C. Bieche, Le probl??me d?????quivalence locale pour un syst??me scalaire complet d?????quations aux d??riv??es partielles d???ordre deux ?? n variables ind??pendantes, Annales de la facult?? des sciences de Toulouse Math??matiques, vol.16, issue.1, pp.1-36, 2007.
DOI : 10.5802/afst.1136

S. [. Bluman and . Kumei, Symmetries and Differential Equations. xiv+412pp, 1989.

R. L. Bryant, Holomorphic curves in Lorentzian CR-manifolds, Transactions of the American Mathematical Society, vol.272, issue.1, pp.203-221, 1982.
DOI : 10.1090/S0002-9947-1982-0656486-4

URL : http://www.ams.org/tran/1982-272-01/S0002-9947-1982-0656486-4/S0002-9947-1982-0656486-4.pdf

E. Cartan, Sur équivalence pseudo-conforme de deux hypersurfaces de l'espace de deux variables complexes, Verh. int. Math. Kongresses Zürich II, pp.54-56

E. Cartan, Sur la g??om??trie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, Annali di Matematica Pura ed Applicata, Series 4, vol.XLII, issue.I, pp.17-90, 1932.
DOI : 10.1007/BF02419336

E. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes (II), Annali Scuola Norm. Sup. Pisa, vol.1, pp.333-354, 1932.
DOI : 10.1007/bf02417822

]. D. Cat83 and . Catlin, Necessary conditions for subellipticity of the ¯ ?-Neumann problem

]. D. Cat84 and . Catlin, Boundary invariants of pseudoconvex domains, In: Ann. of Math, vol.1203, issue.2, pp.529-586, 1984.

]. D. Cat87 and . Catlin, Subelliptic estimates for the ¯ ?-Neumann problem on pseudoconvex domains, In: Ann. of Math, vol.1261, issue.2, pp.131-191, 1987.

W. David, J. Catlin, and . Cho, Estimates for the ¯ ?-Neumann problem on regular coordinate domains

W. David, J. P. Catlin, and . Angelo, Subelliptic estimates, In: Complex Analysis. Trends Math. Birkhäuser, pp.75-94, 2010.

. Shiing-shen-chern, On the projective structure of a real hypersurface in $\mathsf{C}_{n+1}$., MATHEMATICA SCANDINAVICA, vol.36, pp.74-82, 1975.
DOI : 10.7146/math.scand.a-11563

]. E. Chi89 and . Chirka, Complex Analytic Sets Mathematics and its Applications (Soviet Series), 46. Translated from the Russian by, 1989.

D. A. Cox, J. Little, and D. O. Shea, Using algebraic geometry, 2005.
DOI : 10.1007/978-1-4757-6911-1

[. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Mathematica, vol.133, issue.0, pp.219-271, 1975.
DOI : 10.1007/BF02392146

URL : https://doi.org/10.1007/bf02392146

[. Chen and M. Shaw, Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, vol.19, pp.0-8218, 2001.
DOI : 10.1090/amsip/019

[. John and P. D. Angelo, Real hypersurfaces, order of contact, and applications, Ann. of Math, vol.1153, issue.2, pp.615-637, 1982.

[. John and P. D. Angelo, Finite type and the intersection of real and complex subvarieties In: Several complex variables and complex geometry, Proc. Sympos. Pure Math, 1989.

P. D. John and . Angelo, Several complex variables and the geometry of real hypersurfaces, Studies in Advanced Mathematics, pp.0-8493, 1993.

[. Diederich and J. E. Fornaess, Pseudoconvex Domains with Real-Analytic Boundary, The Annals of Mathematics, vol.107, issue.3, pp.371-384, 1978.
DOI : 10.2307/1971120

J. [. Folland and . Kohn, The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, vol.75, 1972.

W. Foo, J. Merker, and T. Ta, Parametric CR-umbilical Locus of Ellipsoids in C 2 " . (To appear in Comptes Rendus Académie des Sciences) URL: https

P. Griffiths and J. Harris, Principles of Algebraic Geometry Wiley Classics Library . Reprint of the 1978 original, 1994.
DOI : 10.1002/9781118032527

H. Grauert and R. Remmert, Coherent Analytic Sheaves Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, pp.3-540, 1984.

U. Gortz and T. Wedhorn, Algebraic geometry I. Schemes with examples and exercises . Advanced Lectures in Mathematic

M. Hachtroudi, Les espaces d'éléments à connexion projective normale. (Thèse de l'entre-deux-guerres, Isa11] A. Isaev. Spherical tube hypersurfaces, p.220, 1937.

[. Jouanolou, Le formalisme du r??sultant, Advances in Mathematics, vol.90, issue.2, pp.117-263, 1991.
DOI : 10.1016/0001-8708(91)90031-2

URL : https://doi.org/10.1016/0001-8708(91)90031-2

J. Theo-de and G. Pfister, Local analytic geometry. Basic theory and applications, Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, 2000.

[. Jean-pierre, L 2 estimates for the d-bar operator on complex manifolds. Notes de cours, Ecole d'été de Mathématiques (Analyse Complexe) Institut Fourier URL: https, 1996.

M. [. Merker and . Sabzevari, The Cartan equivalence problem for Levi-nondegenerate real hypersurfaces M 3 ? C 2 (Russian) Translation in Izvestiya Math, In: Izv. Ross. Akad. Nauk Ser. Mat, vol.78, issue.78 6, pp.1152-1194, 2014.

. [. Khanh and G. Zampieri, Precise subelliptic estimates for a class of special domains, Journal d'Analyse Math??matique, vol.108, issue.1, pp.171-181, 2014.
DOI : 10.1016/0022-1236(92)90029-I

]. J. Koh79 and . Kohn, Subellipticity of the ?-Neumann problem on pseudoconvex domains: sufficient conditions, Acta Math, vol.142, pp.1-2, 1979.

J. Merker, Lectures on CR-sphericity and CR-umbilicity " . 53 pages

J. Merker, Parametric Chern-Moser Tensors

J. Merker, Varieties of positive holomorphic dimension in strongly pseudoconvex boundaries

J. Merker, Lie symmetries and CR geometry, Journal of Mathematical Sciences, vol.43, issue.1, pp.817-922, 2008.
DOI : 10.4213/im428

J. Merker, Vanishing Hachtroudi curvature and local equivalence to the Heisenberg sphere URL: https://arxiv, 2009.

J. Merker and S. , author) Lie. Theory of Tranformation Groups I. General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation. Ed. by J Merker. xv+643pp, 2015.

. J. Mps, S. Merker, M. Pocchiola, . [. Sabzevari, M. Merker et al., Equivalences of 5-dimensional CR manifolds, II; General classes I, II, III 1 , III 2 , IV 1 , IV 2 5 figures, arxiv.org/abs/1311 Explicit expression of Cartan's connections for Levinondegenerate 3-manifolds in complex surfaces, and identification of the Heisenberg sphere, In: Cent. Eur. J. Math, vol.5669, issue.10, pp.5-1801, 2012.

G. [. Nurowski and . Sparling, Three-dimensional Cauchy???Riemann structures and second-order ordinary differential equations, Classical and Quantum Gravity, vol.20, issue.23, pp.4995-5016, 2003.
DOI : 10.1088/0264-9381/20/23/004

URL : http://www.fuw.edu.pl/%7Enurowski/prace/analogie.pdf

J. Peter and . Olver, Equivalences, invariants, and symmetry, p.525, 1995.

B. V. Shabat, Introduction to Complex Analysis: Part II; Several Complex Variables, Translations of Mathematical Monographs, Amer. Math. Soc, vol.110, p.371, 1992.
DOI : 10.1090/mmono/110

[. Siu, Effective Termination of Kohn???s Algorithm for Subelliptic Multipliers, Pure and Applied Mathematics Quarterly, vol.6, issue.4, pp.1169-1241, 2010.
DOI : 10.4310/PAMQ.2010.v6.n4.a11

]. S. Web00 and . Webster, Holomorphic differential invariants for an ellipsoid real hypersurfaces, Duke Math J, vol.1043, pp.463-475, 2000.

]. S. Web77 and . Webster, On the mapping problem for algebraic real hypersurfaces, In: Invent. Math, vol.43, pp.53-68, 1977.

X. Huang and S. Ji, Every real ellipsoid in C 2 admits CR umbilical points, In: Trans. Amer. Math. Soc, vol.3593, pp.1191-1204, 2007.

. Résumé, La première partie présente des calculs explicites de terminaison effective de l'algorithme de Kohn proposée par Siu. Dans la deuxième partie, nous étudions la géométrie des hypersurfaces réelles dans C n , et nous calculons des invariants explicites avec la méthode d