C. Browning, M. M. Shneider, V. D. Bowman, D. Schwarzer, and P. G. Leiman, Phage Pierces the Host Cell Membrane with the Iron-Loaded Spike, Structure, vol.20, issue.2, pp.326-339, 2012.
DOI : 10.1016/j.str.2011.12.009

B. Hu, W. Margolin, I. J. Molineux, and J. Liu, Structural remodeling of bacteriophage T4 and host membranes during infection initiation, Proc. Natl Acad. Sci. USA, pp.4919-4928, 2015.
DOI : 10.1002/jcc.20084

P. G. Leiman, P. R. Chipman, V. A. Kostyuchenko, V. V. Mesyanzhinov, and M. G. Rossmann, Three-Dimensional Rearrangement of Proteins in the Tail of Bacteriophage T4 on Infection of Its Host, Cell, vol.118, issue.4, pp.419-429, 2004.
DOI : 10.1016/j.cell.2004.07.022

N. M. Taylor, Structure of the T4 baseplate and its function in triggering sheath contraction, Nature, vol.372, issue.7603, pp.346-352, 2016.
DOI : 10.1016/j.jmb.2007.05.022

B. Hu, W. Margolin, I. J. Molineux, and J. Liu, The Bacteriophage T7 Virion Undergoes Extensive Structural Remodeling During Infection, Science, vol.25, issue.13, pp.576-579, 2013.
DOI : 10.1002/jcc.20084

V. A. González-garcía, Conformational Changes Leading to T7 DNA Delivery upon Interaction with the Bacterial Receptor, Journal of Biological Chemistry, vol.108, issue.16, pp.10038-10044, 2015.
DOI : 10.1016/j.virol.2009.12.002

D. Lupo, The T7 ejection nanomachine components gp15???gp16 form a spiral ring complex that binds DNA and a lipid membrane, Virology, vol.486, pp.263-271, 2015.
DOI : 10.1016/j.virol.2015.09.022

J. Xu, M. Gui, D. Wang, and Y. Xiang, The bacteriophage ??29 tail possesses a pore-forming loop for cell membrane penetration, Nature, vol.35, issue.7608, pp.544-547, 2016.
DOI : 10.1093/nar/gkm363

D. Veesler and C. Cambillau, A Common Evolutionary Origin for Tailed-Bacteriophage Functional Modules and Bacterial Machineries, Microbiology and Molecular Biology Reviews, vol.75, issue.3, pp.423-433, 2011.
DOI : 10.1128/MMBR.00014-11

A. R. Davidson, L. Cardarelli, L. G. Pell, D. R. Radford, and K. L. Maxwell, Long Noncontractile Tail Machines of Bacteriophages, Adv. Exp. Med. Biol, vol.726, pp.115-142, 2012.
DOI : 10.1007/978-1-4614-0980-9_6

C. Plisson, Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection, The EMBO Journal, vol.25, issue.15, pp.3720-3728, 2007.
DOI : 10.1038/sj.emboj.7601786

A. Flayhan, Crystal Structure of pb9, the Distal Tail Protein of Bacteriophage T5: a Conserved Structural Motif among All Siphophages, Journal of Virology, vol.88, issue.2, pp.820-828, 2014.
DOI : 10.1128/JVI.02135-13

URL : https://hal.archives-ouvertes.fr/hal-01109369

L. G. Pell, V. Kanelis, L. W. Donaldson, P. L. Howell, and A. Davidson, The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system, Proc. Natl Acad. Sci. USA, pp.4160-4165, 2009.

P. G. Leiman, Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin, Proc. Natl Acad. Sci. USA, pp.4154-4159, 2009.
DOI : 10.1016/0022-2836(67)90136-2

URL : http://www.pnas.org/content/106/11/4154.full.pdf

P. Ge, Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states, Nature Structural & Molecular Biology, vol.482, issue.5, pp.377-382, 2015.
DOI : 10.1002/jcc.20084

G. Effantin, P. Boulanger, E. Neumann, L. Letellier, and J. Conway, Bacteriophage T5 Structure Reveals Similarities with HK97 and T4 Suggesting Evolutionary Relationships, Journal of Molecular Biology, vol.361, issue.5, pp.993-1002, 2006.
DOI : 10.1016/j.jmb.2006.06.081

V. Guénebaut, TEM moir?? patterns explain STM images of bacteriophage T5 tails, Ultramicroscopy, vol.69, issue.2, pp.129-137, 1997.
DOI : 10.1016/S0304-3991(97)00042-9

K. R. Leonard, A. K. Kleinschmidt, and J. A. Lake, Caulobacter crescentus bacteriophage ??CbK: Structure and in vitro self-assembly of the tail, Journal of Molecular Biology, vol.81, issue.3, pp.349-365, 1973.
DOI : 10.1016/0022-2836(73)90146-0

S. Papadopoulos and . Smith, The structure of the tail of the bacteriophage ??CbK, Journal of Ultrastructure Research, vol.80, issue.1, pp.62-70, 1982.
DOI : 10.1016/S0022-5320(82)80032-4

P. Boulanger, Phage T5 Straight Tail Fiber Is a Multifunctional Protein Acting as a Tape Measure and Carrying Fusogenic and Muralytic Activities, Journal of Biological Chemistry, vol.106, issue.20, pp.13556-13564, 2008.
DOI : 10.1016/0378-1119(87)90042-4

URL : http://www.jbc.org/content/283/20/13556.full.pdf

Y. Zivanovic, Insights into Bacteriophage T5 Structure from Analysis of Its Morphogenesis Genes and Protein Components, Journal of Virology, vol.88, issue.2, pp.1162-1174, 2014.
DOI : 10.1128/JVI.02262-13

URL : https://hal.archives-ouvertes.fr/hal-01130612

L. G. Pell, The Solution Structure of the C-Terminal Ig-like Domain of the Bacteriophage ?? Tail Tube Protein, Journal of Molecular Biology, vol.403, issue.3, pp.468-479, 2010.
DOI : 10.1016/j.jmb.2010.08.044

J. S. Fraser, K. L. Maxwell, and A. R. Davidson, Immunoglobulin-like domains on bacteriophage: weapons of modest damage?, Current Opinion in Microbiology, vol.10, issue.4, pp.382-387, 2007.
DOI : 10.1016/j.mib.2007.05.018

I. Katsura, Structure and function of the major tail protein of bacteriophage lambda, Journal of Molecular Biology, vol.146, issue.4, pp.493-512, 1981.
DOI : 10.1016/0022-2836(81)90044-9

I. Auzat, A. Dröge, F. Weise, R. Lurz, and P. Tavares, Origin and function of the two major tail proteins of bacteriophage SPP1, Molecular Microbiology, vol.31, issue.3, pp.557-569, 2008.
DOI : 10.1016/j.bbaexp.2005.02.011

L. Holm and L. M. Laakso, Dali server update, Nucleic Acids Research, vol.19, issue.W1, pp.351-355, 2016.
DOI : 10.1021/bi301483z

URL : https://academic.oup.com/nar/article-pdf/44/W1/W351/7633250/gkw357.pdf

S. Kanamaru, Structure of the cell-puncturing device of bacteriophage T4, Nature, vol.277, issue.6871, pp.553-557, 2002.
DOI : 10.1016/S0076-6879(97)77028-9

S. Spinelli, Cryo-Electron Microscopy Structure of Lactococcal Siphophage 1358 Virion, Journal of Virology, vol.88, issue.16, pp.8900-8910, 2014.
DOI : 10.1128/JVI.01040-14

E. F. Pettersen, UCSF Chimera?A visualization system for exploratory research and analysis, Journal of Computational Chemistry, vol.373, issue.13, pp.1605-1612, 2004.
DOI : 10.1002/jcc.20084

S. Lhuillier, Structure of bacteriophage SPP1 head-to-tail connection reveals mechanism for viral DNA gating, Proc. Natl Acad. Sci. USA, pp.8507-8512, 2009.
DOI : 10.1093/nar/gkn314

C. Langlois, Bacteriophage SPP1 Tail Tube Protein Self-assembles into ??-Structure-rich Tubes, Journal of Biological Chemistry, vol.290, issue.6, pp.3836-3849, 2015.
DOI : 10.1007/BF00175245

URL : https://hal.archives-ouvertes.fr/hal-01449521

Y. T. Lim, Extended Loop Region of Hcp1 is Critical for the Assembly and Function of Type VI Secretion System in Burkholderia pseudomallei, Scientific Reports, vol.1, issue.1, p.8235, 2015.
DOI : 10.1038/nbt1183-784

P. Kemp, L. R. Garcia, and I. J. Molineux, Changes in bacteriophage T7 virion structure at the initiation of infection, Virology, vol.340, issue.2, pp.307-317, 2005.
DOI : 10.1016/j.virol.2005.06.039

Y. Chaban, Structural rearrangements in the phage head-to-tail interface during assembly and infection, Proc. Natl Acad. Sci. USA, pp.7009-7014, 2015.
DOI : 10.1016/j.str.2007.11.016

URL : https://hal.archives-ouvertes.fr/hal-01447704

V. A. Kostyuchenko, The tail structure of bacteriophage T4 and its mechanism of contraction, Nature Structural & Molecular Biology, vol.125, issue.9, pp.810-813, 2005.
DOI : 10.1006/jsbi.1998.4080

J. Nová?ek, Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate, Proc. Natl Acad. Sci. USA, pp.9351-9356, 2016.
DOI : 10.1016/j.jsb.2006.05.009

M. Noirclerc-savoye, Tail proteins of phage T5: Investigation of the effect of the His6-tag position, from expression to crystallisation, Protein Expression and Purification, vol.109, pp.70-78, 2015.
DOI : 10.1016/j.pep.2015.02.003

URL : https://hal.archives-ouvertes.fr/hal-01150921

A. Flayhan, F. Wien, M. Paternostre, P. Boulanger, and C. Breyton, New insights into pb5, the receptor binding protein of bacteriophage T5, and its interaction with its Escherichia coli receptor FhuA, Biochimie, vol.94, issue.9, pp.1982-1989, 2012.
DOI : 10.1016/j.biochi.2012.05.021

URL : https://hal.archives-ouvertes.fr/cea-01201918

M. D. Winn, 4 suite and current developments, Acta Crystallographica Section D Biological Crystallography, vol.65, issue.4, pp.235-242, 2011.
DOI : 10.1107/S0907444909037044

G. M. Sheldrick, : combining chain tracing with density modification, Acta Crystallographica Section D Biological Crystallography, vol.46, issue.4, pp.479-485, 2010.
DOI : 10.1107/S0907444909038360

URL : http://journals.iucr.org/d/issues/2010/04/00/ba5143/ba5143.pdf

G. Bricogne, C. Vonrhein, C. Flensburg, M. Schiltz, and W. Paciorek, 2.0, Acta Crystallographica Section D Biological Crystallography, vol.59, issue.11, pp.2023-2030, 2003.
DOI : 10.1107/S0907444903017694

J. P. Abrahams and R. A. De-graaff, New developments in phase refinement, Current Opinion in Structural Biology, vol.8, issue.5, pp.601-605, 1998.
DOI : 10.1016/S0959-440X(98)80151-6

K. Cowtan, software for automated model building. 1. Tracing protein chains, Acta Crystallographica Section D Biological Crystallography, vol.62, issue.9, pp.1002-1011, 2006.
DOI : 10.1107/S0907444906022116

P. Adams, : a comprehensive Python-based system for macromolecular structure solution, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.2, pp.213-221, 2010.
DOI : 10.1107/S0907444909052925

J. Frank, SPIDER and WEB: Processing and Visualization of Images in 3D Electron Microscopy and Related Fields, Journal of Structural Biology, vol.116, issue.1, pp.190-199, 1996.
DOI : 10.1006/jsbi.1996.0030

B. Franzetti, Tetrahedral aminopeptidase: a novel large protease complex from archaea, The EMBO Journal, vol.21, issue.9, pp.2132-2138, 2002.
DOI : 10.1093/emboj/21.9.2132

URL : http://embojnl.embopress.org/content/embojnl/21/9/2132.full.pdf

X. Li, Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM, Nature Methods, vol.16, issue.6, pp.584-590, 2013.
DOI : 10.1016/j.str.2008.03.005

URL : http://europepmc.org/articles/pmc3684049?pdf=render

S. J. Ludtke, P. R. Baldwin, and W. Chiu, EMAN: Semiautomated Software for High-Resolution Single-Particle Reconstructions, Journal of Structural Biology, vol.128, issue.1, pp.82-97, 1999.
DOI : 10.1006/jsbi.1999.4174

S. H. Scheres, RELION: Implementation of a Bayesian approach to cryo-EM structure determination, Journal of Structural Biology, vol.180, issue.3, pp.519-530, 2012.
DOI : 10.1016/j.jsb.2012.09.006

A. Rohou and N. Grigorieff, CTFFIND4: Fast and accurate defocus estimation from electron micrographs, Journal of Structural Biology, vol.192, issue.2, pp.216-221, 2015.
DOI : 10.1016/j.jsb.2015.08.008

E. H. Egelman, The iterative helical real space reconstruction method: Surmounting the problems posed by real polymers, Journal of Structural Biology, vol.157, issue.1, pp.83-94, 2007.
DOI : 10.1016/j.jsb.2006.05.015

D. Kimanius, B. O. Forsberg, S. H. Scheres, and E. Lindahl, Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2, p.18722, 2016.

G. D. Pintilie, J. Zhang, T. D. Goddard, W. Chiu, and D. C. Gossard, Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions, Journal of Structural Biology, vol.170, issue.3, pp.427-438, 2010.
DOI : 10.1016/j.jsb.2010.03.007

M. Topf, Protein Structure Fitting and Refinement Guided by Cryo-EM Density, Structure, vol.16, issue.2, pp.295-307, 2008.
DOI : 10.1016/j.str.2007.11.016

URL : https://doi.org/10.1016/j.str.2007.11.016

A. P. Pandurangan and M. Topf, RIBFIND: a web server for identifying rigid bodies in protein structures and to aid flexible fitting into cryo EM maps, Bioinformatics, vol.16, issue.2, pp.2391-2393, 2012.
DOI : 10.1016/j.str.2007.11.016

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-675, 2012.
DOI : 10.2144/000112257

X. Robert and P. Gouet, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Research, vol.1252, issue.W1, pp.320-324, 2014.
DOI : 10.1016/0167-4838(95)00123-C

L. Holm and L. M. Laakso, Dali server update, Nucleic Acids Research, vol.19, issue.W1, pp.351-355, 2016.
DOI : 10.1021/bi301483z

URL : https://academic.oup.com/nar/article-pdf/44/W1/W351/7633250/gkw357.pdf

L. G. Pell, V. Kanelis, L. W. Donaldson, P. L. Howell, and A. R. Davidson, The phage ?? major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system, Proceedings of the National Academy of Sciences, vol.106, issue.11, pp.4160-4165, 2009.
DOI : 10.1073/pnas.0813360106

S. Kanamaru, Structure of the cell-puncturing device of bacteriophage T4, Nature, vol.277, issue.6871, pp.553-557, 2002.
DOI : 10.1016/S0076-6879(97)77028-9

F. Hu, W. Luo, and M. Hong, Mechanisms of Proton Conduction and Gating in Influenza M2 Proton Channels from Solid-State NMR, Science, vol.106, issue.32, pp.505-508, 2010.
DOI : 10.1073/pnas.0906553106

M. Tang, A. E. Nesbitt, L. J. Sperling, D. A. Berthold, C. D. Schwieters et al., Structure of the Disulfide Bond Generating Membrane Protein DsbB in the Lipid Bilayer, Journal of Molecular Biology, vol.425, issue.10, pp.1670-1682, 2013.
DOI : 10.1016/j.jmb.2013.02.009

H. Van-melckebeke, C. Wasmer, A. Lange, E. Ab, A. Loquet et al., Atomic-Resolution Three-Dimensional Structure of HET-s(218???289) Amyloid Fibrils by Solid-State NMR Spectroscopy, Journal of the American Chemical Society, vol.132, issue.39, pp.13765-75, 2010.
DOI : 10.1021/ja104213j

M. Renault, A. Cukkemane, and M. Baldus, Solid-State NMR Spectroscopy on Complex Biomolecules, Angewandte Chemie International Edition, vol.326, issue.45, pp.8346-8357, 2010.
DOI : 10.1126/science.1176343

P. Schanda, S. Triboulet, C. Laguri, C. Bougault, I. Ayala et al., Atomic Model of a Cell-Wall Cross-Linking Enzyme in Complex with an Intact Bacterial Peptidoglycan, Journal of the American Chemical Society, vol.136, issue.51, pp.17852-17860, 2014.
DOI : 10.1021/ja5105987

URL : https://hal.archives-ouvertes.fr/hal-01119767

L. B. Andreas, T. Le-marchand, K. Jaudzems, and G. Pintacuda, High-resolution proton-detected NMR of proteins at very fast MAS, Journal of Magnetic Resonance, vol.253, pp.36-49, 2015.
DOI : 10.1016/j.jmr.2015.01.003

URL : https://hal.archives-ouvertes.fr/hal-01187157

D. H. Zhou, J. J. Shea, A. J. Nieuwkoop, W. T. Franks, B. J. Wylie et al., Solid-State Protein-Structure Determination with Proton-Detected Triple-Resonance 3D Magic-Angle-Spinning NMR Spectroscopy, Angewandte Chemie, vol.6, issue.44, pp.8532-8535, 2007.
DOI : 10.1002/ange.200702905

URL : http://europepmc.org/articles/pmc2790053?pdf=render

J. Medeiros-silva, D. Mance, M. Danils, S. Jekhmane, K. Houben et al., H-Detected Solid-State NMR Studies of Water-Inaccessible Proteins In???Vitro and In???Situ, Angewandte Chemie International Edition, vol.5, issue.43, pp.13606-13610, 2016.
DOI : 10.1021/jz402491t

P. Schanda, M. Huber, R. Verel, M. Ernst, and B. H. Meier, Hydrogen-Bond Scalar Couplings in Proteins by Solid-State NMR Spectroscopy, Angewandte Chemie International Edition, vol.6, issue.49, pp.9322-9325, 2009.
DOI : 10.1007/b98647

P. Fricke, V. Chevelkov, M. Zinke, K. Giller, S. Becker et al., Backbone assignment of perdeuterated proteins by solid-state NMR using proton detection and ultrafast magic-angle spinning, Nature Protocols, vol.52, issue.4, pp.764-782, 2017.
DOI : 10.1016/S1090-7807(03)00082-X

E. Barbet-massin, A. J. Pell, J. S. Retel, L. B. Andreas, K. Jaudzems et al., Rapid Proton-Detected NMR Assignment for Proteins with Fast Magic Angle Spinning, Journal of the American Chemical Society, vol.136, issue.35, pp.12489-12497, 2014.
DOI : 10.1021/ja507382j

URL : https://hal.archives-ouvertes.fr/hal-01070782

R. Linser, U. Fink, and B. Reif, Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins, Journal of Magnetic Resonance, vol.193, issue.1, pp.89-93, 2008.
DOI : 10.1016/j.jmr.2008.04.021

URL : http://pubman.mpdl.mpg.de/pubman/item/escidoc:2007698/component/escidoc:2007699/2007698.pdf

L. B. Andreas, J. Stanek, T. L. Marchand, A. Bertarello, D. Cala-de-paepe et al., Protein residue linking in a single spectrum for magic-angle spinning NMR assignment, Journal of Biomolecular NMR, vol.54, issue.3, pp.253-261, 2015.
DOI : 10.1007/s10858-012-9672-z

URL : https://hal.archives-ouvertes.fr/hal-01186756

S. Xiang, K. Grohe, P. Rovó, S. K. Vasa, K. Giller et al., Sequential backbone assignment based on dipolar amide-to-amide correlation experiments, Journal of Biomolecular NMR, vol.57, issue.2, pp.303-311
DOI : 10.1007/s10858-013-9782-2

H. K. Shi, V. Fasshuber, S. Chevelkov, B. Xiang, S. K. Habenstein et al., BSH-CP based 3D solid-state NMR experiments for protein resonance assignment, Journal of Biomolecular NMR, vol.319, issue.5869, pp.15-22, 2014.
DOI : 10.1126/science.1151839

URL : http://pubman.mpdl.mpg.de/pubman/item/escidoc:2030413/component/escidoc:2030414/2030413.pdf

S. Xiang, J. Biernat, E. Mandelkow, S. Becker, and R. Linser, Backbone assignment for minimal protein amounts of low structural homogeneity in the absence of deuteration, Chemical Communications, vol.134, issue.21, pp.4002-4005, 2016.
DOI : 10.1021/ja305470p

E. Barbet-massin, A. J. Pell, K. Jaudzems, W. T. Franks, J. S. Retel et al., Out-and-back 13C???13C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS, Journal of Biomolecular NMR, vol.54, issue.4, pp.379-386, 2013.
DOI : 10.1007/s10858-012-9672-z

URL : https://hal.archives-ouvertes.fr/hal-00864674

M. Sattler, J. Schleucher, and C. Griesinger, Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.34, issue.2, pp.93-158, 1999.
DOI : 10.1016/S0079-6565(98)00025-9

E. Kupce, J. Boyd, and I. D. Campbell, Short Selective Pulses for Biochemical Applications, Journal of Magnetic Resonance, Series B, vol.106, issue.3, pp.300-303, 1995.
DOI : 10.1006/jmrb.1995.1049

M. J. Knight, A. L. Webber, A. J. Pell, P. Guerry, E. Barbet-massin et al., Fast Resonance Assignment and Fold Determination of Human Superoxide Dismutase by High-Resolution Proton-Detected Solid-State MAS NMR Spectroscopy, Angewandte Chemie International Edition, vol.50, issue.49, pp.11697-11701, 2011.
DOI : 10.1002/anie.201008244

URL : https://hal.archives-ouvertes.fr/hal-00809132

R. Linser, U. Fink, and B. Reif, Narrow carbonyl resonances in proton-diluted proteins facilitate NMR assignments in the solid-state, Journal of Biomolecular NMR, vol.46, issue.1, pp.1-6, 2010.
DOI : 10.1007/s10858-010-9404-1

S. Penzel, A. A. Smith, A. Agarwal, M. Hunkeler, A. Org et al., Protein resonance assignment at MAS frequencies approaching 100??kHz: a quantitative comparison of J-coupling and dipolar-coupling-based transfer methods, Journal of Biomolecular NMR, vol.187, issue.2, pp.165-186, 2015.
DOI : 10.1016/j.jmr.2007.05.005

L. Taylor, Introduction to phasing, Acta Crystallographica Section D Biological Crystallography, vol.59, issue.4, pp.325-338, 2010.
DOI : 10.1107/S0907444910006694

URL : http://journals.iucr.org/d/issues/2010/04/00/ba5147/ba5147.pdf

A. Hendrickson, Anomalous diffraction in crystallographic phase evaluation, Quarterly Reviews of Biophysics, vol.52, issue.01, pp.49-93, 2014.
DOI : 10.1038/372746a0

T. Liu, Z. Dahmane, Z. Zhang, J. Assur, L. Brasch et al., Structures from Anomalous Diffraction of Native Biological Macromolecules, Science, vol.41, issue.Pt 8, pp.1033-1037, 2012.
DOI : 10.1107/S0108768185002233

V. Weinert, S. Olieric, E. Waltersperger, L. Panepucci, H. Chen et al., Fast native-SAD phasing for routine macromolecular structure determination, Nature Methods, vol.12, issue.2, pp.131-133, 2014.
DOI : 10.1107/S0907444911001314

P. Mcpherson and . Shlichta, Heterogeneous and Epitaxial Nucleation of Protein Crystals on Mineral Surfaces, Science, vol.239, issue.4838, pp.385-387, 1988.
DOI : 10.1126/science.239.4838.385

S. Falini, G. Fermani, A. Conforti, and . Ripamonti, Protein crystallisation on chemically modified mica surfaces, Acta Crystallographica Section D Biological Crystallography, vol.58, issue.10, pp.1649-1652, 2002.
DOI : 10.1107/S0907444902012763

URL : http://journals.iucr.org/d/issues/2002/10/01/ic0024/ic0024.pdf

D. Arcy, A. M. Sweeney, and A. Haber, Using natural seeding material to generate nucleation in protein crystallization experiments, Acta Crystallographica Section D Biological Crystallography, vol.59, issue.7, pp.1343-1346, 2003.
DOI : 10.1107/S0907444903009430

G. Georgieva, M. E. Kuil, T. H. Oosterkamp, H. W. Zandbergen, and J. P. Abrahams, Heterogeneous nucleation of three-dimensional protein nanocrystals, Acta Crystallographica Section D Biological Crystallography, vol.63, issue.5, pp.564-570, 2007.
DOI : 10.1107/S0907444907007810

C. Pechkova and . Nicolini, Protein nucleation and crystallization by homologous protein thin film template, Journal of Cellular Biochemistry, vol.5, issue.2, pp.243-251, 2002.
DOI : 10.1016/S1097-2765(00)80408-6

S. Leese, L. Govada, E. Saridakis, S. Khurshid, R. Menzel et al., Reductively PEGylated carbon nanomaterials and their use to nucleate 3D protein crystals: a comparison of dimensionality, Chemical Science, vol.11, issue.4, pp.2916-2923, 2016.
DOI : 10.1021/bm1006954

S. Kertis, O. Khurshid, J. W. Okman, L. Kysar, N. Govada et al., Heterogeneous nucleation of protein crystals using nanoporous gold nucleants, Journal of Materials Chemistry, vol.92, issue.41, pp.21928-21934, 2012.
DOI : 10.1063/1.2831007

Y. Sugahara, Y. Asada, Y. Morikawa, N. Kageyama, and . Kunishima, Nucleant-mediated protein crystallization with the application of microporous synthetic zeolites, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.6, pp.686-695, 2008.
DOI : 10.1107/S0907444908009980/bw5223sup1.pdf

E. Chayen, E. Saridakis, and R. P. Sear, Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium, Proceedings of the National Academy of Sciences, vol.141, issue.2, pp.597-601, 2006.
DOI : 10.1016/S1047-8477(02)00609-3

E. Saridakis, S. Khurshid, L. Govada, Q. Phan, D. Hawkins et al., Protein crystallization facilitated by molecularly imprinted polymers, Proceedings of the National Academy of Sciences, vol.542, issue.Pt 10 Pt 1, pp.11081-11086, 2011.
DOI : 10.1016/j.aca.2005.01.052

URL : http://www.pnas.org/content/108/27/11081.full.pdf

Y. Xing, L. Hu, Z. Jiang, Z. Gao, Z. Chen et al., Zwitterion-Immobilized Imprinted Polymers for Promoting the Crystallization of Proteins, Crystal Growth & Design, vol.15, issue.10, pp.4932-4937, 2015.
DOI : 10.1021/acs.cgd.5b00819

I. Weis, R. Kahn, R. Fourme, K. Drickamer, and W. A. Hendrickson, Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing, Science, vol.254, issue.5038, pp.1608-1615, 1991.
DOI : 10.1126/science.1721241

R. Silvaggi, L. J. Martin, H. Schwalbe, B. Imperiali, and K. N. Allen, Double-Lanthanide-Binding Tags for Macromolecular Crystallographic Structure Determination, Journal of the American Chemical Society, vol.129, issue.22, pp.7114-7120, 2007.
DOI : 10.1021/ja070481n

N. Allen and B. Imperiali, Lanthanide-tagged proteins???an illuminating partnership, Current Opinion in Chemical Biology, vol.14, issue.2, pp.247-254, 2010.
DOI : 10.1016/j.cbpa.2010.01.004

R. Stelter, S. Molina, R. Jeudy, C. Kahn, J. A. Abergel et al., A complement to the modern crystallographer's toolbox: caged gadolinium complexes with versatile binding modes, Acta Crystallographica Section D Biological Crystallography, vol.67, issue.6, pp.1506-1516, 2014.
DOI : 10.1107/S1399004714005483/tz5054sup1.pdf

L. De-bono, E. Riechmann, R. L. Girard, G. Williams, and . Winter, A segment of cold shock protein directs the folding of a combinatorial protein, Proceedings of the National Academy of Sciences, vol.271, issue.9, pp.1396-1401, 2005.
DOI : 10.1111/j.1432-1033.2004.04075.x

T. Arnoux, G. Morosinotto, R. Saga, D. Bassi, and . Pignol, A Structural Basis for the pH-Dependent Xanthophyll Cycle in Arabidopsis thaliana, THE PLANT CELL ONLINE, vol.21, issue.7, pp.2036-2044, 2009.
DOI : 10.1105/tpc.109.068007

M. Molina, R. Stelter, J. Kahn, and . Hermoso, Characterization of gadolinium complexes for SAD phasing in macromolecular crystallography: application to CbpF, Acta Crystallographica Section D Biological Crystallography, vol.65, issue.8, pp.823-831, 2009.
DOI : 10.1107/S0907444909017958/dz5159sup1.pdf

C. Larivì-ere, M. Plaschka, L. Seizl, F. Wenzeck, P. Kurth et al., Structure of the Mediator head module, Nature, vol.5, issue.7429, pp.448-451, 2012.
DOI : 10.1002/0471250953.bi0506s15

F. M. Flayhan, R. Vellieux, O. Lurz, C. Maury, E. Contreras-martel et al., Crystal Structure of pb9, the Distal Tail Protein of Bacteriophage T5: a Conserved Structural Motif among All Siphophages, Journal of Virology, vol.88, issue.2, pp.820-828, 2014.
DOI : 10.1128/JVI.02135-13

URL : https://hal.archives-ouvertes.fr/hal-01109369

C. Eichmann, T. Tzitzilonis, W. Nakamura, I. Kwiatkowski, S. Maslennikov et al., S-Nitrosylation Induces Structural and Dynamical Changes in a Rhodanese Family Protein, Journal of Molecular Biology, vol.428, issue.19, pp.3737-3751, 2016.
DOI : 10.1016/j.jmb.2016.07.010

A. Nocton, C. Nonat, and . Gateau, Pyridinecarboxylate Donors, Helvetica Chimica Acta, vol.9, issue.412, pp.2257-2273, 2009.
DOI : 10.1002/hlca.200900150

A. Retailleau, M. Ducruix, and . Rì-es-kautt, Importance of the nature of anions in lysozyme crystallisation correlated with protein net charge variation, Acta Crystallographica Section D Biological Crystallography, vol.58, issue.10, pp.1576-1581, 2002.
DOI : 10.1107/S0907444902014592

B. Vernede, J. Lavault, D. Ohana, J. Nurizzo, L. Joly et al., UV laser-excited fluorescence as a tool for the visualization of protein crystals mounted in loops, Acta Crystallographica Section D Biological Crystallography, vol.62, issue.3, pp.253-261, 2006.
DOI : 10.1107/S0907444905041429

M. Girard, J. Stelter, R. Vicat, and . Kahn, A new class of lanthanide complexes to obtain high-phasing-power heavy-atom derivatives for macromolecular crystallography, Acta Crystallographica Section D Biological Crystallography, vol.59, issue.11, pp.1914-1922, 2003.
DOI : 10.1107/S0907444903020511

F. Zivanovic, L. Confalonieri, R. Ponchon, M. Lurz, A. Chami et al., Insights into Bacteriophage T5 Structure from Analysis of Its Morphogenesis Genes and Protein Components, Journal of Virology, vol.88, issue.2, pp.1162-1174, 2014.
DOI : 10.1128/JVI.02262-13

URL : https://hal.archives-ouvertes.fr/hal-01130612

S. Derewenda, Application of protein engineering to enhance crystallizability and improve crystal properties, Acta Crystallographica Section D Biological Crystallography, vol.387, issue.5, pp.604-615, 2010.
DOI : 10.1107/S090744491000644X

D. Devedjiev, The role of flexibility and molecular shape in the crystallization of proteins by surface mutagenesis, Acta Crystallographica Section F Structural Biology Communications, vol.67, issue.2, pp.157-162, 2015.
DOI : 10.1107/S2053230X14027861/gx5228sup1.pdf

J. Abrahams and &. Ackermann, New developments in phase refinement, Current Opinion in Structural Biology, vol.8, issue.5, pp.601-606, 1998.
DOI : 10.1016/S0959-440X(98)80151-6

D. Paul, . Adams, V. Pavel, G. Afonine, . Bunkóczi et al., PHENIX : a comprehensive Python-based system for macromolecular structure solution The tail sheath structure of bacteriophage T4 : a molecular machine for infecting bacteria, Acta Crystallogr D Biol Crystallogr EMBO J, vol.66, issue.28 7, pp.213-234, 2009.

D. Andres, C. Hanke, U. Baxa, A. Seul, S. Barbirz et al., Tailspike interactions with lipopolysaccharide effect DNA ejection Structural Plasticity of the Protein Plug That Traps Newly Packaged Genomes in Podoviridae Virions, J Biol Chem, vol.291, issue.1, pp.215-241, 2016.

D. Bikard, C. W. Euler, W. Jiang, M. Philip, . Nussenzweig et al., Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials, Nature Biotechnology, vol.171, issue.11, pp.1146-50, 2014.
DOI : 10.1038/nmeth.1318

URL : https://hal.archives-ouvertes.fr/hal-01103559

. Böhm, . Lambert, . Frangakis, W. Letellier, &. Baumeister et al., FhuA-mediated phage genome transfer into liposomes, Current Biology, vol.11, issue.15, pp.1168-75, 2001.
DOI : 10.1016/S0960-9822(01)00349-9

J. Borysowski, B. Weber-dabrowska, and &. Górski, Bacteriophage Endolysins as a Novel Class of Antibacterial Agents, Experimental Biology and Medicine, vol.269, issue.4, pp.366-77, 2006.
DOI : 10.1128/JB.186.12.3677-3686.2004

J. Borysowski and &. Górski, Is phage therapy acceptable in the immunocompromised host?, International Journal of Infectious Diseases, vol.12, issue.5, pp.466-71, 2008.
DOI : 10.1016/j.ijid.2008.01.006

P. Boulanger, P. Jacquot, L. Plançon, M. Chami, A. Engel et al., Phage T5 Straight Tail Fiber Is a Multifunctional Protein Acting as a Tape Measure and Carrying Fusogenic and Muralytic Activities, Journal of Biological Chemistry, vol.106, issue.20
DOI : 10.1016/0378-1119(87)90042-4

E. Boyd, G. Bricogne, C. Vonrhein, C. Flensburg, M. Schiltz et al., Bacteriophage-Encoded Bacterial Virulence Factors and Phage???Pathogenicity Island Interactions, Adv Virus Res Acta Crystallogr D Biol Crystallogr, vol.82, issue.59, pp.91-118, 2003.
DOI : 10.1016/B978-0-12-394621-8.00014-5

A. Cornelissen, W. Cenens, A. Aertsen, H. Oliveira, J. Azeredo et al., Engineered endolysin-based "Artilysins" to combat multidrug-resistant gram-negative pathogens, MBio, vol.14, issue.5 4, pp.1379-1393, 2014.

C. Browning, M. Mikhail, . Shneider, D. Valorie, D. Bowman et al., Phage Pierces the Host Cell Membrane with the Iron-Loaded Spike, Structure, vol.20, issue.2, pp.326-365, 2012.
DOI : 10.1016/j.str.2011.12.009

R. Jennifer, . Brum, O. Ryan, &. Schenck, B. Matthew et al., Global morphological analysis of marine viruses shows minimal regional variation and dominance of nontailed viruses, ISME J, vol.7, issue.9, pp.1738-51, 2013.

R. Jennifer, C. Brum, E. Ignacio-espinoza, G. Kim, . Trubl et al., Illuminating structural proteins in viral "dark matter" with metaproteomics, Proc Natl Acad Sci U S A, vol.113, issue.9, pp.2436-2477, 2016.

A. Bunick, &. North, and . Stubbs, Evaporative microdialysis: an effective improvement in an established method of protein crystallization, Acta Crystallographica Section D Biological Crystallography, vol.56, issue.11, pp.1430-1431, 2000.
DOI : 10.1107/S0907444900011203

A. Sergey, L. Buth, . Menin, M. Mikhail, J. Shneider et al., Structure and Biophysical Properties of a Triple-Stranded Beta- Helix Comprising the Central Spike of Bacteriophage T4, Viruses, vol.15, issue.7 8, pp.4676-706, 2015.

R. Sherwood, &. Casjens, W. Roger, and . Hendrix, Bacteriophage lambda : Early pioneer and still relevant, Virology, pp.479-480, 2015.

Y. Chaban, R. Lurz, S. Brasilès, C. Cornilleau, M. Karreman et al., Structural rearrangements in the phage head-to-tail interface during assembly BIBLIOGRAPHIE and infection, Proc Natl Acad Sci U S A, vol.15, issue.112 22, pp.7009-7023, 2015.

K. Benjamin, M. Chan, . Sistrom, E. John, . Wertz et al., Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa, Sci Rep, vol.6, p.26717, 2016.

J. Chang, P. Weigele, J. King, W. Chiu, and W. Jiang, Cryo-EM Asymmetric Reconstruction of Bacteriophage P22 Reveals Organization of its DNA Packaging and Infecting Machinery, Structure, vol.14, issue.6, pp.1073-82, 2006.
DOI : 10.1016/j.str.2006.05.007

N. C. , W. Wu, R. Norman, &. Watts, C. Alasdair et al., Phage therapy?history from Twort and d'Herelle through Soviet experience to current approaches Exploiting radiation damage to map proteins in nucleoprotein complexes : the internal structure of bacteriophage T7, Adv Virus Res J Struct Biol, vol.12, issue.185 3, pp.3-40, 2012.

]. Arisaka, Molecular biology of bacteriophage t4, chapitre T4 tail structure and function, pp.259-81, 1994.

K. Cowtan, software for automated model building. 1. Tracing protein chains, Acta Crystallographica Section D Biological Crystallography, vol.62, issue.9, pp.1002-1013, 2006.
DOI : 10.1107/S0907444906022116

F. Crick, L. Barnett, S. Brenner-&-r, and . Watts-tobin, General Nature of the Genetic Code for Proteins, Nature, vol.47, issue.4809, pp.1227-1259, 1961.
DOI : 10.1038/1921227a0

E. John and . Cronan, Cosmid-based system for transient expression and absolute off-to-on transcriptional control of BIBLIOGRAPHIE Escherichia coli genes, J Bacteriol, vol.185, issue.22, pp.6522-6531, 2003.

A. Cuervo, M. Pulido-cid, M. Chagoyen, R. Arranz, A. Verónica et al., Structural Characterization of the Bacteriophage T7 Tail Machinery, Journal of Biological Chemistry, vol.19, issue.36, pp.26290-26299, 2013.
DOI : 10.1021/bi700186e

P. Cuniasse, P. Tavares, E. V. Orlova, and &. Sophie-zinn-justin, Structures of biomolecular complexes by combination of NMR and cryoEM methods, Current Opinion in Structural Biology, vol.43, pp.104-113, 2017.
DOI : 10.1016/j.sbi.2016.12.008

C. Anno, M. Corinaldesi, R. Magagnini, C. Noble, and M. Weinbauer, Major viral impact on the functioning of benthic deep-sea ecosystems, Nature, vol.454, issue.7208, pp.1084-1091, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00315639

R. Alan, L. Davidson, . Cardarelli, G. Lisa, D. R. Pell et al., Long noncontractile tail machines of bacteriophages, Adv Exp Med Biol, vol.726, pp.115-157, 2012.

D. , D. Rosier, and &. Klug, Reconstruction of three dimensional structures from electron micrographs, Nature, vol.217, issue.5124, pp.130-134, 1968.

I. Denisov, Y. Grinkova, A. Lazarides, and &. Sligar, Directed Self-Assembly of Monodisperse Phospholipid Bilayer Nanodiscs with Controlled Size, Journal of the American Chemical Society, vol.126, issue.11, pp.3477-87, 2004.
DOI : 10.1021/ja0393574

M. Jenna, M. Denyes, S. Dunne, M. Steiner, A. Mittelviefhaus et al., Modified Bacteriophage S16 Long Tail Fiber Proteins for Rapid and Specific Immobilization and Detection of Salmonella Cells, Appl Environ Microbiol, vol.83, issue.12, 2017.

A. Dublanchet and &. Bourne, The Epic of Phage Therapy, Canadian Journal of Infectious Diseases and Medical Microbiology, vol.18, issue.1, pp.15-23, 2007.
DOI : 10.1155/2007/365761

]. Dufour, R. Delattre, and J. Debarbieux, The Lysis of Pathogenic Escherichia coli by Bacteriophages Releases Less Endotoxin Than by ??-Lactams, Clinical Infectious Diseases, vol.77, issue.11, pp.1582-1588, 2017.
DOI : 10.1016/j.addr.2014.07.006

URL : https://hal.archives-ouvertes.fr/pasteur-01539007

E. Bas, N. Dutilh, K. Cassman, . Mcnair, E. Savannah et al., A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes, Nat Commun, vol.14, issue.5, p.4498, 2014.

. [. Ecdc-/-efsa-g-effantin, . Boulanger, L. Neumann, &. Letellier, and . Conway, EMA first joint report on the integrated analysis of the comsumption of antimicrobial agents and occurence of antimicrobial resistance in bacteria from humans and food-producing animals, Rapport ECDC, 2015.

F. Fabiola, &. Michael, and S. Chapman, Fitting of High-Resolution Structures into Electron Microscopy Reconstruction Images, Structure, vol.13, issue.3, pp.389-400, 2005.
DOI : 10.1016/j.str.2005.01.007

A. Ferguson, J. Hofmann, K. Coulton, &. Diederichs, and . Welte, Siderophore-Mediated Iron Transport: Crystal Structure of FhuA with Bound Lipopolysaccharide, Science, vol.277, issue.6359, pp.2215-2235, 1998.
DOI : 10.1016/S0076-6879(97)77028-9

A. Flayhan, F. Wien, M. Paternostre, P. Boulanger, and &. Breyton, New insights into pb5, the receptor binding protein of bacteriophage T5, and its interaction with its Escherichia coli receptor FhuA, Biochimie, vol.94, issue.9, pp.1982-1991, 2012.
DOI : 10.1016/j.biochi.2012.05.021

URL : https://hal.archives-ouvertes.fr/cea-01201918

A. Flayhan, M. Frédéric, R. Vellieux, O. Lurz, C. Maury et al., Crystal Structure of pb9, the Distal Tail Protein of Bacteriophage T5: a Conserved Structural Motif among All Siphophages, Journal of Virology, vol.88, issue.2, pp.820-828, 2014.
DOI : 10.1128/JVI.02135-13

URL : https://hal.archives-ouvertes.fr/hal-01109369

A. Fokine, Z. Zhang, S. Kanamaru, D. Valorie, A. A. Bowman et al., The Molecular Architecture of the Bacteriophage T4 Neck, Journal of Molecular Biology, vol.425, issue.10, pp.1731-1775, 2013.
DOI : 10.1016/j.jmb.2013.02.012

A. Fokine, &. Michael, and G. Rossmann, Common Evolutionary Origin of Procapsid Proteases, Phage Tail Tubes, and Tubes of Bacterial Type VI Secretion Systems, Structure, vol.24, issue.11, pp.1928-1935, 2016.
DOI : 10.1016/j.str.2016.08.013

H. Fraga, C. Arnaud, F. Diego, . Gauto, J. Maxime et al., Solid-State NMR H-N-(C)-H and H-N-C-C 3D/4D Correlation Experiments for Resonance Assignment of Large Proteins, ChemPhysChem, vol.63, issue.19, 2017.
DOI : 10.1002/cphc.201700572

URL : https://hal.archives-ouvertes.fr/hal-01583214

. Frank, . Radermacher, . Penczek, . Zhu, M. Li et al., SPIDER and WEB: Processing and Visualization of Images in 3D Electron Microscopy and Related Fields, Journal of Structural Biology, vol.116, issue.1, pp.190-199, 1996.
DOI : 10.1006/jsbi.1996.0030

. Franzetti, J. Schoehn, . Hernandez, R. W. Jaquinod, &. Ruigrok et al., Tetrahedral aminopeptidase: a novel large protease complex from archaea, The EMBO Journal, vol.21, issue.9
DOI : 10.1093/emboj/21.9.2132

URL : http://embojnl.embopress.org/content/embojnl/21/9/2132.full.pdf

C. Garcia, D. Garcia-doval, . Luque, R. José, P. Castón et al., Crystallization of the C-terminal domain of the bacteriophage T5 L-shaped fibre, Acta Crystallographica Section F Structural Biology and Crystallization Communications, vol.34, issue.12, pp.1363-1370, 2013.
DOI : 10.1016/j.molcel.2009.04.009

C. Garcia-doval, R. José, D. Castón, M. Luque, . Granell et al., Structure of the Receptor-Binding Carboxy-Terminal Domain of the Bacteriophage T5 L-Shaped Tail Fibre with and without Its Intra-Molecular Chaperone, Molecular biology of bacteriophage t4, chapitre Recognition, attachment and injection, pp.6424-6464, 1994.
DOI : 10.1016/S0022-2836(03)00755-1

. González-garcía, A. Verónica, R. B. González-garcía, J. Pulido-cid, A. Martín-benito et al., Characterization of the initial steps in the T7 DNA ejection process, Bacteriophage, vol.147, issue.3, p.1056904, 2015.
DOI : 10.1038/nature04487

. González-garcía, A. Verónica, M. González-garcía, C. Pulido-cid, R. Garcia-doval et al., Conformational Changes Leading to T7 DNA Delivery upon Interaction with the Bacterial Receptor, Journal of Biological Chemistry, vol.108, issue.16, pp.10038-10082, 2015.
DOI : 10.1016/j.virol.2009.12.002

D. Lawrence, &. Goodridge, and . Bisha, Phage-based biocontrol strategies to reduce foodborne pathogens in foods, Bacteriophage, vol.1, issue.3, pp.130-137, 2011.

A. Górski, R. Mi?dzybrodzki-borysowski, K. D?browska, P. Wierzbicki, M. Ohams et al., Phage as a Modulator of Immune Responses, Adv Virus Res, vol.83, pp.41-71, 2012.
DOI : 10.1016/B978-0-12-394438-2.00002-5

A. Goulet, J. Lai-kee-him, D. Veesler, I. Auzat, G. Robin et al., The Opening of the SPP1 Bacteriophage Tail, a Prevalent Mechanism in Gram-positive-infecting Siphophages, Journal of Biological Chemistry, vol.65, issue.28, pp.25397-405, 2011.
DOI : 10.1099/0022-1317-65-11-2067

F. Guo, Z. Liu, F. Vago, Y. Ren, W. Wu et al., Visualization of uncorrelated, tandem symmetry mismatches in the internal genome packaging apparatus of bacteriophage T7, Proceedings of the National Academy of Sciences, vol.335, issue.6065, pp.6811-6817, 2013.
DOI : 10.1126/science.1214120

B. Habenstein, A. Loquet, S. Hwang, K. Giller, S. Kumar-vasa et al., Hybrid Structure of the Type 1 Pilus of Uropathogenic Escherichia coli, Angew Chem Int Ed Engl, vol.15, issue.54 40, pp.11691-11696, 2015.

J. Henderson, T. Baldwin, . Ceska, . Zemlin, &. Beckmann et al., A model for the structure of bacteriorhodopsin based on high resolution electron cryomicroscopy, Cell Biology International Reports, vol.14, issue.4, pp.899-929, 1990.
DOI : 10.1016/0309-1651(90)90210-P

A. Chase, Independent functions of viral protein and nucleic acid in growth of bacteriophage

Z. Hobbs, &. Hobbs, T. Stephen, and . Abedon, Diversity of phage infection types and associated terminology: the problem with ???Lytic or lysogenic???, FEMS Microbiology Letters, vol.24, issue.480, 2016.
DOI : 10.1007/s12275-014-4087-z

B. Hu, W. Margolin, I. J. Molineux, and &. Liu, The Bacteriophage T7 Virion Undergoes Extensive Structural Remodeling During Infection, Science, vol.25, issue.13, pp.576-585, 2013.
DOI : 10.1002/jcc.20084

B. Hu, W. Margolin, I. J. Molineux, and &. Liu, Structural remodeling of bacteriophage T4 and host membranes during infection initiation, Proceedings of the National Academy of Sciences, vol.171, issue.1, pp.4919-4947, 2015.
DOI : 10.1002/jcc.20084

A. Huet, F. James, L. Conway, P. Letellier, and . Boulanger, In Vitro Assembly of the T=13 Procapsid of Bacteriophage T5 with Its Scaffolding Domain, Journal of Virology, vol.84, issue.18, pp.9350-9358, 2010.
DOI : 10.1128/JVI.00942-10

A. Laura, . Hug, J. Brett, K. Baker, . Anantharaman et al., A new view of the tree of life, Nat Microbiol, vol.16, issue.1, p.16048, 2016.

M. Buechner and &. Adler, Effect of outer membrane permeability on chemotaxis in Escherichia coli, J Bacteriol, vol.172, issue.7, pp.3577-83, 1990.

L. Jakutyt?-e, R. Lurz, and C. Baptista, First steps of bacteriophage SPP1 entry into Bacillus subtilis, Virology, vol.422, issue.2, pp.425-459, 2012.
DOI : 10.1016/j.virol.2011.11.010

B. Jeffrey, . Jones, E. Gary, F. B. Vallad, O. Iriarte et al., Considerations ffor using bacteriophages for plant disease control, Bacteriophage, vol.2, issue.4, pp.208-222, 2012.

D. Karaolis, D. Somara, J. Jr, &. Johnson, and . Kaper, A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria, Nature, vol.239, issue.6734, pp.375-384, 1999.
DOI : 10.1126/science.2448875

I. Katsura and &. Hendrix, Length determination in bacteriophage lambda tails, Cell, vol.39, issue.3, pp.691-699, 1984.
DOI : 10.1016/0092-8674(84)90476-8

P. Kemp, M. Gupta, &. Ian, and J. Molineux, Bacteriophage T7 DNA ejection into cells is initiated by an enzyme-like mechanism, Molecular Microbiology, vol.20, issue.4, pp.1251-65, 2004.
DOI : 10.1128/jb.176.10.2807-2813.1994

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2004.04204.x/pdf

P. Kemp, &. Garcia, J. Ian, and . Molineux, Changes in bacteriophage T7 virion structure at the initiation of infection, Virology, vol.340, issue.2, pp.307-324, 2005.
DOI : 10.1016/j.virol.2005.06.039

M. Andrew and . Kropinsky, 2016 update from the ICTV bacterial and archaeal viruses subcommittee, Viruses of Microbe EMBO conference, 2016.

V. Kurauskas, A. Sergei, . Izmailov, N. Olga, A. Rogacheva et al., Slow conformational exchange and overall rocking motion in ubiquitin protein crystals, Nat Commun, vol.17, issue.8 1, p.145, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01571175

T. Shea, . Lance, J. David, . Sukovich, M. Kenneth et al., Peering below the diffraction limit : robust and specific sorting of viruses with flow cytometry

C. Gabriel, R. Lander, R. Khayat, . Li, E. Peter et al., The P22 tail machine at subnanometer resolution reveals the architecture of an infection conduit, Structure, vol.17, issue.6, pp.789-99, 2009.

S. Langlois, A. Ramboarina, I. Cukkemane, B. Auzat, B. Chagot et al., Bacteriophage SPP1 Tail Tube Protein Self-assembles into ??-Structure-rich Tubes, Journal of Biological Chemistry, vol.290, issue.6, pp.3836-3885, 2015.
DOI : 10.1007/BF00175245

URL : https://hal.archives-ouvertes.fr/hal-01449521

. Lanni, Lysis inhibition with a mutant of bacteriophage T5, Virology, vol.5, issue.3, pp.481-501, 1958.
DOI : 10.1016/0042-6822(58)90041-2

C. Justin, L. Leavitt, E. B. Gogokhia, A. Gilcrease, G. Bhardwaj et al., The tip of the tail needle affects the rate of DNA delivery by bacteriophage P22, PLoS One, vol.8, issue.8, p.70936, 2013.

. Leforestier, . Brasilès, . De-frutos, . Raspaud, P. Letellier et al., Bacteriophage T5 DNA Ejection under Pressure, Journal of Molecular Biology, vol.384, issue.3, pp.730-739, 2008.
DOI : 10.1016/j.jmb.2008.09.035

T. Jay, &. Lennon, J. Kenneth, and . Locey, The Underestimation of Global Microbial Diversity, MBio, vol.7, issue.5, 2016.

S. Leptihn, J. Gottschalk, and A. Kuhn, T7 ejectosome assembly: A story unfolds, Bacteriophage, vol.6, issue.1, p.1128513, 2016.
DOI : 10.1016/S0022-2836(03)00117-7

URL : http://europepmc.org/articles/pmc4836469?pdf=render

X. Li, P. Mooney, S. Zheng, R. Christopher, . Booth et al., Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM, Nature Methods, vol.16, issue.6, pp.584-90, 2013.
DOI : 10.1016/j.str.2008.03.005

URL : http://europepmc.org/articles/pmc3684049?pdf=render

D. Lindell, D. Jacob, . Jaffe, I. Zackary, . Johnson et al., Photosynthesis genes in marine viruses yield proteins during host infection, Nature, vol.100, issue.7064, pp.86-95, 2005.
DOI : 10.1073/pnas.0832254100

URL : http://www.nature.com/nature/journal/v438/n7064/pdf/nature04111.pdf

A. Loquet, G. Nikolaos, R. Sgourakis, K. Gupta, D. Giller et al., Atomic model of the type on a nanoscale, Bioconjug Chem, vol.26, issue.3, pp.367-78, 2015.

J. Ian, &. Molineux, and . Panja, Popping the cork : mechanisms of phage genome ejection, Nat Rev Microbiol, vol.11, issue.3, pp.194-204, 2013.

M. Murray, Type I Restriction Systems: Sophisticated Molecular Machines (a Legacy of Bertani and Weigle), Microbiology and Molecular Biology Reviews, vol.64, issue.2
DOI : 10.1128/MMBR.64.2.412-434.2000

M. Musgaard, T. Paramo, L. Domicevica, O. J. Andersen, &. Philip et al., Insights into channel dysfunction from modelling and molecular dynamics simulations The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage, Neuropharmacology Mol Microbiol, vol.17, issue.38 2, pp.213-244, 2000.

D. Olivia, . Nigro, P. Sean, H. Jungbluth, C. Lin et al., Viruses in the Oceanic Basement [Nogales 15] Eva Nogales. An electron microscopy journey in the study of microtubule structure and dynamics, MBio Protein Sci, vol.17, issue.24 12, pp.1912-1921, 2015.

J. Nová?ek, M. ?iborová, M. Bene?ík, and R. Pant??ek, Ji?í Do?ka? & Pavel Plevka. Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate, Proc Natl Acad Sci U S A, vol.16, issue.113 33, pp.9351-9357, 2016.

M. Pal, T. Ghosh, and &. Ghosh, Studies on the conformation of and metal ion binding by teichoic acid of Staphylococcus aureus, Biopolymers, vol.30, pp.3-4, 1990.

A. Prasad-pandurangan and &. Topf, RIBFIND: a web server for identifying rigid bodies in protein structures and to aid flexible fitting into cryo EM maps, Bioinformatics, vol.16, issue.2, pp.2391-2394, 2012.
DOI : 10.1016/j.str.2007.11.016

N. Kristin, . Parent, L. Marcella, G. Erb, K. Cardone et al., OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella, Mol Microbiol, vol.92, issue.1, pp.47-60, 2014.

J. Rachel, M. Parsons, . Breitbart, W. Michael, &. Lomas et al., Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea, ISME J, vol.6, issue.2, pp.273-84, 2012.

N. Anisha, A. Patel, A. Anne, C. Chovin, E. Demaille et al., Thierry Michon & Cécilia Taofifenua. Scaffolding of Enzymes on Virus Nanoarrays : Effects of Confinement and Virus Organization on Biocatalysis, Small, vol.13, issue.13, 2017.

G. Lisa, V. Pell, . Kanelis, W. Logan, L. Donaldson et al., The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system, Proc Natl Acad Sci U S A, vol.106, issue.11, pp.4160-4165, 2009.

G. Lisa, A. Pell, L. Liu, . Edmonds, W. Logan et al., The Xray crystal structure of the phage lambda tail terminator protein reveals the biologically relevant hexameric ring structure and demonstrates a conserved mechanism of tail termination among diverse long-tailed phages, J Mol Biol, vol.389, issue.5, pp.938-51, 2009.

W. Gan, . Donaldson, M. Aled, L. Edwards, A. R. Howell et al., The solution structure of the C-terminal Ig-like domain of the bacteriophage tail tube protein, J Mol Biol, vol.403, issue.3, pp.468-79, 2010.

F. Eric, . Pettersen, D. Thomas, . Goddard, C. Conrad et al., UCSF Chimera?a visualization system for exploratory research and analysis, J Comput Chem, vol.25, issue.13, pp.1605-1617, 2004.

D. Grigore, J. Pintilie, . Zhang, D. Thomas, W. Goddard et al., Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions, J Struct Biol, vol.170, issue.3, pp.427-465, 2010.

G. Pintilie, D. Chen, A. Cameron, J. A. Haase-pettingell, &. King et al., Resolution and Probabilistic Models of Components in CryoEM Maps of Mature P22 Bacteriophage, Biophysical Journal, vol.110, issue.4, pp.827-866, 2016.
DOI : 10.1016/j.bpj.2015.11.3522

C. Plisson, E. Helen, I. White, A. Auzat, C. Zafarani et al., Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection, The EMBO Journal, vol.25, issue.15, pp.3720-3728, 2007.
DOI : 10.1038/sj.emboj.7601786

L. Ponchon, S. Mangenot, P. Boulanger, and &. Letellier, Encapsidation and transfer of phage DNA into host cells: From in vivo to single particles studies, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1724, issue.3, pp.255-61, 2005.
DOI : 10.1016/j.bbagen.2005.04.016

L. Ponchon, P. Boulanger, G. , and L. Letellier, The Endonuclease Domain of Bacteriophage Terminases Belongs to the Resolvase/Integrase/Ribonuclease H Superfamily, Journal of Biological Chemistry, vol.1724, issue.9, pp.5829-5865, 2006.
DOI : 10.1016/j.bbagen.2005.04.016

L. Poorvin, J. M. Rinta-kanto, A. David, &. Hutchins, W. Steven et al., Viral release of iron and its bioavailability to marine plankton, Limnology and Oceanography, vol.49, issue.5, pp.1734-1775, 2004.
DOI : 10.4319/lo.2004.49.5.1734

I. Rayment, Small-Scale Batch Crystallization of Proteins Revisited, Structure, vol.10, issue.2, pp.147-51, 2002.
DOI : 10.1016/S0969-2126(02)00711-6

J. Romero, G. Higuera, F. Gajardo, D. Castillo, M. Middleboe et al., Complete Genome Sequence of Vibrio anguillarum Phage CHOED Successfully Used for Phage Therapy in Aquaculture, Genome Announcements, vol.25, issue.5, 2014.
DOI : 10.1093/nar/25.5.955

P. Scheible, E. Rhoades, and &. Rhoades, Localization of single-chain interruptions in bacteriophage T5 DNA I. Electron microscopic studies, J Virol, vol.23, issue.3, pp.725-761, 1977.

H. Sjors and . Scheres, RELION : implementation of a Bayesian approach to cryo-EM structure determination

M. Schmelcher, &. Martin, and J. Loessner, Use of Bacteriophage Cell Wall-Binding Proteins for Rapid Diagnostics of Listeria, Methods Mol Biol, vol.14, issue.1157, pp.141-56, 2014.
DOI : 10.1007/978-1-4939-0703-8_12

A. Schmidt, W. Rabsch, K. Nina, S. Broeker, and . Barbirz, Bacteriophage tailspike protein based assay to monitor phase variable glucosylations in Salmonella O-antigens, BMC Microbiology, vol.43, issue.3, p.207, 2016.
DOI : 10.1099/0022-1317-43-3-503

M. George, S. Veesler, S. Blangy, P. Spinelli, V. Tavares et al., Molecular biology Nature of the genetic code finally revealed Crystal structure of Bacillus subtilis SPP1 phage gp22 shares fold similarity with a domain of lactococcal phage p2 RBP Valérie Campanacci & Christian Cambillau. Crystal structure of bacteriophage SPP1 distal tail protein (gp19.1) : a baseplate hub paradigm in gram-positive infecting phages [Veesler 11] David Veesler & Christian Cambillau. A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism An overview of foodborne pathogen detection : in the perspective of biosensors, combining chain tracing with density [van Ooij 11] Christiaan van Ooij, pp.835-1439, 2010.

I. Vinga, C. Baptista, I. Auzat, I. Petipas, R. Lurz et al., Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection, Molecular Microbiology, vol.34, issue.2, pp.289-303, 2012.
DOI : 10.1016/j.molcel.2009.04.009

R. Neil, D. Voss, A. Lyumkis, P. Cheng, A. Lau et al., A toolbox for ab initio 3-D reconstructions in single-particle electron microscopy, J Struct Biol, vol.169, issue.3, pp.389-98, 2010.

]. Wang, Y. Jiang, M. Vincent, Y. Sun, H. Yu et al., Complete genome sequence of bacteriophage T5, Virology, vol.332, issue.1, pp.45-65, 2005.
DOI : 10.1016/j.virol.2004.10.049

URL : https://doi.org/10.1016/j.virol.2004.10.049

]. Wang, D. Wang, J. Chen, A. David, &. Sela et al., Development of a novel bacteriophage based biomagnetic separation method as an aid for sensitive detection of viable Escherichia coli, The Analyst, vol.138, issue.574, pp.1009-1025, 2016.
DOI : 10.1039/c3an01100c

C. Paul, A. Whitford, Y. Ahmed, . Yu, P. Scott et al., Excited states of ribosome translocation revealed through integrative molecular modeling, Proc Natl Acad Sci U S A, vol.108, issue.47, pp.18943-18951, 2011.

. Wommack, J. Daniel, J. Nasko, &. Chopyk, G. Eric et al., Counts and sequences, observations that continue to change our understanding of viruses in nature, Journal of Microbiology, vol.494, issue.3, pp.181-92, 2015.
DOI : 10.1038/nature11921

G. Michael and . Rossmann, Structure and function of bacteriophage T4, Future Microbiol, vol.14, issue.9 12, pp.1319-1346, 2014.

X. Zhang, E. Settembre, C. Xu, R. Philip, R. Dormitzer et al., Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction, Proceedings of the National Academy of Sciences, vol.25, issue.13, pp.1867-72, 2008.
DOI : 10.1002/jcc.20084

URL : http://www.pnas.org/content/105/6/1867.full.pdf

M. Zinke, P. Fricke, C. Samson, S. Hwang, S. Joseph et al., Bacteriophage Tail- Tube Assembly Studied by Proton-Detected 4D Solid- State NMR, Angew Chem Int Ed Engl, vol.17, issue.56 32, pp.9497-9501, 2017.
DOI : 10.1002/ange.201706060

URL : http://onlinelibrary.wiley.com/doi/10.1002/ange.201706060/pdf

Y. Zivanovic, F. Confalonieri, L. Ponchon, R. Lurz, M. Chami et al., Insights into Bacteriophage T5 Structure from Analysis of Its Morphogenesis Genes and Protein Components, Journal of Virology, vol.88, issue.2, pp.1162-74, 2014.
DOI : 10.1128/JVI.02262-13

URL : https://hal.archives-ouvertes.fr/hal-01130612