O. Lehmann and . Structur, Structur, System und magnetisches Verhalten fl??ssiger Krystalle und deren Mischbarkeit mit festen, Annalen der Physik, vol.1, issue.8, pp.649-705, 1900.
DOI : 10.1002/andp.18852600102

O. Lehmann, Flüssige Krystalle und ihr scheinbares Leben (Verlag von Leopod Voss, 1921) (cf, p.3

H. Pleiner and H. Brand, Nonlinear dissipative effects in the hydrodynamics of liquid crystals, Physical Review A, vol.42, issue.2, p.4, 1982.
DOI : 10.1017/S0022112068001436

H. Pleiner and H. R. Brand, Hydrodynamics and Electrohydrodynamics of Liquid Crystals », in Pattern Formation in Liquid Crystals

N. Éber and I. Jánossy, An experiment on the thermomechanical coupling in cholesterics, Molecular Crystals and Liquid Crystals, vol.41, issue.7-8, pp.233-238, 1982.
DOI : 10.1051/jphyslet:019800041020049100

N. Éber and I. Jánossy, Thermomechanical Coupling in Compensated Cholesterics, Thermomechanical Coupling in Compensated Cholesterics, pp.311-316, 1984.
DOI : 10.1143/JJAP.14.651

N. Éber, I. Jánossy, and . Note-on, Macroscopic Description of Compensated Cholesteric and Chiral Smectic Liquid Crystals, Molecular Crystals and Liquid Crystals Letters, vol.5, pp.81-86, 1988.

S. Sarman, Molecular theory of thermomechanical coupling in cholesteric liquid crystals, The Journal of Chemical Physics, vol.110, issue.24, pp.12218-12225, 1999.
DOI : 10.1080/00268979300102221

S. Sarman, Molecular dynamics simulation of thermomechanical coupling in cholesteric liquid crystals », Molecular Physics 98, pp.27-35, 2000.

S. Sarman, Transport properties of cholesteric liquid crystals studied by molecular dynamics simulation, Molecular Physics, vol.89, issue.15, pp.1235-1247, 2001.
DOI : 10.1063/1.474666

S. Sarman and A. Laaksonen, Thermomechanical coupling, heat conduction and director rotation in cholesteric liquid crystals studied by molecular dynamics simulation, Phys. Chem. Chem. Phys., vol.80, issue.10, pp.3442-3453, 2013.
DOI : 10.1080/00268979300102221

S. Sarman, Y. Wang, and A. Laaksonen, Thermomechanical coupling in coarse grained cholesteric liquid crystal model systems with pitches of realistic length, Physical Chemistry Chemical Physics, vol.68, issue.25, pp.16822-16829, 2016.
DOI : 10.1080/00268978900102851

A. Dequidt and P. Oswald, Lehmann effect in compensated cholesteric liquid crystals, Europhysics Letters (EPL), vol.80, issue.2, p.26001, 2007.
DOI : 10.1209/0295-5075/80/26001

URL : https://hal.archives-ouvertes.fr/ensl-00202319

P. Oswald and A. Dequidt, Measurement of the Continuous Lehmann Rotation of Cholesteric Droplets Subjected to a Temperature Gradient, Physical Review Letters, vol.11, issue.21, pp.217802-111, 2008.
DOI : 10.1063/1.444195

URL : https://hal.archives-ouvertes.fr/ensl-00351675

P. Oswald, « Lehmann rotation of cholesteric droplets subjected to a temperature gradient: Role of the concentration of chiral molecules », The European Physical Journal, pp.377-383, 2009.

P. Oswald, Microscopic vs. macroscopic origin of the Lehmann effect in cholesteric liquid crystals, The European Physical Journal E, vol.99, issue.2, pp.47-118, 2012.
DOI : 10.1080/00268970110046321

P. Oswald, L. Jørgensen, A. ?ywoci?ski, . Lehmann, and . Power, Lehmann rotatory power: a new concept in cholesteric liquid crystals, cholesteric liquid crystals, pp.601-613, 2011.
DOI : 10.1103/PhysRevA.30.3241

P. Oswald and A. Dequidt, Direct measurement of the thermomechanical Lehmann coefficient in a compensated cholesteric liquid crystal, EPL (Europhysics Letters), vol.83, issue.1, pp.16005-16010, 2008.
DOI : 10.1209/0295-5075/83/16005

URL : https://hal.archives-ouvertes.fr/ensl-00351719

P. Oswald, About the Leslie explanation of the Lehmann effect in cholesteric liquid crystals, EPL (Europhysics Letters), vol.97, issue.3, p.5, 2012.
DOI : 10.1209/0295-5075/97/36006

J. Yoshioka, F. Ito, Y. Suzuki, H. Takahashi, H. Takizawa et al., Director/barycentric rotation in cholesteric droplets under temperature gradient, Soft Matter, vol.9, issue.32, pp.5869-5877
DOI : 10.1038/nmat2853

A. Dequidt, G. Poy, and P. Oswald, Generalized drift velocity of a cholesteric texture in a temperature gradient, Soft Matter, vol.35, issue.36, pp.7-111, 2016.
DOI : 10.1103/PhysRevA.35.3122

URL : https://hal.archives-ouvertes.fr/hal-01483583

P. Oswald, G. Poy, and A. Dequidt, Lehmann rotation of twisted bipolar cholesteric droplets: role of Leslie, Akopyan and Zel???dovich thermomechanical coupling terms of nematodynamics, Liquid Crystals, pp.1-20, 2016.
DOI : 10.1063/1.430682

URL : https://hal.archives-ouvertes.fr/hal-01648013

P. Oswald and P. Pieranski, Nematic and cholesteric liquid crystals: concepts and physical properties illustrated by experiments, 2006.
DOI : 10.1201/9780203023013

S. R. De-groot and P. Mazur, Non-equilibrium thermodynamics (Dover, 1984) (cf, p.11

P. G. De-gennes and J. Prost, The Physics of Liquid Crystals (Oxford, 1993) (cf, p.12

J. Baudry, M. Brazovskaia, L. Lejcek, P. Oswald, and S. Pirkl, Arch-texture in cholesteric liquid crystals, Arch-texture in cholesteric liquid crystals, pp.893-901, 1996.
DOI : 10.1080/00268948208074481

P. Pieranski, M. H. Godinho, and S. ?opar, Persistent quasiplanar nematic texture: Its properties and topological defects, Physical Review E, vol.94, issue.4, p.24, 2016.
DOI : 10.1088/0953-8984/2/7/016

P. Oswald, Easy axis memorization with active control of the azimuthal anchoring energy in nematic liquid crystals, EPL (Europhysics Letters), vol.107, issue.2, pp.26003-26027, 2014.
DOI : 10.1209/0295-5075/107/26003

G. Poy, F. Bunel, and P. Oswald, Role of anchoring energy on the texture of cholesteric droplets: Finite-element simulations and experiments, Physical Review E, vol.96, issue.1, pp.45-63, 2017.
DOI : 10.1039/C6SM01359G

F. Grandjean, « Les propriétés optiques de certaines structures de liquides anisotropes, p.46, 1919.

S. Faetti and V. Palleschi, -alkyl)biphenyl liquid crystals, Physical Review A, vol.89, issue.6, pp.47-59, 1984.
DOI : 10.1080/00268948208074481

J. Ignés-mullol, G. Poy, and P. Oswald, Continuous Rotation of Achiral Nematic Liquid Crystal Droplets Driven by Heat Flux, Physical Review Letters, vol.44, issue.5, pp.49-81, 2016.
DOI : 10.1063/1.1401800

V. R. Horowitz, L. A. Janowitz, A. L. Modic, P. A. Heiney, and P. J. Collings, Aggregation behavior and chromonic liquid crystal properties of an anionic monoazo dye, Physical Review E, vol.51, issue.4, p.49, 2005.
DOI : 10.1103/PhysRevA.11.684

G. Posnjak, S. ?opar, and I. Mu?evi?, Points, skyrmions and torons in chiral nematic droplets, Scientific Reports, vol.36, issue.1, pp.26361-2016
DOI : 10.1080/02678290903056095

L. Gil and J. M. Gilli, « Surprising dynamics of some cholesteric liquid crystal patterns », Physical review letters 80, p.51, 1998.

J. H. Adler, D. B. Emerson, S. P. Maclachlan, and T. A. , Constrained Optimization for Liquid Crystal Equilibria, Constrained Optimization for Liquid Crystal Equilibria, pp.50-76
DOI : 10.1137/141001846

E. C. Gartland, A. Ramage, and «. Method, A Renormalized Newton Method for Liquid Crystal Director Modeling, SIAM Journal on Numerical Analysis, vol.53, issue.1, pp.251-278, 2015.
DOI : 10.1137/130942917

T. Steihaug, The Conjugate Gradient Method and Trust Regions in Large Scale Optimization, SIAM Journal on Numerical Analysis, vol.20, issue.3, pp.626-637, 1983.
DOI : 10.1137/0720042

M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, and M. G. Sala, ML 5.0 smoothed aggregation user's guide, rapp. tech, pp.2006-2649, 2006.

W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat et al., Turcksin et D. Wells, « The deal. II library, version 8, Journal of Numerical Mathematics, vol.4, issue.24, pp.135-141, 2016.

N. V. Madhusudana and R. Pratibha, Elasticity and Orientational Order in Some Cyanobiphenyls: Part IV. Reanalysis of the Data, Molecular Crystals and Liquid Crystals, vol.1, issue.1-4, pp.249-257, 1982.
DOI : 10.1063/1.436508

J. Nehring and A. Saupe, On the Elastic Theory of Uniaxial Liquid Crystals, The Journal of Chemical Physics, vol.8, issue.1, pp.337-343, 1971.
DOI : 10.1063/1.1672073

H. Yokoyama, S. Kobayashi, and H. Kamei, Measurement of Director Orientation at the Nematic???Isotropic Interface Using a Substrate-Nucleated Nematic Film, Molecular Crystals and Liquid Crystals, vol.36, issue.3-4, pp.311-331, 1984.
DOI : 10.1080/00268948208074487

J. Yoshioka, F. Ito, and Y. Tabe, Stability of a double twisted structure in spherical cholesteric droplets, Soft Matter, vol.87, issue.8, pp.2400-2407
DOI : 10.1103/PhysRevLett.87.195507

G. K. Auernhammer, J. Zhao, and B. Ullrich, Frequency-dependent deformation of liquid crystal droplets in an external electric field, The European Physical Journal E, vol.206, issue.4, pp.387-394, 2009.
DOI : 10.1016/j.jcp.2004.11.032

P. Oswald, « Elasto-and electro-capillary instabilities of a nematic-isotropic interface: Experimental results », The European Physical Journal, pp.69-79, 2010.

T. Yamamoto, M. Kuroda, and M. Sano, Three-dimensional analysis of thermomechanically rotating cholesteric liquid crystal droplets under a temperature gradient, Europhysics Letters, vol.109, issue.101, p.77, 2015.

J. L. Ericksen, Inequalities in Liquid Crystal Theory, Inequalities in Liquid Crystal Theory, pp.1205-79, 1966.
DOI : 10.1063/1.1761821

P. Oswald and G. Poy, Lehmann rotation of cholesteric droplets: Role of the sample thickness and of the concentration of chiral molecules, Physical Review E, vol.91, issue.3, p.81, 2015.
DOI : 10.1080/02678292.2013.783936

M. J. Assael, S. Botsios, K. Gialou, and I. N. Metaxa, Thermal Conductivity of Polymethyl Methacrylate (PMMA) and Borosilicate Crown Glass BK7, Thermal Conductivity of Polymethyl Methacrylate (PMMA) and Borosilicate Crown Glass BK7 », pp.1595-1605, 2005.
DOI : 10.1007/s10765-005-8106-5

M. Marinelli, F. Mercuri, U. Zammit, and F. Scudieri, homologous series, Thermal conductivity and thermal diffusivity of the cyanobiphenyl (n CB) homologous series, pp.5860-81, 1998.
DOI : 10.1051/jphys:01979004004037500

P. Oswald, G. Poy, F. Vittoz, and V. Popa-nita, Experimental relationship between surface and bulk rotational viscosities in nematic liquid crystals, Liquid Crystals, vol.25, issue.6, pp.734-744, 2013.
DOI : 10.1080/00268948308073148

G. Poy and P. Oswald, Do Lehmann cholesteric droplets subjected to a temperature gradient rotate as rigid bodies?, Soft Matter, vol.90, issue.9, pp.2604-2611
DOI : 10.1103/PhysRevE.90.040501

P. Oswald, Experimental study of the growth of cholesteric fingers subjected to an AC electric field and a temperature gradient, Liquid Crystals, vol.34, issue.9, pp.967-975, 2009.
DOI : 10.1143/JPSJ.65.2713

URL : https://hal.archives-ouvertes.fr/ensl-00508344