F. T. Bacon, High-pressure hydrogen-oxygen cell. in "BEAMA journal" 6, pp.61-67, 1954.
DOI : 10.1021/ie50604a027

M. Wakizoe, O. A. Velev, and S. Srinivasan, Analysis of proton exchange membrane fuel cell performance with alternate membranes, Electrochimica Acta, vol.40, issue.3, pp.335-344, 1994.
DOI : 10.1016/0013-4686(94)00269-7

B. R. Ezzell, W. P. Carl, and W. A. Mod, US patent 4,358,412 Preparation of vinyl ethers 1982

N. Yoshida, T. Ishisaki, A. Watanabe, and M. Yoshitake, Characterization of Flemion?? membranes for PEFC, Electrochimica Acta, vol.43, issue.24, pp.3749-3754, 1998.
DOI : 10.1016/S0013-4686(98)00133-9

L. Merlo, A. Ghielmi, L. Cirillo, M. Gebert, and V. Arcella, Resistance to peroxide degradation of Hyflon?? Ion membranes, Journal of Power Sources, vol.171, issue.1, pp.140-147, 2007.
DOI : 10.1016/j.jpowsour.2006.11.012

Y. Yang, A. Siu, J. Peckham, and S. Holdcroft, Structural and Morphological Features of Acid-Bearing Polymers for PEM Fuel Cells, Adv. Polym. Sci, vol.215, pp.55-126, 2008.
DOI : 10.1007/12_2008_134

C. Lee, B. Park, Y. Lee, and R. Lee, Importance of Proton Conductivity Measurement in Polymer Electrolyte Membrane for Fuel Cell Application, Industrial & Engineering Chemistry Research, vol.44, issue.20, pp.7617-7626, 2005.
DOI : 10.1021/ie0501172

S. Mikhailenko, M. Guiver, and S. Kaliaguine, Measurements of PEM by impedance spectroscopy. Solid State Ionics, pp.619-624, 2008.

F. Büchi and G. Scherer, In-situ resistance measurements of Nafion?? 117 membranes in polymer electrolyte fuel cells, Journal of Electroanalytical Chemistry, vol.404, issue.1, pp.37-43, 1996.
DOI : 10.1016/0022-0728(95)04321-7

S. Slade, S. Campbell, T. Ralph, and F. Walsh, Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes, Journal of The Electrochemical Society, vol.145, issue.12, pp.1556-1564, 2002.
DOI : 10.1149/1.1838699

Y. Zhang, J. Li, L. Ma, W. Cai, and H. Cheng, Recent developments on alternative proton exchange membranes: Strategies for systematic performance improvement. Energy technology, review, pp.675-691, 2015.
DOI : 10.1002/ente.201500028

T. Van-grotthus, Theory of decomposition of liquids by electrical currents, Ann. Chim, vol.1806, issue.58, pp.54-73

K. Kreuer, On the complexity of proton conduction phenomena. Solid State Ionics, pp.149-160, 2000.

K. Mauritz and R. Moore, State of understanding of Nafion ® . Chemical Reviews, pp.4535-4585, 2004.

W. Hsu and T. Gierke, Ion transport and clustering in nafion perfluorinated membranes, Journal of Membrane Science, vol.13, issue.3
DOI : 10.1016/S0376-7388(00)81563-X

T. Gierke, G. Munn, and F. Wilson, The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies, Journal of Polymer Science: Polymer Physics Edition, vol.19, issue.11, pp.1687-1704, 1981.
DOI : 10.1002/pol.1981.180191103

G. Gebel, Structural evolution of water swollen perfluorosulfonated ionomers from dry membrnane to solution, Polymer, pp.5829-5838, 2000.

S. T. Iacono, J. Budy, S. M. Jin, D. W. Smith, and . Jr, Science and technology of perfluorocyclobutyl aryl ether polymers, Journal of Polymer Science Part A: Polymer Chemistry, vol.46, issue.24, pp.5705-5721, 2007.
DOI : 10.1002/352760653X

M. Mujkic, S. T. Iacono, A. R. Neilson, D. W. Smith, and . Jr, Recent Optical Applications of Perfluorocyclobutyl Aryl Ether Polymers, Macromolecular Symposia, vol.1030, issue.1, pp.283-284, 2009.
DOI : 10.1016/j.polymer.2004.11.100

D. A. Babb, Polymers from the thermal (2?+2?) cyclodimerization of fluorinated olefins in Fluoropolymers. I. Synthesis, pp.25-50, 1999.

M. W. Perpall, D. W. Smith, . Jr, D. D. Desmarteau, and S. E. Creager, Alternative Trifluorovinyl Ether Derived Fluoropolymer Membranes and Functionalized Carbon Composite Electrodes for Fuel Cells, Journal of Macromolecular Science, Part C: Polymer Reviews, vol.39, issue.3
DOI : 10.1021/ja00040a074

R. Jiang, T. Fuller, S. Brawn, and C. Gittleman, Perfluorocyclobutane and poly(vinylidene fluoride) blend membranes for fuel cells, Electrochimica Acta, vol.110, pp.306-315, 2013.
DOI : 10.1016/j.electacta.2013.07.074

G. J. Kalaw, J. A. Wahome, Y. Zhu, K. J. Balkus, . Jr et al., Perfluorocyclobutyl (PFCB)-based polymer blends for proton exchange membrane fuel cells (PEMFCs), Journal of Membrane Science, vol.431, pp.86-95, 2013.
DOI : 10.1016/j.memsci.2012.12.012

J. Park, N. Tomar, H. Colon-mercado, D. Hobbs, D. W. Smith et al., PFCB polymer electrolytes: A promising material for hydrogen production, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem, vol.50, pp.559-560, 2009.

D. Kim, B. Chang, J. Kim, S. Lee, and H. Joo, Sulfonated poly(fluorenyl ether) membranes containing perfluorocyclobutane groups for fuel cell applications, Journal of Membrane Science, vol.325, issue.1, pp.217-222, 2008.
DOI : 10.1016/j.memsci.2008.07.034

B. Liu, Y. S. Kim, W. Hu, G. Robertson, B. S. Pivovar et al., Homopolymer-like sulfonated phenyl- and diphenyl-poly(arylene ether ketone)s for fuel cell applications, Journal of Power Sources, vol.185, issue.2, pp.899-903, 2008.
DOI : 10.1016/j.jpowsour.2008.08.088

URL : http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/accepted/?id=eabf17b1-1b71-4983-8cea-27aafab59ac6

M. Guiver and J. Apsimon, The modification of polysulfone by metalation, Journal of Polymer Science: Polymer Letters Edition, vol.26, issue.2, 1988.
DOI : 10.1002/pol.1988.140260211

B. Lafitte and P. Jannasch, Proton-Conducting Aromatic Polymers Carrying Hypersulfonated Side Chains for Fuel Cell Applications, Advanced Functional Materials, vol.47, issue.15, pp.2823-2834, 2007.
DOI : 10.1002/adfm.200700107

F. Wang, M. Hickner, Q. Ji, W. Harrison, H. Mecham et al., Synthesis of highly sulfonated poly(arylene ether sulfone) random(statistical) copolymers via direct polymerization, Macromolecular Symposia, vol.175, issue.1, p.387, 2001.
DOI : 10.1002/1521-3900(200110)175:1<387::AID-MASY387>3.0.CO;2-1

F. Wang, M. Hickner, Y. Kim, T. Zawodzinski, and J. Mcgrath, Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes, Journal of Membrane Science, vol.197, issue.1-2, pp.231-242, 2002.
DOI : 10.1016/S0376-7388(01)00620-2

M. Sankir, V. Bhanu, W. Harrison, H. Ghassemi, K. Wiles et al., Synthesis and characterization of 3,3???-disulfonated-4,4???-dichlorodiphenyl sulfone (SDCDPS) monomer for proton exchange membranes (PEM) in fuel cell applications, Journal of Applied Polymer Science, vol.175, issue.6, pp.4595-4602, 2006.
DOI : 10.1002/app.22803

F. Wang, T. Chen, and J. Xu, Sodium sulfonate-functionalized poly(ether ether ketone)s, Macromolecular Chemistry and Physics, vol.199, issue.7, pp.1421-1426, 1997.
DOI : 10.1002/(SICI)1521-3935(19980701)199:7<1421::AID-MACP1421>3.0.CO;2-P

F. Wang, M. A. Hickner, Y. S. Kim, A. , Z. T. et al., Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes, Journal of Membrane Science, vol.197, issue.1-2, pp.231-242, 2002.
DOI : 10.1016/S0376-7388(01)00620-2

M. Lakshmi, J. Meier-haack, K. Schlenstedt, C. Vogel, V. Choudhary et al., Sulphonated poly(ether ether ketone) copolymers: Synthesis, characterisation and membrane properties, J

M. Schuster, D. Araujo, C. Atanasov, V. Andersen, H. Kreuer et al., Highly Sulfonated Poly(phenylene sulfone): Preparation and Stability Issues, Macromolecules, vol.42, issue.8, pp.3129-3137, 2009.
DOI : 10.1021/ma900333n

M. Schuster, K. Kreuer, H. Andersen, and J. Maier, Sulfonated Poly(phenylene sulfone) Polymers as Hydrolytically and Thermooxidatively Stable Proton Conducting Ionomers, Macromolecules, vol.40, issue.3, pp.598-607, 2007.
DOI : 10.1021/ma062324z

J. Peckham and S. Holdcroft, Structure-Morphology-Property Relationships of Non-Perfluorinated Proton-Conducting Membranes, Advanced Materials, vol.15, issue.23, pp.4667-4690, 2010.
DOI : 10.1021/jp037519c

K. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, Journal of Membrane Science, vol.185, issue.1, pp.29-39, 2001.
DOI : 10.1016/S0376-7388(00)00632-3

N. Li, D. Hwang, S. Lee, Y. Liu, Y. Lee et al., Densely Sulfophenylated Segmented Copoly(arylene ether sulfone) Proton Exchange Membranes, Macromolecules, vol.44, issue.12, pp.7296-7306, 2011.
DOI : 10.1021/ma200937w

URL : http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/accepted/?id=fe89b819-f2ad-4143-8a66-7544d7085659

L. Karlsson and P. Jannasch, Polysulfone ionomers for proton-conducting fuel cell membranes: sulfoalkylated polysulfones, Journal of Membrane Science, vol.230, issue.1-2, pp.61-70, 2004.
DOI : 10.1016/j.memsci.2003.10.033

L. Karlsson and P. Jannasch, Polysulfone ionomers for proton-conducting fuel cell membranes, Electrochimica Acta, vol.50, issue.9, pp.1939-1946, 2005.
DOI : 10.1016/j.electacta.2004.09.003

B. Lafitte, L. Karlsson, and P. Jannasch, Sulfophenylation of Polysulfones for Proton-Conducting Fuel Cell Membranes, Macromolecular Rapid Communications, vol.23, issue.15, pp.896-900, 2002.
DOI : 10.1002/1521-3927(20021001)23:15<896::AID-MARC896>3.0.CO;2-P

J. Persson and P. Jannasch, Locating sulfonic acid groups on various side chains to poly(arylene ether sulfone)s: Effects on the ionic clustering and properties of proton-exchange membranes, Journal of membrane science, vol.351, pp.1-2, 2010.

K. Yoshimura and K. Iwasaki, Aromatic Polymer with Pendant Perfluoroalkyl Sulfonic Acid for Fuel Cell Applications, Macromolecules, vol.42, issue.23, pp.9302-9306, 2009.
DOI : 10.1021/ma901953e

K. Nakabayashi, T. Higashihara, and M. Ueda, Polymer Electrolyte Membranes Based on Poly(phenylene ether)s with Pendant Perfluoroalkyl Sulfonic Acids, Macromolecules, vol.44, issue.6, pp.1603-1609, 2011.
DOI : 10.1021/ma102813y

T. Mikami, K. Miyatake, and M. Watanabe, Poly(arylene ether)s Containing Superacid Groups as Proton Exchange Membranes, ACS Applied Materials & Interfaces, vol.2, issue.6, pp.1714-1721, 2010.
DOI : 10.1021/am100224z

A. Roy, H. Lee, and J. Mcgrath, Hydrophilic-hydrophobic multiblock copolymers based on poly(arylene ether sulfone)s as novel proton exchange membranes -Part B. Polymer, pp.5037-5044, 2008.
DOI : 10.1016/j.polymer.2008.08.046

Y. Li, A. Roy, A. Badami, M. Hill, J. Yang et al., Synthesis and characterization of partially fluorinated hydrophobic???hydrophilic multiblock copolymers containing sulfonate groups for proton exchange membrane, Journal of Power Sources, vol.172, issue.1, pp.30-38, 2007.
DOI : 10.1016/j.jpowsour.2007.04.046

E. Weiber, S. Takamuku, and P. Jannasch, Highly Proton Conducting Electrolyte Membranes Based on Poly(arylene sulfone)s with Tetrasulfonated Segments, Macromolecules, vol.46, issue.9, pp.3476-3485
DOI : 10.1021/ma4002929

C. Zhao, X. Li, H. Lin, K. Shao, and H. Na, Sulfonated poly(arylene ether ketone)s prepared by direct copolymerization as proton exchange membranes: Synthesis and comparative investigation on transport properties, Journal of Applied Polymer Science, vol.47, issue.1, pp.671-680, 2008.
DOI : 10.1002/app.27696

A. Roy, M. Hicker, X. Yu, Y. Li, T. Glass et al., Influence of chemical composition and sequence length on the transport properties of proton exchange membranes. Polymer Physics, pp.2226-2239, 2006.

C. Zhao, H. Lin, K. Shao, X. Li, H. Ni et al., Block sulfonated poly(ether ether ketone)s (SPEEK) ionomers with high ion-exchange capacities for proton exchange membranes, Journal of Power Sources, vol.162, issue.2, pp.1003-1009, 2006.
DOI : 10.1016/j.jpowsour.2006.07.055

C. Zhao, X. Li, Z. Wang, Z. Dou, Z. Zhong et al., Synthesis of the block sulfonated poly(ether ether ketone)s (S-PEEKs) materials for proton exchange membrane, Journal of Membrane Science, vol.280, issue.1-2, pp.643-650, 2006.
DOI : 10.1016/j.memsci.2006.02.028

D. Seo, Y. Lim, S. Lee, I. Jeong, D. Kim et al., Preparation and characterization of sulfonated poly(tetra phenyl ether ketone sulfone)s for proton exchange membrane fuel cell, International Journal of Hydrogen Energy, vol.37, issue.7, pp.6140-6147, 2012.
DOI : 10.1016/j.ijhydene.2011.05.168

Y. Lim, D. Seo, S. Lee, H. Jang, H. Ju et al., High efficiency of proton transport by clustering nanochannels in multi-sulfonated propeller-like nonplanar hexaphenylbenzene poly(ether sulfone)s, International Journal of Hydrogen Energy, vol.39, issue.6, pp.2756-2766, 2014.
DOI : 10.1016/j.ijhydene.2013.05.165

S. Feng, K. Shen, Y. Wang, J. Pang, and Z. Jiang, Concentrated sulfonated poly (ether sulfone)s as proton exchange membranes, Journal of Power Sources, vol.224, pp.42-49, 2013.
DOI : 10.1016/j.jpowsour.2012.09.071

K. Matsumoto, T. Higashihara, and M. Ueda, Locally and Densely Sulfonated Poly(ether sulfone)s as Proton Exchange Membrane, Macromolecules, vol.42, issue.4, pp.1161-1166, 2009.
DOI : 10.1021/ma802637w

S. Tian, Y. Meng, and A. Hay, Membranes from poly(aryl ether)-based ionomers containing multiblock segments of randomly distributed nanoclusters of 18 sulfonic acid groups, Journal of Polymer Science Part A: Polymer Chemistry, vol.37, issue.55, pp.4762-4773, 2009.
DOI : 10.1002/masy.19920540125

C. Wang, N. Li, D. Shin, S. Lee, N. Kang et al., Densely Sulfophenylated Segmented Copoly(arylene ether sulfone) Proton Exchange Membranes. Macromolecules, pp.7296-7306, 2011.

S. Matsummura, A. Hlil, C. Lepiller, J. Gaudet, D. Guay et al., Ionomers for Proton Exchange Membrane Fuel Cells with Sulfonic Acid Groups on the End Groups:?? Novel Branched Poly(ether???ketone)s, Macromolecules, vol.41, issue.2, pp.281-284, 2008.
DOI : 10.1021/ma071422x

J. Pang, K. Shen, D. Ren, S. Feng, and Z. Jiang, Polyelectrolyte based on tetra-sulfonated poly(arylene ether)s for direct methanol fuel cell, Journal of Power Sources, vol.226, pp.179-185, 2013.
DOI : 10.1016/j.jpowsour.2012.11.005

S. Hyun, A. Kim, K. Nahm, and D. Yoo, Tetrasulfonated Poly(arylene biphenylsulfone ether) Block Copolymer and Its Composite Membrane Containing Highly Sulfonated Blocks, Bulletin of the Korean Chemical Society, vol.33, issue.2, pp.375-376, 2012.
DOI : 10.5012/bkcs.2012.33.2.375

URL : http://ocean.kisti.re.kr/downfile/volume/chemical/JCGMCS/2012/v33n2/JCGMCS_2012_v33n2_375.pdf

D. Yoo, S. Hyun, A. Kim, G. Kumar, and K. Nahm, Synthesis, and Structural and Thermal Characterizations of Tetrasulfonated Poly(arylene biphenylsulfone ether) Copolymer Ion Conducting Electrolytes, Bulletin of the Korean Chemical Society, vol.32, issue.11, pp.4041-4048, 2011.
DOI : 10.5012/bkcs.2011.32.11.4041

S. Takamuku, E. Weiber, and P. Jannasch, Segmented Tetrasulfonated Copoly(Arylene Ether Sulfone)s: Improving Proton Transport Properties by Extending the Ionic Sequence, ChemSusChem, vol.47, issue.2
DOI : 10.1016/j.polymer.2006.02.032

S. Takamuku and P. Jannasch, Multiblock Copolymers Containing Highly Sulfonated Poly(arylene sulfone) Blocks for Proton Conducting Electrolyte Membranes, Macromolecules, vol.45, issue.16, pp.6538-6546, 2012.
DOI : 10.1021/ma301245u

K. Kreuer, A. Rabenau, and W. Weppner, Vehicle Mechanism, A New Model for the Interpretation of the Conductivity of Fast Proton Conductors, Angewandte Chemie International Edition in English, vol.49, issue.4, pp.208-209, 1982.
DOI : 10.1139/p71-104

M. Schuster, T. Rager, A. Noda, K. D. Kreuer, and J. Maier, About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds, Fuel Cells, vol.185, issue.136, pp.355-365, 2005.
DOI : 10.1002/fuce.200400059

L. Freedman and G. Doak, The Preparation And Properties Of Phosphonic Acids, Chemical Reviews, vol.57, issue.3, pp.479-523, 1957.
DOI : 10.1021/cr50015a003

H. Steininger, M. Schuster, K. Kreuer, and J. Maier, Intermediate temperature proton conductors based on phosphonic acid functionalized oligosiloxanes. Solid State Ionics, pp.2457-2462, 2006.

F. Wang, T. Chen, and J. Xu, Sodium sulfonate-functionalized poly(ether ether ketone)s, Macromolecular Chemistry and Physics, vol.199, issue.7, pp.1421-1426, 1998.
DOI : 10.1002/(SICI)1521-3935(19980701)199:7<1421::AID-MACP1421>3.0.CO;2-P

M. Kalek, M. Jezowska, and J. Stawinski, Preparation of Arylphosphonates by Palladium(0)-Catalyzed Cross-Coupling in the Presence of Acetate Additives: Synthetic and Mechanistic Studies, Advanced Synthesis & Catalysis, vol.29, issue.18, pp.3207-3216, 2009.
DOI : 10.1135/css200810214

M. Kalek, J. Stawinski, and . Pd, Pd(0)-Catalyzed Phosphorus???Carbon Bond Formation. Mechanistic and Synthetic Studies on the Role of the Palladium Sources and Anionic Additives, Organometallics, vol.26, issue.24, pp.5840-5847, 2007.
DOI : 10.1021/om700797k

L. J. Gooben and M. K. Defuli, Practical Protocol for the Palladium-Catalyzed Synthesis of Arylphosphonates from Bromoarenes and Diethyl Phosphite, Synlett, vol.3, pp.445-448, 2005.

A. M. Diaz, M. G. Zolotukhin, S. Fomine, R. Salcedo, O. Manero et al., A Novel, One-Pot Synthesis of Novel 3F, 5F, and 8F Aromatic Polymers, Macromolecular Rapid Communications, vol.36, issue.2, pp.183-187, 2007.
DOI : 10.1002/cber.187200502157

C. E. Mckenna, M. T. Higa, N. H. Chaung, and M. Mckenna, The facile dealkylation of dialkyl esters by bromotrimethylsilane, Tetrahedron Letters, vol.2, pp.155-158, 1977.

C. J. Salomon and E. Breuer, Efficient and selective dealkylation of phosphonate diisopropil esters using Me 3 SiBr, Tetrahedron Letters, vol.36, pp.6759-6760, 1995.

J. Hendrick, Step-Growth polymers for high performance materials, pp.276-291, 1996.

G. Gebel and O. Diat, Neutron and X-ray Scattering: Suitable Tools for Studing Ionomer Membranes. Fuel Cells, pp.261-276, 2005.
DOI : 10.1002/fuce.200400080

M. Litt, A reevaluation of Nafion (R) morphology " in Abstracts of Papers of the, Amer. Chem, vol.213, p.33, 1997.

H. Haubold, T. Vad, H. Jungbluth, and P. Hiller, Nano structure of NAFION: a SAXS study, Electrochimica Acta, vol.46, issue.10-11, pp.1559-1563, 2001.
DOI : 10.1016/S0013-4686(00)00753-2

K. D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol

G. P. Robertson, S. D. Mikhailenko, K. Wang, P. Xing, M. D. Guiver et al., Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication, Journal of Membrane Science, vol.219, issue.1-2, pp.113-121, 2003.
DOI : 10.1016/S0376-7388(03)00193-5

URL : http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/accepted/?id=f679ee01-07be-4893-ae77-d95e9e933d5d

R. Guan, H. Dai, C. Li, J. Liu, and J. Xu, Effect of casting solvent on the morphology and performance of sulfonated polyethersulfone membranes, Journal of Membrane Science, vol.277, issue.1-2, pp.148-156, 2006.
DOI : 10.1016/j.memsci.2005.10.025

K. N. Do and D. Kim, Synthesis and characterization of homogeneously sulfonated poly(ether ether ketone) membranes: Effect of casting solvent, Journal of Applied Polymer Science, vol.145, issue.3, pp.1763-1770, 2008.
DOI : 10.1002/app.28150

M. Jun, Y. Choi, and J. Kim, Solvent casting effects of sulfonated poly(ether ether ketone) for Polymer electrolyte membrane fuel cell, Journal of Membrane Science, vol.396, pp.32-37, 2012.
DOI : 10.1016/j.memsci.2011.12.008

X. Liu, S. He, Z. Shi, L. Zhang, and J. Lin, Effect of residual casting solvent content on the structure and properties of sulfonated poly(ether ether ketone) membranes, Journal of Membrane Science, vol.492, pp.48-57, 2015.
DOI : 10.1016/j.memsci.2015.05.038

D. X. Luu, E. Cho, O. H. Han, and D. Kim, SAXS and NMR Analysis for the Cast Solvent Effect on sPEEK Membrane Properties, The Journal of Physical Chemistry B, vol.113, issue.30, pp.10072-10076, 2009.
DOI : 10.1021/jp904604u

D. Vona, M. L. Sgreccia, E. Licoccia, S. Alberti, G. Tortet et al., Analysis of Temperature-Promoted and Solvent-Assisted Cross-Linking in Sulfonated Poly(ether ether ketone) (SPEEK) Proton-Conducting Membranes, The Journal of Physical Chemistry B, vol.113, issue.21, pp.7505-7512, 2009.
DOI : 10.1021/jp9006679

S. Swier, V. Ramani, J. M. Fenton, H. R. Kunz, M. T. Shaw et al., Polymer blends based on sulfonated poly(ether ketone ketone) and poly(ether sulfone) as proton exchange membranes for fuel cells, Journal of Membrane Science, vol.256, pp.122-133, 2005.
DOI : 10.1016/j.memsci.2005.02.013

G. Gerard, Structure of membranes for fuel cells: SANS and SAXS analyses of sulfonated PEEKS- Membranes and Solutions, Macromolecules, vol.46, pp.6057-6066, 2013.

E. Abouzary-loft, H. Ghassemi, A. Shockravi, T. Zawodzinski, and D. Schiraldi, Phosphonated poly(arylene ether)s as potential high temperature proton conducting materials. Polymer, pp.4709-4717, 2011.

S. V. Kotov, S. D. Pedersen, W. Qiu, Z. M. Qiu, and D. J. Burton, Preparation of perfluorocarbon polymers containing phosphonic acid groups, Journal of Fluorine Chemistry, vol.82, issue.1, pp.13-19, 1997.
DOI : 10.1016/S0022-1139(96)03534-8

B. Liu, G. P. Robertson, M. D. Guiver, Z. Shi, T. Navessin et al., Fluorinated Poly(aryl ether) Containing a 4-Bromophenyl Pendant Group and its Phosphonated Derivative. Macromol. Rapid Partie expérimentale mL (21.9 mmol) d'hydrazine (sol. 64% en poids dans l'eau) sont ensuite ajoutés goutte à goutte. La solution est laissée sous agitation pendant 15 min. La solution est transvasée dans une ampoule de coulée et la phase inférieure est jetée
DOI : 10.1002/marc.200600337

URL : http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/accepted/?id=32c1f669-4f75-46ec-98f0-001ba15be34b

. Dans-un-monocol-de, 3 mmol) du précurseur hydrazine sont solubilisés dans 10 mL de méthanol anhydre Ensuite 0.3 mL d'acétone anhydre sont ajoutés à la solution. Le produit est filtré et séché sous vide à 50 °C pendant une nuit. 1 H NMR (DMSO-d6, 300 MHz): (ppm) = 1, 10.27 (s, 2H). 19 F NMR (DMSO-d6, 300 MHz): (ppm) = -69

«. De, 04 g (45 mmol) de DABCO sont solubilisés dans 25 mL de dichlorométhane. Purifié par chromatographie flash (CH 2 Cl 2 / Ether du Pétrole 50:50) 8.32 g (11.2 mmol) du 4-4'-Bis(2- Bromotétrafluoroéthoxy)biphenyl sulfoné sont ajoutés. 1.45 g (rdt, La procédure expérimentale suivie est identique à la précédente avec les proportions suivantes2%) de produit pur sont isolés. 1 H NMR (DMSO-d6, 300 MHz): (ppm) = 6.92 (AA'BB', 2H), pp.4-5

«. De, 24 g (37.8 mmol) de diazabicyclooctane (DABCO) sont solubilisés dans 25 mL de dichlorométhane et introduits dans un Partie expérimentale d6, 300 MHz): (ppm) = 7, 4H), 7.25 (AA'BB', 4H). 19 F NMR (DMSO-d6, 300 MHz): (ppm) = -118.8 (dd, 1F), -126.6 (dd, 1F), -134.0 (dd, 1F)

. Mhz, 99 (s, 2H). 19 F NMR (DMSO-d6, 300 MHz): (ppm) = -118, dd, 2F), -126.58 (dd, 2F), -134.22 (dd, 2F)

. Le-produit-pur, 75 g, 56% rdt.) est obtenu après plusieurs recristallisations succesives dans l'hexane/EtOAc du produit brut

6. Et-de-carbonate-de-potassium-dans-la-diméthylacetamide, La solution est chauffée à 140 °C pendant 24 heures puis la solution est refroidie à 80 °C. Les comonomères comportant le bloc phosphoné sont ajoutés avec la quantité stoechiométrique de carbonate de potassium. La solution est rediluée

. Sulphos-12, Premier bloc: 1.0000 g de SDFBP, 0.8436 g de bisphénol-6F et 0, p.77

. Sulphos-12, Premier bloc: 1.0000 g de SDFBP, 0.8436 g de bisphénol-6F et 0

. Résonance-magnétique-nucléaire, RMN) Les spectres RMN 1 H, 19 F et 31 P ont été réalisés à température ambiante. Les analyses en milieu liquide ont été réalisés sur des spectromètres Bruker Avance 300 et 500

. Mhz, Les fréquences d'analyse sont respectivement de 300 et 500 MHz pour le proton, 376 et 470 MHz pour le fluor et de 100 et 125 MHz pour le carbone. Les RMN du solide ont été effectués sur un spectromètre Bruker Avance 500 Solide dont la fréquence d'analyse est de 500 MHz pour le proton, pp.470-200

. Mhz-pour-le-phosphore, Les solvants employés sont le diméthylsulfoxyde deutéré (DMSO-d6) ou le chloroforme deutéré (CDCl 3 ) et la référence interne utilisée est le tétraméthylsilane (TMS)