1749319

S. K. Bahl and K. L. Chopra, Amorphous Versus Crystalline GeTe Films. II. Optical Properties, Journal of Applied Physics, vol.14, issue.12, p.4940, 1969.
DOI : 10.1103/PhysRevLett.22.1058

Y. Gelbstein, O. Ben-yehuda, E. Pinhas, T. Edrei, Y. Sadia et al., Thermoelectric Properties of (Pb,Sn,Ge)Te-Based Alloys, Journal of Electronic Materials, vol.33, issue.7, p.381478, 2009.
DOI : 10.1007/s11664-008-0652-8

J. L. Bosse, M. Timofeeva, P. D. Tovee, B. J. Robinson, B. D. Huey et al., Nanothermal characterization of amorphous and crystalline phases in chalcogenide thin films with scanning thermal microscopy, Journal of Applied Physics, vol.116, issue.13, p.134904, 2014.
DOI : 10.1143/JPSJ.55.1948

R. Lan, R. Endo, M. Kuwahara, Y. Kobayashi, and M. Susa, Electrical and heat conduction mechanisms of GeTe alloy for phase change memory application, Journal of Applied Physics, vol.11, issue.5, p.53712, 2012.
DOI : 10.1016/0040-6031(84)87142-7

K. S. Andrikopoulos, S. N. Yannopoulos, G. A. Voyiatzis, A. V. Kolobov, M. Ribes et al., Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition, Journal of Physics: Condensed Matter, vol.18, issue.3, pp.965-979, 2006.
DOI : 10.1088/0953-8984/18/3/014

P. B. Pereira, I. Sergueev, S. Gorsse, J. Dadda, . Ec et al., Lattice dynamics and structure of GeTe, SnTe and PbTe, physica status solidi (b), vol.84, issue.1-3, pp.1300-1307, 2013.
DOI : 10.1103/PhysRevB.84.064302

URL : https://hal.archives-ouvertes.fr/hal-00858187

J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, New and Old Concepts in Thermoelectric Materials, Angewandte Chemie International Edition, vol.42, issue.402, pp.8616-8639, 2009.
DOI : 10.1109/EE.1960.6432651

Y. Rosenberg, Y. Gelbstein, and M. P. , Phase separation and thermoelectric properties of the Te compound, J. Alloys. Compd, vol.526, p.3138, 2012.

J. Schwan, S. Ulrich, V. Batori, and H. Ehrhardt, Raman spectroscopy on amorphous carbon films, Journal of Applied Physics, vol.29, issue.1, p.440, 1996.
DOI : 10.1063/1.339754

M. Iwaki, Estimation of the atomic density of amorphous carbon using ion implantation, SIMS and RBS, Surface and Coatings Technology, vol.158, issue.159, pp.158-159377, 2002.
DOI : 10.1016/S0257-8972(02)00247-5

T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach et al., Disorder-induced localization in crystalline phase-change materials, Nature Materials, vol.44, issue.3, p.202, 2011.
DOI : 10.1063/1.1727231

P. Nukala, R. Agarwal, X. Qian, M. H. Jang, S. Dhara et al., Direct Observation of Metal???Insulator Transition in Single-Crystalline Germanium Telluride Nanowire Memory Devices Prior to Amorphization, Nano Letters, vol.14, issue.4, pp.2201-2209, 2014.
DOI : 10.1021/nl5007036

P. Nukala, C. Lin, R. Composto, and R. Agarwal, Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices, Nature Communications, vol.29, 2016.
DOI : 10.1557/mrs2004.236

D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, and G. Ottaviani, Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors, Journal of Solid State Chemistry, vol.193, pp.19-25, 2012.
DOI : 10.1016/j.jssc.2012.03.032

J. H. Mooij, Electrical conduction in concentrated disordered transition metal alloys, Physica Status Solidi (a), vol.5, issue.2, pp.521-530, 1973.
DOI : 10.1098/rspa.1934.0117

M. A. Park, K. Savran, and Y. Kim, Weak localization and the Mooij rule in disordered metals, physica status solidi (b), vol.58, issue.62, pp.500-506, 2003.
DOI : 10.1103/PhysRevB.58.8805

H. Kim, Z. M. Gibbs, Y. Tang, H. Wang, and G. J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement, APL Materials, vol.1, issue.4, p.41506, 2015.
DOI : 10.1063/1.4905922

T. Albaret, C. Fusco, and A. Tanguy, Role of local order in the small-scale plasticity of model amorphous materials, Phys. Rev. E, vol.82, p.66116, 2010.

S. N. Taraskin and S. R. Elliott, Determination of the Ioffe-Regel limit for vibrational excitations in disordered materials, Philosophical Magazine B, vol.4, issue.11-12, pp.11-121747, 1999.
DOI : 10.1103/PhysRevLett.64.1955

B. Qi, J. Absi, and N. Tessier-doyen, Experimental and numerical study of the Young???s modulus vs temperature for heterogeneous model materials with polygonal inclusions, Computational Materials Science, vol.46, issue.4, pp.996-1001, 2009.
DOI : 10.1016/j.commatsci.2009.05.006

S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Applied Mechanics Reviews, vol.55, issue.4, 2013.
DOI : 10.1115/1.1483342

D. F. Swinehart, The Beer-Lambert Law, Journal of Chemical Education, vol.39, issue.7, p.333, 1962.
DOI : 10.1021/ed039p333

K. Sääskilahti, J. Oksanen, J. Tulkki, A. J. Mcgaughey, and S. Volz, Vibrational mean free paths and thermal conductivity of amorphous silicon from non-equilibrium molecular dynamics simulations, AIP Advances, vol.110, issue.12, p.121904, 2016.
DOI : 10.1103/PhysRevB.50.6077

J. M. Larkin and A. J. Mcgaughey, Thermal conductivity accumulation in amorphous silica and amorphous silicon, Physical Review B, vol.89, issue.14, p.144303, 2014.
DOI : 10.1103/PhysRevB.84.085204

W. Lv and A. Henry, Direct calculation of modal contributions to thermal conductivity via Green???Kubo modal analysis, New Journal of Physics, vol.18, issue.1, p.13028, 2016.
DOI : 10.1088/1367-2630/18/1/013028