D. Teschner, V. I. Bukhtiyarov, D. F. Ogletree, and M. Salmeron, Methanol Oxidation on a Copper Catalyst Investigated Using in Situ X-Ray Photoelectron Spectroscopy, J. Phys. Chem. B, vol.108, pp.14340-14347, 2004.

H. Bluhm, Photoelectron spectroscopy of surfaces under humid conditions, Journal of Electron Spectroscopy and Related Phenomena, vol.177, issue.2-3, pp.71-84, 2010.
DOI : 10.1016/j.elspec.2009.08.006

M. Salmeron and R. Schlogl, Ambient pressure photoelectron spectroscopy: A new tool for surface science and nanotechnology, Surface Science Reports, vol.63, issue.4, pp.169-199, 2008.
DOI : 10.1016/j.surfrep.2008.01.001

F. Ogletree, D. Bluhm, H. Hebenstreit, E. D. Salmeron, and M. , Photoelectron spectroscopy under ambient pressure and temperature conditions, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.601, issue.1-2, pp.151-160, 2009.
DOI : 10.1016/j.nima.2008.12.155

A. K?epelová, T. Bartels-rausch, M. A. Brown, H. Bluhm, and M. Ammann, Adsorption of Acetic Acid on Ice Studied by Ambient-Pressure XPS and Partial-Electron-Yield NEXAFS Spectroscopy at 230???240 K, The Journal of Physical Chemistry A, vol.117, issue.2, pp.401-409, 2013.
DOI : 10.1021/jp3102332

D. F. Ogletree, H. Bluhm, G. Lebedev, C. S. Fadley, Z. Hussain et al., A differentially pumped electrostatic lens system for photoemission studies in the millibar range, Review of Scientific Instruments, vol.38, issue.11, pp.73-3872, 2002.
DOI : 10.1088/0953-8984/14/8/106

J. Pantförder, S. Pöllmann, J. F. Zhu, D. Borgmann, R. Denecke et al., New Setup for in Situ X-Ray Photoelectron Spectroscopy from Ultrahigh Vacuum to 1 Mbar, Rev. Sci. Instrum, vol.76, pp.0-9, 2005.

A. Shavorskiy, O. Karslioglu, I. Zegkinoglou, and H. Bluhm, Synchrotron-based Ambient Pressure X-ray Photoelectron Spectroscopy, Synchrotron Radiation News, vol.52, issue.2, pp.14-23, 2014.
DOI : 10.1667/RR0551.1

F. Johansson, N. Mårtensson, N. Öhrwall, G. Bahr, and S. , The New Ambient-Pressure X-Ray Photoelectron Spectroscopy Instrument at MAX-Lab

S. W. Huang, B. N. Jensen, E. Wallen, and H. Tarawneh, The SPECIES Beamline at the MAX IV Laboratory: A Facility for Soft X-Ray RIXS and APXPS, J. Synchrotron Radiat, vol.24, pp.344-353, 2017.

R. Wibowo, L. Aldous, R. M. Jacobs, N. S. Manan, and R. G. Compton, In situ electrochemical-X-ray Photoelectron Spectroscopy: Rubidium metal deposition from an ionic liquid in competition with solvent breakdown, Chemical Physics Letters, vol.517, issue.1-3
DOI : 10.1016/j.cplett.2011.10.017

J. E. Castle, M. R. Guascito, .. M. Salvi, and F. Decker, An electrochemical cell for study by XPS of lithium intercalation in oxide films, Surface and Interface Analysis, vol.5, issue.6, pp.619-622, 2002.
DOI : 10.1557/JMR.1990.1253

L. Gregoratti, S. Günther, M. Kiskinova, and S. Gu, Graphene Oxide Windows for in Situ Environmental Cell Photoelectron Spectroscopy, Nat. Nanotechnol, vol.6, pp.651-657, 2011.

R. S. Weatherup, B. Eren, Y. Hao, H. Bluhm, and M. B. Salmeron, Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy, The Journal of Physical Chemistry Letters, vol.7, issue.9
DOI : 10.1021/acs.jpclett.6b00640

T. Masuda, H. Yoshikawa, H. Noguchi, T. Kawasaki, M. Kobata et al., Photoelectron Spectroscopy for Electrochemical Reactions in Ordinary Solvents, Appl. Phys. Lett, vol.103, issue.26, 2013.

M. T. Lee, F. Orlando, L. Artiglia, S. Chen, and M. Ammann, Chemical Composition and Properties of the Liquid???Vapor Interface of Aqueous C1 to C4 Monofunctional Acid and Alcohol Solutions, The Journal of Physical Chemistry A, vol.120, issue.49, pp.9749-9758, 2016.
DOI : 10.1021/acs.jpca.6b09261

M. A. Brown and M. J. Krisch, Liquid-Vapor Interface of Formic Acid Solutions in Salt Water: A Comparison of Macroscopic-Surface Tension and Microscopic

X. Situ, Photoelectron Spectroscopy Measurements, J. Phys. Chem. C, vol.118, pp.29350-29360, 2014.

H. Bluhm and J. C. Hemminger, Characterization of the Acetonitrile Aqueous Solution/vapor Interface by Liquid-Jet X-Ray Photoelectron Spectroscopy, J

L. J. Michot, F. Villiéras, M. François, I. Bihannic, M. Pelletier et al., Water organisation at the solid???aqueous solution interface, Comptes Rendus Geoscience, vol.334, issue.9, pp.611-631, 2002.
DOI : 10.1016/S1631-0713(02)01801-1

J. E. Poirier, Mechanism of Adsorption and Desorption of Water Vapor by Homoionic Montmorillonite. 1. The Sodium Exchanged Form, Langmuir, vol.8, pp.2730-2739, 1992.

L. J. Michot, I. Bihannic, M. Pelletier, E. Rinnert, and J. L. Robert, Hydration and swelling of synthetic Na-saponites: Influence of layer charge, American Mineralogist, vol.90, issue.1, pp.166-172, 2005.
DOI : 10.2138/am.2005.1600

G. Sposito, R. Prost, and J. Gaultier, Infrared Spectroscopic Study of Adsorbed Water on Reduced-Charge Na/Li-Montmorillonites, Clays and Clay Minerals, vol.31, issue.1, pp.9-16, 1983.
DOI : 10.1346/CCMN.1983.0310102

V. Marry, E. Dubois, N. Malikova, S. Durand-vidal, S. Longeville et al., Water Dynamics in Hectorite Clays: Infuence of Temperature Studied by Coupling Neutron Spin Echo and Molecular Dynamics, Environmental Science & Technology, vol.45, issue.7, pp.2850-2855, 2011.
DOI : 10.1021/es1031932

A. Boucly and F. Rochet, The Electronic Structure of Saturated NaCl and NaI Solutions in Contact with a Gold Substrate, Top. Catal, vol.59, pp.605-620, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01480738

I. E. Odom, Smectite Clay Minerals : Properties and Uses Author ( S ): I

A. Series, Clay Minerals : Their Structure, Mathematical and Physical Sciences Behaviou. Philos. Trans. R. Soc. London . Ser. A , Math. Phys. Sci, vol.311, issue.1517, pp.311-391, 2016.

M. S. Karmous, H. Ben-rhaiem, J. L. Robert, and B. Lanson, Charge location effect on the hydration properties of synthetic saponite and hectorite saturated by Na+, Ca2+ cations: XRD investigation, Ca2+ Cations: XRD Investigation, pp.43-50, 2009.
DOI : 10.1016/j.clay.2009.07.007

URL : https://hal.archives-ouvertes.fr/insu-00544732

E. Ferrage, Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties, American Mineralogist, vol.90, issue.8-9, pp.1358-1374, 2005.
DOI : 10.2138/am.2005.1776

URL : https://hal.archives-ouvertes.fr/hal-00105756

F. Thomas, Mechanism of Adsorption and Desorption of Water Vapor by Homoionic Montmorillonites: 2. The Li+, Na+, K+, Rb+, and Cs+-Exchanged Forms, Clays Clay Miner, vol.43, pp.324-336, 1995.

T. Watanabe and T. Sato, Expansion Characteristics of Montmorillonite and Saponite Under Various Relative Humidity Conditions. Clay Sci, pp.129-138, 1988.

E. Ferrage, B. Lanson, L. J. Michot, and J. Robert, Hydration Properties and Interlayer Organization of Water and Ions in Synthetic Na-Smectite with Tetrahedral Layer Charge. Part 1. Results from X-ray Diffraction Profile Modeling, The Journal of Physical Chemistry C, vol.114, issue.10, pp.4515-4526, 2010.
DOI : 10.1021/jp909860p

URL : https://hal.archives-ouvertes.fr/hal-00570471

S. L. Teich-mcgoldrick and R. T. Cygan, Swelling Properties of Montmorillonite and Beidellite Clay Minerals from Molecular Simulation: Comparison of Temperature, Interlayer Cation, and Charge Location Effects, The Journal of Physical Chemistry C, vol.119, issue.36, pp.20880-20891, 2015.
DOI : 10.1021/acs.jpcc.5b03253

D. E. Smith, Simulations of Clay Mineral Swelling and Hydration Dependence upon Interlayer Ion Size and Charge, J. Phys. Chem. B, vol.104, pp.9163-9170, 2000.

V. Marry, E. Dubois, N. Malikova, J. Breu, and W. Haussler, Anisotropy of Water Dynamics in Clays: Insights from Molecular Simulations for Experimental QENS Analysis, The Journal of Physical Chemistry C, vol.117, issue.29, pp.15106-15115, 2013.
DOI : 10.1021/jp403501h

K. Faisandier, C. H. Pons, D. Tchoubar, and F. Thomas, Structural Organization of Na- and K-Montmorillonite Suspensions in Response to Osmotic and Thermal Stresses, Clays and Clay Minerals, vol.46, issue.6, pp.636-648, 1998.
DOI : 10.1346/CCMN.1998.0460604

F. Salles, S. Devautour-vinot, O. Bildstein, M. Jullien, G. Maurin et al., Ionic Mobility and Hydration Energies in Montmorillonite Clay, The Journal of Physical Chemistry C, vol.112, issue.36, pp.14001-14009, 2008.
DOI : 10.1021/jp710976g

URL : https://hal.archives-ouvertes.fr/hal-00291645

R. Sutton and G. Sposito, Animated molecular dynamics simulations of hydrated caesium-smectite interlayers, Geochemical Transactions, vol.27, issue.9, p.73, 2002.
DOI : 10.1346/CCMN.1979.0270307

R. D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides, acta Cryst, pp.751-767, 1976.

D. W. Smith, Ionic hydration enthalpies, Journal of Chemical Education, vol.54, issue.9, pp.54-540, 1977.
DOI : 10.1021/ed054p540

F. Salles, J. Douillard, O. Bildstein, C. Gaudin, B. Prelot et al., Driving force for the hydration of the swelling clays: Case of montmorillonites saturated with alkaline-earth cations, Journal of Colloid and Interface Science, vol.395, issue.51, pp.269-276, 2013.
DOI : 10.1016/j.jcis.2012.12.050

URL : https://hal.archives-ouvertes.fr/hal-00799972

H. Suquet, C. D. Calle, H. Pezerat, and P. Jussieu, Swelling and Structural Organization of Saponite, Clays and Clay Minerals, vol.23, issue.1, pp.1-9, 1975.
DOI : 10.1346/CCMN.1975.0230101

D. M. Macewan and M. J. Wilson, Interlayer and Intercalation Complexes of Clay Minerals. Cryst. Struct. clay Miner. their X-ray Identif, pp.197-248, 1980.

R. Calvet, R. W. Mooney, A. G. Keenan, and L. A. Wood, Water Aadsorption On Clays-Study OF Hydration Of Montmorillonite Adsorption of Water Vapor by Montmorillonite. II. Effect of Exchangeable Ions and Lattice Swelling as Measured by X-Ray Diffraction, Bull. Soc. Chim. Fr. J. Am. Chem. Soc, vol.74, issue.56, pp.3097-1371, 1952.

R. Prost, Interactions between Adsorbed Water Molecules and the Structure of Clay Minerals: Hydration Mechanism of Smectites, Proc. 5th Int. Clay Conf, p.353, 1975.

S. B. Hendricks, R. Nelson, and L. Alexander, Hydration Mechanism of the Clay Mineral Montmorillonite Saturated with Various Cations 1, J. Am. Chem

R. J. Kirkpatrick, Water Structure and Dynamics in Smectites: X -Ray Di Ff Raction and 2 H NMR Spectroscopy of Mg ?, 2016.

L. Ukrainczyk and K. A. Smith, N NMR Study of Pyridine Adsorption on Clay Minerals, Environmental Science & Technology, vol.30, issue.11, pp.3167-3176, 1996.
DOI : 10.1021/es950735h

M. P. Seah, Post-1989 calibration energies for X-ray photoelectron spectrometers and the 1990 Josephson constant, Surface and Interface Analysis, vol.26, issue.8, p.488, 1989.
DOI : 10.1002/sia.740140813

H. N. York, C 1s and Au 4f 7 / 2 Referenced XPS Binding Energy Data Obtained with Different Aluminium Oxides , -Hydroxides and -Fluorides, pp.175-179

T. L. Barr, S. Seal, T. L. Barr, and S. Seal, Nature of the use of adventitious carbon as a binding energy standard, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.13, issue.3, p.1239, 1995.
DOI : 10.1116/1.579868

M. Rjeb, A. Labzour, A. Rjeb, S. Sayouri, M. C. Idrissi et al., Contribution To The Study By X-Ray Photoelectron Spectroscopy Of The Natural Aging Of The Polypropylene, M.J. Condens. Matter, vol.5, pp.1-5, 2004.

D. Briggs, G. Beamson, I. C. Pic, W. Materials, and U. K. Ts, Primary and secondary oxygen-induced C1s binding energy shifts in x-ray photoelectron spectroscopy of polymers, Analytical Chemistry, vol.64, issue.15, pp.1729-1736, 1992.
DOI : 10.1021/ac00039a018

J. J. Yeh and I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: 1 ??? Z ??? 103, Atomic Data and Nuclear Data Tables, vol.32, issue.1, p.32, 1985.
DOI : 10.1016/0092-640X(85)90016-6

D. N. Mueller, M. L. Machala, H. Bluhm, and W. C. Chueh, Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions, Nature Communications, vol.142, issue.1, pp.2015-6097
DOI : 10.1107/S0909049505012719

M. Faubel, Photoemission from Aqueous Alkali-Metal?Iodide Salt Solutions Using EUV Synchrotron Radiation, J. Phys. Chem. B, vol.108, pp.4729-4736, 2004.

M. Molera and T. Eriksen, Compacted To Different Densities : Experiments and Modeling, Radiochim.Acta, vol.90, pp.753-760, 2002.

S. Tanuma, C. J. Powell, and D. R. Penn, Calculations of electorn inelastic mean free paths. II. Data for 27 elements over the 50-2000 eV range, Surface and Interface Analysis, vol.75, issue.13, pp.911-926, 1991.
DOI : 10.1016/B978-0-08-054721-3.50008-3

J. Robert, S. Caër, M. Jimenez-ruiz, and G. J. Cuello, Reaction Mechanisms in Swelling Clays under Ionizing Radiation: Influence of the Water Amount and of the Nature of the Clay Mineral, pp.526-534
URL : https://hal.archives-ouvertes.fr/cea-01427605

D. A. Laird, Model for Crystalline Swelling of 2:1 Phyllosilicates. Clays Clay Miner, pp.553-559, 1996.

T. K. Gupta, Copper Interconnect Technology, 2009.
DOI : 10.1007/978-1-4419-0076-0

H. Yada, M. Nagai, and K. Tanaka, The intermolecular stretching vibration mode in water isotopes investigated with broadband terahertz time-domain spectroscopy, Chemical Physics Letters, vol.473, issue.4-6, pp.279-283, 2009.
DOI : 10.1016/j.cplett.2009.03.075

I. E. Odom, Smectite clay Minerals: Properties and Uses, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.311, issue.1517
DOI : 10.1098/rsta.1984.0036

E. Suzuki, S. Idemura, and Y. Ono, Catalytic conversion of 2-propanol and ethanol over synthetic hectorite and its analogues, Applied Clay Science, vol.3, issue.2, pp.123-134, 1988.
DOI : 10.1016/0169-1317(88)90012-9

T. J. Pinnavaia, Intercalated Clay Catalysts, Science, vol.220, issue.4595, pp.365-371, 1983.
DOI : 10.1126/science.220.4595.365

E. Rodri?guez, G. Márquez, J. C. Carpintero, F. J. Beltrán, and P. A?lvarez, Sequential Use of Bentonites and Solar Photocatalysis to Treat Winery Wastewater, Journal of Agricultural and Food Chemistry, vol.56, issue.24, pp.11956-11961, 2008.
DOI : 10.1021/jf802502v

H. Jia, G. Nulaji, H. Gao, F. Wang, Y. Zhu et al., Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays, Environmental Science & Technology, vol.50, issue.12, pp.6310-6319, 2016.
DOI : 10.1021/acs.est.6b00527

L. B. Williams, B. Canfield, K. M. Voglesonger, and J. Holloway, Organic molecules formed in a ???primordial womb???, Geology, vol.33, issue.11, p.913, 2005.
DOI : 10.1130/G21751.1

A. Rimola, S. Tosoni, M. Sodupe, and P. Ugliengo, Does Silica Surface Catalyse Peptide Bond Formation? New Insights from First-Principles Calculations, ChemPhysChem, vol.47, issue.8, pp.157-163, 2006.
DOI : 10.1002/cphc.200400608

A. Rimola, M. Sodupe, and P. Ugliengo, Aluminosilicate Surfaces as Promoters for Peptide Bond Formation:?? An Assessment of Bernal's Hypothesis by ab Initio Methods, Journal of the American Chemical Society, vol.129, issue.26, pp.8333-8344, 2007.
DOI : 10.1021/ja070451k

P. Mignon and M. Sodupe, -Montmorillonite Clay. An ab Initio Molecular Dynamics Study, The Journal of Physical Chemistry C, vol.117, issue.49, pp.26179-26189, 2013.
DOI : 10.1021/jp4103383

C. Szopa and P. Coll, Effect of Nontronite Smectite Clay on the Chemical Evolution of Several Organic Molecules under Simulated Martian Surface Ultraviolet Radiation Conditions, Astrobiology, vol.15, pp.221-237, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01136822

V. C. Farmer and M. M. Mortland, An infrared study of the co-ordination of pyridine and water to exchangeable cations in montmorillonite and saponite, Journal of the Chemical Society A: Inorganic, Physical, Theoretical
DOI : 10.1039/j19660000344

M. Kowalska, H. Guler, and D. L. Cocke, Interactions of clay minerals with organic pollutants, Science of The Total Environment, vol.141, issue.1-3, pp.223-240, 1994.
DOI : 10.1016/0048-9697(94)90030-2

J. D. Ortego, M. Kowalska, and D. L. Cocke, Interactions of montmorillonite with organic compounds-adsorptive and catalytic properties, Chemosphere, vol.22, issue.8, pp.769-798, 1991.
DOI : 10.1016/0045-6535(91)90052-F

V. Aggarwal, H. Li, and B. J. Teppen, TRIAZINE ADSORPTION BY SAPONITE AND BEIDELLITE CLAY MINERALS, Environmental Toxicology and Chemistry, vol.25, issue.2, pp.392-399, 2006.
DOI : 10.1897/05-264R.1

URL : http://www.msu.edu/~lihui/My Publications/Aggarwal Environ Toxici Chem 2006_25_214_221.pdf

R. Pusch and R. Yong, Water saturation and retention of hydrophilic clay buffer???microstructural aspects, Applied Clay Science, vol.23, issue.1-4, pp.61-68, 2003.
DOI : 10.1016/S0169-1317(03)00087-5

E. J. Hensen and B. Smit, Why Clays Swell, The Journal of Physical Chemistry B, vol.106, issue.49, pp.12664-12667, 2002.
DOI : 10.1021/jp0264883

URL : https://infoscience.epfl.ch/record/200697/files/3149219081hen021.pdf

M. O. Degteva, V. P. Kozheurov, and M. I. Vorobiova, General approach to dose reconstruction in the population exposed as a result of the release of radioactive wastes into the Techa river, Science of The Total Environment, vol.142, issue.1-2, pp.49-61, 1994.
DOI : 10.1016/0048-9697(94)90073-6

X. Hou and P. Roos, Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples, Analytica Chimica Acta, vol.608, issue.2, pp.105-139, 2008.
DOI : 10.1016/j.aca.2007.12.012

H. A. Al-abadleh and V. H. Grassian, Oxide surfaces as environmental interfaces, Surface Science Reports, vol.52, issue.3-4, pp.63-161, 2003.
DOI : 10.1016/j.surfrep.2003.09.001

J. Ward, The nature of active sites on zeolites III. The alkali and alkaline earth ion-exchanged forms, Journal of Catalysis, vol.10, issue.1, pp.34-46, 1968.
DOI : 10.1016/0021-9517(68)90220-0

E. Parry, An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity, Journal of Catalysis, vol.2, issue.5, pp.371-379, 1963.
DOI : 10.1016/0021-9517(63)90102-7

J. N. Kondo, R. Nishitani, E. Yoda, T. Yokoi, T. Tatsumi et al., A comparative IR characterization of acidic sites on HY zeolite by pyridine and CO probes with silica???alumina and ??-alumina references, Physical Chemistry Chemical Physics, vol.102, issue.37
DOI : 10.1021/jp062252d

E. G. Sivalov and Y. Tarasevich, Investigation of the interaction of pyridine with the surface of laminar silicates by the method of optical electronic spectroscopy, Journal of Applied Spectroscopy, vol.30, issue.No. 6, pp.214-218, 1981.
DOI : 10.1007/BF00635209

J. M. Comets and L. Kevan, Adsorption of ammonia and pyridine on copper(II)-doped magnesium-exchanged smectite clays studied by electron spin resonance, The Journal of Physical Chemistry, vol.97, issue.2, pp.466-469, 1993.
DOI : 10.1021/j100104a031

J. Madejová, H. Pálková, and ?. Jankovi?, Near-infrared study of the interaction of pyridine with acid-treated montmorillonite, Vibrational Spectroscopy, vol.76, issue.104, pp.22-30, 2015.
DOI : 10.1016/j.vibspec.2014.11.003

S. Yamamoto, K. Andersson, H. Bluhm, G. Ketteler, D. E. Starr et al., Hydroxyl-Induced Wetting of Metals by Water at Near-Ambient Conditions, The Journal of Physical Chemistry C, vol.111, issue.22
DOI : 10.1021/jp0731654

L. G. Pettersson, M. Salmeron, and A. Nilsson, Bridging the Pressure Gap in Water and Hydroxyl Chemistry on Metal Surfaces: The Cu(110) Case, J. Phys

D. E. Starr, Z. Liu, M. Hävecker, and . Knop-gericke, Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy, Chemical Society Reviews, vol.23, issue.13, pp.5833-5857, 2013.
DOI : 10.1364/OE.20.009777

C. Klett, Y. Cui, S. Devineau, E. Foy, R. Dagnelie et al., H2 production through oxide irradiation: Comparison of gamma rays and vacuum ultraviolet excitation, International Journal of Hydrogen Energy, vol.38, issue.10, pp.3889-3897, 2013.
DOI : 10.1016/j.ijhydene.2012.12.035

J. C. Mialocq, Radiolysis of Confined Water: Hydrogen Production at a High Dose Rate, ChemPhysChem, vol.6, pp.2585-2596, 2005.

L. Caër and S. , Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation, pp.235-253, 2011.

C. Fourdrin, H. Aarrachi, C. Latrille, S. Esnouf, F. Bergaya et al., Production Mechanisms, Environmental Science & Technology, vol.47, issue.16, pp.9530-9537, 2013.
DOI : 10.1021/es401490t

URL : https://hal.archives-ouvertes.fr/hal-01158696

W. Egelhoff, Core-level binding-energy shifts at surfaces and in solids, Surface Science Reports, vol.6, issue.6-8, pp.253-415, 1987.
DOI : 10.1016/0167-5729(87)90007-0

H. Tissot, J. Gallet, F. Bournel, G. Olivieri, M. G. Silly et al., Rochet, F. The Electronic Structure of Saturated NaCl and NaI Solutions in Contact with a Gold Substrate, Top. Catal, issue.114, pp.1-16, 2015.

Y. Lifshitz, Inelastic Electron Interactions in the Energy Range 50 eV to 10 keV in Insulators: Alkali Halides and Metal Oxides. Phys. Status Solidi, pp.769-784, 1996.

S. Tanuma, C. J. Powell, and D. R. Penn, Calculations of electron inelastic mean free paths, Surface and Interface Analysis, vol.10, issue.1, pp.1-14, 2005.
DOI : 10.1007/3-540-08685-4

W. Egelhoff, Core-level binding-energy shifts at surfaces and in solids, Surface Science Reports, vol.6, issue.6-8
DOI : 10.1016/0167-5729(87)90007-0

R. J. Kirkpatrick, Water Structure and Dynamics in Smectites: X-Ray Diffraction and 2 H NMR Spectroscopy of Mg?

R. Coustel, S. Carniato, and F. Rochet, Pyridine on Si ( 001 ) -( 2 × 1 ): Density Functional Theory Simulations Compared, Phys. Rev. B, vol.85, issue.120, pp.1-9, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01239012

A. Naitabdi, F. Bournel, J. Gallet, A. Markovits, F. Rochet et al., Triethylamine on Si(001)-(2 ?? 1) at 300 K: Molecular Adsorption and Site Configurations Leading to Dissociation, The Journal of Physical Chemistry C, vol.116, issue.31, pp.16473-16486, 2012.
DOI : 10.1021/jp303002c

URL : https://hal.archives-ouvertes.fr/hal-01239014

H. Ågren, A Theoretical Study of the Role of the Hydrogen Bond on Core Ionization of the Water Dimer, Chem. Phys, vol.312, pp.311-318, 2005.

A. Verdini and L. Floreano, Characterization of Hydroxyl Groups on Water- Reacted Si(001)-2×1 Using Synchrotron Radiation O 1s Core-Level Spectroscopies and Core-Excited State Density-Functional Calculations

). Shea, J. Luo, Y. Schnadt, J. Patthey, L. Hillesheimer et al., Hydrogen-bond induced surface core-level shift in pyridine carboxylic acids, Mårtensson, N. Hydrogen-Bond Induced Surface Core-Level Shift in Pyridine Carboxylic Acids, pp.157-166, 2001.
DOI : 10.1016/S0039-6028(01)01058-5

G. Tu, Y. Tu, O. Vahtras, and H. Ågren, Core electron chemical shifts of hydrogen-bonded structures, Chemical Physics Letters, vol.468, issue.4-6, pp.294-298, 2009.
DOI : 10.1016/j.cplett.2008.12.023

S. Garcia-gil, A. Arnau, and A. Garcia-lekue, Exploring large O 1s and N 1s core level shifts due to intermolecular hydrogen bond formation in organic molecules, Surface Science, vol.613, pp.102-107, 2013.
DOI : 10.1016/j.susc.2013.03.017

M. Zharnikov, Self-Assembly of a Pyridine, Langmuir, vol.25, issue.111, pp.959-967, 2009.

J. A. Raussel-collom, J. M. Serratosa, A. V. Newman, and . Ed, Reactions of Clays with Organic Substances, In Chemistry of Clays and Clay Minerals, pp.371-422, 1987.

F. Himpsel, F. Mcfeely, A. Taleb-ibrahimi, J. Yarmoff, and G. Hollinger, /Si interface, Microscopic Structure of the SiO_{2}/Si Interface, pp.6084-6096, 1988.
DOI : 10.1063/1.332319

P. Clausen, W. Andreoni, A. Curioni, E. Hughes, and C. J. Plummer, Study, The Journal of Physical Chemistry C, vol.113, issue.28, pp.12293-12300, 2009.
DOI : 10.1021/jp811383y

URL : https://hal.archives-ouvertes.fr/inria-00471702

D. Tommaso and N. H. Di-;-de-leeuw, First Principles Simulations of the Structural and Dynamical Properties of Hydrated Metal Ions Me 2 Þ and Solvated Metal Carbonates ( Me = Ca, 2010.

W. L. Jolly, K. D. Bomben, and C. J. Eyermann, Core-electron binding energies for gaseous atoms and molecules, Atomic Data and Nuclear Data Tables, vol.31, issue.3, pp.433-493, 1984.
DOI : 10.1016/0092-640X(84)90011-1

S. Wohlrab, H. Freund, U. A. Ditzinger, and H. Neddermeyer, Adsorption and Reaction on Oxide Surfaces: CO and CO2 on Cr2O3 Berichte der Bunsengesellschaft für Phys, pp.15-27, 1992.

G. K. Low, -. Mcevoy, S. R. Matthews, and R. W. , Formation of ammonium and nitrate ions from photocatalytic oxidation of ring nitrogenous compounds over titanium dioxide, Chemosphere, vol.19, issue.10-11, pp.1611-1621, 1989.
DOI : 10.1016/0045-6535(89)90504-3

J. Cazaux, A Physical Approach to the Radiation Damage Mechanisms (148) Blum, A. Solid Ammonia Radiolysis. Temperature Effect in the Radiolysis of Solid Ammonia, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, issue.137, pp.71-2299, 1975.

M. J. Loeffler and R. A. Baragiola, O mixtures at 193 nm, The Journal of Chemical Physics, vol.312, issue.21, p.214506, 2010.
DOI : 10.1088/0004-637X/713/2/906

N. Mangold, T. Bristow, P. Edwards, and G. Berger, Diagenesis and Clay Mineral Formation at Gale Crater, Mars, J. Geophys. Res. Planets, vol.120, pp.1-19, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01205518

J. Appelbaum and D. Flood, Solar radiation on Mars, Solar Energy, vol.45, issue.6, pp.353-363, 1990.
DOI : 10.1016/0038-092X(90)90156-7

D. L. Nuding, R. D. Davis, R. V. Gough, and M. A. Tolbert, The aqueous stability of a Mars salt analog: Instant Mars, Journal of Geophysical Research: Planets, vol.115, issue.24, pp.588-598, 2015.
DOI : 10.1029/2009JE003420

M. H. Hecht, Metastability of Liquid Water on Mars, Icarus, vol.156, issue.2, pp.373-386, 2002.
DOI : 10.1006/icar.2001.6794

W. Ruddiman, S. Vavrus, and J. Kutzbach, Does pre-industrial warming double the anthropogenic total?, The Anthropocene Review, vol.1, issue.2, pp.147-153, 2014.
DOI : 10.1016/j.quascirev.2008.04.011

T. P. Holme and F. B. Prinz, Nonprecious Metal Catalysts for Low Temperature Solid Oxide Fuel Cells, The Journal of Physical Chemistry C, vol.115, issue.23, pp.11641-11648, 2011.
DOI : 10.1021/jp2022538

L. H. Yi, W. Wei, C. X. Zhao, C. G. Yang, L. Tian et al., Electrochemical oxidation of sodium borohydride on carbon supported Pt-Zn nanoparticle bimetallic catalyst and its implications to direct borohydride-hydrogen peroxide fuel cell, Electrochimica Acta, vol.158, pp.209-218, 2015.
DOI : 10.1016/j.electacta.2015.01.111

V. Mehta and J. S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, Journal of Power Sources, vol.114, issue.1, pp.32-53, 2003.
DOI : 10.1016/S0378-7753(02)00542-6

S. Litster and G. Mclean, PEM fuel cell electrodes, Journal of Power Sources, vol.130, issue.1-2, pp.61-76, 2004.
DOI : 10.1016/j.jpowsour.2003.12.055

O. T. Holton and J. W. Stevenson, The Role of Platinum in Proton Exchange Membrane Fuel Cells Evaluation of Platinum's Unique Properties for Use in Both the Anode and Cathode of a Proton Exchange Membrane Fuel Cell

P. C. Jennings, B. G. Pollet, and R. L. Johnston, Electronic Properties of Pt???Ti Nanoalloys and the Effect on Reactivity for Use in PEMFCs, The Journal of Physical Chemistry C, vol.116, issue.29, pp.15241-15250, 2012.
DOI : 10.1021/jp303577t

W. D. Michalak and G. A. Somorjai, Catalysis in Energy Generation and Conversion: How Insight Into Nanostructure, Composition, and Electronic Structure Leads to Better Catalysts (Perspective), Topics in Catalysis, vol.77, issue.4, pp.1611-1622
DOI : 10.1023/A:1013284217689

Z. M. Liu, L. L. Ma, J. Zhang, K. Hongsirikarn, and J. G. Goodwin, Pt Alloy Electrocatalysts for Proton Exchange Membrane Fuel Cells: A Review, Catalysis Reviews, vol.67, issue.3
DOI : 10.1038/nmat1752

N. Seriani and F. Mittendorfer, Platinum-group and noble metals under oxidizing conditions, Journal of Physics: Condensed Matter, vol.20, issue.18, p.184023, 2008.
DOI : 10.1088/0953-8984/20/18/184023

I. Lee and F. Zaera, Nanoparticle Shape Selectivity in Catalysis: Butene Isomerization and Hydrogenation on Platinum, Topics in Catalysis, vol.9, issue.300, pp.1284-1298, 2013.
DOI : 10.1039/b702652h

G. Ertl, H. Knozinger, F. Schuth, and J. Weitkamp, Handbook of Heterogeneous Catalysis, References, vol.1, issue.170, 2008.

P. P. Lopes, K. S. Freitas, and E. A. Ticianelli, CO Tolerance of PEMFC Anodes: Mechanisms and Electrode Designs, Electrocatalysis, vol.44, issue.195, pp.200-212, 2010.
DOI : 10.1038/nmat2156

X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang et al., A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation, Journal of Power Sources, vol.165, issue.2, pp.739-756, 2007.
DOI : 10.1016/j.jpowsour.2006.12.012

S. M. Ehteshami and S. H. Chan, A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membarane fuel cells, Electrochimica Acta, vol.93
DOI : 10.1016/j.electacta.2013.01.086

G. Ramirez-caballero, Evolution of Pt and Pt-Alloy Catalytic Surfaces Under Oxygen Reduction Reaction in Acid Medium, Top. Catal, vol.55, pp.322-335, 2012.

E. J. Coleman and A. C. Co, Galvanic displacement of Pt on nanoporous copper: An alternative synthetic route for obtaining robust and reliable oxygen reduction activity, Journal of Catalysis, vol.316, issue.175, pp.316-191, 2014.
DOI : 10.1016/j.jcat.2014.05.012

R. Loukrakpam, J. Luo, T. He, Y. S. Chen, Z. C. Xu et al., Nanoengineered PtCo and PtNi Catalysts for Oxygen Reduction Reaction: An Assessment of the Structural and Electrocatalytic Properties, The Journal of Physical Chemistry C, vol.115, issue.5, pp.1682-1694, 2011.
DOI : 10.1021/jp109630n

L. H. Ou, The Origin of Enhanced Electrocatalytic Activity of, and W) Alloys in PEM Fuel Cell Cathodes: A DFT Computational Study

B. Hammer and J. K. Norskov, Theoretical surface science and catalysis???calculations and concepts, Adv. Catal, vol.45, issue.178, pp.71-129, 2000.
DOI : 10.1016/S0360-0564(02)45013-4

J. Zhang, K. Sasaki, E. Sutter, and R. R. Adzic, Stabilization of Platinum Oxygen- Reduction Electrocatalysts Using Gold Clusters, Surface Structure and Stability of PdZn and PtZn Alloys: Density-Functional Slab Model Studies, 2007.

B. Avasarala, R. Moore, and P. Haldar, Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions, Electrochimica Acta, vol.55, issue.16, pp.4765-4771, 2010.
DOI : 10.1016/j.electacta.2010.03.056

Y. J. Kang, J. B. Pyo, X. C. Ye, T. R. Gordon, and C. B. Murray, Zn Intermetallic Nanocrystals, ACS Nano, vol.6, issue.6, pp.5642-5647, 2012.
DOI : 10.1021/nn301583g

S. Shaikhutdinov and H. J. Freund, Ultrathin Oxide Films on Metal Supports: Structure-Reactivity Relations, Annual Review of Physical Chemistry, vol.63, issue.1, pp.619-633, 2012.
DOI : 10.1146/annurev-physchem-032511-143737

S. Shaikhutdinov and H. Freund, CO Oxidation over ZnO Films on Pt(111) at near-Atmospheric Pressures, J. Catal, vol.301, pp.227-232, 2013.

B. Morana, B. J. Nelissen, R. Van-rijn, and J. F. Creemer, Visualization of Oscillatory Behaviour of Pt Nanoparticles Catalysing CO Oxidation, Nat. Mater, vol.13, pp.884-890, 2014.

F. Tao, S. Dag, L. W. Wang, Z. Liu, D. R. Butcher et al., Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage, Science, vol.108, issue.5635, pp.850-853, 2010.
DOI : 10.1021/jp0492218

D. R. Butcher, M. E. Grass, Z. H. Zeng, F. Aksoy, H. Bluhm et al., In Situ Oxidation Study of Pt(110) and Its Interaction with CO, Journal of the American Chemical Society, vol.133, issue.50, pp.20319-20325, 2011.
DOI : 10.1021/ja207261s

J. Bandlow, P. Kaghazchi, T. Jacob, C. Papp, B. Trankenschuh et al., Oxidation of stepped Pt(111) studied by x-ray photoelectron spectroscopy and density functional theory, Physical Review B, vol.83, issue.17, p.174107, 2011.
DOI : 10.1016/j.susc.2008.08.008

D. J. Miller, H. Oberg, S. Kaya, H. S. Casalongue, D. Friebel et al., Oxidation of Pt(111) under Near-Ambient Conditions, Physical Review Letters, vol.107, issue.19, 2011.
DOI : 10.1002/anie.201101620

M. Salmeron and G. A. Somorjai, Formation of Nanometer-Sized Surface Platinum Oxide Clusters on a Stepped Pt(557) Single Crystal Surface Induced by Oxygen: A High-Pressure STM and Ambient-Pressure XPS Study, Nano Lett, vol.12, pp.1491-1497, 2012.

G. A. Somorjai, Structure and Chemical State of the Pt(557) Surface during Hydrogen Oxidation Reaction Studied by in Situ Scanning Tunneling Microscopy and X-Ray Photoelectron Spectroscopy, J. Am. Chem. Soc, vol.135, pp.12560-12563, 2013.

X. G. Guo, Q. Fu, Y. X. Ning, M. M. Wei, M. R. Li et al., Ferrous Centers Confined on Core???Shell Nanostructures for Low-Temperature CO Oxidation, Journal of the American Chemical Society, vol.134, issue.30, pp.2012-12350
DOI : 10.1021/ja3038883

M. Peuckert and H. P. Bonzel, Characterization of oxidized platinum surfaces by X-ray photoelectron spectroscopy, Surface Science, vol.145, issue.1, pp.239-259, 1984.
DOI : 10.1016/0039-6028(84)90778-7

D. Sondericker, Photoemission from Mass-Selected Monodispersed Pt Clusters, Phys. Rev. Lett, vol.64, pp.780-784, 1990.

Q. Fu and T. Wagner, Interaction of nanostructured metal overlayers with oxide surfaces, Surface Science Reports, vol.62, issue.11, pp.431-498, 2007.
DOI : 10.1016/j.surfrep.2007.07.001

Z. Zhang and J. Yates, Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces, Chemical Reviews, vol.112, issue.10, pp.5520-5551, 2012.
DOI : 10.1021/cr3000626

F. Besenbacher and M. Salmeron, Charge State of Gold Nanoparticles Supported on Titania under Oxygen Pressure, Angew. Chem. Int. Ed, vol.50, pp.2266-2269, 2011.

B. Hammer, S. Wendt, and F. Besenbacher, Dissociative and Molecular Oxygen Chemisorption Channels on Reduced Rutile TiO2(110): An STM and TPD Study, Surf. Sci, vol.604, pp.1945-1960, 2010.

S. Bashir, A. K. Wahab, and H. Idriss, Synergism and photocatalytic water splitting to hydrogen over M/TiO 2 catalysts: Effect of initial particle size of TiO 2, Catalysis Today, vol.240, pp.242-247, 2015.
DOI : 10.1016/j.cattod.2014.05.034

C. Campbell, Transition Metal Oxides: Extra Thermodynamic Stability as Thin Films, Physical Review Letters, vol.96, issue.6, pp.96-66106, 2006.
DOI : 10.1021/cr60297a001

J. A. Rodriguez and M. Kuhn, Chemical and electronic properties of Pt in bimetallic surfaces: Photoemission and CO???chemisorption studies for Zn/Pt(111), The Journal of Chemical Physics, vol.32, issue.10, pp.4279-4289, 1995.
DOI : 10.1088/0022-3700/13/11/023

D. Briggs and G. Beamson, Primary and secondary oxygen-induced C1s binding energy shifts in x-ray photoelectron spectroscopy of polymers, Analytical Chemistry, vol.64, issue.15, pp.1729-1736, 1992.
DOI : 10.1021/ac00039a018

U. Diebold and T. Madey, by XPS, Surface Science Spectra, vol.4, issue.3, pp.227-231, 1996.
DOI : 10.1116/1.1247794

X. Edge, Absorption Fine Structure Study, Langmuir, vol.2014, issue.30, pp.8761-8769

S. L. Sorensen, K. J. Borve, R. Feifel, A. De-fanis, and K. Ueda, The O 1s photoelectron spectrum of molecular oxygen revisited, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.41, issue.9
DOI : 10.1088/0953-4075/41/9/095101

S. L. Andersson, The use of TiO2 contaminated with phosphorus and potassium as a support for V2O5 catalysts in the selective oxidation of toluene, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.82, issue.5, pp.1537-1552, 1986.
DOI : 10.1039/f19868201537

X. Y. Deng, A. Verdaguer, T. Herranz, C. Weis, H. Bluhm et al., O, Langmuir, vol.24, issue.17, pp.9474-9478, 2008.
DOI : 10.1021/la8011052

URL : https://hal.archives-ouvertes.fr/in2p3-01196946

S. Yoshimoto, K. Akikubo, I. Matsuda, and J. Yoshinobu, Real-Time Observation of Reaction Processes of CO2 on Cu(997) by Ambient-Pressure X-Ray Photoelectron Spectroscopy, Top. Catal, vol.59, pp.526-531, 2016.

B. Kempgens, K. Maier, A. Kivimaki, H. M. Koppe, and M. Neeb, Vibrational excitation in C 1s and O 1s photoionization of CO, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.30, issue.21, pp.741-747, 1997.
DOI : 10.1088/0953-4075/30/21/005

C. Puglia and N. Martensson, Overlayer Structure from Adsorbate and Substrate Core-Level Binding-Energy Shifts -Co, Cch3 and O on Pt(111), Surf. Sci, pp.315-983, 1994.

K. Bleakley and P. Hu, Density Functional Theory Study of the Interaction between CO and on a Pt Surface, J, issue.111111111

P. M. Kowalski, B. Meyer, and C. Hattig, Formation of Weakly Bound, Ordered Adlayers of CO on Rutile TiO2(110): A Combined Experimental and Theoretical Study, J. Chem. Phys, vol.130, pp.144703-155, 2009.

W. Benbalagh, R. Silly, M. G. Sirotti, and F. , Oxidation of Small Supported Platinum-Based Nanoparticles Under Near-Ambient Pressure Exposure to Oxygen, Top. Catal, vol.59, pp.550-563, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01480742

R. Stumpf, R. Watwe, and J. Dumesic, The CO/Pt(111) Puzzle, J. Phys. Chem. B, vol.105, pp.4018-4025, 2001.

M. A. Newton, D. Ferri, G. Smolentsev, V. Marchionni, and M. Nachtegaal, Room-temperature carbon monoxide oxidation by oxygen over Pt/Al2O3 mediated by reactive platinum carbonates, Nature Communications, vol.85, issue.1, pp.2015-8675
DOI : 10.1063/1.4890668

URL : http://www.nature.com/articles/ncomms9675.pdf

J. A. Rodriguez, The chemical properties of bimetallic surfaces: bonding between CO and Zn on Ru(001), Surface Science Letters, vol.289, issue.1-2, pp.584-590, 1993.
DOI : 10.1016/0167-2584(93)90725-X

P. Songsiriritthigul, Oxidation of Zn in UHV Environment at Low Temperature

B. Meyer and D. Marx, First-principles study of CO adsorption on ZnO surfaces, Journal of Physics: Condensed Matter, vol.15, issue.2
DOI : 10.1088/0953-8984/15/2/112

C. Woll, The chemistry and physics of zinc oxide surfaces, Progress in Surface Science, vol.82, issue.2-3, pp.55-120, 2007.
DOI : 10.1016/j.progsurf.2006.12.002

P. Esser, R. Feierabend, and W. Gopel, Comparative Study on the Reactivity of Polycrystalline and Single Crystal ZnO Surfaces: Catalytic Oxidation of CO, Berichte der Bunsengesellschaft f??r physikalische Chemie, vol.22, issue.5
DOI : 10.1103/PhysRevB.22.6447

G. Hussain, Oxidation of CO by O-2 over ZnO Studied by FTIR Spectroscopy

F. Traeger, D. Langenberg, and M. Muhler, CO2 Activation by ZnO through the Formation of an Unusual Tridentate Surface Carbonate, Angew. Chem. Int

Q. L. Tang and Q. H. Luo, Calculations, The Journal of Physical Chemistry C, vol.117, issue.44, pp.22954-22966, 2013.
DOI : 10.1021/jp407970a

URL : https://hal.archives-ouvertes.fr/hal-01511120

P. Mars and P. W. Van-krevelen, Oxidations carried out by means of vanadium oxide catalysts, Chemical Engineering Science, vol.3, pp.41-59, 1954.
DOI : 10.1016/S0009-2509(54)80005-4

R. G. Pala and H. Metiu, Modification of the Oxidative Power of ZnO)over- bar0) Surface by Substituting Some Surface Zn Atoms with Other Metals, J, vol.10, issue.1

H. Noei, A. Birkner, K. Merz, M. Muhler, and Y. M. Wang, Probing the Mechanism of Low-Temperature CO Oxidation on Au/ZnO Catalysts by Vibrational Spectroscopy, The Journal of Physical Chemistry C, vol.116, issue.20, pp.11181-11188, 2012.
DOI : 10.1021/jp302723r

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollár, The surface energy of metals, Surface Science, vol.411, issue.1-2, pp.186-202, 1998.
DOI : 10.1016/S0039-6028(98)00363-X

H. Tissot, G. Olivieri, J. Gallet, F. Bournel, M. G. Silly et al., Cation Depth-Distribution at Alkali Halide Aqueous Solution Surfaces, The Journal of Physical Chemistry C, vol.119, issue.17
DOI : 10.1021/jp512695c

URL : https://hal.archives-ouvertes.fr/hal-01480753

A. Sode and D. Bizzotto, Adsorbate-induced surface reorganization on PtZn electrode, Electrochimica Acta, vol.54, issue.3, pp.1095-1101, 2009.
DOI : 10.1016/j.electacta.2008.08.046

F. Pesty, H. P. Steinruck, and T. Madey, Thermal stability of Pt films on TiO2(110): evidence for encapsulation, Surface Science, vol.339, issue.1-2, pp.83-95, 1995.
DOI : 10.1016/0039-6028(95)00605-2

S. Alayoglu and G. A. Somorjai, Ambient Pressure X-ray Photoelectron Spectroscopy for Probing Monometallic, Bimetallic and Oxide-Metal Catalysts Under Reactive Atmospheres and Catalytic Reaction Conditions, Topics in Catalysis, vol.14, issue.5-7, pp.420-438, 2016.
DOI : 10.1039/C3LC50971K

C. G. Tang, M. J. Spencer, and A. S. Barnard, Activity of ZnO polar surfaces: an insight from surface energies, Phys. Chem. Chem. Phys., vol.90, issue.40, pp.22139-22144, 2014.
DOI : 10.1103/PhysRevLett.90.106102

H. F. Wilson, C. G. Tang, and A. S. Barnard, Morphology of Zinc Oxide Nanoparticles and Nanowires: Role of Surface and Edge Energies, The Journal of Physical Chemistry C, vol.120, issue.17
DOI : 10.1021/acs.jpcc.6b01479

H. Reiss, The Fermi level and the redox potential, The Journal of Physical Chemistry, vol.89, issue.18, pp.3783-3791, 1985.
DOI : 10.1021/j100264a005

H. Gerischer, Fermi levels in electrolytes and the absolute scale of redox potentials, Applied Physics Letters, vol.139, issue.4, pp.43-393, 1983.
DOI : 10.1063/1.433746

I. Song, B. Zuckerman, A. J. Weinberger, and E. E. Becklin, Extreme collisions between planetesimals as the origin of warm dust around a Sun-like star, Nature, vol.612, issue.7049, pp.363-365, 2005.
DOI : 10.1086/421991

E. Van-dishoeck, Astrochemistry of Dust, Ice and Gas: Introduction and Overview. Faraday Discuss, pp.1-39, 2014.

C. H. Wu, R. S. Weatherup, and M. B. Salmeron, Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: old methods, new tricks, Physical Chemistry Chemical Physics, vol.2, issue.404
DOI : 10.1101/cshperspect.a002162

A. Yulaev, I. Vlassiouk, and A. Kolmakov, Photoelectron Spectroscopy of Wet and Gaseous Samples through Graphene Membranes, Nanoscale, vol.6, pp.14394-14403, 2014.

L. Gregoratti, T. O. Mentes, A. Locatelli, and M. Kiskinova, Beam-induced effects in soft X-ray photoelectron emission microscopy experiments, Journal of Electron Spectroscopy and Related Phenomena, vol.170, issue.1-3, pp.13-18, 2009.
DOI : 10.1016/j.elspec.2008.09.003