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Crignon, C. Duhoux, D. Genon-Catalot, L. Lefèvre, T.H. Pham, V.T. Pham: Energy optimisation
using analytics and coordination, the example of lifts, In Proceedings of the IEEE Conference on
Emerging Technology and Factory Automation, Spain, 2014, pp. 1-8

iii



iv



Notations

Parameter and variable fonts

Element Font
Scalar parameter capital letter
Hamiltonian capital letter
Scalar variable normal letter
Vector normal and bold letter
Matrix capital and bold letter
Set capital and blackboard bold letter

Operator

Notation Description
∂x1

g partial derivative of g with respect to x1

∇H the vector of gradient of H(x)
ẋ time derivative of vector x(t)
Im G imagine of matrix G
det(G) determinant of matrix G
GT transpose matrix of G
G⊥ orthogonal matrix of G
diag{a, b, c} diagonal matrix with the diagonal elements a, b, c
‖x‖p p-norm of vector x with p = 1, 2 or ∞
n! factorial n
conv (G) convex hull of the set G

Subscript and superscript

Notation Description
(.)cb variable of the converter associated with the battery
(.)cs variable of the converter associated with the supercapacitor
(.)bb variable of the battery
(.)ss variable of the supercapacitor
(.)b variable of the battery unit
(.)s variable of the supercapacitor unit
(.)d discretized function

(.)a, (̂.) approximation of (.)

(̌.) variable (.) in the original elevator coordinates

(.) variable (.) in the transformed elevator coordinates
(.)∗ reference value of (.)
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Variable

Notation Description
In identity matrix of size n× n
1n array of ones of size n× 1
0n array of zeros of size n× 1
f, f flow variables
e, e effort variables
x,x state variables
F,E flow and effort spaces
F∗ dual space of F
D Dirac structure
X state space
R set of real number
N set of natural number
TxX stangent space of X
R resistive matrix
J,D interconnection matrix
G input matrix
H Hamiltonian function
d converter duty cycle
i, i currents
v,v voltages
P power
C capacitance, capacitor
L,L inductance, inductor
R resistance, resistor
q capacitor charge
φ, Φ magnetic flux
Q weight matrix (in Hamiltonian, in cost function)
k internal battery coefficient, or number index
b charge factor of the battery
E internal voltage of the battery
ρ pulley radius
mc,mp masses of the cabin and the counterweight
mc vector of masses of the cabin
Il mechanical inertia
pl mechanical momentum
θm pulley angle
ωl rotor angular speed
τe magnetic torque of the motor
P(θm) Park transformation
W Jacobian matrix
t, t time instant and vector of time instants
n,N natural numbers
V1, V2 cost functions
pr(t) electricity price
Np prediction horizon
x(t+ jh|t) predicted state vectors at the instant t+ jh
Qx,Qu weight matrices of the state and input variables
N number of control points
λj,d B-spline of order d
Λd B-spline vector of order d
τi knot
T knot vector



Nomenclatures

AC Alternative Current
DC Direct Current
DER Distributed Energy Resources
DS Dirac structure
KDS Kirchhoff Dirac structure
PCH Port-Controlled Hamiltonian
PH Port-Hamiltonian
MPC Model Predictive Control
KiBam Kinetic Battery Model
MPPT Maximum Power Point Tracking
PMSM Permanent Magnet Synchronous Machine
MTPA Maximum Torque per Ampere
IDA-PBC Interconnection and Damping Assignment Passivity-Based Control
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Chapter 1

Introduction

1.1 DC microgrids

The capacity of a process to provide useful power (defined as the variation of the energy characterizing
that process) has been one of the transforming elements of human society. Energy exists in a variety of
forms, such as electrical, mechanical, chemical, thermal, or nuclear, and can be transformed from one form
to another [EIA, 2017]. Energy sources are divided into two groups: renewable energy (e.g., solar energy,
geothermal energy, wind energy, biomass) or nonrenewable energy (e.g., petroleum products, hydrocarbon
gas liquids, natural gas, coal, nuclear energy). They are called the primary energy sources. However, to
transport energy from one place to another we need the energy carriers, also called the secondary energy
sources, e.g., the electricity and the hydrogen. In this thesis, we only discuss about the electricity carrier. The
network of transmission lines, substations, transformers which delivers electricity from the energy sources to
the energy consumers is called the electrical grid [Smartgrid.gov, 2017]. However, the conventional electrical
grid are facing many challenges which can be outlined as follows.

• The increasing of the power demands causes the network power congestion when the available power
from the energy sources is limited. This frequently leads to a “blackout” which spreads rapidly due to
the lack of the communication between the grid and the control centers.

• Without the information about the available energy the customers can not make optimal decisions to
reduce the electricity consumption during the expensive peak period.

• The conventional grid is not flexible enough to support the power fluctuation caused by the renewable
energies.

• There are many regions where the energy consumers can not easily reach the global electrical grid, e.g.,
in the forest, in the desert.

The last challenge motivates the use of a local electrical grid, called a microgrid, which can work without
the connection with the global electrical grid. What is a microgrid? The U.S. Department of Energy calls it
“a group of interconnected customer loads and Distributed Energy Resources (DER) within clearly defined
electrical boundaries that acts as a single controllable entity that can connect and disconnect from the grid
(known as “islanding”)” [Shireman, 2013] (see also Fig. 1.1.1). DERs are small power sources that can be
aggregated to provide the power necessary to meet a regular demand [Haas, 2017]. Thus, the DER implies the
distributed energy storage system and the distributed energy generation system, i.e., the renewable energy
source. The distributed energy generation systems are integrated to the local system to reduce the impact
on the environment of the fossil fuel resources. However, the electricity price of the external grid varies
during a day. It may be expensive when the energy demand is high. Moreover, the power supplied by the
distributed energy generation system is unstable. Consequently, the distributed energy storage system is
used to store energy when it is available and cheap. Then, it is reused in the contrary case. In microgrids,
all the components are connected to a common bus (transmission lines) through converters. There are two
types of microgrids: AC (Alternative Current) and DC (Direct Current). A microgrid is called AC or DC if
its components are connected to the AC or DC transmission lines, also called AC or DC bus. The microgrid
topology which characterizes the power interconnections within the microgrid is defined by the topology of
transmission lines. There are three types of microgrid topologies: radial, ring-main and meshed [Bucher
et al., 2014]. Each one of these topologies having their advantages and disadvantages. Note that the network

1
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Figure 1.1.1: A typical microgrid system [Prodan et al., 2015].

design is usually chosen according to a planning criteria, i.e., cost reliability, contingency and the like. The
microgrids are an important innovation for the society due to the following reasons.

• Through microgrids, people in isolated regions can access to the electricity.

• The microgrid motivates the integration of renewable sources to the energy system. This reduces the
bad impacts of the fossil fuel to our environment.

• Due to the declining cost of renewable sources and the rising cost of fossil fuels, the incorporation of
the renewable energy into the local energy system (microgrid) will make attractive values for the small
and medium enterprise.

• Microgrid controllers regulate and optimize operations of various DERs. This makes the DERs more
manageable and thus, simplifies the global energy management.

• Through the islanding mode, the microgrid improves the energy reliability of the electrical grid for
essential emergency response facilities (e.g., police stations, hospitals, military operations).

Since the microgrid is a complex system, there are many problems to be studied such as:

1. What is the suitable control architecture to deal with the computation and communication limits?

2. How are the microgrid components modelled such that necessary properties are taken into account,
e.g., time scale, power transfer?

3. How is the microgrid controlled such that the energy dissipation or the energy cost is minimized?

4. How can we integrate various components with different physical characteristics to the microgrid?

5. What are the suitable topologies?

6. How can we integrate control algorithms to the physical microgrid?

7. What is the control algorithm which guarantees the power demand satisfaction when faults occur?

To answer to some of these questions a literature review on the existing modelling approaches, control
methods and the architectures are presented in the following.
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1.2 DC microgrids from a control theoretic perspective

The control algorithm plays an important role in the implementation of the microgrid. Embedding controllers
in microgrids allow to manage loads and DERs in order to avoid blackouts, optimize operations of microgrid
components and deal with the power fluctuation of the renewable source. The implementation of the micro-
grid in our modern life is an active subject in the industry community through various successful projects.
A student team at Eindhoven University of Technology invents the first solar-powered family car [TU/e,
2013]. Tesla enterprise started to build “smart” roofs for houses which have PV panels and reduce to 0 the
electricity spendings [Fehrenbacher, 2017]. Moreover, Schindler enterprise introduced the solar elevator in
2013 which can serve the passenger during a power outage [Zemanta, 2013]. The energy efficiency in grid-
connected elevator systems is also considered in the Arrowhead project [Arrowhead, 2017]. Currently, the
solar-powered plane which aims at flying around the world without fuel is studied within the Solar Impulse
project [Solar.Impulse, 2017].

The study of complex dynamical systems is a fundamental control issue. Microgrids are complex energy
systems since they include many subsystems of different natures (e.g., mechanical, electrical, electronic,
magnetic, thermodynamic, chemical), with different characteristics and time scales. The control decisions
are expected to be derived and implemented in real-time. Feedback started to be used extensively to cope
with uncertainties of the system and its environment.

The issues faced when dealing with such complex systems include:

• Modelling methods: they should explicitly describe the useful properties of the microgrid, e.g., suitable
time scale, energy conservation [Pham et al., 2015b,Schiffer et al., 2016b].

• Reference profile generation: gives indications for the DERs to track while taking into account future
predictions [Pham et al., 2015a,Pham et al., 2017].

• Efficient energy management: it optimizes some economy or technology criteria, e.g., electricity cost,
computation time. Note that there are mathematically two types of criteria (objective functions):
finite-dimensional cost [Larsen et al., 2013,Stegink et al., 2017] and continuous-time cost [Parisio et al.,
2016,Pham et al., 2017].

• Control architecture: it handles the structure of the control law and the communication topology for
the microgrid.

• Constraint handling: it aims at formulating the constraints in the control design.

• Stability: this implies the reference tracking problems within the microgrid components and the power
balance among them [Alamir et al., 2014, Zonetti et al., 2015, Schiffer et al., 2016a, de Persis et al.,
2016, de Persis and Monshizadeh, 2017]. The power balance in the DC microgrid corresponds to the
DC bus voltage control in the fast time scale where the DC bus dynamics are considered.

• Robustness: this guarantees the planned microgrid operation despite disturbances.

• Fault tolerant control: aims at guaranteeing the load power satisfaction under unexpected events, e.g.,
when some of the generators fails to provide power to the other microgrid components [Prodan et al.,
2015].

The above enumerated objectives require different modelling approaches (or models), control design methods
and control architectures.

1.2.1 Modelling

As previously mentioned the microgrids are complex energy systems containing heterogeneous components
distributed in space and time. This makes the modelling of the microgrid system a complicated task. There
are different modelling methods employed in the literature, of course depending on the control objectives.

Fuzzy modelling is a system representation based on the fuzzy sets [Takagi and Sugeno, 1985]. The
consequences are linear models which describe the system for different operating points. This method is used
to forecast the renewable and load powers in the microgrids while taking into account the power uncertainty
[Sáez et al., 2015]. The obtained model does not explicitly exhibit the underlying power-preserving structure
of the microgrid.

Agent-based modelling can be defined as a three-tuple comprising of a set of agents (homogeneous or
heterogeneous), an environment and the ability to negotiate and interact in a cooperative manner [Wooldridge,
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2002]. An agent can be a physical entity, e.g., the distributed energy storage unit [Lagorse et al., 2010], or
a virtual entity, e.g., a piece of software which provides the electricity price or stores data [Dimeas and
Hatziargyriou, 2010]. It has a partial representation of the environment, e.g., in the power system, an agent
may only know the voltage of its own bus. This characteristic allows the agent-based control of complex
system with a little data exchange and computation demands. An agent communicates with other agents and
autonomously makes decisions. Agent-based modelling for the microgrid are studied in numerous works such
as [Dimeas and Hatziargyriou, 2010,Krause et al., 2006,Weidlich and Veit, 2008,Jimeno et al., 2010,Lagorse
et al., 2010]. However, the microgrid model obtained by this approach does not explicitly take into account
the dynamics of the individual components. Thus, the system properties are not fully considered.

Differential equations-based modelling describes the system through a set of differential equations
[Khalil, 2002]. It allows an explicit representation of the system dynamics which are derived from the physical
constitutive equations and balance equations such as Newton’s law, Ohm’s law, Kirchhoff’s law, Lenz’s law
etc. The obtained model captures the system natural property [Paire, 2010,Alamir et al., 2014,Lefort et al.,
2013,Prodan et al., 2015,Parisio et al., 2016,dos Santos et al., 2016]. However, this system description does
not explicitly exhibit the underlying power-preserving structure and the energy conservation.

Port-Hamiltonian modelling describes a system as a combination of power-preserving interconnec-
tions, energy storages, resistive elements and the external environment [Duindam et al., 2009,van der Schaft
and Jeltsema, 2014]. The interconnection is expressed by algebraic relations of conjugate variable pairs
(whose product is a power), e.g., the Kirchhoff’s laws for the currents and the voltages in an electrical circuit.
The energy storages and the resistive elements represent the subsystems where the energy is stored and dis-
sipated, respectively. The external environment represents control actions, other systems or energy sources.
The system model may be graphically described by a Bond Graph. From this graph, the system dynamics
may be automatically derived as a set of algebraic and differential equations. Usually, they reduce to the
differential equations written in a specific form. In [Zonetti et al., 2015,Benedito et al., 2017], this approach
is used to model the transmission lines and/or the system of converters in DC microgrids. Similar approach
have been applied for the AC microgrid in [Stegink et al., 2017, Schiffer et al., 2016b]. However, none of
previous works consider the slow time scale models for the distributed energy resources (DERs). This will
be one of the contributions of the present thesis.

1.2.2 Control approach

The main objective in the load balancing for microgrid systems is to generate the real-time power references
which need to be tracked by the local component controls in the faster time scale. Note that microgrid
components are strongly nonlinear and must satisfy various constraints, e.g., the battery charge limits, the
maximal power supplied by the external grid. To deal with the presented objective and the nonlinearity,
different control approaches used in the literature are presented in the following.

Passivity-based methods exploit a physical system property which is the energy balance [Ortega et al.,
2001]. By choosing the suitable desired stored and dissipated energies of the closed-loop system we derive
the control law through the matching equation. The passivity-based control is efficient to deal with the
passive nonlinear system since it makes use of the stored energy in the system as the Lyapunov function.
This method is used for the stabilization of the transmission lines and of the system of converters in AC
microgrid [Schiffer et al., 2016a,de Persis et al., 2016,de Persis and Monshizadeh, 2017] and in High Voltage
Direct Current grid [Zonetti et al., 2015]. However, this method is not suitable for the non-passive and/or
constrained systems.

Gradient-based methods formulate the constrained optimization problem of the controller as a virtual
dynamical system such that the steady state of the virtual dynamics corresponds to the solution of the
optimal control problem [Feijer and Paganini, 2010]. This virtual system is derived using the Karush-Kuhn-
Tucker conditions (see also Section 5 Chapter 5 in [Boyd and Vandenberghe, 2004]). The presented method
allows to take into account constraints and optimization cost in the control design. It is used to optimize the
power distribution within the microgrid [Stegink et al., 2017,Li et al., 2016,Benedito et al., 2017]. However,
the previous works do not take into account the electrical storage system dynamics, the renewable and load
power prediction which are essential for the microgrid energy management.

Constrained optimization-based control formulates the control law as the solution of an optimization
problem. A popular method of this approach is the dynamic programming based on the Bellman’s principle
(principle of optimality), i.e., an optimal policy has the property that what ever the initial state and initial
decisions are, the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision [Bellman, 1957,Liberzon, 2011]. This control method is used to find the DERs power
profiles in the microgrid [Costa and Kariniotakis, 2007,Handschin et al., 2006,Bilbao et al., 2014]. However,
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since the control law at a given instant depends on laws at the previous instants, previous control laws must
be kept during the computation process. This makes the computation complex. The reference power profiles
for the DER can be also found off-line (before the system operation) [Lifshitz and Weiss, 2014,Pham et al.,
2015a,Touretzky and Baldea, 2016]. However, this methods is not robust in real-time control.

Another type of the optimization-based control is the Model Predictive Control (MPC) [Rawlings and
Mayne, 2009]. It finds the optimal open-loop control sequence at each time instant and applies the first
control action as the system input. For the reference tracking objective in the tracking MPC, optimization
costs usually penalize the discrepancies between the actual and reference signals. If it is not the case, i.e. the
cost function penalizes an economic cost such as the dissipated energy or the electricity cost, we call it the
economic MPC [Ellis et al., 2017]. This MPC type is used to generate the reference profiles for controllers
in faster time scales. In [Prodan and Zio, 2014, Desdouits et al., 2015, Parisio et al., 2016, dos Santos et al.,
2016], the economic MPC is used to generate on-line the power reference profiles for the DERs. This will be
the main focus of the present thesis.

Robust optimization formulates an uncertainty-affected optimization problem as a deterministic pro-
gram whose solutions are feasible for all allowable realization of the data [Bertsimas and Sim, 2003]. This
method is used to generate the reference power profiles for the microgrid components with the model pa-
rameter uncertainties in [Battistelli et al., 2012]. This method can be used with the MPC to improve it
robustness. However, since we have not systematically considered uncertainties for microgrids in this thesis
yet, using the robust optimization method may make control algorithms more complex.

To improve the efficiency of the microgrid control, different control strategies are studied in the literature
which will be discussed in the next subsection.

1.2.3 Control architecture

From the presented modelling and control problems of the microgrid, we can distinguish several control
strategies (centralized/distributed/decentralized/-hierarchical/multi-layer) motivated by the two following
reasons [Scattolini, 2009]:

- numerical complexity of the multi-objective optimization problem,

- communication limitations/geographical distribution among the heterogeneous components of the micogrid
system.

In the centralized architecture, a single controller collects all system outputs and gives policies for all system
control variables [Becherif et al., 2006, Alamir et al., 2014]. However, it is usually difficult to control a
complex system, such as the microgrid, using a centralized controller due to limited computation capacity
and/or the restricted communication bandwidth. Thus, the decentralized architecture is employed where the
control and controlled variables may be partitioned into disjoint sets from which local regulators are designed
independently [Zonetti et al., 2015,Schiffer et al., 2016a,de Persis et al., 2016]. In the distributed architecture,
some information is exchanged among the local regulators [Larsen et al., 2013,Qi et al., 2013,Zhao and Dörfler,
2015,Li et al., 2016].

Low level regulator 1

Figure 1.2.1: Typical hierarchical control architecture.
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Since the microgrid components are distributed in space (geographical distribution) and in time (multi-
time scale dynamics) and since different control objectives are considered, for the different time scales we
consider a class of the distributed architecture, the hierarchical (or multi-layer) architecture [Scattolini,
2009, Christofides et al., 2013] (see also Fig. 1.2.1). At the higher level, the regulator output variables are
used as the references for the lower level control or directly applied to the system (i.e., the system input).
At the lower level, the regulators aim at tracking the given references from the higher level regulators while
implementing their own objectives. Furthermore, there are different ways to determine the system models in
the higher control level, e.g., the steady state of the global dynamics [Backx et al., 2000], the slower dynamics
with the steady state of the fast dynamics [Picasso et al., 2010, Chen et al., 2012] or the entire multi-time
scale dynamics [Ellis and Christofides, 2014].

The multi-layer control is applied to microgrid systems in [Paire et al., 2010,Lefort et al., 2013,Sechilariu
et al., 2014, Touretzky and Baldea, 2016, Cominesi et al., 2017]. In [Paire et al., 2010], the high regulator
generates the reference currents for the distributed energy storage system and for the external grid by using
priority rules. In [Sechilariu et al., 2014,Touretzky and Baldea, 2016], the high level regulators generate the
off-line reference power for the lower level regulators as the solution of an optimization problem which takes
into account the long time scale model of the microgrid components. In [Lefort et al., 2013,Cominesi et al.,
2017], optimization problems in the high level regulators are solved on-line and generate the on-line power
reference for the lower regulators. In the presented works, the low level regulators aim at tracking the given
references from the high level controls and balance the power in the microgrid. Usually, the microgrid models
used in the high and low level controls are in different time scales, i.e., slow and fast. In many cases, a good
reference tracking does not respect the power balance due to the differences of the predicted power profiles
in these time scales, e.g., the predicted power profiles in the slow time scale are the average approximations
of the power profiles in the fast time scale. Thus, the low level regulators are separated into two different
control levels [Paire et al., 2010, Sechilariu et al., 2014], or the tracking objectives are relaxed [Lefort et al.,
2013]. However, in the presented works, the power-preserving interconnection between the slow and fast
dynamics is not considered.

1.3 Thesis orientation

The literature review presented above gives evidence that the microgrid control domain is vast and disparate.
In this thesis we limit ourselves to several modelling and control objectives, related and originating from a
particular architecture (a DC microgrid system). We will concentrate on a particular system made of an
elevator, and its auxiliary components (storage nodes, power bus, capacitive and resistive elements, etc) in
the context of Arrowhead project [Arrowhead, 2017].

The main objectives of the present work is to formulate a multi-layer optimization-based control for
optimizing the energy distribution within DC microgrids based on their PH models. The novelty resides
in the PH model whose properties will be considered in different aspects of the control design, e.g., time
discretization model, model simplification.

Two PH formulations are considered for microgrids: hybrid input-output representation [Pham et al.,
2015b] and PH system on graphs [Pham et al., 2017]. The first formulation is a compact form for multi-
physic microgrids while the second formulation is not compact but captures the topology of the electrical
network.

Then, two discretization methods of PH systems are investigated. The first method uses a high order
B-spline-based parameterization of the system flat output [Pham et al., 2015a]. Thus, the approximated
trajectory respects the continuous-time system dynamics, but is not easy to be found. The second method uses
the parameterization of all the system variables based on the first-order B-splines [Pham et al., 2015a,Pham
et al., 2017]. The obtained discrete trajectory does not respect the continuous-time model but still preserves
the energy balance and is easy to be found.

Using the obtained models, two multi-layer control schemes are investigated. In both of them, the higher
level regulators generate the optimal reference profiles for the lower level regulators to track. Their differences
reside in the model discretization methods and in the relations between the models used in two layers. In the
first control design, the models used in two layers are the same [Pham et al., 2015a]. In the second control
design, the models in the higher and lower layers correspond to the slow and fast parts of the system.
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1.4 Contribution of the thesis

This thesis extends the microgrid model in [Paire, 2010] and considers a PH representation following the ideas
in [van der Schaft and Jeltsema, 2014]. We concentrate first on the elevator system and dissipative energy
minimization objective. Novel combination between differential flatness with B-splines parameterization and
MPC are used to design a control scheme which includes the off-line reference profile generation and the
on-line tracking control. Next, the global load balancing problem is solved using the economic MPC with a
PH model of the microgrid in slow time scale.

More precisely, the main contributions of the thesis are summarized in the following:

• The model of the multi-source elevator dynamical system in [Paire, 2010] is developed and rewritten
in the PH formulation. Especially, the well-known Permanent Magnet Synchronous Machine model
in direct-quadrature coordinate is derived using the PH framework (coordinate transformation, model
reduction based on PH formulation). The microgrid PH formulation is given in an appropriate form
which can be easily generalized for general DC microgrids including converters and corresponding energy
devices (e.g., energy storage device, distributed energy resource system, loads and the like).

• An energy-preserving time discretization method for PH system generalized from [Stramigioli et al.,
2005,Aoues, 2014] is proposed. The discrete system is described in the implicit form as a combination
of discrete-time interconnection and discrete-time element models. We prove that the time-invariant
coordinate transformation preserves the energy conservation property of the discrete-time PH system.
This method is applied for the electro-mechanical elevator system and for the global DC microgrid under
different discretization schemes. The schemes are validated over numerical simulations and compared
with classical Euler discretization schemes. The results show that the accuracies of the first-order
methods are improved by the energy-preserving method which eliminates numerical energy dissipations
or sources.

• For minimizing the dissipated energy in the electro-mechanical elevator system during an elevator travel,
an optimization-based control is studied. This represents the combination of an off-line reference pro-
file generation and on-line tracking control. The reference profiles are formulated as the solution of a
continuous-time optimization problem. By using the differential flatness and B-spline-based parame-
terization, this problem is approximated by a finite-dimensional optimization problem of the control
points corresponding to the B-splines. The novelty resides in the appropriate constraints of the control
points which guarantee the satisfaction of the continuous-time constraints. Extensive simulation results
prove the efficiency of the studied method.

• Load balancing for the DC microgrid is investigated by using an economic MPC approach [Ellis et al.,
2017] for a simplified microgrid model. The simplified model is derived by assuming that the fast
dynamics of the supercapacitor, the converter and transmission lines are quickly stabilized. Then, this
model is discretized by the studied energy-preserving time discretization model. By taking into account
the discretized microgrid dynamics, the electro-mechanical elevator power profile, the renewable power
profile and the electricity price profile, an economic MPC is formulated. The control method is validated
through simulations with the numerical data given by the industrial partner SODIMAS, in France.

1.5 Organization of the manuscript

This thesis includes 6 chapters, including this introduction (see also Fig. 1.5.1).

• Chapter 2 first recalls some notions and definitions for Port-Hamiltonian (PH) systems. Next, we
develop using PH formulations the dynamical models of the multi-source elevator system components
and of the global system. Furthermore, the reference profiles, the system constraints and different
control objectives are introduced.

• Chapter 3 presents the energy-preserving time discretization method for the PH system and its prop-
erties. Then, the presented method is used for discretizing the dynamics of the electro-mechanical
elevator system and of the global microgrid system. The proposed discretization methods are validated
through some numerical simulations.

• Chapter 4 presents an optimization-based control approach for minimizing the dissipated energy within
the electro-mechanical elevator. Firstly, we describe some necessary tools like differential flatness, B-
spline-based parameterization and MPC. Using their properties, we formulate the optimization problems
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for the off-line reference profile generation and the on-line reference tracking. The control method for
EME system is validated through some numerical simulations with nominal/perturbation-affected cases
and with the open-loop/closed-loop systems.

• Chapter 5 studies the load balancing for the DC microgrid system using economic MPC. Firstly, the
simplified microgrid model is represented using the Port-Hamiltonian formulation on graphs. Then, the
economic MPC is formulated using the presented microgrid model. Some simulations are implemented
to validate the proposed control method.

• Chapter 6 completes the thesis with conclusions and discussions on future directions.

The presented organization of the thesis is graphically illustrated in Fig. 1.5.1. Each rectangle box represents
a chapter including various processes denoted by ellipses. Each arrow describes the relation between two
processes (or chapters), i.e., the process (or chapter) at the arrow end uses results (e.g., variables, models,
methods, ideas) of the process (or chapter) at the arrow origin.
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Chapter 2

DC microgrid modelling

2.1 Introduction

Because of the diversity of microgrid dynamics, there are many control objectives that require different
models. In this work, we concentrate on two main objectives: energy cost optimization and transmission
lines stability. The first one aims to generate reference trajectories or set points. The second one aims
to stabilize the dynamics to the given trajectories or set points. Consequently, the previously mentioned
objectives correspond to different time scales1 of the microgrid dynamics. The energy management problem
(i.e., deals with the energy cost optimization while satisfying the load requirements) relates to the slow time
scale dynamics. This includes the battery dynamics, the renewable power profile, electricity price profile and
statistic rules of load during a day. The transmission lines stability problem relates to the fast time scale
dynamics of the transmission lines and converter.

There are various works for microgrids which consider the above objectives within different time scales.
For example, in [Zhao and Dörfler, 2015], the authors propose a distributed control approach for regulating the
voltages of the DC transmission lines. The studied system is a resistor network which connects voltage sources
and passive current loads. Besides, the controller guarantees the optimal power sharing within the network.
The authors of [Zonetti et al., 2015] study the combination of DC transmission lines, AC/DC converters
and three-phase electrical generators. The energy sources and loads are modelled as voltage sources. Their
work presents to a decentralized controller for stabilizing the transmission line voltages. Similar work for
AC microgrids to control the network frequency is investigated in [Schiffer et al., 2014]. Since the previous
works consider the fast time scale dynamics of microgrids, the studied models for energy sources, loads and
energy storage devices are simple. For longer time scale dynamics studies, [Lagorse et al., 2010,Xu and Chen,
2011] additionally consider the limited capacities of energy storage devices and maximal available power of
renewable source. However, these informations can only be taken into account instantaneously since the
authors do not consider the electricity storage models for the prediction. In [Alamir et al., 2014], a fast
electrical storage dynamics (i.e., a supercapacitor) is considered within the DC bus controller. However,
without the slow time scale dynamics of energy storage and renewable power generator, the presented model
can not be used for the energy cost optimization.

Furthermore, many works study the energy cost optimization [Lefort et al., 2013, Prodan et al., 2015,
Desdouits et al., 2015, Lifshitz and Weiss, 2015, Parisio et al., 2016, dos Santos et al., 2016, Touretzky and
Baldea, 2016]. The authors in [Prodan et al., 2015,Desdouits et al., 2015,Lifshitz and Weiss, 2015] use simple
models for the battery and/or transmission lines which do not entirely capture the real dynamics. Some
works use a first-order model for the electrical storage unit [Prodan et al., 2015,Desdouits et al., 2015,Parisio
et al., 2016]. In fact, the electrical storage unit (e.g., a battery) may include many sub storage parts which
are connected by resistive elements. Only some of these parts can directly supply the energy. For the slow
time scale, the internal charge distribution between these parts can not be ignored. Thus, a first-order model
for the electrical storage unit may give incorrect informations about the real available charge. Also, in these
works, the transmission lines network dynamics are simply described by a power balance relation. This is
not realistic for DC microgrids where each component is placed far from the others. Hence, the resistance of
the transmission lines can not be neglected.

In general, the microgrid dynamics has at least two energetic properties which may be useful for studying
the energy cost optimization: the energy balance and the underlying power-preserving structure. [Lefort

1There are three time scales corresponding to the hour, the minute and the second.

11
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et al., 2013,Touretzky and Baldea, 2016] do not take explicitly into account these properties when developing
the model of the microgrid system. Thus, they may be lost while studying the energy cost optimization
through the model discretization and reduction:

• Generally, the energy cost optimization is a continuous-time optimization problem where the solution
is the time profile of control variables (see Appendix C.2). Usually, it is infeasible to find its exact
solution. Therefore, we may discretize the optimization problem to obtained the finite-dimensional
optimization problem which is easier to solve (details of finite-dimensional optimization problem can be
found in Appendix C.1). Moreover, its discretization requires the discrete-time model of the microgrid
dynamics.

• Generally, the microgrid dynamics has different time scales. To reduce the computation complexity,
the energy cost optimization usually uses the slow dynamics obtained by reducing the fast dynamics of
the global model using singular perturbation approach [Kokotović et al., 1976].

Since the considered DC microgrid in this work is a multi-sources elevator system (the scheme of this
microgrid is given in Fig. 2.1.1), it is worth to mentioning that there exists an additional control objective
which requires a middle time scale dynamics. This time scale, which corresponds to the elevator cabin
travel2, is shorter than the time scale of battery operation and longer than the time scale of transmission
lines operation.

The above mentioned issues motivate a multi-time scale model for the DC microgrid which explicitly
describes the power exchange and the system energetic structure. A well-known candidate method for this
objective is the Port-Hamiltonian formulation [Duindam et al., 2009]. Therefore, in this chapter, we first
introduce some basic definitions and notions of Port-Hamiltonian formulations and then concentrate on the
modeling of the DC microgrid multi-source elevator system through a Port-Hamiltonian approach.

This chapter contains two main contributions as follows:

• The Port-Hamiltonian models are formulated for the components of the DC microgrid, for the electro-
mechanical elevator system and for the global system. The microgrid components include converters
(AC/DC and DC/DC), electricity storage devices (battery and supercapacitor), an electrical machine
and a mechanical elevator. After deriving the dynamics, we consider their steady states which relate
to the system order reduction in the slow time scale dynamics of the global system. Besides, the
electro-mechanical elevator system includes the AC/DC converter, the Permanent Magnet Synchronous
Machine (PMSM) and the mechanical elevator. Firstly, its Port-Hamiltonian model is expressed taking
into account the three magnetic fluxes of the stator coils. Next, we use the Park transformation
[Nicklasson et al., 1997] and a constraint elimination process to derive the reduced-order dynamics
for electro-mechanical elevator. In this model, three original stator fluxes are replaced by two fluxes,
called direct and quadrature (d-q) fluxes, respectively. Furthermore, we prove that the coordinates
transformation and constraint elimination for electro-mechanical elevator preserve the Port-Hamiltonian
form. It leads to the reduced Port-Hamiltonian model of PMSM which is used popularly in literature
[Petrović et al., 2001]. By considering the Park transformation and the constraint elimination for
electro-mechanical elevator in the framework of Port-Hamiltonian formulation, we explicitly describe
their underlying energetic meanings. Finally, the global DC microgrid dynamics are derived by parallel
connecting the components to the DC transmission lines. The obtained dynamics are expressed as
an input-state-output Port-Hamiltonian dynamical system and a power constraint of external port
variables. Moreover, it includes different time scale dynamics which will be used for different control
objectives.

• Based on the introduced model, constraints and cost functions are formulated for further solving the
load balancing problem. The studied constraints include the kinematic limitations of elevator, the
ranges of charge levels of electricity storage units, the limited power of battery, the limit values of
control signals. They are determined by the passenger request and the manufacturer. These constraints
are reformulated using the energetic state variables. Then, three control objectives corresponding to
three time scales are presented: regulate the voltage of transmission lines, regulate the elevator cabin
position, minimize the electricity cost in a day. Three corresponding controllers are ranged from low to
high, respectively. The stability of a low closed-loop dynamics is described by an additional algebraic
constraint in the higher control problem. Consequently, from the presented objectives, we can derive

2The elevator operation is separated into many travels during a day. At the travel end, the cabin must arrive to the desired
building floor while the supercapacitor electrical storage must be at the reference voltage to prepare for the next travel.
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different control problems of the microgrid in a hierarchical way which require coherent combinations
of the profile generation and the profile tracking.

The organization of this chapter is as follows. Section 2.2 recalls some notions on Bond Graph repre-
sentations and basics definitions of Port-Hamiltonian systems. Section 2.3 presents the Port-Hamiltonian
formulation of the energy sources, transmission lines and electricity storage units. Section 2.4 formulates
the dynamics of the electro-mechanical elevator by a Port-Hamiltonian formalism. In Section 2.5, the global
model of the DC microgrid is derived using the fast and slow time scale separation. Based on the presented
model, Section 2.6 introduces the constraints and the cost functions for the microgrid control and energy
management. Finally, the conclusions for this chapter are presented in Section 2.7.
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converter
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converter
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Figure 2.1.1: The microgrid elevator system.

2.2 From Bond Graphs to Port-Hamiltonian formulations

2.2.1 Bond Graphs

Bond Graph is a graphical energetic representation for physical dynamical systems [Sueur and Dauphin-
Tanguy, 1991, Karnopp and Rosenberg, 1975, Duindam et al., 2009]. Some advantages of the Bond Graph
approach are:

• it focuses on energy as the fundamental concept to appropriately model physical systems;

• It is a multi-domain representation. The same concepts and mathematical representations are used
for various physical elements as for example, mechanical, electrical, hydraulic, pneumatic, thermo-
dynamical [Couenne et al., 2008b], chemical [Couenne et al., 2008a] and the like;
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• It is a multi-scale representation. The physical elements can be decomposed hierarchically in smaller
interconnected components.

Each edge is called a bond and represents the bi-directional flow of the power. They are characterized
by a pair of conjugated variables named the effort, e, and the flow, f , whose product is the power. The edge
orientation is represented by a stroke that forms a half-arrow with the line indicating the positive power
direction. Besides, the Bond Graph representation uses the notion of causality indicating which side of a
bond determines the instantaneous effort and which determines the instantaneous flow. It is a symmetric
relationship, i.e., when one side causes the effort, the other side causes the flow. When formulating the
dynamical equations which describe the system, causality defines, for each modelling element, which variable
is dependent and which is independent. A causal stroke is added to one end of the power bond to indicate
that the opposite end defines the effort.

The labelled nodes are elements that can be distinguished on the basis of their properties with respect
to energy. They connect to the bonds through their ports. There are nine basic nodes categorized in five
groups of energetic behaviours:

• Storage nodes represent one-port elements describing the stored energy and they are denoted by C or
I, e.g., the capacitance, the inductance.

• Supply nodes represent effort and flow sources having one port and they are denoted by Se and Sf
respectively, e.g., the voltage source, the velocity source.

• Reversible transformers represent two-ports elements which modify the effort/flow ratio while preserving
the power flow and they are denoted by T F or GY, for transformers of gyrators respectively, such as
ideal electric transformer, ideal electric motor, and the like.

• The junction nodes represent multi-ports elements that describe topological constraints such as parallel
and series electrical circuits. Let (f1, e1), . . . , (fn, en) ∈ R2 be the flow and effort pairs at the n ports
of the 0-junction. The constitutive equations of such a 0-junction are:

e1 = e2 = . . . = en, f1 + f2 + . . .+ fn = 0,

while for the 1-junction, the constitutive equations are:

f1 = f2 = . . . = fn, e1 + e2 + . . .+ en = 0.

• The irreversible transformation nodes which represent energy-dissipating elements are denoted by R,
e.g., ideal electric resistor, ideal friction, etc.

Note that some of these elements can be modified by an external signal without changing the node nature
or affecting the power balance. It is called the modulation and just some of the mentioned elements can
be modulated: the supply/demand, the reversible and irreversible transformation. Moreover, to describe a
complex physical system, it is necessary to replace many nodes having similar characteristics by one node.
Thus, a node in a Bond Graph can have multiple ports (multi-ports) which are connected by many bonds
(multi-bonds), see Fig. 2.2.2. We present in Fig. 2.2.1 an illustrative example which describes the Bond
Graph of a simple DC RC electrical circuit.

2.2.2 Port-Hamiltonian systems

This section introduces some basic definitions and notions related to PH systems [Duindam et al., 2009]
which will be further used for modelling the DC microgrid elevator system.

The central elements of PH systems are Dirac structures (DS) which describe power-conserving intercon-
nections. By considering a vector/flow linear space F with its dual/effort linear space F∗ = E, we define a
symmetric bilinear form 〈〈., .〉〉 on the space F× F∗ as:

〈〈(f1, e1), (f2, e2)〉〉 = 〈e1|f2〉+ 〈e2|f1〉 , (2.2.1)

with (f1, e1), (f2, e2) ∈ F×F∗, and 〈e|f〉 denotes the duality product (power product). Next, the corresponding
DS is defined as follows.

Definition 2.2.1 (Dirac structure [Duindam et al., 2009]). A (constant) DS on F×F∗ is a subspace D ⊂ F×F∗
such that D = D⊥, where ⊥ denotes the orthogonal complement with respect to the bilinear form 〈〈, 〉〉.
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Figure 2.2.1: The Bond Graph for simple series and parallel DC electrical circuit.

Figure 2.2.2: The PH system.

In practice, many system dynamics include constraints (for instance, three phase synchronous machine
which is considered within the DC microgrid elevator system). The elimination of these constraints results
in a state-modulated DS. This motivates the following definition.

Definition 2.2.2 (Modulated DS [Duindam et al., 2009]). Let X be a manifold for the energy storage, with
its tangent space TxX and co-tangent space T ∗xX. f ∈ F and e ∈ F∗ are the port variables of the additional
ports. A modulated DS, D(x) is point-wise specified by a constant DS:

D ⊂ TxX× T ∗xX× F× F∗, x ∈ X.

Moreover, a physical system may be constructed from some physical subsystems. Thus, the combination
of systems leads to the composition of DSs.

Consider a Dirac structure DA on a product space F1 × F2 of two linear spaces F1 and F2 and another
Dirac structure DB on a product space F2×F3 with the additional linear space F3. The space F2 is the space
of shared flow variables, and F∗2 the space of shared effort variables. We define the feedback interconnection
by:

fA = −fB ,∈ F2,
eA = eB ∈ F∗2,

(2.2.2)

with (fA, eA) ∈ DA and (fB , eB) ∈ DB .
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Definition 2.2.3. Feedback composition of DS [Duindam et al., 2009]: The feedback composition of DS DA
and DB, denoted by DA||DB, is defined as

DA||DB = {(f1, e1, f3, e3) ∈ F1 × F∗1 × F3 × F∗3| ∃(f2, e2) ∈ F2 × F∗2 s.t

(f1, e1, f2, e2) ∈ DA and (−f2, e2, f3, e3) ∈ DB}.
(2.2.3)

The DS has some important properties such as:

• the power is conserved, i.e. for all (f , e) ∈ D, 〈e|f〉 = 0,

• the feedback composition of DSs is again a DS.

The DS admits several representations. One of them is the constrained input-output representation which is
presented by the following proposition.

Proposition 2.2.4. Constrained input-output representation of DS [Duindam et al., 2009]: Every DS,
D ⊂ F× F∗ can be represented as

D =
{

(f , e) ∈ F× F∗|f = De + GDλ, GT
De = 0, λ ∈ V

}
, (2.2.4)

with a skew-symmetric mapping D : F→ F∗, a linear mapping GD such that ImGD = {f |(f ,0) ∈ D} and a
linear space V with the same dimension as F.

A PH system is constructed by connecting the DS with the energy storage, the energy dissipative element
and the environment through corresponding ports. Therefore, the DS ports (f , e) from Definition (2.2.1) are
partitioned into energy storage ports (fS , eS), resistive ports (fR, eR) and external ports (fE , eE).

Definition 2.2.5 (PH system [Duindam et al., 2009]). Consider a state-space X with its tangent space TxX,
co-tangent space T ∗xX, and a Hamiltonian H : X → R, defining the energy-storage. A PH system on X is
defined by a DS, D ⊂ TxX×T ∗xX×FR×F∗R×FE×F∗E, having energy storage port (fS(t), eS(t)) ∈ TxX×T ∗xX
with fS(t) = −ẋ(t) and eS(t) = ∇H(x), a resistive structure:

RR = {(fR(t), eR(t)) ∈ FR × F∗R |r(fR(t), eR(t)) = 0, 〈eR(t)|fR(t)〉 ≤ 0} , (2.2.5)

and the external ports (fE(t), eE(t)) ∈ FE × F∗E. Generally, the PH dynamics are described by:

(−ẋ(t),∇H(x), fR(t), eR(t), fE(t), eE(t)) ∈ D. (2.2.6)

Physically, the DS describes the system interconnection which is usually constant. However, in practice,
a system dynamics may be described by a PH formulation associated with port variables constraints. These
constraints may be reduced. The obtained dynamics can be cast in the PH formulation with a state-modulated
interconnection matrix, although the original DS is constant. This means that in the constrained input-output
representation of a state-modulated DS (2.2.4), the structure matrices D,GD depend on the state variables.

We here present a popular class of explicit PH system which is called the input-state-output PH system
with direct feed-through. This system admits the following assumptions:

• The resistive structure RR defined by (2.2.5) is given by a linear relation

r(fR, eR) = RRfR(t) + eR(t) = 0, (2.2.7)

where RR is symmetric and positive.

• The structure matrices D,GD in (2.2.4) have the following formulations:

GD = 0, D(x) =

 −J(x) −GSR(x) −G(x)

GT
SR(x) 0 GRE(x)

GT (x) −GT
RE(x) M(x)

 , (2.2.8)

where J(x), M(x) are skew-symmetric.
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Then, the explicit formulation of a PH system is written as:{
ẋ(t) = [J(x)−R(x)]∇H(x) + [G(x)−P(x)] eE(t),

fE(t) = [G(x) + P(x)]
T ∇H(x) + [M(x) + S(x)] eE(t),

(2.2.9)

where x(t), eE(t), fE(t) are the state, input and output vectors, respectively, J(x) describes the direct
interconnection of the energy state variables, M(x) describes the direct interconnection of input variables.
The resistive matrices R(x), P(x), S(x) are given by the following expressions:

R(x) = GSR(x)RRGT
SR(x),

P(x) = GSR(x)RRGRE(x),

S(x) = GT
RE(x)RRGRE(x).

(2.2.10)

Since RR is symmetric and positive, R(x), P(x), S(x) satisfy the following expression:[
R(x) P(x)
PT (x) S(x)

]
≥ 0.

Furthermore, if the system interconnection is switched between many topologies (many different DSs),
some additional binary variables are considered and placed in the interconnection matrices (see Chapter 13
in [van der Schaft and Jeltsema, 2014]). Especially, in the electronic circuit, the mentioned variables indicate
the transistors states, i.e., 0 and 1 correspond to the closed/open states, respectively. Moreover, in the case of
converters, since these states are repeatedly changed with high frequencies, one replaces the binary variables
by the continuous average ones [Escobar et al., 1999]. They are defined by the ratio of the time duration,
when the binary variable is 1, and the switching cycle duration. They are named the duty cycle and denoted
by d(t). Therefore, when this additional variable takes the decision role, the control signal is not only the
external port variable as in the Port-Controlled Hamiltonian (PCH) system3 (2.2.9). Thus, we will consider
the general class of PH systems such as:{

ẋ(t) = [J(x,d)−R(x,d)]∇H(x) + [G(x,d)−P(x,d)] eE(t),

fE(t) = [G(x,d) + P(x,d)]
T ∇H(x) + [M(x,d) + S(x,d)] eE(t),

(2.2.11)

In many cases, J(x,d) is an affine function of the duty cycle d(t) [Escobar et al., 1999], R(x,d) is an
nonlinear function of d(t), which usually appears with the ideal model of the converter (without dynamics).
Both formulations (2.2.9) and (2.2.11) will be used throughout the manuscript to describe the dynamics of
the microgrid components.

2.3 Energy-supplying system

The energy-supplying system of the DC microgrid (see also Fig. 2.1.1) includes all the elements which supply
the energy to the load system such as:

- the electricity storage devices (e.g., batteries and/or supercapacitor) with their corresponding power
converters;

- the external energy sources (e.g., three phase electrical grid) and their associated converters;

- the renewable energy sources (e.g., solar panels) and their associated converters;

- the transmission lines (DC bus).

2.3.1 Converters

The converters are necessary to connect the electrical devices to the DC bus. In the multi-sources elevator
system we consider two types of converters: DC/DC and DC/AC.

DC/DC converter: The DC/DC converter is modelled as an ideal Cuk circuit (see Fig. 2.3.1) which can
provide an output voltage lesser or greater than the input voltage [van Dijk et al., 1995,Escobar et al., 1999].
It includes two inductors Lb1, Lb2 (with the corresponding magnetic fluxes φLb1

(t), φLb2
(t)), two capacitors

3Port-Controlled Hamiltonian system is a special case of PH system where the control variables are also the input variables.
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Figure 2.3.1: Cuk circuit for the DC/DC converter.

Cb1, Cb2 (with the corresponding charges qCb1
(t), qCb2

(t)) and a pair of switches characterized by their time-
averaged models (with the duty cycle db(t) ∈ (0, 1)) (the reader is referred to [van Dijk et al., 1995] for the
time-averaged model). We investigate the converter which connects the battery and the DC bus. Moreover,
from (2.2.11), the PH formulation for the converter dynamics is derived as in [Escobar et al., 1999]: − ˙xcb(t)

vbb(t)

ib(t)

 =

 −Jcb(db) −Gcb −Gcbt

GT
cb 0 0

GT
cbt 0 0


 ∇Hcb(xcb)

−ibb(t)
vb(t)

 , (2.3.1)

where the state vector includes the magnetic flux of the inductors, Lb1, Lb2, and the charges of the capacitors,
Cb1, Cb2, such as

xcb(t) = [φLb1
(t) qCb1

(t) φLb2
(t) qCb2

(t)]
T ∈ R4. (2.3.2)

The voltage and current at the connection point between the converter and the DC bus are denoted by
vb(t), ib(t) ∈ R, respectively. The voltage and current at the connection point between the converter and the
battery are denoted by vbb(t), ibb(t) ∈ R, respectively. The Hamiltonian is the stored energy in the inductors
and capacitors such that:

Hcb(xcb) =
1

2
xcb(t)

TQcbxcb(t), (2.3.3)

with Q−1
cb = diag {Lb1, Cb1, Lb2, Cb2}. Furthermore, the structure matrices Jbc(db), Gbc, Gbi are given by

the following expressions:

Jcb(db) =


0 −db(t) 0 0

db(t) 0 1− db(t) 0

0 −1 + db(t) 0 −1

0 0 1 0

 , Gcb =


0

0

0

1

 , Gcbt =


1

0

0

0

 . (2.3.4)

From the presented model of the DC/DC converter, we can see that there is no dissipation matrix R(x,d),
i.e., this (ideal) converter does not loose any energy. Therefore, at the steady state, the power-converting
efficiency must be 1.

Next, from (2.3.1)-(2.3.4), we derive the converter ratio:
vbb(t)

vb(t)
= −1− db(t)

db(t)
∈ (−∞, 0),

ibb(t)

ib(t)
=

db(t)

1− db(t)
∈ (0,+∞).

(2.3.5)

Similarly, the dynamics of the DC/DC converter associated to the supercapacitor are described by (2.3.6)
with the duty cycle ds(t), the state variable xcs(t), the Hamiltonian Hcs(xcs), the input and output variables
iss(t), vss(t), is(t), vs(t) ∈ R, respectively. The interconnection matrices are denoted by Jcs(ds),Gcs,Gcst

with the values given in (2.3.4). Based on these ingredients, the dynamics of the supercapacitor unit are
given as: 

˙xcs(t) = Jcs(ds)∇Hcs(xcs) + Gcs[−iss(t)] + Gcstvs(t),

vss(t) = GT
cs∇Hcs(xcs),

is(t) = GT
cst∇Hcs(xcs),

(2.3.6)
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DC/AC converter: The DC/AC converter associated with the PMSM is illustrated in Fig. 2.3.2. It
transforms the direct current (DC) to the three phase alternative current (AC) and vice versa. The converter
circuit is modelled as three parallel pairs of ideal switches. They are characterized by three duty cycles
ďl(t) = [da(t) db(t) dc(t)]

T ∈ [0, 1]3 (see Fig. 2.3.2). Therefore, the relation of its port variables can be
represented by: [

il(t)

v̌l(t)

]
=

[
0 −ďl(t)

T

ďl(t) 0

][
vl(t)

ǐl(t)

]
, (2.3.7)

where the phase voltages and currents are denoted by v̌l(t) ∈ R3 and ǐl(t) ∈ R3, the corresponding DC bus
voltage and current are denoted by il(t) ∈ R, vl(t) ∈ R. From (2.3.7), we can see that the relation matrix
of the converter input and output (2.3.7) is skew-symmetric which implies the power conservation property,

i.e., il(t)vl(t) + ǐl
T

(t)v̌l(t) = 0.

Figure 2.3.2: Electrical circuit for the DC/AC converter and PMSM stator.

2.3.2 Energy sources

This section presents the models of the renewable source and external grid. Both of them can be modelled
as current sources (i.e., they are controllable).

+ _

Renewable 

power source 

Figure 2.3.3: Renewable source model.

Renewable energy: In the present work we consider only the solar panels as renewable sources. In practice,
a renewable source includes a grid of solar panels which supply electrical power depending on the solar
radiance, panel temperature and device voltage, [Kong et al., 2012]. To connect the panel to the microgrid,
a DC/DC converter is used to control the delivered voltage. It is regulated to the value where the supplied
power is maximal using the Maximum Power Point Tracking (MPPT) algorithm [Femia et al., 2008]. In this
work, we assume that the regulator quickly stabilizes the supplied power to the maximal values. Furthermore,
we neglect the temperature effect and consider an ideal converter (without energy dissipation). Therefore,
the panel unit will be simply modelled as a power source Pr(t) which only depends on the time as in Fig.
2.3.3. Hence, the voltage vr(t) and current ir(t) of the solar panel unit satisfy the following constraint:

ir(t)vr(t) = −Pr(t) < 0. (2.3.8)
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+
_

External 

grid

Figure 2.3.4: External grid model.

External grid: The conventional energy source unit is the three phase electrical grid associated with an
AC/DC converter. By this unit, the three phase alternative voltage is adapted to the voltage of the DC bus
by modulating the three duty cycles of the AC/DC converter. Reference values of the delivered current to the
DC bus are sent to the local controller of this converter. We assume that this controller steers the delivered
current to this reference quickly. Therefore, the external grid is modelled as a current source ie(t) ∈ R with
the corresponding voltage ve(t) ∈ R as in Fig. 2.3.4.

2.3.3 Transmission lines

The previous storage devices, energy source devices and electro-mechanical system are connected through the
transmission lines (DC bus). The most simple model for these lines includes a capacitor which is connected
in parallel with the power units [Paire et al., 2010]. However, it is not suitable for a large system where
the connection lines should be taken into account. In the slow time scale, such a system can be modelled
as a resistor network [Zhao and Dörfler, 2015]. In the fast time scale, the line model includes capacitors
and resistors 4 (see Fig. 2.3.5). The resistors and capacitors represent the resistance and capacitance of the
connection cables.
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Figure 2.3.5: Electrical circuit for the transmission lines.

4A more general model for the transmission lines includes capacitors, inductors and resistors [Zonetti et al., 2015]. For
simplicity we choose here to use capacitors and resistors.
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The input current, output voltage and state vectors are denoted by:

it(t) = [itb(t) its(t) itl(t) ite(t) itr(t)]
T ∈ R5,

vt(t) = [vtb(t) vts(t) vtl(t) vte(t) vtr(t)]
T ∈ R5,

xt(t) = [qt,1(t) qt,2(t) qt,3(t) qt,4(t) qt,5(t)]T ∈ R5.

(2.3.9)

Also, the current and voltage vectors of the lines resistors are denoted by:

itR(t) = [it,1(t) it,2(t) it,3(t) it,4(t) it,5(t) it,6(t)]T ∈ R6,

vtR(t) = [vt,1(t) vt,2(t) vt,3(t) vt,4(t) vt,5(t) vt,6(t)]T ∈ R6.
(2.3.10)

Their relations are described by the Ohm’s law as:

vtR(t) + RtRitR(t) = 0, (2.3.11)

where RtR = diag {Rt,1, Rt,2, Rt,3, Rt,4, Rt,5, Rt,6} ∈ R6×6 represents the line resistors. Note that, RtR is
symmetric and positive.

The Hamiltonian for the energy stored in the DC bus is chosen as:

Ht(xt) =
1

2
xt(t)

TQtxt(t), (2.3.12)

where the weighting matrix Qt = diag {Cb, Cs, Cl, Ce, Cr}−1 ∈ R5×5 describes the transmission line capaci-
tors. Note that ẋt(t) and ∇Ht(xt) are the charge current and voltage vectors of the DC bus capacitors.

Employing the Kirchhoff’s laws for the DC bus electrical circuit, we obtain the following dynamics of
transmission lines:  −ẋt(t)

vtR(t)

vt(t)

 =

 0 −GtSR −Gt

GT
tSR 0 0

Gt 0 0


 ∇Ht(xt)

itR(t)

it(t)

 , (2.3.13)

where the interconnection matrices Gt,GtSR are given by:

Gt = I5, GtSR =


−1 0 0 0 −1 −1

1 −1 0 0 0 0

0 1 1 0 0 1

0 0 0 −1 0 0

0 0 −1 1 0 0

 . (2.3.14)

By combining (2.3.13) and the Ohm’s law (2.3.11), we rewrite the transmission lines dynamics in compact
form as: {

ẋt(t) = −Rt ∇Ht(xt) + Gtit(t),

vt(t) = GT
t ∇Ht(xt),

(2.3.15)

where Rt = GtSRR−1
tRGT

tSR describes the energy dissipation on the DC bus. At the steady state (in slow
time scale) of dynamics (2.3.15), we have the linear relation of input current and output voltage:

it(t) = Rtvt(t).

The resistive matrix Rt is also called the weighted Laplacian matrix of resistor network. In [van der Schaft,
2010], the properties of this matrix for the general resistor network is studied.

Proposition 2.3.1. Since the resistor network does not have the star topology (i.e., each end of each resistor
is connected to a bus capacitor), the resistive matrix Rt is semi-positive [van der Schaft, 2010,Zonetti et al.,
2015].

Proof. If the resistor network has the star topology, the dynamics of transmission lines includes some con-
straints of resistor currents with the following form:

AitR(t) = 0, (2.3.16)
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where A is an appropriate matrix. This is the current Kirchhoff’s law for the resistor ends which are connected
together but not to any capacitor. Thus, the dynamics (2.3.13) is not valid for the star topology of resistor
network.

In our case, by multiplying the two sides of the first equation in (2.3.13) with the ones-vector, 1T5 , we
obtain:

1T5 ẋt(t)− 1T5 GtSRitR(t)− 1T5 Gtit(t) = 0. (2.3.17)

In the previous equation, the first term indicates the total charge current of 5 bus capacitors. The third term
of Gt in (2.3.14) indicates the total supplied current of the components. Since the resistors do not store the
electricity, the first and third term must be equal. Thus, the second term must be zero such as:

1T5 GtSRitR(t) = 0,∀itR(t) ∈ R5,

⇒ 1T5 GtSR = 0,

⇒ 1T5 GtSRR−1
tRGT

tSR = 0,

⇒ 1T5 Rt = 0.

(2.3.18)

Therefore, the resistive matrix Rt is semi-positive. This concludes the proof.

To simplify the notation in the global DC microgrid dynamics, we partition the input matrix GtSR into
five input matrices Gtb, Gts, Gtl, Gte, Gtr ∈ R5×1 corresponding to the battery unit, supercapacitor unit,
electro-mechanical elevator, external grid and renewable source, respectively, such that:[

Gtb Gts Gtl Gte Gtr

]
= GtSR. (2.3.19)

2.3.4 Electrical storage unit

Generally, the dynamics of the electrical storage unit can be described by the formulation (2.2.9). In this
work we consider particular types of electrical storage unit, that are, a lead-acid battery and a supercapacitor.

Lead-acid battery: An ideal battery model considers that the voltage is constant during the charging or
discharging periods. This model can be useful only in case of low load and current (when compared to the
battery’s maximal capacity). For more general models we need to take into account some nonlinear effects
which affects the available charge (see [Jongerden and Haverkort, 2009]). There exist various electrical circuit
models (see, for example, [Durr et al., 2006]) which describe the battery dynamics accurately, but they are
too complex for an application to the real time optimal power balancing problem. The authors in [Esperilla
et al., 2007] proposed a Bond Graph battery model for which the parameters are difficult to identify. Thus,
we need a simple enough model which can capture all the necessary properties of the system such as: the
increase/decrease of voltage with charging/discharging current and state of charge, the increase/decrease in
capacity with increasing charge or discharge rates, the recovery effect and the hysteresis by using an internal
variable. There are at least two possible analytical models, the diffusion model, [Rakhmatov and Vrudhula,
2001] and the Kinetic Battery Model (KiBaM), [Manwell and McGowan, 1993]. Although these models
have been developed separately, the KiBaM model can be considered as a first order approximation of the
diffusion model, [Jongerden and Haverkort, 2009]. Hence, we consider the KiBaM model a good choice for
our work, [Lifshitz and Weiss, 2015]. Next, a PH formulation for the battery model will be developped (see
also Fig. 2.3.6).
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Figure 2.3.6: Battery model: (a) the KiBaM model(b) the corresponding electrical circuit.
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As illustrated in Fig. 2.3.6, the battery model includes two electronic “wells” with the corresponding
charges qb1(t), qb2(t), a bridge to connect them described by a coefficient k > 0, and a serial resistor Rb.
For simplicity, we assume that the battery voltage limits, Emin, Emax, are the same for both charging and
discharging modes. Thus, the battery dynamics is represented by the following relations:

q̇b1(t) = −k qb1(t)

b
+ k

qb2(t)

1− b + ibb(t),

q̇b2(t) = k
qb1(t)

b
− k qb2(t)

1− b ,

ibb(t) = −Emax − Emin
bqmaxRb

qb1(t)− Emin
Rb

+
vbb(t)

Rb
,

(2.3.20)

where b ∈ (0, 1) is a charge factor, qmax is the maximal charge, ibb(t), vbb(t) ∈ R are the current and the
voltage, respectively.

By defining the state variable from the two charges of the battery xb(t) = [qb1(t) qb2(t)]T ∈ R2, we
describe the Hamiltonian, which indicates the energy stored in the battery, as:

Hb(xb) = Qb1xb(t) +
1

2
xTb (t)Qb2xb(t), (2.3.21)

where the minimal battery voltage, Qb1 ∈ R1×2, and the inverts of battery charge capacity, Qb2 ∈ R2×2, are
represented by:

Qb1 =
[
Emin Emin

]
,

Qb2 = diag

{
Emax − Emin

bqmax
,
Emax − Emin
(1− b)qmax

}
.

(2.3.22)

The resistive current, ibR(t) ∈ R2, represents the electricity currents through the serial resistor, Rb, and the
bridge between two charges. The resistive voltage, vbR(t) ∈ R2, represents the voltages of the serial resistor,
Rb, and the bridge between two charges. The Ohm’s laws for these resistive elements are given by:

vbR(t) + RbRibR(t) = 0, (2.3.23)

with the resistive matrix of the resistive elements:

RbR = diag {Rbi, Rb} ∈ R2×2, with Rbi =
Emax − Emin

kqmax
. (2.3.24)

By using the constrained hybrid input-output PH formulation, defined by (2.2.4), (2.2.6) and (2.2.8), we
rewrite the battery dynamics (2.3.20) as: −ẋb(t)

vbR(t)
ibb(t)

 =

 0 −GbSR 0
GT
bSR 0 GbRE

0 −GT
bRE 0

 ∇Hb(xb)
ibR(t)
vbb(t)

 , (2.3.25)

where the structure matrices are given by

GbSR =

[
−1 1

1 0

]
∈ R2×2, GbRE =

[
0
1

]
∈ R2×1. (2.3.26)

From the previous model and numerical parameter values (determined using the data given by the indus-
trial partner SODIMAS France), the battery has following important characteristics:

• Rbi characterizes the battery internal current between the two charges (see also Fig. 2.3.6). Usually,
Rbi � Rb, i.e., the internal current is much smaller than the battery charging/discharging current
through Rb. Thus, in the fast time scale, the internal charge qb2(t) mostly does not change.

• The battery charging mode corresponds to the positive sign of the output current, ibb(t) > 0. When
ibb(t) = 0, i.e.,

vbb(t) = −(GT
bSER−1

bRGbSE)−1(GbSER−1
bRGT

bSR)∇Hb(xb), (2.3.27)

the internal current is still non-zero to redistribute the charges qb1(t), qb2(t). From (2.3.24), (2.3.26)-
(2.3.27), we can easily prove that the redistribution stops (i.e., ẋb(t) = 0) when the internal potentials
are equal (i.e., ∂qb1H = ∂qb2H).
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Supercapacitor: Supercapacitors are suitable for electrical power application. They have high perfor-
mances in electrical power supplying [Lai et al., 1992]. They usually contain two parallel electrodes with an
electrolyte without chemical reaction because of an added separator. A practical model for the supercapaci-
tor can be found in [Zubieta and Bonert, 2000]. Here we consider a simpler model which contains the serial
connection of a capacitor, Cs, with a resistor, Rs. Thus the state variable is defined by the supercapacitor
charge, xs(t) = qs(t) ∈ R. The Hamiltonian indicating the energy stored in the supercapacitor is expressed
as:

Hs(xs) =
1

2

q2
s(t)

Cs
. (2.3.28)

Similarly with battery dynamics (2.3.25) the supercapacitor dynamical model is represented by: −ẋs(t)
vsR(t)
iss(t)

 =

 0 −GsSR 0
GT
sSR 0 GsRE

0 −GT
sRE 0

 ∇Hs(xs)
isR(t)
vss(t)

 , (2.3.29)

where isR(t), vsR(t) ∈ R are the current and voltage of the serial resistor, Rs, satisfying the Ohm’s law:

RsisR(t) + vsR(t) = 0. (2.3.30)

The structure matrices GsSR,GsRE ∈ R in (2.3.29) are given as:

GsSR = 1, GsRE = 1. (2.3.31)

2.4 The electro-mechanical elevator

This section presents the PH formulations for the electro-mechanical elevator dynamics. Electro-mechanical
elevator system represents the combination of the AC/DC converter, Permanent Magnet Synchronous Ma-
chine (PMSM) and mechanical elevator. In the literature, the d-q model of PMSM is usually derived using
the Park transformation. Its PH formulation is presented in [Nicklasson et al., 1997,Petrović et al., 2001].

In this work, we first consider the PH formulation of the electro-mechanical elevator in the coordinates
which include the three magnetic fluxes of machine stator coils. This is called original model. Then, the
Park transformation is applied. Since there is still a flow constraint in the transformed model, we eliminate
it to obtain the d-q PH model. Thus, two main contributions are provided here:

• the original model of the electro-mechanical elevator is represented in the PH formulation.

• the Park transformation is considered explicitly in the PH formulation.

Next, we first present the PH formulation for the original model of the electro-mechanical elevator. Then,
we derive the d-q PH model using the Park transformation.

2.4.1 Original model

This component is a combination of the mechanical elevator, the PMSM and the three phase DC/AC converter
(see Fig. 2.4.1). Physically, the original model of the subsystem considers three phase fluxes of the stator as
the state variables.

Mechanical elevator: The mechanical elevator includes the cabin (including the passengers) and the
counterweight with the corresponding masses mc,mp. They are connected together by a cable and hung on
a pulley with the radius ρ. The friction is assumed to be negligible. The mechanical energy is the sum of
kinetic and potential energies:

Hm(pl, θm) =
1

2

pl(t)
2

Il
− (mc −mp) gρθm(t), (2.4.1)

where θm(t) is the pulley angle, g = 9.81m/s2 is the gravity acceleration, Il = [mc −mp] ρ
2 is the mechanical

inertia, and pl(t) = Ilθ̇m(t) is the mechanical momentum.
Let xm(t) = [pl(t) θm(t)] ∈ R2 denote the state vector for the mechanical elevator. From the kinematic

relation and Newton’s law, we obtain the following dynamics: −ṗl(t)− ˙θm(t)

ωl(t)

 =

 0 −1 −1

1 0 0

1 0 0


 ∂plHm(θm, pl)

∂θmHm(θm, pl)

τe(t)

 , (2.4.2)
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Mechanical system

Figure 2.4.1: Electro-mechanical elevator scheme.

where τe(t) ∈ R is the magnetic torque of the PMSM and ωl(t) ∈ R is the rotor angular speed.
Permanent Magnet Synchronous Machine: The PMSM includes a permanent magnet rotor and a three-

phases stator. The rotor flux is characterized by the magnet flux φf . Its projections on three stator coils
are denoted by Φfabc(θe) ∈ R3, with the rotor angle θe(t) ∈ R. The stator is modelled as a system of three
symmetric coils with the inductance matrix Labc(θe) ∈ R3×3. It depends on the rotor angle since the air gap
between the rotor and stator coils varies with time. (Details on the stator coils, Φfabc(θe) and the inductance
matrix Labc(θe), are provided in the Appendix A).

Hence, the PMSM magnetic energy stored in the stator is:

He(Φ̌l, θe) =
1

2

[
Φ̌l(t)−Φfabc(θe)

]T
L−1
abc(θe)

[
Φ̌l(t)−Φfabc(θe)

]
. (2.4.3)

From the Kirchhoff’s laws and Lenz’s law, we obtain the interconnection structure of PMSM as:

− ˙̌Φl(t)

−θ̇e(t)
ilR(t)

−ǐl(t)

0

−τe(t)


=



0 0 I3 −I3 13 0

0 0 0 0 0 −1

−I3 0 0 0 0 0

I3 0 0 0 0 0

−1T3 0 0 0 0 0

0 1 0 0 0 0





∂Φ̌l
He(Φ̌l, θe)

∂θeHe(Φ̌l, θe)

vlR(t)

v̌l(t)

vln(t)

ωl(t)


, (2.4.4)

where v̌l(t), ǐl(t) ∈ R are the voltage and current vectors of the stator at the connection point with the
DC/AC converter. The model derivation of PMSM dynamics (2.4.4) is explained in detail in Appendix A.
The resistive elements, which we assume that they are linear, correspond to the stator resistors characterized
by the resistance Rl for each phase. The Ohm’s law is written as:

vlR(t) = −RlilR(t). (2.4.5)

Electro-mechanical elevator: The dynamics of electro-mechanical elevator are derived by connecting the
PMSM dynamics (2.4.4) with the mechanical dynamics (2.4.2) through the mechanical port (τe(t), ωl(t)) in
(2.4.4) and with the DC/AC relation (2.3.7) through the electrical port (ǐl(t), v̌l) in (2.4.4). Therefore, since
the DC/AC converter does not store the energy, the Hamiltonian of electro-mechanical elevator is the total
of the mechanical energy (2.4.1) and the magnetic energy (2.4.3):

Hl(Φ̌l,xm) = He(Φ̌l, θe) +Hm(xm). (2.4.6)

Let us define the global state variable vector x̌l(t) ∈ R6 which includes the stator magnetic fluxes Φ̌l(t), the
rotor angle θe(t), the mechanical momentum pl(t) and the pulley angle θm(t):

x̌l(t) = [Φ̌l(t)
T θe(t) pl(t) θm(t)]T ∈ R6. (2.4.7)

By combining the DC/AC relation (2.3.7), the mechanical elevator dynamics (2.4.2) and the PMSM dynamics
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(2.4.4), we derive the implicit PH model for the electro-mechanical elevator as follows:

˙̌
lx(t) = J̌l∇Hl(x̌l) + ǦlSRvlR(t) + ǦlSE(ďl)vl(t) + ǦlSnvln(t), (2.4.8a)

ilR(t) = ǦT
lSR∇Hl(x̌l), (2.4.8b)

il(t) = ǦT
lSE(ďl)∇Hl(x̌l), (2.4.8c)

0 = ǦT
lSn∇Hl(x̌l), (2.4.8d)

vlR(t) =−RlilR(t). (2.4.8e)

where the interconnection matrix J̌l and the input matrices ǦlSR, ǦlSE(ďl), ǦlSn are described by the
following expressions:

J̌l =


0 0 0 0

0 0 1 0

0 −1 0 −1

0 0 1 0

 ∈ R6×6, ǦlSR =


−I3

0

0

0

 ∈ R6×3, (2.4.9a)

ǦlSE(ďl) =


ďl(t)

0

0

0

 ∈ R6×1, ǦlSn =


−13

0

0

0

 ∈ R6×1. (2.4.9b)

As we see in dynamics (2.4.8), there is still a constraint (2.4.8d) in the external port output. This is discarded
in the next subsection where a reduced PH model is obtained.

Remark 2.4.1. From the Hamiltonians described by (2.4.1), (2.4.3) and (2.4.6), we see that the Hamiltonian
Hl(x̌l) is convex but not positive definite. This means that it does not admit a minimum point. Equivalently,
the electro-mechanical elevator does not have an equilibrium point corresponding to the zero input vl(t) =
0.

Fig. 2.4.2 describes the Bond Graph of the original model. In the same figure, DDC/AC , De and Dm
represent the Dirac structures of the DC/AC converter, the PMSM and the mechanical elevator, respectively.
The storage elements reside in the PMSM stator and mechanical elevator. The resistive element only resides
in the PMSM stator. There are two external ports: the zero-flow source Sf representing the flow constraint
(2.4.8d) and the electrical port (il, vl) connecting to the transmission lines. Note that the Dirac structure
of the DC/AC converter is modulated by the duty cycle ďl(t). We can see that the Bond Graph describes
different physical domains in the same theoretic formalism: magnetic, electric and mechanic.

Transmission 

lines

Figure 2.4.2: Bond Graph for the electro-mechanical elevator model in the original coordinates.
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2.4.2 Reduced order model

In the following we present the d-q PH formulation for the electro-mechanical elevator (2.4.8) by using the
Park transformation and a constraint reduction. Especially, these two processes are considered in the PH
formulation. Since the Park transformation is time invariant, the transformed system is also a PH system.
For the reduced model, a simple condition to preserve the PH form is fortunately satisfied.

First, we define the Park matrix P(θm) ∈ R3×3 as:

P(θm) =

√
2

3


cos(αa(θm)) cos(αb(θm)) cos(αc(θm))

−sin(αa(θm)) −sin(αb(θm)) −sin(αc(θm))

1√
2

1√
2

1√
2

 , (2.4.10)

where p ∈ N denotes the number of pole pair in the machine stator, αa(θm) = pθm(t), αb(θm) = pθm(t)− 2π

3
,

αc(θm) = pθm(t) +
2π

3
. The Park matrix is used to transform the PMSM flux vector Φ̌l(t) in (A.0.4)

to Φl(t) = P(θm)Φ̌l(t). For the electro-mechanical elevator, the state vector includes not only the stator
fluxes but also the mechanical momentum and rotor angle as in (2.4.7). Thus, we define the extended Park
transformation as:

xl(t) =

[
P(θm) 0

0 I3

]
x̌l(t). (2.4.11)

Note that, only the stator flux is transformed:

xl(t) = [Φl(t) θe(t) pl(t) θm(t)]T ∈ R6. (2.4.12)

The Jacobian matrix of the transformation (2.4.11) is given by:

W(xl) , ∂x̌l
xl =


P(θm)

dP

dθm
(θm)Φl(t) 0

0 1 0

0 0 I2

 . (2.4.13)

The transformed PH model is explained by the following proposition.

Proposition 2.4.2. Any time invariant transformation of the state-space of the electro-mechanical elevator
system (2.4.8) preserves the PH form.

Proof. Let W(xl) be the Jacobian matrix of a time invariant transformation of state-space xl(x̌l). From the
chain rules for the state vector and Hamiltonian, we obtain:{

ẋl(t) = W(xl) ˙̌
lx(t),

∇Hl(x̌l) = WT (xl)∇Hl(xl).
(2.4.14)

By defining the structure matrices Jl(xl) ∈ R6×6, Rl(xl) ∈ R6×6, Gl,SE(xl, ďl) ∈ R6×1, Gl,Sn(xl) ∈ R6×1

as: 
Jl(xl) = W(xl)J̌lW

T (xl),

GlSR(xl) = W(xl)ǦlSR,

GlSE(xl, ďl) = W(xl)ǦlSE(ďl),

GlSn(xl) = W(xl)ǦlSn,

(2.4.15)

we get the transformed dynamics of the electro-mechanical elevator:

ẋl(t) = Jl(xl)∇Hl(xl) + GlSR(xl)vlR(t)

+GlSE(xl, ďl)vl(t) + GlSn(xl)vln(t),

ilR(t) = GlSR
T

(xl)∇Hl(xl),

il(t) = GlSE
T

(xl, ďl)∇Hl(xl),

0 = GlSn
T

(xl)∇Hl(xl),

vlR(t) = −RlilR(t).

(2.4.16)



28 Chapter 2. DC microgrid modelling

Since J̌l is skew-symmetric, then Jl(xl) has the same property. Consequently, the time invariant transfor-
mation of state-space xl(x̌l) preserves the PH form of the electro-mechanical elevator dynamics.

Remark 2.4.3. Note that, from the transformed system dynamics (2.4.16) there is still a flow constraint
(fourth equation in (2.4.16)). Also, the structure matrix [Jl(xl) GlSR(xl) GlSE(xl, ďl) GlSn(xl)] is not
full rank. This motivates model order reduction which preserves the PH formulation. In the following
proposition we indicate a state-space projection to reduce the transformed dynamics (2.4.16).

Proposition 2.4.4. Let xl(t) ∈ R4 be the reduced state variable of xl(t) by the state-space projection

xl(t) = G⊥xl(t), (2.4.17)

with

G⊥ =

[
I2 0 0

0 0 I2

]
∈ R4×6. (2.4.18)

In the case of electro-mechanical elevator, the presented state-space projection has the following properties:

1. It satisfies the relations: {
∇Hl(xl) = (G⊥)T∇Hl(xl),

G⊥GlSn(xl) = 0.
(2.4.19)

2. It reduces electro-mechanical elevator PH dynamics (2.4.16) to PH dynamics.

Proof. We start by proving the first property. The first coordinate of the reduced state variable vector xl(t)
defined by (2.4.17) is called the direct flux and denoted by φld(t). Similarly, the second coordinate is called
the quadrature flux and denoted by φlq(t). They describe the projections of the stator magnetic fluxes on
two perpendicular axis associated with the rotor. Using these definitions and the reduction (2.4.17)-(2.4.18),
the electrical, mechanical and electro-mechanical state vectors are given by:

xe(t) =

[
φld(t)

φlq(t)

]
∈ R2, xm(t) =

[
pl(t)

θm(t)

]
∈ R2, xl(t) =

[
xe(t)

xm(t)

]
∈ R4. (2.4.20)

Moreover, the electro-mechanical elevator Hamiltonian defined by (2.4.1), (2.4.3) and (2.4.6) may be rewritten
using the reduced state variables:

Hl(xl) =
1

2Ld

[
φld(t)−

√
3

2
φf

]2

+
1

2

φlq(t)
2

Lq
+

1

2

pl(t)
2

Il
− (mc −mp) gρθm(t), (2.4.21)

with the direct and quadrature inductances defined by:

Ld = L1 + 1.5L2 − L3, Lq = L1 − 1.5L2 − L3, (2.4.22)

where L1, L2, L3 are the parameters of the original stator fluxes in (A.0.2). By some calculation from the
mechanical energy (2.4.1), the electromagnetic energy (2.4.3), the electro-mechanical elevator energy (2.4.6),
the Park transformation (2.4.10), the Jacobian (2.4.13) and the state-space projection (2.4.17)-(2.4.18) we
derive (2.4.19).

Next, we prove the second property stated in the Proposition. By multiplying the transformed dynamics
(2.4.16) with G⊥, we get:

G⊥ẋl(t) = G⊥Jl(xl)∇Hl(xl) +G⊥GlSR(xl)vlR(t)+

+G⊥GlSE(xl, ďl)vl(t) +G⊥GlSn(xl)vln(t),

ilR(t) = GlSR
T

(xl)∇Hl(xl),

il(t) = GlSE
T

(xl, ďl)∇Hl(xl),

0 = GlSn
T

(xl)∇Hl(xl),

vlR(t) = −RlilR(t),

(2.4.23)
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Thanks to the reduction (2.4.17) and the property (2.4.19), we obtain the reduced electro-mechanical elevator
dynamics as: 

ẋl(t) = Jl(xl)∇Hl(xl) +GlR(xl)vlR(t) + Gl(ďl,xl)vl(t),

ilR(t) = GT
lR(xl)∇Hl(xl),

il(t) = GT
l (dl,xl)∇Hl(xl),

vlR(t) = −RlilR(t),

(2.4.24)

where the reduced structure matrices are given by:
Jl(xl) = G⊥Jl(xl)(G

⊥)T ,

GlR(xl) = G⊥GlSR(xl),

Gl(ďl,xl) = G⊥GlSE(ďl,xl).

(2.4.25)

From the previous calculation, we note that the input matrix Gl(ďl,xl) depends on the pulley angle
θm(t). Therefore, we define the equivalent duty cycle vector denoted by dl(t) ∈ R2 to simplify the input
matrix Gl(ďl,xl) in the form:

Gl(dl) =

[
dl(t)

0

]
∈ R4×1, (2.4.26)

with

dl(t) =

√
2

3

 cos(pθm) cos(pθm −
2π

3
) cos(pθm +

2π

3
)

−sin(pθm) −sin(pθm −
2π

3
) −sin(pθm +

2π

3
)

 ďl(t). (2.4.27)

From the presented reduced model in (2.4.24), we emphasize some characteristics of the electro-mechanical
elevator dynamics related to the interconnection matrix and to the Hamiltonian:

1. The interconnection matrix Jl(xl) of the dynamics (2.4.24) depends on the state variable xl(t) and is
not integrable.

2. The electro-mechanical elevator dynamics include the electrical and mechanical domains. From their
details, we can partition the structure matrices as:

Jl(xe) =

[
0 Jem(xe)

−JTem(xe) Jm

]
, GlR(xl) =

[
GlRe(xm)

0

]
, (2.4.28)

where 

Jm =

[
0 −1

1 0

]
, Jem(xe) =

[
φlq(t) 0

−φld(t) 0

]
,

GlRe(xm) =

√
2

3

 cos(pθm) cos(pθm −
2π

3
) cos(pθm +

2π

3
)

−sin(pθm) −sin(pθm −
2π

3
) −sin(pθm +

2π

3
)

 . (2.4.29)

From (2.4.21), we note that the Hamiltonian is a quadratic function:

Hl(xl) = Ql0 + xTl (t)Ql1 +
1

2
xTl (t)Ql2xl(t). (2.4.30)

where the weight matrices are given by:

Ql0 =
3

4

φ2
f

Ld
, Ql1 =

[
Ql1e

Ql1m

]
, Ql2 =

[
Ql2e 0

0 Ql2m

]
, (2.4.31)
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with the weight matrices corresponding to the electrical and mechanical domains:

Ql1e =

 −
√

3

2

φf
Ld

0

 , Ql1m =

[
0

−(mc −mp)gρ

]
,

Ql2e =


1

Ld
0

0
1

Lq

 , Ql2m =

 1

Il
0

0 0

 .
(2.4.32)

Fig. (2.4.3) illustrate the Bond Graph of the reduced model for the electro-mechanical elevator. By
comparing the Bond Graphs in Fig. 2.4.2 and Fig. 2.4.3, we can see that the state-space transformation
and the order reduction modify the representations of the Dirac structures of PMSM stator and DC/AC
converter.

Transmission 

lines

Figure 2.4.3: Bond Graph for the electro-mechanical elevator model in the d-q coordinates.

2.4.3 Identification

The parameter values for the derived model can be measured directly on the actual system. However,
the PMSM parameters can not be measured directly on the system. They are quite complex (intrusive
and sensitive) and the obtained measured parameters’ values may be different from the actual values in
nominal operating conditions. Therefore, we will use identification methods to determine the parameters x̂
by measured data of some physical quantities, called inputs and outputs of the system which are denoted by
û(t), ŷ(t), respectively.

Let ȳ(t) be the output value which is derived from the data of the input û(t) and parameter x̂ using the
system dynamics:

Ȳd = g(x̂, Ûd), (2.4.33)

where Ȳd and Ûd are the discrete functions of output ȳ(t) and input û(t), respectively. The outputs ŷ(t)

and ȳ(t) are used to construct the cost function V (Ŷd, Ȳd) with the discrete function Ŷd of ŷ(t). In this
work, we penalize the cost the discrepancy between ŷ(t) and ȳ(t) such that:

V (Ŷd, Ȳd) =

N∑
i=1

(ȳ(i)− ŷ(i))
T

(ȳ(i)− ŷ(i)) . (2.4.34)

Then, by replacing (2.4.33) in (2.4.34), we obtain a cost which depends on the parameters V (Ŷd, x̂, Ûd), or
simply V (x̂). By minimizing this cost function wrt. the parameters x̂, we obtain their approximate values.
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The electro-mechanical elevator dynamics described by (2.4.20)-(2.4.21), (2.4.24), (2.4.26) and (2.4.28)
can be expressed in the following explicit form:

φ̇ld(t) = −Rl
Ld

(
φld(t)−

√
3

2
φf

)
+
φlq(t)pl(t)

Il
+ vld(t),

φ̇lq(t) = −Rl
Lq
φlq(t)−

1

Il
φld(t)pl(t) + vlq(t),

ṗl(t) =

√
3

2

φf
Ld
φlq(t) +

Ld − Lq
LdLq

φld(t)φlq(t) + Γres,

θ̇m(t) =
1

Il
pl(t).

(2.4.35)

In this model, there are seven parameters: Il, Γres, p, Rl, Ld, Lq, φf . The mechanical parameters (Il, Γres)
and the number of pole pairs (p) are assumed to be known (they may be identified separately). Practically,
the remaining 4 parameters will be determined by identification methods using the currents and voltages
values (given data) of the three phases ǐl(t), v̌l(t) and the angular velocity of the rotor ωl(t). However, in
the d-q frame, the replacing voltage and current vl(t), il(t) are determined by using the Park transformation
described by (2.3.7), (2.4.27) and (3.3.1). Finally, the identification algorithms will make use of the following
data: vld(t), vlq(t), ild(t), ilq(t), ωl(t).

It is theoretically sufficient to use the two first electrical equations of (2.4.35) which relate to the mag-
netic fluxes, for the identification purpose. However, in the second equation of (2.4.35), the value of rotor
mechanical momentum coefficient is too small. This produces poor results for the estimation of the rotor’s
flux in the case of experiments with short durations and zero initial value for the flux. Therefore, three first
equations of (2.4.35) are used.

We investigate hereinafter two identification methods based on two identification models for the electro-
mechanical elevator: direct dynamic identification model (DDIM) [Khatounian et al., 2006, Robert and
Gautier, 2013] and inverse dynamic identification model (IDIM) [Khatounian et al., 2006,Zentai and Dabóczi,
2008, Robert and Gautier, 2013]. However, note that the mentioned choices of inputs and outputs have not
been generalized for the PH system yet, i.e., they do not relate to the input and output at the external power
port.

The Output Error method (OE) [Robert and Gautier, 2013]: In this method, let

ŷ(t) =

 il(t)
ṗl(t)
ωl(t)

 , ȳ(t) =

 īl(t)
¯̇pl(t)
ω̄l(t)

 , û(t) = vl(t), x̂ =


Rl
Ld
Lq
φf


denote the output data, the estimated outputs, the input data and the vector of parameters, respectively.
Some numerical methods to find the argument x̂min minimizing V (x̂) in (2.4.34) needs to be used such as the
gradient method, the Newton method [Robert and Gautier, 2013]. We follow [Khatounian et al., 2006], using
the Levenberg-Marquardt algorithm to ensure a robust convergence even in the case of a bad initialization
of x̂. This identification scheme is robust to noise in the measurements as well, but requires larger amount
of computational effort than the method we present next.

The Least Square and Inverse model method (LSI) [Zentai and Dabóczi, 2008]: In this method, let

ŷ(t) =

[
vl(t)
ṗl(t)− Γres

]
, ȳ(t) =

[
v̄l(t)
¯̇pl(t)− Γres

]
, û(t) =

[
il(t)
ωl(t)

]
, x̂ =


Rl
Ld
Lq
φf


denote the output data, the estimated outputs, the input data and the vector of parameters with Γres =
−∂θmHl(xl) = (mc −mp)gρ. This choice allows to rewrite the system dynamics by the linear constraints of
parameters:

ȳ(t) = γ(û)x̂, (2.4.36)

where γ(û) is a suitable function derived from (2.4.35). Thus, the cost function V (x̂) in (2.4.34) is actually
quadratic whose minimum is well-known. This method exhibits good results in the case without noise but
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unfortunately is rather sensitive to the noise disturbances in the current data. Therefore, to improve the
obtained results, it is necessary to use it with a low-pass filter using these.

Simulation results: The “measured” data are obtained by simulation ran with the parameters values
received from the PMSM manufacturer. The PMSM model proposed in (2.4.24) was implemented in Mat-
lab/Simulink 2016a. During the simulations, the input voltages, output currents and rotor speed are recorded
to create data for identification (see also Fig. 2.4.4). Using these data, both identification algorithms are
tested in terms of convergence and noise sensitivity.
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Figure 2.4.4: numerical data of d− q currents, il(t), d− q voltages, vl(t), rotor speed, ωl(t), and rotor angle,
θm(t).

Three experimental scenarios are implemented corresponding to the nominal case (without noise), noise-
affected data and the case with noise and a supplementary low-pass filter. We provide more details on the
simulation data and configuration in [Pham et al., 2014]. The parameter values used in these experience are
J = 0.1 kg.m2, Γres = 5 N.m, p = 20, Rs = 0.53 Ω, Ld = 8.96 mH, Lq = 11.23 mH, φf = 0.05 Wb. The
sample time is h = 10−5 s and the simulation duration is t = 0.5 s. The first experience (without noise) was
also carried out with a shorter duration (t = 0.005 s) in order to emphasize the effect on the identification
results. The amplitude of noises is 1 A for data of currents, and is 1 rad/s for data of rotor speed.

Table 2.4.1: Real and estimated values in the Case without Noise
Rs(Ω) Ld(H) Lq(H) φf (Wb)

Real value 0.53 0.00896 0.01123 0.05

OE 0.5s 0.6000 0.0798 0.0167 0.0395

0.005s 0.6010 0.0088 0.0111 0.0425

LSI 0.5s 0.5290 0.0090 0.0112 0.0500

0.005s 0.5281 0.0090 0.0113 0.0524

From the obtained results in Tables 2.4.1-2.4.3 for the presented scenarios, some conclusions are deduced:

- The estimated values using the OE identification method are less sensitive to noise wrt the estimated
values obtained using the LSI identification method;

- The estimated values of the direct inductance, Ld, and the quadrature inductance, Lq, are more accurate
wrt the stator resistance, Rl, and the rotor magnetic flux, φf .
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Table 2.4.2: Real and estimated values in the case with noise
Rs(Ω) Ld(H) Lq(H) φf (Wb)

Real value 0.53 0.00896 0.01123 0.05

OE 0.6000 0.0799 0.0158 0.0396

LSI 0.347 0.0004 0.0012 0.0407

Table 2.4.3: Real and estimated values in the case with noise and with a low-pass filter

Rs(Ω) Ld(H) Lq(H) φf (Wb)

Real value 0.53 0.00896 0.01123 0.05

OE 0.6001 0.0797 0.0193 0.0392

LSI 0.5294 0.0089 0.0112 0.0503

- The longer the running time for the LSI method is, the best is the convergence. On the contrary, the
convergence of the OE method is worse when the simulation time increases because the errors of the
estimated output of the OE method increase.

The simulations show that, in our case, the LSI method associated with low-pass filter is better than the
other identification methods since it ensures both, a robust convergence and small volume of computations.
This results are similar to the results presented by [Khatounian et al., 2006] in simulation (deterministic case
without converter) and experimentally. The values of appropriate sample time and duration can be adapted
according to the chosen current waveforms.

2.5 The global DC microgrid model

This section presents the global PH model of the DC microgrid elevator taking into account the PH models
of the presented microgrid components and the microgrid power-preserving interconnection.

2.5.1 Bond graph for the multi-source elevator system

Fig 2.5.1 illustrates the Bond Graph of the multi-source elevator system. The Dirac structures of the trans-
mission lines, the mechanical elevator, the PMSM and the associated converter, the battery, the battery
converter, the component interconnection and the supercapacitor converter are represented by the nodes Dt,
Dm, De, Db, Dbc, DI and Dsc, respectively. The energy storage of the transmission lines, the mechanical
elevator, the PMSM, the battery, the battery converter and the supercapacitor are represented by the nodes
Ct, Cm, Ce, Cb, Cbc, Cs and Csc, respectively. The resistive elements reside in the transmission lines, PMSM,
battery and supercapacitor. They are represented by Rt, Rl, Rb and Rs, respectively. The renewable power
source and the external grid are denoted by Pr(t) and Sf (Details on the flow source Sf is presented in
Section 2.2.1), respectively. Moreover, the control variables dl(t), db(t), ds(t) modulate the Dirac structures
of the PMSM and converter, De, of the battery converter, Dbc, and of the supercapacitor converter, Dsc. The
external current ie(t) modulates the flow source Sf , i.e., ie(t) denotes the port control variable.

2.5.2 Global model

As previously mentioned, all the electrical power components are connected to the corresponding port of the
DC bus. This connection is described by a simple power-preserving relation:[

it(t)

vcom(t)

]
=

[
0 −I5

I5 0

][
vt(t)

icom(t)

]
, (2.5.1)

where it(t),vt(t) ∈ R5 are the currents and voltages at the connection ports of the DC bus defined by (2.3.9),
and

icom(t) = [ib(t) is(t) il(t) ie(t) ir(t)] ∈ R5,

vcom(t) = [vb(t) vs(t) vl(t) ve(t) vr(t)] ∈ R5,
(2.5.2)
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Figure 2.5.1: Bond Graph representation of the DC microgrid electrical circuit.

are the currents and voltages of the battery unit, supercapacitor unit, electro-mechanical elevator, external
grid and renewable power source, respectively. Consequently, the global state variable, x(t), and Hamiltonian,
H(x), gather the states and energy of the DC microgrid components such as:

x(t) =
[

xTt (t) xTcb(t) xTcs(t) xTs (t) xTe (t) xTm(t) xTb (t)
]T ∈ R20, (2.5.3a)

H(x) = Ht(xt) +Hcb(xcb) +Hcs(xcs) +Hs(xs) +He(xe) +Hm(xm) +Hb(xb). (2.5.3b)

Note that in (2.5.3) the subscripts denote the corresponding variables for the transmission lines, bat-
tery/supercapacitor converters, machine stator, battery, supercapacitor and mechanical elevator, respectively.
The global flow and effort variables of the resistive elements are denoted by:

eR(t) =
[

iTtR(t) iTbR(t) iTsR(t) vTlR(t)
]T ∈ R11, (2.5.4a)

fR(t) =
[

vTtR(t) vTbR(t) vTsR(t) iTlR(t)
]T ∈ R11, (2.5.4b)

and their relation is described by the Ohm’s law:

fR(t) + RReR(t) = 0, (2.5.5)

with RR ∈ R12×12 denoting the resistive matrix given as:

RR = diag{RtR,RbR, Rs, R
−1
l I3}. (2.5.6)
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Gathering the dynamical equations (2.3.1), (2.3.8), (2.3.15), (2.3.25), (2.3.29), (2.4.24), the components
connection (2.5.1), the transmission lines description (2.3.9), (2.3.19), and the electro-mechanical elevator
structure matrices (2.4.26), (2.4.28), we obtain the global dynamics of the microgrid system as follows:

f(t) = D(d,x)e(t),

Pr(t) = −ir(t)vr(t),
fR(t) = −RReR(t),

(2.5.7)

where the flow, f(t) ∈ R34, and the effort, e(t) ∈ R34, variables are given by:

f(t) =


−ẋ(t)

fR(t)

ve(t)

vr(t)

 , e(t) =


∇H(x)

eR(t)

ie(t)

ir(t)

 , (2.5.8)

and the structure matrix, D(d,x) ∈ R34×34, is described by:

D(d,x) =


−J(d,x) −GSR(θm) −Ge −Gr

GT
SR(θm) 0 0 0

GT
e 0 0 0

GT
r 0 0 0

 , (2.5.9)

which contains the structure matrices J(d,x) ∈ R20×20, GT
SR(xl) ∈ R20×12, Gr,Ge ∈ R20×1 described by:

J(d,x) =



0 −GtbG
T
cbt −GtsG

T
cst 0 −Gtld

T
l (t) 0 0

GcbtG
T
tb Jcb(db) 0 0 0 0 0

GcstG
T
ts 0 Jcs(ds) 0 0 0 0

0 0 0 0 0 0 0

dl(t)G
T
tl 0 0 0 0 Jem(xe) 0

0 0 0 0 −JTem(xe) Jm 0

0 0 0 0 0 0 0


, (2.5.10a)

GSR(θm) =



GtSR 0 0 0

0 GcbG
T
bRE 0 0

0 0 GcsG
T
sRE 0

0 0 GsSR 0

0 0 0 GlRe(xm)

0 0 0 0

0 GbSR 0 0


. (2.5.10b)

Gr =

[
Gtr

0

]
, Ge =

[
Gte

0

]
, (2.5.10c)

From the above model (2.5.7)-(2.5.10c), we emphasize some of the DC microgrid characteristics:

1. The Hamiltonian H(x) is a quadratic function of the form:

H(x) = Q0 + x(t)Q1 +
1

2
xT (t)Q2x(t), (2.5.11)

with Q0 ∈ R, Q1 ∈ R20 and Q2 ∈ R20×2 is diagonal and non-negative. The minimum of Hamiltonian
does not exist due to the linear potential energy. Usually, when the operation point (state) is determined,
we change the coordinate to this point to obtain a new Hamiltonian which is usually useful for stabilizing
the system.

2. Some external ports of the DC network connect to the renewable energy units which are modelled as
DC power sources (see Eq. (2.3.8)). Therefore, we can not derive the input-state-output PH system,
and the DC microgrid model is represented in the implicit form (2.5.7). However, this implicit form
describes in detail the component models and their interconnection which will be useful for the global
control objective.
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3. The interconnection matrix J(d,x) in (2.5.10a) is an affine function of the state variables (see relations
(2.4.29) and (2.5.10a)).

4. The interconnection matrix J(d,x) in (2.5.10a) is an affine function of each converter duty cycles5.
This means that these variables do not change the global energy but the internal power distribution
between the components.

5. The studied microgrid illustrated in Fig. 2.1.1 includes three physical domains: chemical (battery,
supercapcitor), mechanical (machine rotor, mechanical elevator) and electrical (converter, transmission
lines, machine stator). Based on the actual system, there are three time-scale dynamics corresponding
to the electrical domain, the mechanical elevator and the supercapacitor and the battery, respectively.
They will be considered with the corresponding objectives in the next subsection.

2.6 Control objectives

As mentioned in the introduction, there are many control objectives considered for the microgrid. In the
present work we concentrate on the energy management objective under an optimization-based control frame-
work. Based on the modelling formulation presented above, in this section, we present the general profiles,
constraints and cost which will be used in the next chapters for the optimization-based control design.

2.6.1 Reference profiles

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

500

1,000

P̄
l
[W

]

Load power profile

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

200

400

600

P̄
r
[W

]

Renewable power profile

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.12

0.13

0.14

0.15

0.16

Time [h]

pr
ic

e
[e

ur
/k

W
h] Electricity price profile

Figure 2.6.1: Profiles of load, renewable power and electricity price.

All the elements of the electrical system are characterized by certain profiles of reference.

Load power profiles: In the dynamics (2.4.24), the cabin mass, mc, is constant during the travel of the
elevator. However, it changes when the elevator stops corresponding to the weight of the inside passengers.
Furthermore, the start/stop instant and the cabin position are also modified many times in a day. For the
elevator operation the cabin mass, mc, the start instant, tin, the stop instant, tfi and the cabin position, θ,
are the control signals which are decided by the passenger and/or the elevator programmer.

We denote by Nt the number of elevator travels in a day. Then, the vector mc, tin, tfi, θ ∈ RNt captures

5A similar conclusion for a system of AC/DC converters can be found in [Zonetti et al., 2015]
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Nt values of cabin mass, initial instant, final instant and final rotor angle of Nt travels:

mc = [mc,1 . . . mc,Nt ]
T ,

tin = [tin,1 . . . tin,Nt
]T ,

tfi = [tfi,1 . . . tfi,Nt
]T ,

θ = [θ1 . . . θNt
]T .

(2.6.1)

These vectors with the duty cycles of the machine converter define the control variables and lead to a
consumption power profile of the electro-mechanical elevator. In our work, mc, tin, tfi, θ are assumed to be
decided by the passenger, i.e., they are fixed and unknown. Therefore, the long-term consumed electrical
power is nearly fixed and admits a statistical rule. Taking into account the available statistical measurements
of electricity consumption we consider the reference power of the consumer denoted by Pl(t). However, the
short-term load power is still modified by the minimization of the machine dissipated energy during each
travel which will be presented in Chapter 4.

Renewable power profile: From the description of the renewable source in Subsection 2.3.2 we denote by
Pr(t) the power profile of the renewable source estimated from meteorological data.

Electricity price profile: Lastly, by using existing historical data of electricity market, we denote the
predicted electricity price profile by price(t). Also, we assume that the selling and buying prices are the
same. Fig. 2.6.1 depicts the evolution of the price on the electricity market in a day.

2.6.2 Constraints

Electro-mechanical elevator system: The operation constraints corresponding to the electro-mechanical eleva-
tor system are caused by physical limitations and passengers requirements. In fact, to avoid a high machine
temperature which can destroy the machine and change its physical characteristics, the current amplitude
needs to satisfy the following constraint (see [Lemmens et al., 2014] for details):∥∥ǐl(t)∥∥2

≤ Il,max. (2.6.2)

In the d-q frame, (2.6.2) is rewritten as:∥∥∥∥∥∥∥

(
φld(t)−

√
3

2
φf

)
/Ld

φlq(t)/Lq


∥∥∥∥∥∥∥

2

≤ Il,max√
2
. (2.6.3)

Because of the machine design and the passenger’s comfort requirements, the rotor speed and the rotor angle
need to be less than a priori chosen values. The elevator speed limit is defined by:

ωl,min ≤ ωl(t) ≤ ωl,max, (2.6.4)

with ωl,min, ωl,max ∈ R denoting the minimal and maximal mechanical elevator momentum which is propor-
tional to the machine speed. This comes from the limitation of the mechanical solidity, and it is given by the
manufacturer.

The duty cycle ďl(t) ∈ R3 has to be in the interval [0, 1]3. However, by using the Park transformation,
we derive the corresponding non-linear constraint in the d-q coordinate:

‖dl(t)‖2 ≤
1√
2
. (2.6.5)

Usually, there is also the constraint on the rotor position such as

θl,min ≤ θm(t) ≤ θl,max, (2.6.6)

where θl,min, θl,max ∈ R are respectively the minimal and maximal rotor angles of the pulley during a travel.
θl,min and θl,max are the initial and final angles. Fortunately, the constraint (2.6.6) can be eliminated thanks
to the constraints (4.3.6c), (4.3.8) and (2.6.7). It is clearly that the time integration of the rotor speed is the
rotor angle, i.e.

θm(t) = θ0 +

t∫
t0

ωl(t)dt. (2.6.7)
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If the elevator goes down, θl,min = θ0, θl,max = θf , and ωl,min = 0. Thus, from (4.3.6c), (4.3.8) and (2.6.7),
we obtain the following inequality:

⇒ 0 =
t∫
t0

ωl,mindt ≤
t∫
t0

ωl(t)dt ≤
tf∫
t0

ωl(t)dt = θf − θ0 = θl,max − θl,min,

⇒ 0 ≤ θm(t)− θl,min ≤ θl,max − θl,min,
⇒ (4.3.8).

Therefore, (4.3.6c), (4.3.8) and (2.6.7) are the sufficient condition for (4.3.8) when the elevator go down.
Similarly, we have the same conclusion for the case the elevator goes up.

Battery unit: In general, an electrical storage unit has some limitations on the quantity of charged energy.
Furthermore, the battery stored charge must be greater than half its capacity (kept in case of unexpected
events):

0.5xb,max ≤ xb(t) ≤ xb,max, (2.6.8)

with xb,max ∈ R2. Also, the battery charge/ discharge current respects some limitation range given by the
manufacturer:

ib,min ≤ ibb(t) ≤ ib,max, (2.6.9)

with ib,min, ib,max ∈ R. The duty cycle needs to respect the following limitations:

0 ≤ db(t) ≤ 1. (2.6.10)

Supercapacitor unit: The supercapacitor has the advantage of high power level. However, its charge level is
low and can be described by:

εsqs,max ≤ qs(t) ≤ qs,max, (2.6.11)

with the maximal supercapacitorcharge qs,max ∈ R and εs ∈ [0, 1]. Similar with the battery unit, the duty
cycle fo the supercapacitor is also limited as follows:

0 ≤ ds(t) ≤ 1. (2.6.12)

External grid: The constraints of the external grid come from the limited available power Pe(t) as in (2.6.13).
Since the DC bus voltage ve(t) in Fig.2.3.4 is nearly constant, the limitation becomes a constraint on the
current, ie(t), described as:

ie,min ≤ ie(t) ≤ ie,max, (2.6.13)

with ie,min, ie,max ∈ R. A low limit current implies a low subscription cost. Thus, a way to minimize the
electricity cost is by decreasing the peak power purchased from the external grid. However, in this work we
aim at decreasing this cost by purchasing the electricity when it is cheap and reusing it when the electricity
price is expensive.

2.6.3 Cost functions

In this section, we present the cost functions for the microgrid control and supervision. Due to the complexity
of microgrid dynamics (multi-time scales, high dimension, nonlinearity), a centralized optimization problem
is intractable. Thus, as also employed in the literature, the energy management for the microgrid is separated
into two sub-problems with different time scales, objectives and control variables, that is, dissipated energy
minimization and electricity cost minimization:

• The first objective is for the fast time scale (within a range of seconds-minutes), corresponding to the
supercapacitor dynamics and mechanical elevator. It aims to minimize the dissipated energy within
the microgrid during an elevator travel.

• The second objective is investigated for the slow time scale (within a range of minutes-hours) corre-
sponding to the battery dynamics, renewable power, electricity price and passenger travel statistic. It
aims to minimize the electricity cost by the external current ie(t) and the passenger requests given by
mc, tin, tfi, θ defined in Section 2.6.1. Therefore, the cost function will be generally non-quadratic and
time-varying.
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Dissipated energy minimization: The control for the elevator position is the combination of DC bus
voltage control at a fast time scale and the microgrid component regulation at a slower time scale. The DC
bus control needs to guarantee a constant reference for the DC bus voltage. However, as illustrated in Fig.
2.3.5, we see that each component has its own DC bus voltage due to the resistance of the transmission lines.
Therefore, the bus stability aims to regulate the load voltage to a reference value in order to guarantee its
normal operation. Moreover, the constant DC bus voltage also indicates the satisfaction of required load
electrical power, i.e., the power balancing objective will be ensured. Some methods to control the DC bus
voltage can be found in [Alamir et al., 2014, Zhao and Dörfler, 2015, Zonetti et al., 2015] which is not the
main objective of our work. Consequently, the bus voltage is quickly stabilized and can be represented by an
additional constraint to the original microgrid dynamics given in (2.5.7)-(2.5.10c):

A1x(t) = b1, (2.6.14)

with A1 = [0T2 1 0T17] ∈ R1×20, b1 = Ct,3v
∗
l ∈ R, v∗l is the reference DC bus voltage and Ct,3 is the

corresponding bus capacitor.
Each component has its own objective, e.g., for a reliable system operation, the elevator must arrive to

the requested building floor within a suitable time interval. Hence, the supercapacitor charge must be at
the nominal value at the end of the elevator travel for the security of the next travel. These objectives are
described by the following constraint:

A2x(t1) = b2, (2.6.15)

where t1 is the final instant of the elevator travel, A2 =
[

03×2 I3

]
∈ R3×5, b2 ,

[
x∗s x∗m

]T ∈ R3,
with the reference values of supercapacitor charge, x∗s ∈ R, of the machine speed and angle, x∗m ∈ R2.
This constraint can be simplified by removing the supercapacitor unit and replacing the electro-mechanical
elevator with a statistic average power unit represented by Pl(t) which is derived from the data of passenger
mass mc, elevator start/stop instants tin, tfi, building floor required by the passenger θ. The simplified
dynamics is used for the higher control level, i.e., electricity cost minimization.

The cost function penalizes the dissipated energy within the microgrid during the elevator travel:

V (d(t)) = −
t1∫
t0

fTR (t)eR(t)dt, (2.6.16)

where t0, t1 are the initial and final instants of the elevator travel; fR(t), eR(t) ∈ R11 are the resistive flow and
effort vectors defined in (2.5.4), d(t) ∈ R4 are the converter duty cycles of the components. For simplicity,
we decompose this cost into two following costs:

Vs(db(t), ds(t)) =−
t1∫
t0

fTR (t)

[
I9 0
0 0

]
eR(t)dt, (2.6.17a)

Vl(dl(t)) =−
t1∫
t0

fTR (t)

[
0 0
0 I2

]
eR(t)dt, (2.6.17b)

where ds(t), db(t) ∈ R, dl(t) ∈ R2 are the converter duty cycles of the supercapacitor unit, of the battery
unit and the electro-mechanical elevator, respectively. Vl(dl(t)) will be considered in the controller of the
electro-mechanical elevator in Chapter 4. The optimization problem corresponding to Vs(db(t), ds(t)) and its
relation with the previous optimization will be considered in future works.

Electricity cost minimization: The electricity cost minimization for a day is meaningful since the electricity
cost changes during a day. Therefore, the energy can be stored in the battery when it is cheap and reuse
it when the electricity price is expensive. Thus, the electricity cost is described by the integration of the
product of electricity price and purchased power from the external grid:

Ve(ie) = −
24h∫

0h

price(t)ie(t)ve(t)dt, (2.6.18)

where price(t) is the electricity price at the instant t; ie(t), ve(t) ∈ R are the external grid current and
voltage, respectively.
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2.7 Conclusions

This chapter introduced a Port Hamiltonian formulation for a DC microgrid elevator system. The model takes
into account the nonlinear dynamics of the components controlled by the corresponding converters. The Park
transformation for the Permanent Magnet Synchronous Machine is considered in a unified Port-Hamiltonian
formalism. Then, the global dynamics of the DC microgrid is derived as an implicit Port-Hamiltonian
dynamical system. Finally, the multilayer control problem is formulated within a constrained optimization-
based control framework which includes the system physical limitations, network operation and suitable cost
functions. Further details on Port-Hamiltonian formulations applied for various works in energy systems can
be found in [Zonetti et al., 2015,Stegink et al., 2017,Dòria-Cerezo et al., 2015,Schiffer et al., 2016b].

The next chapter will concentrate on the discretization method for the proposed Port Hamiltonian model
formulation which will be later employed within the discrete-time load balancing problem of the microgrid
system.



Chapter 3

Energy-preserving discretization

3.1 Introduction

For numerical simulation and practical control purposes, a discrete-time model derived from the continuous-
time model is important. Since any discrete model is only an approximation of the continuous process from
which is derived, the discretization method only aims at preserving some specific properties of the continuous
model. Therefore, the continuous dynamics need to be formulated in an appropriate form, explicitly describ-
ing the system properties. In here we study the energy management for microgrids, hence the continuous
dynamics should describe their stored energy and the power exchanges. These properties of the continuous
systems are explicitly taken into account through the Port-Hamiltonian (PH) formulation [Duindam et al.,
2009]. In what follows, we present some existing methods based on this formulation to preserve the energy
and/or the power exchange in the discretization process.

In the PH systems, the stored energy is represented by the Hamiltonian. The power exchange structure
within the system is represented by a skew-symmetric matrix called the interconnection matrix (for more
details, see in the appendix B.2). This matrix describes a Dirac structure (DS) and depends on the state
coordinates. Moreover, when the interconnection matrix satisfies the integrability condition, there exists
state coordinates where the interconnection matrix of the corresponding Hamiltionian system is constant (see
Section B.2). Thanks to the skew-symmetric form of the interconnection matrix and the chain rule for the
time derivative of the Hamiltonian, we can prove the energy conservation property along the state trajectory.
Another important property of the Hamiltonian system is the symplecticity property defined in the appendix
B (see Section B.1, Definition B.1.3), which considers the volume conservation along the state trajectories.
More specifically, the symplecticity means that the volume defined by a set of initial states is equal to the
volume defined by the corresponding set of state at the studied instant. This symplecticity is proved for
Hamiltonian systems with canonical interconnection matrices as in [Marsden and Ratiu, 1999, Hairer et al.,
2006].

Some discretization methods for Hamiltonian systems are studied in [Hairer et al., 2006]. The authors
aim at preserving the invariants (e.g., Hamiltonian, Casimirs) or the symplecticity property. The invariant
conservation means that it is the same at each time step. The symplectic method only conserves the energy
periodically, i.e., the energies at some fixed instants are the same. By preserving energy or by symplecticity,
the energy levels at different time instants are kept near the continuous energy levels. Thus, the discrete
state variables approximate well the continuous state variables even with long discrete-time step and long
range simulation.

The open, lossless PH systems are obtained by adding external ports to the Hamiltonian system [van der
Schaft and Jeltsema, 2014,Duindam et al., 2009]. If the external port variables are the control signals, the PH
system is called a lossless Port-Controlled Hamiltonian (PCH) system. In this case, the DS is described by
the interconnection and input matrices, which are called the structure matrices. Due to the energy supplied
from the exterior, the Hamiltonian does not remain constant. Instead, we have an energy balance for the
stored and the supplied energy at the external ports. There is no standard definition of symplecticity for PCH
system. It can be defined by the conservation of DS, which is similar to the symplecticity in the Hamiltonian
system, using a Poisson structure. This property is easy to test when the structure matrices are constant.

There are some works which tackle the energy balance and/or the symplecticity property preservation
for the discrete-time model of lossless PCH systems [Talasila et al., 2006, Laila and Astolfi, 2006, Aoues,
2014]. In [Talasila et al., 2006], the authors propose a theoretical definition for the discrete-time PCH system
which preserves the symplecticity. However, the proposed discrete-time model does not preserve the energy
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balance since the chain rule for the time derivation of the discrete Hamiltonian is not taken into account.
In [Laila and Astolfi, 2006,Aoues, 2014], the authors propose discretization schemes which aim at preserving
the energy balance. The proposed algorithms also preserve the energy in the case of the closed Hamiltonian
system. Generally, it is difficult to find a discretization method which preserves both the symplecticity and
the energy balance. They can be nevertheless achieved in the case of linear lossless PCH system with a
canonical interconnection matrix [Aoues et al., 2013].

By connecting the resistive elements to the lossless PCH system, we obtain the lossy PCH system [van der
Schaft and Jeltsema, 2014, Duindam et al., 2009]. In this case, the definition of symplecticity is similar to
the one for the lossless PCH system. The energy balance is now defined by the zero sum of the energy
flowing through the storage, resistive and external ports. The authors in [Stramigioli et al., 2005, Aoues,
2014, Falaize and Hélie, 2017] propose some discretization methods which preserve the energy balance by
taking into account the skew-symmetric form of the interconnection matrix. For their implementation the
discrete-time flow/effort variables and the discrete-time interconnection matrix are considered. Also, they
satisfy the discrete-time chain rule of the time derivation of the Hamiltonian and the hybrid input-output
representation of DS of the continuous PCH system.

In our work, another class of open lossy PH system is studied where the control signals modulate the
interconnection matrices (and consequently the DS) [Escobar et al., 1999]. In here, some external port
variables have to satisfy time-varying power constraints which comes from the integration of renewable
sources. Since we consider the open-loop PH system, the control signals can vary arbitrarily and the DS is
generally not constant. Consequently, the symplecticity for the discrete-time model is not possible. Thus,
the proposed definition for the discrete-time PH system in [Talasila et al., 2006] can not be used directly.
However, the energy balance conservation can still be obtained for the discrete-time model using the method
presented in [Stramigioli et al., 2005, Aoues, 2014, Falaize and Hélie, 2017]. In this particular work, we
consider it for two non-linear subsystems of the DC microgrid, that is, the electro-mechanical elevator and
the global multi-source elevator system.

This chapter presents two main contributions as follows.

• The time discretization method in [Stramigioli et al., 2005, Aoues, 2014] is generalized for nonlinear
lossy open PH systems with control-modulated structure matrices. The studied system includes the
energy storage, the resistive element, the effort/flow source, the time-varying power source and the
DS. The DS is described by a skew-sysmetric matrix which explicitly depends on the state and control
variables. Therefore, the non-linearities lie in the state and control modulation of the structure matrices
and in the time-varying power constraint of the external port. We define the discrete-time state, flow
and effort variables which satisfy the discrete relation of the system elements as follows. The hybrid
input-output representation of DS is preserved by keeping the skew-symmetric interconnection matrix.
The chain rule for the Hamiltonian time derivative is preserved by an appropriate choice of the discrete
storage effort/flow variables. The discrete forms of the resistive elements and of the effort/flow sources
are similar to the continuous ones. Also, the discretization of the time-varying power is represented
by its average on a time step. Thanks to the presented discretization formulation, the discrete-time
model preserves the energy balance. Moreover, we show that a time invariant coordinate transformation
transforms an energy-preserving time discretization PH system to another one. This can be used to
improve the accuracy of the discretization method.

• The presented method is validated through various simulations for the electro-mechanical elevator
which is a lossy PCH system. Fortunately, since the Hamiltonian is quadratic, we can easily find a
discretization scheme for the storage port variables which guarantees the chain rule for the Hamiltonian
time derivation. As mentioned in the previous chapter, the electro-mechanical elevator dynamics is a
combination of two time scale dynamics: electrical and mechanical parts. The electrical dynamics
corresponds to the PMSM stator and is faster than the mechanical elevator dynamics. Therefore, to
study the behavior of the electro-mechanical elevator dynamical model, we use small discretization time
steps. This makes the numerical errors of the mechanical variables (i.e., elevator speed and position)
insignificant. Also, for the studied discretization methods we implement and compare different schemes
such as the explicit, implicit and midpoint rules for the interconnection matrix.

The presented method is applied for the multi-sources elevator system which is an open lossy PH system
with a control-modulated structure. Similarly to the case of the electro-mechanical elevator, only the
short time duration simulations are considered. It actually corresponds to the fast dynamics of the
converters and DC bus. In this case, the midpoint rule within the energy-preserving method is used
to compare with the first-order Euler methods. We find that its order is less than one obtained in the
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simulations for the electro-mechanical elevator. Besides, it does not create the energy sum error and
results in high accuracies of the discrete state variables.

This chapter is organized as follows. Section 3.2 formally defines the energy-preserving discretization
method. Section 3.3 presents the implementation of the proposed method for the electro-mechanical elevator
which serves for the machine parameter identification. Section 3.4 considers the implementation of the same
discretization method for the global multi-source elevator system in the fast time scale. Some conclusions
and discussions are presented in Section 3.5.

3.2 Energy-preserving discretization

3.2.1 Time discretization concept

A time approximation method has three elements: approximation basis, weight vector, approximate function.
Consider the time interval [t0, tf ], and the set G of all functions g : [t0, tf ] → R. The approximation basis
is defined by choosing N independent functions λi ∈ G with i ∈ {1, 2, . . . , N}, we have the approximation
basis. We gather them in a vector Λ(t) = [λ1(t) . . . λN (t)]T ∈ RN . Next, we represent the function g(t)
in these basis by N real numbers gi with i ∈ {1, 2, . . . , N}, which we denote as the weights or coordinates
of g(t). Similarly, we gather them in a vector gd = [g1(t) . . . gN (t)] ∈ R1×N . The approximation of the
function g(t) is denoted by ga(t) ∈ R and is defined as:

ga(t) =

N∑
i=1

giλi(t) = gdΛ(t). (3.2.1)

The approximation (3.2.1) is convergent if

lim
N→∞

ga(t) = g(t),∀t ∈ [t0, tf ]. (3.2.2)

Note that the approximation basis is chosen according to different criteria, e.g., the required accuracy, the
available computation. However, to simplify the numerical computation we consider in (3.2.1) the first-order
B-splines basis functions defined as:

λi(t) =

{
1, if t0 + (i− 1)h ≤ t < t0 + ih,

0, else ,∀i ∈ {1, 2, . . . , N}, (3.2.3)

where h =
tf − t0
N

is the time step. Note that, this choice is suitable for practical control. In fact, the real

control signals are implemented at the beginning of each time step and kept constant until the next time
step while waiting for the next control signals. The same situation happens for the feedback signals which
are usually sampled with the same frequency. Therefore, in our work, the time discretization is defined as
the time approximation with the first-order B-splines basis as in (3.2.1)-(3.2.3). The weights gd in (3.2.1)
represent the discrete functions of g(t).

Using the above prerequisites the next subsection investigates the discrete functions of the state, flow and
effort variables given in the PH Definition 2.2.5.

3.2.2 Energy-preserving discretization method

For the PH systems, the dynamical equations are described in terms of relations among sets of effort, flow and
state variables. Thus, the time discretization of PH dynamics is defined as a set of algebraic equations which
include discrete functions of the state, control, flow and effort variables. The main idea of the investigated
method is to preserve the energy balance while maintaining unchanged the structure matrices describing the
continuous time model.

First we define the discretized constitutive equations for the interconnection and for the DC microgrid
elements (i.e., energy storage, static elements, time varying power source). The skew-symmetric form of
the discrete-time interconnection matrix will guarantee power conservation within the interconnection. The
chain rule for the discrete Hamiltonian time derivative and the average power for the time-varying power
source will guarantee the energy conservation.
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Discrete interconnection matrix: Let us recall the hybrid input-output representation of a PH system (see
also Section 2.2.2 and [Duindam et al., 2009]):

f(t) = D(x,u)e(t,u), (3.2.4)

where x(t) ∈ X ⊂ Rn,u(t) ∈ U ⊂ Rm are the state and control variables. The port variables are gathered in
the flow and effort vectors as:

f(t) =
[

fS(t) fR(t) fE(t)
]T
,

e(t) =
[

eS(t) eR(t) eE(t,u)
]T
.

(3.2.5)

where fR(t), eR(t) are the flow and effort variables of the resistive element defined in (2.2.5), and fE(t), eE(t)
are the flow and effort variables of the environment where some ports satisfy some time-varying constraints.
The flow and effort of the energy storage are described correspondingly by the time derivative of state variable
fS(t) = −ẋ(t), and the gradient vector of the Hamiltonian eS(t) = ∇H(x). Furthermore, in (3.2.4) the system
interconnection is described by the skew-symmetric matrix D(x,u) given as:

D(x,u) =

 −J(x,u) −GSR(x,u) −G(x,u)

GT
SR(x,u) 0 GRE(x,u)

GT (x,u) −GT
RE(x,u) M(x,u)

 = −DT (x,u). (3.2.6)

Note that the control variables u(t) modulate the external effort. If the interconnection matrix D does
not depend on the control signal u, the PH system defined by (3.2.4)-(3.2.6) is PCH system. Moreover,
the skew-symmetric property of D(x,u) entails the internal power conservation of the system (3.2.4), i.e.,
eT (t)f(t) = 0.

The chain rule for the Hamiltonian, that is

Ḣ(t) = ẋT (t)∇H(x), (3.2.7)

and (3.2.4)-(3.2.6) allow to derive the energy conservation property, i.e.,

Ḣ(t) = eTE(t)fE(t) + eTR(t)fR(t). (3.2.8)

Furthermore, if the Hamiltonian is convex and non-negative, the PH system defined by (3.2.4)-(3.2.6) is
passive, i.e.,

Ḣ(t) ≤ eTE(t)fE(t). (3.2.9)

In fact, this represents, the passivity property with storage function H(x) and input/output pair eE(t), fE(t).
Besides the state modulation, in the converter system the interconnection is switched between different

topologies. For describing the topologies some binary variables are added in the interconnection matrices.
However, since they are switched repeatedly with a high frequency, we replace the binary variables by their
averages. More specifically, this average is the ratio of the time duration when the binary variable is 1 and
the switching cycle duration (i.e., the sum of the duration when the binary variable is 1 and the duration
when the binary variable is 0). Furthermore, they are also the control variables.

Hereinafter, the discretization of the interconnection matrix D(x,u) in (3.2.6) is derived which varies
with the discrete time.

Definition 3.2.1 (Discrete interconnection). Let D(x,u) be the interconnection matrix defined in (3.2.4)
and (3.2.6). Its discretization Dd over the time interval [t0, tf ] is an arranged set of N matrices Di with
i ∈ {1, . . . , N} denoting the time step such that:

Di = D(gD(i,xd),ui), (3.2.10)

where gD is a chosen discretization map gD : {1, . . . , N} × XN → X and xd ∈ XN is the discrete function of
x(t). Thus, the discretization of the Dirac structure (3.2.4) is described by:

fi = D(gD(i,xd),ui)ei. (3.2.11)

The previous definition states that the discrete form of the interconnection matrix D(x,u) is obtained by
replacing x and u with gD and ui, respectively. There are many possible choices for gD, e.g.,

gD(i,xd) = xl,i,

gD(i,xd) = xi+1,

gD(i,xd) =
xl,i + xi+1

2
.

(3.2.12)
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The above discretization schemes are not computationally demanding and this will be proven through simu-
lations for the electro-mechanical elevator and the microgrid system.

We denote the discrete functions of effort and flow variables given in (3.2.5) by fS,d, fR,d, fE,d, eS,d, eR,d,
eE,d. Thanks to (3.2.10) and the skew-symmetry form of Di, the power conservation is also satisfied in the
discrete case:

fTS,ieS,i + fTR,ieR,i + fTE,ieE,i = 0, ∀i ∈ {1, . . . , N}, (3.2.13)

where fS,i, fR,i, fE,i, eS,i, eR,i, eE,i are the i-th elements of the discrete functions fS,d, fR,d, fE,d, eS,d, eR,d,
eE,d, respectively.

Discrete energy storage: In the continuous case, the Hamiltonian satisfies the chain rule. This will be
also guaranteed in the discrete time case by appropriate choices of the discrete functions for the storage port
variables fS,d, eS,d which satisfy the discrete energy balance equation on each time interval [ti−1, ti].

Definition 3.2.2 (Discrete energy storage). Let fS,d(xd), eS,d(xd) and xd ∈ XN be the discrete functions of
fS(t), eS(t) and x(t), respectively. They are said admissible if:

−hfTS,i(xd)eS,i(xd) = H(xi)−H(xi−1), ∀i ∈ {1, . . . , N},

lim
N→+∞

fS,i(xd) = ẋ(ti), ∀i ∈ {1, . . . , N},

lim
N→+∞

eS,i(xd) = ∇H(xi), ∀i ∈ {1, . . . , N}.
(3.2.14)

Generally, it is difficult to find all admissible choices for the discrete flow and effort vectors. However, we
can characterize a class of these solutions. A popular discretization scheme for the storage flow vector is the
left finite difference formula:

fS,i(i,xd) = −xi − xi−1

h
. (3.2.15)

Then, the corresponding discretization for the storage effort vector is given by the discrete derivative of the
Hamiltonian:

eS,i(i,xd) = DH(xi,xi−1). (3.2.16)

where the discrete derivative, Dg, of a function, g, is defined in the following definition.

Definition 3.2.3. (Discrete derivative [Gonzalez, 1996]) Let X be an open subset of Rm. A discrete derivative
for a smooth function g : X→ R is a mapping Dg : X× X→ Rm with the following properties:

1. Directionality: Dg(x1,x2)T (x1 − x2) = g(x1)− g(x2) for any x1,x2 ∈ X,

2. Consistency: Dg(x1,x2) = ∇g
(

x1 + x2

2

)
+O(‖x1 − x2‖) for all x1,x2 ∈ X with ‖x1 − x2‖ sufficiently

small.

Proposition 3.2.4. The discretization scheme defined by (3.2.15) and (3.2.16) is admissible.

In the following, we present two examples for finding the discrete derivative of the Hamiltonian.

Example 3.2.5. (Midpoint rule for the discrete derivative of a quadratic Hamiltonian [Hairer et al., 2006]).
Let H(x) be a quadratic Hamiltonian:

H(x) = Q0 + QT
1 x +

1

2
xTQ2x, (3.2.17)

where x ∈ X ⊂ Rn, Q0 ∈ R, Q1 ∈ Rn×1, Q2 ∈ Rn×n such that Q2 = QT
2 ≥ 0. The discretization for the

storage effort vector defined by the midpoint rule is a discrete derivative of the Hamiltonian H(x) in (3.2.17):

eS,i(i,xd) = Q1 + Q2
xi + xi−1

2
, ∀i ∈ {1, . . . , N}. (3.2.18)

Consequently, the discretization scheme defined by (3.2.15) and (3.2.18) is admissible thanks to Proposition
3.2.4. This method will be employed later in Section 3.3 and 3.4 for the simulations of the electro-mechanical
elevator and of the microgrid system.



46 Chapter 3. Energy-preserving discretization

Example 3.2.6. (Discrete gradient [Aoues, 2014, Falaize and Hélie, 2017]). Another method for finding the
discrete derivative of the Hamiltonian is by using the discrete gradient. Consider that the discrete-time states
xi−1,xi are two opposite vertices of a hypercube in the state space X ∈ Rn, where xi−1 is the origin and
xi is the final state. We consider a path from xi−1 to xi including n sub-paths which are the edges of the
hypercube. Thus, there are n! choices for this path. The path and the corresponding Hamiltonian evolution
are described by the following graph:

xi−1 → . . . →


. . .

xk,i−1

. . .

xj,i−1

. . .

 →


. . .

xk,i

. . .

xj,i−1

. . .

 →


. . .

xk,i

. . .

xj,i

. . .

 → . . . → xi,

xi−1 → . . . → . . . → xk,i−1 → xj,i−1 → . . . → . . . ,

H(xi−1) → . . . → . . . → Hk(xk,i−1) → Hj(xj,i−1) → . . . → H(xi),

(3.2.19)

where xk,i and xj,i are the kth and jth coordinates of the state vector at the instant i, xj,i−1 ∈ Rn is the
discrete state vector where only the jth coordinate is different from the jth coordinate of the discrete state
vector on the left in the series (3.2.19), i.e., xk,i−1. The discrete gradient of the Hamiltonian is denoted by
∇H(xi−1,xi) ∈ Rn where the jth coordinate is defined by:

∇jH(xi−1,xi) =
Hj(xj,i−1)−Hk(xk,i−1)

xj,i − xj,i−1
. (3.2.20)

From Proposition 6 in [Aoues, 2014], the mapping ∇H : Rn × Rn → Rn defined by (3.2.20) is a discrete
derivative. Therefore, using Proposition 3.2.4, the discretization scheme for the storage effort vector, eS(t),
and (3.2.15) for the storage flow vector, fS(t), are admissible:

eS,i(i,xd) = ∇H(xi−1,xi). (3.2.21)

Furthermore, if the Hamiltonian is quadratic as in (3.2.17) and the weight matrix Q2 is diagonal, the discrete
gradient of the Hamiltonian is rewritten as:

∇H(xi−1,xi) =


. . .

Hj(xj,i−1)−Hk(xk,i−1)

xj,i − xj,i−1

. . .



=


. . .

Q1,jxj,i +
1

2
Q2,j,jx

2
j,i −Q1,jxj,i−1 −

1

2
Q2,j,jx

2
j,i−1

xj,i − xj,i−1

. . .



=


. . .

Q1,j + Q2,j,j
xj,i + xj,i−1

2

. . .

 = Q1 + Q2
xi + xi−1

2
,

where Q1,j is the element at the jth row of matrix Q1, Q2,j,j is the element at the jth row and jth column
of matrix Q2. In this case, we see that the discrete gradient of the Hamiltonian satisfies the midpoint rule
for the Hamiltonian gradient vector.

Besides the linear discretization scheme for the flow vector (3.2.15), an admissible choice may be nonlinear.
For example, if all the coordinates of the state vector are different from zero, a discretization for the storage
flow variable is given by:

fS,j,i(i,xd) = −
x2
j,i − x2

j,i−1

2hxj,i
, j = 1, . . . , n, i = 1, . . . , N. (3.2.22)
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Next, the discretization for the storage effort vector is obtained by rewriting (3.2.16) as:

eS,j,i(i,xd) =
xj,i

xj,i + xj,i−1
DHj(xi−1,xi), j = 1, . . . , n, i = 1, . . . , N. (3.2.23)

where n ∈ N is the dimension of the state space X, fS,j,i, eS,j,i, xj,i, DHj are, respectively, the jth coordinates
of the flow, effort, state and discrete derivative vectors at the instant ti. By multiplying the discrete time flow
in (3.2.22) by the discrete time effort in (3.2.23), we can verify the energy conservation condition (3.2.14) as
follows:

−hfS,i(xd)
TeS,i(xd) = −h

n∑
j=1

fS,j,i(i,xd)eS,j,i(i,xd)

= −h
n∑
j=1

(
−

x2
j,i − x2

j,i−1

2hxj,i

)(
xj,i

xj,i + xj,i−1
DHj(xi−1,xi)

)
=

n∑
j=1

(xj,i − xj,i−1)DHj(xi−1,xi)

= H(xi)−H(xi−1).

Generally, the nonlinear discretization schemes are not definite over the whole state space, e.g., the scheme
(3.2.22) is not definite in {x ∈ X|∃j ∈ {1, . . . , n}, xj = 0}. Furthermore, they require a huge computation
due to the complex derived algebraic equations for the discretization scheme. Moreover, these equations may
have no solution. However, in some cases, to improve the accuracy of the discretization we must use nonlinear
schemes. An example for the nonlinear flow discretization will be considered in Section 3.2.3.

Discrete static elements: An element is called static if its port variables satisfy a static relation. From
this definition, the static elements of the microgrid system are the static resistive element, the constant power
source, the effort/flow sources, the fast time scale dynamics at its steady state. These static relations are
defined for the discrete time model as in the following definition.

Definition 3.2.7 (Discrete static elements). Let f(t), e(t) be the conjugate variables of the static ports with
the static relation:

s(f , e) = 0, ∀t ∈ [t0, tf ]. (3.2.24)

Their discrete functions fd, ed are chosen such that:

s(fi, ei) = 0, ∀i ∈ {1, . . . , N}. (3.2.25)

Discrete time-varying power source: There are some ports where the product of the conjugate variables
is not static, i.e., time-varying power source P (t) with:

f(t)e(t) = P (t), ∀t ∈ [t0, tf ], (3.2.26)

where f(t), e(t) ∈ R are the flow and effort variables. The relation (3.2.26) will serve to find the discretized
forms of the discrete functions fd, ed, Pd, where Pd is the discrete function of P (t). The corresponding
discretization scheme is presented in following definition.

Definition 3.2.8 (Discrete explicit time-varying power source). The discrete-time model of the explicit time
varying power source defined by (3.2.26) is described as:

fiei = Pi, with Pi =
1

h

(i+1)h∫
ih

P (t)dt, ∀i ∈ {1, . . . , N}. (3.2.27)

The previous definition of the discretization of time varying power source implies that the supplied energy
of the discrete power during the interval [ti, ti−1] is equal to the supplied energy of the continuous power.
Obviously, it requires the exact data for the supplied power which is not always available.

Discussions: The discrete-time dynamics of the PH system (3.2.4)-(3.2.6) are specified by the discretiza-
tion schemes as in Definitions 3.2.1-3.2.8. We underline that the presented discretization method preserves
the energy balance, i.e.,

H(xi)−H(xi−1) = fTR,ieR,i + fTE,ieE,i, ∀i ∈ {1, . . . , N}. (3.2.28)

Also, if the Hamiltonian is bounded from below, the discrete-time PH system is passive. However, the
discretized energy may not be equal to the continuous one.
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Remark 3.2.9. Note that the chosen discretization scheme needs to satisfy the convergence condition (Defi-
nition 4.1 in [Hairer et al., 2000]). If it is a linear multistep method, the necessary and sufficient conditions
for the convergence are the stability and consistency (Theorem 4.2 in [Hairer et al., 2000]). However, since
this is not the main goal of our work, we assume that these conditions are always respected.

3.2.3 Discrete-time Port-Hamiltonian system through coordinate transforma-
tion

In this subsection we consider the discrete-time PH system through the coordinate transformation. According
to Proposition 2.4.2 every invertible time invariant transformation of the state space z = ϕ(x) preserves the
PH formulation.

Let the Jacobian matrix of the state transformation be defined by:

W(x) , ∂xϕ(x). (3.2.29)

For the simplicity, we denote by W(z) the representation of the Jacobian matrix by the transformed state
W(ϕ−1(z)) where ϕ−1(z) implies the inverse state transformation. The transformed PH system is described
by:

fz(t) = Dz(z,u)ez(t, z,u), (3.2.30)

where z(t) ∈ ϕ(X), u(t) ∈ U are the state and control variables. The port variables are represented by the
global flow and effort vectors as:

fz(t) =
[

fS,z(t) fR,z(t) fE,z(t)
]T
, ez(t) =

[
eS,z(t) eR,z(t) eE,z(t,u)

]T
, (3.2.31)

where the storage flow and effort vectors are given by fS,z(t) = −ż(t), eS,z(t) = ∇H(z). The transformed
interconnection matrix is given by:

Dz(z,u) =

 −W(z)J(z,u)WT (z) −W(z)GSR(z,u) −W(z)G(z,u)

GT
SR(z,u)WT (z) 0 GRE(z,u)

GT (z,u)WT (z) −GT
RE(z,u) M(z,u)

 . (3.2.32)

Note that the relations of the port variables in two coordinates are described as follows:

fS,z(t) = −ż(t) = −W(x)ẋ(t) = W(x)fS(t),

eS(t) = ∇H(x) = WT (x)∇H(z) = WT (x)fS,z(t),

fR,z(t) = fR(t),

eR,z(t) = eR(t),

fE,z(t) = fE(t),

eE,z(t) = eE(t).

(3.2.33)

Proposition 3.2.10. Let zd, fS,z,d, fR,z,d, fE,z,d, eS,z,d, eR,z,d, eE,z,d be the discretizations of the state
variable and the flow and effort vectors of the PH system (3.2.30)-(3.2.32) by using the energy-preserving
discretization method as in Definitions 3.2.1-3.2.2, 3.2.7-3.2.8. Then, the discretizations of the state, flow
and effort vectors of the PH system (3.2.4)-(3.2.6) obtained by

xi = ϕ−1(zi),

fS,i = W−1(gD(i, zd))fS,z,i,

eS,i = WT (gD(i, zd))eS,z,i,

fR,i = fR,z,i,

eR,i = eR,z,i,

fE,i = fE,z,i,

eE,i = eE,z,i,

(3.2.34)

is an energy-preserving discretization of the PH system (3.2.4)-(3.2.6).
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Proof. The discrete-time state, flow and effort vectors in (3.2.34) satisfy conditions (3.2.11), (3.2.14), thus,
concluding the proof.

Thanks to the explicit description of the energy through the Hamiltonian in the PH formulation, the
energy-preserving discretization method was developed. It is important to mention that, there exists a
special property called Casimir for which a coordinate transformation of the PH formulation is necessary.
Note that Casimir C(x) is a function which is constant along the state trajectory with any Hamiltonian
(see in the Appendix B, Section B.2.2). The following example illustrates an energy-preserving discretization
scheme which preserves Casimir by using a suitable coordinate transformation.

Example 3.2.11. (Discretization scheme for preserving the Hamiltonian and the Casimir)
PH system and Casimir property: Consider a PH system given by:

ẋ(t) = J(x)∇H(x), (3.2.35)

where x(t) = [x1(t) x2(t) x3(t)]T ∈ R3 is the state vector, the interconnection matrix and the Hamiltonian
are given by:

J(x) =

 0 0 x2

0 0 −x1

−x2 x1 0

 ,

H(x) =
1

2

(
x1 −

1

2

)2

+
1

2
x2

2 +
1

2
x2

3 = Q0 + Q1x +
1

2
xTQ2x,

(3.2.36)

with Q0 =
1

4
, Q1 =

[
−1

2
0 0

]
, Q2 = I3. It is easy to verify that the Hamiltonian H(x) and the

Casimir

C(x) =
x2

1 + x2
2

2

are the invariants of the considered PH system. In what follows, we present 5 time discretization schemes for
the system (3.2.35)-(3.2.36) including:

• 2 classical schemes: the explicit and implicit Euler schemes,

• 2 energy-preserving schemes called the mix scheme 1 and the mix scheme 2,

• an energy-preserving scheme which also preserves the Casimir.

We partition the time duration [0, T ] to N time subintervals with the time step h =
T

N
. Let i ∈ {1, . . . , N}

be the time index.
The explicit/implicit Euler schemes: They are respectively given by the following expressions:

1

h
(xi − xi−1) =J(xi−1)(Q1 + Q2xi−1), (3.2.37a)

1

h
(xi − xi−1) =J(xi)(Q1 + Q2xi). (3.2.37b)

The mix scheme 1 and the mix scheme 2: Since the Hamiltonian is quadratic with the diagonal weight
matrix Q2, we can choose the midpoint rule for the discretization of the effort vector ∇H(x). Thus, they
are given by the following expressions:

1

h
(xi − xi−1) =J(xi−1)

(
Q1 + Q2

xi−1 + xi
2

)
, (3.2.38a)

1

h
(xi − xi−1) =J(xi)

(
Q1 + Q2

xi−1 + xi
2

)
. (3.2.38b)

The Casimir conservation scheme: Let z(t) = [z1(t) z2(t) z3(t)]T ∈ R3 be the transformed state vector
with

z1 = x1, z2 =
x3

x2
, z3 = C(x) =

x2
1 + x2

2

2
.
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Thus, the inverse state transformation is:

x1 = z1, x2 =
√

2z3 − z2
1 , x3 = z2

√
2z3 − z2

1 .

Note that we consider only the haftspace defined by x2 > 0 where the transformation is feasible. The Jacobian
matrix of this transformation is:

W(x) =


1 0 0

0 −x3

x2
2

1

x2

x1 x2 0

 =


1 0 0

0 − z2√
2z3 − z2

1

1√
2z3 − z2

1

z1

√
2z3 − z2

1 0

 = W(z).

The transformed PH system is described by:

ż(t) = Jz∇H(z), (3.2.39)

where the interconnection matrix and the Hamiltonian are, respectively:

Jz =

 0 1 0

−1 0 0

0 0 0

 , H(z) =
1

2

(
−z2

1z
2
2 + 2z2

2z3 − z1 + 2z3 +
1

4

)
. (3.2.40)

An energy-preserving discretization for the transformed system (3.2.39)-(3.2.40) is described by:

1

h
(zi − zi−1) = Jz


−1

2
(z1,i + z1,i−1) z2

2,i −
1

2

(z2,i + z2,i−1)

(
z3,i −

1

2
z2

1,i−1

)
z2

2,i−1 + 1

 .

We note that the elements on the third line of the interconnection matrix Jz are zeros. Therefore, Ci−Ci−1 =
z3,i − z3,i−1 = 0, ∀i. Thus, the C(z) is preserved along the discrete-time state trajectory. Using the
inverse state transformation, we determine the Casimir preserving discretization scheme of the original system
(3.2.35)-(3.2.36):

fi = J(xi−1)ei, (3.2.41)

with the discrete time flow vector:

fi = − 1

h


1 0 0

0 −x3,i−1

x2
2,i−1

1

x2,i−1

x1,i−1 x2,i−1 0


−1

x1,i − x1,i−1

x3,i

x2,i
− x3,i−1

x2,i−1

x2
1,i + x2

2,i

2
−
x2

1,i−1 + x2
2,i−1

2

 , (3.2.42)

and the discrete time effort vector:

ei =


1 0 0

0 −x3,i−1

x2
2,i−1

1

x2,i−1

x1,i−1 x2,i−1 0


T



−1

2
(x1,i + x1,i−1)

x2
3,i

x2
2,i

− 1

2(
x3,i

x2,i
+
x3,i−1

x2,i−1

)(
x2

1,i + x2
2,i

2
− 1

2
x2

1,i−1

)
x2

3,i−1

x2
2,i−1

+ 1


. (3.2.43)

We can see that the admissible discrete time flow vector, fi(i,xd), is not in a linear form.
Simulations: The simulations for this example are implemented with the simulation duration T = 3s and

the initial state x0 = [1 1 − 1]T . The state variable errors of these schemes are computed as

error = max
i
||xi − x(ti)||2 ,
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where x(t) is the continuous time state at the instant t, ||.||2 is the second norm. After implementing some
simulations with different time steps h = 0.1s, h = 0.01s, h = 0.001s, we obtain Fig. 3.2.1 which indicates
that the mentioned schemes are first-order (the slope of the straight lines).
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Figure 3.2.1: State variable errors of the discretization schemes: explicit Euler, implicit Euler, mix scheme
1, mix scheme 2 and Casimir-preserving scheme.

Fig. 3.2.2 illustrates the evolution of the Hamiltonian and Casimir of the presented discretization schemes.
We can see that the schemes (3.2.37a) and (3.2.37b) do not preserve these invariants. The schemes (3.2.38a)
and (3.2.38b) preserve the Hamiltonian (i.e., energy) but not the Casimir. The scheme (3.2.41)-(3.2.43)
preserves both the Hamiltonian and the Casimir.
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Figure 3.2.2: The evolutions of the Hamiltonian and Casimir of the discrete time systems obtained by the
explicit Euler, implicit Euler, mix scheme 1, mix scheme 2 and Casimir-preserving schemes.
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3.3 Numerical results for the electro-mechanical elevator

3.3.1 Discrete-time model

In this section we use the discretization method presented in Section 3.2 for discretizing the electro-mechanical
elevator dynamics given by (2.4.24). In the dynamics (2.4.24), the input matrix Gl is modulated by the control
variable dl. We simplify the input matrix by defining the voltages and currents on the direct and quadrature
phase of the machine stator, denoted by vl(t), il(t) ∈ R2, such that:

vl(t) , dl(t)vl(t),

il(t) , [I2 0]∇Hl(xl).

Then, the dynamics (2.4.24) is rewritten as:{
fl(t) = Dl(xl)el(t),

vlR(t) = −RlilR(t),
(3.3.1)

where the flow/effort variables and the interconnection matrix are:

fl(t) =

 −ẋl(t)

ilR(t)

il(t)

 , el(t) =

 ∇H(x)

vlR(t)

vl(t)

 , Dl(xl) =

 −Jl(xl) −GlR(xl) −Gll

GT
lR(xl) 0 0

GT
ll 0 0

 , (3.3.2)

with the input matrix:

Gll =

[
I2

0

]
∈ R4×1. (3.3.3)

The Bond Graph description of this system can be found in Fig. 2.4.3. Now, we define the discrete model for
the dynamics (2.4.20)-(2.4.21), (2.4.28), (3.3.1) and (3.3.3) over the given time interval [t0, tf ] with N time
steps. From the discretization of the interconnection matrix (3.2.10) and the resistive element (3.2.25), we
describe the discrete form of (3.3.1) as:

fl,i = Dl(gD(i,xl,d))el,i, (3.3.4a)

vlR,i =−RlilR,i, (3.3.4b)

∀i ∈ {1, . . . , N}, where xl,d is the discretized function of the state variable xl, gD(i,xl,d) is described in the
Definition 3.2.1. Since the Hamiltonian is quadratic, the two corresponding discretization schemes can be
chosen as the forward finite difference formula and the midpoint rule for −ẋl and gH(i,xl,d), respectively, as
in (3.2.15), (3.2.18):

fl,i =

 −
xl,i − xl,i−1

h
ilR,i

il,i

 , el,i =

 Ql1 + Ql2
xl,i + xl,i−1

2
vlR,i

vl,i

 , (3.3.5)

where gH(i,xl,d) is defined in the Definition 3.2.2 of the discrete storage, Ql1, Ql2 are the weight matrices
in the Hamiltonian (2.4.30)-(2.4.31). Combining (3.3.4) and (3.3.5), we obtain the discrete model of the
electro-mechanical elevator system as:

 −
xl,i − xl,i−1

h
ilR,i

il,i

 = Dl(gD(i,xl,d))

 Ql1 + Ql2
xl,i + xl,i−1

2
vlR,i

vl,i

 ,
vlR,i = −RlilR,i,

(3.3.6)

∀i ∈ {1, . . . , N}. Note that the maps gD(i,xl,d) is freely chosen. In our work, three first schemes in (3.2.12)
are considered. The benefits of the above presented methods are shown through simulations in the following
section.
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3.3.2 Simulation results

This section presents some simulation results for the discrete-time model of the electro-mechanical elevator
system. The forthcoming simulations use the parameters presented in (2.4.21) and (2.4.28) with the numerical
data given by the industrial partner Sodimas (an elevator company from France). They are listed in Table
3.3.1. The simulation setting is presented in Table 3.3.2: the simulation duration, the time steps, the control
variables and the initial state variables. They satisfy the constraints on the rotor speed, on the position and
on the duty cycle given in Section (2.6.2). The electro-mechanical elevator dynamics admit the multi-time
scale property, i.e., the electromagnetic dynamics is much faster than the mechanical dynamics. In order to
consider the transient period for all state variables (where the discretization effect is visible), we study the
fastest dynamics for a duration T = 0.15 s (determined through simulations) and various time steps from
h = 10−5 s to h = 5.10−2 s as in Table 3.3.2.

Table 3.3.1: Numerical data for the electro-mechanical elevator.
Name Notation Unit Value
Number of pole pair p 10
Stator resistor Rl [Ω] 0.53
Direct stator inductance Ld [mH] 8.96
Quadrature stator inductance Lq [H] 11.23
Rotor linkage flux φf [V s] 0.94
Cabin mass Mc [kg] 350.00
Counterweight mass Mp [kg] 300.00
Pulley radius ρ [cm] 6.25
Gravity acceleration g [m/s2] 9.81

Table 3.3.2: Configuration for the electro-mechanical elevator simulation.
Name Notation Unit Value
Time interval T [s] 0.15
Time steps h [s] {10−5, 10−4, 10−3, 10−2, 5.10−2}
Input voltages vl [V ] [230 230]T

Initial states xl0 [7 7 150 0]T

Different energy-preserving discretization schemes: Firstly, we implement the energy-preserving dis-
cretization method with different schemes for gD(i,xl,d) (i.e., different discrete interconnection matrices)
defined in (3.3.6). Three simple schemes are considered:

1. Scheme 1:

gD(i,xl,d) = xl,i, (3.3.7)

2. Scheme 2:

gD(i,xl,d) = xl,i+1, (3.3.8)

3. Scheme 3:

gD(i,xl,d) =
xl,i + xl,i+1

2
. (3.3.9)

Fig. 3.3.1 illustrates the logarithm maximal absolute discrepancies between the discrete and continuous
states with different time steps:

errorj = max
i∈{1,...,N}

|xj,i − xj(t0 + ih)|,

where h is the time step, xj ∈ R is the jth coordinate of the state variable vector. Furthermore, from Fig.
3.3.1 we find that the orders of the mix Scheme 1, mix Scheme 2 and midpoint rule are 1, 1 and 2, respectively,
which are equal to the slopes of the straight lines.
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Figure 3.3.1: The state variable errors of the energy-preserving discretization schemes for the electro-
mechanical elevator.

Fig. 3.3.2 illustrates the state evolutions of the continuous dynamics and discrete dynamics with the time
step h = 0.01 s. We can see that the magnetic fluxes in the fast time scale converge to the steady values
determined by the mechanical variables in the slower time scale. From the electro-mechanical dynamics, we
can observe that only the rotor speed affects the two magnetic fluxes. Thus, even when the rotor position
increases, the steady states of the two magnetic fluxes do not change. Since Scheme 3 is second-order, the
obtained discrete state errors are smaller than the ones from the two others.
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Figure 3.3.2: The state evolution of the continuous dynamics (cont.) and of the energy-preserving discrete
models by using Scheme 1, Scheme 2, Scheme 3.

With the same scenario, Fig. 3.3.3 illustrates the evolution of Hamiltonian in the continuous and discrete
cases. At the beginning, though the supplied power is positive, the stored energy decreases because of the
high energy dissipation in the stator resistance. The offset errors of the discrete Hamiltonian are caused by
the offset errors in the discrete elevator momentum pl,d.
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Figure 3.3.3: The stored energy evolution of the continuous dynamics (cont.) and of the energy-preserving
discrete models by using Scheme 1, Scheme 2, Scheme 3.

Energy-preserving discretization method and other methods: The next simulations present some compar-
isons of the energy-preserving method under Scheme 1 (see (3.3.6) and (3.3.7)) and two classical discretization
schemes (the explicit Euler, the implicit Euler). Based on (3.3.6), the discretization by the explicit and im-
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plicit Euler methods are respectively given by:
−xl,i − xl,i−1

h

il,R,i

il,i

 =Dl(xl,i−1)


Ql,1 + Ql,2xl,i−1

vl,R,i

vl,i

 , (3.3.10a)


−xl,i − xl,i−1

h

il,R,i

il,i

 =Dl(xl,i)


Ql,1 + Ql,2xl,i

vl,R,i

vl,i

 , (3.3.10b)

where the discretization for the resistive element is given by (3.3.4b).
Fig. 3.3.4 illustrates the logarithm of the maximal absolute errors of the discrete time states with different

time steps:

errorj = max
i∈{1,...,N}

|xj,i − xj(t0 + ih)|.

where h is the time step, xj ∈ R is the jth coordinate of the state vector. From the results, we can realize
that the order of the studied discretization methods is 1.
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Figure 3.3.4: The state errors of the electro-mechanical elevator by using the explicit Euler (ex), implicit
Euler (im), energy-preserving (st) methods.

Beside the state error, we study here the created energy sum error which is defined by the discrepancy
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between the increasing energy and the one supplied from the resistive and external elements:

Eh = H(xl,i)−H(xl,i−1)− (PR + PE)h. (3.3.11)

The power sum error is defined by:

Ph =
Eh
h
. (3.3.12)

From the previous definitions, we can easily prove that the explicit Euler method creates the positive energy
sum error.

Eex =

(
Ql,0 + QT

l,1xl,i +
1

2
xl,iQ

T
l,2xl,i

)
−
(

Ql,0 + QT
l,1xl,i−1 +

1

2
xl,i−1Q

T
l,2xl,i−1

)
−(iTl,R,ivl,R,i + iTl,ivl,i)h , thanks to (2.4.30),

=
1

2
(xl,i − xl,i−1)TQl,2(xl,i − xl,i−1) > 0 , thanks to (3.3.10a) and D = −DT .

Similarly, the implicit Euler method creates the negative energy sum error

Eim = −1

2
(xl,i − xl,i−1)TQl,2(xl,i − xl,i−1),

and the energy-preserving method does not create the energy sum error, i.e.,

Een = 0.

Fig. 3.3.5 illustrates the previous demonstrations. The first three sub-figures describe the supplied power
from storage, resistive and external elements. The last one indicates the power sum error defined by (3.3.12).
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Figure 3.3.5: The element power of the continuous dynamics (cont.) and discrete ones by using the explicit
Euler, implicit Euler, Scheme 1 methods.

The evolution of the Hamiltonian of the continuous and discrete systems are given in Fig. 3.3.6. We
observe that, though Scheme 1 preserves the energy, the discrete energy error may be greater than the ones
obtained by the classical first order methods. From the state errors in Fig. 3.3.4 and Hamiltonian formulation
(2.4.30), we find that this energy error of Scheme 1 is mainly caused by the error of the discrete time cabin
position θl.
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Figure 3.3.6: The stored energy evolutions of the continuous dynamics and discrete ones by using the explicit
Euler, implicit Euler and Scheme 1 methods.

Discussions: From the above simulations for the electro-mechanical elevator, some remarks are in order.
An energy-preserving method does not create the energy sum error/power. Scheme 3 of the energy-preserving
method for the electro-mechanical elevator is actually the midpoint method.

3.4 Numerical results for the global multi-source elevator dynam-
ics

3.4.1 Discrete-time model

This section studies an energy-preserving discrete-time model for the DC microgrid presented in Section
2.5.2. Since the microgrid dynamics (2.5.7) have the multi-time scale property, the transient period of the
fast dynamics takes place in a short time interval which requires short time steps. Other than investigating
the efficiency of the discretization method, we will illustrate the consistency of the multi-time scale property
and the stability of the fast dynamics. Therefore, we consider here a short time duration where the slow
variables are assumed to be constant.

In the discretization method proposed in Section 3.2, we aim at finding the maps gD(i,xd), f(i,xd)
and e(i,xd). For the simplicity, the discretization of the flow vector is chosen by the left finite difference
formula (3.2.15). Furthermore, since the Hamiltonian is quadratic as (2.5.11), the suitable choice for the
effort discretization is given by the midpoint rule (3.2.18). Therefore, the discretization of the flow and effort
variables in (2.5.8) is described as:

fi =


−xl,i − xl,i−1

h

fR,i

ve,i

vr,i

 , ei =


Q1 + Q2

xl,i + xl,i−1

2

eR,i

ie,i

ir,i

 , ∀i ∈ {1, . . . , N}. (3.4.1)

Based on the results obtained for the three scheme comparisons for gD(i,xd) in Section 3.3, we choose here
the midpoint discretization:

gD(i,xd) =
xl,i + xl,i−1

2
, ∀i ∈ {1, . . . , N},

which leads to the discrete interconnection:

fi = D

(
xl,i + xl,i−1

2
,di

)
ei, ∀i ∈ {1, . . . , N}. (3.4.2)

From Definition 3.2.7, the discrete model for the static resistive element is expressed as:

fR,i = −RReR,i, ∀i ∈ {1, . . . , N}. (3.4.3)
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From Definition 3.2.8, we get the discrete model for the renewable power source:

fr,ier,i = Pr,i, with Pr,i =
1

h

(i+1)h∫
ih

Pr(t)dt, ∀i ∈ {1, . . . , N}. (3.4.4)

Consequently, by combining (3.4.1)-(3.4.4) the discrete-time model for the microgrid is given as:


−xl,i − xl,i−1

h

fR,i

ve,i

vr,i

 = D

(
xl,i + xl,i−1

2
,di

)


Q1 + Q2
xl,i + xl,i−1

2

eR,i

ie,i

ir,i

 ,

Pr,i = −ir,ivr,i,
fR,i = −RReR,i,

(3.4.5)

∀i ∈ {1, . . . , N}.

3.4.2 Simulations for the global multi-source elevator dynamics

This section presents simulation results for the discrete-time model of the DC microgrid elevator illustrated
in Fig. 2.1.1. The parameters are presented in Section 2.3 and 2.4 with some numerical data given by the
industrial partner Sodimas (an elevator company from France) which are given in Table 3.3.1 and 3.4.1.

Table 3.4.1: Numerical data for the ESS.
Name Notation Unit Value
DC bus capacitors Cb, Cs, Cl, Ce, Cr [C] 0.008
DC bus resistors Rt,1 [Ω] 0.13

Rt,2 [Ω] 0.17
Rt,3 [Ω] 0.19
Rt,4 [Ω] 0.23
Rt,5 [Ω] 0.29
Rt,6 [Ω] 0.31

Reference DC bus voltage v∗l [V ] 400
DC converter inductances Lb,1, Lb,2, Ls,1, Ls,2 [mH] 0.25
DC converter capacitances Cb,1, Cb,2, Cs,1, Cs,2 [F ] 0.008
Battery maximal charge qmax [Ah] 183
Battery charge factor b 0.4
Battery internal coefficient k [s−1] 0.000105
Maximal voltage Emax [V ] 13.8
Minimal voltage Emin [V ] 13
Battery resistor Rb [Ω] 0.015
Supercapacitor charge Cs [C] 58
Supercapacitor resistor Rs [Ω] 0.026
Renewable power Pr [W ] 400
External current ie [A] -1

Different scenarios with many time steps and discretization methods are considered. In fact, other than
the energy-preserving method, the explicit/implicit Euler methods are also considered for comparisons. The
duty cycles d(t) ∈ R4 are chosen constant such that the constraints (2.6.5) and (2.6.12) are satisfied. The
dynamics of the energy-supplying system admit the multi-time scale property, e.g., the dynamics of converter
and DC bus are faster than the others (mechanical and chemical ones). We consider the transient period
where the discretization effect is visible, we study the fastest dynamics over a time duration T = 0.01s
(determined by the simulation), and various time step from h = 10−6s to h = 10−4s. Furthermore, during
this short time interval, the external current ie and renewable power Pr are assumed to be constant. The
simulation configurations are presented in Table 3.4.2.
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Table 3.4.2: Configuration for microgrid simulation.
Name Notation Unit Value
Time interval T [s] 0.01
Duty cycles d [0.97 0.93 0.5 0.5]T

External current ie [A] -1
Renewable power Pr [W ] 400
Initial DC bus charges xt(0) [C] [3.432 2.808 3.432 3.120 3.120]T

Initial battery charges xb(0) [C] [210816 316224]T

Initial battery converter states xcb(0) [0 3.2 0 0.104]T

Initial supercapacitor charges xs(0) [C] 1740
Initial supercapacitor converter states xcs(0) [0 3.2 0 0.24]T

Initial electro-mechanical elevator state xl(0) [1.2 1 0 0]T

Fig. 3.4.1 describes the discrete state errors of the microgrid state variables (the battery, the supercapac-
itor, the converters and the DC bus) with different time steps. From the simulation results, we can observe
that the orders of the explicit/implicit Euler and energy-preserving methods are 1. Especially, the order
of the electro-mechanical elevator state errors under Scheme 3 is not 2 as the simulation results under this
scheme in Section 3.3.2. This is caused by the short time simulation where these variables are nearly con-
stant. Since the microgrid interconnection is modulated only by these variables, it makes the interconnection
matrix constant, and the microgrid dynamics becomes linear (due to the quadratic Hamiltonian). Therefore,
the midpoint rule becomes a first-order method.

Fig. 3.4.2 illustrates the Hamiltonian evolution in the continuous and discrete cases. At the beginning, it
decreases because of the energy dissipation in the resistors. Moreover, the transient period in the Hamiltonian
dynamics (from 0 ms to 1 ms) corresponds to the fast dynamics of the converter and transmission lines. We
note again that the transient period of these dynamics are much shorter than the transient period of the
machine stator dynamics which approximates 0.15 s as in Fig. 3.3.2.

Fig. 3.4.3 describes the element and the power sum error of the discrete methods. Similar to the conclusion
in Section 3.3.2, we find that the explicit/implicit Euler method create the positive/negative power sum error
for the considered microgrid system while the midpoint rule does not.

3.5 Conclusions

In this chapter, we formulated an energy-preserving time discretization method for nonlinear Port-Hamiltonian
systems. We proposed separate discretizations for each of the essential elements in the PH formulation such
as, the power-preserving interconnection, the energy storage, the static element and the time-varying power
source. The energy conservation property is guaranteed by preserving the skew-symmetric form of the in-
terconnection matrix and the chain rule for the time derivative of the Hamiltonian. Moreover, we showed
that a discrete-time system obtained by a time invariant coordinate transformation for an energy-preserving
discrete-time system is also an energy-preserving discrete-time system. An illustrative example is presented
where this combination is used to improve the accuracy of the discretization method. The formulated energy-
preserving time discretization method is interesting since it is suitable for nonlinear PH system where the
interconnection matrix is modulated by the control variables. Furthermore, for the passive PH system, the
discrete-time model preserves the passivity which will be useful for control purposes.

We apply the presented method and two classical methods (explicit/implicit Euler methods) for the
electro-mechanical system and the multi-sources elevator system within the fast time scale.

The energy-preserving time discretization method leads to the high accuracy discrete-time model with
respect to some classical same order discretization methods. Moreover, the accuracy order of a time discretiza-
tion scheme depends on the considered time scale. Some works which have proposed some discretizations
methods can be found in [Stramigioli et al., 2005,Talasila et al., 2006,Hairer et al., 2006,Aoues, 2014,Falaize
and Hélie, 2017].
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Figure 3.4.1: The microgrid state errors by using the explicit Euler (ex), implicit Euler (im) and energy-
preserving (midpoint) methods.
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Figure 3.4.2: The microgrid stored energy evolution of the continuous dynamics and discrete ones by using
the explicit Euler, implicit Euler and energy-preserving methods.
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Figure 3.4.3: The element and power sum errors of the discrete time system by using the explicit Euler,
implicit Euler and energy-preserving methods.
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Chapter 4

Optimization-based control for the
electro-mechanical elevator

4.1 Introduction

As presented in Section 2.6, the dissipated energy minimization for the electro-mechanical elevator respecting
the system dynamics, state and input constraints is formulated as a constrained continuous-time optimization
problem. This chapter presents in detail the problem formulation and its solution through the combined use
of Port-Hamiltonian system representation, differential flatness with B-splines parameterization and MPC
(Model Predictive Control).

Generally, it is difficult to solve a constrained continuous-time optimization problem. In the literature,
some solutions are given for the unconstrained and linear case, for example, the Linear Quadratic Regulator
(LQR) which is similar with a proportional controller determined from the solution of the Algebraic Riccati
Equation [Liberzon, 2011]. In LQR it is assumed that the whole state is available for control at all times.
One possible generalization is the Linear Quadratic Gaussian Regulator (LQG) where the design of a Kalman
filter is employed. The LQG is also studied for the case of linear Port-Controlled Hamiltonian systems in [Wu,
2015]. Note that LQR and LQG are tracking controllers, i.e., they stabilize the system to the references by
penalizing in the cost function the discrepancies between the actual signals and the references. In [Lifshitz
and Weiss, 2014], the authors find the solution of a constrained continuous-time optimization problem for
a capacitor-type energy storage system. The optimal control problem includes an economic cost function,
a first-order dynamics and a linear constraint. Methods for finding the solution of a constrained non-linear
optimal control problem with more general cost functions are still under study. A possible solution is to
approximate the continuous optimal problem by a discrete-time optimization, [Liberzon, 2011, Boyd and
Vandenberghe, 2004], which is easier to study and to implement.

There are various methods for approximating a continuous-time optimization by a discrete-time optimiza-
tion. A popular approach is by using the zero-order B-splines to parametrize the variables (see Section 3.2.1).
This is easy to implement [Rawlings and Mayne, 2009, Ellis et al., 2017]. A drawback of this approach is
represented by the fact that the approximated variables do not respect the system dynamics. Thus, higher
dimensions are necessary for good approximations, this requiring significant computations. To reduce the
computational complexity, the optimization problem can be decomposed into an off-line reference trajectory
generation and an on-line tracking control problem. This is the approach we follow in this work for the
optimal control of the electro-mechanical elevator of the DC microgrid system illustrated in Fig. 2.4.1

The electro-mechanical elevator includes the Permanent Magnet Synchronous Machine (PMSM), a me-
chanical elevator and an AC/DC converter. Usually, the reference profiles of the elevator speed and the
motor currents are separately generated. The elevator speed (also the rotor speed) is chosen as a symmet-
rical trapezoidal curve [Vittek et al., 2017]. In the feasible domain determined by the current and voltage
bounds, the motor current references are optimized by minimizing the MTPA (Maximum Torque Per Am-
pere) criterion [Lemmens et al., 2014]. However, this result is useful only for machine speed control, i.e., the
effect of the speed profile is not considered for the energy optimization. In [Chen et al., 2013], the profiles of
both stator current and rotor speed are generated in the transient period based on differential flatness [Fliess
et al., 1995] with a polynomial parameterization. Note that, no constraints are taken into account.

Furthermore, for the PMSM tracking control, various methods are proposed in the literature. A conven-
tional method is the Proportional Integral (PI) control combined with anti-windup techniques for dealing
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with the physical limits [Mardaneh et al., 2011]. Another approach is the backstepping method proposed
in [Bernat et al., 2014] where the current constraints are tackled by switching the reference speed. In [Petrović
et al., 2001] the Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) [Ortega et al.,
2002], an energy-based control method used mainly for nonlinear PH systems, was applied for the control of
PMSM. However, this approach does not explicitly take into account the constraints. In [Bolognani et al.,
2009], the authors increase the state vector dimension to obtain a linear system which is used for formulating
the tracking MPC. Note that the previously mentioned works do not consider the tracking control for the
rotor angle. This is considered in [Vittek et al., 2017] and [Chen et al., 2013] through the forced dynamics
control and adaptive control, respectively, but without taking into account the state and input constraints.

In here we use the differential flatness properties [Lévine, 2009] to express the state and input variables
of the electro-mechanical elevator system in function of some flat outputs and their finite time derivatives.
It allows us to take into account the system dynamics and to reduce the number of variables. Next, the flat
outputs are parametrized using B-splines with appropriate order [Suryawan, 2011].

While the flat output offers some important theoretical guarantees (continuous time constraint validation,
trajectory feasibility and the like) it still remains difficult to implement it in practice. The difficulties come
from the nonlinear nature of the mappings between flat output and states and inputs. In particular, the input
mappings are complex and thus lead to nonlinear constraints (for example those involving input magnitude
or rate) and non-convex costs (for example when considering the system’s energy).

The solution followed here is to consider the flat representations for the electro-mechanical elevator (the
slow part of the plant dynamics) and provide these as references to the fast part of the dynamics. Note that
giving these references implies that we need to check an equality constraint with nonlinear terms. This is not
easy to implement and leads to a numerically cumbersome formulation. A relaxation of the equality (soft
constraints where the slack term is penalized in the cost) is therefore proposed.

The original contributions of this chapter are summarized in the following:

• We formulate a quadratic cost function for the dissipated energy minimization through an appropriate
choice of the system flat outputs (i.e., two stator current and rotor speed of the electro-mechanical
elevator system). This choice leads to a continuous-time equality constraint related to the gravity
torque which is further rewritten in the optimization problem as a soft constraint.

• We provide sufficient conditions for the control points describing the B-splines which guarantee the
satisfaction of the stator currents and voltages constraints at all times. This condition is applied for
the constraints of the stator currents and of the stator voltages.

• We formulate the tracking MPC problem for stabilizing the state variables to the reference profiles. We
consider here both the nonlinear model and the linearized model of the discretized electro-mechanical
elevator system. Through the simulations, we illustrate the usefulness of the linearized model for
reducing the computation time of the MPC laws. Also, the open-loop simulations illustrate that the
dynamics of the two currents and of the rotor speed are asymptotically stable while the dynamics of
the rotor angle is not. This motivates us to concentrate on considering the tracking control for the
rotor angle. The efficiency of the formulated tracking MPC are validated through simulation results of
the closed-loop system.

This chapter is organized as follows. Section 4.2 presents the differential flatness notion, the B-splines curves
and their properties and tracking MPC. In Section 4.3 we apply the previous tools for the constrained optimal
control of the electro-mechanical elevator. Conclusions and discussions on the obtained results are given in
Section 4.4.

4.2 Basic tools for the constrained optimal control

Constrained optimal control theory deals with the problem of finding a control law for a given system
such that a certain optimality criterion is achieved under some given input and state constraints [Liberzon,
2011] (more details about different types of optimization problems are presented in Appendix C-D). This
section recalls first the standard formulation of a constrained optimal control problem. Next, the notions of
differential flatness, B-spline parameterization and tracking MPC are presented along the lines in [Lévine,
2009,Suryawan, 2011,Rawlings and Mayne, 2009].

The formulation of a constrained optimization problem includes the cost function, the control system
and the constraints. Let x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl denote the state, control and output variables,
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respectively. For a given initial time, t0, and a given initial state vector, x0, the control system is described
by the following dynamics:

ẋ(t) = g(x(t),u(t)), x(t0) = x0. (4.2.1)

The cost is denoted by V (x(t),u(t)) and given as:

V (x(t),u(t)) = Vf (xf ) +

tf∫
t0

Vr(t,x(t),u(t))dt. (4.2.2)

where Vf and Vr are given functions (terminal cost and running cost, respectively), tf is the final (or terminal)
time, and xf = x(tf ) is the final (or terminal) state vector. This cost is determined according to the desired
objective, e.g., dissipated energy, electricity cost. The state and control variables are limited by the equality
and inequality constraints as:{

gi(x(t),u(t)) = 0, i = 1, . . . , Ng, ∀t ∈ [t0, tf ],

hi(x(t),u(t)) ≤ 0, i = 1, . . . , Nh, ∀t ∈ [t0, tf ],
(4.2.3)

where Ng, Nh are the number of equality and inequality constraints, respectively. These constraints come
from physical limitations and/or the operation requirements. Another constraint is defined by the target set
Sf ⊂ [t0,∞)×Rn of the final time tf and of the final state xf . For example, depending on the optimization
formulation, we have the following target sets:

• Sf = [t0,∞)× Rn corresponds to a free-time free-endpoint problem,

• Sf = [t0,∞)× {x1} corresponds to a free-time fixed-endpoint problem,

• Sf = {t1} × Rn corresponds to a fixed-time free-endpoint problem,

• Sf = {t1} × {x1} corresponds to a fixed-time fixed-endpoint problem.

The final time and the final state must satisfy the following constraint:

(tf ,x(tf )) ∈ Sf . (4.2.4)

Consequently, from the previous ingredients, the constrained optimal control problem finds a control law u(t)
which

minimizes V (x(t),u(t)) (4.2.5a)

subject to

ẋ(t) = g(x(t),u(t)), x(t0) = x0, ∀t ∈ [t0, tf ], (4.2.5b)

gi(x(t),u(t)) = 0, i = 1, . . . , Ng, ∀t ∈ [t0, tf ], (4.2.5c)

hi(x(t),u(t)) ≤ 0, i = 1, . . . , Nh, ∀t ∈ [t0, tf ], (4.2.5d)

(tf ,x(tf )) ∈ Sf . (4.2.5e)

Generally, a constrained optimal control problem is difficult to solve. Note that the arguments of the cost
V (x(t),u(t)) in (4.2.2) are functions, this denoting that (4.2.5) is a continuous-time optimization problem
which is numerically intractable. As mentioned in the introduction of this chapter, only the unconstrained
optimal control, the so-called LQR, with the linear dynamics and quadratic cost function is analytically solved
[Liberzon, 2011]. When having constraints a nonlinear dynamics and a non-quadratic cost, the continuous-
time optimization problem (4.2.5) is usually approximated by a discrete-time optimization problem. Usually,
this is obtained by projecting the time-depending variables over some basis functions, and then replacing the
cost and the constraints in (4.2.5) with the cost and the constraints of the coefficients of the projections.
Also, it is important that the desired finite-dimensional optimization problem remains convex such that
well-established theory in the literature can be applied [Boyd and Vandenberghe, 2004].

In the following, the combination of differential flatness, B-splines and MPC notions will provide us the
necessary properties for accomplishing the above objectives.
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4.2.1 Differential flatness

This subsection recalls the differential flatness notion which is a structural property of the system dynamics
exhibiting the state and control variables by a finite number of derivatives of a defined flat output [Fliess
et al., 1995, Lévine, 2009] (see also Fig. 4.2.1). By using the differential flatness, we eliminate differential
equations and reduce the number of variables in the optimization problem.

Definition 4.2.1. (Flat system [Lévine, 2009]) The dynamical system (4.2.1) is called differentially flat if
there exist variables z(t) ∈ Rm such that the state and control variables can be algebraically expressed in
terms of z(t) and a finite number of its higher-order derivatives:{

x(t) = Φx(z(t), ż(t), . . . , z(q)(t)),

u(t) = Φu(z(t), ż(t), . . . , z(q+1)(t)),
(4.2.6)

where z(t) = γ(x(t),u(t), u̇(t), . . . ,u(q)(t)) is called the flat output and q + 1 is its maximal order derivative.

Remark 4.2.2. Generally, it is difficult to prove that the system is flat and find the flat output. We recall
here some important remarks which are obtained by theoretical approaches.

1. For any linear and nonlinear flat system the number of flat outputs equals the number of inputs [Lévine,
2009].

2. For linear systems, the flat differentiability (existence and constructive forms) is implied by the con-
trollability property [Lévine, 2009].

Figure 4.2.1: Differentially flat systems [Prodan, 2012].

By substituting the state variables, x(t), and the input variables, u(t), obtained from (4.2.6) in the
optimization problem (4.2.5), we obtain the optimization problem rewritten in function of the flat output:

min
z(t)

V (z(t), ż(t), . . . , z(q+1)(t)) (4.2.7a)

subject to

Φx(z(t0), ż(t0), . . . , z(q)(t0)) = x0, (4.2.7b)

gi(z(t), ż(t), . . . , z(q)(t)) = 0, i = 1, . . . , Ng, ∀t ∈ [t0, tf ], (4.2.7c)

hi(z(t), ż(t), . . . , z(q)(t)) ≤ 0, i = 1, . . . , Nh, ∀t ∈ [t0, tf ], (4.2.7d)

(tf ,Φx(z(tf ), ż(tf ), . . . , z(q)(tf ))) ∈ Sf . (4.2.7e)

As we can see the system dynamics are eliminated from the optimization problem (4.2.7). Note that the
number of eliminated constraints equals the number of eliminated variables (state variables). However, (4.2.7)
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is still a continuous-time optimization problem. Its discretization will be considered in the next subsection
when using B-splines-based parameterization.

Note that the output vector dimension of the Port-Controlled Hamiltonian (PCH) system always equals
to the dimension of the input vector since they are the conjugate variables (see Definition 2.2.5). From the
previous property of the PCH system and the first point in Remark 4.2.2 we exemplify here through a specific
PCH system where the system output represents also the flat output.

Example 4.2.3. Consider an input-state-output PCH system given as:{
ẋ(t) = [J(x)−R(x)]∇H(x) + Gu(t),

y(t) = GT∇H(x),
(4.2.8)

where x(t) ∈ Rn, y(t),u(t) ∈ Rm are the state, output and input vectors, respectively, J(x), R(x) ∈ Rn×n
are the interconnection and resistive matrices, G ∈ Rn×m is the input matrix, H(x) ∈ R is the Hamiltonian.
Assume that:

• the input matrix, G, is square, i.e., m = n,

• the input matrix, G, is invertible, i.e., det(G) 6= 0,

• the Hamiltonian is quadratic and positive, i.e., there exist the matrices Q0 ∈ R, Q1 ∈ Rn×1, Q2 ∈ Rn×n

such that Q2 = QT
2 > 0 and H(x) = Q0 + QT

1 x(t) +
1

2
xT (t)Q2x(t).

Then, the output, y(t), and the state, x(t), are the flat outputs of system (4.2.8). In fact, since H(x) is
quadratic and positive definite, its gradient vector has the following affine form:

∇H(x) = Q1 + Q2x(t), (4.2.9)

where Q2 is invertible and positive. From (4.2.8) and (4.2.9), we derive the state variable x(t) from y(t) as:

x(y) =
(
GTQ2

)−1 [
y(t)−GTQ1

]
. (4.2.10)

Then, by replacing x(y) in (4.2.10) to (4.2.8), we obtain the input:

u(y) = G−1 {ẋ1(y)− [J(x)−R(x)] [Q1 + Q2x(y)]} . (4.2.11)

From (4.2.10)-(4.2.11) and Definition 4.2.1, we conclude that y(t) is the flat output of the system (4.2.8).
This choice of the flat output has some following interests. If the structure matrices, J(x) and R(x), are
affine, the state, x(y), and the input, u(y), are the affine and quadratic functions, respectively. Additionally,
if the cost function is the dissipated energy, and if R is constant, the cost is a quadratic function of the flat
output. This example will be used hereafter for the electro-mechanical elevator system.

4.2.2 B-splines-based parameterization

In this subsection, the presented flat output will be projected over a finite set of time basis functions to
discretize the optimization (4.2.7). We consider N basis functions λi(t) ∈ R with i = 0, . . . , N−1, t ∈ [t0, tf ].
Let zi ∈ Rn with i = 1, . . . , N be the coefficients of the projections, or control points. Then, the flat output
is approximated by:

z(t) =

N−1∑
i=0

ziλi(t) = ZΛ(t). (4.2.12)

where Z = [z1 . . . zN ] ∈ Rm×N , Λ(t) = [λ1(t) . . . λN (t)]T ∈ RN . The basis function must have (q + 1)th

derivative, i.e., λi(t) ∈ C(q+1), to ensure that the approximated variable z(t) has (q + 1)th derivative. By
replacing (4.2.6) and (4.2.12) in the optimization problem (4.2.7) we obtain:

min
Z
V (Z) (4.2.13a)

subject to

Φx(t0,Z) = x0, (4.2.13b)

gi(t,Z) = 0, i = 1, . . . , Ng, ∀t ∈ [t0, tf ], (4.2.13c)

hi(t,Z) ≤ 0, i = 1, . . . , Nh, ∀t ∈ [t0, tf ], (4.2.13d)

(tf ,Φx(tf ,Z)) ∈ Sf . (4.2.13e)
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Note that the optimization problem (4.2.13) is a finite-dimensional optimization problem where the argu-
ments are the N vectors z1, . . . , zN ∈ Rm. However, the constraints explicitly depend on time, this requiring
a continuous time validation. Furthermore, the explicit form of the discrete cost V (Z) is not easily found.
Thus, the numerical solution of the optimization problem (4.2.13) is difficult to find. Therefore, we present
hereinafter two methods to approximate the solution.

Discrete-time approximation of the cost and constraints: A simple method to approximate the solution is
that we only verify these constraints at some chosen instants tj ∈ [t0, tf ] with tj < tj+1. Let the time interval
[t0, tf ] be divided into Ndv sub-intervals such that tj − tj−1 = hdv with j = 1, . . . , Ndv. Thus, the cost V (Z)
can be approximated by:

V (Z) = Vf (ZΛ(tf )) + hdw

Ndv−1∑
j=0

Vr (tj ,ZΛ(tf )) , (4.2.14)

where hdv =
tf − t0
Ndv

is the time step. Then, (4.2.13) is rewritten as:

min
Z
V (Z) (4.2.15a)

subject to

Φx(t0,Z) = x0, (4.2.15b)

gi(tj ,Z) = 0, i = 1, . . . , Ng, j = 1, . . . , Ndg, (4.2.15c)

hi(tj ,Z) ≤ 0, i = 1, . . . , Nh, j = 1, . . . , Ndh, (4.2.15d)

(tf ,Φx(tf ,Z)) ∈ Sf , (4.2.15e)

where Ndg, Ndh ∈ N are the numbers of the verification instants of the constraints (4.2.15c) and (4.2.15d),
respectively.

Remark 4.2.4. Note that this approach is simple to implement but is not complete since it provides no
guarantees for the intra-sample behavior.

Continuous-time validation of the cost and constraints: By using suitable basis functions, Λ(t), the cost,
V (Z), can be easily formulated as an explicit function of the control points, Z. Moreover, the time-varying
constraints (4.2.13c)-(4.2.13d) can be replaced by sufficient conditions which are time invariant constraints
of the control points [Suryawan, 2011, Stoican et al., 2017]. In what follows, we present the B-splines-based
parameterization and some of their properties. These basis functions are used because of their ease of enforcing
continuity across way-points and ease of computing the derivatives. Also, the degree of the B-splines only
depends on which derivative order is needed to ensure continuity.

The ith B-spline function of order d is denoted by λi,d(t). It is defined using the following recursive
formula [Suryawan, 2011]:

λi,1(t) =

{
1, τi ≤ t < τi+1,

0, otherwise,

λi,d(t) =
t− τi

τi+d−1 − τi
λi,d−1(t) +

τi+d − t
τi+d − τi+1

λi+1,d−1(t),

(4.2.16)

where τi ∈ [t0, tf ] is called knot such that τi+1 ≥ τi, i = 0 . . . ν, ν + 1 ∈ N is the number of knots. The knot
vector which gathers all the knots is denoted by T ∈ Rν such that:

T = {τ0, τ1, . . . , τν−1, τν} = {t0, . . . , t0︸ ︷︷ ︸
d

, τd, . . . , τν−d−1, tf , . . . , tf︸ ︷︷ ︸
d

}, (4.2.17)

where τ0 = t0, τν = tf . The relation between the knot number, ν, the B-spline order, d, and the B-spline
number, N , is:

ν = N + d. (4.2.18)

Fig. 4.2.2 illustrates the B-splines of order from 1 to 4 with the parameters presented in Table 4.2.1.
State and input derivatives are combinations of B-splines derivatives. Due to their specific properties,

B-splines derivatives can be expressed as combination of B-splines of lower order. In turn these can be
expressed as combination of higher order B-splines with the weights changing for each sub-interval of the
knot vector. This assumes, of course, that the B-splines of various order share the same knot vector (minus
the start and end points).
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Table 4.2.1: Parameters for the B-spline example in Fig. 4.2.2.
oder, d B-spline number, N knot number, ν knot vector, T

1 7 8 {0, 1, 2, 3, 4, 5, 6, 7}
2 8 9 {0, 0, 1, 2, 3, 4, 5, 6, 7, 7}
3 9 10 {0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7}
4 10 11 {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7}
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Figure 4.2.2: B-splines of order 1 to 4.

Definition 4.2.5 (Internally similar knot vectors [Suryawan, 2011]). Two knot vectors T1, T2 as in (4.2.17)
are said to be internally similar if they have the same elements except for the leftmost and the rightmost
breakpoints, which differ in their multiplicities.

Let us enumerate in the following several important properties of B-splines which will be used later [Stoican
et al., 2017]:

P1. A spline curve of order d is Cd−1-continuous at its breakpoints and C∞-continuous at any other point
[Stoican et al., 2017].

P2. The B-splines basis function λi,d(t) is zero outside the interval [τi−1, τi+d−1) and the sum of all the
B-splines equals 1 at all the time [Suryawan, 2011], i.e.

λi,d(t) > 0, ∀t ∈ [τi−1, τi+d−1),

λi,d(t) = 0, otherwise,∑N
i=1 λi,d(t) = 1, ∀t ∈ [t0, tf ].

(4.2.19)

P3. The curve z(t) defined by (4.2.12) and (4.2.16) is contained in the convex hulls1 of the sets including

1 We call a point of the form z(t) =
N∑

j=1
αjzj , where αj ≥ 0,

∑N−1
j=0 αj = 1, i = 1, ..., N , a convex combination of the

points {z1, . . . , zN}. The convex hull of a set C, denoted by conv (C), is the set of all convex combinations of points in C, i.e.,

convC =

{
N∑

j=1
αjzj |zj ∈ C, αj ≥ 0,

∑N
j=1 αj = 1, i = 1, ..., N

}
[Boyd and Vandenberghe, 2004].
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the control points [Suryawan, 2011]:{
z(t) ∈ conv{zk−d+1, . . . , zk+1}, ∀t ∈ [τk, τk+1], d− 1 ≤ k ≤ N − 1,

z(t) ∈ conv{z1, . . . , zN}, ∀t ∈ [t0, tf ].
(4.2.20)

This property is illustrated in Fig. 4.2.3 with a 2D spline curve generated using 7 B-splines of order 4
and 7 control points: {[

0
0

]
,

[
3
1

]
,

[
3
5

]
,

[
5
5

]
,

[
8
3

]
,

[
8
0

]
,

[
6
−2

]}
,

and the knot vector:
T = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7}.

p1

p2

p3

p4
p5

p6

p7

conv {p1,p2,p3,p4} 

Figure 4.2.3: B-spline curve (red), its control polygon (blue) and convex hull (green).

P4. The previous properties are also validated for the products of the B-splines [Stoican et al., 2017].
Consider two natural numbers 0 ≤ r1, r2 ≤ d − 2. Based on the knot vector T in (4.2.17) we denote
the internally similar knot vectors for the B-splines of order d− r1, d− r2 by T1, T2, respectively. The
corresponding B-splines vectors are Λd−r1(t) ∈ RN−r1 , Λd−r2(t) ∈ RN−r2 . Then, the products of these
two B-splines have the following properties:

λi,d−r1(t)λj,d−r2(t) > 0, ∀t ∈ (τk, τk+1),

k − d+ r1 + 1 ≤ i ≤ k,
k − d+ r2 + 1 ≤ j ≤ k,

λi,d−r1(t)λj,d−r2(t) = 0, otherwise,∑N−r1−1
j=0

∑N−r2−1
l=0 λi,d−r1(t)λj,d−r2(t) = 1, ∀t ∈ [t0, tf ].

(4.2.21)

As mentioned before, a general function of z may include many operators such as the addition, the
derivative and the multiplication. To describe them on the same basis functions, we need the following
theorems.

theorem 4.2.6 ( [Suryawan, 2011]). The rth derivative of dth order B-spline vector Λd(t) ∈ RN can be
expressed as a linear combination of elements of Λd−r(t) ∈ RN−r:

Λ
(r)
d (t) = Md,d−rΛd−r(t), (4.2.22)

where Λd(t) and Λd−r(t) are defined over the internally similar knot vectors, and Md,d−r ∈ RN×(N−r).

theorem 4.2.7 ( [Suryawan, 2011]). A set of B-spline basis functions Λd−r(t) of a certain degree defined on
a knot vector can be represented as a linear combination of B-spline basis functions Λd(t) of a higher degree
defined over an internally similar knot vector, this applies segment-wise, i.e.

Λd−r(t) = Sk,d−r,dΛd(t), ∀t ∈ [τk, τk+1], (4.2.23)

where Sk,d−r,d ∈ R(N−r)×N .
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The two important elements in an optimization problem are the cost function and the constraints. When
replacing the B-splines parameterization in the optimization problem formulation (4.2.13), the cost and
the constraints are rewritten in function of the control points Z, which become the new variables of the
optimization. In the particular case of a quadratic cost function involving just the system states, if the
dependency between the flat out z(t) and the states is linear then the cost remains quadratic2. The following
proposition describes this particular case.

Proposition 4.2.8 ( [Suryawan, 2011]). Let z(t) be defined by (4.2.12)-(4.2.16) over the time interval [t0, tf ].
Consider a real function V (z) ∈ R and matrices A1, A2, A3 of suitable dimensions such that:

V (z) =

tf∫
t0

[
A1z

(r)(t) + A2z(t) + zT (t)A3z(t)
]
dt. (4.2.24)

The previous cost can be described by a quadratic function of the control points, Z, as:

V (Z) =

N∑
i=1

A2,izi +

N∑
i=1

N∑
j=1

zTi A3,i,jzj , (4.2.25)

where the weight matrices A2,i,A3,i,j with i, j = 1, . . . , N are given by:

A2,i =

tf∫
t0

[
A1λ

(r)
i (t) + A2λi(t)

]
dt, A3,i,j =

tf∫
t0

λi(t)A3λj(t)dt. (4.2.26)

The authors in [Stoican et al., 2017] propose some sufficient conditions on the control points Z which
guarantee the satisfaction of constraint g(z) ∈ G at all the time, where g(z) is a quadratic function of z(t),
and G is a convex set (see Lemma 1 and Proposition 1 in [Stoican et al., 2017]). In this work, the studied
constraint function g(z) is obtained by the multiplication of the flat outputs and their derivatives. By
extending this result for the case of the addition operator, we obtain the a result presented in two following
proposition.

Proposition 4.2.9. Let z(t) be defined by (4.2.12)-(4.2.16), r be a natural number with 1 ≤ r ≤ d − 2,
g, g ∈ R be scalars, A1, A2, A3 be matrices of suitable dimensions, and g(z) ∈ R be a function such that

g(z) = A1z
(r)(t) + A2z(t) + zT (t)A3z(t). (4.2.27)

A sufficient condition for the constraint g ≤ g(z) ≤ g, ∀t ∈ [τk, τk+1], is given by

g ≤ pk,i,j ≤ g, (4.2.28)

where k − d+ 2 ≤ i, j ≤ k + 1; pk,i,j is defined by

pk,i,j = A1ZMd,d−rSk,d−r,d,i + A2zi + zTi A3zj . (4.2.29)

Sk,d−r,d,i is the ith column of the matrix Sk,d−r,d defined in Theorem 4.2.7.

Proof. Consider the time interval [τk, τk+1]. Let βi,j,d(t) = λi,d(t)λj,d(t) with 1 ≤ i, j ≤ N . From the
parameterization (4.2.12) and the B-spline property (4.2.19), we obtain:

z(t) =

N∑
i=1

ziλi,d(t) =

N∑
i=1

ziλi,d(t)

N∑
j=1

λj,d(t) =

N∑
i=1

N∑
j=1

ziβi,j,d(t). (4.2.30)

Using the parameterization (4.2.12) and the B-spline properties (4.2.22)-(4.2.23), we describe the time deriva-
tive of the flat output as:

z(r)(t) =

N∑
i=1

ZMd,d−rSk,d−r,d,iλi,d(t). (4.2.31)

2Note that, usually there is not a linear dependency between the input variables and the flat output. Therefore, the cost and
the constraints are more difficult to handle since they have a more complex form in function of the control points variables.
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Multiplying the two sides of (4.2.31) by
N∑
j=1

λj,d(t) and using the B-spline property (4.2.19), we rewrite

(4.2.31) as:

z(r)(t) =

N∑
i=1

N∑
j=1

PMd,d−rSk,d−r,d,iβi,j,d(t). (4.2.32)

Substituting the parameterization (4.2.12) to the third term of g(z) in (4.2.27), we derive:

z(t)TA3z(t) =

N∑
i=1

N∑
j=1

zTi A3zjβi,j,d(t). (4.2.33)

Using (4.2.30), (4.2.32)-(4.2.33), we express g(z) in (4.2.27) as:

g(z) =

N∑
i=1

N∑
j=1

pk,i,jβi,j,d(t). (4.2.34)

Since βi,j,d(t) with k − d + 1 ≤ i, j ≤ k satisfies the conditions (4.2.21), g(z) remains in the convex hull
of {pk,i,j} with k − d + 1 ≤ i, j ≤ k. Thus, if {pk,i,j} with k − d + 1 ≤ i, j ≤ k satisfies (4.2.28), the
continuous-time constraint g ≤ g(z) ≤ g, ∀t ∈ [τk, τk+1] is satisfied.

Proposition 4.2.9 is also valid for the equality constraint which is proved by the following corollary.

Corollary 4.2.10. Let z(t) be defined by (4.2.12)-(4.2.16), r be a natural number with 1 ≤ r ≤ d−2, g, g ∈ R
be scalars, A1, A2, A3 be matrices of suitable dimensions, and g(z) ∈ R be the function defined by (4.2.27).
A sufficient condition for the constraint g(z) = 0, ∀t ∈ [τk, τk+1], is that pk,i,j = 0, k − d+ 2 ≤ i, j ≤ k + 1,
where pk,i,j is defined by (4.2.29).

Generally, we have many constraints which are gathered in g(z) ∈ G, where g(z) is a vector, and G is a
convex set. Based on Proposition 4.2.9 and Corollary 4.2.10, we propose a sufficient condition for constraint
g(z) ∈ G in what follows.

Proposition 4.2.11. Let z(t) be defined by (4.2.12)-(4.2.16), r be a natural number with 1 ≤ r ≤ d, G ⊂ RNg

be a convex set, A1, A2, A3,1, . . . ,A3,N be matrices of suitable dimensions, and g(z) ∈ RNg such that

g(z) = A1z
(r)(t) + A2z(t) +

m∑
l=1

zl(t)A3,lz(t) ∈ G, ∀t ∈ [τk, τk+1]. (4.2.35)

zl(t) ∈ R is the lth coordinate of the flat output z(t). A sufficient condition for the constraint (4.2.35) is that

pk,i,j ∈ G, (4.2.36)

where k − d+ 2 ≤ i, j ≤ k + 1 and pk,i,j is defined by:

pk,i,j = A1ZMd,d−rSk,d−r,d,i + A2zi +

m∑
l=1

zl,iA3,lzj , (4.2.37)

where Z ∈ Rm×N denotes the control points matrix, zj ∈ Rn denotes the jth control point, zl,i ∈ R denotes
the lth coordinate of the ith control point.

Consequently, if the cost function V (z) in (4.2.7a) and the constraints (4.2.7c)-(4.2.7d) admit the forms
(4.2.24) and (4.2.35), then the optimization problem (4.2.13) can be rewritten:

min
Z
V (Z) (4.2.38a)

subject to

Φx(t0,Z) = x0, (4.2.38b)

pk,i,j(Z) ∈ G, k − d+ 2 ≤ i, j ≤ k + 1, (4.2.38c)

(tf ,Φx(tf ,Z)) ∈ Sf . (4.2.38d)
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where k denotes the B-spline time interval index, V (Z) is defined by (4.2.25), and pk,i,j(Z) is defined by
(4.2.37).

Convex optimization problems can be solved using a variety of algorithms [Boyd and Vandenberghe, 2004].
For example, elementary algorithms with simple computational steps are used for solving convex optimization
problems arising in machine learning, data mining, and decision making [Negar, 2014]. Also, the interior
point methods are a family of algorithms solving linear optimization programs which come along with an
efficient performance guarantee [Wächter, 2002]. Other types of algorithms are Newton’s method, gradient
and subgradient methods, which combined with primal and dual decomposition techniques it becomes possible
to develop a simple distributed algorithms for a problem [Stegink et al., 2017].

The theory of convex optimization has taken significant strides over the years. However, all approaches
fail if the underlying cost function is not explicitly given, it is even worse if the cost function is non convex
[Ghadimi and Lan, 2016].

There are specialized solvers which can handle nonlinear optimization problems with relatively large
prediction horizon, e.g., BARON [Tawarmalani and Sahinidis, 2005], FMINCON [Coleman and Li, 1994],
IPOPT [Biegler and Zavala, 2009].

4.2.3 Model Predictive Control for tracking

After obtaining the control and state reference profiles, the tracking controller is designed to stabilize the
system state around the generated reference. Since the generated reference profiles may stay close to the
limit, the constraints should be taken into account in the tracking control.

Among the control methods dealing with the constraints, MPC is considered as a good candidate [Rawlings
and Mayne, 2009,Ellis et al., 2017]. Depending on the cost function, we usually distinguish two types of MPC:
tracking MPC [Maciejowski, 2002,Rawlings and Mayne, 2009] and economic MPC [Angeli et al., 2012,Grüne,
2013,Ellis et al., 2017]. Tracking MPC penalizes the discrepancies between the actual and reference profiles
(state, output, control variables). Economic MPC penalizes the general “profit” cost, e.g., dissipation energy,
electricity cost. An example for the cost functions in a tracking and an economic MPC are illustrated in Fig.
4.2.4.
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Figure 4.2.4: Tracking MPC cost (left) and economic MPC cost (right).

MPC is the on-line version of the constrained optimal control (see also Annex D). However, to make it
practical for the real-time control, one

• discretizes the system dynamics with the time (see Chapter 3 for details on the discretization of PH
systems),

• replaces the cost and constraint functions by functions of the discrete-time variables,

• studies the finite horizon, i.e., fixed-time free-endpoint Sf = {t1} × Rn in (4.2.4).
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For simplicity, we shift the coordinate origin to the generated reference trajectory by the following state
and control transformations:

x̃(t) , x(t)− x(t), ũ(t) , u(t)− u(t). (4.2.39)

Note that (4.2.39) is a time-varying transformation which leads to the time-varying constraints of the shifted
state and control variables such that:

x̃(t) ∈ X̃(t), ũ(t) ∈ Ũ(t). (4.2.40)

The system dynamics in the new coordinate is called the discrepancy dynamics which will be used in the
MPC formulation. Since the MPC is usually formulated in the discrete-time form, we must choose a suitable
discrete-time discrepancy dynamics. We have at least two ways to obtain this dynamics corresponding to the
two procedures: discretization after transformation, and transformation after discretization. Both of them
will be investigated for the electro-mechanical elevator in the next section.

Remark 4.2.12. For the PCH system, the transformed system obtained by a time-varying coordinate trans-
formation is not a PCH [Stadlmayr and Schlacher, 2008]. This remark is also valid for the discrete-time
case.

After partitioning the prediction time interval [t, t1] to Np similar time intervals, we denote predicted
values of the discrete-time discrepancy variables by x̃(t + jh|t), ũ(t + jh|t), where j = 0, . . . , Np and h =
(t1− t)/Np is the time step. We consider the recursive construction of an optimal open-loop state and control
sequences:

X̃(t) , {x̃(t|t), . . . , x̃(t+ jh|t), . . . , x̃(t+ (Np − 1)h|t), x̃(t+Nph|t)},
Ũ(t) , {ũ(t|t), . . . , ũ(t+ jh|t), . . . , ũ(t+ (Np − 1)h|t)}

at instant t over a finite receding horizon, Np, which leads to a feedback control policy by the effective

application of the first control action β(t, x̃) , ũ(t|t) as system input:

Ũ∗(t) = argmin
Ũ(t)

Ṽf (x̃(Np|t)) +

Np−1∑
j=0

Ṽr(x̃(j|t), ũ(j|t))

 (4.2.41a)

subject to

x̃(t+ (j + 1)h|t) = ĝ(x̃(t+ jh|t), ũ(t+ jh|t)), x̃(t|t) = x̃(t), j = 0, . . . , Np − 1, (4.2.41b)

x̃(t+ jh|t) ∈ X̃(t+ jh), j = 1, . . . , Np, (4.2.41c)

ũ(t+ jh|t) ∈ Ũ(t+ jh), j = 0, . . . , Np − 1. (4.2.41d)

x̃(t+Nph|t) ∈ X̃f (t1), (4.2.41e)

where (4.2.41b) describes the discrete-time model of (4.2.5b), and ĝ(.) depends on the time discretization
method (see also Chapter 3). In the MPC formulation (4.2.41), the tuning control parameters are the final
cost, Ṽf (x̃(Np|t)), the stage cost, Ṽr(x̃(j|t), ũ(j|t)) and the final constraint, X̃f (t1).

Let x̃(t + jh|t, Ũ) denote the state variable at the instant t + jh corresponding to the application of
the control sequence Ũ to the system dynamics (4.2.41b). Let the sets of the state and control sequences,
X̃S(t), ŨS(t), and the state sequences, X̃(t, Ũ), be defined by:

X̃S(t) , X̃(t)× . . . X̃(t+ jh)× . . . X̃(t+Nph− h)× . . . X̃f (t1),

ŨS(t) , Ũ(t)× . . . Ũ(t+ jh)× . . . Ũ(t+Nph− h),

X̃(t, Ũ) , {x̃(t|t, Ũ), . . . , x̃(t+ jh|t, Ũ), . . . , x̃(t+Nph− h|t, Ũ), x̃(t+Nph|t, Ũ)}.

Let X̃Np
(t) ⊂ X̃(t) denote the set including all the state variables such that the state sequence X̃(t, Ũ) belongs

to X̃S(t), i.e.

X̃Np
(t) =

{
x̃ ∈ X̃(t)| ∃Ũ ∈ ŨS(t), X̃(t, Ũ) ∈ X̃S(t)

}
.

Let Vmin(t, x̃) be the minimum of the cost function in the optimization problem (4.2.41). Based on the
presented elements, the following theorem recalls the stability conditions for the closed-loop time-varying
system using the tracking MPC formulated in (4.2.41).

theorem 4.2.13 ( [Rawlings and Mayne, 2009]). Suppose the following assumptions hold.
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• The function ĝ(.), Ṽr(.), and Ṽf (.) are continuous; for all t ≥ t0, ĝ(0,0) = 0, Ṽr(0,0) = 0, Ṽf (0) = 0.

• For all t ≥ t0, X̃(t) and X̃f are closed, X̃f ⊂ X̃(t) and Ũ(t) are compact; each set contains the origin.

• For all t ≥ t0 and ∀x̃(t) ∈ X̃f , there exists ũ ∈ Ũ(t) such that ĝ(x̃(t), ũ) ∈ X̃f .

• For all t ≥ t0,

min
ũ∈Ũ(t)

{Ṽf (ĝ(x̃(t), ũ)) + Ṽr(x̃(t), ũ)| ĝ(x̃(t), ũ) ∈ X̃f} ≤ Ṽf (x̃(t)),∀x̃(t) ∈ X̃f .

• The terminal cost Ṽf (.) and terminal constraint set X̃f are time invariant.

• The running cost Ṽr(.) and the terminal cost Ṽf (.) satisfy, for all t ≥ t0,

Ṽr(x̃(t), ũ) ≥ α1(|x̃|), ∀x̃ ∈ X̃Np(t),∀ũ ∈ Ũ(t),

Ṽf (x̃) ≤ α2(|x̃|), ∀x̃ ∈ X̃f ,

in which α1(.) and α2(.) are K∞ functions 3.

• There exists a K∞ function α(.) such that

V (t, x̃) ≤ α(|x̃|), ∀x̃ ∈ X̃Np
(t), t ≥ t0.

Then, for each initial time t ≥ t0, the origin is asymptotically stable with a region of attraction X̃Np
(t) for

the time-varying system x̃(j + 1|t) = ĝ(x̃(j|t), ũ(τ, x̃)), τ ≥ t.
PH formalism for tracking MPC: As presented above, the PH formalism is useful for the system stability

analysis and for the control design based on the interconnection, dissipation and stored energy of the system
dynamics [Duindam et al., 2009]. An interesting property of PH system is the passivity where the energy
(Hamiltonian) is considered as a Lyapunov function. There are many control methods developed for the
PH system as presented in [van der Schaft and Jeltsema, 2014, Wei and Wang, 2010], e.g., Control by
Interconnection, Interconnection and Damping Assignment Passivity-Based Control (IDA PBC). However,
all these methods can not explicitly deal with the state and input constraints while MPC is chosen for this
purpose. While the theory on linear MPC gained ground over the last decades [Rawlings and Mayne, 2009],
the non linear and economic MPC causes novel behavior. For example, stability demonstration for the closed-
loop nonlinear system is difficult since a Lyapunov function is not easy to find. From the previous arguments,
while both PH formalism and MPC are established tools in the literature, to the best of our knowledge they
have never been considered together by the control community.

Specifically, we propose to use the PH formalism such that, via an MPC control action, the closed-loop
dynamics are describing a Port-Hamiltonian system. This is done in three steps: i) choosing the desired PH
closed-loop system; ii) finding the explicit control laws and iii) finding the corresponding MPC.

Since any MPC-based closed-loop system is in fact a switched system [Bemporad et al., 2002], the desired
PH system must also be a switched PH system. [Kloiber, 2014] proposes design methods for stable switched
PH systems. Next, from the explicit form of the closed-loop system, we find the explicit control laws by
solving the matching equation. Then, the processes to find MPC laws corresponding to given explicit laws is
seen as an inverse parametric programing problem [Nguyen, 2015].

4.3 Constrained optimization-based control for the electro-mechanical
elevator

Considering the theoretical tools presented above, this section concentrate on the control of the electro-
mechanical elevator system for minimizing the dissipated energy while respecting some physical constraints.
Let us begin by presenting the dynamical electro-mechanical elevator model used in the optimization problem.

3 A continuous function α : [0,∞)→ [0,∞) is said to belong to class K∞ if:

* it is strictly increasing,

* α(0) = 0,

* lim
r→∞

α(r) =∞.
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Electro-mechanical elevator system: As presented in Section 2.4, the electro-mechanical elevator is repre-
sented by the combination of the AC/DC converter, the Permanent Magnet Synchronous Machine (PMSM)
and the mechanical elevator. Using (2.4.24), (2.4.26), (2.4.28)-(2.4.29) and (2.4.30)-(2.4.32), we write in a
compact form the system dynamics:{

ẋl(t) = [Jl(xl)−Rl]∇Hl(xl) + Gllvl(t),

il(t) = GT
ll∇Hl(xl),

(4.3.1)

where xl(t) = [φld(t) φlq(t) pl(t) θm(t)]T ∈ R4 is the state vector consisting of a direct stator flux, a quadrator
stator flux, a mechanical momentum and a pulley angle. Furthermore, in (4.3.1) vl(t) = dl(t)vl(t) ∈ R2 is
the input vector, which also represents the control variables describing the direct and quadrature voltages of
the motor stator, il(t) ∈ R2 is the output vector describing the direct and quadrature currents of the motor
stator, dl(t) ∈ R2 is the AC/DC converter duty cycle defined by (2.4.27) and vl(t) ∈ R is the DC bus voltage
at the connection point with the corresponding converter. The structure matrices Jl(xl) ∈ R4×4, Rl ∈ R4×4

and G ∈ R4×2 are given by:

Jl =


0 0 φlq(t) 0

0 0 −φld(t) 0

−φlq(t) φld(t) 0 −1

0 0 1 0

 , Rl =


Rl 0 0 0

0 Rl 0 0

0 0 0 0

0 0 0 0

 , Gll =


1 0

0 1

0 0

0 0

 , (4.3.2)

where Rl is the phase resistance of the PMSM stator. The Hamiltonian, which has a quadratic form, describes
the magnetic energy in PMSM stator, the kinematic energy and the potential energy in the mechanical
elevator:

Hl(xl) =
1

2Ld

[
φld(t)−

√
3

2
φf

]2

+
1

2

φ2
lq(t)

Lq
+

1

2

p2
l (t)

Il
− Γresθm(t),

= Ql0 + QT
l1xl(t) +

1

2
xTl (t)Ql2xl(t),

(4.3.3)

where φf is the magnetic flux of the PMSM rotor, Ld, Lq are the direct and quadrature inductances of the
PMSM stator, Il is the mechanical inertia, Γres is the mechanical torque caused by the gravity, Ql0 ∈ R,
Ql1 ∈ R4×1, Ql2 ∈ R4×4 are the weight matrices such as:

Ql0 =
3

4

φ2
f

L2
d

, Ql1 =


−
√

3

2

φf
Ld

0

0

−Γres

 , Ql2 =



1

Ld
0 0 0

0
1

Lq
0 0

0 0
1

Il
0

0 0 0 0


. (4.3.4)

Dissipated energy: The dissipated energy in the PMSM, which will be also added in the cost function, is
expressed by:

Vl(xl) =

tf∫
t0

∇Hl(xl)
TRl∇Hl(xl)dt, (4.3.5)

where t0 and tf are the initial and final instants of an elevator travel, H(xl) is the Hamiltonian defined in
(4.3.3), Rl is the resistive matrix defined in (4.3.2).

Constraints: In Section 2.6.2 we enumerated some physical constraints which are rewritten here for the
direct and quadrature voltages and currents of the motor stator, and for the rotor speed:

‖vl(t)‖2 ≤
vref√

2
, (4.3.6a)

‖il(t)‖2 ≤
Il,max√

2
, (4.3.6b)

ωl,min ≤ ωl(t) ≤ ωl,max, (4.3.6c)

where vref is the reference voltage of the DC bus, Il,max is the maximal PMSM current amplitude, ωl(t) =
pl(t)

Il
∈ R is the PMSM rotor speed, ωl,min, ωl,max ∈ R are, respectively, the minimal and maximal rotor
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speed of the mechanical elevator. Moreover, one of the momentum limits ωl,min, ωl,max is zero. The initial
elevator speed and position fulfill the following constraints:{

pl(t0) = 0,

θm(t0) = θ0,
(4.3.7)

Similarly, the target set at the final time of the elevator travel is given by:

Sl,f = {tf} ×
{
xl ∈ R4|pl = 0, θm = θf

}
, (4.3.8)

where θf is the final pulley angle which usually equals the maximal angle if the cabin goes down and equals
the minimal angle if the cabin goes up.

Constrained optimal control problem: Combining all the element presented above, the constrained optimal
control problem is formulated as:

min Vl(xl) (4.3.9a)

subject to

the system dynamics (4.3.1)-(4.3.4), (4.3.9b)

the constraints (4.3.6)-(4.3.7), (4.3.9c)

(tf ,xl(tf )) ∈ Sl,f , (4.3.9d)

where Vl(xl) is the dissipated energy defined by (4.3.5), Sl,f is the target set defined by (4.3.8). This set
implies that (4.3.9) is a fixed-time and partial fixed-endpoint optimization problem.

In the optimization problem (4.3.9), the cost function is quadratic, the constraints are nonlinear due to
the ellipsoidal constraints (4.3.6a)-(4.3.6b). A finite-dimensional optimization problem for approximating
(4.3.9) will be formulated in the next subsection by using appropriate parameterization variables and their
B-splines-based parameterization.

4.3.1 Speed profile generation

This subsection reformulates the optimization problem (4.3.9) using differential flatness and B-splines-based
parameterization. In most cases, there exist different flat outputs for a system dynamics, but there is no
general method to find them. For simplicity we concentrate on the flat outputs represented by the state,
input and output variables. Therefore, a first choice of flat outputs for the dynamics (4.3.1) is given by the
stator direct flux z1(t) = φld(t) and the pulley angle z2(t) = θm(t):

z(t) = [z1(t) z2(t)]T = [φld(t) θm(t)]T ∈ R2. (4.3.10)

Using Definition 4.2.1 the rest of the state and control variables are described in function of the flat output:

φld(t) = z1(t), (4.3.11a)

φlq(t) =
Ilz̈2(t) + Γres

Ld − Lq
LdLq

z1(t) +

√
3

2

φf
Ld

, (4.3.11b)

pl(t) = Ilż2(t), (4.3.11c)

θm(t) = z2(t), (4.3.11d)

ul,1(t) = ż1(t) +Rl

z1(t)−
√

3

2
φf

Ld
− Ilz̈2(t) + Γres

Ld − Lq
LdLq

z1(t) +

√
3

2

φf
Ld

ż2(t), (4.3.11e)

ul,2(t) =

 Ilz̈2(t) + Γres

Ld − Lq
LdLq

z1(t) +

√
3

2

φf
Ld


,

t

+Rl
Ilz̈2(t) + Γres

Ld − Lq
Ld

z1(t) +

√
3

2

Lqφf
Ld

+ z1(t)ż2(t), (4.3.11f)
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We can easily see that the above choice of the flat output will make the cost and the constraint functions
in (4.3.5)-(4.3.8) more complex, i.e., by using B-splines-based parameterization we can not rewrite the cost
as a function of the control points. Furthermore, (4.3.11) requires a complex numerical computation. In
what follows we choose the flat outputs of a subsystem of the electro-mechanical elevator which are used to
parametrize all the variables.

First of all, we observe that the dynamical system (4.3.1)-(4.3.4) can be decomposed in two subsystems
where one of them has the form presented in Example 4.2.3 and the other subsystems has the first-order
dynamics: 

[
ẋ1(t)

ẋ2(t)

]
=

[
J11(x1)−R11 J12

−JT12 0

][
∇H1(x1)

∇H2(x2)

]
+

[
G1

0

]
vl(t)

il(t) =

[
G1

0

]T
∇H1(x1),

(4.3.12)

where the state vectors, x1(t) ∈ R3, x2(t) ∈ R, are given as:

x1(t) =
[
φld(t) φlq(t) pl(t)

]T
, x2(t) = θm(t), (4.3.13)

the structure matrices, J11 ∈ R3×3, J12 ∈ R3×1, G1 ∈ R3×1, R11 ∈ R3×3, are given by:

J11(x1) =

 0 0 φlq

0 0 −φld
−φlq φld 0

 , J12 =

 0

0

−1

 ,

R11 =

 Rl 0 0

0 Rl 0

0 0 0

 , G1 =

 1 0

0 1

0 0

 ,
(4.3.14)

the Hamiltonian described by H1(x1) and H2(x2) is:
H1(x1) =

1

2Ld

[
φld(t)−

√
3

2
φf

]2

+
1

2

φ2
lq(t)

Lq
+

1

2

p2
l (t)

Il

= Q10 + QT
11x1(t) +

1

2
xT1 (t)Q12x1(t),

H2(x2) = −Γresθm(t),

(4.3.15)

with Q10 ∈ R, Q11 ∈ R3×1 and Q12 ∈ R3×3. In (4.3.12), the dynamics coupling is described by the
interconnection matrix J12. Let uc(t) and yc(t) denote the conjugate variables at the interconnection ports4

between x1(t) and x2(t). Then, the dynamics corresponding to the state variable x1(t) are given by5:{
ẋ1(t) = [J11(x1)−R11] [Q11 + Q12x1(t)] + Gu1(t),

y1(x1) = GT [Q11 + Q12x1(t)] ,
(4.3.16)

and the dynamics corresponding to x2(t) are described by:{
ẋ2(t) = −yc(x1),

uc = −Γres.
(4.3.17)

where the input vector, u1(t) ∈ R3, the output vector, y1(t) ∈ R3, and the input matrix, G1 ∈ R3×3, of the
first subsystem (4.3.16) are defined by:

u1(t) =
[

vl(t) uc(t)
]T
, y1(t) =

[
il(t) yc(t)

]T
, G =

[
G1 J12

]
= I3. (4.3.18)

4Usually, we use two pairs of conjugate variables to describe the inputs and outputs of the two subsystems. They satisfy
a feedback interconnection defined by (2.2.2). However, for simplicity, we use one pair of the conjugate variables with the
appropriate signs in each subsystems.

5Note that, in Example 4.2.3 we intentionally chose the dynamical system as in (4.2.8) to show the corresponding flat output
representation. It can be verified that (4.3.16) is the system presented in Example 4.2.3.
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As also shown in Example 4.2.3 the flat output of (4.3.16) can be chosen as:

z(t) = y1(t). (4.3.19)

Using (4.3.16) and the flat output z(t) in (4.3.19), we can express the state and control variables x1(t), u1(t)
as: 

x1(z) =
(
GTQ12

)−1 [
z(t)−GTQ11

]
,

u1(z) = G−1
{(

GTQ12

)−1
ż(t)− [J11(z)−R11] G−T z(t)

}
.

(4.3.20)

Note that z(t) is the flat output of the system (4.3.16) which can not generally describe the state variable
x2(t) of the system (4.3.17) by its derivatives. However, from (4.3.17), (4.3.18) and (4.3.19), the state vector
x2(z) can be described by:

x2(z) = x2(t0)−
t∫

t0

yc(t)dt = x2(t0)−
[

0 0 1
] t∫
t0

z(t)dt. (4.3.21)

The cost function in (4.3.5) is rewritten in function of the flat output as follows:

Vl(z) =

tf∫
t0

z(t)TRzz(t)dt, (4.3.22)

where the weight matrix, Rz ∈ R3×3, is given by Rz = G−1RT
11G

−T , with G defined in (4.3.18) and R11

defined in (4.3.14). Thanks to formulation (4.3.20)-(4.3.22), we can reformulate the optimization problem
(4.3.9) as follows:

min
z(t)

Vl(z) (4.3.23a)

subject to

z(t) ∈ Gy, (4.3.23b)

u1(z) ∈ Gu, (4.3.23c)

[0 0 1]z(t0) = 0, (4.3.23d)

[0 0 1]z(tf ) = 0, (4.3.23e)

[0 0 1]

tf∫
t0

z(t)dt = θf − θ0, (4.3.23f)

where the convex sets Gy, Gu ⊂ R3 are defined by

Gy =

{
(x1, x2, x3) ∈ R3|

√
x2

1 + x2
2 ≤ Il,max/

√
2, ωl,min ≤ x3 ≤ ωl,max

}
, (4.3.24a)

Gu =

{
(u1, u2, u3) ∈ R3|

√
u2

1 + u2
2 ≤

vref√
2
, u3 = −Γres

}
. (4.3.24b)

Remark 4.3.1. After comparing the optimization problem (4.3.23) with the original problem (4.3.9), we draw
several remarks:

• by using the flat output we can eliminate the electro-mechanical elevator dynamics in the optimization
problem (4.3.23);

• there is an additional equality constraint in (4.3.23c) and (4.3.24b), which needs to be fulfilled at all
times.
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Next, by parametrizing the flat output, z(t), as in (4.2.12) using the B-splines basis function we obtain
a discrete number of constraints in the optimization problem (4.3.23). In addition, we define the time
integrations of the basis functions by:

λIj(t) =

t∫
t0

λj(t)dt, j = 1, . . . , 3, (4.3.25a)

ΛI(t) =

t∫
t0

Λ(t)dt. (4.3.25b)

From (4.2.12) and (4.3.25), we can describe the time integration of z(t) by:

t∫
t0

z(t)dt = ZΛI(t). (4.3.26)

Thanks to the properties of the B-splines enumerated in Section (4.2.2), λj(t), we rewrite the cost and the
constraint functions in (4.3.23) as explicit functions of the control points, zj . Based on Proposition 4.2.9,
the quadratic cost function Vl(z) in (4.3.22) is rewritten as:

Vl(Z) =

N∑
i=1

N∑
j=1

zTi

 tf∫
t0

λi(t)Rzλj(t)dt

 zj , (4.3.27)

where N is the number of the B-splines. Based on Proposition 4.2.11, we formulate the sufficient condition
for the satisfaction of the constraint (4.3.23b), y1(t) ∈ Gy, at all times as:

zj ∈ Gy, ∀j = 1, . . . , N. (4.3.28)

From the description of the interconnection matrix, J11, in (4.3.14) and of the state variables in (4.3.20), we
can express J11(z) as:

J11(z) =

3∑
s1=1

(
3∑

s2=1

J11,s2a
T
s2

(
GTQ12

)−1
as1

)
zs1(t), (4.3.29)

where zs1(t) ∈ R is the sth1 coordinate of the flat output vector, z(t), the matrices J11,1,J11,2,J11,3 ∈ R3×3

are defined by:

J11,1 =

 0 0 0
0 0 −1
0 1 0

 , J11,2 =

 0 0 1
0 0 0
−1 0 0

 , J11,3 = 0, (4.3.30)

and the vectors a1,a2,a3 ∈ R3×1 are defined by:

a1 =
[

1 0 0
]T
, a2 =

[
0 1 0

]T
, a3 =

[
0 0 1

]T
. (4.3.31)

Based on Proposition 4.2.11 and (4.3.20), we obtain the sufficient condition for the satisfaction at all times
of the constraint (4.3.23c), u1(t) ∈ Gu, as:

u1,i,j = A1ZMd,d−1Sk,d−1,d,i + A2zi +

3∑
s1=1

zs1,iA3,s1zj ∈ Gu, (4.3.32)

for all k, i, j ∈ N satisfying d − 1 ≤ k ≤ n − 1, k − d + 2 ≤ i ≤ k + 1, k − d + 2 ≤ j ≤ k + 1. The matrices
A1, A2 and A3 are defined by:

A1 = G−1
(
GTQ12

)−1
,

A2 = G−1R11G
−T ,

A3,s1 = G−1
3∑

s2=1
J11,s2a

T
s2

(
GTQ12

)−1
as1G

−T , s1 = 1, 2, 3.

(4.3.33)
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Note that in (4.3.24) and (4.3.32), there is an equality constraint over the input u1(t) which is in general,
difficult to respect. Therefore, we propose a soft-constrained reformulation [Kerrigan and Maciejowski, 2000]
of the optimization (4.3.23). More precisely, the cost (4.3.27) and the constraint (4.3.23c) are rewritten as:

V̌l(Z, ε) = Vl(Z) +Qεε, (4.3.34a)

u1,i,j ∈ Ǧu =

{
(u1, u2, u3)|

√
u2

1 + u2
2 ≤

vref√
2
, −Γres − ε ≤ u3 ≤ −Γres + ε

}
, (4.3.34b)

ε ≥0, (4.3.34c)

where Qε ∈ R is a positive coefficient, ε ∈ R is the relaxation factor. Using (4.2.19), (4.3.26), the constraints
(4.3.23d)-(4.3.23f) are rewritten as:  z3,1 = 0,

z3,N = 0,
[0 0 1] ZΛI(tf ) = θf − θ0.

(4.3.35)

where z3,1, z3,N ∈ R are the third coordinates of the first and N th control points. By replacing the cost and
the constraint functions in (4.3.27)-(4.3.35) in the optimization problem (4.3.23), we obtain:

min
Z,ε

V̌l(Z, ε) (4.3.36a)

subject to the constraints (4.3.28), (4.3.34b)-(4.3.35). (4.3.36b)

Notice that, in the optimization problem (4.3.36), the cost function is quadratic, the constraints in (4.3.28)
are convex, the constraints in (4.3.35) are linear. However, since the constraints (4.3.34) are nonlinear,
(4.3.36) is a nonlinear optimization problem. Still, there are specialized solvers (like IPOPT, [Biegler and
Zavala, 2009]) which can handle the nonlinear optimization problem with relative large prediction horizon.

Once we obtain the optimal control point described by Z, we can generate the reference profiles for the
system states, x1(t), representing the stator magnetic fluxes and the pulley speed, x2(t), representing the
pulley angle, and for the control variable, vl(t), representing the motor voltages. This will be numerically
considered in the next simulation results.

4.3.2 Simulation results

This section presents the simulation results for the electro-mechanical elevator reference profile generation.
The forthcoming simulations use the parameters listed in Table 3.3.1 with the numerical data given by the
industrial partner SODIMAS (an elevator company from France). Details on the simulation setting are
presented in Table 4.3.1. The numerical optimization problem is solved by using Yalmip [Löfberg, 2004] and
IPOPT [Biegler and Zavala, 2009] solvers in Matlab 2013a.

Table 4.3.1: Setting for the simulations of the electro-mechanical elevator speed profile generation.
Name Notation Unit Value
Time interval [t0, tf ] [s] [0, 30]
B-spline number N 10
B-spline order d 4
Number of pole pairs p 10
Direct inductance Ld [mH] 8.96
Quadrature inductance Lq [mH] 11.23
Stator resistance Rs [Ω] 0.53
Rotor linkage flux φf [V.s] 0.944
Mechanical inertia J [kg.m2] 3.53
Gravity torque Γres [N.m] 149
Maximal current amplitude imax [A] 41.2
DC-link voltage vref [V ] 400
Maximal angular speed ωl,max [rad/s] 29.6
Minimal angular speed ωl,min [rad/s] 0
Initial rotor angle θ0 [rad] 0
Final rotor angle θf [rad] 592.6
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Table 4.3.2: Tuning for the soft constraint, ε in (4.3.34).
N=8 N=9 N=10 N=11 N=12

d=4 0.1216 0.1851 0.0263 0.0533 0.0084
d=5 4×10−8 5×10−8 1×10−7 7×10−8 1×10−7

d=6 3×10−5 1×10−5 7×10−5 28×10−5 19×10−5

Table 4.3.3: Computation time in seconds of the off-line reference profile generation.
N=8 N=9 N=10 N=11 N=12

d=4 6.0800 7.0780 7.9130 8.8400 9.9960
d=5 8.3550 10.0300 11.9450 13.6260 15.2460
d=6 11.0610 13.8170 16.8470 20.5200 23.8510

Tables 4.3.2-4.3.3 present values of the relaxation factor, ε in (4.3.34), and the computation time with
different B-splines parameterizations, i.e., various orders, various B-splines numbers. The numerical value of
the relaxation weight, Qε, in (4.3.34), is given as: Qε = 105[(Nm)−1]. We see that with B-splines of order
5 the soft constraint technique gives the smallest torque error. Thus, 8 B-splines of order 5 will be used to
generate the reference profiles in the following.

Figures 4.3.1-4.3.2 illustrate the obtained reference profiles of the output currents, il(t), of the rotor speed,
ωl(t), of the rotor angle, θm(t), and of the input voltage, vl(t) and of the magnetic torque, uc, using two
different methods:

• Method 1: trapezoidal rotor speed profiles with the MTPA method (see Appendix E) as in [Vittek
et al., 2017].

• Method 2: differential flatness with the B-splines-based parameterization as in Section 4.2.1-4.2.2.

Solving the constrained optimization problem (4.3.36) we show in Fig. 4.3.1 that the constraints on the
currents, on the voltages and on the rotor speed are respected. Moreover, since the rotor speed varies slowly,
the rotor acceleration is small. Thus, the motor nearly generates a constant torque which requires small-
varying currents. Therefore, the currents are not far from the limits. Also, note that the generated mechanical
torque through our method (above denoted Method 2) is not equal to the elevator gravity torque, it respects
the soft constraints defined in (4.3.34). Figure 4.3.2 describes the reference rotor angle profile which is the
integration of the speed profile with the time. It satisfies the boundary constraints of the initial and final
rotor angles in (4.3.23f).

Comparing the results using the above two methods we have several remarks. The results obtained using
Method 1 do not satisfy the electro-mechanical elevator dynamics and give a higher dissipated energy with
respect to Method 2, that is, 2709 J. The results obtained using Method 2 do not respect the equality
constraint in (4.3.23c) but provides the lower dissipated energy with respect to Method 1, that is, 2646 J.
Our results can be improved by modifying the order and number of the used B-splines. The reference profiles
from Method 2 will be used for the coming tracking control problem.

4.3.3 Reference profile tracking

In this subsection, we consider a MPC law for tracking the reference profile of the electro-mechanical elevator
system. This choice is due to the fact that the reference profiles stay close to the boundary, and the actual
signal may not satisfy the constraints. Thus, some of the constraints in (4.3.28) and (4.3.34b) should be
taken into account in the tracking control design.

To implement the MPC, we need to use the discretized formulations of the system dynamics, the cost
function, the constraints and of the reference profiles. First, the simulation time interval [t0, tf ] is partitioned

into N equal subintervals with the time step defined by h =
tf − t0
N

. The discrete-time state and control

reference profiles are described by:{
vl,k = vl(t0 + kh),∀k = 0, . . . , N − 1,

xl,k = xl(t0 + kh),∀k = 0, . . . , N.
(4.3.37)

For comparison we provide in the following two discrete-time models which will be used for the tracking
MPC.
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Figure 4.3.1: Reference profiles for the currents, voltages, rotor speed and magnetic torque.

Nonlinear discrete-time model: The first model is described by the nonlinear discrete-time dynamics
(3.3.6) with Scheme 1 in (3.3.7):

xl,k+1 − xl,k
h

= [Jl(xl,k)−R11]

(
Ql1 + Ql2

xl,k+1 + xl,k
2

)
+ Gllvl,k,

il,k = GT
ll

(
Ql1 + Ql2

xl,k+1 + xl,k
2

)
,

(4.3.38)

where Jl ∈ R4×4, Rl ∈ R4×4, Ql1 ∈ R4×1, Ql2 ∈ R4×4 are the matrices defined in (4.3.2)-(4.3.4).

MPC with the nonlinear discrete-time model in 4.3.38: In this work, we investigate the MPC which allow
to track the generated reference profiles. The cost function penalizes the discrepancies between the actual
signals and the references. We consider the recursive construction of an optimal open-loop state and control
sequences:

Xl(t) = {xl(t|t), . . . ,xl(t+Np|t)},
Ul(t) = {vl(t|t), . . . ,vl(t+Np − 1|t)},

at instant t over a finite receding horizon Np, which leads to a feedback control policy by the effective
application of the first control action vl(t|t) as system input:

U∗l (t) = argmin
Ul(t)

V (Xl,Ul) (4.3.39)

subject to
the discrete-time dynamics (4.3.38), ∀k = 0, . . . , Np − 1,

‖vl(t+ k|t)‖2 ≤
vref√

2
, ∀k = 0, . . . , Np − 1,

[I3 0] [Ql1 + Ql2xl(t+ k|t)] ∈ Gy, ∀k = 0, . . . , Np,

(4.3.40)

where Gy is defined in (4.3.24), the cost function penalize the discrepancies between the predicted state/input
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Figure 4.3.2: Reference profile for the rotor’s angle.

signals and the reference profiles:

V (Xl,Ul) =
∥∥xl(t+Np|t)− xl,t+Np

∥∥
Qf

+

Np−1∑
k=0

(
‖xl(t+ k|t)− xl,t+k‖Qx

+ ‖vl(t+ k|t)− vl,t+k‖Qu

)
.

(4.3.41)

In (4.3.41) Qf , Qx, Qu are symmetric weight matrices with appropriate dimensions. Generally, these matrices
must be positive definite to guarantee the stability of the state vector and to modify the convergence speed.
In the next simulation results for the tracking control, we concentrate on the stability objective. Moreover,
through the simulation we observe that the dynamics of the current and rotor speed is asymptotically stable.
Therefore, only the rotor angle needs to be stabilized. Consequently, only the elements of the weight matrices
Qf ,Qx corresponding to the rotor angle are positive.

Since (4.3.38) is nonlinear, the resolution of the optimization problem (4.3.40) requires a complex com-
putation. Therefore, as a second solution, we consider the linearization of this model and the corresponding
MPC formulation.

Linearized discrete-time model: The second proposed model of the electro-mechanical elevator system is
obtained using the energy-preserving discretization method proposed in Section 3.3 for the linearized model
of the continuous-time model (4.3.1)-(4.3.4). Let the discrepancies between the actual state, input and output
vectors, xl(t) ∈ R4, vl(t) ∈ R2, il(t) ∈ R2, and their references, xl(t), vl(t), il(t) be denoted by:

x̃l(t) = xl(t)− xl(t),

ṽl(t) = vl(t)− vl(t),

ĩl(t) = il(t)− il(t).

(4.3.42)

Note that x1(t), vl(t) respect the electro-mechanical elevator dynamics (4.3.1)-(4.3.3). Therefore, from
(4.3.1)-(4.3.3), (4.3.42) and xl(t) ≈ xl(t), we obtain the linearized discrepancy dynamics:{

˙̃xl(t) = [Jl(xl)−Rl − S(xl)] Ql2x̃l(t) + Gllṽl(t),

ĩl = GT
llQl2x̃l(t)

(4.3.43)

where Jl(xl), Rl, Ql2 ∈ R4×4 are defined in (4.3.1)-(4.3.4) and S(xl) ∈ R4×4 is defined as:

S(xl) = [Jl,1 (Ql1 + Ql2xl(t)) . . . Jl,4 (Ql1 + Ql2xl(t))] , (4.3.44)

with Jl,1, . . . ,Jl,4 ∈ R4×4 defined as:

Jl,1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , Jl,2 =


0 0 1 0
0 0 0 0
−1 0 0 0

0 0 0 0

 , Jl,3 = 0, Jl,4 = 0. (4.3.45)
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By using the energy-preserving discretization method in Chapter 3 we obtain the discrete-time models of the
linearized dynamics (4.3.43) as:


x̃l,k+1 − x̃l,k

h
= [Jl(xl,k)−Rl − S(xl,k)] Q12

x̃l,k+1 + x̃l,k
2

+ Gllṽl,k(t),

ĩl,k+1 = GT
llQ12

x̃l,k+1 + x̃l,k
2

.

(4.3.46)

Closed-loop system: The MPC formulation in (4.3.39)-(4.3.40) is reformulated using the linearized discrete-
time model (4.3.46). We consider the recursive construction of an optimal open-loop state and control
sequences:

X̃l(t) , {x̃l(t|t), . . . , x̃l(t+Np|t)},
Ũl(t) , {ṽl(t|t), . . . , ṽl(t+Np − 1|t)},

at instant t over a finite receding horizon Np, which leads to a feedback control policy by the effective
application of the first control action vl(t) = vl(t) + ṽl(t|t) as system input:

Ũl
∗
(t) = argmin

Ũl(t)

V (X̃l, Ũl) (4.3.47)

subject to


the elevator discrete-time dynamics (4.3.46), ∀k = 0, . . . , N − 1,

‖vl,t+k + ṽl(t+ k|t)‖2 ≤
vref√

2
, ∀k = 0, . . . , N − 1,

[I3 0] [Ql1 + Ql2(xl,t+k + x̃l(t+ k|t))] ∈ Gy, ∀k = 0, . . . , N,

(4.3.48)

where Gy is defined in (4.3.24), the cost function penalize the discrepancies between the predicted state/input
signals and the reference profiles:

V (X̃l, Ũl) = ‖x̃l(t+Np|t)‖Qf
+

Np−1∑
k=0

[
‖x̃l(t+ k|t)‖Qx

+ ‖ṽl(t+ k|t)‖Qu

]
, (4.3.49)

Qf , Qx, Qu are the symmetric matrices with the appropriate dimensions.

The presented MPC in (4.3.39)-(4.3.40) and in (4.3.47)-(4.3.48) includes 4 tuning parameters: prediction
horizon Np, state weight matrix Qx, final state weight matrix Qf and the input weight matrix Qu. They are
chosen such that the enumerated conditions in Theorem 4.2.13 are satisfied. The increasing of the prediction
horizon leads to the decreasing of the value function which corresponds to the decreasing of the discrepancies
of state and input with respect to the references. However, this makes the optimization problem more
complex. By increasing the input weight matrix, the controller gives more importance to the input reference
tracking than state reference tracking. The MPC formulations (4.3.47)-(4.3.49) will be used in the following
simulations.

4.3.4 Simulation results

This section presents the simulation results for the reference profile tracking problem of the electro-mechanical
elevator illustrated in Fig. 2.4.1. The references are generated using differential flatness and B-splines-based
parameterization with continuous time validation of the constraints. They are given in Sections 4.3.1-4.3.2
and described in Fig. 4.3.1. The parameters are presented in Table 3.3.1 with the numerical data given by
the industrial partner SODIMAS. The time step of the discrete-time model is h = 0.001s.
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Figure 4.3.3: Time evolution and tracking errors of the state variable for the case of nominal dynamics and
feedforward control.

Figures 4.3.3 illustrates the time evolutions and discrepancies of the state and input variables for the
case of nominal dynamics with the feedforward control. Since the actual control signals are equal to the
reference one, vl(t) = vl(t), the input discrepancies are zero, ṽl(t) = 0. However, the discrepancies of the
state variables differs from zero due to two following reasons. The first reason is that there are differences
between the time discretizations of the electro-mechanical dynamics and of the reference profiles. The second
reason is related to the employment of the soft constraint instead of the equality constraint (4.3.34).
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Figure 4.3.4: Time evolution and errors of the state variable for the case of perturbation-affected dynamics
and feedforward control.

Figures 4.3.4 describe the time evolution and tracking errors of the state and input variables for the case
of perturbation-affected dynamics and feedforward control. The perturbation is defined by giving a random
state variables near the state reference at a chosen time instant. In the following simulations, the random
discrepancies are chosen as δx = [0.5 1 4 − 1]T . Physically, this perturbation represents a very strong
interaction between the system and the environment during a short time duration (much shorter than the
time step, h). By modifying the state variables, this also modifies the system stored energy, Hl(xl). For the
simplicity, we do not consider here the uncertainty on the control variables, on the feedback (output) signals
and on the model parameters. From the figures, we note that the dynamics of two currents and rotor speed
are asymptotically stable around the corresponding reference profiles. It is described by the convergences to
zero of the corresponding discrepancies. However, the error of the rotor angle is constant. It causes the angle
errors at the end of the elevator travel, i.e., the cabin does not stop at the required position.
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Remark 4.3.2. By considering the dynamics of the two currents and of the rotor speed in the linearized model
(4.3.43), we determine the corresponding eigenvalues. Though their real parts as illustrated in Fig. 4.3.5
are negative, we can not conclude that the nonlinear discrepancy dynamics are asymptotically stable [Khalil,
2002].
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Figure 4.3.5: The eigenvalues of the subsystem 1 in (4.3.16).

The previous constant angle error motivates us to concentrate on the rotor angle tracking in the MPC
formulation. Note that when the rotor angle error converges to zero, the rotor speed will increase which
may overpass the speed limitation. This problem is especially important when the perturbation affects the
system at the instant t = 15 s when the rotor speed and the voltages are closest to the boundary (illustrated
in Fig.4.3.4). Based on the simulations for the open-loop system, we consider some simplifications for the
tracking control problem such as:

• only the discrepancies of the rotor angle and of the stator voltages are penalized in the MPC cost such
that Qx = Qf = diag{0, 0, 0, k0} ∈ R4×4, Qx = Qu = I2 ∈ R2×2, with k0 > 0;

• only the perturbation on the rotor speed is considered;

• the perturbation-affected state variables always respect the constraints (4.3.6);

• one-step MPC is considered, i.e., Np = 1.

The controller parameters are enumerated in the Table 4.3.4. The numerical optimization problem is solved
by using Yalmip [Löfberg, 2004] and IPOPT [Biegler and Zavala, 2009] in Matlab 2013a.

Table 4.3.4: MPC parameters.
Variable Notation Unit Value
Sample time h [s] 0.001
Prediction horizon Np 1
State weight matrix Qx diag{0, 0, 0, k0}
Final state weight matrix Qf diag{0, 0, 0, k0}
Input weight matrix Qu I2

Figures 4.3.6-4.3.7 describe the time evolution and discrepancies of the state and input variables for the
case of the perturbation-affected dynamics with the MPC formulated in (4.3.39)-(4.3.40) and in (4.3.47)-
(4.3.48). We observe that the proposed tuning MPC parameters guarantee the asymptotic stability of the
electro-mechanical elevator system at the generated reference profiles. Besides, increasing the weight param-
eter, k0, increases the vibration of the state discrepancies but can not reduce the convergence time.
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Figure 4.3.6: The time evolutions and the discrepancies of the state variables for the case of perturbation-
affected dynamics with MPC.
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Figure 4.3.7: The time evolutions and the discrepancies of the input variables for the case of perturbation-
affected dynamics with MPC.

4.4 Conclusions

In this chapter we firstly recalled the method using the differential flatness, the B-splines-based parameteriza-
tion and the tracking MPC for approximating the constrained optimal control problem. A special case of the
Port-Controlled Hamiltonian system is presented where the output variables are also the flat outputs. Using
the properties of B-splines, a sufficient condition for the satisfaction at all the time of the continuous-time
quadratic constraints is given. Moreover, the exploitation of the Port-Controlled Hamiltonian formalism for
designing the tracking MPC is discussed with the concerned references. The presented control method is
modified for adapting to the case of the electro-mechanical elevator system. The modifications reside on the
“flat output-like” parameterization variables and the equality constraint relaxation by the soft constraint
technique. Then, some simulation results for the reference profile generation illustrate the efficiency of the
used method. They are compared to the method using the trapezoidal reference speed profile and the Max-
imum Torque Per Ampere technique. From the simulations with the feedforward control, we realize that
the dynamics of the stator currents and of the rotor speed are asymptotically stable, but the rotor angle
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dynamics is not. Then, a tracking MPC is used to stabilize the rotor angle errors validated by the numerical
simulations.

More details on differential flatness used for electro-mechanical systems can be found in [Delaleau and
M.Stankovi, 2004, Chen et al., 2013]. B-splines formulations can be found in [Suryawan, 2011]. Some ap-
plications of Tracking Model Predictive Control for regulating the Permanent Magnet Synchronous Machine
are introduced in [Bolognani et al., 2009,Rodriguez et al., 2013].

In the future works, we may take into account the quadratic equality constraint of the control points
instead of the soft constraint technique in the reference profile generation. Also, the convergence time of the
closed-loop discrepancy dynamics may be reduced by considering the cost of the discrepancies of the two
currents and of the rotor speed.
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Chapter 5

Power balancing through constrained
optimization for the DC microgrid

5.1 Introduction

As presented in Sections 1.3 and 2.6.3, the objective of the high level control of the DC microgrid system
is the electricity cost minimization. This is formulated as a constrained optimization problem which takes
into account the slow time scale dynamics of the microgrid, constraints over the distributed energy storage
systems, power predictions of the loads, the distributed energy generation system and the electricity price of
the electrical utility grid [Lifshitz and Weiss, 2014,Prodan and Zio, 2014,Desdouits et al., 2015,Parisio et al.,
2016, dos Santos et al., 2016, Touretzky and Baldea, 2016]. The slow dynamics correspond to the energy
storage unit (e.g., battery, thermal system). In the case where the load demand cannot be modified, all the
available renewable energy is used and the power balance is guaranteed, the microgrid energy management
problem reduces to an electrical storage scheduling problem.

Usually, the excess power of a distributed system is evaluated by selling to the external grid, or it can
be stored in an electrical storage system. Therefore, the storage scheduling is an important issue, knowing
the fact that the storage capacity (i.e., power and energy) is limited. [Paire et al., 2010,Xu and Chen, 2011]
proposed a reactive method (without the prediction) that uses logic rules to switch the system to different
operation modes. To reduce the required computation and increase the robustness, this method is formulated
in [Lagorse et al., 2010] through the use of multi-agent systems paradigm. However, this approach requires
a high storage capacity and is not efficient since, in some cases, the battery can charge from the external
grid when the electricity price is expensive. An off-line optimization-based control approach which takes into
account the system dynamics, constraints and power prediction is proposed in [Lifshitz and Weiss, 2014].

Furthermore, to improve the robustness, some works concentrate on its on-line version, i.e., MPC (Model
Predictive Control) (see, e.g., [dos Santos et al., 2016]). Note that there are two types of MPC: tracking
MPC [Maciejowski, 2002,Rawlings and Mayne, 2009] and economic MPC [Grüne, 2013,Ellis et al., 2017] (see
also Section 4.2.3 of Chapter 4). The tracking MPC aims at stabilizing the systems to given references by
penalizing in the cost function the discrepancies between controlled variables and their references. Moreover,
for the effectiveness, chosen cost functions are usually convex which are minimal on the corresponding refer-
ence profiles. In economic MPC, the cost functions reflect profit criteria which are generally nonlinear and
non-convex. Moreover, this controller is used to generate references for lower levels regulators. Thus, the
MPC for minimizing the electricity cost of microgrid systems can be called economic MPC [Touretzky and
Baldea, 2016].

The authors in [Prodan et al., 2015,Desdouits et al., 2015,Lifshitz and Weiss, 2015,Parisio et al., 2016,dos
Santos et al., 2016] use simple models for the battery and/or transmission lines which do not entirely capture
the real dynamics. Some works use a first-order model for the electrical storage unit [Prodan et al., 2015,
Desdouits et al., 2015, Parisio et al., 2016]. In fact, the electrical storage unit (e.g., a battery) may include
many sub storage parts which are connected by resistive elements. Only some of these parts can directly
supply the energy. For the slow time scale, the internal charge distribution between these parts can not be
ignored. Thus, a first-order model for the electrical storage unit may give incorrect informations about the
real available charge. Also, in these works, the transmission lines network dynamics are simply described by
a power balance relation. This is not realistic for DC microgrids where each component is placed far from
the others. Hence, the resistance of the transmission lines can not be neglected.

95
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In general, the microgrid dynamics has at least two energetic properties which may be useful for studying
the energy cost optimization: the energy balance and the underlying power-preserving structure. [Lefort
et al., 2013,Touretzky and Baldea, 2016] do not take explicitly into account these properties when developing
the model of the microgrid system. Thus, they may be lost while studying the energy cost optimization
through the model discretization and reduction. Thus, we delineate the following remarks:

• The energy cost optimization is a continuous-time optimization problem for which the solution gives
the time profile of the control variables (see Appendix C.2). Usually, it is difficult to find its exact
solution. Therefore, we can discretize the optimization problem to obtained a finite-dimensional op-
timization problem which is easier to solve (details on finite-dimensional optimization problems are
given in Appendix C.1). Moreover, its discretization requires the discrete-time model of the microgrid
dynamics.

• The microgrid dynamics has different time scales. To reduce the computation complexity, the energy
cost optimization usually uses the slow dynamics obtained by reducing the fast dynamics of the global
model using singular perturbation approach [Kokotović et al., 1976].

The present chapter proposes a discrete-time economic MPC for power balancing in a continuous DC
microgrid. More precisely, the contributions of this work are the following:

• A PH formulation which completely describes the power interconnection of the DC microgrid compo-
nents is developed. Moreover, PH representation on graphs (see also [van der Schaft and Maschke,
2013]) allows us to explicitly preserve the physical relations of current and voltage in an electrical
circuit.

• A discrete-time model satisfying the energy conservation property is derived.

• A centralized economic MPC design for battery scheduling is developped taking into account the global
discrete time model of the system, constraints and electricity cost minimization.

• Extensive simulation results are provided for different scenarios which validate the proposed constrained
optimization approach.

This chapter is organized as follows. Section 5.2 details some basic notion on PH systems on graphs
and continuous-time optimization-based control formulation. Section 5.3 introduces the DC microgrid model
and the constraints. Next, Section 5.4 formulates the on-line constrained optimization problem for reliable
battery scheduling. Section 5.5 details the simulation result under different scenarios. Finally, Section 5.6
draws the conclusions and presents the future work.

5.2 Port-Hamiltonian systems on graphs

This section briefly introduces some basic definitions and notions related to PH systems on graphs, which
will be further used for modeling the DC network (for more details the reader is referred to [van der Schaft
and Maschke, 2013]). Note that the PH formalism for system dynamics allows to explicitly describe the
power-preserving interconnection within the physical system (see also Section 2.2). However, its general rep-
resentations (e.g., hybrid input-output, constrained input-output, kernel, image [van der Schaft and Jeltsema,
2014]) do not preserve the topology of the power network which is achieved using the representation of PH
system on graphs [Fiaz et al., 2013]. This formalism is obtained by describing the system power-preserving
interconnection (i.e., the Dirac structure of the PH system defined in Section 2.2) using a directed graph.

Definition 5.2.1. [Directed (closed) graph, [van der Schaft and Maschke, 2013]] A directed graph G = (V,E)
consists of a finite set V of Nv vertices, a finite set E of Ne directed edges, together with a mapping from E
to the set of ordered pairs of V, where no self-loops are allowed. The incidence matrix B ∈ RNv×Ne describes
the map from E to V such that:

Bij =

 1, if node i is a head vertex of edge j,
−1, if node i is a end vertex of edge j,

0, else.
(5.2.1)

Note that the incidence matrix always satisfy the following property [van der Schaft and Maschke, 2013]:

1TNv
B = 0TNe

, (5.2.2)
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where Nv, Ne ∈ N are the numbers of vertices and edges in the graph. This is illustrated in the following
example.

Example 5.2.2. Fig. 5.2.1 illustrates a directed graph which is composed by 4 vertices and 6 directed edges.
Using Definition 5.2.1 of directed graphs, we determine the incidence matrix, B ∈ R4×6, of the graph in Fig.
5.2.1 as in (5.2.1):

Vertex 1

Vertex 4

Edge 1

Vertex 2 Vertex 3

Edge 2 Edge 3

Edge 4

E
d
g
e 

5

E
d
g
e 

6

Figure 5.2.1: Directed graph example.

B =


1 0 0 1 1 1
−1 −1 0 0 0 0

0 0 1 −1 0 0
0 1 −1 0 −1 −1

 . (5.2.3)

Next, the graph notion is used to define the Kirchhoff-Dirac structure (KDS) of a DC circuit of Nv nodes
and Ne edges. The associated graph, G, is chosen such that each vertex corresponds to a node of the DC
circuit, each edge corresponds to an electrical element1, and edge directions are positive directions of the
element currents. This graph, G, is characterized by an appropriate incidence matrix, B, defined in Definition
5.2.1. This matrix is used for describing the admissible node potentials, edge currents and voltages of the
circuit which is the KDS defined in the following definition.

Definition 5.2.3. [KDS on graphs, [van der Schaft and Maschke, 2013]] The KDS on graphs is defined as:

D(G) , {(i,v) ∈ RNe × RNe |Bi = 0, ∃vp ∈ RNv such that v = −BTvp}, (5.2.4)

where B is the incidence matrix of the electrical circuit graph G as defined in (5.2.1), vp ∈ RNv denotes the
node potential, v ∈ RNe denotes the edge voltage and i ∈ RNe denotes the edge current.

Example 5.2.4. Fig. 5.2.2 illustrates the Bond Graph representation defined in Section 2.2.1 and the directed
graph defined in Definition 5.2.3 for a DC circuit. The circuit includes 4 nodes and 6 elements. Thus, the
corresponding directed graph, G, includes 4 vertices and 6 edges which is given in Fig. 5.2.1. Therefore, this
graph is characterized by the incidence matrix in (5.2.3). Moreover, the node potential vector, vp(t) ∈ R4,
the edge current vector, i(t) ∈ R6, and the edge voltage vector, v(t) ∈ R6, are described as:

vp(t) = [ v1(t) v2(t) v3(t) v4(t)]T ,

v(t) = [vC1
(t) vR1

(t) vI(t) vE(t) vC2
(t) vR2

(t)]T ,

i(t) = [iC1(t) iR1(t) iI(t) iE(t) iC2(t) iR2(t)]T .

(5.2.5)

Similar to Definition 2.2.5, a PH system is constructed by connecting the KDS with the energy storage,
the energy dissipative element and the environment through corresponding ports. Thus, Ne edge ports (i,v)
as in Definition (5.2.3) are partitioned into NS energy storage ports (iS ,vS), NR resistive ports (iR,vR) and
NE external ports (iE ,vE).

1An electrical element can be a circuit of many basic elements (e.g., the resistor, the inductor, the capacitor, the voltage
source, the current source).
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Figure 5.2.2: (a) Electrical circuit (b) Bond Graph (c) Directed graph.

Definition 5.2.5. [PH system on graphs, [van der Schaft and Maschke, 2013]] Consider a state space X with
its tangent space TxX, co-tangent space T ∗xX, and a Hamiltonian H : X→ R, defining the energy-storage. A
PH system of KDS D(G) on X is defined by a Dirac structure D(G) ⊂ TxX×T ∗xX×RNR×RNR×RNE ×RNE

having energy-storing port (iS ,vS) ∈ TxX× T ∗xX, a resistive structure:

R =
{

(iR,vR) ∈ RNR × RNR
∣∣r(iR,vR) = 0, iTRvR ≤ 0

}
,

and the external ports (iE ,vE) ∈ RNE × RNE . Generally, the PH dynamics are described by:

(−ẋ(t),∇H(x), iR(t),vR(t), iE(t),vE(t)) ∈ D(G).

5.3 Slow time scale model of the DC microgrid

This section derives the slow time scale model of the DC-microgrid elevator system illustrated in Fig. 2.1.1. It
corresponds to the battery dynamics, the renewable power and the electricity price, within a range of minutes-
hours [Parisio et al., 2016]. Moreover, the fast time scale dynamics corresponding to the transmission lines
(xt(t) ∈ R5), the converter (xcs(t), xcb(t) ∈ R4) and the supercapacitor (xs(t) ∈ R) can be eliminated
thanks to the singular perturbation argument presented in Appendix F. According to this argument, the
slow dynamics are obtained by considering the global dynamics with the steady state of the fast dynamics.
This steady state is described by the following constraints:

ẋt(t) =0, (5.3.1a)

˙xcs(t) =0, (5.3.1b)

˙xcb(t) =0, (5.3.1c)

ẋs(t) =0, (5.3.1d)

where the details of the state vectors, xcs(t), xcb(t), xt(t), xs(t), are presented in (2.3.1), (2.3.6), (2.3.9) and
(2.3.29).

The state vector of the electro-mechanical elevator, xl(t) ∈ R4, in the slow time scale is also steady.
However, when the elevator stops, passengers come in/out which modify the stored energy of the electro-
mechanical elevator. Therefore, in the slow time scale this subsystem is modeled as a combination of the
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dynamics and of a power source. Moreover, in the slow time scale the electro-mechanical elevator dynamics
are assumed to be steady. Thus, this subsystem is reduced to a power source.

The constraint (5.3.1) for the microgrid dynamics (2.5.7) and the mentioned simplification for the electro-
mechanical elevator will be used to derive the component models in the slow time scale.

5.3.1 Components models and constraints

This subsection presents the slow time scale model of the microgrid components including the external grid,
the battery unit, the supercapacitor unit, the renewable source, the electro-mechanical elevator and the
transmission lines.

External grid: The external grid is modelled as a controllable current source ie(t) ∈ R (see also Fig. 2.3.4)
satisfying the constraint (2.6.13):

ie,min ≤ ie(t) ≤ ie,max, (5.3.2)

with ie,min, ie,max ∈ R.
Renewable source: As in Section 2.3.2 the solar panel unit is modelled as a power source (see also Fig.

2.3.3) characterized by the current, ir(t) ∈ R, and the voltage, vr(t) ∈ R, which satisfy the constraint (2.3.8):

ir(t)vr(t) = −Pr(t) < 0. (5.3.3)

+ _

Load

Figure 5.3.1: Electro-mechanical elevator model in the slow time scale.

Load unit: The load component of the DC microgrid represents a combination of the electro-mechanical
elevator and an AC/DC converter. During an elevator travel (i.e., some seconds), it is modelled as the
dynamics of the mechanical momentum, pl(t) ∈ R, of the rotor angle, θl(t) ∈ R, and of the motor magnetic
flux, Φl(t) ∈ R2, which are described in (4.3.1). However, within a range of minutes-hour, the stored energy of
the electro-mechanical elevator is modified when the passenger come in/out the cabin as presented in Section
2.6.1. Moreover, the electro-mechanical elevator dynamics is assumed to be at the steady state in the slow
time scale. The required load power depends on the profiles of the passenger mass, mc, of the required arrival
floor, θ, of the elevator travel start instant, tin, and of the stop instant, tfi (see also Eq. (2.6.1)). These
vectors vary arbitrarily but respect statistical rules. They determine the load average power in the slow time
scale, Pl(t), which is nearly the same for every day. Thus, this power is determined from the recorded data
in the past and is used for the required power in the future.

Opposing to the electro-mechanical elevator model in Chapter 4, we here use a simpler model which is a
power source Pl(t) ∈ R (see also Fig. 5.3.1) under current, il(t) ∈ R, and voltage, vl(t) ∈ R, constraints:

il(t)vl(t) = Pl(t). (5.3.4)

Note that, in the nominal case with the slow time scale, the load power, Pl(t) equals to the reference load
power, Pl(t).

Battery: Since the battery dynamics correspond to the slow time scale [Parisio et al., 2016], the battery
model is described by the electrical circuit in Fig. 2.3.6 and by equations (2.3.21)-(2.3.26): −ẋb(t)

vbR(t)
ibb(t)

 =

 0 −GbSR 0
GT
bSR 0 GbRE

0 −GT
bRE 0

 ∇Hb(xb)
ibR(t)
vbb(t)

 , (5.3.5a)

vbR(t) =−RbRibR(t), (5.3.5b)

where the state vector, xb(t) ∈ R2, describes the battery electricity charges and the Hamiltonian, Hb(xb(t)),
describes the battery stored energy as in (2.3.21). Also, the resistor current and voltage vectors are denoted
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by ibR(t), vbR(t) ∈ R2, the battery current and voltage are denoted by ibb(t), vbb(t) ∈ R, the structure
matrices, GbSR ∈ R2×2 and GbRE ∈ R2×1, are defined in (2.3.26) and the resistive matrix, RbR ∈ R2×2,
is defined in (2.3.24). Furthermore, from (2.6.8)-(2.6.9) the constraints of the battery charges and of the
battery current are given as:

0.5xb,max ≤ xb(t) ≤ xb,max, (5.3.6a)

ib,min ≤ ibb(t) ≤ ib,max, (5.3.6b)

where xb,max ∈ R2 is the maximal charge vector, ib,min, ib,max ∈ R are the minimal and maximal charge
currents. In the one-dimension model of the battery [Prodan et al., 2015], the maximal charge qmax ∈ R is
derived from xmax by the relation:

qmax = 1T2 xmax. (5.3.7)

Supercapacitor: From the supercapacitor dynamics (2.3.28)-(2.3.31) and the constraint (5.3.1d), we derive
that:

iss(t) = 0, (5.3.8)

where iss(t) ∈ R is the supercapacitor current. (5.3.8) implies that the supercapacitor is not charged or
discharged. Thus, it can be eliminated from the microgrid model in the slow time scale.

The DC/DC converter: As illustrated in Section 2.3.1, the battery unit has an associated DC/DC con-
verter which is described in (2.3.1)-(2.3.4). In the slow time scale the converter is assumed to be at the steady
state defined by the dynamics (2.3.1)-(2.3.4) and the constraint (5.3.1c). These lead to the relations (5.3.11).
For simplicity we define the representative duty cycle, d(t), such that:

d(t) =
1− db(t)
db(t)

, (5.3.9)

where db(t) ∈ R is the real duty cycle of the converter. From (5.3.9) and (2.6.12) we derive the constraint of
d(t):

0 ≤ d(t). (5.3.10)

Consequently, in the slow time scale the converter model is assumed to be an ideal transformer described by
the following relations: [

vbb(t)

ib(t)

]
=

[
0 −d(t)

d(t) 0

][
ibb(t)

vb(t)

]
, (5.3.11)

where ibb(t), ib(t) ∈ R denotes the DC/DC converter current variables, vb(t), vbb(t) ∈ R denote the voltage
variables at the two sides as in Fig. 2.3.1.

Similarly, the converter associated to the supercapacitor is also modelled in the slow time scale as:[
vss(t)

is(t)

]
=

[
0 −dsup(t)
dsup(t) 0

][
iss(t)

vs(t)

]
, (5.3.12)

where dsup(t) is the representative converter duty cycle, vss(t), vs(t) ∈ R are the converter voltage variables
at the two sides, iss(t), is(t) ∈ R are the converter current variables at the two sides as in Fig. 5.3.3. From
(5.3.8) and (5.3.12), we obtain:

is(t) = 0. (5.3.13)

(5.3.13) implies that there is not the charged/discharged current through the converter associated to the
supercapacitor. Thus, we can eliminate this converter from the microgrid model in the slow time scale.
Moreover, from the interconnection between the transmission line and the microgrid components described
in (2.3.9), (2.5.1)-(2.5.2) and the elimination of the supercapacitor unit described in (5.3.13), we obtain:

its(t) = aT it(t) = 0, (5.3.14)

with a = [0 1 0 0 0]T ∈ R5.
Transmission lines: The transmission line model is illustrated in Fig. 2.3.5 and is described in the

equations (2.3.9)-(2.3.14). In the slow time scale the transmission line dynamics are considered at the steady
state illustrated by the constraint (5.3.1a). The constraints (5.3.1a) and (5.3.14) imply the elimination of the
transmission line capacitors and of the supercapacitor unit in the electrical circuit described in Fig. 2.3.5.
Therefore, in the slow time scale the transmission lines (i.e., the DC bus) are modelled as a resistor network
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Figure 5.3.2: Electrical circuit of the transmission lines in the slow time scale: (a) the original resistor network
(b) the simplified resistor network.

as in Fig. 5.3.2. Using the Ohm’s law, we derive the current and voltage relation for the resistor network of
the transmission lines as:

itR(t) + R−1
tRvtR(t) = 0, (5.3.15)

where the resistor current vector, itR(t) ∈ R4, the voltage vector, vtR(t) ∈ R4, and the resistive matrix,
RtR ∈ R4×4, are defined by:

itR(t) = [ it,bl(t) it,be(t) it,er(t) ib,rl(t) ]T ,

vtR(t) = [ vt,bl(t) vt,be(t) vt,er(t) vb,rl(t) ]T ,

RtR = diag {Rbl, Rbe, Rer, Rlr}.
(5.3.16)

Next, using the definition of the KDS in (5.2.4) we present the interconnections of the DC microgrid
network through a closed graph.

5.3.2 DC microgrid network

The microgrid network includes all the elements enumerated above, the battery charges, the battery resistors,
the load, the renewable source, the external grid, the DC/DC converter and the DC bus resistors. For a
better graph on the modelling approach adopted in this work the multi-source elevator system is equivalently
represented by the electrical DC circuit in Fig 5.3.3 where we denote at the circuit node 1 the common
ground.

Using Definition 5.2.3, we represent the microgrid electrical circuit in Fig. 5.3.3 by a directed graph as
in Fig. 5.3.4. The edge current, i(t) ∈ R13, and voltage, v(t) ∈ R13, vectors are denoted by:{

i(t) = [−ẋb
T (t) −iTE(t) iTc (t) iTbR(t) iTtR(t)]T ,

v(t) = [∇HT
b (t) vTE(t) vTc (t) vTbR(t) vTtR(t)]T ,

(5.3.17)

where {
iE(t) = [il(t) ie(t) ir(t)]

T ∈ R3,
vE(t) = [vl(t) ve(t) vr(t)]

T ∈ R3 (5.3.18)

gather the currents and voltages of the load, the external grid and the renewable source, respectively,{
ic(t) = [ibb(t) ib(t)]

T ∈ R2,

vc(t) = [vbb(t) vb(t)]
T ∈ R2

(5.3.19)

gather the DC/DC converter current and voltage variables at the two sides. Let vp(t) ∈ R8 gather the
potentials at the nodes in the circuit. As illustrated in Fig. 5.3.3, we consider node 1 as the circuit “ground”
node of the DC microgrid hence, its potential is set to zero:

vp,1(t) = 0, (5.3.20)



102 Chapter 5. Optimal load balancing for the DC microgrid

+
_

+ _

Load power 

source 

+ _

Renewable 

power source 

+
_

+
_

+

_
_

+

1

1
1

1

2 3

4

5 6

7

Battery unit

External 

grid

+

_
+

_

+

_

+
_

+
_

Figure 5.3.3: Electrical circuit of the DC microgrid in the slow time scale.

and used as reference for measuring the potential at the other nodes in the circuit. From the Definition 5.2.3
the Kirchhoff-Dirac structure of the microgrid network is described as:{

v(t) = −BTvp(t),

0 = Bi(t),
(5.3.21)

where B ∈ R8×13 is the incidence matrix defined in (5.2.1):

B =



−1 −1 1 1 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 −1 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 −1 0 0 −1
0 0 0 −1 0 0 0 0 0 0 −1 1 0
0 0 0 0 −1 0 0 0 0 0 0 −1 1
0 0 0 0 0 −1 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0 0 1 1 0 0


. (5.3.22)

Alternative description for the microgrid network: By considering characteristics of the microgrid network,
we simplify some algebraic equations in (5.3.21)-(5.3.22) and eliminate the node potential vector, vp(t).
Let the edge current and voltage vectors, i(t) and v(t), defined in (5.3.17) be partitioned into the vectors
i1(t) ∈ R7, i2(t) ∈ R6, v1(t) ∈ R7 and v2(t) ∈ R6 such as:

i1(t) = [ −ẋb
T (t) iTE(t) iTc (t) ]T ,

v1(t) = [ ∇HT
b (t) vTE(t) vTc (t) ]T ,

i2(t) = [ iTbR(t) iTtR(t) ]T ,

v2(t) = [ vTbR(t) vTtR(t) ]T .

(5.3.23)

Note that i1(t), v1(t) describes the currents and voltages of the battery capacitors, the energy sources and
the converter. i2(t), v2(t) describe the currents and voltages of the circuit resistors. From the details of the
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Figure 5.3.4: Directed graph corresponding to the DC microgrid circuit in the slow time scale.

microgrid incidence matrix, B, in (5.3.22) we note that it can be rewritten as:

B =

[
B11 0
B21 B22

]
, (5.3.24)

where B11 ∈ R1×7, B22 ∈ R7×6, and B21 ∈ R7×7 is invertible. From (5.3.20), (5.3.21), (5.3.23) and (5.3.24)
the microgrid network described in (5.3.21)-(5.3.22) is rewritten as:

[
i1(t)

v2(t)

]
=

[
0 −B−1

21 B22(
B−1

21 B22

)T
0

][
v1(t)

i2(t)

]
, (5.3.25a)

B11i1(t) =0, (5.3.25b)

where i1(t), v1(t), i2(t), v2(t) are defined in (5.3.23). Note that the equations (5.3.25a) implies the power-
preserving property of the microgrid network.

Remark 5.3.1. Bond Graph (see also Section 2.2.1) of the microgrid circuit in Fig. 5.3.3 is illustrated in
Fig. 5.3.5. Although this graph explicitly describes the power flows within the microgrid, the derived Dirac
structure representation does not fully capture the topology of the electrical circuit which is given in the
incidence matrix, B, [Fiaz et al., 2013].

Next, we introduce the microgrid dynamics which characterizes the centralized system.
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Figure 5.3.5: Bond Graph of the DC microgrid circuit in the slow time scale.

5.3.3 Global DC microgrid model

Combining the above relations (5.3.3), (5.3.4), (5.3.5b), (5.3.11), (5.3.15), (5.3.23) and (5.3.25) we formulate
the global microgrid model:[

i1(t)

v2(t)

]
=

[
0 −B−1

21 B22(
B−1

21 B22

)T
0

][
v1(t)

i2(t)

]
, (5.3.26a)[

vbb(t)

ib(t)

]
=

[
0 −d(t)

d(t) 0

][
ibb(t)

vb(t)

]
, (5.3.26b)

B11i1(t) = 0, (5.3.26c)

ir(t)vr(t) =− Pr(t), (5.3.26d)

il(t)vl(t) = Pl(t), (5.3.26e)

vbR(t) =−RbRibR(t), (5.3.26f)

vtR(t) =−RtRitR(t), (5.3.26g)

where i1(t), v1(t) ∈ R7 gather the current and voltage variables of the microgrid components (see also
(5.3.23)), i2(t), v2(t) ∈ R6 gather the current and voltage variables of the resistors of the battery and of
the transmission lines (see also (5.3.23)). Also, in (5.3.26) ib(t), ibb(t), vb(t), vbb(t) ∈ R are the current and
voltage variables at the two sides of the DC/DC converter (see also Fig. 5.3.3), ir(t), vr(t) ∈ R are the current
and voltage variables of the renewable source, il(t), vl(t) ∈ R are the current and voltage variables of the
load (i.e., the electro-mechanical elevator). Furthermore, d(t) ∈ R is the converter duty cycle, B11 ∈ R1×7,
B22 ∈ R7×6, B21 ∈ R7×7 are the structure matrices defined in (5.3.24). Next, ibR(t), vbR(t) ∈ R2 are the
current and voltage variables of the battery resistors, itR(t), vtR(t) ∈ R4 are the current and voltage variables
of the transmission line resistors, RbR ∈ R2×2, RtR ∈ R2×2 are the resistive matrices of the battery and of
the transmission lines.

Compact microgrid dynamics: For compactness we define the matrices B1 ∈ R2×6, B2 ∈ R3×6, B3 ∈ R2×6

such that: [
BT

1 BT
2 BT

3

]T
= −B−1

21 B22. (5.3.27)

From (5.3.18)-(5.3.19), (5.3.23) and (5.3.27) we rewrite the microgrid dynamics (5.3.26) as:[
ẋb(t)

iE(t)

]
= L(d)

[
∇Hb(xb)

vE(t)

]
, (5.3.28)
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subject to the constraints:
0 = −B11B

−1
21 B22A2(d)

[
∇Hb(xb)

T vTE(t)
]T
,

Pl(t) = vl(t)il(t),

Pr(t) = −vr(t)ir(t),
(5.3.29)

where we define the matrices A0(d) ∈ R6×1, A1(d) ∈ R6×6, A2(d) ∈ R6×5, R ∈ R6×6 by:

A0(d) = R−1BT
3

[
d(t) 1

]T
, (5.3.30a)

A1(d) = A0(d)
[
AT

0 (d)R−1A0(d)
]−1

A0(d)T , (5.3.30b)

A2(d) =
[
R−1 −A1(d)

] [
BT

1 BT
2

]
, (5.3.30c)

R =

[
RbR 0
0 RtR

]
, (5.3.30d)

xb(t) ∈ R2 is the state vector describing the battery charges, Hb(xb) is the Hamiltonian describing the
stored energy in the battery (see also (2.3.21)), iE(t), vE(t) ∈ R3 describe the current and voltage variables
of the load, the external grid and the renewable source (see also (5.3.18)). Furthermore, in (5.3.28) we
denote by L(d) ∈ R5×5 a symmetric full rank matrix (similar to the weighted Laplace matrix of a resistor
network [van der Schaft, 2010]) depending on the duty cycle d as in (5.3.10):

L(d) =

[
B1

B2

]
A2(d). (5.3.31)

Using (5.3.18)-(5.3.19), (5.3.23), (5.3.27) and (5.3.30), the battery charge/discharge current constraint in
(5.3.30) is rewritten in the constraint of the state x(t) ∈ R2, the current variables iE(t) ∈ R3, the voltage
variables vE) ∈ R3 and the duty cycle d(t) ∈ R:

imin ≤ [0 1 0 0 0 0]A2(d)

[
∇Hb(xb)

vE(t)

]
≤ imax. (5.3.32)

Reference profiles: The load, the external grid and the renewable source are characterized by certain
profiles of reference as presented in Section 2.6.1. Taking into account the available statistical measurements
of electricity consumption we consider the reference power of the consumer denoted by Pl(t). Next, we denote
by Pr(t) the power profile of the renewable source estimated from meteorological data. Lastly, using existing
historical data of electricity market, we denote the predicted electricity price profile by price(t). Also, we
assume that the selling and buying prices are the same. These parameter profiles with the centralized model
and constraints of the microgrid system are used to formulate in the forthcoming section the global optimal
power balancing problem.

5.4 Optimization-based control for the DC microgrid

The main goal of this work is to provide a control strategy for the DC microgrid system and, in particular, for
the storage scheduling. The previously developed dynamics, constraints and profiles will be used in a discrete-
time constrained optimization problem. Hence, we will first introduce the global discrete-time model of the
DC microgrid which preserves the energy conservation properties of the continuous time model formulated
in (5.3.28)-(5.3.31).

5.4.1 Energy-preserving discrete-time model

In general, when discretizing a continuous time system, the energy conservation property should always be
taken into account. For a nonlinear PH system as in (5.3.26) this property can be ensured by preserving
the KDS (5.3.26a)-(5.3.26c) and the energy flowing through the storage ports (see also Chapter 3, Section
3.2). Let (.)(j) be the discrete value of variable (.)(t) at time instant t = t0 + (j − 1)hs with the time step
hs and the initial time instant t0. Using Definition 3.2.1 of the discrete-time Dirac structure we obtain the
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discrete-time interconnection of the microgrid illustrated in (5.3.26a)-(5.3.26c):[
i1(j)

v2(j)

]
=

[
0 −B−1

21 B22(
B−1

21 B22

)T
0

][
v1(j)

i2(j)

]
, (5.4.1a)

[
vbb(j)

ib(j)

]
=

[
0 −d(j)

d(j) 0

][
ibb(j)

vb(j)

]
, (5.4.1b)

B11i1(j) = 0, (5.4.1c)

Using Definition 3.2.8 of the discretization of the time-varying power source we derive the discrete-time
models of the load and of the renewable source:

il(j)vl(j) = Pl(j), (5.4.2a)

il(r)vr(j) =− Pr(j), (5.4.2b)

where the discrete-time power profiles, Pl(j), Pr(j), are the average values of the reference continuous-time
power profiles, Pl(t), Pr(t), as in (3.2.27). Using Definition 3.2.7 of the discrete-time static element for the
microgrid resistors described in (5.3.26f)-(5.3.26g) we obtain the discrete-time Ohm’s law:

vbR(j) =−RbRibR(j), (5.4.3a)

vtR(j) =−RtRitR(j), (5.4.3b)

where the resistive matrices, RbR ∈ R2×2 RtR ∈ R4×4, are defined in (2.3.24)-(5.3.16).

Note that discretizations of the current and voltage vectors, i1(t), i2(t), v1(t), v2(t) defined in (5.3.23)
imply that: 

i1(j) = [ fTS (j) iTE(j) iTc (j) ]T ,

v1(j) = [ eTS (j) vTE(j) vTc (j) ]T ,

i2(j) = [ iTbR(j) iTtR(j) ]T ,

v2(j) = [ vTbR(j) vTtR(j) ]T ,

(5.4.4)

where fS(j), eS(j) ∈ R2 are the discrete vectors of the charge time derivative, −ẋb, and of the Hamiltonian
gradient vector, ∇Hb(xb). The discrete-time current and voltage vectors, iE(j) ∈ R3, vE(j) ∈ R3, ic(j) ∈ R2,
vc(j) ∈ R2, are defined by: 

iE(j) = [ il(j) ie(j) ir(j) ]T ,

vE(j) = [ vl(j) ve(j) vr(j) ]T ,

ic(j) = [ ibb(j) ib(j) ]T ,

vc(j) = [ vb(j) vbb(j) ]T .

(5.4.5)

Now, we discuss about the discretization of the energy storage characterized by the flow and effort variables,
fS(j), eS(j). From (2.3.21) we note that the Hamiltonian, Hb(xb), is a quadratic function. Thus, according
to Example 3.2.5, we obtain the discrete-time scheme for the energy storage flow and effort variables, fS(j),
eS(j), as: 

fS(j) = −xb(j)− xb(j − 1)

h
,

eS(j) = Qb1 + Qb2
xb(j) + xb(j − 1)

2
,

(5.4.6)

Using the discrete-time models of the microgrid interconnection (5.4.1), the load (5.4.2a), the renewable
power (5.4.2b), the resistors (5.4.3) and the current and voltage variables (5.4.4)-(5.4.5), we obtain the
discrete-time model of the microgrid system:[

fS(j)

iE(j)

]
= L(d(j))

[
eS(j)

vE(j)

]
, (5.4.7)
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subject to the set of constraints:

0 = B11B
−1
21 B22A2(d(j))

[
eTS (j) vTE(j)

]T
,

Pl(j) = vl(j)il(j),

Pr(j) = −vr(j)ir(j),

fS(j) = −xb(j)− xb(j − 1)

h
,

eS(j) = Qb1 + Qb2
xb(j) + xb(j − 1)

2
,

(5.4.8)

where the matrices A0(d) ∈ R6×1, A1(d) ∈ R6×6, A2(d) ∈ R6×5, L(d) ∈ R5×5, are defined in (5.3.30)-
(5.3.31), fS(j), eS(j) ∈ R2 are defined in (5.4.6). Also, the discretization of the static constraints (5.3.10),
(5.3.6a) and (5.3.32) are described as:

0 ≤ d(j),

0.5xb,max ≤ xb(j) ≤ xb,max,

ie,min ≤ ie(j) ≤ ie,max,

imin ≤ [0 1 0 0 0 0]A2(d(j))

[
eS(j)

vE(j)

]
≤ imax,

(5.4.9)

Proposition 5.4.1. The discrete-time model defined by (5.4.7)-(5.4.8) preserves the energy conservation
property.

Proof. Thanks to the quadratic form of the Hamiltonian, Hb(xb), in (2.3.21) and the discrete-time storage
model (5.4.6) with the symmetry matrix Qb2, it is easy to verify that:

Hb(xb(j))−H(xb(j − 1)) = −fTS (j)eTS (j)hs. (5.4.10)

From (5.4.1a)-(5.4.1b) and (5.4.5), we obtain the power conservation property:{
iT1 (j)v1(j) + iT2 (j)v2(j) = 0,

iTc (j)vc(j) = 0,
(5.4.11)

Substituting i1(j), v1(j) in (5.4.4) to (5.4.11), we obtain:

fTS (j)eS(j) + iTE(j)vE(j) + iT2 (j)v2(j) = 0, (5.4.12)

From (5.4.3)-(5.4.5), (5.4.10)-(5.4.12), we obtain the system energy conservation relation:

H(x(j))−H(x(j − 1)) = ie(j)ve(j)hs − v2(j)TR−1v2(j)hs +

jhs∫
(j−1)hs

(Pl(τ) + Pr(τ))dτ,

where R ∈ R6×6 is the resistive matrix defined in (5.3.30), hs ∈ R is the discretization time step. This result
indicates that the evolution of the system energy equals the supplied energy minus the dissipated energy on
the resistive elements, or simply the energy conservation.

Remark 5.4.2. Note that, besides the discretization method presented here, there is another method based
on differential flatness and high-order B-splines-based parameterization (see Section 4.2). However, in this
case, the flat output is difficult to find. Thus, this method is not considered in the presented work.

Next, we formulate the optimization problem for the online scheduling of the battery operation with the
twin goals of minimizing the price of the acquired electricity while in the same time respecting the constraints
introduced earlier.
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Low level
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Figure 5.4.1: Scheduling control in the global control problem.

5.4.2 Scheduling formulation

In the microgrid model (5.3.28)-(5.3.30) there are two variables that can be used as control variables: the
duty cycle d(t) and the external grid current ie(t). Fig. 5.4.1 illustrates the general control scheme of the
DC microgrid system where two control levels can be considered. At a lower level (corresponding to fast
dynamics) the aim is to keep the load voltage vl(t) constant and at a higher level (corresponding to slow
dynamics), an optimal scheduling of the battery operation should be provided. In this work, we concentrate
only on the latter problem, and the first objective is assumed to be achieved in the much faster time scale
(e.g., [Zonetti et al., 2015,Zhao and Dörfler, 2015]) by using the duty cycle d(t). Thus, we consider that the
only control variable is the external grid current ie(t). Also, at the low level, we assume that the load voltage
is forced to a desired value vref ∈ R:

vl(t) = vref . (5.4.13)

Furthermore, in this work, we aim to minimize the electricity cost that is chosen as the cost in the
optimization problem (5.4.14)-(5.4.16) of the scheduling control. Therefore, the considered controller is
different from the conventional MPC which penalizes the discrepancy between the system state and the
setpoint for the tracking objective. Due to its profit objective, the controller is called economic MPC (
[Touretzky and Baldea, 2016]).

We consider the recursive construction of an optimal open-loop control sequence

ie(t) = {ie(t|t), . . . , ie(t+ jhs|t), . . . , ie(t+ (Np − 1)hs|t)}

at instant t over a finite receding horizon Np, which leads to a feedback control policy by the effective
application of the first control action as system input:

ie(t|t) = argmin
ie(t)

Np∑
j=1

γC(t+ jhs|t), (5.4.14)

subject to: {
discrete-time dynamics (5.4.6)-(5.4.8),
constraints (5.4.9), (5.4.13),

(5.4.15)

with j = 1, . . . , Np. In (5.4.14) we make use of the electricity price price(t) to penalize buying and encourage
selling with the cost described by the following relation:

C(t+ jhs|t) = price(t+ jhs|t) · ie(t+ jhs|t) · ve(t+ jhs|t). (5.4.16)

The profiles introduced in Section 2.6.1 appear as parameters here (e.g., the electricity price profile, price(t),
the load electrical power, Pl(t), and the renewable electrical power, Pr(t)). Therefore, the cost (5.4.16) is
variable due to the variation in the energy price, but otherwise is linear with respect to the input variable. We
can see that the dynamics (5.4.6)-(5.4.8) and the constraints (5.4.9), (5.4.13) are overall nonlinear. Thus, the
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optimization problem is nonlinear both in cost and in constraints (as seen in (5.4.14)-(5.4.16)). Still, there
are specialized solvers (like IPOPT, [Biegler and Zavala, 2009]) which can handle relatively large prediction
horizons.

Note that the increase of the prediction horizon length Np in (5.4.16) entails that the optimization problem
minimizes the cost along the entire horizon. It may, however, be the case that the cost function is affected
by uncertainties such that the cost values subsequent to the present values along the prediction horizon are
less reliable. A solution is to vary the weight γ ∈ (0, 1) from (5.4.16) associated to each cost value over the
prediction horizon (i.e., varying γ we may assign less importance to the cost values which are further in the
future [Hovd and Braatz, 2001]).

5.5 Simulation results

This section presents simulation results under different scenarios for the operation and control of the DC
microgrid elevator system illustrated in Fig. 2.1.1 and equivalently represented by the electrical DC circuit in
Fig. 5.3.3. The forthcoming simulations use the reference profiles described in Section 2.6.1 and the battery
parameters presented in (5.4.6)-(5.4.9) with the numerical data given by the industrial partner Sodimas (an
elevator company from France) and [Desdouits et al., 2015]. They are illustrated in Fig. 5.5.1 and Table
5.5.1.

Two simulation scenarios are considered here: nominal and perturbation-affected electrical power of load
and renewable unit. The perturbation is assumed to be bounded in a symmetrical tube as in (5.5.2). We use
different values for the SoC (States of Charge) of the battery state xb(t) ∈ R2 given in (5.3.5):

SoC1(t) =
xb1(t)

x1,max
, (5.5.1a)

SoC2(t) =
xb2(t)

x2,max
, (5.5.1b)

SoC(t) =
xb1(t) + xb2(t)

qmax
, (5.5.1c)

where xb1(t), xb2(t) ∈ R are the first and the second coordinates of the state vector, xb(t) in (5.3.5a).

Table 5.5.1: Numerical data for the microgrid components.
Name Notation Value
Scheduling time step hs [h] 0.5
Prediction horizon Np 48
Weighting parameter γ ∈ (0, 1) 0.5
Battery parameters Qb1 [V ] [ 13 13 ]T

Qb2 [V/C] diag {0.3036, 0.2024}
Battery constraints xmax [Ah] [ 73.2 109.8 ]T

ib,min [A] -20
ib,max [A] 20

Grid constraints ie,min [A] -8
ie,max [A] 8

Load voltage reference vref [V ] 380
Resistors R [Ω] diag {0.012, 0.015,

0.31, 0.29, 0.23, 0.19}

The numerical optimization problem is solved by using Yalmip [Löfberg, 2004] and IPOPT [Wächter,
2002] in Matlab 2015a. The constrained closed-loop dynamics implementation are done by using fsolve
function in Matlab 2015a with a fixed sampled time h = 36 seconds over a horizon of 24 hours. Note that
this sampling time corresponds to the discretization of the continuous nonlinear dynamics. The update of
the power profiles remains of 30 minutes.
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Figure 5.5.1: Profiles of load, renewable power and electricity price.

Nominal scenario: Fig. 5.5.2 illustrates the nominal scenario, where the battery charges x(t) along the
simulation horizon (i.e., 24h). From 7 to 9 o’clock, the first charge, SoC1(t), attains the maximal limit but
the second charge, SoC2(t), and the total charge, SoC, do not. It means that the battery can still be charged
but with a smaller current. Moreover, because the battery charges respect their constraints, we conclude
that the load power demand is always satisfied.
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Figure 5.5.2: Battery charges as in (5.5.1) (nominal scenario).

Fig. 5.5.3 describes the actual electrical power charged/discharged by the DC components. Note that
their positive signs indicate that the power is supplied to the microgrid. Also, it can be observed that when
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the electricity price is cheap, the battery is charged. Conversely, it is discharged during the high load and
expensive electricity price. Furthermore, to minimize the cost, the battery is discharged completely to half
its maximum capacity at the end of the day in preparation for the next day.
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Figure 5.5.3: Actual electrical power charged/discharged by the DC components.

Increasing the battery capacity has a diminishing effect on the overall cost reduction. We tested this
assumption in simulation as illustrated in Fig. 5.5.4. Above a capacity of 13 times the initial capacity value
qmax described by (5.3.7) there is no discernible improvement. This is justified by the fact that there is
enough capacity to reduce at minimum the external grid demand. In fact this may change with the length of
the prediction horizon and a varying electricity price (where it makes sense for the battery to arbitrate the
fluctuations).
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Figure 5.5.4: Cost and battery capacity relation.

Perturbation-affected scenario: Similar simulations are implemented for a perturbation-affected scenario.
More precisely, the electrical power of load and renewable source are within some uncertainty range:

Pl(t) ∈ Pl(t) [1− εlmin, 1 + εlmax] , (5.5.2a)

Pr(t) ∈ Pr(t) [1− εrmin, 1 + εrmax] , (5.5.2b)

where ε(.) are positive numbers taken here as εlmin = εlmax, εrmin = εrmax with the values set to 0.2.
The battery state of charge and components electrical power are presented in Figs. 5.5.5 and 5.5.6. Fig.

5.5.5 illustrates the battery state of charge (for the situations considered in (5.5.2)) with bounded uncertainty
affecting the electrical power load and renewable. We can observe that the battery charge respects the imposed
constraints and the load power demand is always satisfied. Note that this result is not significantly different
from the nominal case in Fig. 5.5.2 since the integral of perturbation is zero as specified by (5.5.2).

Furthermore, Fig. 5.5.6 describes the components actual provided electrical power under the perturbation-
affected scenario. Since the current (and power) of the external grid is fixed, most of the fluctuation of the
microgrid electrical power is absorbed by the battery.

5.6 Conclusions

This chapter introduced an efficient power scheduling for a DC microgrid under a constrained optimization-
based control approach. Firstly, a detailed model of the DC microgrid system was presented using Port-
Hamiltonian formulations on graphs, with the advantage of preserving the underlying asset of an electrical
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Figure 5.5.5: Battery charges as in (5.5.1) (perturbation scenario).

system, the power conservation property. Next, a centralized optimization problem was formulated for
efficient battery scheduling taking into account operating constraints, profiles and costs. Simulation results
validated the proposed approach.

Briefly, the original contributions of this work stem from:

• the DC microgrid is modeled through Port Hamilonian formulations. The procedure is a general one
and can be easily extended and applied for any microgrid structure, with the advantage of explicitly
taking into account the power conservation of the system interconnections;

• the constrained optimization problem proposed which finds the optimum balance between battery usage
and the profit gained from electricity management;

• the simulation results for the energy management of a particular DC microgrid elevator system which
validate the proposed approach.

As future work, we envision several directions of improvement for the constrained optimization-based
control scheme: i) feasibility by considering the properties and specific form of Port Hamiltonian formulations;
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Figure 5.5.6: Actual electrical power charged/discharged by the DC components under perturbation scenario.
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Figure 5.5.7: Actual electrical power charged/discharged by the DC components under perturbation scenario.

ii) computation improvements by reducing the prediction horizon; iii) robustness by taking explicitly in
consideration the disturbances, etc. Furthermore, we envision the extension of this approach by taking
explicitly into account different times scales in the control design scheme. Some recent works for additional
informations regarding the hierarchical microgrid control are presented in [Sechilariu et al., 2014,Iovine et al.,
2017]. Also, the comparison of stochastic model predictive control strategies applied to a hydrogen-based
microgrid is studied in [Velarde et al., 2016].
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Chapter 6

Conclusions and future developments

6.1 Conclusions

The present manuscript studied different optimization-based control strategies for the optimal energy distri-
bution within DC microgrids. For explicitly describing the power-preserving interconnection of microgrids,
the system model described by [Paire et al., 2010] was extended using the PH (Port-Hamiltonian) formal-
ism presented in [van der Schaft and Jeltsema, 2014]. Then, an optimization-based control design, which
combines a differential flat output (parameterized with B-splines) with a tracking MPC, was considered for
minimizing the dissipated energy within the electro-mechanical elevator. Furthermore, an economic MPC
(Model Predictive Control) approach, coupled with a PH model on graphs of the microgrid, was investigated
for optimal power balancing within the system.

We have to underline that the micro and smart grid field is vast and a thorough investigation goes beyond
the bounds of possibility. Therefore, we have concentrated our contribution on a specific thematic related
to modelling and control approaches for DC microgrid systems. However, we believe that the acclaimed
concepts from Port-Hamiltonian formulations, differential flatness, Model Predictive Control and B-splines
can be used, combined and redesigned for dealing with different challenging issues appearing in the control
of complex energy systems.

We have begun the manuscript by presenting a dynamical model for DC microgrids using Bond Graph
and PH formalisms with multiple time scales. This modelling method was used to describe all the microgrid
components, their interconnections and the global system. The obtained microgrid dynamics were described
in an implicit form composed of the differential and algebraic equations with the interconnection matrices
being modified by the control variables (i.e., the duty cycles). Based on the derived model, we presented
typical microgrid constraints and cost functions which were then used to formulate the optimal control
problems.

To integrate the presented microgrid model within the optimization-based control formulation, we pro-
posed a discretization scheme which preserves the power-preserving interconnection and the energy conserva-
tion properties of the continuous-time PH model. This scheme was obtained by combining the discrete-time
models of PH system elements, i.e., Dirac structure, energy storage, resistive, environment. The proposed
discretization method was validated for the cases of the electro-mechanical elevator and the DC microgrid in
the fast time scale (corresponding to the dynamics of the converters, the DC bus, the supercapacitor and the
electro-mechanical elevator). These simulation results illustrated the efficiencies of the proposed discretiza-
tion method with respect to other classical methods (implicit and explicit Euler methods were used for the
comparisons).

We have studied a constrained optimization-based control design method composed of the off-line reference
profile generation and the on-line tracking control for minimizing the dissipated energy within the electro-
mechanical elevator. Differential flatness with B-splines parameterization were used to represent the system
dynamics and the state and input constraints. The obtained reference profiles were compared to classical
profiles, obtained using the “trapezoidal speed” and the “Maximum Torque Per Ampere” methods. On-
line we realized the reference profile tracking through an MPC. The efficiency of the proposed method were
highlighted through simulations of the singular perturbation-affected scenario.

Finally, we have developped an economic MPC approach to investigate the power balancing for the DC
microgrid. The slow microgrid dynamical model corresponding to the battery dynamics time scale was first
obtained from the simplifications of the fast dynamics, i.e., the converters, the DC bus, the supercapacitor
and the electro-mechanical elevator system were considered at the steady state. The model was represented
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using the PH formalism on graphs which explicitly describes the microgrid circuit topology. For the MPC
design, the presented dynamics were discretized using the energy-preserving discretization method proposed
in Chapter 3. We formulated an economic MPC which takes into account the discrete-time model, the
renewable and load power profiles and the electricity price. The control method was validated through
simulations with different scenarios.

Since the combination of PH formalism and constrained optimization-based control is a new approach for
the microgrid energy management topic, there are still many open questions that will be detailed in the last
section.

6.2 Future developments

The short term future works are connected with the numerical feasibilities of the optimization-based
control design presented throughout the manuscript and with the multi-layer control strategies for DC mi-
crogrids.

In Chapter 4, a remaining hard point is that there is a continuous-time equality constraint in the reference
profile generation problem which is difficult to numerically satisfy. Since this constraint is parametrized using
flat outputs and B-splines, there may be two possible solutions. In the first solution, we use the equality
to simplify the dynamics such that there is no longer any equality constraint to deal with. In the second
solution, we modify the B-spline parameterization (e.g., change the B-splines order and modify the number
of B-splines) such that equality conditions involving the control points have solutions.

The control approach presented in Chapter 4 may be extended for minimizing the dissipated energy
within the fast part of the microgrid dynamics. The fast part corresponds to the converters, the DC bus,
the supercapcitor and the electro-mechanical elevator. The state variables are the converters capacitors, the
converters fluxes, the DC bus capacitors, the supercapacitor charge, the magnetic fluxes of the motor, the
mechanical momentum of the elevator and the motor angle. The control variables are the external current,
the converter duty cycles of the battery unit, the supercapacitor unit and the electro-mechanical elevator.
Furthermore, from the simulation results in Chapter 3, we notice that the dynamics of the converters, DC
bus and the motor stator are faster than the others (i.e., the dynamics of the mechanical elevator and the
supercapacitor). Thus, based on the singular perturbation method [Khalil, 2002], we could use only the
dynamics of the mechanical elevator and the supercapacitor in the reference profile generation procedure to
reduce the computational complexity.

In Chapter 5, the designed economic MPC for the microgrid power balancing with short prediction hori-
zons (e.g., 7 hours) often becomes infeasible during the simulation. This is due to the fact that the regulator
cannot predict the lack of stored energy at the load peak power moment (i.e., the demand profile varies too
much to be compensated by the short-prediction MPC). The drawback may be solved using an additional
term to the cost function which matches control laws to the laws obtained in the long prediction horizon
case (i.e., 24h in the current design). Moreover, energy efficiencies of the proposed control design should be
compared with other methods such as the priority rule approach [Paire, 2010] and the economic MPC with
first order model of energy storage units [dos Santos et al., 2016].

The extension of the MPC for the optimal microgrid power balancing to a multi-layer control design is
our approach to deal with different control objectives and different time scales of the DC micrigrid. Fig.
6.2.1 presents an electrical circuit of the DC microgrid, and Fig. 6.2.2 shows the control architecture. The
control decomposition is based on the separation of the control objectives, the microgrid dynamics and the
constraints.

The high level regulator aims at minimizing the electricity cost while taking into account the slow part
of the microgrid dynamics, the electricity price, the power balance and the constraints of the external grid
current, the battery current and the battery charge (see also Fig. 6.2.2). The slow model corresponds to
the battery dynamics, the renewable power profile and the slow load power profile. The state and control
variables are the battery charges and the external grid current, respectively (see also Fig. 6.2.1 where the
electrical circuit which takes into account these specifications of the microgrid is presented). The power
balance is assumed to be always satisfied thanks to low level regulators. The control laws are formulated
using an economic MPC which penalizes the electricity cost in a finite horizon (see also Chapter 5). Then,
this high level regulator sends the computed references of the external grid current (control signal), the
supercapacitor voltage and the load voltage to the low level regulator (see also Fig. 6.2.2).
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Figure 6.2.2: Two-layers control design.

The low level regulator aims at tracking the references given by the high level regulator while considering
the fast part of the microgrid dynamics, the constraint of the supercapacitor charge and the battery cur-
rent. The fast microgrid model corresponds to the supercapacitor dynamics and the fast load power profile
(obtained using the reference profiles designed in Chapter 4). The state and control variables are the su-
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percapacitor charge and the duty cycles, respectively. The control laws are formulated using tracking MPC
which penalizes the discrepancies between the actual supercapacitor charge, the actual load voltage and their
references given by the high level regulator (see also Fig. 6.2.2).

The long term future works are concerned with the insightful integration of the PH formalisms in the
constrained optimization-based control designs with multi-layer architecture. This should be reflected through
considerations of PH system properties (e.g., power-preserving interconnection, energy conservation, Casimir
function) in different aspects of the control such as model reduction and stability.

The model reduction is important when designing multi-layer controls for multi time scale systems, such
as microgrids, since it drastically simplifies the computational complexity of the regulators. According to the
singular perturbation method [Khalil, 2002], the reduced model implies the slow part of the system dynamics
after reducing the fast part. This method mainly admits two following assumptions: i) in the fast time scale
the slow state variables are constant; ii) in the slow time scale the fast dynamics are asymptotically stable.

Moreover, for preserving system properties described in the PH or graph formulations, reduced models
have been derived using the PH [Polyuga and van der Schaft, 2012,Wu, 2015] or PH on graphs [Monshizadeh
and van der Schaft, 2014] formalisms. However, these works consider systems with constant interconnections
which is not the case for the microgrid investigated in our work, since the microgrid interconnection is
modulated by the control signals, i.e., the duty cycles. Thus, reduction processes for the microgrid model
depend on low level control designs which give the relation between the control and state variables.

The model reduction using the B-splines approximation for the system’s flat outputs is used to approxi-
mate the continuous-time optimization problems in control designs (see Chapter 4). However, we have not
considered any insightful relation between the flat outputs and the PH formalism yet. Since the differential
flatness implies the feasible system trajectory, there may be a connection between flat outputs and Casimir
functions of the Port-Controlled Hamiltonian system (a class of PH systems).

The stability of the constrained closed-loop system using tracking MPC may be studied through the PH
formalism. As presented above, the PH formalism is useful for the system stability analysis and for the control
design based on the interconnection, the dissipation and the stored energy of the system dynamics [Duindam
et al., 2009]. An interesting property of PH system is the passivity where the energy (Hamiltonian) is
considered as a Lyapunov function. There are many control methods developed using the PH formalism
as presented in [van der Schaft and Jeltsema, 2014, Wei and Wang, 2010], e.g., Control by Interconnection,
Interconnection and Damping Assignment Passivity-Based Control (IDA PBC). However, none of these
methods can explicitly deal with the state and input constraints while MPC handles these easily. While the
theory on linear MPC has gained ground over the last decades [Rawlings and Mayne, 2009], the non-linear
and economic MPC are still open research topics. For example, the stability demonstration for the closed-loop
non-linear system is difficult since a Lyapunov function is not easy to find. From the previous arguments,
while both PH formalism and MPC are established tools in the literature, to the best of our knowledge (state
of the art in 2017), they have never been considered together by the control community.

We propose to use the PH formalism such that, via an MPC control action, the closed-loop dynamics
are describing a PH system. This is done in three steps: i) choosing the desired PH closed-loop system,
ii) finding the explicit control laws, iii) finding the corresponding MPC. Since any MPC-based closed-loop
system is in fact a switched system [Bemporad et al., 2002], the desired PH system must also be a switched
PH system. [Kloiber, 2014] proposes design methods for stable switched PH systems. Next, from the explicit
form of the closed-loop system, we find the explicit control laws by solving the matching equation. Then, the
process to find MPC laws corresponding to given explicit laws is seen as an inverse parametric programing
problem [Nguyen, 2015].



Appendix A

Permanent Magnet Synchronous
Machine

This section explains the PMSM dynamics in detail its dynamical model including a permanent magnet rotor
and a three phases stator [Nicklasson et al., 1997]. The PH formulation involves the determination of the
energy storage, the resistive element, the external environment and the interconnection (Dirac structure) for
the PMSM dynamical system.

Energy storage: It can be seen that the machine energy is stored in the magnetic field of three stator
coils. Their currents and voltages are denoted by il,L(t) ∈ R3 and vl,L(t) ∈ R3, respectively. It is well-known
that the energy of the inductors are expressed by:

He(t) =
1

2
iTl,L(t)L(θe)il,L(t), (A.0.1)

where the inductance matrix Labc(θe) ∈ R3×3 depends on the rotor angle since the air gap between the rotor
and stator varies with different rotor position such that:

Labc(θe) =


L1 + L2cosϕa(t) L3 + L2cosϕb(t) L3 + L2cosϕc(t)

L3 + L2cosϕb(t) L1 + L2cosϕc(t) L3 + L2cosϕa(t)

L3 + L2cosϕc(t) L3 + L2cosϕa(t) L1 + L2cosϕb(t)

 ∈ R3×3, (A.0.2)

where L1, L2, L3 correspond to the self and mutual inductors of the stator coils, p is the number of the pole

pairs, ϕa(t) = 2pθe(t), ϕb(t) = 2pθe(t) −
2π

3
, ϕc(t) = 2pθe(t) +

2π

3
are three magnetic phases of the stator

coils. The permanent magnet rotor is characterized by the magnetic flux φf that causes three fluxes on three
stator coils represented by Φfabc(θe) ∈ R3:

Φfabc(θe) = φf

[
cos (pθe) cos

(
pθe −

2π

3

)
cos

(
pθe +

2π

3

) ]T
∈ R3. (A.0.3)

Then, the magnet flux through the stator is the total of the fluxes of self inductance and of the rotor:

Φ̂l(t) = −Labc(θe)il,L(t) + Φfabc(θe). (A.0.4)

Next, il,L(t) is derived from (A.0.4) and replaced in (A.0.1). We obtain the stored energy formulation

He(Φ̂l, θe) as a function of stator magnetic fluxes, Φ̂l(t), and rotor angle, θe(t),:

He(Φ̂l, θe) =
1

2

[
Φ̂l(t)−Φfabc(θe)

]T
L−1
abc(θe)

[
Φ̂l(t)−Φfabc(θe)

]
. (A.0.5)

Consequently, from (A.0.4), (A.0.5) and the Lenz’s law, the stator inductance current and voltage are rewrit-
ten as: {

il,L(t) = −∂Φ̂l
He(Φ̂l, θe),

vl,L(t) = Φ̇l3(t).
(A.0.6)
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Resistive elements: Obviously, the resistive elements correspond to the stator resistors characterized by
the resistance Rl for each phase. Assuming that they are linear, the Ohm’s law is written as:

vl,R(t) = −Rlil,R(t), (A.0.7)

External environment: The external environment supplies energy to the PMSM through three ports:
electrical voltage source îl(t), v̂l(t) ∈ R3 and mechanical source τe(t), ωl(t) ∈ R. The stator central node is
not connected to an external port that leads to a zero current constraint. This is modeled by adding a zero
current source iln(t), vln(t) ∈ R such that:

iln(t) = 0. (A.0.8)

Dirac structure: Finally, from the physical laws, we derive the Dirac tructure of PMSM which describes
the relations of the previous element conjugate variables. Firstly, the Kirchhoff laws for the stator electrical
circuit are given by: 

vl,L(t) = −vl,R(t) + v̂l(t)− 13vln(t),

il,R(t) = il,L(t),

îl(t) = il,L(t),

iln(t) = 1T il,L(t).

(A.0.9)

Secondly, the magnetic torque of the machine is expressed as:

τe(t) = −∂He

∂θe
(Φ̂l, θe). (A.0.10)

Next, the relation of the rotor angle and its speed is given by:

θ̇e(t) = ωl(t). (A.0.11)

From (A.0.6)-(A.0.11) we derive the PMSM dynamics as:

− ˙̂
lΦ(t)

−θ̇e(t)
il,R(t)

−il3(t)

0

−τe(t)


=



0 0 I3 −I3 13 0

0 0 0 0 0 −1

−I3 0 0 0 0 0

I3 0 0 0 0 0

−1T3 0 0 0 0 0

0 1 0 0 0 0





∂Φ̂l
He(Φ̂l, θe)

∂θeHe(Φ̂l, θe)

vl,R(t)

vl3(t)

vln(t)

ωl(t)


. (A.0.12)



Appendix B

Symplecticity of Hamiltonian system

This section presents firstly the symplectic vector space and related notions. Then, the symplecticity of the
closed-Hamiltonian system in canonical form and on symmplectic submanifolds are defined.

B.1 Symplectic vector space and manifold

Definition B.1.1 (Symplectic bilinear form [Marsden and Ratiu, 1999]). A symplectic bilinear form is a
mapping ϕ : S× S→ R that is

• bilinear: linear in each argument separately,

• alternating: ϕ(s, s) = 0 hold for all s ∈ S, and

• nondegenerate: ϕ(s, r) = 0 for all s ∈ S implies that r is zero.

A simple example of symplectic form is given as:

ϕ(s, r) = sTJϕr, with Jϕ =

[
0 In

−In 0

]
, (B.1.1)

where In ∈ Rn×n is the identity matrix.

Definition B.1.2 (Symplectic vector space [Marsden and Ratiu, 1999]). A symplectic vector space is a vector
space S over a field F (for example the real numbers R) equipped with a symplectic bilinear form.

The symplectic bilinear form for the basis vectors (s1, ..., sn, r1, ..., rn) is given by:

ϕ(si, rj) = −ϕ(rj , si) = δij ,

ϕ(si, sj) = ϕ(ri, rj) = 0.

Similarly, the definition of the symplectic manifold M is formulated by replacing the linear vector space S in
the previous definition with the manifold M.

Definition B.1.3 (Symplectic map [Marsden and Ratiu, 1999]). Suppose that S, W are symplectic vector
spaces with the corresponding symplectic forms φ, ρ. A differentiable map η : S→W is called symplectic if it
preserves the symplectic forms, i.e.,

ρ(∂sη(s)s1, ∂sη(s)s2) = φ(s1, s2)

for all s, s1, s2 ∈ S, where ∂sη(s) is the Jacobian of η(s).

Definition B.1.4 (Symplectic group and symplectic transformation [Marsden and Ratiu, 1999]). In the
previous definition, if S = W, then a symplectic map is called a linear symplectic transformation of S. In
particular, in this case one has that ϕ(γ(s), γ(r)) = ϕ(s, r) and thus, the linear transformation γ preserves
the symplectic form. The set of all symplectic transformations forms a group called the symplectic group and
denoted by Sp(S).
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B.2 Hamiltonian system

B.2.1 Hamiltonian system in canonical form

The Hamiltonian system in canonical form has the form:

ẋ(t) = Jϕ∇H(x), x(0) = x0, (B.2.1)

where x(t) ∈ X ⊂ R2n is state variable, H(x) is the Hamiltonian. Thus, the system (B.2.1) is a special
case of Port-Hamiltonian system defined in Section B.2. The interconnection matrix Jϕ represents the Dirac
structure. H(x) describes the energy in the storage element.

Let ϕt : X ⊂ R2n of (B.2.1) be the mapping that advances the solution by time t, i.e., ϕt(x0) = x(t,x0),
where x(t,x0) is the solution of the system (B.2.1) corresponding to initial value x(0) = x0. The dynamics
(B.2.1) has two important properties [Marsden and Ratiu, 1999].

1. Hamiltonian is the first integral, i.e., its time derivative is zero, Ḣ(t) = 0.

2. The state evolution satisfies the simplecticity which is described by the following theorem given by
Poincaré in 1899.

theorem B.2.1. [Marsden and Ratiu, 1999] Let H(x) be a twice continuously differentiable function
on X ⊂ R2n. Then, for each fixed t, the flow ϕt is a symplectic transformation wherever it is defined,
i.e.,

∂x0
ϕt(x0)TJϕ∂x0

ϕt(x0) = Jϕ, ∀t > t0,

where ∂x0ϕt(x0) is the Jacobian of ϕt(x0).

B.2.2 Hamiltonian system with state-modulated Dirac structure

The interconnection matrix Jϕ depends on the state variables in some situations. For example, the Hamil-
tonian system (B.2.1) is represented on other coordinates, or some constraints are added. Therefore, the
Hamiltonian is described as:

ẋ(t) = J(x)∇H(x), x(0) = x0, (B.2.2)

where x ∈ X is the state variable, J(x) is skews-symmetric. The interconnection matrix J(x) represents the
Dirac structure. H(x) describes the energy in the storage element. In this case, the Dirac structure is called
modulated by the state variable.

The Hamiltonian system (B.2.2) has some following properties [van der Schaft and Jeltsema, 2014].

• (Invariant) A function C(x) ∈ R is called Casimir if

∇CT (x)J(x) = 0, ∀x ∈ X. (B.2.3)

It is easy to see that Hamiltonian and Casimir are constant on the state trajectory, i.e.,

Ḣ(t) = 0, Ċ(t) = 0.

• (Integrability) Loosely speaking, a Dirac structure is integrable if it is possible to find local coordinates
for the state-space manifold such that the Dirac structure expressed in these coordinates is a constant
Dirac structure (i.e., it is not modulated anymore by the state variables). Integrability in this case
means that the structure matrix J satisfies the conditions:

n∑
l=1

[
Jlj(x)

∂Jik
∂xl

(x) + Jli(x)
∂Jkj
∂xl

(x) + Jlk(x)
∂Jji
∂xl

(x)

]
= 0, (B.2.4)

for i, j, k = 1, . . . , n. Using Darboux’s theorem (see [Marsden and Ratiu, 1999]) around any point x0

where the rank of matrix J(x) is constant, there exist the local canonical coordinates z = [z1 z2 c]T in
which the dynamics (B.2.2) are rewritten as: ż1(t)

ż2(t)
ċ(t)

 =

 0 Ik 0
−Ik 0 0

0 0 0

∇H(z). (B.2.5)

In (B.2.5) c indicates the independent Casimirs. From Theorem B.2.1 and transformed system (B.2.5),
the time evolution of z is a symplectic transformation.



Appendix C

Optimization

C.1 Discrete optimization

The discrete optimization is studied in [Boyd and Vandenberghe, 2004]. A discrete optimization problem has
the form

minimize g0(x)

subject to gi(x) ≤ bi, i = 1, . . . ,m.
(C.1.1)

Here the vector x = [x1 . . . xn]T is the optimization variable of the problem, the function g : Rn → R is the
objective functions, the function gi : Rn → R, i = 1, . . . ,m, are the constraint functions, and the constants
b1, . . . , bm are the limits, or bounds, for the constraints. A vector x∗ is called optimal if it has the smallest
objective value among all vectors that satisfy the constraints: for any z with g1(z) ≤ b1, . . . , gm(z) ≤ bm, we
have g0(z) ≥ g0(x∗).

We generally consider families or classes of optimization problems, characterized by particular forms of
the objective and constraint functions. As an important example, the optimization problem (C.1.1) is called
a linear program if the objective and constraint functions are linear, i.e., satisfy

gi(αx + βy) = αgi(x) + βgi(y), i = 0, . . . ,m, (C.1.2)

for all x,y ∈ Rn and all α, β ∈ R. If the optimization problem is not linear, it is called a nonlinear program.
An important class of optimization problems is the convex optimization problems [Boyd and Vanden-

berghe, 2004]. For these types of problems the objective and the constraint functions are convex, hence they
satisfy the following inequality

gi(αx + βy) ≤ αgi(x) + βgi(y), i = 0, . . . ,m, (C.1.3)

for all x,y ∈ Rn and all α, β ∈ R with α+ β = 1, α ≥ 0, β ≥ 0. Comparing (C.1.2) and (C.1.3), we see that
convexity is more general than linearity: inequality replaces the more restrictive equality, and the inequality
must hold only for certain values of α and β. Since any linear program is therefore, a convex optimization
problem, we can consider convex optimization to be a generalization of linear programming.

C.2 Continuous-time optimization

The details of continuous-time optimization is referred to [Liberzon, 2011]. In Section C.1 we considered the
problem of minimizing a function g : Rn → R. Now, instead of Rn we want to allow a general vector space
V, and in fact we are interested in the case when this vector space V is infnite-dimensional. Specifically, V
will itself be a space of functions. Typical function spaces that we will consider are spaces of functions from
some interval [a; b]→ Rn (for some n ≥ 1).

Let us denote a generic function in V by y. The letter x is reserved for the argument of y. (x will typically
be a scalar, and has no relation with x ∈ Rn from the previous section). The function to be minimized is a
real-valued function on V, which we now denote by W . Since W is a function on a space of functions, it is
called a functional. To summarize, an continuous-time optimization problem has the form

minimize W (y) (C.2.1)
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with the functional W : V→ R.
We also need to equip our function space V with a norm ‖.‖. This is a real-valued function on V which

is positive definite, homogeneous, and satisfies the triangle inequality. The norm gives us the notion of a
distance, or metric. This allows us to define local minima. We will see how the norm plays a crucial role in
the subsequent developments.

We are now ready to formally define local minima of a functional. Let V be a vector space of functions
equipped with a norm ‖.‖, let A be a subset of V, and let W be a real-valued functional defined on V (or just
on A). A function y∗ ∈ A is a local minimum of W over A if there exists an ε > 0 such that for all y ∈ A
satisfying ‖y − y∗‖ < ε we have W (y∗) ≤W (y).



Appendix D

Optimal control

D.1 Optimal control formulation

In this section, we briefly present the optimal control problem with its ingredients: control system, cost
functional and target set. All the details of optimal control can be found in [Liberzon, 2011].

The first basic ingredient of an optimal control problem is the control system. It generates possible
behaviors and is described by ordinary differential equations (ODEs) of the form

ẋ(t) = g(t,x,u), x(t0) = x0, (D.1.1)

where x is the state taking values in Rn, u is the control input taking values in some control set U ⊂ Rm, t
is time, t0 is the initial time, and x0 is the initial state.

The second basic ingredient is the cost functional. For a given initial data (t0; x0), the cost functional
assigns a cost value to each admissible control. It is denoted by W . In the finite-horizon case, it has the
form:

W (u) = Vf (xf ) +

t1∫
t0

L(t,x(t),u(t))dt. (D.1.2)

In the previous forms, Vf and L are given functions (running cost and terminal cost, respectively), tf is the
final (or terminal) time, and xf = x(tf ) is the final (or terminal state). Note again that u itself is a function
of time. This is why we say that W (u) is a functional (a real-valued function on a space of functions).

The last basic ingredient of an optimal control problem is the target set. It is defined as the desired set
Sf ⊂ [t0,∞) × Rn of the final time tf and the final state xf . Depending on its formulation, we have the
following corresponding problems:

• Sf = [t0,∞)× Rn gives a free-time, free-endpoint problem,

• Sf = [t0,∞)× {x1} gives a free-time, fixed-endpoint problem,

• Sf = {t1} × Rn gives a fixed-time, free-endpoint problem,

• Sf = {t1} × {x1} gives a fixed-time, fixed-endpoint problem.

Then, the optimal control problem can be defined as follows:

min
u
W (u)

subject to (D.1.1) with the target set Sf .
(D.1.3)

D.2 Dynamic programming and Hamilton-Jacobi-Bellman equa-
tion

Finite-horizon optimal control problem
This section studies the solution of the optimal control problem (D.1.3). According to Bellman, in place
of determining the optimal sequence of decisions from the fixed state of the system, we wish to determine
the optimal decision to be made at any state of the system. Only if we know the latter, we understand the
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intrinsic structure of the solution. The approach realizing this idea is called dynamic programming. It leads
to the necessary and sufficient conditions for optimality expressed in the Hamilton-Jacobi-Bellman (HJB)
equation.

For the convenience in the later explanation, we define the value function such as:

V (t,x) = inf
u[t,tf ]

W (t,x,u), (D.2.1)

where the notation u[t0,tf ] indicates that the control u is restricted to the interval [t0, tf ]. In the infinite
horizon case, tf is replaced by +∞. Loosely speaking, we can think of V (t,x) as the optimal cost at (t,x). It
is important to note that the existence of an optimal control is not actually assumed, which is why we work
with an infimum rather than a minimum in (D.2.1).

The necessary and sufficient condition, which describes the solution the optimal control problem (D.1.3),
is derived from the principle of optimality. It is found by Bellman in and expressed as follows.

Lemma D.2.1. For every (t,x) ∈ [t0, t1) × Rn and every ∆t ∈ (0, t1 − t]), the value function V defined in
(D.2.1) satisfies the relation

V (t,x) = inf
u[t,tf ]

V (t+ ∆t,x(t+ ∆t)) +

t+∆t∫
t

L(s,x(s),u(s))ds

 (D.2.2)

where x(s) on the right hand side is the state trajectory corresponding to the control u[t0,tf ] and satisfying
x(t) = x.

This statement implies that to search for an optimal control, we can search over a small time interval
for a control that minimizes the cost over this interval plus the subsequent optimal value cost. Thus, the
minimization problem on the interval [t, tf ] is split into two, one on [t, t+ ∆t] and the other on [t+ ∆t, tf ].

Relying on first-order Taylor expansions, we can easily derive the following expressions:

x(t+ ∆t) = x + g(t,x,u(t))∆t+ o(∆t),

V (t+ ∆t,x(t+ ∆t)) = V (t,x) + ∂tV (t,x)∆t+ ∂xV (t,x)Tg(t,x,u(t))∆t+ o(∆t),

t+∆t∫
t

L(s,x(s),u(s))ds = L(t,x,u(t))∆t+ o(∆t).

(D.2.3)

Substituting the expressions given by (D.2.3) into the right-hand side of (D.2.2), we obtain

V (t,x) = inf
u[t,tf ]

{
L(t,x,u(t))∆t+ V (t,x) + ∂tV (t,x) + ∂xV (t,x)Tg(t,x,u(t))∆t+ o(∆t)

}
.

The two V (t,x) terms cancel out (because the one inside the infimum does not depend on u and can be
pulled outside), which leaves us with

0 = inf
u[t,tf ]

{
L(t,x,u(t))∆t+ ∂tV (t,x) + ∂xV (t,x)Tg(t,x,u(t))∆t+ o(∆t)

}
. (D.2.4)

Let us now divide by ∆t and take it to be small. In the limit as ∆t → 0 the higher-order term o(∆t)/∆t
disappears, and the infimum is taken over the instantaneous value of u at time t (in fact, already in (D.2.4)
the control values u(s) for s > t affect the expression inside the infimum only through the o(∆t) term).
Pulling ∂tV (t,x) outside the infimum as it does not depend on u, we conclude that the equation

− ∂tV (t,x) = inf
u∈U

{
L(t,x,u) + ∂xV (t,x)Tg(t,x,u)

}
(D.2.5)

must hold for all t ∈ [t0, tf )] and all x ∈ Rn. This equation for the value function is called the Hamilton-
Jacobi-Bellman (HJB) equation. In the previous equation, the time derivative of value function does not
depend on the terminal cost Vf (tf ,xf ). However, the value function must satisfy the boundary condition
which is given by the terminal cost:

V (tf ,x) = Vf (x). (D.2.6)

From the previous procedure, we can realize that the HJB equation (D.2.5) and the boundary condition
(D.2.6) are the necessary conditions for the solution of the optimal control problem (D.1.3). In fact, they are
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also the sufficient conditions. The proof is referred to Section 5.1.4 in [Liberzon, 2011]. Furthermore, in the
case of infinite-horizon optimal control problem, the necessary and sufficient conditions does not include the
boundary condition (D.2.6).

Infinite-horizon optimal control problem
Generally, the infinite-horizon optimal control problem is more complicated than the finite-horizon one. Thus,
we consider here one of its important simple case. In this case, the control system and running cost are time
invariant. The terminal cost is zeros. The previous assumption are described as

ẋ(t) = g(x,u), x(t0) = x0, (D.2.7)

W (u) =

+∞∫
t0

L(x(t),u(t))dt. (D.2.8)

It is clear that in this scenario, the cost does not depend on the initial time, hence the value function depends
on x only: V = V (x). Thus, the HJB equation (D.2.5) is rewritten as

0 = inf
u∈U

{
L(x,u) + ∂xV (x)Tg(x,u)

}
. (D.2.9)

In this case, there is not the boundary condition for the value cost V (x).

D.3 Linear Quadratic Regulator

Finite-horizon Linear Quadratic Regulator
Based on the results for general optimal control in the previous section, we now consider Linear Quadratic
Regulator (LQR). In this case, the control system in (D.1.1) is linear.

ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = x0, (D.3.1)

with x ∈ Rn and u ∈ Rm; the target set is S = tf × Rn, where tf is a fixed time. Besides, the cost functional
in (D.1.2) is given by:

W (u) = xT (tf )Qfx(tf ) +

t1∫
t0

(
xT (t)Qx(t)x(t) + uT (t)Qu(t)u(t)

)
dt. (D.3.2)

where Qf ,Qx(t),Qu(t) are matrices of appropriate dimensions satisfying Qf = QT
f ≥ 0 (symmetric positive

semidefinite), Qx(t) = QT
x (t) ≥ 0 (symmetric positive semidefinite), Qu(t) = QT

u (t) > 0 (symmetric positive
definite) for all t ∈ [t0, tf ]. Furthermore, Qu(t) is assumed to be invertible.

From Section 6.1 in [Liberzon, 2011], we recall the following solution of optimal control problem (D.1.3)
with the control system (D.3.1) and cost functional (D.3.2). The optimal control laws is given as

u∗(t) = −Q−1
u (t)BT (t)P(t)x(t), (D.3.3)

where the matrix P(t) is the solution of Riccati Differential Equation (RDE):

Ṗ(t) = P(t)B(t)Q−1
u (t)BT (t)P(t)−P(t)A(t)−AT (t)P(t)−Qx(t) (D.3.4)

with the boundary condition:

P(tf ) = Qf . (D.3.5)

RDE (D.3.4) and the boundary condition (D.3.5) are the special versions of HJB equation (D.2.5) and
condition (D.2.6).

Infinite-horizon Linear Quadratic Regulator
The infinite-horizon Linear Quadratic Regulator problem is a special case of infinite-horizon optimal control
problem. The control system and running cost are time invariant. And there is not the terminal cost. Thus,
the control system and cost functional are expressed as:

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0, (D.3.6)
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W (u) =

+∞∫
t0

(
xT (t)Qxx(t) + uT (t)Quu(t)

)
dt. (D.3.7)

Consequently, the RDE (D.3.4) is rewritten as:

0 = PBQ−1
u BTP−PA−ATP−Qx. (D.3.8)

Note that there is not the boundary condition for matrix P.



Appendix E

Trapezoidal elevator speed profile and
PMSM current profile using MTPA
method

In this section, we present a reference profile generation method which is used popularly for the eleva-
tor system. In this method, the reference speed profile is trapezoidal determined by the maximal limits
(ωl,min, ωl,max), travel initial/final instant (t0, tf ) and travel angular distance (θ0, θf ). The accelerations
at the beginning and at the end of a travel should be also limited for the comfortable of the passenger.
However, in our work, it is small enough to be neglected. Then, the reference current profiles are derived
using the Maximum Torque Per Ampere (MTPA) method. It aims at determining the minimal current
corresponding to a given torque at each time instant while respecting some constraints on the current and
voltage. This objective is actually the minimization of the instantaneous dissipated power in the motor. The
electro-mechanical elevator dynamics (4.3.1) can be rewritten as:



Ldi̇d(t) = −Rsid(t) + pLqωl(t)iq(t) + vd(t),

Lq i̇q(t) = −Rsiq(t)− pLdωl(t)id(t)−
√

3

2
pφfωl(t) + vd(t),

Jω̇l(t) =

√
3

2
pφf iq(t) + p(Ld − Lq)id(t)iq(t) + Γres,

(E.0.1)

where id(t), iq(t) are respectively the direct and quadrature currents of the motor stator; vd(t), vq(t) are
respectively the direct and quadrature currents of the motor stator; Ld(t), Lq(t) are respectively the direct
and quadrature inductances of the motor stator; p is the number of pole pair; Γres is the elevator gravity
torque; J is the mechanical elevator inertia.

Trapezoidal reference speed profile
In this work, we consider the case where the elevator goes down. The trapezoidal speed profile is composed of
three straight lines. It is characterized by the acceleration a and two instants t1, t2 such that t0 < t1 < t2 < tf .
Their values will be determined by (ωl,min, ωl,max), (t0, tf ) and (θ0, θf ). The time interval [t0; t1] is the
acceleration phase; [t1; t2] is the constant speed phase; [t2; tf ] is the deceleration phase. Since the profile is
symmetric, we have:

t1 − t0 = tf − t2. (E.0.2)

Besides, from the definition of acceleration, we obtain:

a =
ωl,max
t1 − t0

. (E.0.3)

The travel angular distance is given by θf − θ0 which leads to:

θf − θ0 = (ωl,max + ωl,min)(t1 − t0) + ωl,max(t2 − t1). (E.0.4)
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From the previous equations, we derive the values of a, t1, t2 such that

t1 =
ωl,maxtf − ωl,mint0 − θf + θ0

ωl,max − ωl,min
,

t2 =
ωl,maxt0 − ωl,mintf + θf − θ0

ωl,max − ωl,min
,

a =
(ωl,max − ωl,min)2

ωl,max(tf − t0)− θf + θ0
.

(E.0.5)

If t0 = 0, θ0 = 0, ωl,min = 0, we have

t1 = tf −
θf

ωl,max
, t2 =

θf
ωl,max

, a =
ω2
l,max

ωl,maxtf − θf
.

MTPA method
Since the dynamics of the mechanical elevator are much slower than one of the electrical part, we only consider
the dynamics of two stator currents id(t), iq(t) in the following reference current generation. Furthermore,
the current dynamics are considered at the steady state, i.e. i̇d = 0, i̇q = 0. Thus, the dynamics (E.0.1) is
replaced by: 

vd(t) = Rsid(t)− pLqωl(t)iq(t),

vq(t) = Rsiq(t) + pLdωl(t)id(t) +

√
3

2
pφfωl(t),

Jω̇l(t)− Γres =

√
3

2
pφf iq(t) + p(Ld − Lq)id(t)iq(t).

(E.0.6)

The currents and voltages are limited by:√
i2d(t) + i2q(t) ≤ Il,max,

√
v2
d(t) + v2

q (t) ≤ vref√
2
, (E.0.7)

where Il,max is the maximal current amplitude, vref is the DC bus voltage. The instantaneous dissipated
power is given by

Pdis(id, iq) = Rs
[
i2d(t) + i2q(t)

]
, (E.0.8)

where Rs denotes the stator resistance. Consequently, the instantaneous current and voltage reference profiles
are determined by the solution of the following optimization problem at each time instant:

{id(t), iq(t), vd(t), vq(t)} = argmin
id,iq,vd,vq

Pdis(id, iq)

subject to the constraints (E.0.6), (E.0.7).

(E.0.9)



Appendix F

Singular Perturbation

This section presents a model class of dynamical system where the derivatives of some of the states are
multiplied by a small positive parameter ε [Khalil, 2002]. It is described as:

ẋ = g(t,x, z, ε), x(t0) = ξ(ε), (F.0.1)

εż = l(t,x, z, ε), z(t0) = η(ε), (F.0.2)

with t0 ∈ [0, t1). We assume that the function g, l are continuously differential in their arguments for
(t,x, z, ε) ∈ [0, t1] × Sx × Sz × [0, ε0] where Sx ⊂ Rn,Sz ⊂ Rm are open connected sets. When we set ε = 0,
(F.0.2) degenerates into the equation:

0 = g(t,x, z, 0), (F.0.3)

We say that the model (F.0.1)-(F.0.2) is in standard form if (F.0.3) has k > 0 isolated real roots

z = hi(t,x), i = 1, 2, . . . , k. (F.0.4)

To obtain the ith reduced system, we substitute (F.0.4) into (F.0.1), at ε = 0 to obtain

ẋ = g(t,x,h(t,x), 0), x(t0) = ξ0, (F.0.5)

where we indicate hi by h.
Singular perturbations cause a multitime-scale behavior of the system dynamic. Denote the solution of

(F.0.5) by x(t). Then, the quasi-steady-state is

z(t)
def
= h(t,x).

We shift the quasi-steady-state of z to the origin

z̃ = z− h(t,x).

Besides, the new time variable τ = (t− t0)/ε indicate the fast time scale. Setting ε = 0 frees the parameters
(t,x) in their slowly varying region. Thus, the model (F.0.1)-(F.0.2) becomes

ẋ = g(t,x, z̃ + h(t,x), ε), x(t0) = ξ(ε), (F.0.6)

dz̃

dτ
= l(t,x, z̃ + h(t,x), 0), z̃(0) = η(0)− h(t0, ξ(0)), (F.0.7)

which has equilibrium at z̃ = 0. (F.0.7) is called the boundary-layer system.

theorem F.0.1. [Khalil, 2002] Consider the singular perturbation problem of (F.0.1) and (F.0.2). Assume
that the following conditions are satisfied

∀(t,x, z− h(t,x), ε) ∈ [0, t1]× Sx × Sy × [0, ε0]

for some domains Sx ⊂ Rn,Sz̃ ⊂ Rm, in which Sx is convex and Sz̃ contains the origin.
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• The function g, l, their first partial derivatives with respect to (x, z, ε), and the first partial derivative of
l with respect to t are continuous; the function h(t,x) and the Jacobian [∂l(t,x, z, 0)/∂z] have contin-
uous first partial derivatives with respect to their arguments; the initial data ξ(ε) and η(ε) are smooth
functions of ε.

• The reduced system (F.0.5) has a unique solution x ∈ S, t ∈ [t0, t1], where S is a compact subset of Sx.

• The origin is an exponentially stable equilibrium point of the boundary-layer system (F.0.7), uniformly
in (t,x); let Rz̃ ⊂ Sz̃ be the region of attraction of (F.0.7) and Ωz̃ be a compact subset of Rz̃.

Then, there exists a positive constant ε∗ such that ∀η(0) − h(t0, ξ(0)) ∈ Ωz̃ and 0 < ε < ε∗, the singular
perturbation system (F.0.1)-(F.0.2) has a unique solution x(t, ε), z(t, ε) on [t0, t1], and

x(t, ε)− x(t) = O(ε),

z(t, ε)− h(t,x)− z̃(t/epsilon) = O(ε),

hold uniformly for t ∈ [t0, t1], where z̃ is the solution of the boundary-layer system (F.0.7). Moreover, given
any tb > t0, there is ε∗∗ ≤ ε∗ such that

z(t, ε)− h(t,x) = O(ε)

holds uniformly for t ∈ [tb, t1] whenever ε ≤ ε∗∗.
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formalisme hamiltonien à ports. PhD thesis, Institut National des Sciences Appliquées de Lyon, France.
7, 41, 42, 46, 61

[Aoues et al., 2013] Aoues, S., Eberard, D., and Marquis-Fauvre, W. (2013). Canonical interconnection of
discrete linear port-Hamiltonian systems. In 2013 IEEE 52nd Annual Conference on Decision and Control,
pages 3166–3171. Firenze, IEEE. 42

[Arrowhead, 2017] Arrowhead (2017). Arrowhead project. http://www.arrowhead.eu/events/

event-documentation/generation-1-demonstration/energy-efficiency-in-lifts/. [Online; ac-
cessed 3-September-2017]. 3, 6

[Backx et al., 2000] Backx, T., Bosgra, O., and Marquardt, W. (2000). Integration of model predictive control
and optimization of processes: Enabling technology for market driven process operation. Proceedings of
the IFAC symposium on advanced control of chemical processes, 33(10):249–260. 6

[Battistelli et al., 2012] Battistelli, C., Baringo, L., and Conejo, A. (2012). Optimal energy management of
small electric energy systems including v2g facilities and renewable energy sources. Electric Power Systems
Research, 92:50–59. 5

[Becherif et al., 2006] Becherif, M., Ayad, M., and Miraoui, A. (2006). Modeling and passivity-based control
of hybrid sources: Fuel cell and supercapacitors. In Proceedings of the 41st IAS annual Meeting, pages
1134 – 1139, Tampa, FL, USA. IEEE. 5

[Bellman, 1957] Bellman, R. (1957). Dynamic Programming. Princeton University Press, first edition. 4

[Bemporad et al., 2002] Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. N. (2002). The explicit
linear quadratic regulator for constrained systems. Automatica, 38:3–20. 77, 118

[Benedito et al., 2017] Benedito, E., del Puerto-Flores, D., Dòria-Cerezo, A., and Scherpen, J. M. (2017). Op-
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Abstract
The goal of this thesis is to provide modelling and control solutions for the optimal energy management of
a DC (direct current) microgrid under constraints and some uncertainties. The studied microgrid system
includes electrical storage units (e.g., batteries, supercapacitors), renewable sources (e.g., solar panels) and
loads (e.g., an electro-mechanical elevator system). These interconnected components are linked to a three
phase electrical grid through a DC bus and its associated converters. The optimal energy management
is usually formulated as an optimal control problem which takes into account the system dynamics, cost,
constraints and reference profiles.

An optimal energy management for the microgrid is challenging with respect to classical control theories.
Needless to say, a DC microgrid is a complex system due to its heterogeneity, distributed nature (both
spatial and in sampling time), nonlinearity of dynamics, multi-physic characteristics, presence of constraints
and uncertainties. Not in the least, the power-preserving structure and the energy conservation of a microgrid
are essential for ensuring a reliable operation.

These challenges are tackled through the combined use of PH (Port-Hamiltonian) formulation, differen-
tial flatness and economic MPC (Model Predictive Control). The PH formalism allows to explicitly describe
the power-preserving structure and the energy conservation of the microgrid and to connect heterogeneous
components under the same framework. The strongly non-linear system is then translated into a flat rep-
resentation. Taking into account differential flatness properties, reference profiles are generated such that
the dissipated energy is minimized and the various physical constraints are respected. Lastly, the modelling
approach is extended to PH formalism on graphs which is further used in an economic MPC formulation for
minimizing the purchasing/selling electricity cost within the DC microgrid. The proposed control strategies
are validated through extensive simulation results over the elevator DC microgrid system using real profiles
data.

Résumé
Cette thèse aborde les problèmes de la la modélisation et de la commande d’un micro-réseau courant continu
(CC) en vue de la gestion énergétique optimale, sous contraintes et incertitudes. Le micro-réseau étudié
contient des dispositifs de stockage électrique (batteries ou super-capacités), des sources renouvelables (pan-
neaux photovoltäıques) et des charges (un système d’ascenseur motorisé par une machine synchrone à aimant
permanent réversible). Ces composants, ainsi que le réseau triphasé, sont reliés à un bus commun en courant
continu, par des convertisseurs dédiés. Le problème de gestion énergétique est formulé comme un problème
de commande optimale qui prend en compte la dynamique du système, des contraintes sur les variables, des
prédictions sur les prix, la consommation ou la production et des profils de référence.

Le micro-réseau considéré est un système complexe, de par l’hétérogénéité de ses composants, sa na-
ture distribuée, la non-linéarité de certaines dynamiques, son caractère multi-physiques (électro-mécanique,
électro-chimique, électro-magnétique), ainsi que la présence de contraintes et d’incertitudes. La représentation
consistante des puissances échangées et des énergies stockées, dissipées ou fournies au sein de ce système est
nécessaire pour assurer son opération optimale et fiable.

Le problème posé est abordé via l’usage combiné de la formulation hamiltonienne à port, de la platitude
et de la commande prédictive économique basé sur le modèle. Le formalisme hamiltonien à port permet de
décrire les conservations de la puissance et de l’énergie au sein du micro-réseau explicitement et de relier
les composants hétérogènes dans un même cadre théorique. Les non linéarités sont gérées par l’introduction
de la notion de platitude différentielle et la sélection de sorties plates associées au modèle hamiltonien à
ports. Les profils de référence sont générés à l’aide d’une paramétrisation des sorties plates de telle sorte
que l’énergie dissipée soit minimisée et les contraintes physiques satisfaites. Les systèmes hamiltoniens sur
graphes sont ensuite introduits pour permettre la formulation et la résolution du problème de commande
prédictive économique à l’échelle de l’ensemble du micro-réseau CC. Les stratégies de commande proposées
sont validées par des résultats de simulation pour un système d’ascenseur multi-sources utilisant des données
réelles, identifiées sur base de mesures effectuées sur une machine synchrone.
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