S. Des, É. Une, . En, and . Figure, 17 ? Évolution de la résistance relative en fonction du temps pour des électrodes de Cu@Al 2 O 3 NF réalisées à a)100 ? C , b) 150 ? C et c) 200 ? C, vieillies sous forte humidité Photos de nouveaux dispositifs exposés au CES 2017 . . . . . . . . . . . . xv 2

'. Ito, R en fonction de la courbure et de l'épaisseur du film mince d

M. Clichés, MET-EDS et profil chimique d'un CuNF sous illumination, p.84

M. Clichés, MET-EDS et profil chimique d'un CuNF sous humidité

S. Et, P. Des, and . De, Électrodes réalisées par SALD qui ont été vieillies sous forte humidité

M. Dans-le-cadre-de-cette-thèse,-un and . Leo-?, 1530 VP (FEG) a été utilisé Un faisceau d'électrons avec une énergie de quelques keV balaye un échantillon, les électrons sont en partie réfléchis et l'intensité de la partie réfléchie sur le détecteur permet de réaliser une image point par point de l'échantillon observé. On obtient une image tridimensionnelle avec une profondeur de champ élevée et une résolution de l

T. Königer and H. Münstedt, Influence of polyvinylpyrrolidone on properties of flexible electrically conducting indium tin oxide nanoparticle coatings, Journal of Materials Science, vol.515, issue.24, pp.2736-2742, 2009.
DOI : 10.1016/j.msec.2006.05.040

A. M. Bazargan, F. Sharif, S. Mazinani, and N. Naderi, A high quality ITO/PET electrode for flexible and transparent optoelectronic devices, Journal of Materials Science: Materials in Electronics, vol.101, issue.3, 2016.
DOI : 10.1016/j.vacuum.2013.07.004

H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong et al., Low Reflectivity and High Flexibility of Tin-Doped Indium Oxide Nanofiber Transparent Electrodes, Journal of the American Chemical Society, vol.133, issue.1, pp.27-29, 2011.
DOI : 10.1021/ja109228e

S. Tseng, W. Hsiao, D. Chiang, K. Huang, and C. Chou, Mechanical and optoelectric properties of post-annealed fluorine-doped tin oxide films by ultraviolet laser irradiation, Applied Surface Science, vol.257, issue.16, pp.7204-7209, 2011.
DOI : 10.1016/j.apsusc.2011.03.091

T. P. Dhakal, M. M. Hamasha, A. S. Nandur, D. Vanhart, P. Vasekar et al., Moisture-Induced Surface Corrosion in AZO Thin Films Formed by Atomic Layer Deposition, IEEE Transactions on Device and Materials Reliability, vol.12, issue.2, pp.347-356, 2012.
DOI : 10.1109/TDMR.2012.2186574

J. Wu, W. Liao, and M. Yoshimura, Soft processing of hierarchical oxide nanostructures for dye-sensitized solar cell applications, Nano Energy, vol.2, issue.6, pp.1354-1372, 2013.
DOI : 10.1016/j.nanoen.2013.06.018

H. Seung, I. Ko, H. Park, N. Pan, M. S. Misra et al., ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature, all-inorganic nanoparticle solution process, Applied Physics Letters, issue.15, p.92154102, 2008.

D. Ito, K. Masuko, B. A. Weintraub, L. C. Mckenzie, and J. E. Hutchison, Convenient preparation of ITO nanoparticles inks for transparent conductive thin films, Journal of Nanoparticle Research, vol.23, issue.36, p.1274, 2012.
DOI : 10.1002/adma.201101514

S. Gill-sang-han, Y. U. Lee, I. S. Jin, H. S. Cho, and . Jung, Facile transfer fabrication of transparent, conductive and flexible In2O3:Sn (ITO) nanowire arrays electrode via selective wet-etching ZnO sacrificial layer, Materials Letters, vol.158, pp.304-308, 2015.
DOI : 10.1016/j.matlet.2015.05.171

Y. Sheng, Y. Rong, Z. He, Y. Fan, and J. H. Warner, Uniformity of large-area bilayer graphene grown by chemical vapor deposition, Nanotechnology, vol.26, issue.39, p.26395601, 2015.
DOI : 10.1088/0957-4484/26/39/395601

S. Kim, T. Liu, and X. Wang, Flexible, Highly Durable, and Thermally Stable SWCNT/Polyimide Transparent Electrodes, ACS Applied Materials & Interfaces, vol.7, issue.37, pp.20865-20874, 2015.
DOI : 10.1021/acsami.5b06181

Y. Wen and J. Xu, Scientific Importance of Water-Processable PEDOT-PSS and Preparation, Challenge and New Application in Sensors of Its Film Electrode: A Review, Journal of Polymer Science Part A: Polymer Chemistry, vol.25, issue.7, pp.1121-1150, 2017.
DOI : 10.1002/adfm.201401758

K. Sun, P. Li, Y. Xia, J. Chang, and J. Ouyang, Transparent Conductive Oxide-Free Perovskite Solar Cells with PEDOT:PSS as Transparent Electrode, ACS Applied Materials & Interfaces, vol.7, issue.28, pp.15314-15320, 2015.
DOI : 10.1021/acsami.5b03171

X. Wu, J. Liu, and G. He, A highly conductive PEDOT:PSS film with the dipping treatment by hydroiodic acid as anode for organic light emitting diode, Organic Electronics, vol.22, pp.160-165, 2015.
DOI : 10.1016/j.orgel.2015.03.048

N. Magatte, A. Gueye, N. Carella, E. Massonnet, S. Yvenou et al., Structure and Dopant Engineering in PEDOT Thin Films : Practical Tools for a Dramatic Conductivity Enhancement, Chemistry of Materials, issue.10, pp.283462-3468, 2016.

A. Cho, S. Kim, S. Kim, W. Cho, C. Park et al., Influence of imidazole-based acidity control of PEDOT:PSS on its electrical properties and environmental stability, Journal of Polymer Science Part B: Polymer Physics, vol.3, issue.15, pp.1530-1536, 2016.
DOI : 10.1021/ma9905674

X. Fan, J. Wang, H. Wang, X. Liu, and H. Wang, Bendable ITO-free Organic Solar Cells with Highly Conductive and Flexible PEDOT:PSS Electrodes on Plastic Substrates, ACS Applied Materials & Interfaces, vol.7, issue.30, pp.16287-16295, 2015.
DOI : 10.1021/acsami.5b02830

A. Fallahzadeh, J. Saghaei, and T. Saghaei, Ultra-smooth poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) films for flexible indium tin oxide-free organic light-emitting diodes, Journal of Luminescence, vol.169, pp.251-255, 2016.
DOI : 10.1016/j.jlumin.2015.09.021

Q. Wei, M. Mukaida, Y. Naitoh, and T. Ishida, Morphological Change and Mobility Enhancement in PEDOT:PSS by Adding Co-solvents, Advanced Materials, vol.129, issue.20, pp.2831-2836, 2013.
DOI : 10.1016/S0379-6779(02)00086-3

A. Verma, B. Weng, R. Shepherd, C. Fumeaux, . Van-tan et al., 6 GHz microstrip patch antennas with PEDOT and polypyrrole conducting polymers, 2010 International Conference on Electromagnetics in Advanced Applications, pp.329-332, 2010.
DOI : 10.1109/ICEAA.2010.5651030

URL : http://www.eleceng.adelaide.edu.au/personal/cfumeaux/documents/2010_ICEAA_Akhilesh_CP_214.pdf

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol.42, issue.3, pp.183-191, 2007.
DOI : 10.1038/nmat1849

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth et al., Fine Structure Constant Defines Visual Transparency of Graphene, Science, vol.315, issue.5811, pp.3201308-1308, 2008.
DOI : 10.1126/science.1136836

URL : http://arxiv.org/pdf/0803.3718

H. Kim, S. Bae, T. Han, K. Lim, J. Ahn et al., Organic solar cells using CVD-grown graphene electrodes, Nanotechnology, vol.25, issue.1, p.14012, 2014.
DOI : 10.1088/0957-4484/25/1/014012

S. Bae, H. Kim, Y. Lee, X. Xu, J. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology, vol.76, issue.8, pp.574-578, 2010.
DOI : 10.1038/nnano.2010.132

URL : http://origin.www.nature.com/nnano/journal/v5/n8/pdf/nnano.2010.132.pdf

H. Ho-kim, Y. Chung, E. Lee, K. Seong-kyu-lee, and . Cho, Water-Free Transfer Method for CVD-Grown Graphene and Its Application to Flexible Air-Stable Graphene Transistors, Advanced Materials, vol.12, issue.20, pp.3213-3217, 2014.
DOI : 10.1021/nl2034317

L. Yu, C. Shearer, and J. Shapter, Recent Development of Carbon Nanotube Transparent Conductive Films, Chemical Reviews, vol.116, issue.22, pp.13413-13453, 2016.
DOI : 10.1021/acs.chemrev.6b00179

N. Ferrer-anglada, J. Pérez-puigdemont, J. Figueras, M. Iqbal, and S. Roth, Flexible, transparent electrodes using carbon nanotubes, Nanoscale Research Letters, vol.7, issue.1, p.571, 2012.
DOI : 10.1021/nl080302f

URL : https://nanoscalereslett.springeropen.com/track/pdf/10.1186/1556-276X-7-571?site=nanoscalereslett.springeropen.com

X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang et al., Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates, Nano Letters, vol.9, issue.9, pp.3137-3141, 2009.
DOI : 10.1021/nl901260b

M. B. Isichenko, Percolation, statistical topography, and transport in random media, Reviews of Modern Physics, vol.1, issue.4, pp.961-1043, 1992.
DOI : 10.1088/0022-3719/1/6/308

Y. Zhou, L. Hu, and G. Grüner, A method of printing carbon nanotube thin films, Applied Physics Letters, vol.88, issue.12, p.123109, 2006.
DOI : 10.1103/PhysRevB.61.R2468

F. Lu, M. J. Meziani, L. Cao, and Y. Sun, Separated Metallic and Semiconducting Single-Walled Carbon Nanotubes: Opportunities in Transparent Electrodes and Beyond, Langmuir, vol.27, issue.8, pp.274339-4350, 2011.
DOI : 10.1021/la103137r

G. Haacke, New figure of merit for transparent conductors, Journal of Applied Physics, vol.28, issue.9, p.4086, 1976.
DOI : 10.1103/PhysRevB.6.4370

L. Hu, D. S. Hecht, and G. Grüner, Percolation in Transparent and Conducting Carbon Nanotube Networks, Nano Letters, vol.4, issue.12, pp.2513-2517, 2004.
DOI : 10.1021/nl048435y

URL : http://www.physics.ucla.edu/~dhecht/PDFs/Percolation.pdf

J. Zaumseil, Single-walled carbon nanotube networks for flexible and printed electronics, Semiconductor Science and Technology, vol.30, issue.7, p.74001, 2015.
DOI : 10.1088/0268-1242/30/7/074001

URL : http://iopscience.iop.org/article/10.1088/0268-1242/30/7/074001/pdf

G. H. Tae-hoon-seo, S. Lee, S. Park, A. H. Chandramohan, H. Park et al., Hybrid electrode based on carbon nanotube and graphene for ultraviolet light-emitting diodes, Applied Physics Express, vol.8, issue.10, p.102101, 2015.

N. Iskandar, C. W. Kholmanov, R. Magnuson, J. Piner, A. E. Kim et al., Optical, Electrical, and Electromechanical Properties of Hybrid Graphene/Carbon Nanotube Films, Adv. Mater, issue.19, pp.273053-3059, 2015.

C. Mark, A. J. Rosamond, J. J. Gallant, M. C. Atherton, O. Petty et al., Transparent gold nanowire electrodes, pp.604-607, 2011.

T. Gao, . Po-shun, J. Huang, P. W. Lee, and . Leu, Hierarchical metal nanomesh/microgrid structures for high performance transparent electrodes, RSC Advances, vol.4, issue.87, pp.70713-70717, 2015.
DOI : 10.1021/am301913w

C. Lee, C. Kim, M. Jeong, J. Kim, J. Lee et al., Highly flexible and transparent metal grids made of metal nanowire networks, RSC Advances, vol.5, issue.94, pp.77288-77295, 2015.
DOI : 10.1039/C2NR32221H

M. Mohl, A. Dombovari, R. Vajtai, P. M. Ajayan, and K. Kordas, Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers, Scientific Reports, vol.6, issue.1, p.13710, 2015.
DOI : 10.1021/am4036306

URL : http://www.nature.com/articles/srep13710.pdf

M. Layani, A. Kamyshny, and S. Magdassi, Transparent conductors composed of nanomaterials, Nanoscale, vol.23, issue.11, p.5581, 2014.
DOI : 10.1088/0957-4484/23/34/344003

J. Yu, I. Kim, J. Kim, J. Jo, T. Thue et al., Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes, Nanoscale, vol.22, issue.10, pp.6032-6040, 2012.
DOI : 10.1039/c2jm32977h

URL : http://orbit.dtu.dk/en/publications/silver-front-electrode-grids-for-itofree-all-printed-polymer-solar-cells-with-embedded-and-raised-topographies-prepared-by-thermal-imprint-flexographic-and-inkjet-rolltoroll-processes(8722534a-6a28-4610-b946-01405c5bafdb).html

B. Li, S. Ye, I. E. Stewart, S. Alvarez, and B. J. Wiley, Synthesis and Purification of Silver Nanowires To Make Conducting Films with a Transmittance of 99%, Nano Letters, vol.15, issue.10, pp.6722-6726, 2015.
DOI : 10.1021/acs.nanolett.5b02582

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet et al., Flexible transparent conductive materials based on silver nanowire networks: a review, Nanotechnology, vol.24, issue.45, p.24452001, 2013.
DOI : 10.1088/0957-4484/24/45/452001

URL : https://hal.archives-ouvertes.fr/hal-01067074

C. Mayousse, C. Celle, E. Moreau, J. Mainguet, A. Carella et al., Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors, Nanotechnology, vol.24, issue.21, p.24215501, 2013.
DOI : 10.1088/0957-4484/24/21/215501

E. Lee, Y. Kim, D. K. Hwang, W. K. Choi, and J. Kim, Synthesis and optoelectronic characteristics of 20 nm diameter silver nanowires for highly transparent electrode films, RSC Advances, vol.6, issue.14, pp.11702-11710, 2016.
DOI : 10.1021/nn3029327

R. Aaron, B. J. Rathmell, and . Wiley, The Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrates, Advanced Materials, vol.23, issue.41, pp.4798-4803, 2011.

M. Hosseini, D. H. Fatmehsari, and S. Marashi, Synthesis of different copper nanostructures by the use of polyol technique, Applied Physics A, vol.288, issue.2, pp.1579-1586, 2015.
DOI : 10.1016/j.jcis.2005.03.005

S. Li, Y. Chen, L. Huang, and D. Pan, Large-Scale Synthesis of Well-Dispersed Copper Nanowires in an Electric Pressure Cooker and Their Application in Transparent and Conductive Networks, Inorganic Chemistry, vol.53, issue.9, pp.4440-4444, 2014.
DOI : 10.1021/ic500094b

C. Mayousse, C. Celle, A. Carella, and J. Simonato, Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT:PSS, Nano Research, vol.23, issue.3, pp.315-324, 2014.
DOI : 10.1002/adfm.201203802

S. Alvarez, S. Ye, P. F. Flowers, and B. J. Wiley, O Seeds, Chemistry of Materials, vol.27, issue.2, pp.570-573, 2015.
DOI : 10.1021/cm504026w

M. Kevin, Y. R. Gregory, G. W. Lim, and . Ho, Facile control of copper nanowire dimensions via the Maillard reaction: using food chemistry for fabricating large-scale transparent flexible conductors, Green Chemistry, vol.23, issue.2, pp.1120-1126, 2015.
DOI : 10.1021/la0635092

J. Kim, W. Jose-da-silva, A. Rashid-bin-mohd-yusoff, and J. Jang, Organic devices based on nickel nanowires transparent electrode, Scientific Reports, vol.48, issue.665, 2016.
DOI : 10.1016/j.materresbull.2013.04.035

URL : http://www.nature.com/articles/srep19813.pdf

H. M. Johannes, L. Maurer, B. González-garcía, I. Reiser, T. Kanelidis et al., Templated Self-Assembly of Ultrathin Gold Nanowires by Nanoimprinting for Transparent Flexible Electronics, Nano Letters, vol.16, issue.5, pp.2921-2925, 2016.

A. R. Shengrong-ye, Z. Rathmell, I. E. Chen, B. J. Stewart, and . Wiley, Metal Nanowire Networks : The Next Generation of Transparent Conductors, Advanced Materials, vol.26, issue.39, pp.6670-6687, 2014.

X. Wang, R. Wang, L. Shi, and J. Sun, Synthesis of Metal/Bimetal Nanowires and Their Applications as Flexible Transparent Electrodes, Small, vol.129, issue.36, pp.4737-4744, 2015.
DOI : 10.1021/ja0722224

J. Lim, D. Cho, S. Jihoon-kim, H. Na, and . Kim, Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells, Solar Energy Materials and Solar Cells, vol.107, pp.348-354, 2012.
DOI : 10.1016/j.solmat.2012.07.012

J. Lee, H. Shin, Y. Noh, . Seok-in, H. Na et al., Brush painting of transparent PEDOT/Ag nanowire/PEDOT multilayer electrodes for flexible organic solar cells, Solar Energy Materials and Solar Cells, vol.114, pp.15-23, 2013.
DOI : 10.1016/j.solmat.2013.02.020

I. E. Stewart, A. R. Rathmell, L. Yan, S. Ye, P. F. Flowers et al., Solution-processed copper???nickel nanowire anodes for organic solar cells, Nanoscale, vol.7, issue.11, p.65980, 2014.
DOI : 10.1021/nn403324t

F. Guo, X. Zhu, K. Forberich, J. Krantz, T. Stubhan et al., ITO-Free and Fully Solution-Processed Semitransparent Organic Solar Cells with High Fill Factors, Advanced Energy Materials, vol.113, issue.8, pp.1062-1067, 2013.
DOI : 10.1016/j.ultramic.2011.11.015

W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra et al., Color in the Corners: ITO-Free White OLEDs with Angular Color Stability, Advanced Materials, vol.2, issue.29, pp.254006-4013, 2013.
DOI : 10.1038/nphoton.2008.132

H. Lee, D. Lee, Y. Ahn, E. Lee, L. S. Park et al., Highly efficient and low voltage silver nanowire-based OLEDs employing a n-type hole injection layer, Nanoscale, vol.94, issue.15, pp.8565-8570, 2014.
DOI : 10.1063/1.3081409

S. Coskun, H. Elif-selen-ates, and . Unalan, Optimization of silver nanowire networks for polymer light emitting diode electrodes, Nanotechnology, vol.24, issue.12, p.125202, 2013.
DOI : 10.1088/0957-4484/24/12/125202

Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu-liu et al., Highly Flexible Silver Nanowire Electrodes for Shape-Memory Polymer Light-Emitting Diodes, Advanced Materials, vol.2, issue.5, pp.664-668, 2011.
DOI : 10.1021/nl010093y

C. Celle, C. Mayousse, E. Moreau, H. Basti, A. Carella et al., Highly flexible transparent film heaters based on random networks of silver nanowires, Nano Research, vol.19, issue.6, pp.427-433, 2012.
DOI : 10.1088/0957-4484/19/17/175201

H. Zhai, R. Wang, X. Wang, Y. Cheng, L. Shi et al., Transparent heaters based on highly stable Cu nanowire films, Nano Research, vol.9, issue.12, pp.3924-3936, 2016.
DOI : 10.1021/acsnano.5b02790

X. He, X. Liu, M. Hu, F. Song, Q. Duan et al., Temperaturecontrolled transparent-film heater based on silver nanowire?PMMA composite film, Nanotechnology, issue.47, p.27475709, 2016.
DOI : 10.1088/0957-4484/27/47/475709

J. Lee, P. Lee, H. Lee, D. Lee, S. Seung-seob-lee et al., Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel, Nanoscale, vol.24, issue.20, p.6408, 2012.
DOI : 10.1002/adma.201200359

J. Lee, P. Lee, H. B. Lee, S. Hong, I. Lee et al., Room-Temperature Nanosoldering of a Very Long Metal Nanowire Network by Conducting-Polymer-Assisted Joining for a Flexible Touch-Panel Application, Advanced Functional Materials, vol.12, issue.34, pp.4171-4176, 2013.
DOI : 10.1021/cg301119d

N. Iskandar, C. W. Kholmanov, A. E. Magnuson, H. Aliev, B. Li et al., Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires, Nano Letters, issue.11, pp.125679-5683, 2012.

N. Iskandar, S. H. Kholmanov, H. Domingues, X. Chou, C. Wang et al., Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High- Performance Transparent Electrodes, ACS Nano, vol.7, issue.2, pp.1811-1816, 2013.

T. Ackermann, S. Sahakalkan, Y. Zhang, A. Mettenborger, S. Mathur et al., Improved performance of transparent silver nanowire electrodes by adding carbon nanotubes, The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp.81-85, 2014.
DOI : 10.1109/NEMS.2014.6908764

T. Ackermann, S. Sahakalkan, I. Kolaric, E. Westkämper, and S. Roth, Co-percolation of carbon nanotubes and silver nanowires at low area densities: Tuning the optoelectrical performance of transparent electrodes, physica status solidi (RRL) -Rapid Research Letters, pp.141-144, 2015.
DOI : 10.1002/adfm.201202646

S. Chen, L. Song, Z. Tao, X. Shao, Y. Huang et al., Neutral-pH PEDOT:PSS as over-coating layer for stable silver nanowire flexible transparent conductive films, Organic Electronics, vol.15, issue.12, pp.3654-3659, 2014.
DOI : 10.1016/j.orgel.2014.09.047

J. Chen, W. Zhou-chen, Y. Fan, Z. Zhang, Z. Huang et al., Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxide-layer scavenger for polymer solar cells, Nano Research, vol.41, issue.3, pp.1017-1025, 2015.
DOI : 10.1295/polymj.PJ2009143

S. You, Y. S. Park, H. W. Choi, and K. H. Kim, Fabrication of Ag nanowire and Al-doped ZnO hybrid transparent electrodes, Japanese Journal of Applied Physics, vol.55, issue.1S, pp.5501-5515, 2016.
DOI : 10.7567/JJAP.55.01AE14

J. Han, S. Yuan, L. Liu, X. Qiu, H. Gong et al., Yufeng Hao, and Bingqiang Cao. Fully indium-free flexible Ag nanowires/ZnO :F composite transparent conductive electrodes with high haze, J. Mater. Chem. A, issue.10, pp.35375-5384, 2015.

J. Andrew, . Stapleton, D. Soniya, . Yambem, H. Ashley et al., Planar silver nanowire, carbon nanotube and PE- DOT :PSS nanocomposite transparent electrodes, Science and Technology of Advanced Materials, vol.16, issue.2, p.25002, 2015.

H. Zhai, R. Wang, X. Wang, Y. Cheng, L. Shi et al., Transparent heaters based on highly stable Cu nanowire films, Nano Research, vol.9, issue.12, pp.3924-3936, 2016.
DOI : 10.1021/acsnano.5b02790

T. Duong, N. Tran, and H. Kim, Low cost fabrication of flexible transparent electrodes using copper nanowires, Thin Solid Films, vol.622, pp.17-22, 2017.
DOI : 10.1016/j.tsf.2016.12.015

K. Zilberberg and T. Riedl, Metal-nanostructures ??? a modern and powerful platform to create transparent electrodes for thin-film photovoltaics, Journal of Materials Chemistry A, vol.110, issue.38, pp.14481-14508, 2016.
DOI : 10.1063/1.3611392

URL : http://pubs.rsc.org/en/content/articlepdf/2016/ta/c6ta05286j

Y. Ahn, Y. Jeong, D. Lee, and Y. Lee, Copper Nanowire???Graphene Core???Shell Nanostructure for Highly Stable Transparent Conducting Electrodes, ACS Nano, vol.9, issue.3, pp.3125-3133, 2015.
DOI : 10.1021/acsnano.5b00053

C. Mayousse, C. Celle, A. Fraczkiewicz, and J. Simonato, Stability of silver nanowire based electrodes under environmental and electrical stresses, Nanoscale, vol.15, issue.5, pp.2107-2115, 2015.
DOI : 10.1016/j.orgel.2014.09.047

J. Xue, J. Song, Y. Zou, C. Huo, Y. Dong et al., Nickel concentration-dependent opto-electrical performances and stability of Cu@CuNi nanowire transparent conductors, RSC Advances, vol.47, issue.94, pp.91394-91400, 2016.
DOI : 10.1007/BF01668513

. Wiley, Synthesis ofPt Core?Shell Nanowires and Their Use in Transparent Conducting Films, Chem. Mater, vol.27, issue.22, pp.7788-7794, 2015.

J. Hyung-duk-yun, S. Kwak, H. Kim, and . Seo, High performance all-carbon composite transparent electrodes containing uniform carbon nanotube networks, Journal of Alloys and Compounds, vol.675, pp.37-45, 2016.

D. S. Hecht, L. Hu, and G. Irvin, Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes
DOI : 10.1002/adma.201003188

F. Fievet, F. Fievet-vincent, J. Lagier, B. Dumont, and M. Figlarz, Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process, Journal of Materials Chemistry, vol.3, issue.6, p.627, 1993.
DOI : 10.1039/jm9930300627

Y. Sun, B. Mayers, T. Herricks, and Y. Xia, Polyol Synthesis of Uniform Silver Nanowires:?? A Plausible Growth Mechanism and the Supporting Evidence, Nano Letters, vol.3, issue.7, pp.955-960, 2003.
DOI : 10.1021/nl034312m

Y. Sun, B. Gates, B. Mayers, and Y. Xia, Crystalline Silver Nanowires by Soft Solution Processing, Nano Letters, vol.2, issue.2, pp.165-168, 2002.
DOI : 10.1021/nl010093y

URL : http://web.pdx.edu/~larosaa/Applied_Optics_464-564/Projects_Presented/Projects-2008/PLASMOMS_in_NANOSTRUCTURES/2008_Optical__Plasmons_in_nanowires_quantum_dots/Silver-crystal_nanowires-2001.pdf

Y. Sun, Y. Ren, Y. Liu, J. Wen, J. S. Okasinski et al., Ambient-stable tetragonal phase in silver nanostructures, Nature Communications, vol.3, issue.1, p.971, 2012.
DOI : 10.1016/j.matchar.2005.12.007

URL : http://www.nature.com/articles/ncomms1963.pdf

Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?, Angewandte Chemie International Edition, vol.130, issue.295, pp.60-103, 2009.
DOI : 10.1557/mrs2008.85

URL : http://europepmc.org/articles/pmc2791829?pdf=render

X. Zeng, B. Zhou, Y. Gao, C. Wang, S. Li et al., Structural dependence of silver nanowires on polyvinyl pyrrolidone (PVP) chain length, Nanotechnology, vol.25, issue.49, p.25495601, 2014.
DOI : 10.1088/0957-4484/25/49/495601

J. Hwang, Y. Shim, S. Yoon, S. H. Lee, and S. Park, Influence of polyvinylpyrrolidone (PVP) capping layer on silver nanowire networks: theoretical and experimental studies, RSC Advances, vol.38, issue.37, pp.30972-30977, 2016.
DOI : 10.1070/QE2008v038n06ABEH013829

S. Coskun, B. Aksoy, and H. Unalan, Polyol Synthesis of Silver Nanowires: An Extensive Parametric Study, Crystal Growth & Design, vol.11, issue.11, pp.4963-4969, 2011.
DOI : 10.1021/cg200874g

R. Rosa-da-silva, M. Yang, S. Choi, M. Chi, M. Luo et al., Facile Synthesis of Sub-20 nm Silver Nanowires through a Bromide-Mediated Polyol Method, ACS Nano, vol.10, issue.8, pp.107892-7900, 2016.
DOI : 10.1021/acsnano.6b03806

A. Bid, A. Bora, and A. K. Raychaudhuri, Temperature dependence of the resistance of metallic nanowires of diameter 15 nm : Applicability of Bloch- Grüneisen theorem, Physical Review B, vol.74, issue.3, 2006.

M. Hosseini, D. H. Fatmehsari, and S. Marashi, Synthesis of different copper nanostructures by the use of polyol technique, Applied Physics A, vol.288, issue.2, pp.1579-1586, 2015.
DOI : 10.1016/j.jcis.2005.03.005

Y. Zhao, Y. Zhang, Y. Li, and Z. Yan, Soft synthesis of single-crystal coppernanowires of various scales, New J. Chem., vol.72, issue.11, pp.130-138, 2012.
DOI : 10.1021/ja01167a001

Z. Yin, . Seung-keun, S. Song, D. Cho, J. You et al., Curved copper nanowires-based robust flexible transparent electrodes via all-solution approach, Nano Research, vol.23, issue.9, 2017.
DOI : 10.1002/adma.201000775

H. Guo, N. Lin, Y. Chen, Z. Wang, Q. Xie et al., Copper Nanowires as Fully Transparent Conductive Electrodes, Scientific Reports, vol.18, issue.1, 2013.
DOI : 10.1002/adfm.200700902

URL : http://www.nature.com/articles/srep02323.pdf

D. Zhang, R. Wang, M. Wen, D. Weng, X. Cui et al., Synthesis of Ultralong Copper Nanowires for High-Performance Transparent Electrodes, Journal of the American Chemical Society, vol.134, issue.35, pp.14283-14286, 2012.
DOI : 10.1021/ja3050184

D. V. Ravi-kumar, K. Woo, and J. Moon, Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications, Nanoscale, vol.182, issue.41, pp.17195-17210, 2015.
DOI : 10.1016/j.snb.2013.03.065

Y. Cheng, S. Wang, R. Wang, J. Sun, and L. Gao, Copper nanowire based transparent conductive films with high stability and superior stretchability, J. Mater. Chem. C, vol.2, issue.27, p.5309, 2014.
DOI : 10.1021/nl010093y

A. R. Shengrong-ye, Y. Rathmell, A. R. Ha, B. J. Wilson, and . Wiley, The Role of Cuprous Oxide Seeds in the One-Pot and Seeded Syntheses of Copper Nanowires, Small, vol.10, issue.9, pp.1771-1778, 2014.

A. R. Rathmell, S. M. Bergin, Y. Hua, Z. Li, and B. J. Wiley, The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films, Advanced Materials, vol.305, issue.32, pp.3558-3563, 2010.
DOI : 10.1557/mrs2000.151

A. R. Shengrong-ye, I. E. Rathmell, Y. Stewart, A. R. Ha, Z. Wilson et al., A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films, Chem. Commun, issue.20, pp.502562-2564, 2014.

D. V. Ravi-kumar, I. Kim, Z. Zhong, K. Kim, D. Lee et al., Cu( ii )?alkyl amine complex mediated hydrothermal synthesis of Cu BIBLIOGRAPHIE nanowires : exploring the dual role of alkyl amines, Physical Chemistry Chemical Physics, issue.40, pp.1622107-22115, 2014.

H. Yoon, D. S. Shin, B. Babu, T. G. Kim, K. M. Song et al., Control of copper nanowire network properties and application to transparent conducting layer in LED, Materials & Design, vol.132, 2017.
DOI : 10.1016/j.matdes.2017.06.042

M. Kevin, W. Ong, G. Lee, and G. Ho, Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature, Nanotechnology, vol.22, issue.23, p.22235701, 2011.
DOI : 10.1088/0957-4484/22/23/235701

S. Bhanushali and P. Ghosh, 1D Copper Nanostructures: Progress, Challenges and Opportunities, Anuradda Ganesh, and Wenlong Cheng. 1d Copper Nanostructures : Progress, Challenges and Opportunities, pp.1232-1252, 2015.
DOI : 10.1021/la050038v

Y. Liu, M. Zhang, F. Wang, and G. Pan, Facile microwave-assisted synthesis of uniform single-crystal copper nanowires with excellent electrical conductivity, RSC Advances, vol.6, issue.30, p.11235, 2012.
DOI : 10.1021/nn300844g

M. Baghbanzadeh, L. Carbone, P. D. Cozzoli, and C. Oliver-kappe, Microwave-Assisted Synthesis of Colloidal Inorganic Nanocrystals, Angewandte Chemie International Edition, vol.20, issue.48, pp.11312-11359, 2011.
DOI : 10.1039/c0jm01221a

C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong et al., Silver Nanowires: From Scalable Synthesis to Recyclable Foldable Electronics, Advanced Materials, vol.4, issue.27, pp.3052-3056, 2011.
DOI : 10.1021/nn1005232

Y. Sun and Y. Xia, Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process, Advanced Materials, vol.14, issue.11, p.833, 2002.
DOI : 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K

R. Jarrett and R. Crook, Silver nanowire purification and separation by size and shape using multi-pass filtration, Materials Research Innovations, vol.8, issue.12, pp.86-91, 2016.
DOI : 10.1021/nn203576v

T. Kim, A. Canlier, G. H. Kim, J. Choi, M. Park et al., Electrostatic Spray Deposition of Highly Transparent Silver Nanowire Electrode on Flexible Substrate, ACS Applied Materials & Interfaces, vol.5, issue.3, pp.788-794, 2013.
DOI : 10.1021/am3023543

Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan et al., Evidence for the Monolayer Assembly of Poly(vinylpyrrolidone) on the Surfaces of Silver Nanowires, Evidence for the Monolayer Assembly of Poly(vinylpyrrolidone) on the Surfaces of Silver Nanowires, pp.12877-12881, 2004.
DOI : 10.1021/jp037116c

K. C. Pradel, K. Sohn, and J. Huang, Cross-Flow Purification of Nanowires, Angewandte Chemie International Edition, vol.43, issue.15, pp.3412-3416, 2011.
DOI : 10.1002/anie.200454216

T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge et al., Fabrication of silver nanowire transparent electrodes at room temperature, Nano Research, vol.21, issue.12, pp.1215-1222, 2011.
DOI : 10.1002/adma.200803174

W. Gaynor, G. F. Burkhard, M. D. Mcgehee, and P. Peumans, Smooth Nanowire/Polymer Composite Transparent Electrodes, Advanced Materials, vol.5, issue.26, pp.2905-2910, 2011.
DOI : 10.1021/nl048120i

J. Song, J. Li, J. Xu, and H. Zeng, Ni Nanowire Elastomer Composites against Oxidation, Bending, Stretching, and Twisting for Flexible and Stretchable Optoelectronics, Nano Letters, vol.14, issue.11, pp.6298-6305, 2014.
DOI : 10.1021/nl502647k

R. Anuj, A. Madaria, C. Kumar, and . Zhou, Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens, Nanotechnology, issue.24, p.22245201, 2011.

C. Sachse, L. Müller-meskamp, L. Bormann, Y. H. Kim, F. Lehnert et al., Transparent, dip-coated silver nanowire electrodes for small molecule organic solar cells, Organic Electronics, vol.14, issue.1, pp.143-148, 2013.
DOI : 10.1016/j.orgel.2012.09.032

Q. Sheng-kai-duan, J. Niu, J. Wei, . He, Y. Yi-an-yin et al., Water-bath assisted convective assembly of aligned silver nanowire films for transparent electrodes, Physical Chemistry Chemical Physics, vol.129, issue.12, pp.8106-8112, 2015.
DOI : 10.1002/app.38854

. Tze-bin, Y. Song, and . Chen, Nanoscale Joule Heating and Electromigration Enhanced Ripening of Silver Nanowire Contacts, ACS Nano, vol.8, issue.3, pp.2804-2811, 2014.

J. Yim, S. Joe, C. Pang, K. M. Lee, H. Jeong et al., Fully Solution-Processed Semitransparent Organic Solar Cells with a Silver Nanowire Cathode and a Conducting Polymer Anode, ACS Nano, vol.8, issue.3, pp.2857-2863, 2014.
DOI : 10.1021/nn406672n

URL : https://spiral.imperial.ac.uk:8443/bitstream/10044/1/48272/2/AgNWs%20Final%20Consolidated%20Spiral.pdf

R. M. Pasquarelli, D. S. Ginley, and R. Hayre, Solution processing of transparent conductors: from flask to film, Chemical Society Reviews, vol.517, issue.421, p.405406, 2011.
DOI : 10.1016/j.tsf.2009.01.145

Y. Song, J. Chen, J. Wu, and T. Zhang, Applications of Silver Nanowires on Transparent Conducting Film and Electrode of Electrochemical Capacitor, Journal of Nanomaterials, vol.2014, p.193201, 2014.
DOI : 10.1021/ja7112382

URL : http://doi.org/10.1155/2014/193201

R. E. Triambulo, H. Cheong, and J. Park, All-solution-processed foldable transparent electrodes of Ag nanowire mesh and metal matrix films for flexible electronics, Organic Electronics, vol.15, issue.11, pp.2685-2695, 2014.
DOI : 10.1016/j.orgel.2014.07.039

S. Hemmati, D. P. Barkey, and N. Gupta, Rheological behavior of silver nanowire conductive inks during screen printing, Journal of Nanoparticle Research, vol.23, issue.6, 2016.
DOI : 10.1021/cm200848h

D. Angmo, T. R. Andersen, J. J. Bentzen, M. Helgesen, R. R. Søndergaard et al., Roll-to-Roll Printed Silver Nanowire Semitransparent Electrodes for Fully Ambient Solution-Processed Tandem Polymer Solar Cells, Advanced Functional Materials, vol.2, issue.28, pp.254539-4547, 2015.
DOI : 10.1039/C4TC01252F

URL : http://orbit.dtu.dk/en/publications/rolltoroll-printed-silver-nanowire-semitransparent-electrodes-for-fully-ambient-solutionprocessed-tandem-polymer-solar-cells(b59f5327-2202-4b94-b544-1525aea236ca).html

F. Hoeng, A. Denneulin, N. Reverdy-bruas, G. Krosnicki, and J. Bras, Rheology of cellulose nanofibrils/silver nanowires suspension for the production of transparent and conductive electrodes by screen printing, Applied Surface Science, vol.394, pp.160-168, 2017.
DOI : 10.1016/j.apsusc.2016.10.073

D. J. Finn, M. Lotya, and J. N. Coleman, Inkjet Printing of Silver Nanowire Networks, ACS Applied Materials & Interfaces, vol.7, issue.17, pp.9254-9261, 2015.
DOI : 10.1021/acsami.5b01875

J. Lee, D. Shin, and J. Park, Fabrication of silver nanowire-based stretchable electrodes using spray coating, Thin Solid Films, vol.608, pp.34-43, 2016.
DOI : 10.1016/j.tsf.2016.04.008

H. Chu, Y. Chang, Y. Lin, S. Chang, W. Chang et al., Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications, ACS Applied Materials & Interfaces, vol.8, issue.20, pp.13009-13017, 2016.
DOI : 10.1021/acsami.6b02652

X. He, R. He, Q. Lan, W. Wu, F. Duan et al., Screen-Printed Fabrication of PEDOT:PSS/Silver Nanowire Composite Films for Transparent Heaters, Materials, vol.10, issue.3, p.220, 2017.
DOI : 10.1039/C4TC01484G

URL : http://www.mdpi.com/1996-1944/10/3/220/pdf

L. Hu, H. S. Kim, J. Lee, P. Peumans, and Y. Cui, Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes, ACS Nano, vol.4, issue.5, pp.2955-2963, 2010.
DOI : 10.1021/nn1005232

P. Hsu, D. Kong, S. Wang, H. Wang, A. J. Welch et al., Electrolessly Deposited Electrospun Metal Nanowire Transparent Electrodes, Journal of the American Chemical Society, vol.136, issue.30, pp.10593-10596, 2014.
DOI : 10.1021/ja505741e

M. Lagrange, D. P. Langley, G. Giusti, C. Jiménez, Y. Bréchet et al., Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing, Nanoscale, vol.380, issue.41, pp.17410-17423, 2015.
DOI : 10.1016/j.cplett.2003.08.074

URL : https://hal.archives-ouvertes.fr/hal-01298391

S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors, ACS Nano, vol.4, issue.12, pp.7064-7072, 2010.
DOI : 10.1021/nn1025803

B. Park, I. Bae, and Y. Huh, Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics, Scientific Reports, vol.95, issue.1, 2016.
DOI : 10.1016/j.solmat.2011.08.023

URL : http://www.nature.com/articles/srep19485.pdf

D. P. Langley, M. Lagrange, G. Giusti, C. Jiménez, Y. Bréchet et al., Metallic nanowire networks: effects of thermal annealing on electrical resistance, Nanoscale, vol.3, issue.10, pp.13535-13543, 2014.
DOI : 10.1038/ncomms1963

URL : https://hal.archives-ouvertes.fr/hal-01122455

N. Weiß, L. Müller-meskamp, F. Selzer, L. Bormann, A. Eychmüller et al., Humidity assisted annealing technique for transparent conductive silver nanowire networks, RSC Advances, vol.7, issue.25, pp.19659-19665, 2015.
DOI : 10.1039/C4NR06783E

J. A. Spechler, K. A. Nagamatsu, J. C. Sturm, and C. B. Arnold, Improved Efficiency of Hybrid Organic Photovoltaics by Pulsed Laser Sintering of Silver Nanowire Network Transparent Electrode, ACS Applied Materials & Interfaces, vol.7, issue.19, pp.10556-10562, 2015.
DOI : 10.1021/acsami.5b02203

K. Mallikarjuna, H. Hwang, W. Chung, and H. Kim, Photonic welding of ultra-long copper nanowire network for flexible transparent electrodes using white flash light sintering, RSC Advances, vol.27, issue.6, pp.4770-4779, 2016.
DOI : 10.1021/la201273x

S. So-hee-lee, H. Lim, and . Kim, Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film, Thin Solid Films, vol.589, pp.403-407, 2015.
DOI : 10.1016/j.tsf.2015.05.073

D. Mo, J. Liu, J. Duan, H. Yao, Y. Chen et al., Plasmon resonance of copper nanowire arrays embedded in etched ion-track mica templates, Materials Letters, vol.68, pp.201-203, 2012.
DOI : 10.1016/j.matlet.2011.10.033

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers et al., Silver Nanowires as Surface Plasmon Resonators, Physical Review Letters, vol.22, issue.25, p.95, 2005.
DOI : 10.1063/1.113340

C. Preston, Y. Xu, X. Han, J. N. Munday, and L. Hu, Optical haze of transparent and conductive silver nanowire films, Nano Research, vol.15, issue.7, pp.461-468, 2013.
DOI : 10.1002/adma.200390087

T. Araki, J. Jiu, M. Nogi, H. Koga, S. Nagao et al., Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method, Nano Research, vol.64, issue.2, pp.236-245, 2014.
DOI : 10.1103/PhysRevB.64.235402

S. Mehra, M. G. Christoforo, P. Peumans, and A. Salleo, Solution processed zinc oxide nanopyramid/silver nanowire transparent network films with highly tunable light scattering properties, Nanoscale, vol.99, issue.18, p.4400, 2013.
DOI : 10.1063/1.3656973

C. Chen, Y. Zhao, W. Wei, J. Tao, G. Lei et al., Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity and their application in transparent electronics, Journal of Materials Chemistry C, vol.12, issue.9, pp.2240-2246, 2017.
DOI : 10.1021/nl301045a

G. Khanarian, J. Joo, X. Liu, P. Eastman, D. Werner et al., The optical and electrical properties of silver nanowire mesh films, Journal of Applied Physics, vol.114, issue.2, p.24302, 2013.
DOI : 10.1063/1.323240

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj et al., Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios, ACS Nano, vol.3, issue.7, pp.1767-1774, 2009.
DOI : 10.1021/nn900348c

URL : http://www.tara.tcd.ie/bitstream/2262/64105/1/De%20ACS%20Nano%2009%202.pdf

J. H. Hyun-jun-lee, K. B. Hwang, S. Choi, . Jung, Y. S. Kyu-nyun-kim et al., Effective Indium-Doped Zinc Oxide Buffer Layer on Silver Nanowires for Electrically Highly Stable, Flexible, Transparent, and Conductive Composite Electrodes, ACS Applied Materials & Interfaces, vol.5, issue.21, pp.10397-10403, 2013.

A. Pichitpajongkit, L. Ryu, and P. , Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite, ACS Nano, 2014.

Y. Won, A. Kim, W. Yang, S. Jeong, and J. Moon, A highly stretchable, helical copper nanowire conductor exhibiting a stretchability of 700%, NPG Asia Materials, vol.21, issue.9, p.132, 2014.
DOI : 10.1002/adma.201200576

URL : http://www.nature.com/am/journal/v6/n9/pdf/am201488a.pdf

W. Hu, R. Wang, Y. Lu, and Q. Pei, An elastomeric transparent composite electrode based on copper nanowires and polyurethane, J. Mater. Chem. C, vol.1, issue.7, pp.1298-1305, 2014.
DOI : 10.1039/c3tc30126e

Z. Yin, . Seung-keun, D. Song, Y. You, S. Ko et al., Novel Synthesis, Coating, and Networking of Curved Copper Nanowires for Flexible Transparent Conductive Electrodes, Small, vol.129, issue.35, pp.114576-4583, 2015.
DOI : 10.1021/ja0722224

Y. Cheng, R. Wang, H. Zhai, and J. Sun, Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain, Nanoscale, vol.15, issue.11, pp.3834-3842, 2017.
DOI : 10.1021/acs.nanolett.5b01505

J. Wang, J. Jiu, M. Nogi, T. Sugahara, S. Nagao et al., A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires, Nanoscale, vol.15, issue.7, pp.2926-2932, 2015.
DOI : 10.1039/b410178b

S. Ding, J. Jiu, Y. Gao, Y. Tian, T. Araki et al., One-Step Fabrication of Stretchable Copper Nanowire Conductors by a Fast Photonic Sintering Technique and Its Application in Wearable Devices, ACS Applied Materials & Interfaces, vol.8, issue.9, pp.6190-6199, 2016.
DOI : 10.1021/acsami.5b10802

D. Doganay, S. Coskun, S. P. Genlik, and H. Unalan, Silver nanowire decorated heatable textiles, Nanotechnology, vol.27, issue.43, p.435201, 2016.
DOI : 10.1088/0957-4484/27/43/435201

C. Chung, T. Song, B. Bob, R. Zhu, and Y. Yang, Solution-processed flexible transparent conductors composed of silver nanowire networks embedded in indium tin oxide nanoparticle matrices, Nano Research, vol.4, issue.11, pp.805-814, 2012.
DOI : 10.1021/nl048435y

C. Mayousse, C. Celle, A. Fraczkiewicz, and J. Simonato, Stability of silver nanowire based electrodes under environmental and electrical stresses, Nanoscale, vol.15, issue.5, pp.2107-2115, 2015.
DOI : 10.1016/j.orgel.2014.09.047

J. Jiu, J. Wang, T. Sugahara, S. Nagao, M. Nogi et al., The effect of light and humidity on the stability of silver nanowire transparent electrodes, RSC Advances, vol.103, issue.35, pp.27657-27664, 2015.
DOI : 10.1063/1.2837053

B. Liu and S. Huang, Transparent conductive silver nanowire electrodes with high resistance to oxidation and thermal shock, RSC Adv., vol.356, issue.103, pp.59226-59232, 2014.
DOI : 10.1016/j.colsurfa.2010.01.003

J. Idier, C. Neri, . Labrugère, . Ly, R. Poulin et al., Modified silver nanowire transparent electrodes with exceptional stability against oxidation, Nanotechnology, vol.27, issue.10, p.27105705, 2016.
DOI : 10.1088/0957-4484/27/10/105705

URL : https://hal.archives-ouvertes.fr/hal-01348897

B. Deng, P. Hsu, G. Chen, B. N. Chandrashekar, L. Liao et al., Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes, Nano Letters, vol.15, issue.6, pp.154206-4213, 2015.
DOI : 10.1021/acs.nanolett.5b01531

Y. Chau-garen-kwan, Q. Luan-le, and C. Huan, Time to failure modeling of silver nanowire transparent conducting electrodes and effects of a reduced graphene oxide over layer, Solar Energy Materials and Solar Cells, vol.144, pp.102-108, 2016.
DOI : 10.1016/j.solmat.2015.08.005

K. Zilberberg, F. Gasse, R. Pagui, A. Polywka, A. Behrendt et al., Highly Robust Indium-Free Transparent Conductive Electrodes Based on Composites of Silver Nanowires and Conductive Metal Oxides, Advanced Functional Materials, vol.95, issue.2, pp.1671-1678, 2014.
DOI : 10.1063/1.3231928

H. Eom, J. Lee, A. Pichitpajongkit, M. Amjadi, J. Jeong et al., Ag@Ni Core-Shell Nanowire Network for Robust Transparent Electrodes Against Oxidation and Sulfurization, Small, vol.311, 2014.
DOI : 10.4028/www.scientific.net/AMR.311-313.2132

. Tze-bin, Y. Song, F. Seung-rim, B. Liu, S. Bob et al., Highly Robust Silver Nanowire Network for Transparent Electrode, ACS Appl. Mater. Interfaces, vol.7, issue.44, pp.24601-24607, 2015.

B. Hwang, M. Park, T. Kim, and S. M. Han, Effect of RGO deposition on chemical and mechanical reliability of Ag nanowire flexible transparent electrode, RSC Advances, vol.4, issue.2, pp.67389-67395, 2016.
DOI : 10.1016/j.eml.2016.02.011

T. Kim, A. Canlier, C. Cho, V. Rozyyev, J. Lee et al., Highly Transparent Au-Coated Ag Nanowire Transparent Electrode with Reduction in Haze, ACS Applied Materials & Interfaces, vol.6, issue.16, pp.13527-13534, 2014.
DOI : 10.1021/am502632t

A. Kim, Y. Won, K. Woo, C. Kim, and J. Moon, Highly Transparent Low Resistance ZnO/Ag Nanowire/ZnO Composite Electrode for Thin Film Solar Cells, ACS Nano, vol.7, issue.2, pp.1081-1091, 2013.
DOI : 10.1021/nn305491x

H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao et al., Locally Welded Silver Nano-Network Transparent Electrodes with High Operational Stability by a Simple Alcohol-Based Chemical Approach, Advanced Functional Materials, vol.8, issue.27, pp.254211-4218, 2015.
DOI : 10.1186/1556-276X-8-235

H. G. Tompkins, M. R. Pinnel, and D. E. Heath, Oxidation of nickel and nickel-gold alloys in air at 50 ? c?150 ? c, Journal of The Electrochemical Society, 1979.

L. Xu, Y. Yang, Z. Hu, and S. Yu, Comparison Study on the Stability of Copper Nanowires and Their Oxidation Kinetics in Gas and Liquid, ACS Nano, vol.10, issue.3, pp.3823-3834, 2016.
DOI : 10.1021/acsnano.6b00704

J. Wang, J. Jiu, M. Nogi, T. Sugahara, S. Nagao et al., A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires, Nanoscale, vol.15, issue.7, pp.2926-2932, 2015.
DOI : 10.1039/b410178b

G. Kawamura, S. Alvarez, I. E. Stewart, M. Catenacci, Z. Chen et al., Production of Oxidation-Resistant Cu-Based Nanoparticles by Wire Explosion, Scientific Reports, vol.4, issue.2, p.18333, 2015.
DOI : 10.1021/nn901868t

URL : http://www.nature.com/articles/srep18333.pdf

R. Wang and H. Ruan, Synthesis of copper nanowires and its application to flexible transparent electrode, Journal of Alloys and Compounds, vol.656, pp.936-943, 2016.
DOI : 10.1016/j.jallcom.2015.09.279

C. Cho-rong-chu, J. Lee, H. Koo, and . Lee, Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability, Nano Research, vol.9, issue.7, pp.2162-2173, 2016.

L. Dou, F. Cui, Y. Yu, G. Khanarian, S. W. Eaton et al., Solution-Processed Copper/Reduced-Graphene-Oxide Core/Shell Nanowire Transparent Conductors, ACS Nano, vol.10, issue.2, pp.2600-2606, 2016.
DOI : 10.1021/acsnano.5b07651

Z. Chen, S. Ye, I. E. Stewart, and B. J. Wiley, Copper Nanowire Networks with Transparent Oxide Shells That Prevent Oxidation without Reducing Transmittance, ACS Nano, vol.8, issue.9, pp.9673-9679, 2014.
DOI : 10.1021/nn504308n

A. R. Rathmell, M. Nguyen, M. Chi, and B. J. Wiley, Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks, Nano Letters, vol.12, issue.6, pp.3193-3199, 2012.
DOI : 10.1021/nl301168r

H. Im, S. Jung, J. Jin, D. Lee, J. Lee et al., Flexible Transparent Conducting Hybrid Film Using a Surface-Embedded Copper Nanowire Network: A Highly Oxidation-Resistant Copper Nanowire Electrode for Flexible Optoelectronics, ACS Nano, vol.8, issue.10, pp.10973-10979, 2014.
DOI : 10.1021/nn504883m

S. Wu, L. Yang, M. Zou, Y. Yang, M. Du et al., Blown-Bubble Assembly and in Situ Fabrication of Sausage-like Graphene Nanotubes Containing Copper Nanoblocks, Nano Letters, vol.16, issue.8, pp.4917-4924, 2016.
DOI : 10.1021/acs.nanolett.6b01490

F. Cui, Y. Yu, L. Dou, J. Sun, Q. Yang et al., Kerstin Schierle-Arndt, and Peidong Yang. Synthesis of Ultrathin Copper Nanowires Using Tris(trimethylsilyl)silane for High-Performance and Low-Haze Transparent Conductors, 2015.

Y. Yong, T. Yonezawa, M. Matsubara, and H. Tsukamoto, The mechanism of alkylamine-stabilized copper fine particles towards improving the electrical conductivity of copper films at low sintering temperature, Journal of Materials Chemistry C, vol.19, issue.23, pp.5890-5895, 2015.
DOI : 10.1039/b821327e

I. E. Shengrong-ye, Z. Stewart, B. Chen, A. R. Li, B. J. Rathmell et al., How Copper Nanowires Grow and How To Control Their Properties, Accounts of Chemical Research, vol.49, issue.3, pp.442-451, 2016.

Z. Chen, S. Ye, A. R. Wilson, Y. Ha, and B. J. Wiley, Optically transparent hydrogen evolution catalysts made from networks of copper???platinum core???shell nanowires, Energy Environ. Sci., vol.50, issue.4, p.1461, 2014.
DOI : 10.1039/C3CC48561G

J. Zhao, D. Zhang, and X. Zhang, Preparation and characterization of copper/silver bimetallic nanowires with core-shell structure, Surface and Interface Analysis, vol.117, issue.4, pp.529-534, 2015.
DOI : 10.1021/jp3109545

C. Chou, H. Liu, and G. Liou, Highly transparent silver nanowire???polyimide electrode as a snow-cleaning device, RSC Advances, vol.23, issue.66, pp.61386-61392, 2016.
DOI : 10.1088/0957-4484/23/18/185201

J. Zhao, H. Sun, S. Dai, Y. Wang, and J. Zhu, Electrical Breakdown of Nanowires, Nano Letters, vol.11, issue.11, pp.4647-4651, 2011.
DOI : 10.1021/nl202160c

Q. Huang, C. M. Lilley, and R. Divan, investigation of electromigration in Cu nanowires, Nanotechnology, vol.20, issue.7, p.75706, 2009.
DOI : 10.1088/0957-4484/20/7/075706

T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J. Simonato et al., Metallic Nanowire-Based Transparent Electrodes for Next Generation Flexible Devices: a Review, Small, vol.7, issue.44, pp.126052-6075, 2016.
DOI : 10.1039/C5NR01496D

URL : https://hal.archives-ouvertes.fr/hal-01456366

K. Przybilla-spiecker-hollmann-langner-forberich, . Guo, and . Brabec, Nanowire interconnects for printed large-area semitransparent organic photovoltaic modules, Adv Energy Materials, 2015.

P. Aurang, D. Doganay, A. Bek, R. Turan, and H. Unalan, Silver nanowire networks as transparent top electrodes for silicon solar cells, Solar Energy, vol.141, pp.110-117, 2017.
DOI : 10.1016/j.solener.2016.11.021

M. Reinhard, R. Eckstein, A. Slobodskyy, U. Lemmer, and A. Colsmann, Solution-processed polymer???silver nanowire top electrodes for inverted semi-transparent solar cells, Organic Electronics, vol.14, issue.1, pp.273-277, 2013.
DOI : 10.1016/j.orgel.2012.10.039

P. Maisch, K. C. Tam, F. W. Fecher, H. Egelhaaf, C. J. Brabec et al., Inkjet printing of highly conductive nanoparticle dispersions for organic electronics, 2016 12th International Congress Molded Interconnect Devices (MID), pp.1-5, 2016.
DOI : 10.1109/ICMID.2016.7738932

S. Gholipour, J. Correa-baena, K. Domanski, T. Matsui, L. Steier et al., Highly Efficient and Stable Perovskite Solar Cells based on a Low-Cost Carbon Cloth, Advanced Energy Materials, vol.7, issue.20, p.1601116, 2016.
DOI : 10.1038/ncomms10379

M. Grätzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.4, issue.2, pp.145-153, 2003.
DOI : 10.1016/S1389-5567(03)00026-1

Y. George, M. G. Margulis, D. Christoforo, Z. M. Lam, A. R. Beiley et al., Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells, Advanced Energy Materials, vol.3, issue.12, pp.1657-1663, 2013.

Y. Zhao, Y. Zhang, Y. Li, Z. He, and Z. Yan, Rapid and large-scale synthesis of Cu nanowires via a continuous flow solvothermal process and its application in dye-sensitized solar cells (DSSCs), RSC Advances, vol.23, issue.1, p.11544, 2012.
DOI : 10.1002/adma.201003188

X. Zeng, Q. Zhang, R. Yu, and C. Lu, A New Transparent Conductor: Silver Nanowire Film Buried at the Surface of a Transparent Polymer, Advanced Materials, vol.96, issue.40, pp.4484-4488, 2010.
DOI : 10.1002/adma.201001811

L. Li, Z. Yu, W. Hu, C. Chang, Q. Chen et al., Efficient Flexible Phosphorescent Polymer Light-Emitting Diodes Based on Silver Nanowire-Polymer Composite Electrode, Advanced Materials, vol.2, issue.46, pp.5563-5567, 2011.
DOI : 10.1021/nl010093y

J. Liang, L. Li, X. Niu, Z. Yu, and Q. Pei, Elastomeric polymer light-emitting devices and displays, Nature Photonics, vol.7, issue.10, pp.817-824, 2013.
DOI : 10.1021/nn400713e

Z. Chen, S. Ye, I. E. Stewart, and B. J. Wiley, Copper Nanowire Networks with Transparent Oxide Shells That Prevent Oxidation without Reducing Transmittance, ACS Nano, vol.8, issue.9, pp.9673-9679, 2014.
DOI : 10.1021/nn504308n

L. Shi, R. Wang, H. Zhai, Y. Liu, L. Gao et al., A long-term oxidation barrier for copper nanowires: graphene says yes, Physical Chemistry Chemical Physics, vol.25, issue.6, pp.4231-4236, 2015.
DOI : 10.1088/0957-4484/25/14/145704

H. Guo, Y. Chen, H. Ping, L. Wang, and D. Peng, One-pot synthesis of hexagonal and triangular nickel???copper alloy nanoplates and their magnetic and catalytic properties, Journal of Materials Chemistry, vol.31, issue.17, pp.8336-8344, 2012.
DOI : 10.1002/adma.200301639

C. Shi, L. , and H. , Obtaining ultra-long copper nanowires via a hydrothermal process, Science and Technology of Advanced Materials, vol.14, issue.7, 2005.
DOI : 10.1021/jp036758x

URL : http://www.tandfonline.com/doi/pdf/10.1016/j.stam.2005.06.008?needAccess=true

K. L. Chavez and D. W. Hess, A Novel Method of Etching Copper Oxide Using Acetic Acid, Journal of The Electrochemical Society, vol.52, issue.42, p.640, 2001.
DOI : 10.1246/bcsj.52.2908

D. Tahir and S. Tougaard, O studied by electron spectroscopy, Journal of Physics: Condensed Matter, vol.24, issue.17, p.175002, 2012.
DOI : 10.1088/0953-8984/24/17/175002

Y. Homma, S. Kondo, N. Sakuma, K. Hinode, J. Noguchi et al., Control of Photocorrosion in the Copper Damascene Process, Journal of The Electrochemical Society, vol.147, issue.3, pp.1193-1198, 2000.
DOI : 10.1149/1.1393335

Z. Osawa, E. Cheu, and K. Nagashima, Study of the degradation of polyurethanes. III. Mechanism of the photodegradation of polyurethane, Journal of Polymer Science: Polymer Chemistry Edition, vol.15, issue.2, pp.445-450, 1977.
DOI : 10.1002/pol.1977.170150219

J. F. Rabek, Polymer Photodegradation : Mechanisms and experimental methods, 2012.
DOI : 10.1007/978-94-011-1274-1

K. Nakata and A. Fujishima, TiO2 photocatalysis: Design and applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.13, issue.3, pp.169-189, 2012.
DOI : 10.1016/j.jphotochemrev.2012.06.001

J. Chen, J. Chen, Y. Li, W. Zhou, X. Feng et al., Enhanced oxidation-resistant Cu???Ni core???shell nanowires: controllable one-pot synthesis and solution processing to transparent flexible heaters, Nanoscale, vol.6, issue.40, pp.716874-16879, 2015.
DOI : 10.1038/nnano.2011.139

C. Wagner, Theoretical Analysis of the Diffusion Processes Determining the Oxidation Rate of Alloys, Journal of The Electrochemical Society, vol.99, issue.10, 1952.
DOI : 10.1149/1.2779605

B. E. Conway, M. A. Sattar, and D. Gilroy, Electrochemistry of the nickel-oxide electrode???V. Self-passivation effects in oxygen-evolution kinetics, Electrochimica Acta, vol.14, issue.8, 1969.
DOI : 10.1016/0013-4686(69)80024-1

B. Hwang, Y. An, H. Lee, E. Lee, S. Becker et al., Highly Flexible and Transparent Ag Nanowire Electrode Encapsulated with Ultra-Thin Al2O3: Thermal, Ambient, and Mechanical Stabilities, Scientific Reports, vol.22, p.41336, 2017.
DOI : 10.1002/adma.201001811

URL : http://www.nature.com/articles/srep41336.pdf

R. Jacky, Microscopie électronique à balayage -images, applications et développements, 2013.

P. Guyot, Microscopie électronique en transmission transmission conventionnelle et balayage en transmission, 1988.

C. Rivoal, Microscopie à force atomique (afm), 2005.

D. Muñoz-rojas and J. Macmanus-driscoll, Spatial atmospheric atomic layer deposition: a new laboratory and industrial tool for low-cost photovoltaics, Mater. Horiz., vol.20, issue.3, pp.314-320, 2014.
DOI : 10.1002/adma.200801253

H. Guy, Spectroscopies de photoélectrons : Xps ou esca ou ups, 1986.