A. H. Eng, S. Kawahara, Y. Tanaka, A. H. Eng, Y. Tanaka et al., -Isofrene Units in Natural Rubber, Rubber Chemistry and Technology, vol.67, issue.1, pp.159-152, 1992.
DOI : 10.5254/1.3538662

L. Tarachiwin, J. Sakdapipanich, K. Ute, T. Kitayama, and Y. Tanaka, Structural Characterization of ??-Terminal Group of Natural Rubber. 2. Decomposition of Branch-Points by Phospholipase and Chemical Treatments, Biomacromolecules, vol.6, issue.4, p.1858, 2005.
DOI : 10.1021/bm058004p

L. Wood, Crystallization of Unvulcanized Rubber at Different Temperatures, Journal of Applied Physics, vol.17, issue.5, p.362, 1946.
DOI : 10.1063/1.1707725

T. Kakubo, A. Matsuura, S. Kawahara, and Y. Tanaka, -1,4-Polyisoprene, Rubber Chemistry and Technology, vol.71, issue.1, p.70, 1998.
DOI : 10.5254/1.3538473

H. Kim, L. J. Mandelkern, . Polym, and . Sci, Part -2 Polym. Phys, C. J. Polym. Sci. Polym. Phys. Ed, vol.10, issue.6427, pp.1125-1138, 1972.

B. Huneau, STRAIN-INDUCED CRYSTALLIZATION OF NATURAL RUBBER: A REVIEW OF X-RAY DIFFRACTION INVESTIGATIONS, Rubber Chemistry and Technology, vol.84, issue.3, p.425, 2011.
DOI : 10.5254/1.3601131

URL : https://hal.archives-ouvertes.fr/hal-01007326

S. Trabelsi, P. Albouy, and J. Rault, Stress-Induced Crystallization Properties of Natural and Synthetic CIS-Polyisoprene, Rubber Chemistry and Technology, vol.77, issue.2, p.303, 2004.
DOI : 10.5254/1.3547825

T. Forestier, P. Pasetto, F. Peruch, and A. Deffieux, Biomimetic processes II. Carbocationic polymerization of isopentenyl alcohol: A model for the synthesis of natural rubber?, Materials Science and Engineering: C, vol.29, issue.2, p.357, 2009.
DOI : 10.1016/j.msec.2008.06.025

URL : https://hal.archives-ouvertes.fr/hal-00380385

F. W. Stavely, H. L. Hsieh, and R. P. Quirk, Coral Rubber???A Cis-1,4-Polyisoprene, Industrial & Engineering Chemistry, vol.48, issue.4, pp.778-67, 1956.
DOI : 10.1021/ie50556a032

M. Morton, J. R. Rupert, F. E. Bailey, E. J. Vandenberg, A. Blumstein et al., Initiation of Polymerization

R. Pautrat and J. Marteau, Method for the preparation of rubbers with low molecular weights through degradation of macromolecular polyenes, and the products thus obtained

A. Alimuniar, M. A. Yarmo, M. A. Rahman, S. Kohjiya, Y. Ikeda et al., Metathesis degradation of natural rubber, Polymer Bulletin, vol.15, issue.1, p.119, 1990.
DOI : 10.1007/BF00983973

N. Kébir, I. Campistron, A. Laguerre, J. Pilard, C. Bunel et al., ) Kébir, N.; Campistron, I.; Laguerre, A.; Pilard, J.-F.; Bunel, C. J. Appl. Polym. Sci, vol.1, issue.1223, p.1677, 2011.

N. Kébir, Elaboration de nouveaux polyuréthanes à partir de cis-1,4-oligoisoprènes hétérocarbonyltéléchéliques issus de la dégradation contrôlée du cis-1,4-polyisoprène de haute masse, 2005.

A. F. Abdel-magid and S. J. Mehrman, A Review on the Use of Sodium Triacetoxyborohydride in the Reductive Amination of Ketones and Aldehydes, Organic Process Research & Development, vol.10, issue.5, p.971, 2006.
DOI : 10.1021/op0601013

A. Mazumdar, F. J. Feher, T. T. Tidwell, A. Ketenes-alizadeh, N. Zohreh et al., Functionalized elastomer. 8962759, 8083. (13) Zhao, W.; Gnanou, pp.63-6193, 2006.

S. Kawahara and Y. Tanaka, Plasticization and crystallization of cis-1,4 polyisoprene mixed with methyl linolate, Journal of Polymer Science Part B: Polymer Physics, vol.33, issue.5, p.753, 1995.
DOI : 10.1002/polb.1995.090330503

S. Kohjiya and . Ed, Woodhead publishing in materials, Chemistry

A. N. Gent, S. Kawahara, and . Zhao, -1,4-Polyisoprene, Rubber Chemistry and Technology, vol.71, issue.4, p.668, 1998.
DOI : 10.5254/1.3538496

S. Trabelsi, P. Albouy, and J. Rault, Stress-Induced Crystallization Properties of Natural and Synthetic CIS-Polyisoprene, Rubber Chemistry and Technology, vol.77, issue.2, p.303, 2004.
DOI : 10.5254/1.3547825

L. Tarachiwin, J. Sakdapipanich, K. Ute, T. Kitayama, and Y. Tanaka, Structural Characterization of ??-Terminal Group of Natural Rubber. 2. Decomposition of Branch-Points by Phospholipase and Chemical Treatments, Biomacromolecules, vol.6, issue.4, p.1858, 2005.
DOI : 10.1021/bm058004p

L. Wood, Crystallization of Unvulcanized Rubber at Different Temperatures, Journal of Applied Physics, vol.17, issue.5, p.362, 1946.
DOI : 10.1063/1.1707725

A. N. Gent, S. Kawahara, and J. Zhao, -1,4-Polyisoprene, Rubber Chemistry and Technology, vol.71, issue.4, p.668, 1998.
DOI : 10.5254/1.3538496

T. Kakubo, A. Matsuura, S. Kawahara, and Y. Tanaka, -1,4-Polyisoprene, Rubber Chemistry and Technology, vol.71, issue.1, p.70, 1998.
DOI : 10.5254/1.3538473

H. L. Hsieh and R. P. Quirk, Anionic Polymerization : Principles and Practical Applications, 1996.

V. Jitchum, S. Perrier, R. M. Thomas, and R. H. Grubbs, Living Radical Polymerization of Isoprene via the RAFT Process, Macromolecules, vol.40, issue.5, pp.1408-1451, 2007.
DOI : 10.1021/ma061889s

L. Friebe, O. Nuyken, and W. Obrecht, In Neodymium Based Ziegler Catalysts ? Fundamental Chemistry, pp.1-154, 2006.

A. F. Abdel-magid and S. J. Mehrman, A Review on the Use of Sodium Triacetoxyborohydride in the Reductive Amination of Ketones and Aldehydes, Organic Process Research & Development, vol.10, issue.5, p.971, 2006.
DOI : 10.1021/op0601013

E. B. Getz, M. Xiao, T. Chakrabarty, R. Cooke, and P. R. Selvin, A Comparison between the Sulfhydryl Reductants Tris(2-carboxyethyl)phosphine and Dithiothreitol for Use in Protein Biochemistry, Analytical Biochemistry, vol.273, issue.1, p.73, 1999.
DOI : 10.1006/abio.1999.4203

P. W. Riddles, R. L. Blakeley, and B. Zerner, Ellman's reagent: 5,5???-dithiobis(2-nitrobenzoic acid)???a reexamination, Analytical Biochemistry, vol.94, issue.1, p.75, 1979.
DOI : 10.1016/0003-2697(79)90792-9

A. J. Dirks, Ton); van Berkel, S. S.; Hatzakis, N. S.; Opsteen, J. A.; van Delft, F. L

P. Galvis, C. E. Kouznetsov, V. V. Kramer, J. R. Deming, and T. J. Biomacromolecules, Natural rubbers (NRs) RRIM600 and PB 235 were kindly provided by UMR iATE/LBTNR/Katsetsart University in Thailand. Cis-1,4-polyisoprene (IR) (97% cis-1,4, M n = 600 kg/mol , Ð = 2.8) was purchased from Scientific Polymer Products, Inc. 3- Chloroperoxybenzoic acid (mCPBA) (70-75%, Acros), 3668. Conclusion and Outlooks MATERIAL AND METHODS Material periodic acid (H 5 IO 6 ) (? 99%, Aldrich), acetic acid (99%, Aldrich), potassium hydroxide (KOH) (85%, Aldrich), sodium borohydride (>96%, Aldrich), furfurylamine (>99%, Aldrich), dimethylaminopyridine (>98%, Aldrich) triacetoxyborohydride (NaBH(OAc) 3 ) (97%, Aldrich), diethanolamine (DEA) (99%, Alfa Aesar), ammonium acetate (98%, Aldrich) Bis(trichloromethyl)carbonate (>99%, Aldrich), (ethanolamine, pp.407-419, 2010.

. Aesar, 10-undecenoyl chloride (97%, Aldrich), palmitoyl chloride (98%, Aldrich), 3-aminopropyl-functionalized silica gel, methyl linoleate (ML) (99%, Aldrich), linoleoyl chloride (>99%, Aldrich) oxalyl chloride Lipase B from Candida antarctica (Chiral Vision), Bovine serum albumin (Fraction V, 99%, Aldrich) and 6-maleimidohexanoic acid (>90%, Aldrich) were used without further purification. Tetrahydrofuran (THF), dimethylformamide (DMF) and dichloromethane (DCM) were dried on alumina column, pp.40-63