E. M. Adams, I. R. Mcdonald, and K. Singer, Collective Dynamical Properties of Molten Salts: Molecular Dynamics Calculations on Sodium Chloride, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.357, issue.1688, pp.37-5779452, 1688.
DOI : 10.1098/rspa.1977.0154

A. Aguado and P. A. Madden, Molecular dynamics simulations of the liquid???vapor interface of a molten salt. III. Size asymmetry effects and binary mixtures, The Journal of Chemical Physics, vol.117, issue.16, pp.7659-7668, 2002.
DOI : 10.1021/la011269e

B. J. Alder, T. E. Et, and . Wainwright, Studies in Molecular Dynamics. I. General Method, The Journal of Chemical Physics, vol.9, issue.2, pp.459-484, 1959.
DOI : 10.1063/1.1743957

J. Alejandre, D. J. Tildesley, and G. A. Chapela, Molecular dynamics simulation of the orthobaric densities and surface tension of water, The Journal of Chemical Physics, vol.8, issue.11, pp.4574-4583, 1995.
DOI : 10.1103/PhysRevB.49.755

M. P. Allen, D. J. Et, and . Tildesley, Computer Simulation of Liquids, pp.0-19, 1989.

X. An, J. Cheng, P. Zhang, Z. Tang, and J. Wang, Determination and evaluation of the thermophysical properties of an alkali carbonate eutectic molten salt, Faraday Discussions, vol.24, issue.28, pp.327-338, 2016.
DOI : 10.1016/0022-1902(62)80205-X

S. M. Antao, I. Et, and . Hassan, 2010, «Temperature Dependence of the Structural Parameters in the Transformation of Aragonite to Calcite, as Determined from In Situ Synchrotron Powder X-ray-Diffratction Data», The Canadian Mineralogist, pp.1225-1236

A. Arakcheeva, L. Bindi, P. Pattison, N. Meisser, and G. , The incommensurately modulated structures of natural natrite at 120 and 293 K from synchrotron X-ray data, American Mineralogist, vol.95, issue.4, pp.574-581
DOI : 10.2138/am.2010.3384

G. Aubry, N. Sator, and B. Guillot, 2013, «Vesicularity, bubble formation and noble gas fractionation during MORB degassing», Chemical Geology, vol.343, issue.128, p.125

M. Bauchy, B. Guillot, M. Micoulaut, and N. Sator, Viscosity and viscosity anomalies of model silicates and magmas: A numerical investigation, Chemical Geology, vol.346, pp.47-56
DOI : 10.1016/j.chemgeo.2012.08.035

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.28, issue.6, pp.3098-3100, 1988.
DOI : 10.1103/PhysRevB.28.1809

G. W. Berg, Evidence for carbonate in the mantle, Nature, vol.85, issue.6092, pp.50-51, 1986.
DOI : 10.1038/324050a0

F. Birch, URL https, Elastic Strain of Cubic Crystals», Phys. Rev, vol.71, pp.809-824, 1947.

M. Bouhifd, A. Jephcoat, and S. Kelley, Argon solubility drop in silicate melts at high pressures: A review of recent experiments, Chemical Geology, vol.256, issue.3-4, pp.252-258, 2008.
DOI : 10.1016/j.chemgeo.2008.06.041

A. Buob, R. W. Luth, M. W. Schmidt, and P. Ulmer, «Experiments on CaCO 3 -MgCO 3 solid solutions at high pressure and temperature», American Mineralogist, vol.91, pp.2-3, 2006.

P. Burnard, M. J. Toplis, and S. Medynski, Low solubility of He and Ar in carbonatitic liquids: Implications for decoupling noble gas and lithophile isotope systems, Geochimica et Cosmochimica Acta, vol.74, issue.5, pp.1672-1683
DOI : 10.1016/j.gca.2009.11.031

M. Cassir, S. Mcphail, and A. Moreno, 2012, «Strategies and new developments in the field of molten carbonates and high-temperature fuel cells in the carbon cycle», International Journal of Hydrogen Energy, vol.37, issue.350, pp.19-345

M. Cassir, A. Ringuedé, and V. Lair, 2013, «Molten Carbonates from Fuel Cells to New Energy Devices», dans Molten Salts Chemistry, édité par F, Lantelme et H. Groult

F. Chen, P. E. Et, and . Smith, Simulated surface tensions of common water models, The Journal of Chemical Physics, vol.126, issue.22, pp.122-123, 2007.
DOI : 10.1063/1.1396676

D. Chery, V. Lair, and M. Cassir, CO2 electrochemical reduction into CO or C in molten carbonates: a thermodynamic point of view, Electrochimica Acta, vol.160, pp.74-81, 2015.
DOI : 10.1016/j.electacta.2015.01.216

D. Chery, V. Lair, and M. Cassir, «Overview on CO 2 valorization : challenge of molten carbonates», Frontiers in Energy Research, vol.3, pp.43-2296, 2015.

P. Claes, D. Moyaux, and D. Peeters, «Solubility and Solvation of Carbon Dioxide in the Molten Li 2 CO 3 /Na 2 CO 3 /K 2 CO 3 (43.5 :31.5 :25.0 mol-at 973 K I. Experimental Part», 4<583::AID-EJIC583>3.0.CO;2-Y. (Cité en pages 8, pp.583-588, 1999.

P. Claes, B. Thirion, and J. Glibert, Solubility of CO2 in the molten NA2CO3???K2CO3 (42 mol %) eutectic mixture at 800 ??C, Electrochimica Acta, vol.41, issue.1, pp.141-146, 1996.
DOI : 10.1016/0013-4686(95)00278-M

D. Corradini, F. Coudert, and R. Vuilleumier, Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion, Nature Chemistry, vol.1, issue.5, pp.454-460, 2016.
DOI : 10.1016/0263-7855(96)00018-5

D. Corradini, F. Coudert, and R. Vuilleumier, 2016b, «Insight into the Li 2 CO 3 ?K2CO 3 eutectic mixture from classical molecular dynamics : Thermodynamics, structure, and dynamics», The Journal of Chemical Physics, vol.144, issue.49, pp.104-507
DOI : 10.1063/1.4943392

URL : http://arxiv.org/pdf/1512.08369

M. F. Costa, Molecular dynamics of molten Li2CO3???K2CO3, Journal of Molecular Liquids, vol.138, issue.1-3, pp.61-68, 2008.
DOI : 10.1016/j.molliq.2007.08.001

R. Dasgupta, M. M. Et, and . Hirschmann, «The deep carbon cycle and melting in Earth's interior», Earth and Planetary Science Letters, pp.1-2, 2010.

J. Dawson, H. Pinkerton, G. Norton, and D. Pyle, «Physicochemical properties of alkali carbonatite lavas : Data from the 1988 eruption of Oldoinyo Lengai, pp.260-263, 1990.

D. Genova, D. , C. Cimarelli, K. Hess, and D. B. , 2016, «An advanced rotational rheometer system for extremely fluid liquids up to 1273 K and applications to alkali carbonate meltsk», American Mineralogist, vol.101101, issue.109, pp.953-959

S. Djordjevic, G. Et, and . Hills, «Ionic self-diffusion coefficients in molten sodium carbonate.», Transactions of the Faraday Society, pp.269-277, 1960.
DOI : 10.1039/tf9605600269

D. P. Dobson, A. P. Jones, R. Rabe, T. Sekine, K. Kurita et al., In-situ measurement of viscosity and density of carbonate melts at high pressure, Earth and Planetary Science Letters, vol.143, issue.1-4, pp.1-4, 1996.
DOI : 10.1016/0012-821X(96)00139-2

M. T. Dove, B. Winkler, M. Leslie, M. J. Harris, and E. K. Salje, «A new interatomic potential model for calcite : applications to lattice dynamics studies, phase transition, and isotope fractionation.», The American Mineralogist, pp.244-250, 1992.

T. E. Ejima, Viscosity of the eutectic dilithium carbonate-disodium carbonate-dipotassium carbonate melt, «Viscosity of the eutectic Li 2 CO 3 -Na 2 CO 3 -K 2 CO 3 Melt», pp.180-182, 1987.
DOI : 10.1021/je00048a016

G. Fiquet, F. Guyot, and J. Itie, «High-pressure X-ray diffraction study of carbonates : MgCO 3 , CaMg(CO 3 ) 2 , and CaCO 3, American Mineralogist, vol.792, issue.1, pp.15-23, 1994.

T. Fischer, P. Burnard, B. Marty, D. Hilton, E. Füri et al., Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites, Nature, vol.36, issue.7243, pp.7243-77, 2009.
DOI : 10.1038/nature07977

F. Gaillard, M. Malki, G. Iacono-marziano, M. Pichavant, and B. Scaillet, Carbonatite Melts and Electrical Conductivity in the Asthenosphere, Science, vol.146, issue.3, pp.1363-1365, 2008.
DOI : 10.1130/0091-7613(2000)28<283:UMIBCM>2.0.CO;2

URL : https://hal.archives-ouvertes.fr/insu-00343685

B. M. Gatehouse, D. J. Et, and . Lloyd, Crystal structure of anhydrous potassium carbonate, Journal of the Chemical Society, Dalton Transactions, issue.1, pp.70-72, 1973.
DOI : 10.1039/dt9730000070

M. J. Genge, A. P. Jones, and G. D. Price, An infrared and Raman study of carbonate glasses: implications for the structure of carbonatite magmas, Geochimica et Cosmochimica Acta, vol.59, issue.5, pp.927-937, 1995.
DOI : 10.1016/0016-7037(95)00010-0

M. J. Genge, G. Price, and A. P. Jones, Molecular dynamics simulations of CaCO3 melts to mantle pressures and temperatures: implications for carbonatite magmas, Earth and Planetary Science Letters, vol.131, issue.3-4, pp.225-238, 1995.
DOI : 10.1016/0012-821X(95)00020-D

S. Goedecker, M. Teter, and J. Hutter, Separable dual-space Gaussian pseudopotentials, Physical Review B, vol.44, issue.3, pp.1703-1710, 1996.
DOI : 10.1103/PhysRevB.44.8503

URL : http://arxiv.org/pdf/mtrl-th/9512004

M. Gonzalez-melchor, F. Bresme, and J. Alejandre, Molecular dynamics simulations of the surface tension of ionic liquids, The Journal of Chemical Physics, vol.122, issue.10, pp.120-122, 2005.
DOI : 10.1080/00268978000103591

N. W. Grimes, R. W. Et, and . Grimes, Dielectric polarizability of ions and the corresponding effective number of electrons, Journal of Physics: Condensed Matter, vol.10, issue.13, pp.45-46, 1998.
DOI : 10.1088/0953-8984/10/13/019

S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, Journal of Computational Chemistry, vol.10, issue.15, pp.1787-1799, 2006.
DOI : 10.1007/s002140050244

A. K. Van-groos, «High-pressure DTA study of the upper three-phase region in the system Na 2 CO 3 -H 2 O», American Mineralogist, vol.75, pp.5-6, 1990.

H. Groult, B. Kaplan, F. Lantelme, S. Komaba, N. Kumagai et al., Preparation of carbon nanoparticles from electrolysis of molten carbonates and use as anode materials in lithium-ion batteries, Solid State Ionics, vol.177, issue.9-10, pp.869-875, 2006.
DOI : 10.1016/j.ssi.2006.01.051

URL : https://hal.archives-ouvertes.fr/hal-00165117

B. Guillot, N. Et, and . Sator, A computer simulation study of natural silicate melts. Part I: Low pressure properties, Geochimica et Cosmochimica Acta, vol.71, issue.5, pp.1249-1265, 2007.
DOI : 10.1016/j.gca.2006.11.015

B. Guillot, N. Et, and . Sator, Noble gases in high-pressure silicate liquids: A computer simulation study, Geochimica et Cosmochimica Acta, vol.80, issue.128, pp.51-69
DOI : 10.1016/j.gca.2011.11.040

T. Hammouda, S. Et, and . Keshav, Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites, Chemical Geology, vol.418, pp.171-188, 2015.
DOI : 10.1016/j.chemgeo.2015.05.018

URL : https://hal.archives-ouvertes.fr/hal-01277770

C. Hartwigsen, S. Goedecker, and J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, Physical Review B, vol.82, issue.7, pp.3641-3662, 1998.
DOI : 10.1063/1.448618

P. Hohenberg, W. Et, and . Kohn, Inhomogeneous Electron Gas, «Inhomogeneous Electron Gas», pp.864-871, 1964.
DOI : 10.1088/0370-1328/80/5/307

Y. Idemoto, J. W. Richardson, N. Koura, S. Kohara, and C. Loong, Crystal structure of (LixK1 ??? x)2CO3 (x = 0, 0.43, 0.5, 0.62, 1) by neutron powder diffraction analysis, Journal of Physics and Chemistry of Solids, vol.59, issue.3, pp.363-376, 1998.
DOI : 10.1016/S0022-3697(97)00209-6

K. Igarashi, K. Tajiri, T. Asahina, and M. Kosaka, Abstract, Zeitschrift f??r Naturforschung A, vol.47, issue.5, pp.675-677, 1992.
DOI : 10.1515/zna-1992-0506

A. J. Irving, P. J. Et, and . Wyllie, Subsolidus and melting relationships for calcite, magnesite and the join CaCO3-MgCO3 36 kb, Geochimica et Cosmochimica Acta, vol.39, issue.1, pp.35-53, 1975.
DOI : 10.1016/0016-7037(75)90183-0

G. Janssen, J. Et, and . Tissen, Calculations for use in MD Simulations of Molten Alkali Carbonates, Molecular Simulation, vol.4, issue.1-2, pp.83-98, 1990.
DOI : 10.1039/tf9605600269

G. J. Janz, «Thermodynamic and transport properties for molten salts : correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data», Journal of physical and chemical reference data, vol.7, issue.121, pp.148-149, 1988.
DOI : 10.1063/1.555634

G. J. Janz, M. R. Et, and . Lorenz, Precise Measurement of Density and Surface Tension at Temperatures up to 1000??C in one Apparatus, Review of Scientific Instruments, vol.74, issue.1, pp.18-22, 1960.
DOI : 10.1039/tf9534901458

G. J. Janz, M. R. Et, and . Lorenz, Molten Carbonate Electrolytes: Physical Properties, Structure, and Mechanism of Electrical Conductance, Journal of The Electrochemical Society, vol.108, issue.11, pp.1052-1058, 1961.
DOI : 10.1149/1.2427946

G. J. Janz, F. Et, and . Saegusa, Molten Carbonates as Electrolytes: Viscosity and Transport Properties, Journal of The Electrochemical Society, vol.110, issue.5, pp.452-456, 1963.
DOI : 10.1149/1.2425785

N. P. Janz and G. Bansal, Molten Salts Data: Diffusion Coefficients in Single and Multi???Component Salt Systems, Journal of Physical and Chemical Reference Data, vol.11, issue.3, p.505, 1982.
DOI : 10.1063/1.555665

M. Javoy, The major volatile elements of the Earth: Their origin, behavior, and fate, Geophysical Research Letters, vol.47, issue.l, pp.177-180, 1997.
DOI : 10.1016/0016-7037(83)90043-1

A. P. Jones, D. Dobson, and M. Genge, Comment on physical properties of carbonatite magmas inferred from molten salt data, and application to extraction patterns from carbonatite-silicate magma chambers, Geological Magazine, vol.92, issue.01, pp.121-108, 1995.
DOI : 10.1016/0012-821X(93)90059-I

A. P. Jones, M. Genge, and L. Carmody, 2013, «Carbonate Melts and Carbonatites», Reviews in Mineralogy and Geochemistry, pp.289-322

Y. Kanai, K. Fukunaga, K. Terasaka, and S. Fujioka, Mass transfer in molten salt and suspended molten salt in bubble column, Chemical Engineering Science, vol.100, pp.153-159
DOI : 10.1016/j.ces.2012.11.029

M. G. Kang, C. Lee, H. S. Dong, S. Jang, S. A. Song et al., 2016, «Effects of vibrations in marine environments on performance of molten-carbonate fuel cells», International Journal of Hydrogen Energy, vol.41, issue.738, pp.18-732

H. K. Kashyap, H. V. Annapureddy, F. O. Raineri, and C. J. Margulis, How Is Charge Transport Different in Ionic Liquids and Electrolyte Solutions?, The Journal of Physical Chemistry B, vol.115, issue.45, pp.13-212, 2011.
DOI : 10.1021/jp204182c

T. Katsura, E. Et, and . Ito, «Melting and subsolidus phase relations in the MgSiO 3 -MgCO 3 system at high pressures : implications to evolution of the Earth's atmosphere», Earth and Planetary Science Letters, vol.992, issue.23, pp.110-117, 1990.

J. Keller, A. Et, and . Zaitsev, Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai, Tanzania: Composition of lavas from 1988 to 2007, Lithos, vol.148, pp.45-53, 1988.
DOI : 10.1016/j.lithos.2012.05.022

S. W. Kim, K. Uematsu, K. Toda, and M. Sato, Viscosity analysis of alkali metal carbonate molten salts at high temperature, Journal of the Ceramic Society of Japan, vol.123, issue.1437, pp.355-358, 1437.
DOI : 10.2109/jcersj2.123.355

J. G. Kirkwood, F. P. Et, and . Buff, The Statistical Mechanical Theory of Surface Tension, The Journal of Chemical Physics, vol.17, issue.3, pp.338-343, 1949.
DOI : 10.1002/andp.19093340908

W. Klement and L. H. Cohen, Solid-solid and Solid-liquid Transitions in K2CO3, Na2CO3 and Li2CO3: Investigations to ??? 5 kbar by Differential Thermal Analysis; Thermodynamics and Structural Correlations, Berichte der Bunsengesellschaft f??r physikalische Chemie, vol.72, issue.4, pp.327-334, 1975.
DOI : 10.1021/j100850a038

A. Klemm, Abstract, Zeitschrift f??r Naturforschung A, vol.32, issue.9, pp.927-929, 1977.
DOI : 10.1515/zna-1977-0903

S. Kohara, Y. S. Badyal, N. Koura, Y. Idemoto, S. Takahashi et al., «The structure of molten alkali carbonates studied by neutron diffraction and ab initio calculations», Journal of Physics : Condensed Matter, vol.10, issue.15, 1998.

W. Kohn, L. J. Et, and . Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.119, issue.4A, pp.1133-1138, 1965.
DOI : 10.1103/PhysRev.119.1153

T. Koishi, S. Kawase, S. Tamaki, and T. Ebisuzaki, Mixtures, «Computer Simulation of Molten Li 2 CO 3 -K 2 CO 3 Mixtures», pp.3291-3296, 2000.
DOI : 10.1143/JPSJ.69.3291

T. Kojima, Physical and chemical properties of molten carbonates, pp.150-154, 2009.

T. Kojima, Y. Miyazaki, K. Nomura, and K. Tanimoto, Density, Molar Volume, and Surface Tension of Molten Li[sub 2]CO[sub 3]-Na[sub 2]CO[sub 3] and Li[sub 2]CO[sub 3]-K[sub 2]CO[sub 3] Containing Alkaline Earth (Ca, Sr, and Ba) Carbonates, Journal of The Electrochemical Society, vol.147, issue.11, pp.535-542, 2003.
DOI : 10.1149/1.1393292

T. Kojima, Y. Miyazaki, K. Nomura, and K. Tanimoto, Density, Surface Tension, and Electrical Conductivity of Ternary Molten Carbonate System Li[sub 2]CO[sub 3]???Na[sub 2]CO[sub 3]???K[sub 2]CO[sub 3] and Methods for Their Estimation, Journal of The Electrochemical Society, vol.29, issue.7, pp.150-156, 2008.
DOI : 10.1107/S0567739476001551

T. Kojima, M. Yanagida, K. Tanimoto, Y. Tamiya, H. Matsumoto et al., «The surface tension and the density of molten binary alkali carbonate systems», Denki Kagaku Oyobi Kogyo Butsuri Kagaku, vol.67, issue.6, pp.593-602, 1999.

Y. Kono, C. Kenney-benson, D. Hummer, H. Ohfuji, C. Park et al., 2014, «Ultralow viscosity of carbonate melts at high pressures», Nat Commun, vol.5, issue.113, pp.79-112

. Saboungi, «Alkali carbonates : Raman spectroscopy, ab initio calculations, and structure», Journal of Molecular Structure, vol.382, issue.3, pp.163-169, 1996.

M. Krack, «Pseudopotentials for H to Kr optimized for gradient-corrected exchangecorrelation functionals», Theoretical Chemistry Accounts, pp.145-152, 2005.

V. Lair, V. Albin, A. Ringuedé, and M. Cassir, 2012, «Theoretical predictions vs. experimental measurements of the electrical conductivity of molten Li 2 CO 3 -K 2 CO 3 modified by additives», International Journal of Hydrogen Energy, vol.37, issue.364, pp.19-357

F. Lantelme, M. Et, and . Chemla, Mobilite electrique et diffusion des ions Li+, K+ ET Na+ dans les systemes KNO3-LiNO3 Fondus, Electrochimica Acta, vol.10, issue.7, pp.663-671, 1965.
DOI : 10.1016/0013-4686(65)87046-3

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.20, issue.2, pp.785-789, 1988.
DOI : 10.1103/PhysRevA.20.397

R. L. Lehman, J. S. Gentry, and N. G. Glumac, Thermal stability of potassium carbonate near its melting point, Thermochimica Acta, vol.316, issue.1, pp.1-9, 1998.
DOI : 10.1016/S0040-6031(98)00289-5

J. W. Lewis, K. Singer, and L. V. Woodcock, Thermodynamic and structural properties of liquid ionic salts obtained by Monte Carlo computation. Part 2.???Eight alkali metal halides, J. Chem. Soc., Faraday Trans. 2, vol.71, issue.0, pp.301-312, 1975.
DOI : 10.1039/F29757100301

Z. Li, «Melting and Structural Transformations of Carbonates and Hydrous Phases in Earth's Mantle, p.20, 2015.

Z. Li, J. Li, R. Lange, J. Liu, and B. Militzer, Determination of calcium carbonate and sodium carbonate melting curves up to Earth's transition zone pressures with implications for the deep carbon cycle, Earth and Planetary Science Letters, vol.457, issue.21, pp.395-402
DOI : 10.1016/j.epsl.2016.10.027

G. Lippert, J. Hutter, and M. Parrinello, A hybrid Gaussian and plane wave density functional scheme, Molecular Physics, vol.48, issue.3, pp.477-488, 1997.
DOI : 10.1103/PhysRevB.48.14646

Q. Liu, R. Et, and . Lange, «New density measurements on carbonate liquids and the partial molar volume of the CaCO 3 component», Contributions to Mineralogy and Petrology, pp.370-381, 2003.

Q. Liu, T. J. Tenner, and R. A. Lange, Do carbonate liquids become denser than silicate liquids at pressure? Constraints from the fusion curve of K2CO3 to 3.2??GPa, Contributions to Mineralogy and Petrology, vol.55, issue.1, pp.55-66, 2007.
DOI : 10.2138/am-2003-0114

M. Mangan, T. Et, and . Sisson, Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts, Journal of Geophysical Research, vol.402, issue.B8, pp.2156-2202, 2005.
DOI : 10.1007/978-1-4615-1233-2

A. Marchand, J. H. Weijs, J. H. Snoeijer, and B. Andreotti, Why is surface tension a force parallel to the interface?, American Journal of Physics, vol.79, issue.10, pp.999-1008, 2011.
DOI : 10.1119/1.3619866

S. A. Markgraf, R. J. Et, and . Reeder, «High-temperature structure refinements of calcite and magnesite», American Mineralogist, vol.7070, pp.5-6, 1985.

H. C. Maru, «Alkali Metal Carbonates», dans Molten Salt Techniques URL https://doi.org/10, pp.15-43978, 1984.

C. Merlet, P. A. Madden, and M. Salanne, 2010, «Internal mobilities and diffusion in an ionic liquid mixture», Physical Chemistry Chemical Physics, vol.12, issue.42, pp.14-109

R. Mills, P. L. Et, and . Spedding, An Interpretation of the Concentration Dependence of Mobilities in Fused Alkali Carbonate Mixtures, The Journal of Physical Chemistry, vol.70, issue.12, pp.4077-4079, 1966.
DOI : 10.1021/j100884a507

R. H. Mitchell, CARBONATITES AND CARBONATITES AND CARBONATITES, The Canadian Mineralogist, vol.43, issue.6, pp.2049-2068, 2005.
DOI : 10.2113/gscanmin.43.6.2049

G. Norton and H. Pinkerton, Rheological properties of natrocarbonatite lavas from Oldoinyo Lengai, Tanzania, European Journal of Mineralogy, vol.9, issue.2, pp.351-3640351, 1997.
DOI : 10.1127/ejm/9/2/0351

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, vol.79, issue.2, pp.255-268, 1984.
DOI : 10.1063/1.446137

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics, vol.81, issue.1, pp.511-519, 1984.
DOI : 10.1080/00268978400100801

H. Näfe, Conductivity of Alkali Carbonates, Carbonate-Based Composite Electrolytes and IT-SOFC, ECS Journal of Solid State Science and Technology, vol.3, issue.2, pp.7-14, 2014.
DOI : 10.1149/2.015402jss

H. Ohata, K. Takeuchi, K. Ui, and N. Koura, The Structure of Molten Lithium Carbonate Calculated by DFT and MD Simulations, ECS Transactions, pp.57-65, 2007.
DOI : 10.1149/1.2811943

I. Okada, «5 -Ionic Transport in Molten Salts», dans Molten Salts Chemistry, édité par F. Lantelme et H. Groult, pp.978-978, 2013.
DOI : 10.1016/b978-0-12-398538-5.00005-6

I. Okada, R. Takagi, and K. Kawamura, Abstract, Zeitschrift f??r Naturforschung A, vol.35, issue.5, pp.493-499, 1980.
DOI : 10.1515/zna-1980-0505

O. Leary, M. , R. Lange, and Y. Ai, «The compressibility of K 2 CO 3 -Na 2 CO 3 -Li 2 CO 3 - CaCO 3 liquids derived from sound speed measurements : implications for the fusion curve of CaCO 3 », dans AGU Fall Meeting Abstracts, pp.1990-60, 2009.

O. Leary, M. C. , R. A. Lange, and Y. Ai, 2015, «The compressibility of CaCO 3 ?Li 2 CO 3 ? Na 2 CO 3 ?K 2 CO 3 liquids : application to natrocarbonatite and CO 2 -bearing nephelinite liquids from Oldoinyo Lengai», Contributions to Mineralogy and Petrology, vol.170, issue.64, pp.1432-0967

A. Ottochian, C. Ricca, F. Labat, and C. Adamo, Molecular dynamics simulations of a lithium/sodium carbonate mixture, Journal of Molecular Modeling, vol.054301, issue.054318, pp.61-0948
DOI : 10.1016/j.jnucmat.2015.01.001

D. Peeters, D. Moyaux, and P. Claes, Solubility and Solvation of Carbon Dioxide in the Molten Li2CO3/Na2CO3/K2CO3 (43.5:31.5:25.0 mol-%) Eutectic Mixture at 973 K II. Theoretical Part, European Journal of Inorganic Chemistry, vol.95, issue.4, pp.589-592, 1999.
DOI : 10.1007/978-94-009-8472-1_10

A. Rahman, Correlations in the Motion of Atoms in Liquid Argon, Physical Review, vol.110, issue.2A, pp.405-411, 1964.
DOI : 10.1103/PhysRev.110.999

S. A. Redfern, B. J. Wood, and C. M. Henderson, in the lower mantle, Geophysical Research Letters, vol.77, issue.19, pp.2099-2102, 1993.
DOI : 10.1016/0031-9201(85)90121-9

S. M. Rigden, T. J. Ahrens, and E. M. Stolper, High-pressure equation of state of molten anorthite and diopside, Journal of Geophysical Research, vol.74, issue.B7, pp.9508-9522, 1989.
DOI : 10.1029/JB074i017p04359

N. L. Ross, The equation of state and high-pressure behavior of magnesite, American Mineralogist, vol.82, issue.7-8, pp.682-688, 1997.
DOI : 10.2138/am-1997-7-805

M. Salanne, B. Rotenberg, S. Jahn, R. Vuilleumier, C. Simon et al., Including many-body effects in models for ionic liquids, Theoretical Chemistry Accounts, vol.133, issue.10, pp.1143-1432
DOI : 10.1063/1.3493689

M. Salanne, C. Simon, P. Turq, and P. A. Madden, Simulation of the liquid???vapor interface of molten LiBeF3, Comptes Rendus Chimie, vol.10, issue.10-11, pp.1131-1136, 2007.
DOI : 10.1016/j.crci.2007.03.002

M. Salanne, C. Simon, P. Turq, N. Ohtori, and P. Madden, 2013, «Modeling of Molten Salts», dans Molten Salts Chemistry, édité par F, Lantelme et H. Groult, pp.1-16

Y. Sato, T. Yamazaki, H. Kato, H. Zhu, M. Hoshi et al., Viscosities of Li2CO3-Na2CO3 and Li2CO3-K2CO3 Binary Melts., «Viscosities of Li 2 CO 3 -Na 2 CO 3 and Li 2 CO 3 -K 2 CO 3 Binary Melts», pp.162-167, 1999.
DOI : 10.2963/jjtp.13.162

URL : https://www.jstage.jst.go.jp/article/jjtp/13/3/13_3_162/_pdf

Y. Sato, Viscosities of Molten Alkali Carbonates., Netsu Bussei, vol.13, issue.3, pp.156-161, 1999.
DOI : 10.2963/jjtp.13.156

R. D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides, Journal of Applied Physics, vol.34, issue.1, pp.348-366, 1993.
DOI : 10.1080/00150198508017914

A. Shatskiy, Y. M. Borzdov, K. D. Litasov, I. S. Sharygin, Y. N. Palyanov et al., Phase relationships in the system K2CO3-CaCO3 at 6 GPa and 900-1450 ??C, American Mineralogist, vol.100, issue.1, pp.223-232
DOI : 10.2138/am-2015-5001

D. Sifré, E. Gardes, M. Massuyeau, L. Hashim, S. Hier-majumder et al., Electrical conductivity during incipient melting in the oceanic low-velocity zone, Nature, vol.97, issue.336, pp.81-85
DOI : 10.1016/j.gca.2012.08.035

D. Sifré, L. Hashim, and F. Gaillard, 2014b, «Effects of temperature, pressure and chemical compositions on the electrical conductivity of carbonated melts and its relationship with viscosity», Chemical Geology, vol.93, pp.9-2541

J. C. Slater, J. G. Et, and . Kirkwood, The Van Der Waals Forces in Gases, «The Van Der Waals Forces in Gases», pp.682-697, 1931.
DOI : 10.2307/20026205

N. H. Sleep, K. Et, and . Zahnle, Carbon dioxide cycling and implications for climate on ancient Earth, Journal of Geophysical Research: Planets, vol.117, issue.1, pp.1373-1399, 2001.
DOI : 10.1016/0012-821X(93)90088-Q

URL : http://onlinelibrary.wiley.com/doi/10.1029/2000JE001247/pdf

S. Smith, B. Et, and . Kennedy, The solubility of noble gases in water and in NaCl brine, Geochimica et Cosmochimica Acta, vol.47, issue.3, pp.503-515, 1983.
DOI : 10.1016/0016-7037(83)90273-9

W. Smith, T. Et, and . Forester, DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package, Journal of Molecular Graphics, vol.14, issue.3, pp.136-141, 1996.
DOI : 10.1016/S0263-7855(96)00043-4

URL : https://hal.archives-ouvertes.fr/hal-01536043

N. A. Solopova, L. Dubrovinsky, A. V. Spivak, Y. A. Litvin, and N. Dubrovinskaia, Melting and decomposition of MgCO3 at pressures up to 84??GPa, Physics and Chemistry of Minerals, vol.87, issue.144, pp.73-81, 2015.
DOI : 10.1103/PhysRevLett.87.075701

N. A. Solopova, Y. A. Litvin, A. V. Spivak, N. A. Dubrovinskaia, L. S. Dubrovinsky et al., The phase diagram of Na carbonate, an alkaline component of the growth medium of ultradeep diamonds, Doklady Earth Sciences, vol.87, issue.2, pp.1106-1109
DOI : 10.1103/PhysRevLett.87.075701

P. L. Spedding, Densities and Molar Volumes of Molten Alkali Carbonate Binary Mixtures, Journal of The Electrochemical Society, vol.117, issue.2, pp.177-183, 1970.
DOI : 10.1149/1.2407460

P. L. Spedding, R. Et, and . Mills, Trace-Ion Diffusion in Molten Alkali Carbonates, Journal of The Electrochemical Society, vol.112, issue.6, pp.594-599, 1965.
DOI : 10.1149/1.2423614

P. L. Spedding, R. Et, and . Mills, Tracer Diffusion Measurements in Mixtures of Molten Alkali Carbonates, Journal of The Electrochemical Society, vol.113, issue.6, pp.599-603, 1966.
DOI : 10.1149/1.2424035

A. Spivak, Y. Litvin, S. Ovsyannikov, N. Dubrovinskaia, and L. Dubrovinsky, Stability and breakdown of Ca13CO3 melt associated with formation of 13C-diamond in static high pressure experiments up to 43GPa and 3900K, Journal of Solid State Chemistry, vol.191, pp.102-106
DOI : 10.1016/j.jssc.2012.02.041

K. Sugiura, K. Takei, K. Tanimoto, and Y. Miyazaki, The carbon dioxide concentrator by using MCFC, Journal of Power Sources, vol.118, issue.1-2, pp.218-227, 2003.
DOI : 10.1016/S0378-7753(03)00084-3

K. Suito, J. Namba, T. Horikawa, Y. Taniguchi, N. Sakurai et al., at high pressure and high temperature, American Mineralogist, vol.86, issue.9, pp.997-1002, 2001.
DOI : 10.2138/am-2001-8-906

D. Sykes, M. Baker, and P. Wyllie, «Viscous properties of carbonate melts at high pressures» , dans Abstracts, AGU Spring Meeting, vol.73, pp.372-107, 1992.

A. Szabó and N. S. Ostlund, Modern quantum chemistry : introduction to advanced electronic structure theory Previously published : 1st ed., rev, pp.486691861-1989, 1996.

K. Tang, J. Et, and . Toennies, The van der Waals potentials between all the rare gas atoms from He to Rn, The Journal of Chemical Physics, vol.118, issue.11, pp.4976-4983, 2003.
DOI : 10.1063/1.1467050

J. Tissen, G. Et, and . Janssen, Molecular-dynamics simulation of molten alkali carbonates, Molecular Physics, vol.35, issue.2, pp.413-426, 1990.
DOI : 10.1080/00268979000100081

J. Tissen, G. Et, and . Janssen, Molecular dynamics simulation of binary mixtures of molten alkali carbonates, Molecular Physics, vol.39, issue.1, pp.101-111, 1994.
DOI : 10.1088/0034-4885/29/1/306

A. Treiman, «Carbonatite magma : properties and processes», Carbonatites : Genesis and evolution, pp.89-104, 1989.

J. Vandevondele, J. Et, and . Hutter, Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases, The Journal of Chemical Physics, vol.127, issue.11, 2007.
DOI : 10.1080/00268970110088901

J. Vandevondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing et al., Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Computer Physics Communications, vol.167, issue.2, pp.103-128, 2005.
DOI : 10.1016/j.cpc.2004.12.014

J. Vandevondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik et al., molecular dynamics simulation of liquid water, The Journal of Chemical Physics, vol.122, issue.1, 2005.
DOI : 10.1016/S0301-0104(00)00179-8

L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, vol.30, issue.1, pp.98-103, 1967.
DOI : 10.1016/0031-8914(64)90224-1

R. Vuilleumier, A. Seitsonen, N. Sator, and B. Guillot, Structure, equation of state and transport properties of molten calcium carbonate (CaCO 3 ) by atomistic simulations, Geochimica et Cosmochimica Acta, vol.141, issue.114, pp.547-566
DOI : 10.1016/j.gca.2014.06.037

R. Vuilleumier, A. P. Seitsonen, N. Sator, and B. Guillot, Carbon dioxide in silicate melts at upper mantle conditions: Insights from atomistic simulations, Chemical Geology, vol.418, pp.77-88
DOI : 10.1016/j.chemgeo.2015.02.027

URL : https://hal.archives-ouvertes.fr/hal-01130246

M. Wang, Q. Liu, T. Inoue, B. Li, S. Pottish et al., The K<sub>2</sub>CO<sub>3</sub> fusion curve revisited: New experiments at pressures up to 12 GPa, Journal of Mineralogical and Petrological Sciences, vol.111, issue.4, pp.241-251
DOI : 10.2465/jmps.150417

A. Ward and G. Janz, Molten carbonate electrolytes: Electrical conductance, density and surface tension of binary and ternary mixtures, Electrochimica Acta, vol.10, issue.8, pp.849-857, 1965.
DOI : 10.1016/0013-4686(65)80048-2

J. Warren, Dolomite: occurrence, evolution and economically important associations, Earth-Science Reviews, vol.52, issue.1-3, pp.1-81, 2000.
DOI : 10.1016/S0012-8252(00)00022-2

B. Widom, Some Topics in the Theory of Fluids, The Journal of Chemical Physics, vol.39, issue.11, pp.2808-2812, 1963.
DOI : 10.1063/1.1703745

M. C. Wilding, M. Wilson, O. L. Alderman, C. Benmore, J. K. Weber et al., 2016, «Low-Dimensional Network Formation in Molten Sodium Carbonate», Scientific Reports, vol.6, pp.24-415
DOI : 10.1038/srep24415

URL : https://doi.org/10.1038/srep24415

Q. Williams, E. Et, and . Knittle, Structural complexity in carbonatite liquid at high pressures, Geophysical Research Letters, vol.107, issue.1, pp.1944-8007, 2003.
DOI : 10.1017/S0016756800010682

URL : http://onlinelibrary.wiley.com/doi/10.1029/2001GL013876/pdf

G. Williams-jones, A. E. Williams-jones, and J. Stix, The nature and origin of Venusian canali, Journal of Geophysical Research: Planets, vol.85, issue.E4, pp.8545-8555, 1998.
DOI : 10.1029/JB085iB12p06902

J. A. Wolff, Physical properties of carbonatite magmas inferred from molten salt data, and application to extraction patterns from carbonatite???silicate magma chambers, Geological Magazine, vol.91, issue.02, pp.145-153, 1994.
DOI : 10.1098/rspa.1934.0169

B. J. Wood, M. J. Walter, and J. Wade, Accretion of the Earth and segregation of its core, Nature, vol.83, issue.7095, pp.7095-825, 2006.
DOI : 10.1007/BF00373086

A. Woolley, A. Et, and . Church, Extrusive carbonatites: A brief review, Lithos, vol.85, issue.1-4, pp.1-4, 2005.
DOI : 10.1016/j.lithos.2005.03.018

A. R. Woolley, B. A. Et, and . Kjarsgaard, Carbonatite occurrences of the world : map and database, Geological Survey of Canada, pp.15-16, 2008.

P. J. Wyllie, O. F. Et, and . Tuttle, The System CaO-CO2-H2O and the Origin of Carbonatites, Journal of Petrology, vol.1, issue.1, pp.1-46, 1960.
DOI : 10.1093/petrology/1.1.1

C. Yang, R. Takagi, K. Kawamura, and I. Okada, Internal cation mobilities in the molten binary system Li2CO3???K2CO3, Electrochimica Acta, vol.32, issue.11, pp.1607-1611, 1987.
DOI : 10.1016/0013-4686(87)90013-2

T. Yoshino, E. Mcisaac, M. Laumonier, and T. Katsura, 2012, «Electrical conductivity of partial molten carbonate peridotite», Physics of the Earth and Planetary Interiors, pp.1-9

P. S. Yuen, M. W. Lister, and S. C. Nyburg, The four???center charge distribution of the carbonate ion and the lattice energies of calcite and aragonite, The Journal of Chemical Physics, vol.6, issue.4, pp.1936-1941, 1978.
DOI : 10.1016/0022-1902(75)80803-7

J. Zarzycki, ??tude des sels fondus par diffraction des rayons X aux temp??ratures ??lev??es. I. Structure a l'??tat liquide des fluorures LiF, NaF et KF, Journal de Physique Appliqu??e, vol.44, issue.S7, pp.65-69, 1957.
DOI : 10.1080/14786440208520285

J. Zhang, I. Martinez, F. Guyot, P. Gillet, and S. K. Saxena, X-ray diffraction study of magnesite at high pressure and high temperature, Physics and Chemistry of Minerals, vol.24, issue.2, pp.122-130, 1997.
DOI : 10.1007/s002690050025

L. Zhang, X. Huang, C. Qin, K. Brinkman, Y. Gong et al., 2013, «First spectroscopic identification of pyrocarbonate for high CO 2 flux membranes containing highly interconnected three dimensional ionic channels», Phys. Chem. Chem. Phys, vol.15, pp.13-147

Z. Zhang, Z. Et, and . Liu, High pressure equation of state for molten CaCO3 from first principles simulations, Chinese Journal of Geochemistry, vol.379, issue.1, pp.13-20
DOI : 10.1016/j.epsl.2013.07.034