Skip to Main content Skip to Navigation

Machine learning for classifying abnormal brain tissue progression based on multi-parametric Magnetic Resonance data

Adrian Ion-Margineanu 1
1 RMN et optique : De la mesure au biomarqueur
CREATIS - Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé
Abstract : Machine learning is a subdiscipline in the field of artificial intelligence, which focuses on algorithms capable of adapting their parameters based on a set of observed data, by optimizing an objective or cost function. Machine learning has been the subject of large interest in the biomedical community because it can improve sensitivity and/or specificity of detection and diagnosis of any disease, while increasing the objectivity of the decision-making process. With the late increase in volume and complexity of medical data being collected, there is a clear need for applying machine learning algorithms in multi-parametric analysis for new detection and diagnostic modalities. Biomedical imaging is becoming indispensable for healthcare, as multiple modalities, such as Magnetic Resonance Imaging (MRI), Computed Tomography, and Positron Emission Tomography, are being increasingly used in both research and clinical settings. The non-invasive standard for brain imaging is MRI, as it can provide structural and functional brain maps with high resolution, all within acceptable scanning times. However, with the increase of MRI data volume and complexity, it is becoming more time consuming and difficult for clinicians to integrate all data and make accurate decisions. The aim of this thesis is to develop machine learning methods for automated preprocessing and diagnosis of abnormal brain tissues, in particular for the followup of glioblastoma multiforme (GBM) and multiple sclerosis (MS). Current conventional MRI (cMRI) techniques are very useful in detecting the main features of brain tumours and MS lesions, such as size and location, but are insufficient in specifying the grade or evolution of the disease. Therefore, the acquisition of advanced MRI, such as perfusion weighted imaging (PWI), diffusion kurtosis imaging (DKI), and magnetic resonance spectroscopic imaging (MRSI), is necessary to provide complementary information such as blood flow, tissue organisation, and metabolism, induced by pathological changes. In the GBM experiments our aim is to discriminate and predict the evolution of patients treated with standard radiochemotherapy and immunotherapy based on conventional and advanced MRI data. In the MS experiments our aim is to discriminate between healthy subjects and MS patients, as well as between different MS forms, based only on clinical and MRSI data. As a first experiment in GBM follow-up, only advanced MRI parameters were explored on a relatively small subset of patients. Average PWI parameters computed on manually delineated regions of interest (ROI) were found to be perfect biomarkers for predicting GBM evolution one month prior to the clinicians. In a second experiment in GBM follow-up of a larger subset of patients, MRSI was replaced by cMRI, while PWI and DKI parameter quantification was automated. Feature extraction was done on semi-manual tumour delineations, thereby reducing the time put by the clinician for manual delineating the contrast enhancing (CE) ROI. Learning a modified boosting algorithm on features extracted from semi-manual ROIs was shown to provide very high accuracy results for GBM diagnosis. In a third experiment in GBM follow-up of an extended subset of patients, a modified version of parametric response maps (PRM) was proposed to take into account the most likely infiltration area of the tumour, reducing even further the time a clinician would have to put for manual delineating the tumour, because all subsequent MRI scans were registered to the first one. Two types of computing PRM were compared, one based on cMRI and one based on PWI, as features extracted with these two modalities were the best in discriminating the GBM evolution, according to results from the previous two experiments. Results obtained within this last GBM analysis showed that using PRM based on cMRI is clearly superior to using PRM based on PWI [etc…]
Document type :
Complete list of metadatas

Cited literature [250 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Wednesday, April 18, 2018 - 9:54:09 AM
Last modification on : Friday, October 23, 2020 - 5:03:37 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01769443, version 1


Adrian Ion-Margineanu. Machine learning for classifying abnormal brain tissue progression based on multi-parametric Magnetic Resonance data. Bioengineering. Université de Lyon, 2017. English. ⟨NNT : 2017LYSE1224⟩. ⟨tel-01769443⟩



Record views


Files downloads