V. Kira, J. B. Adaricheva, and . Nation, Discovery of the d-basis in binary tables based on hypergraph dualization

K. V. Adaricheva, J. B. Nation, G. Okimoto, V. Adariche-va, A. Amanbekkyzy et al., Measuring the Implications of the D-Basis in Analysis of Data in Biomedical Studies, Formal Concept Analysis, pp.39-57
DOI : 10.1007/978-3-319-19545-2_3

K. V. Adaricheva, J. B. Nation, and R. Rand, Ordered direct implicational basis of a finite closure system, ISAIM, 2012. p 39, p 40, pp.68-87
DOI : 10.1016/j.dam.2012.08.031

P. Agarwal, M. Kaytoue, S. O. Kuznetsov, A. Napoli, and G. Polaillon, Symbolic Galois Lattices with Pattern Structures, Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, pp.191-198, 2011.
DOI : 10.1007/978-3-642-10646-0_4

URL : https://hal.archives-ouvertes.fr/hal-00631473

R. Agrawal and R. Srikant, Fast algorithms for mining association rules in large databases, Proceedings of the 20th International Conference on Very Large Data Bases, VLDB '94, pp.487-499, 1994.

M. Alam, Interactive Knowledge Discovery over Web of Data. Theses, Loria & Inria Grand Est, pp.13-120, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01245458

M. R. Amini and E. Gaussier, Recherche d'information : Applications, modèles et algorithmes -Fouille de données, décisionnel et big data, Algorithmes. Eyrolles, issue.4, 2013.

M. Arias and J. Balcázar, Construction and learnability of canonical horn formulas Dependency structures of data base relationships, Machine Learning IFIP Congress, pp.273-297, 1974.

J. Baixeries and J. L. Balcázar, New closure operators and lattice representations for multivalued dependencies and related expressions, The 3rd international conference on Concept Lattices and Their Applications (CLA'05), p.37, 2005.

J. Baixeries, M. Kaytoue, and A. Napoli, Computing functional dependencies with pattern structures, Proceedings of The Ninth International Conference on Concept Lattices and Their Applications, pp.175-186, 2012.
DOI : 10.1007/s10472-014-9400-3

URL : https://hal.archives-ouvertes.fr/hal-00763748

F. Baklouti and G. Lévy, Distributed and general galois lattice for large data bases, The 3rd international conference on Concept Lattices and Their Applications (CLA'05), p.41, 2005.

H. Bandelt, Tolerance relations on lattices, Bulletin of the Australian Mathematical Society, vol.27, issue.03, pp.367-381, 1981.
DOI : 10.1007/BF02945035

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B7A754195C89ED13DB0FE16ACF761E80/S0004972700007255a.pdf/div-class-title-tolerance-relations-on-lattices-div.pdf

E. Bartl and M. Krupka, Logical Analysis of Concept Lattices by Factorization, Formal Concept Analysis, pp.16-27, 2012.
DOI : 10.1007/978-3-642-29892-9_8

R. Belohlavek, Concept lattices and order in fuzzy logic, Annals of Pure and Applied Logic, vol.128, issue.1-3, pp.277-298, 2004.
DOI : 10.1016/j.apal.2003.01.001

R. Belohlavek, V. Sklenár, J. Zacpal, and E. Sigmund, Evaluation of questionnaires by means of formal concept analysis, CLA, pp.100-111, 2007.

R. Belohlavek and V. Vychodil, Discovery of optimal factors in binary data via a novel method of matrix decomposition, Journal of Computer and System Sciences, vol.76, issue.1, pp.3-20, 2007.
DOI : 10.1016/j.jcss.2009.05.002

K. Bertet, Sur quelques aspects algorithmiques et structurels des treillis, p.29, 1998.

K. Bertet, Structure de treillis : contributions structurelles et algorithmiques : quelques usages pour des données images. Hdr, p.29, 2010.

K. Bertet, The dependence graph of a lattice, Proceedings of The Ninth International Conference on Concept Lattices and Their Applications, pp.223-232, 2012.

K. Bertet and N. Caspard, Doubling convex sets in lattices : characterizations and recognition algorithms, Complexity and Logic), vol.7, p.70, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00095564

K. Bertet and B. Monjardet, The multiple facets of the canonical direct unit implicational basis, Theoretical Computer Science, vol.411, issue.22-24, pp.22-242155, 2010.
DOI : 10.1016/j.tcs.2009.12.021

URL : https://hal.archives-ouvertes.fr/halshs-00308798

G. Birkhoff, Lattice theory, Colloquium Publications, 1967.
DOI : 10.1090/coll/025

J. Bordat, Calcul pratique du treillis de galois d'une correspondance, Mathématiques et Sciences Humaines, vol.96, pp.31-47, 1986.

C. Brasseur, Enjeux et usages du Big Data : Technologies, méthodes et mise en oeuvre. Collection Management et informatique, 2013.

P. Brito and G. Polaillon, Organisation de donn??es probabilistes par des treillis de Galois, Math??matiques et sciences humaines, vol.169, issue.169, p.44, 2005.
DOI : 10.4000/msh.2873

P. Burmeister, Formal concept analysis with ConImp : Introduction to the basic features, p.131, 2003.

C. Carpineto and G. Romano, A lattice conceptual clustering system and its application to browsing retrieval, Machine Learning, pp.95-122, 1996.
DOI : 10.1016/S0020-7373(89)80014-8

C. Carpineto and G. Romano, Concept Data Analysis : Theory and Applications. Wiley InterScience online books, pp.45-46, 2004.
DOI : 10.1002/0470011297

N. Caspard and B. Monjardet, The lattices of Moore families and closure operators on a finite set, OSDA98, Ordinal and Symbolic Data Analysis, pp.25-50, 1999.
DOI : 10.1016/S1571-0653(04)00013-7

N. Caspard and B. Monjardet, The lattices of closure systems, closure operators, and implicational systems on a finite set: a survey, Ordinal and Symbolic Data Analysis (OSDA '98), Univ. of Massachusetts, pp.241-269, 1928.
DOI : 10.1016/S0166-218X(02)00209-3

URL : https://hal.archives-ouvertes.fr/hal-00095569

I. Chajda and B. Zelinka, Lattices of tolerances. ?asopis pro p?stování matematiky, pp.10-24, 1977.

I. Chajda and B. Zelinka, Minimal compatible tolerances on lattices, Czechoslovak Mathematical Journal, vol.27, issue.3, pp.452-459, 1977.

R. Cole and P. W. Eklund, Scalability in Formal Concept Analysis, Computational Intelligence, vol.15, issue.1, pp.11-27, 1999.
DOI : 10.1111/0824-7935.00079

P. Cordero, M. Enciso, and A. Mora, Automated reasoning to infer all minimal keys, Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI '13, pp.817-823, 2013.
DOI : 10.1093/jigpal/jzu025

F. Coste, G. Garet, A. Groisillier, J. Nicolas, and T. Tonon, Automated Enzyme Classification by Formal Concept Analysis, Formal Concept Analysis -12th International Conference Proceedings, pp.235-250, 2014.
DOI : 10.1007/978-3-319-07248-7_17

URL : https://hal.archives-ouvertes.fr/hal-01063727

A. Coulet, F. Domenach, M. Kaytoue, and A. Napoli, Using Pattern Structures for Analyzing Ontology-Based Annotations of Biomedical Data, Formal Concept Analysis, pp.76-91, 2013.
DOI : 10.1007/978-3-642-38317-5_5

URL : https://hal.archives-ouvertes.fr/hal-00922392

P. Crawley and R. P. Dilworth, Algebraic theory of lattices, pp.29-32, 1973.

B. Croft, D. Metzler, and T. Strohman, Search Engines : Information Retrieval in Practice, p.12, 2009.

G. Czédli, Factor lattices by tolerances, Acta Sci. Math.(Szeged), vol.44, issue.12, pp.35-42, 1982.

G. Czédli and G. Grätzer, Lattice tolerances and congruences. Algebra universalis, pp.5-6

F. Dau and J. Klinger, From Formal Concept Analysis to Contextual Logic, Formal Concept Analysis, pp.81-100, 2005.
DOI : 10.1007/11528784_4

URL : http://www.dr-dau.net/Papers/ICFCA2003.pdf

A. Day, A simple solution to the word problem for lattices, Bulletin canadien de math??matiques, vol.13, issue.0, pp.253-254, 1970.
DOI : 10.4153/CMB-1970-051-0

A. Day, Splitting lattices generate all lattices Algebra universalis, pp.163-169, 1977.
DOI : 10.1007/bf02485425

A. Day, Characterizations of finite lattices that are bounded-homomorphic images or sublattices of free lattices. Canad, J. Math, vol.31, issue.7, pp.69-78, 1979.

A. Day, Congruence normality : The characterization of the doubling class of convex sets. Algebra universalis, pp.397-406, 1994.

A. Day, J. B. Nation, and S. Tschantz, Doubling convex sets in lattices and a generalized semidistributivity condition, Order, vol.269, issue.2, pp.175-180, 1989.
DOI : 10.2140/pjm.1979.82.463

J. Demel, Fast algorithms for finding a subdirect decomposition and interesting congruences of finite algebras, Kybernetika (Prague), vol.18, issue.2 7, pp.121-130, 1982.

E. Diday and R. Emilion, Treillis de galois maximaux et capacités de choquet. Comptes Rendus de l'Académie des Sciences -Series I -Mathematics, pp.261-266, 1997.
DOI : 10.1016/s0764-4442(97)83952-3

E. Diday and R. Emilion, Maximal and stochastic Galois lattices, Ordinal and Symbolic Data Analysis (OSDA '98), Univ. of Massachusetts, pp.271-284, 1998.
DOI : 10.1016/S0166-218X(02)00210-X

URL : https://doi.org/10.1016/s0166-218x(02)00210-x

D. Dubois and H. Prade, Formal Concept Analysis from the Standpoint of Possibility Theory, Formal Concept Analysis -13th International Conference, ICFCA 2015 Proceedings, pp.21-38, 2015.
DOI : 10.1007/978-3-319-19545-2_2

URL : https://hal.archives-ouvertes.fr/hal-01291629

B. Ducatel, M. Kaytoue, F. Marcuola, A. Napoli, and L. Szathmary, Coron : Plate-forme d'extraction de connaissances dans les bases de données, 17ème conférence en Reconnaissance des Formes et Intelligence Artificielle -RFIA 2010, Reconnaissance des Formes et Intelligence Artificielle -RFIA 2010, pp.883-884, 2010.

V. Duquenne, What can lattices do for experimental designs?, Mathematical Social Sciences, vol.11, issue.3, pp.243-281, 1986.
DOI : 10.1016/0165-4896(86)90028-4

V. Duquenne, Lattice analysis and the representation of handicap associations, Social Networks, vol.18, issue.3, pp.217-230, 1996.
DOI : 10.1016/0378-8733(95)00274-X

V. Duquenne, Latticial structures in data analysis, Theoretical Computer Science, vol.217, issue.2, pp.407-436, 1999.
DOI : 10.1016/S0304-3975(98)00279-5

URL : https://doi.org/10.1016/s0304-3975(98)00279-5

V. Duquenne, Lattice Drawings and Morphisms, Formal Concept Analysis, 8th International Conference. Proceedings, pp.88-103, 2010.
DOI : 10.1007/978-3-642-11928-6_7

V. Duquenne, Congruence de treillis et classifications. Société Française de Classification, pp.21-24, 2011.

V. Duquenne, Contextual Implications between Attributes and Some Representation Properties for Finite Lattices, Lecture Notes in Computer Science, vol.7880, pp.1-27, 2013.
DOI : 10.1007/978-3-642-38317-5_1

V. Duquenne and J. Mohr, Comparison of Dual Orderings in Time II, ICFCA, pp.321-324, 2008.
DOI : 10.1007/978-3-540-78137-0_23

V. Duquenne, J. Mohr, and A. L. Pape, Comparison of dual orderings in time, Social Science Information, vol.11, issue.2, pp.227-253, 1998.
DOI : 10.1086/229967

V. Duquenne and B. Monjardet, Relations binaires entre partitions, Mathématiques et Sciences Humaines, vol.80, pp.5-37, 1982.

P. Eklund, J. Ducrou, and P. Brawn, Concept Lattices for Information Visualization: Can Novices Read Line-Diagrams?, pp.45-46, 2004.
DOI : 10.1007/978-3-540-24651-0_7

P. Eklund and J. Villerd, A Survey of Hybrid Representations of Concept Lattices in Conceptual Knowledge Processing, I8th International Conference on Formal Concept Analysis -ICFCA 2010, pp.296-311, 2010.
DOI : 10.1007/978-3-642-11928-6_21

G. Martin, . Everett, P. Stephen, and . Borgatti, The dual-projection approach for two-mode networks, Social Networks, vol.35, issue.2, pp.204-210, 2013.

S. Ferré, Systèmes d'information logiques : un paradigme logicocontextuel pour interroger, naviguer et apprendre, p.44, 2002.

S. Ferré, Negation, Opposition, and Possibility in Logical Concept Analysis, Lecture Notes in Computer Science, vol.3874, pp.130-145, 2006.
DOI : 10.1007/11671404_9

S. Ferré, Reconciling Expressivity and Usability in Information Access Habilitation à diriger des recherches, Université de Rennes 1, pp.46-47, 2014.

S. Ferré and O. Ridoux, Une généralisation logique de l'analyse de concepts formels, Inria, Institut National de Recherche en Informatique et en Automatique, 1999.

S. Ferré and O. Ridoux, Introduction to logical information systems, Information Processing & Management, vol.40, issue.3, pp.383-419, 2004.
DOI : 10.1016/S0306-4573(03)00018-9

C. Linton and . Freeman, Cliques, galois lattices, and the structure of human social groups Social Network and Discrete Structure Analysis, Social Networks, vol.18, issue.3, pp.173-187, 1996.

C. Linton, R. Freeman-breiger, C. Carley, and P. Pattison, Finding social groups : A meta-analysis of the southern women dataDynamic Social Network Modeling and Analysis : Workshop Summary and Papers (pp 39-97), National Research Council, pp.91-130, 2002.

C. Linton, D. R. Freeman, and . White, Using galois lattices to represent network data, Sociological Methodology, vol.23, issue.45, pp.127-146, 1993.

R. Freese, J. Jezek, and . Nation, Free lattices (math. surv. monogr., 42), providence, ri, Am. Math. Soc, p.69, 1995.

R. Freese, Computing congruence lattices of finite lattices, Proceedings of the American Mathematical Society, vol.125, issue.12, pp.3457-3463, 1997.
DOI : 10.1090/S0002-9939-97-04332-3

R. Freese, Algorithms for finite, finitely presented and free lattices, pp.159-178, 1999.
DOI : 10.2307/2042634

URL : http://www.ams.org/proc/1979-077-02/S0002-9939-1979-0542080-8/S0002-9939-1979-0542080-8.pdf

R. Freese, Automated Lattice Drawing, Concept Lattices, Second International Conference on Formal Concept Analysis Proceedings, pp.112-127, 2004.
DOI : 10.1007/978-3-540-24651-0_12

URL : http://www.math.hawaii.edu/~ralph/Preprints/latdrawing.pdf

R. Freese, Computing congruences efficiently Algebra universalis, pp.337-343, 2008.

H. Fu and E. M. Nguifo, Partitioning large data to scale up lattice-based algorithm, Proceedings. 15th IEEE International Conference on, pp.537-541, 2003.

H. Fu and E. M. Nguifo, A Parallel Algorithm to Generate Formal Concepts for Large Data, Concept Lattices, pp.394-401, 2004.
DOI : 10.1007/978-3-540-24651-0_33

P. Funk, A. Lewien, G. Snelting, and T. Braunschweig, Algorithms for concept lattice decomposition and their applications, 1957.

P. Gajdo?, P. Moravec, and V. Sná?el, Concept lattice generation by singular value decomposition, CLA, pp.13-22, 2004.

B. A. Galitsky, S. O. Kuznetsov, and D. Usikov, Parse Thicket Representation for Multi-sentence Search, Conceptual Structures for STEM Research and Education, pp.153-172, 2013.
DOI : 10.1007/978-3-642-35786-2_12

B. Ganter, Two Basic Algorithms in Concept Analysis, Formal Concept Analysis, pp.312-340, 2010.
DOI : 10.1007/978-3-642-11928-6_22

B. Ganter and S. O. Kuznetsov, Pattern Structures and Their Projections, Conceptual Structures : Broadening the Base, pp.129-142, 2001.
DOI : 10.1007/3-540-44583-8_10

B. Ganter and R. Wille, Formal concept analysis -mathematical foundations, pp.57-69, 1999.

W. Geyer, The generalized doubling construction and formal concept analysis. Algebra universalis, pp.341-367, 1994.

R. Godin, R. Missaoui, and H. Alaoui, INCREMENTAL CONCEPT FORMATION ALGORITHMS BASED ON GALOIS (CONCEPT) LATTICES, Computational Intelligence, vol.11, issue.2, pp.246-267, 1995.
DOI : 10.1016/0898-1221(92)90120-7

G. Grätzer, General lattice theory, p.29, 1978.

G. Grätzer, The congruences of a finite lattice : a proof-by-picture approach, p.32, 2007.
DOI : 10.1007/978-3-319-38798-7

G. Grätzer, Lattice Theory : Foundation. SpringerLink : Bücher, Birkhauser Boston, vol.5, pp.41-69, 2011.

J. Grygiel, Distributive lattices with a given skeleton, Discussiones Mathematicae - General Algebra and Applications, vol.24, issue.1, pp.75-94, 2004.
DOI : 10.7151/dmgaa.1077

J. Grygiel and S. Radelecki, On the tolerance lattice of tolerance factors, Acta Mathematica Hungarica, vol.107, issue.3, pp.220-237, 2013.
DOI : 10.1007/BF01190253

C. Guérin, K. Bertet, and A. Revel, An efficient java implementation of the immediate successors calculation, Proceedings of the Tenth International Conference on Concept Lattices and Their Applications, pp.81-92, 2013.

J. Guigues and V. Duquenne, Familles minimales d'implications informatives résultant d'un tableau de données binaires, Mathématiques et Sciences Humaines, vol.95, issue.39, pp.5-18, 1986.

J. Hereth, G. Stumme, R. Wille, and U. Wille, Conceptual Knowledge Discovery and Data Analysis, p.17, 2000.
DOI : 10.1007/10722280_29

URL : http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/files/2092.ps.gz

L. Hu, J. Zhang, and S. Zhang, A Pruning Based Incremental Construction of Horizontal Partitioned Concept Lattice, Computational Intelligence, pp.936-945, 2006.
DOI : 10.1007/978-3-540-37275-2_118

Y. Hu, R. Chen, and G. Tzeng, Discovering fuzzy association rules using fuzzy partition methods. Knowledge-Based Systems, pp.137-147, 2003.
DOI : 10.1016/s0950-7051(02)00079-5

URL : http://mcdm.ntcu.edu.tw/tzeng/publication/discovering fuzzy association rules using fuzzy partition methods.pdf

M. Huchard and A. Napoli, Mohamed Rouane Hacene, and Petko Valtchev Mining description logics concepts with relational concept analysis, Selected Contributions in Data Analysis and Classification, Studies in Classification, Data Analysis, and Knowledge Organization, pp.259-270, 2007.
DOI : 10.1007/978-3-540-73560-1_24

M. Kaytoue, S. Duplessis, and A. Napoli, L'analyse formelle de concepts pour l'extraction de connaissances dans les données d'expression de gènes, Extraction et gestion des connaissances, volume RNTI-E-15, pp.439-440, 2009.

M. Kaytoue, S. O. Kuznetsov, Z. Assaghir, and A. Napoli, Embedding Tolerance Relations in Concept Lattices -An application in Information Fusion, Research Report RR-7353, Inria, Institut National de Recherche en Informatique et en Automatique, p.74, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00508462

M. Kaytoue, S. O. Kuznetsov, J. Macko, and A. Napoli, Biclustering meets triadic concept analysis, Annals of Mathematics and Artificial Intelligence, vol.14, issue.2???3, pp.55-79, 2014.
DOI : 10.1145/1066157.1066236

URL : https://hal.archives-ouvertes.fr/hal-01101143

M. Kaytoue, S. O. Kuznetsov, and A. Napoli, Pattern Mining in Numerical Data : Extracting Closed Patterns and their Generators, Research Report RR-7416, Inria, Institut National de Recherche en Informatique et en Automatique, p.44, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00526662

M. Kaytoue, S. O. Kuznetsov, and A. Napoli, Revisiting numerical pattern mining with formal concept analysis. CoRR, abs / 1111, pp.2011-2055
URL : https://hal.archives-ouvertes.fr/inria-00584371

M. Kaytoue, S. O. Kuznetsov, A. Napoli, and G. Polaillon, Symbolic Data Analysis and Formal Concept Analysis, XVIIIeme Rencontres de la Société Francophone de Classification -SFC 2011, p.44, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00646457

P. Krajca, J. Outrata, and V. Vychodil, Parallel recursive algorithm for fca, CLA, pp.71-82, 2008.

P. Krajca, J. Outrata, and V. Vychodil, Advances in algorithms based on cbo, CLA, pp.325-337, 2010.

P. Krajca, J. Outrata, and V. Vychodil, Parallel algorithm for computing fixpoints of Galois connections, Annals of Mathematics and Artificial Intelligence, vol.23, issue.2, pp.257-272, 2010.
DOI : 10.1080/09528130210164170

P. Krajca and V. Vychodil, Distributed Algorithm for Computing Formal Concepts Using Map-Reduce Framework, Advances in Intelligent Data Analysis VIII, pp.333-344, 2009.
DOI : 10.1007/978-94-009-7798-3_15

F. Kriegel and D. Borchmann, Nextclosures : Parallel computation of the canonical base, Proceedings of the Twelfth International Conference on Concept Lattices and Their Applications, pp.181-192, 2015.

S. O. Kuznetsov, Pattern Structures for Analyzing Complex Data, Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, pp.33-44, 2009.
DOI : 10.1007/978-3-642-10646-0_4

S. O. Kuznetsov, Fitting Pattern Structures to Knowledge Discovery in Big Data, Formal Concept Analysis, pp.254-266, 2013.
DOI : 10.1007/978-3-642-38317-5_17

S. O. Kuznetsov, Scalable Knowledge Discovery in Complex Data with Pattern Structures, Pattern Recognition and Machine Intelligence, pp.30-39, 2013.
DOI : 10.1007/978-3-642-45062-4_3

O. Sergei, S. A. Kuznetsov, and . Obiedkov, Algorithms for the construction of concept lattices and their diagram graphs, Principles of Data Mining and Knowledge Discovery, pp.289-300, 2001.

O. Sergei, S. A. Kuznetsov, and . Obiedkov, Comparing performance of algorithms for generating concept lattices, Journal of experimental and theoretical artificial intelligence, vol.14, pp.189-216, 2002.

O. Sergei, M. V. Kuznetsov, and . Samokhin, Learning closed sets of labeled graphs for chemical applications, Inductive Logic Programming, pp.190-208, 2005.

L. Kwuida, R. Missaoui, A. Balamane, and J. Vaillancourt, Generalized pattern extraction from concept lattices, Annals of Mathematics and Artificial Intelligence, vol.42, issue.2, pp.151-168, 2014.
DOI : 10.1007/978-3-540-32262-7_21

G. Lévy and F. Baklouti, A distributed version of the ganter algorithm for general galois lattices, CLA, volume 2005, pp.207-221, 2005.

L. Libkin, Direct product decompositions of lattices, closures and relation schemes, Discrete Mathematics, vol.112, issue.1-3, pp.119-138, 1993.
DOI : 10.1016/0012-365X(93)90228-L

URL : https://doi.org/10.1016/0012-365x(93)90228-l

M. Liquiere and J. Sallantin, Structural machine learning with galois lattice and graphs, pp.305-313, 1998.

E. Lorenzo, K. V. Adaricheva, P. Cordero, M. Enciso, and A. Mora, From an implicational system to its corresponding d-basis Spatial indexing for scalability in fca, Proceedings of the Twelfth International Conference [126] Ben Martin and Peter Eklund Formal Concept Analysis, pp.205-220

R. Mckenzie, Equational bases and nonmodular lattice varieties. Transactions of the, pp.1-43, 1972.

J. Medina and J. Ruiz-calviño, Fuzzy formal concept analysis via multilattices : First prospects and results, CLA, pp.69-80
DOI : 10.1016/j.fss.2006.11.006

URL : http://sevein.matap.uma.es/~aciego/TR/fss-mor.pdf

N. Messai, M. Devignes, A. Napoli, and M. Smaïl-tabbone, Connaissances de domaine et treillis de concepts pour l'exploration progressive de données complexes, 21es Journées francophones d'Ingénierie des Connaissances -IC 2010, pp.233-244, 2010.

S. Ryszard, R. E. Michalski, and . Stepp, Automated construction of classifications : conceptual clustering versus numerical taxonomy, IEEE transactions on pattern analysis and machine intelligence, vol.5, issue.4, pp.396-410, 1983.

S. Ryszard, R. E. Michalski, and . Stepp, Learning from observation : Conceptual clustering, Machine Learning, Symbolic Computation, pp.331-363, 1983.

P. Mihók and G. Semani?in, Unique Factorization Theorem and Formal Concept Analysis, Concept Lattices and Their Applications, pp.232-239
DOI : 10.1007/978-3-540-78921-5_16

R. Missaoui, L. Kwuida, M. Quafafou, and J. Vaillancourt, Algebraic operators for querying pattern bases. CoRR, abs/0902, p.119, 2009.

R. Missaoui, L. Nourine, and Y. Renaud, Computing implications with negation from a formal context. Fundam, Inform, vol.115, issue.4, pp.357-375, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01352937

B. Monjardet and N. Caspard, On a dependence relation in finite lattices Graphs and Combinatorics, Discrete Mathematics, vol.40, issue.0, pp.165-166497, 1997.

A. Mora, P. Cordero, M. Enciso, I. Fortes, and G. Aguilera, Closure via functional dependence simplification, International Journal of Computer Mathematics, vol.31, issue.10, pp.510-526, 2012.
DOI : 10.1145/319732.319749

A. Mora, P. Inmaculada, M. De-guzmán, P. Enciso, and . Cordero, Ideal non-deterministic operators as a formal framework to reduce the key finding problem, International Journal of Computer Mathematics, vol.88, issue.9, pp.1860-1868, 2011.
DOI : 10.1023/A:1026162114022

A. Napoli, Une introduction aux logiques de descriptions, Inria, Institut National de Recherche en Informatique et en Automatique, p.120, 1997.
URL : https://hal.archives-ouvertes.fr/inria-00073375

J. B. Nation, Alan day's doubling construction. Algebra universalis, pp.24-34, 1995.

J. B. Nation, Closure operators and lattice extensions. Order, pp.43-48, 2004.
DOI : 10.1007/s11083-004-5178-y

URL : http://www.math.hawaii.edu/~jb/cloop.pdf

J. Niederle, On atoms in tolerance lattices of distributive lattices. ?asopis pro p?stování matematiky, pp.311-315, 1981.

J. Niederle, A note on tolerance lattices ?asopis pro p?stování matematiky, pp.221-224, 1982.

L. Nourine and O. Raynaud, A fast algorithm for building lattices, Information Processing Letters, vol.71, issue.5-6, pp.199-204, 1999.
DOI : 10.1016/S0020-0190(99)00108-8

URL : https://hal.archives-ouvertes.fr/hal-01765512

A. Sergei, V. Obiedkov, and . Duquenne, Attribute-incremental construction of the canonical implication basis, Annals of Mathematics and Artificial Intelligence, vol.49, issue.39, pp.77-99, 2007.

O. Öre, Theory of equivalence relations, Duke Mathematical Journal, vol.9, issue.3, pp.573-627, 1942.
DOI : 10.1215/S0012-7094-42-00942-6

O. Öre, Some studies on closure relations. Duke math, J, vol.10, pp.761-785, 1943.

S. Owais, P. Gajdo?, and V. Sná?el, Usage of genetic algorithm for lattice drawing, CEUR Workshop Proceedings, p.42, 2005.

L. John and . Pfaltz, Representing numeric values in concept lattices, CLA, p.29, 2007.

G. Polaillon, Organisation et interprétation par les treillis de Galois de données de type multivalué, intervalle ou histogramme, p.44, 1998.

U. Priss, Description logic and faceted knowledge representation, Proceedings of the 1999 International Workshop on Description Logics (DL'99), p.120, 1999.

U. Priss, Faceted knowledge representation, Electron. Trans. Artif. Intell, vol.4, issue.C, pp.21-33, 2000.

U. Priss, Lattice-based information retrieval Knowledge Organization, pp.132-142, 2000.

U. Priss, Formal concept analysis in information science, Annual Review of Information Science and Technology, vol.4, issue.3, pp.521-543, 2006.
DOI : 10.1007/978-3-540-27769-9_8

U. Priss, Fca software interoperability, Proceedings of the Sixth International Conference on Concept Lattices and Their Applications, pp.133-144, 2008.

U. Priss, Relation Algebra Operations on Formal Contexts, Conceptual Structures : Leveraging Semantic Technologies, pp.257-269, 2009.
DOI : 10.1007/11787181_28

URL : http://www.upriss.org.uk/papers/iccs09.pdf

H. Reppe and T. Dresden, Three generalisations of lattice distributivity : an FCA perspective, 2011.

J. Manuel-rodriguez-jimenez, P. Cordero, M. Enciso, and A. Mora, A generalized framework to consider positive and negative attributes in formal concept analysis, Proceedings of the Eleventh International Conference on Concept Lattices and Their Applications, pp.267-278, 2014.

J. Manuel-rodriguez-jimenez, P. Cordero, M. Enciso, and A. Mora, Negative Attributes and Implications in Formal Concept Analysis, 2nd International Conference on Information Technology and Quantitative Management, pp.31758-765, 2014.
DOI : 10.1016/j.procs.2014.05.325

E. Rodríguez-lorenzo, K. Bertet, P. Cordero, M. Enciso, and A. Mora, The direct-optimal basis via reductions, Proceedings of the Eleventh International Conference on Concept Lattices and Their Applications, pp.145-156, 2014.

E. Rodríguez-lorenzo and K. Bertet, From implicational systems to direct-optimal bases : A logic-based approach, Applied Mathematics & Information Sciences, vol.9, issue.38, pp.305-317, 2015.

M. Hacene-rouane, M. Huchard, A. Napoli, and P. Valtchev, A proposal for combining formal concept analysis and description logics for mining relational data, Proceedings of the 5th International Conference on Formal Concept Analysis, ICFCA'07, pp.51-65, 2007.
URL : https://hal.archives-ouvertes.fr/lirmm-00163364

U. Ryssel, F. Distel, and D. Borchmann, Fast algorithms for implication bases and attribute exploration using proper premises, Annals of Mathematics and Artificial Intelligence, vol.21, issue.4, pp.25-53, 2014.
DOI : 10.1137/060653032

V. Snásel, Z. Horak, J. Kocibova, and A. Abraham, Analyzing Social Networks Using FCA: Complexity Aspects, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, pp.15-18, 2009.
DOI : 10.1109/WI-IAT.2009.225

G. Snelting, Concept Lattices in Software Analysis, Formal Concept Analysis, pp.272-287
DOI : 10.1007/11528784_14

URL : http://www.infosun.fmi.uni-passau.de/st/papers/wille/wille.pdf

G. Stumme, Off to new shores: conceptual knowledge discovery and processing, International Journal of Human-Computer Studies, vol.59, issue.3, pp.287-325, 2003.
DOI : 10.1016/S1071-5819(03)00044-2

G. Stumme and A. Maedche, FCA-Merge : Bottom-up merging of ontologies, Proc. 17th Intl. Conf. on Artificial Intelligence (IJCAI '01), pp.225-230, 2001.

G. Stumme and R. Wille, A geometrical heuristic for drawing concept lattices, Graph Drawing, pp.452-459, 1995.
DOI : 10.1007/3-540-58950-3_399

T. Tilley, Tool Support for FCA, Concept Lattices, pp.104-111, 2004.
DOI : 10.1007/978-3-540-24651-0_11

E. Tsiporkova, V. Boeva, and E. Kostadinova, Mapreduce and fca approach for clustering of multiple-experiment data compendium, The 23rd Benelux Conference on Artificial Intelligence. BNAIC 2011, p.78, 2011.

P. Valtchev and V. Duquenne, Towards scalable divide-andconquer methods for computing concepts and implications, Proceedings of the 4th Intl. Conference Journées de l'Informatique Messine (JIM'03) : Knowledge Discovery and Discrete Mathematics, pp.3-6, 2003.

P. Valtchev and V. Duquenne, On the Merge of Factor Canonical Bases, Formal Concept Analysis, pp.182-198, 2008.
DOI : 10.1007/978-3-540-78137-0_14

P. Valtchev and R. Missaoui, Building Concept (Galois) Lattices from Parts: Generalizing the Incremental Methods, Conceptual Structures : Broadening the Base, pp.290-303
DOI : 10.1007/3-540-44583-8_21

P. Valtchev, R. Missaoui, and R. Godin, Formal Concept Analysis for Knowledge Discovery and Data Mining: The New Challenges, Concept Lattices, pp.352-371, 2004.
DOI : 10.1007/978-3-540-24651-0_30

P. Valtchev, R. Missaoui, and P. Lebrun, A partition-based approach towards constructing galois (concept) lattices. Discrete Math, pp.801-829, 2002.
DOI : 10.1016/s0012-365x(02)00349-7

URL : https://doi.org/10.1016/s0012-365x(02)00349-7

J. Viaud, K. Bertet, C. Demko, and R. Missaoui, The Reverse Doubling Construction, Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, pp.350-357, 2015.
DOI : 10.5220/0005613203500357

URL : https://hal.archives-ouvertes.fr/hal-01282156

J. Viaud, K. Bertet, C. Demko, and R. Missaoui, Subdirect decomposition of contexts into subdirectly irreducible factors, Proceedings of the International Workshop on Formal Concept Analysis and Applications, FCA&A 2015, co-located with 13th International Conference on Formal Concept Analysis, pp.49-64, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01282145

M. Visani, K. Bertet, and J. Ogier, NAVIGALA: AN ORIGINAL SYMBOL CLASSIFIER BASED ON NAVIGATION THROUGH A GALOIS LATTICE, International Journal of Pattern Recognition and Artificial Intelligence, vol.3, issue.04, p.42, 2011.
DOI : 10.1080/09528130210164206

URL : https://hal.archives-ouvertes.fr/hal-00716564

T. White, Hadoop : The definitive guide, pp.2012-77

R. Wille, Subdirekte produkte und konjunkte summen, Journal für die reine und angewandte Mathematik, issue.7, pp.333-338, 1969.

R. Wille, Subdirekte Produkte vollständiger Verbände, J. reine angew. Math, vol.283284, issue.7, pp.53-70, 1976.

R. Wille, Restructuring lattice theory : an approach based on hierarchies of concepts, Ordered sets, pp.445-470, 1982.

R. Wille, Subdirect decomposition of concept lattices, Algebra Universalis, vol.283, issue.284, pp.275-287, 1983.
DOI : 10.1007/BF01194537

R. Wille, Sur la fusion des contextes individuels, Mathématiques et Sciences Humaines, vol.85, pp.57-71, 1984.

R. Wille, Subdirect product construction of concept lattices, Discrete Mathematics, vol.63, issue.2-3, pp.305-313, 1987.
DOI : 10.1016/0012-365X(87)90019-7

R. Wille, Geometric Representation of Concept Lattices, Conceptual and Numerical Analysis of Data, pp.239-255
DOI : 10.1007/978-3-642-75040-3_17

R. Wille, Concept lattices and conceptual knowledge systems, Computers & Mathematics with Applications, vol.23, issue.6-9, pp.493-515, 1992.
DOI : 10.1016/0898-1221(92)90120-7

R. Wille, Conceptual structures of multicontexts, Conceptual Structures : Knowledge Representation as Interlingua, pp.23-39, 1996.
DOI : 10.1007/3-540-61534-2_2

R. Wille, Formal Concept Analysis as Mathematical Theory of Concepts and Concept Hierarchies, Formal Concept Analysis, pp.1-33, 2005.
DOI : 10.1007/11528784_1

R. Wille, Human Being and Mathematics Logical and Mathematical Thinking, Conceptual Structures : Leveraging Semantic Technologies, pp.66-85, 2009.
DOI : 10.1007/s002870000127

B. Xu, R. De-fréin, E. Robson, and . Foghlú, Distributed Formal Concept Analysis Algorithms Based on an Iterative MapReduce Framework, Florent Domenach, Dmitry I. Ignatov, and Jonas Poelmans Formal Concept Analysis, pp.292-308, 2012.
DOI : 10.1007/978-3-642-29892-9_26

X. Yan and J. Han, CloseGraph, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.286-295, 2000.
DOI : 10.1145/956750.956784

.. Sur-la-partie-gauche, un recouvrement des noeuds défini par une relation de tolérance Sur la partie droite, le treillis quotient correspondant, p.35

P. Le-treillis, Les noeuds en rouge correspondent au treillis initial, p.63

. Treillis-quotient-de-la-tolerance, Frances-1" produit par LattExp. Dans cette représentation, les noeuds d'un même blocs sont seulement rapprochés pas amalgamés ; de plus les noeuds présents dans plusieurs blocs sont représentés plusieurs fois, p.97

.. Le-treillis-facteur-de-la-tolérance-engendrée-par-conexp, Frances-1, p.98

.. Le-treillis-facteur-de-la-tolérance-engendrée-par, Frances-1Ele- anor-3" et "Evelyn-7" par LattExp. Dans cette représentation, les noeuds d'un même blocs sont seulement rapprochés pas amalgamés ; de plus les noeuds présents dans plusieurs blocs sont représentés plusieurs fois, p.99

.. Et-vert, Treillis de la figure 6.17 dont le convexe a été doublé Les noeuds de chaque convexe sont en rose, p.107

.. Un-exemple-de-contexte, Les couleurs sont codées par un réel entre 0 et 1, sur les trois canaux Red-Green-Blue. Les couleurs de cet exemple n'ont utilisé que trois valeurs 0 (pour une absence), 0, p.26

.. La-signification-des-attributs-est-la-suivante, eau pour vivre, b-aquatique, c-terrestre, d-a besoin de chlorophille, edeux cotylédons, f-un cotylédon, g-se déplace, h-a des membres, i-allaite, p.122