H. Abidi, Equation de Navier-Stokes avec densit?? et viscosit?? variables dans l???espace critique, Revista Matem??tica Iberoamericana, vol.23, issue.2, pp.537-586, 2007.
DOI : 10.4171/RMI/505

H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system, Journal of Differential Equations, vol.233, issue.1, pp.199-220, 2007.
DOI : 10.1016/j.jde.2006.10.008

URL : https://hal.archives-ouvertes.fr/hal-00605707

H. Abidi and M. Paicu, Global existence for an nonhomogeneous fluid, Annales de l'institut Fourier, pp.883-917, 2007.
DOI : 10.5802/aif.2280

S. N. Antontsev, A. V. Kazhikhov, and V. N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Mathematics and its Applications, 1990.

H. Bahouri and J. Chemin, Equations de transport relatives ??? des champs de vecteurs non-lipschitziens et m???canique des fluides, Archive for Rational Mechanics and Analysis, vol.3, issue.2, pp.159-181, 1994.
DOI : 10.1007/BF00377659

H. Bahouri, J. Chemin, and R. Danchin, Fourier analysis and nonlinear partial differential equations, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 2011.
DOI : 10.1007/978-3-642-16830-7

URL : https://hal.archives-ouvertes.fr/hal-00732127

J. T. Beale, The initial value problem for the navier-stokes equations with a free surface, Communications on Pure and Applied Mathematics, vol.20, issue.3
DOI : 10.1002/cpa.3160340305

J. T. Beale, Large-time regularity of viscous surface waves, Arch. Rational Mech. Anal, vol.84, issue.4, pp.307-35284, 1983.

J. Bergh and J. Löfström, Interpolation spaces. An introduction, 1976.

A. L. Bertozzi and P. Constantin, Global regularity for vortex patches, Communications in Mathematical Physics, vol.3, issue.5, pp.19-28, 1993.
DOI : 10.1007/BF02097055

J. Bony, Calcul symbolique et propagation des singularit??s pour les ??quations aux d??riv??es partielles non lin??aires, Annales scientifiques de l'??cole normale sup??rieure, vol.14, issue.2, pp.209-246, 1981.
DOI : 10.24033/asens.1404

J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Arkiv f??r Matematik, vol.21, issue.1-2, pp.163-168, 1983.
DOI : 10.1007/BF02384306

D. L. Burkholder, A Geometrical Characterization of Banach Spaces in Which Martingale Difference Sequences are Unconditional, The Annals of Probability, vol.9, issue.6, pp.997-1011, 1981.
DOI : 10.1214/aop/1176994270

D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, Conference on harmonic analysis in honor of Antoni Zygmund, pp.270-286, 1981.

M. Cannone, Y. Meyer, and F. Planchon, Solutions auto-similaires des équations de Navier- Stokes, Séminaire sur les Équations aux Dérivées Partielles, p.12, 1993.

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Advances in Mathematics, vol.203, issue.2, pp.497-513, 2006.
DOI : 10.1016/j.aim.2005.05.001

J. Chemin, Calcul paradifférentiel précisé et applications à des équations aux dérivées partielles non semi-linéaires. Duke Math, J, vol.56, issue.3, pp.431-469, 1988.
DOI : 10.1215/s0012-7094-88-05619-0

J. Chemin, Sur le mouvement des particules d'un fluide parfait incompressible bidimensionnel, Inventiones Mathematicae, vol.30, issue.3, pp.599-629, 1991.
DOI : 10.1007/BF01239528

J. Chemin, Persistance de structures g??om??triques dans les fluides incompressibles bidimensionnels, Annales scientifiques de l'??cole normale sup??rieure, vol.26, issue.4, pp.517-542, 1993.
DOI : 10.24033/asens.1679

J. Chemin, Perfect incompressible fluids, of Oxford Lecture Series in Mathematics and its Applications, 1998.

J. Chemin, Th??or??mes d???unicit?? pour le syst??me de navier-stokes tridimensionnel, Journal d'Analyse Math??matique, vol.63, issue.(4), pp.27-50, 1999.
DOI : 10.1007/978-3-663-13911-9

J. Chemin, B. Desjardins, I. Gallagher, and E. Grenier, Mathematical geophysics, of Oxford Lecture Series in Mathematics and its Applications An introduction to rotating fluids and the Navier- Stokes equations, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00112069

J. Chemin and N. Lerner, Flow of Non-Lipschitz Vector-Fields and Navier-Stokes Equations, Journal of Differential Equations, vol.121, issue.2, pp.314-328, 1995.
DOI : 10.1006/jdeq.1995.1131

S. S. Chern, W. H. Chen, and K. S. Lam, Lectures on differential geometry Schauder decomposition and multiplier theorems, of Series on University Mathematics, pp.135-163, 1999.

R. Danchin, Evolution temporelle d'une poche de tourbillon singuliere, Communications in Partial Differential Equations, vol.3, issue.3, pp.685-721, 1997.
DOI : 10.1002/cpa.3160390711

R. Danchin, Poches de tourbillon visqueuses, Journal de Math??matiques Pures et Appliqu??es, vol.76, issue.7, pp.609-647, 1997.
DOI : 10.1016/S0021-7824(97)89964-3

URL : https://doi.org/10.1016/s0021-7824(97)89964-3

R. Danchin, Persistance de structures g??om??triques et limite non visqueuse pour les fluides incompressibles en dimension quelconque, Bulletin de la Société mathématique de France, vol.127, issue.2, pp.179-228, 1999.
DOI : 10.24033/bsmf.2346

URL : http://www.numdam.org/article/BSMF_1999__127_2_179_0.pdf

R. Danchin, Évolution d'une singularité de type cusp dans une poche de tourbillon, Rev. Mat. Iberoamericana, vol.16, issue.2, pp.281-329, 2000.
DOI : 10.4171/rmi/276

URL : http://www.ems-ph.org/journals/show_pdf.php?issn=0213-2230&vol=16&iss=2&rank=3

R. Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proceedings of the Royal Society of Edinburgh-A-Mathematics, pp.1311-1334
DOI : 10.1017/S030821050000295X

R. Danchin, Density-Dependent Incompressible Fluids in Bounded Domains, Journal of Mathematical Fluid Mechanics, vol.8, issue.3, pp.333-381, 2006.
DOI : 10.1007/s00021-004-0147-1

R. Danchin, UNIFORM ESTIMATES FOR TRANSPORT-DIFFUSION EQUATIONS, Journal of Hyperbolic Differential Equations, vol.21, issue.01, pp.1-17, 2007.
DOI : 10.1007/s002050050128

R. Danchin and P. B. Mucha, Incompressible flows with piecewise constant density Archive for Rational Mechanics and Analysis, pp.991-1023, 2013.

R. Danchin and P. B. Mucha, Critical functional framework and maximal regularity in action on systems of incompressible flows, Mémoires de la Société mathématique de France, vol.1, issue.143, p.151, 2015.
DOI : 10.24033/msmf.451

URL : https://hal.archives-ouvertes.fr/hal-01070457

R. Danchin and P. B. Mucha, The incompressible Navier-Stokes equations in vacuum, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01523740

R. Danchin and P. B. Mucha, A Lagrangian Approach for the Incompressible Navier-Stokes Equations with Variable Density, Communications on Pure and Applied Mathematics, vol.51, issue.5, pp.1458-1480, 2012.
DOI : 10.1007/BF01085325

URL : https://hal.archives-ouvertes.fr/hal-00795409

R. Danchin and M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Physica D: Nonlinear Phenomena, vol.237, issue.10-12, pp.1444-1460, 2008.
DOI : 10.1016/j.physd.2008.03.034

URL : https://hal.archives-ouvertes.fr/hal-00693065

R. Danchin and M. Paicu, Les th??or??mes de Leray et de Fujita-Kato pour le syst??me de Boussinesq partiellement visqueux, Bulletin de la Société mathématique de France, vol.136, issue.2, pp.261-309, 2008.
DOI : 10.24033/bsmf.2557

R. Danchin and P. Zhang, Inhomogeneous Navier???Stokes equations in the half-space, with only bounded density, Journal of Functional Analysis, vol.267, issue.7, pp.2371-2436, 2014.
DOI : 10.1016/j.jfa.2014.07.017

URL : https://hal.archives-ouvertes.fr/hal-00813552

R. Danchin and X. Zhang, Global persistence of geometrical structures for the Boussinesq equation with no diffusion, Communications in Partial Differential Equations, vol.27, issue.1, pp.68-99, 2017.
DOI : 10.1007/s002050050128

URL : https://hal.archives-ouvertes.fr/hal-01290221

R. Danchin and X. Zhang, Persistance de la r??gularit?? h??ld??rienne des poches de densit?? pour les ??quations de Navier-Stokes inhomog??ne, Journal de l?????cole polytechnique ??? Math??matiques, vol.4, pp.781-811, 2017.
DOI : 10.5802/jep.56

I. V. Denisova, Global solvability of the problem on the motion of two fluids without surface tension, Journal of Mathematical Sciences, vol.51, issue.5, pp.19-39, 2007.
DOI : 10.1007/978-3-540-39189-0_4

I. V. Denisova and V. A. Solonnikov, Classical solvability of the problem of the motion of two viscous incompressible fluids, Algebra i Analiz, vol.7, issue.5, pp.101-142, 1995.

I. V. Denisova and V. A. Solonnikov, Global solvability of a problem governing the motion of two incompressible capillary fluids in a container, Journal of Mathematical Sciences, vol.348, issue.1
DOI : 10.1142/9789814503594_0004

R. Denk, M. Hieber, and J. Prüss, ???-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Memoirs of the American Mathematical Society, vol.166, issue.788, p.114, 2003.
DOI : 10.1090/memo/0788

R. J. Diperna and P. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Inventiones Mathematicae, vol.307, issue.3, pp.511-547, 1989.
DOI : 10.1007/BFb0061716

G. Dore and A. Venni, On the closedness of the sum of two closed operators, Mathematische Zeitschrift, vol.299, issue.2, pp.189-201, 1987.
DOI : 10.1007/BF01163654

K. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts in Mathematics, 2000.

F. Fanelli, Conservation of Geometric Structures for Non-Homogeneous Inviscid Incompressible Fluids, Communications in Partial Differential Equations, vol.318, issue.2, pp.1553-1595, 2012.
DOI : 10.1016/0041-5553(63)90247-7

URL : https://hal.archives-ouvertes.fr/hal-00733562

R. Farwig, H. Kozono, and H. Sohr, An Lq-approach to Stokes and Navier-Stokes equations in general domains, Acta Mathematica, vol.195, issue.1, pp.21-53, 2005.
DOI : 10.1007/BF02588049

E. Feireisl, A. Novotný-fujita, and T. Kato, Singular limits in thermodynamics of viscous fluids Advances in Mathematical Fluid Mechanics On the Navier-Stokes initial value problem, I. Arch. Rational Mech. Anal, vol.16, pp.269-315, 1964.

G. Furioli, P. G. Lemarié-rieusset, and E. Terraneo, Unicit?? dans $L^3 (\mathbb R^3)$ et d'autres espaces fonctionnels limites pour Navier-Stokes, Revista Matem??tica Iberoamericana, vol.16, issue.3, pp.605-667, 2000.
DOI : 10.4171/RMI/286

P. Gamblin and X. Saint-raymond, On three-dimensional vortex patches, Bulletin de la Société mathématique de France, vol.123, issue.3, pp.375-424, 1995.
DOI : 10.24033/bsmf.2265

F. Gancedo and E. García-juárez, Global Regularity of 2D Density Patches for Inhomogeneous Navier???Stokes, Archive for Rational Mechanics and Analysis, vol.212, issue.1, 2016.
DOI : 10.1007/978-3-642-45944-3_6

F. Gancedo and E. García-juárez, Global Regularity for 2D Boussinesq Temperature Patches with No Diffusion, Annals of PDE, vol.6, issue.1, pp.3-14, 2017.
DOI : 10.1063/1.868044

Y. Giga, Analyticity of the semigroup generated by the Stokes operator inL r spaces, Mathematische Zeitschrift, vol.2, issue.2, pp.297-329, 1981.
DOI : 10.1007/BF01214869

Y. Giga, Domains of fractional powers of the Stokes operator in Lr spaces, Archive for Rational Mechanics and Analysis, vol.74, issue.3, pp.251-265, 1985.
DOI : 10.1007/BF00276874

Y. Giga and T. Miyakawa, Solutions in Lr of the Navier-Stokes initial value problem, Archive for Rational Mechanics and Analysis, vol.74, issue.3, pp.267-281, 1985.
DOI : 10.1090/trans2/075/01

Y. Giga and H. Sohr, Abstract Lp estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, Journal of Functional Analysis, vol.102, issue.1, pp.72-94, 1991.
DOI : 10.1016/0022-1236(91)90136-S

L. Grafakos, Classical Fourier analysis, Graduate Texts in Mathematics, vol.249

Y. Guo and I. Tice, Almost Exponential Decay of Periodic Viscous Surface Waves without Surface Tension, Archive for Rational Mechanics and Analysis, vol.61, issue.7, pp.459-531, 2013.
DOI : 10.1002/cpa.20226

Y. Guo and I. Tice, Decay of viscous surface waves without surface tension in horizontally infinite domains, Analysis & PDE, vol.44, issue.6, pp.1429-1533, 2013.
DOI : 10.1007/s00222-010-0288-1

Y. Guo and I. Tice, Local well-posedness of the viscous surface wave problem without surface tension, Analysis & PDE, vol.44, issue.2, pp.287-369, 2013.
DOI : 10.1002/cpa.20226

L. He, Smoothing estimates of 2d incompressible Navier???Stokes equations in bounded domains with applications, Journal of Functional Analysis, vol.262, issue.7, pp.3430-3464, 2012.
DOI : 10.1016/j.jfa.2012.01.017

E. Hille, R. S. Phillips, and R. I. , Functional analysis and semi-groups Third printing of the revised edition of, 1957.

T. Hmidi, R??gularit?? h??ld??rienne des poches de tourbillon visqueuses, Journal de Math??matiques Pures et Appliqu??es, vol.84, issue.11, pp.1455-1495, 2005.
DOI : 10.1016/j.matpur.2005.01.004

T. Hmidi and S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity Advances in Differential Equations, pp.461-480, 2007.

T. Hmidi and S. Keraani, Incompressible viscous flows in borderline Besov spaces Archive for Rational Mechanics and Analysis, pp.283-300, 2008.

T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst, vol.12, issue.1, pp.1-12, 2005.

W. Hu, I. Kukavica, F. Wang, and M. Ziane, Boussinesq equations with zero viscosity or zero diffusivity: a review, Recent progress in the theory of the Euler and Navier-Stokes equations, pp.77-95, 2016.
DOI : 10.1017/CBO9781316407103.006

J. Huang, M. Paicu, and P. Zhang, Global well-posedness of incompressible inhomogeneous fluid systems with bounded density or non-lipschitz velocity. Archive for Rational Mechanics and Analysis, pp.631-682, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00994718

H. Iwashita, L q -L r estimates for solutions of the nonstationary stokes equations in an exterior domain and the Navier-Stokes initial value problems inL q spaces, Mathematische Annalen, vol.74, issue.2, pp.265-288, 1989.
DOI : 10.1007/BF01443518

T. Kato, StrongL p -solutions of the Navier-Stokes equation inR m , with applications to weak solutions, Mathematische Zeitschrift, vol.74, issue.4, pp.471-480, 1984.
DOI : 10.1007/BF01174182

T. Kato and H. Fujita, On the nonstationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova, vol.32, pp.243-260, 1962.

H. Koch and D. Tataru, Well-posedness for the Navier???Stokes Equations, Advances in Mathematics, vol.157, issue.1, pp.22-35, 2001.
DOI : 10.1006/aima.2000.1937

M. Köhne, J. Prüss, and M. Wilke, Qualitative behaviour of solutions for the two-phase Navier???Stokes equations with surface tension, Mathematische Annalen, vol.130, issue.1, pp.737-792, 2013.
DOI : 10.1007/978-3-0346-0416-1

S. G. Kre?n, Differential equations in a Banach space and their application in hydromechanics, Uspehi Mat. Nauk (N.S.), vol.12, issue.173, pp.208-211, 1957.

I. Kukavica, F. Wang, and M. Ziane, Persistence of regularity for solutions of the Boussinesq equations in Sobolev spaces, Adv. Differential Equations, vol.21, issue.12, pp.85-108, 2016.

P. C. Kunstmann and L. Weis, Maximal L p -regularity for parabolic equations, Fourier multiplier theorems and H ? -functional calculus In Functional analytic methods for evolution equations, volume 1855 of Lecture Notes in Math [82] O. A. Ladyzhenskaya. The mathematical theory of viscous incompressible flow. Second English edition, revised and enlarged. Translated from the Russian by, Mathematics and its Applications, vol.2, pp.65-311, 1969.

L. D. Landau and E. M. Lifshitz, Fluid mechanics. Translated from the Russian by, Course of Theoretical Physics, vol.6, 1959.

P. Lemarié-rieusset, The Navier-Stokes problem in the 21st century
DOI : 10.1201/b19556

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Mathematica, vol.63, issue.0, pp.193-248, 1934.
DOI : 10.1007/BF02547354

URL : http://doi.org/10.1007/bf02547354

X. Liao and Y. Liu, On the global regularity of three dimensional density patch for inhomogeneous incompressible viscous flow, 2016.

X. Liao and P. Zhang, Global regularities of two-dimensional density patch for inhomogeneous incompressible viscous flow with general density, 2016.

X. Liao and P. Zhang, On the Global Regularity of the Two-Dimensional Density Patch for Inhomogeneous Incompressible Viscous Flow, Archive for Rational Mechanics and Analysis, vol.18, issue.9, pp.937-981, 2016.
DOI : 10.1137/0521061

P. Lions, Mathematical topics in fluid mechanics Incompressible models, of Oxford Lecture Series in Mathematics and its Applications, 1996.

A. Lunardi, Interpolation theory. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie). [Lecture Notes, Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, 2009.

A. J. Majda, Vorticity and the mathematical theory of incompressible fluid flow, Communications on Pure and Applied Mathematics, vol.28, issue.S1
DOI : 10.1007/978-1-4612-1116-7

A. J. Majda and A. L. Bertozzi, Vorticity and incompressible flow, 2002.
DOI : 10.1017/CBO9780511613203

P. Maremonti and V. A. Solonnikov, On nonstationary Stokes problem in exterior domains

S. Maryani and H. Saito, On the R-boundedness of solution operator families for twophase Stokes resolvent equations, Differential Integral Equations, vol.30, issue.12, pp.1-52, 2017.

Y. Meyer, Wavelets, paraproducts, and Navier-Stokes equations In Current developments in mathematics, pp.105-212, 1996.

M. Paicu, Z. Zhang, and . Zhang, Global Unique Solvability of Inhomogeneous Navier-Stokes Equations with Bounded Density, Communications in Partial Differential Equations, vol.3, issue.7, pp.1208-1234, 2013.
DOI : 10.1137/0521061

URL : https://hal.archives-ouvertes.fr/hal-00994640

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol.44, 1983.
DOI : 10.1007/978-1-4612-5561-1

J. Pedlosky, Geophysical Fluid Dynamics, 1987.

G. Pisier, Martingales in Banach spaces, volume 155 of Cambridge Studies in Advanced Mathematics

J. Prüss and G. Simonett, Analysis of the boundary symbol for the two-phase Navier-Stokes equations with surface tension, Nonlocal and Abstract Parabolic Equations and their Applications, pp.265-285, 2009.
DOI : 10.4064/bc86-0-17

J. Prüss and G. Simonett, On the Rayleigh-Taylor instability for the two-phase Navier-Stokes equations, Indiana University Mathematics Journal, vol.59, issue.6, pp.1853-1871, 2010.
DOI : 10.1512/iumj.2010.59.4145

J. Prüss and G. Simonett, On the two-phase Navier???Stokes equations with surface tension, Interfaces and Free Boundaries, vol.12, issue.3, pp.311-345, 2010.
DOI : 10.4171/IFB/237

J. Prüss and G. Simonett, Moving interfaces and quasilinear parabolic evolution equations, Monographs in Mathematics. Birkhäuser, vol.105, p.2016
DOI : 10.1007/978-3-319-27698-4

J. Prüss and H. Sohr, On operators with bounded imaginary powers in banach spaces, Mathematische Zeitschrift, vol.93, issue.1, pp.429-452, 1990.
DOI : 10.1007/978-1-4615-9970-8

W. Rudin, Real and complex analysis, 1987.

Y. Shibata, On some free boundary problem of the Navier???Stokes equations in the maximal <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:math>???<mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub></mml:math> regularity class, Journal of Differential Equations, vol.258, issue.12, pp.4127-4155, 2015.
DOI : 10.1016/j.jde.2015.01.028

Y. Shibata and S. Shimizu, Maximal <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:math>???<mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mi>L</mml:mi><mml:mi>q</mml:mi></mml:msub></mml:math> regularity for the two-phase Stokes equations; Model problems, Journal of Differential Equations, vol.251, issue.2, pp.373-419, 2011.
DOI : 10.1016/j.jde.2011.04.005

Y. Shibata and S. Shimizu, On a free boundary problem for the Navier-Stokes equations, Differential Integral Equations, vol.20, issue.3, pp.241-276, 2007.

J. Simon, Nonhomogeneous Viscous Incompressible Fluids: Existence of Velocity, Density, and Pressure, 110] S. Soboleff. Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales, pp.1093-111739, 1936.
DOI : 10.1137/0521061

P. E. Sobolevski?, Non-stationary equations of viscous fluid dynamics, Dokl. Akad. Nauk SSSR, vol.128, pp.45-48, 1959.

V. A. Solonnikov, Estimates of the solutions of the nonstationary Navier-Stokes system

. Zap, Boundary value problems of mathematical physics and related questions in the theory of functions, Nau?n. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), vol.38, issue.7, pp.153-231, 1973.

V. A. Solonnikov, SOLVABILITY OF A PROBLEM ON THE MOTION OF A VISCOUS INCOMPRESSIBLE FLUID BOUNDED BY A FREE SURFACE, Mathematics of the USSR-Izvestiya, vol.11, issue.6, pp.1388-1424, 1977.
DOI : 10.1070/IM1977v011n06ABEH001770

V. A. Solonnikov, Unsteady flow of a finite mass of a fluid bounded by a free surface, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), p.152

V. A. Solonnikov, Unsteady motion of an isolated volume of a viscous incompressible fluid

V. A. Solonnikov, Unsteady motions of a finite isolated mass of a self-gravitating fluid, Algebra i Analiz, vol.1, issue.1, pp.207-249, 1989.

E. M. Stein, G. Weiss, and N. J. , Introduction to Fourier analysis on Euclidean spaces, 1971.

F. Sueur, Viscous profiles of vortex patches, Journal of the Institute of Mathematics of Jussieu, vol.38, issue.01, pp.1-68, 2015.
DOI : 10.3934/dcds.2004.11.131

N. Tanaka, Global existence of two phase nonhomogeneous viscous incompbessible fluid flow, Communications in Partial Differential Equations, vol.11, issue.1-2, pp.41-81, 1993.
DOI : 10.1002/mma.1670050129

N. Tanaka, Two-phase free boundary problem for viscous incompressible thermocapillary convection, Japan. J. Math. (N.S.), vol.21, issue.1, pp.1-42, 1995.

A. Tani, Small-time existence for the three-dimensional navier-stokes equations for an incompressible fluid with a free surface, Archive for Rational Mechanics and Analysis, vol.32, issue.4, pp.299-331, 1996.
DOI : 10.1007/BF00375146

A. Tani and N. Tanaka, Large-time existence of surface waves in incompressible viscous fluids with or without surface tension, Archive for Rational Mechanics and Analysis, vol.32, issue.4, pp.303-314, 1995.
DOI : 10.1007/BF00375142

M. Vishik, Hydrodynamics in Besov spaces Archive for Rational Mechanics and Analysis, pp.197-214, 1998.

L. Weis, Operator???valued Fourier multiplier theorems and maximal $L_p$-regularity, Mathematische Annalen, vol.319, issue.4, pp.735-758, 2001.
DOI : 10.1007/PL00004457

L. Xu and Z. Zhang, On the free boundary problem to the two viscous immiscible fluids, Journal of Differential Equations, vol.248, issue.5
DOI : 10.1016/j.jde.2009.11.001

V. I. Yudovich, Non-stationary flows of an ideal incompressible fluid, ?. Vy?isl. Mat. i Mat. Fiz, vol.3, pp.1032-1066, 1963.

N. J. Zabusky, M. H. Hughes, and K. V. Roberts, Contour dynamics for the Euler equations in two dimensions, Journal of Computational Physics, vol.30, issue.1, pp.96-106, 1979.
DOI : 10.1016/0021-9991(79)90089-5

P. Zhang and Q. Qiu, Propagation of higher-order regularities of the boundaries of 3-D vortex patches, Chinese Ann. Math. Ser. A, vol.18, issue.3, pp.381-390, 1997.

P. Zhang and Q. Qiu, The three-dimensional revised vortex patch problem for the system of incompressible Euler equations, Acta Math. Sinica (Chin. Ser.), vol.40, issue.3, pp.437-448, 1997.