L. Abdelouahed, O. Authier, G. Mauviel, J. P. Corriou, G. Verdier et al., Detailed Modeling of Biomass Gasification in Dual Fluidized Bed Reactors under Aspen Plus, 2005. Introduction à l'Analyse de Cycle de Vie (ACV), pp.3840-3855, 2012.
DOI : 10.1021/ef300411k

URL : https://hal.archives-ouvertes.fr/hal-00777370

N. Alexandratos and J. Bruinsma, World Agriculture towards 2030/2050 -the 2012 revision (ESA Working Paper No. 12-03) Agricultural Development Economics Division, 2012.

A. Ademe, Comparatif des modes de chauffage et Prix de vente de la chaleur en 2013 - Réseaux de chaleur (No. RCE23), AMORCE, 2015.

K. Anderson and G. P. Peters, The trouble with negative emissions -Reliance on negative-emission concepts locks in humankind's carbon addiction, Clim. Change, vol.354, pp.182-183, 2016.

P. Anttila, A. Asikainen, J. Laitila, M. Broto, I. Campanero et al., Potential and supply costs of wood chips from forests in Soria, Spain, Forest Systems, vol.18, issue.2, pp.245-2542011202, 2011.
DOI : 10.1016/S0961-9534(02)00161-7

A. Asikainen and J. Laitila, Harvesting and transport costs of forest energy, 2006.

. Aspentech, Chemical Process Optimization Software -Chemical Process Design | Aspen Plus

A. Nationale, LOI n° 2009-967 du 3 août 2009 de programmation relative à la mise en oeuvre du Grenelle de l'environnement, pp.2009-967, 2009.

A. Azzalini, A Class of Distributions Which Includes the Normal Ones. Scand, J. Stat, vol.12, pp.171-178, 1985.

J. C. Bare, P. Hofstetter, D. W. Pennington, H. A. Haes, and . De, Midpoints versus endpoints: The sacrifices and benefits, The International Journal of Life Cycle Assessment, vol.3, issue.4, pp.319-329, 2000.
DOI : 10.1007/BF02978665

A. W. Bauen, A. J. Dunnett, G. M. Richter, A. G. Dailey, M. Aylott et al., Modelling supply and demand of bioenergy from short rotation coppice and Miscanthus in the UK, Bioresource Technology, vol.101, issue.21, pp.8132-8143, 2010.
DOI : 10.1016/j.biortech.2010.05.002

H. Baumann, LCA Use in Swedish Industry, Int. J. Life Cycle Assess, vol.1, pp.122-126, 1996.

H. Baumann, Life Cycle Assessment and Decision Making: Theories and Practices (Doctoral thesis), 1998.

T. Beringer, W. Lucht, and S. Schaphoff, Bioenergy production potential of global biomass plantations under environmental and agricultural constraints, GCB Bioenergy, vol.37, issue.(s, pp.299-312, 2011.
DOI : 10.1016/j.enpol.2009.05.029

G. Berndes, C. Azar, T. Kåberger, and D. Abrahamson, The feasibility of large-scale lignocellulose-based bioenergy production, Biomass and Bioenergy, vol.20, issue.5, pp.371-383, 2001.
DOI : 10.1016/S0961-9534(01)00002-2

M. Bertrand, Gardanne, la centrale qui voulait se faire plus grosse que la forêt, 2017.

R. Bibas and A. Méjean, Potential and limitations of bioenergy for low carbon transitions, Climatic Change, vol.324, issue.5931, pp.731-761, 2014.
DOI : 10.1126/science.1168475

URL : https://hal.archives-ouvertes.fr/hal-00866407

A. Bjoerklund, J. Johansson, M. Nilsson, P. Eldh, and G. Finnveden, Environmental Assessment of a Waste Incineration Tax. Case Study and Evaluation of a Framework for Strategic Environmental Assessment (No. FMS--184), 2003.

A. Bondeau, P. C. Smith, S. Zaehle, S. Schaphoff, W. Lucht et al., Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Global Change Biology, vol.68, issue.3, pp.679-706, 2007.
DOI : 10.1029/2004GB002395

URL : https://hal.archives-ouvertes.fr/hal-01757164

R. M. Bright, A. H. Strømman, and T. R. Hawkins, Environmental Assessment of Wood-Based Biofuel Production and Consumption Scenarios in Norway, Journal of Industrial Ecology, vol.69, issue.2, pp.422-439, 2010.
DOI : 10.2172/12150

G. H. Brundtland, Notre avenir à tous. Commission mondiale sur l'environnement et le, 1987.

M. Bugge, Ø. Skreiberg, N. E. Haugen, P. Carlsson, and M. Seljeskog, Predicting NOx Emissions from Wood Stoves using Detailed Chemistry and Computational Fluid Dynamics. Energy Procedia, Clean, Efficient and Affordable Energy for a Sustainable Future, The 7th International Conference on Applied Energy (ICAE2015), pp.1740-1745, 2015.
DOI : 10.1016/j.egypro.2015.07.446

URL : https://doi.org/10.1016/j.egypro.2015.07.446

S. Caserini, S. Livio, M. Giugliano, M. Grosso, and L. Rigamonti, LCA of domestic and centralized biomass combustion: The case of Lombardy (Italy), Biomass and Bioenergy, vol.34, issue.4, pp.474-482, 2010.
DOI : 10.1016/j.biombioe.2009.12.011

S. Caurla, Modélisation de la filière forêt-bois française -Évaluation des impacts des politiques climatiques AgroParisTech, 2012.

D. Cespi, F. Passarini, L. Ciacci, I. Vassura, V. Castellani et al., Heating systems LCA: comparison of biomass-based appliances, The International Journal of Life Cycle Assessment, vol.4, issue.3???4, pp.89-99, 2013.
DOI : 10.1016/S0959-6526(96)00043-1

O. Chandioux and N. Ricodeau, Le prix de mon arbre: Quelle est la valeur du pin d'Alep? (The price of my tree: What is the value of Alep pine?, 2013.

F. Cherubini, R. M. Bright, and A. H. Strømman, Site-specific global warming potentials of biogenic CO2 for bioenergy: contributions from carbon fluxes and albedo dynamics, Environ. Res. Lett, vol.774, pp.45902-45912, 2012.

F. Cherubini, A. H. Strømman, and E. Hertwich, Effects of boreal forest management practices on the climate impact of CO2 emissions from bioenergy Can We Break the Addiction to Fossil Energy? Special Issue, 7th Biennial International Workshop Advances in Energy Studies, Ecol. Model, pp.19-21, 2011.

S. Collet, Emissions from wood domestic heating appliances, Pollut. Atmos. Clim. Santé Société, pp.83-90, 2009.
URL : https://hal.archives-ouvertes.fr/ineris-00963171

J. A. Cooper, Environmental Impact of Residential Wood Combustion Emissions and its Implications, Journal of the Air Pollution Control Association, vol.30, issue.8, pp.855-861, 1980.
DOI : 10.1080/00022470.1980.10465119

S. J. Cowell, Environmental life cycle assessment of agricultural systems : integration into decision-making, 1998.

F. Creutzig, Economic and ecological views on climate change mitigation with bioenergy and negative emissions, GCB Bioenergy, vol.324, issue.1, 2016.
DOI : 10.1126/science.1168475

URL : http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12235/pdf

F. Creutzig, N. H. Ravindranath, G. Berndes, S. Bolwig, R. Bright et al., Bioenergy and climate change mitigation: an assessment, GCB Bioenergy, vol.15, issue.Suppl. 1, pp.916-944, 2015.
DOI : 10.1016/j.rser.2011.02.004

URL : http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12205/pdf

C. Bretagne, Etude de faisabilité pour la production de plaquettes forestières en Bretagne, 2009.

B. Dagenais, Py4J -A bridge between Python and Java [WWW Document]. URL https, 2009.

A. De-broqua, Gardanne : la centrale biomasse interdite d'exploitation, 2017.

B. J. De-vries, D. P. Van-vuuren, and M. M. Hoogwijk, Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach, Energy Policy, vol.35, issue.4, pp.2590-2610, 2007.
DOI : 10.1016/j.enpol.2006.09.002

M. De-wit and A. Faaij, European biomass resource potential and costs, Biomass and Bioenergy, vol.34, issue.2, 2010.
DOI : 10.1016/j.biombioe.2009.07.011

M. De-wit, M. Junginger, and A. Faaij, Learning in dedicated wood production systems: Past trends, future outlook and implications for bioenergy, Renewable and Sustainable Energy Reviews, vol.19, pp.417-432, 2013.
DOI : 10.1016/j.rser.2012.10.038

D. G. Deangelis, D. S. Ruffin, and R. B. Reznik, Source assessment: Wood-Fired Residential Combustion Equipment Field Tests (No. MRC-DA-EPA-600/2-79-019), 1979.

L. Dieckhoff and O. Authier, A technical, economic and environmental evaluation of challenging biomass feedstocks in France for combined heat and power (CHP) gasification, Presented at the 21st European Biomass Conference and Exhibition, pp.83-94, 2013.

V. Dornburg and A. P. Faaij, Efficiency and economy of wood-fired biomass energy systems in relation to scale regarding heat and power generation using combustion and gasification technologies, Biomass and Bioenergy, vol.21, issue.2, pp.91-108, 2001.
DOI : 10.1016/S0961-9534(01)00030-7

V. Dornburg, G. Termeer, and A. P. Faaij, Economic and greenhouse gas emission analysis of bioenergy production using multi-product crops???case studies for the Netherlands and Poland, Biomass and Bioenergy, vol.28, issue.5, pp.454-474, 2005.
DOI : 10.1016/j.biombioe.2004.11.012

V. Dornburg, D. Vuuren, . Van, G. Ven, . Van-de et al., Bioenergy revisited: Key factors in global potentials of bioenergy, Energy & Environmental Science, vol.37, issue.3, pp.258-26710, 1039.
DOI : 10.1016/S0961-9534(02)00188-5

S. Dufour-kowalski, B. Courbaud, P. Dreyfus, C. Meredieu, and F. De-coligny, Capsis: an open software framework and community for forest growth modelling, Annals of Forest Science, vol.163, issue.2, pp.221-233, 2012.
DOI : 10.1007/s00442-010-1581-9

URL : https://hal.archives-ouvertes.fr/halsde-00700927

E. Sa, Grilles tarifaires de l'offre de fourniture d'électricité, Tarif Bleu, 2016.

T. Ekvall, System Expansion and Allocation in Life Cycle Assessment With Implications for Wastepaper Management (Doctoral thesis), 1999.

T. Ekvall and B. P. Weidema, System boundaries and input data in consequential life cycle inventory analysis, The International Journal of Life Cycle Assessment, vol.4, issue.1, pp.161-171, 2004.
DOI : 10.1007/BF02994190

E. Hage and R. , Prétraitement du Miscanthus x giganteus. Vers une valorisation optimale de la biomasse lignocellulosique, Thèse de doctorat). Nancy Université, 2010.

O. Eriksson, G. Finnveden, T. Ekvall, and A. Björklund, Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion, Energy Policy, vol.35, issue.2, 2007.
DOI : 10.1016/j.enpol.2006.04.005

O. Eriksson, B. Frostell, A. Björklund, G. Assefa, J. Sundqvist et al., ORWARE???a simulation tool for waste management, Resources, Conservation and Recycling, vol.36, issue.4, pp.287-307, 2002.
DOI : 10.1016/S0921-3449(02)00031-9

A. Fallot, P. Girard, V. Dameron, and M. Griffon, The assessment of biofuel potentials on global and regional scales in the tropical world, Energy for Sustainable Development, vol.10, issue.2, pp.80-91, 2006.
DOI : 10.1016/S0973-0826(08)60534-7

F. Alsace, Panorama de la filière bois énergie en Alsace (The energy wood production chain in Alsace, 2007.

G. Finnveden, J. Johansson, P. Lind, and Å. Moberg, Life cycle assessment of energy from solid waste???part 1: general methodology and results, Journal of Cleaner Production, vol.13, issue.3, pp.213-229, 2005.
DOI : 10.1016/j.jclepro.2004.02.023

G. Fischer and L. Schrattenholzer, Global bioenergy potentials through 2050, Biomass and Bioenergy, vol.20, issue.3, pp.151-159, 2001.
DOI : 10.1016/S0961-9534(00)00074-X

URL : http://pure.iiasa.ac.at/6527/1/RR-01-09.pdf

M. Fortin, Modélisation de la dynamique et des caractéristiques forestières à différentes échelles -Evaluation de l'incertitude et propagation des erreurs, Thèse HDR), 2016.

F. Bois and F. , Variétés forestières améliorées -Pour une forêt d'avenir, 2013.

D. François, Etude visant à estimer le bilan technico-économique de la production et de la mobilisation de bois énergie dans les forêts lorraines, 2006.

J. François, Modélisation et évaluation environnementale des filières de cogénération par combustion et gazéification du bois (Mécanique et énergétique), 2014.

J. François, M. Fortin, F. Patisson, and A. Dufour, Assessing the Fate of Nutrients and Carbon in the Bioenergy Chain through the Modeling of Biomass Growth and Conversion, Environmental Science & Technology, vol.48, issue.23, 2007.
DOI : 10.1021/es5032823

V. Gitz and P. Ciais, Amplifying effects of land-use change on future atmospheric CO2 levels, Glob. Biogeochem. Cycles, vol.17, pp.24-25, 2003.
URL : https://hal.archives-ouvertes.fr/halshs-00009826

J. Giuntoli, S. Caserini, L. Marelli, D. Baxter, and A. Agostini, Domestic heating from forest logging residues: environmental risks and benefits, Journal of Cleaner Production, vol.99, pp.206-216, 2015.
DOI : 10.1016/j.jclepro.2015.03.025

URL : https://doi.org/10.1016/j.jclepro.2015.03.025

H. Groscurth, A. De-almeida, A. Bauen, F. B. Costa, S. Ericson et al., Total costs and benefits of biomass in selected regions of the European Union, Energy, vol.25, issue.11, pp.1081-109510, 1016.
DOI : 10.1016/S0360-5442(00)00016-5

G. Guest, R. M. Bright, F. Cherubini, O. Michelsen, and A. H. Strømman, Life Cycle Assessment of Biomass-based Combined Heat and Power Plants, Journal of Industrial Ecology, vol.44, issue.1, pp.908-921, 2011.
DOI : 10.1021/es902555a

G. Guest, F. Cherubini, and A. H. Strømman, Climate impact potential of utilizing forest residues for bioenergy in Norway, Mitigation and Adaptation Strategies for Global Change, vol.35, issue.4, pp.1089-1108, 2013.
DOI : 10.1016/j.biombioe.2011.07.001

H. Haberl, K. Erb, F. Krausmann, A. Bondeau, C. Lauk et al., Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields Land use impacts of bioenergy, Biomass Bioenergy, pp.4753-4769, 2009.

A. Hallam, I. C. Anderson, and D. R. Buxton, Comparative economic analysis of perennial, annual, and intercrops for biomass production, Biomass and Bioenergy, vol.21, issue.6, pp.407-424, 2001.
DOI : 10.1016/S0961-9534(01)00051-4

A. Hallam, I. C. Anderson, and D. R. Buxton, Comparative economic analysis of perennial, annual, and intercrops for biomass production, Biomass and Bioenergy, vol.21, issue.6, pp.407-424, 2001.
DOI : 10.1016/S0961-9534(01)00051-4

P. Havlík, U. A. Schneider, E. Schmid, H. Böttcher, S. Fritz et al., Global land-use implications of first and second generation biofuel targets, Energy Policy, vol.39, issue.10, pp.5690-5702, 2011.
DOI : 10.1016/j.enpol.2010.03.030

R. Heijungs, Economic drama and the environmental stage, The International Journal of Life Cycle Assessment, vol.2, issue.4, 1997.
DOI : 10.1007/BF02978414

B. Heintz and P. Baisnée, System boundaries. Presented at the SETAC-Europe Worshop on Life- Cycle Assessment, pp.35-52, 1992.

R. Hoefnagels, G. Resch, M. Junginger, and A. Faaij, International and domestic uses of solid biofuels under different renewable energy support scenarios in the European Union, Applied Energy, vol.131, pp.139-157, 2014.
DOI : 10.1016/j.apenergy.2014.05.065

R. Hoefnagels, E. Smeets, and A. Faaij, Greenhouse gas footprints of different biofuel production systems, Renewable and Sustainable Energy Reviews, vol.14, issue.7, pp.1661-1694, 2010.
DOI : 10.1016/j.rser.2010.02.014

P. Hofstetter, Perspectives in Life Cycle Impact Assessment: A Structured Approach to Combine Models of the Technosphere, Ecosphere and Valuesphere, 1998.
DOI : 10.1007/978-1-4615-5127-0

M. Hoogwijk, A. Faaij, B. De-vries, and W. Turkenburg, Exploration of regional and global cost???supply curves of biomass energy from short-rotation crops at abandoned cropland and rest land under four IPCC SRES land-use scenarios, Biomass and Bioenergy, vol.33, issue.1, pp.26-43, 2009.
DOI : 10.1016/j.biombioe.2008.04.005

M. Hoogwijk, A. Faaij, B. Eickhout, B. De-vries, and W. Turkenburg, Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios, Biomass and Bioenergy, vol.29, issue.4, pp.225-257, 2005.
DOI : 10.1016/j.biombioe.2005.05.002

J. C. Hourcade, O. Sassi, R. Crassous, V. Gitz, H. Waisman et al., IMACLIM-R: a modelling framework to simulate sustainable development pathways, Int. J. Glob. Environ. Issues, vol.10, pp.5-24, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00566290

H. Huang, S. Ramaswamy, W. Al-dajani, U. Tschirner, and R. A. Cairncross, Effect of biomass species and plant size on cellulosic ethanol: A comparative process and economic analysis, Biomass and Bioenergy, vol.33, issue.2, pp.234-246, 2009.
DOI : 10.1016/j.biombioe.2008.05.007

I. and N. D. Bioenergy, URL https

T. B. Johansson, H. Kelly, A. K. Reddy, and R. H. Williams, Renewable Fuels and Electricity for a Growing World Economy: Defining and Achieving the Potential, Energy Studies Review, vol.4, issue.3, 1993.
DOI : 10.15173/esr.v4i3.284

S. Kc and W. Lutz, Demographic scenarios by age, sex and education corresponding to the SSP narratives, Population and Environment, vol.109, issue.1???2, pp.243-260, 2014.
DOI : 10.5751/ES-04645-170202

A. Kendall, Time-adjusted global warming potentials for LCA and carbon footprints, The International Journal of Life Cycle Assessment, vol.7, issue.1, pp.1042-1049, 2012.
DOI : 10.1023/A:1015879109042

T. Kent, P. D. Kofman, and E. Coates, Harvesting wood for energy -Cost-effective woodfuel supply chains in Irish forestry, COFORD, 2011.

M. Khanna, B. Dhungana, and J. Clifton-brown, Costs of producing miscanthus and switchgrass for bioenergy in Illinois, Biomass and Bioenergy, vol.32, issue.6, 2008.
DOI : 10.1016/j.biombioe.2007.11.003

M. Kolström, Ecological simulation model for studying diversity of stand structure in boreal forests, Ecological Modelling, vol.111, issue.1, pp.17-3610, 1998.
DOI : 10.1016/S0304-3800(98)00102-1

M. P. Kshirsagar and V. R. Kalamkar, A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design, Renewable and Sustainable Energy Reviews, vol.30, 2014.
DOI : 10.1016/j.rser.2013.10.039

J. Laitila, Harvesting technology and the cost of fuel chips from early thinnings. Silva Fenn, Finn. Soc. For. Sci, vol.42, pp.267-283, 2008.

J. Laitila, J. Heikkilä, and P. Anttila, Harvesting alternatives, accumulation and procurement cost of small-diameter thinning wood for fuel in Central Finland. Silva Fenn, Finn. Soc. For. Sci, vol.44, pp.465-480, 2010.

J. J. Landsberg and R. H. Waring, A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning, Forest Ecology and Management, vol.95, issue.3, pp.209-228, 1997.
DOI : 10.1016/S0378-1127(97)00026-1

D. M. Lapola, R. Schaldach, J. Alcamo, A. Bondeau, J. Koch et al., Indirect land-use changes can overcome carbon savings from biofuels in Brazil, Proc. Natl. Acad. Sci, 2010.
DOI : 10.1016/S0167-8809(01)00187-6

A. Leinonen, Wood Chip Production Technology and Costs for Fuel in Namibia, 2007.

A. Levasseur, P. Lesage, M. Margni, M. Brandão, and R. Samson, Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches, Climatic Change, vol.77, issue.3-4, pp.759-776, 2012.
DOI : 10.1007/s10584-009-9647-6

A. Levasseur, P. Lesage, M. Margni, L. Deschênes, and R. Samson, Considering Time in LCA: Dynamic LCA and Its Application to Global Warming Impact Assessments, Environmental Science & Technology, vol.44, issue.8, pp.3169-317410, 1021.
DOI : 10.1021/es9030003

A. Levasseur, P. Lesage, M. Margni, and R. Samson, Biogenic Carbon and Temporary Storage Addressed with Dynamic Life Cycle Assessment, Journal of Industrial Ecology, vol.3, issue.4, 2013.
DOI : 10.1186/1750-0680-3-1

P. Levasseur, L'expérience allemande de la méthanisation à la ferme: transposition au contexte français, pp.13-20, 2006.

I. Lewandowski, J. Weger, A. Van-hooijdonk, K. Havlickova, J. Van-dam et al., The potential biomass for energy production in the Czech Republic, Biomass and Bioenergy, vol.30, issue.5, pp.405-421, 2006.
DOI : 10.1016/j.biombioe.2005.11.020

E. Loiseau, Elaboration d'une démarche d'évaluation environnementale d'un territoire basée sur le cadre méthodologique de l'Analyse de Cycle de Vie (ACV), 2014.

H. Lotze-campen, A. Popp, T. Beringer, C. Müller, A. Bondeau et al., Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade, Ecological Modelling, vol.221, issue.18, pp.2188-2196, 2010.
DOI : 10.1016/j.ecolmodel.2009.10.002

D. Loustau, V. Moreaux, A. Bosc, P. Trichet, J. Kumari et al., Nguyen-The, N., 2012. A climate sensitive model of carbon transfer through atmosphere, vegetation and soil in managed forest ecosystems

D. R. Mcilveen-wright, Y. Huang, S. Rezvani, D. Redpath, M. Anderson et al., A technical and economic analysis of three large scale biomass combustion plants in the UK, Applied Energy, vol.112, 2013.
DOI : 10.1016/j.apenergy.2012.12.051

D. H. Meadows, D. L. Meadows, J. Randers, and W. W. Behrens, Halte à la croissance: les limites de la croissance, 1992.

T. Melkior, S. Jacob, G. Gerbaud, S. Hediger, L. Pape et al., NMR analysis of the transformation of wood constituents by torrefaction, Fuel, vol.92, issue.1, pp.271-280, 2012.
DOI : 10.1016/j.fuel.2011.06.042

URL : https://hal.archives-ouvertes.fr/hal-01233101

V. Mendu, T. Shearin, J. E. Campbell, J. Stork, J. Jae et al., Global bioenergy potential from high-lignin agricultural residue, Proc. Natl. Acad. Sci, pp.4014-4019, 2012.
DOI : 10.1073/pnas.1010808108

. Météo-france, Les modèles de prévision de Météo-France [WWW Document]. URL http://www.meteofrance.fr/prevoir-le-temps/la-prevision-du-temps/les-modeles-deprevision-de-meteo-france

. Ministère-de-l-'environnement, Arrêté du 15 septembre 2009 relatif à l'entretien annuel des chaudières, 2009.

G. L. Moguédec and J. Dhôte, Fagac??es: a tree-centered growth and yield model for sessile oak (Quercus petraea L.) and common beech (Fagus sylvatica L.), Annals of Forest Science, vol.35, issue.2, pp.257-269, 2012.
DOI : 10.1139/x05-070

A. Monti, S. Fazio, V. Lychnaras, P. Soldatos, and G. Venturi, A full economic analysis of switchgrass under different scenarios in Italy estimated by BEE model, Biomass and Bioenergy, vol.31, issue.4, pp.177-185, 2006.
DOI : 10.1016/j.biombioe.2006.09.001

M. Muratori, K. Calvin, M. Wise, P. Kyle, and J. Edmonds, Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS), Environmental Research Letters, vol.11, issue.9, pp.95004-95014, 2016.
DOI : 10.1088/1748-9326/11/9/095004

R. Murphy, J. Woods, M. Black, and M. Mcmanus, Global developments in the competition for land from biofuels, Food Policy, vol.36, pp.52-61, 2011.
DOI : 10.1016/j.foodpol.2010.11.014

L. Nitschelm, J. Aubin, M. S. Corson, V. Viaud, and C. Walter, Spatial differentiation in Life Cycle Assessment LCA applied to an agricultural territory: current practices and method development, Journal of Cleaner Production, vol.112, pp.2472-2484, 2016.
DOI : 10.1016/j.jclepro.2015.09.138

URL : https://hal.archives-ouvertes.fr/hal-01377881

. Observatoire-Économique-de-france-bois and . Forêt, Analyse des marchés forestiers, 2013.

D. Owen, Tables for Computing Bivariate Normal Probabilities, The Annals of Mathematical Statistics, vol.27, issue.4, pp.1075-1090, 1956.
DOI : 10.1214/aoms/1177728074

S. Ozgen, S. Caserini, S. Galante, M. Giugliano, E. Angelino et al., Emission factors from small scale appliances burning wood and pellets, Atmospheric Environment, vol.94, pp.144-153, 2014.
DOI : 10.1016/j.atmosenv.2014.05.032

P. Européen, /. Ce, . Parlement, and . Et, relative à la promotion de l'utilisation de l'énergie produite à partir de sources renouvelables et modifiant puis abrogeant les directives, CE etCE, vol.7730, issue.28, 2001.

R. Pecenka and T. Hoffmann, Harvest technology for short rotation coppices and costs of harvest, transport and storage, Agron. Res, vol.13, pp.361-371, 2015.

C. Pelletier, J. François, A. Bosc, D. Picart, C. Moisy et al., Environmental and economic assessment of converting wood to energy, based on modelling of the entire production chain, 2016.

C. Pelletier, J. Francois, L. Dieckhoff, M. Fortin, Y. Rogaume et al., Assessment of biomass-to-energy chains from the forest to the combustion in individual or district heating boilers, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01298288

A. K. Petersen-raymer, A comparison of avoided greenhouse gas emissions when using different kinds of wood energy, Biomass and Bioenergy, vol.30, issue.7, pp.605-617, 2006.
DOI : 10.1016/j.biombioe.2006.01.009

J. Pichancourt, R. Manso, F. Ningre, M. Fortin, and . Soumis, A carbon accounting tool for complex and uncertain greenhouse gas emission life-cycles

A. Popp, J. P. Dietrich, H. Lotze-campen, D. Klein, N. Bauer et al., The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system, Environmental Research Letters, vol.6, issue.3, pp.34017-34027, 2011.
DOI : 10.1088/1748-9326/6/3/034017

T. W. Powell and T. M. Lenton, Future carbon dioxide removal via biomass energy constrained by agricultural efficiency and dietary trends, Energy & Environmental Science, vol.109, issue.suppl. 2, pp.8116-8133, 2012.
DOI : 10.1007/s10584-011-0151-4

I. Profft, M. Mund, G. Weber, E. Weller, and E. Schulze, Forest management and carbon sequestration in wood products, European Journal of Forest Research, vol.241, issue.4, pp.399-413, 2009.
DOI : 10.1007/978-94-010-9819-9_9

S. Rialland and L. Planchet, Production de plaquettes forestières en région Pays de la Loire, Atlanbois, 2011.

L. Robert, Caract??risation des ??missions issues de la combustion du bois dans deux appareils ind??pendants, Pollution atmosph??rique, issue.N??189, 2006.
DOI : 10.4267/pollution-atmospherique.1501

Y. Rogaume, Amélioration des performances environnementales et de l'intégration dans l'habitat des équipements de chauffage domestique au bois (Rapport d'étude) ADEME, 2008.

Y. Rogaume, Estimation de l'impact environnemental du chauffage domestique au bois à l'échelle locale (quartier, village) (Rapport d'étude) ADEME, 2010.

Y. Rogaume, Communication personnelle : les facteurs d'air des différentes technologies de combustion, 2014.

D. Rokityanskiy, P. C. Benítez, F. Kraxner, I. Mccallum, M. Obersteiner et al., Geographically explicit global modeling of land-use change, carbon sequestration, and biomass supply, Technological Forecasting and Social Change, vol.74, issue.7, pp.1057-1082, 2007.
DOI : 10.1016/j.techfore.2006.05.022

S. K. Rose, E. Kriegler, R. Bibas, K. Calvin, A. Popp et al., Bioenergy in energy transformation and climate management, Climatic Change, vol.324, issue.5931, pp.1-17, 2013.
DOI : 10.1126/science.1168475

URL : https://hal.archives-ouvertes.fr/hal-00945651

E. Rotheneder, Forestry and Bioenergy -Harvesting and wood fuel production, 2012.

J. Routa, S. Kellomäki, A. Kilpeläinen, H. Peltola, and H. Strandman, Effects of forest management on the carbon dioxide emissions of wood energy in integrated production of timber and energy biomass, GCB Bioenergy, vol.6, issue.6, pp.483-497, 2011.
DOI : 10.1007/s10021-002-0206-5

W. Schakel, H. Meerman, A. Talaei, A. Ramírez, and A. Faaij, Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage, Applied Energy, vol.131, pp.441-467, 2014.
DOI : 10.1016/j.apenergy.2014.06.045

T. Searchinger, R. Heimlich, R. A. Houghton, F. Dong, A. Elobeid et al., Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change, Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change, pp.1238-1240, 2008.
DOI : 10.1126/science.1152747

. Selectra, Tarif de l'abonnement gaz chez GDF Suez et ses concurrents

K. P. Shine, J. S. Fuglestvedt, K. Hailemariam, and N. Stuber, Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases, Climatic Change, vol.29, issue.3, pp.281-302, 2005.
DOI : 10.5547/ISSN0195-6574-EJ-Vol14-No1-10

G. R. Shorack and J. A. Wellner, Empirical Processes With Applications to Statistics, Society for Industrial & Applied Mathematics, 2009.
DOI : 10.1137/1.9780898719017

R. Sikkema, M. Junginger, P. Mcfarlane, and A. Faaij, The GHG contribution of the cascaded use of harvested wood products in comparison with the use of wood for energy???A case study on available forest resources in Canada, Environmental Science & Policy, vol.31, pp.96-108, 2013.
DOI : 10.1016/j.envsci.2013.03.007

S. Chen, Life Cycle Assessment of Wood Pellet (Master of Science Thesis), 2009.

E. M. Smeets and A. P. Faaij, Bioenergy potentials from forestry in 2050, Climatic Change, vol.76, issue.5, pp.353-390, 2007.
DOI : 10.1016/j.forpol.2003.09.003

E. M. Smeets, A. P. Faaij, I. M. Lewandowski, and W. C. Turkenburg, A bottom-up assessment and review of global bio-energy potentials to 2050, Progress in Energy and Combustion Science, vol.33, issue.1, pp.56-106, 2007.
DOI : 10.1016/j.pecs.2006.08.001

E. M. Smeets, I. M. Lewandowski, and A. P. Faaij, The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting, Renewable and Sustainable Energy Reviews, vol.13, issue.6-7, pp.1230-1245, 2009.
DOI : 10.1016/j.rser.2008.09.006

M. Smidt and T. Gallagher, Factors affecting fuel consumption and harvesting costs, Presented at the 38th Council on Forest Engineering Annual Meeting, p.8, 2013.

C. Solli, M. Reenaas, A. H. Strømman, and E. G. Hertwich, Life cycle assessment of wood-based heating in Norway, The International Journal of Life Cycle Assessment, vol.90, issue.4, pp.517-528, 2009.
DOI : 10.1016/S1389-9341(03)00063-7

F. Souty, T. Brunelle, P. Dumas, B. Dorin, P. Ciais et al., The Nexus Land-Use model version 1.0, an approach articulating biophysical potentials and economic dynamics to model competition for land-use, Geoscientific Model Development, vol.5, issue.5, pp.1297-1322, 2012.
DOI : 10.5194/gmd-5-1297-2012

URL : https://hal.archives-ouvertes.fr/hal-00800242

R. Spinelli, B. R. Hartsough, P. M. Owende, and S. M. Ward, Productivity and Cost of Mechanized Whole-Tree Harvesting of Fast-Growing Eucalypt Stands, Int. J. For. Eng, vol.13, 2002.

S. University, EMF 33: Bio-Energy and Land Use | Energy Modeling Forum [WWW Document]. URL https

T. Stevanovic and D. Perrin, Chimie du bois, Presses Polytechniques et Universitaires Romandes (PPUR), 2009.

D. Styles, F. Thorne, and M. B. Jones, Energy crops in Ireland: An economic comparison of willow and Miscanthus production with conventional farming systems, Biomass and Bioenergy, vol.32, issue.5, 2008.
DOI : 10.1016/j.biombioe.2007.10.012

Y. Sun and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol., Reviews Issue, vol.83, issue.01, pp.960-852400212, 2002.

T. Danish and E. , Spatial differentiation in Life Cycle impact assessment -The EDIP2003 methodology, 2005.

P. Thornley, P. Gilbert, S. Shackley, and J. Hammond, Maximizing the greenhouse gas reductions from biomass: The role of life cycle assessment, Biomass and Bioenergy, vol.81, 2015.
DOI : 10.1016/j.biombioe.2015.05.002

S. Thorsell, F. M. Epplin, R. L. Huhnke, and C. M. Taliaferro, Economics of a coordinated biorefinery feedstock harvest system: lignocellulosic biomass harvest cost, Biomass and Bioenergy, vol.27, issue.4, pp.327-337, 2004.
DOI : 10.1016/j.biombioe.2004.03.001

P. K. Tickle, N. C. Coops, and S. D. Hafner, Assessing forest productivity at local scales across a native eucalypt forest using a process model, 3PG-SPATIAL, Forest Ecology and Management, vol.152, issue.1-3, pp.275-291, 2001.
DOI : 10.1016/S0378-1127(00)00609-5

A. Tillman, Significance of decision-making for LCA methodology, Environmental Impact Assessment Review, vol.20, issue.1, pp.113-12310, 2000.
DOI : 10.1016/S0195-9255(99)00035-9

D. Tonini and T. Astrup, LCA of biomass-based energy systems: A case study for Denmark, Applied Energy, vol.99, pp.234-246, 2012.
DOI : 10.1016/j.apenergy.2012.03.006

M. Tran-ha, G. Perrotte, T. Cordonnier, and P. Duplat, Volume tige d'un arbre ou d'une collection d'arbres pour six essences principales en France. Rev. For. Fr, pp.609-624, 2007.

M. Tuomi, T. Thum, H. Järvinen, S. Fronzek, B. Berg et al., Leaf litter decomposition???Estimates of global variability based on Yasso07 model, Ecological Modelling, vol.220, issue.23, pp.3362-3371, 2009.
DOI : 10.1016/j.ecolmodel.2009.05.016

M. Tuomi, P. Vanhala, K. Karhu, H. Fritze, and J. Liski, Heterotrophic soil respiration???Comparison of different models describing its temperature dependence, Ecological Modelling, vol.211, issue.1-2, 2008.
DOI : 10.1016/j.ecolmodel.2007.09.003

W. Uicn and P. , Stratégie mondiale de la conservation: la conservation des ressources, 1980.

C. Vakil and L. Harvey, Human Health Implications of the Nuclear Energy Industry, 2009.

J. Van-dam, A. P. Faaij, J. Hilbert, H. Petruzzi, and W. C. Turkenburg, Large-scale bioenergy production from soybeans and switchgrass in Argentina, Renewable and Sustainable Energy Reviews, vol.13, issue.8, pp.1679-1709, 2009.
DOI : 10.1016/j.rser.2009.03.012

R. Van-den-broek, A. Faaij, A. Wijk, . Van, T. Kent et al., Willow firing in retrofitted Irish peat power plants, Biomass and Bioenergy, vol.12, issue.2, pp.75-90, 1997.
DOI : 10.1016/S0961-9534(96)00070-0

R. Van-den-broek, S. Teeuwisse, K. Healion, T. Kent, A. Van-wijk et al., Potentials for electricity production from wood in Ireland, pp.991-1013, 2001.

R. Van-den-broek, T. Van-den-burg, A. Van-wijk, and W. Turkenburg, Electricity generation from eucalyptus and bagasse by sugar mills in Nicaragua: A comparison with fuel oil electricity generation on the basis of costs, macro-economic impacts and environmental emissions, Biomass and Bioenergy, vol.19, issue.5, pp.311-335, 2000.
DOI : 10.1016/S0961-9534(00)00034-9

R. Van-den-broek, A. Van-wijk, and W. Turkenburg, Electricity from energy crops in different settings???a country comparison between Nicaragua, Ireland and the Netherlands, Biomass and Bioenergy, vol.22, issue.2, pp.79-98, 2002.
DOI : 10.1016/S0961-9534(01)00063-0

D. P. Van-vuuren, K. Riahi, R. Moss, J. Edmonds, A. Thomson et al., A proposal for a new scenario framework to support research and assessment in different climate research communities, Global Environmental Change, vol.22, issue.1, 2012.
DOI : 10.1016/j.gloenvcha.2011.08.002

D. P. Van-vuuren, J. Van-vliet, and E. Stehfest, Future bio-energy potential under various natural constraints, Energy Policy, vol.37, issue.11, 2009.
DOI : 10.1016/j.enpol.2009.05.029

M. E. Walsh, U.S. bioenergy crop economic analyses: status and needs, Biomass and Bioenergy, vol.14, issue.4, pp.341-35010, 1998.
DOI : 10.1016/S0961-9534(97)10070-8

URL : https://hal.archives-ouvertes.fr/in2p3-00591631

B. P. Weidema, Development of a Method for Product Life Cycle Assessment with Special References to Food Products (PhD thesis), 1993.

T. O. Wilson, F. M. Mcneal, S. Spatari, G. Abler, D. Adler et al., Densified Biomass Can Cost-Effectively Mitigate Greenhouse Gas Emissions and Address Energy Security in Thermal Applications, Environmental Science & Technology, vol.46, issue.2, pp.1270-127710, 1021.
DOI : 10.1021/es202752b

M. Wise, K. Calvin, A. Thomson, L. Clarke, B. Bond-lamberty et al., Implications of Limiting CO2 Concentrations for Land Use and Energy, Science, vol.10, issue.5595, pp.1183-1186, 2009.
DOI : 10.1126/science.1072357

J. Wolf, P. Bindraban, J. Luijten, and L. Vleeshouwers, Exploratory study on the land area required for global food supply and the potential global production of bioenergy, Agricultural Systems, vol.76, issue.3, pp.841-861, 2003.
DOI : 10.1016/S0308-521X(02)00077-X

A. Dufour, Revue Forestière Française n°2, pp.133-142, 2016.

. Pelletier, Cost Optimization, Simulation and Environmental Impact of Energy Systems (ECOS205) ; « Assessment of biomass-to-energy chains from the forest to the combustion in individual or district heating boilers, Juin, vol.2015, 2015.

. Pelletier, Environmental and economic assessment of converting wood to energy, based on modelling of the entire production chain, 2016.