F. Carlin, Origin of bacterial spores contaminating foods, Food Microbiology, vol.28, issue.2, pp.177-82, 2011.
DOI : 10.1016/j.fm.2010.07.008

URL : https://hal.archives-ouvertes.fr/hal-01330261

E. Madslien, H. Rønning, T. Lindbäck, M. Granum, and P. , Lichenysin is produced by most Bacillus licheniformis strains, J Appl Microbiol, vol.115, pp.1068-80, 2013.

A. Andersson, U. Ronner, and P. Granum, What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens?, International Journal of Food Microbiology, vol.28, issue.2, pp.145-55, 1995.
DOI : 10.1016/0168-1605(95)00053-4

S. Auger, N. Ramarao, C. Faille, A. Fouet, S. Aymerich et al., Biofilm Formation and Cell Surface Properties among Pathogenic and Nonpathogenic Strains of the Bacillus cereus Group, Applied and Environmental Microbiology, vol.75, issue.20, pp.6616-6624, 2009.
DOI : 10.1128/AEM.00155-09

URL : https://hal.archives-ouvertes.fr/pasteur-00512106

M. Heyndrickx, The Importance of Endospore-Forming Bacteria Originating from Soil for Contamination of Industrial Food Processing, Applied and Environmental Soil Science, vol.89, issue.3, pp.1-11, 2011.
DOI : 10.3168/jds.S0022-0302(06)72148-8

J. Veening, H. Murray, and J. Errington, A mechanism for cell cycle regulation of sporulation initiation in Bacillus subtilis, Genes & Development, vol.23, issue.16, pp.1959-70, 2009.
DOI : 10.1101/gad.528209

P. Piggot and D. Hilbert, Sporulation of Bacillus subtilis, Current Opinion in Microbiology, vol.7, issue.6, pp.579-86, 2004.
DOI : 10.1016/j.mib.2004.10.001

F. Postollec, A. Mathot, B. ?. Divanac-'h-?-l, S. Pavan, and D. Sohier, Tracking spore-forming bacteria in food: From natural biodiversity to selection by processes, International Journal of Food Microbiology, vol.158, issue.1, pp.1-8, 2012.
DOI : 10.1016/j.ijfoodmicro.2012.03.004

M. Watterson, D. Kent, K. Boor, M. Wiedmann, and N. Martin, Evaluation of dairy powder products implicates thermophilic sporeformers as the primary organisms of interest, Journal of Dairy Science, vol.97, issue.4, pp.2487-97, 2014.
DOI : 10.3168/jds.2013-7363

R. Miller, D. Kent, M. Watterson, K. Boor, N. Martin et al., Spore populations among bulk tank raw milk and dairy powders are significantly different, Journal of Dairy Science, vol.98, issue.12, pp.8492-504, 2015.
DOI : 10.3168/jds.2015-9943

URL : https://doi.org/10.3168/jds.2015-9943

S. Scott, J. Brooks, J. Rakonjac, K. Walker, and S. Flint, The formation of thermophilic spores during the manufacture of whole milk powder, International Journal of Dairy Technology, vol.173, issue.2, pp.109-126, 2007.
DOI : 10.1016/j.ijfoodmicro.2004.03.020

M. De-hoon, P. Eichenberger, and D. Vitkup, Hierarchical Evolution of the Bacterial Sporulation Network, Current Biology, vol.20, issue.17, pp.735-780, 2010.
DOI : 10.1016/j.cub.2010.06.031

P. Talukdar, V. Olguín-araneda, M. Alnoman, D. Paredes-sabja, and M. Sarker, Updates on the sporulation process in Clostridium species, Research in Microbiology, vol.166, issue.4, pp.225-260, 2015.
DOI : 10.1016/j.resmic.2014.12.001

M. Galperin, S. Mekhedov, P. Puigbo, S. Smirnov, Y. Wolf et al., : towards the minimal set of sporulation-specific genes, Environmental Microbiology, vol.187, issue.11, pp.2870-90, 2012.
DOI : 10.1128/JB.187.22.7753-7764.2005

A. Sonenshein and . Cody, CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria, Current Opinion in Microbiology, vol.8, issue.2, pp.203-210, 2005.
DOI : 10.1016/j.mib.2005.01.001

A. Sonenshein, Control of key metabolic intersections in Bacillus subtilis, Nature Reviews Microbiology, vol.184, issue.12, pp.917-944, 2007.
DOI : 10.1099/00221287-148-6-1805

S. Long, D. Jones, and D. Woods, Initiation of solvent production, clostridial stage and endospore formation in Clostridium acetobutylicum P262, Applied Microbiology and Biotechnology, vol.20, issue.4, pp.256-61, 1984.
DOI : 10.1007/BF00250635

M. M. Mazmira, Effect of saccharides on growth, sporulation rate and ???-endotoxin synthesis of Bacillus thuringiensis, AFRICAN JOURNAL OF BIOTECHNOLOGY, vol.11, issue.40, pp.9654-63, 2012.
DOI : 10.5897/AJB11.1391

A. Antunes, E. Camiade, M. Monot, E. Courtois, F. Barbut et al., Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile, Nucleic Acids Research, vol.73, issue.21, pp.10701-10719, 2012.
DOI : 10.1128/MMBR.00005-09

URL : https://hal.archives-ouvertes.fr/pasteur-01370790

J. Varga, V. Stirewalt, and S. Melville, The CcpA Protein Is Necessary for Efficient Sporulation and Enterotoxin Gene (cpe) Regulation in Clostridium perfringens, Journal of Bacteriology, vol.186, issue.16, pp.5221-5230, 2004.
DOI : 10.1128/JB.186.16.5221-5229.2004

A. Koide, M. Perego, and J. Hoch, ScoC regulates peptide transport and sporulation initiation in Bacillus subtilis, J Bacteriol, vol.181, pp.4114-4121, 1999.

S. Shafikhani, I. Mandic-mulec, M. Strauch, I. Smith, and T. Leighton, Postexponential Regulation of sin Operon Expression in Bacillus subtilis, Journal of Bacteriology, vol.184, issue.2, pp.564-71, 2002.
DOI : 10.1128/JB.184.2.564-571.2002

G. Awang, W. Ingledew, and G. Jones, The effect of fermentable carbohydrate on sporulation and butanol production by Clostridium acetobutylicum P262, Applied Microbiology and Biotechnology, vol.38, issue.1, pp.12-16, 1992.
DOI : 10.1007/BF00169411

I. Bischofs, J. Hug, A. Liu, D. Wolf, and A. Arkin, Complexity in bacterial cell-cell communication: Quorum signal integration and subpopulation signaling in the Bacillus subtilis phosphorelay, Proceedings of the National Academy of Sciences, vol.10, issue.8, pp.6459-64, 2009.
DOI : 10.1016/S0966-842X(02)02400-9

B. Lazazzera, Quorum sensing and starvation: signals for entry into stationary phase, Current Opinion in Microbiology, vol.3, issue.2, pp.177-82, 2000.
DOI : 10.1016/S1369-5274(00)00072-2

M. Perego, A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of??Bacillus subtilis, Molecular Microbiology, vol.27, issue.1, pp.133-176, 2001.
DOI : 10.1002/(SICI)1097-0134(199704)27:4<597::AID-PROT11>3.0.CO;2-F

L. Slamti, S. Perchat, E. Huillet, and D. Lereclus, Quorum Sensing in Bacillus thuringiensis Is Required for Completion of a Full Infectious Cycle in the Insect, Toxins, vol.7, issue.8, pp.2239-55, 2014.
DOI : 10.1021/bi062299p

URL : https://hal.archives-ouvertes.fr/hal-01204354

M. Perego, A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay, Proceedings of the National Academy of Sciences, vol.72, issue.5, pp.8612-8619, 1997.
DOI : 10.1016/0092-8674(93)90405-F

A. Grossman and R. Losick, Extracellular control of spore formation in Bacillus subtilis., Proceedings of the National Academy of Sciences, vol.85, issue.12, pp.4369-73, 1988.
DOI : 10.1073/pnas.85.12.4369

H. Vlamakis, C. Aguilar, R. Losick, and R. Kolter, Control of cell fate by the formation of an architecturally complex bacterial community, Genes & Development, vol.22, issue.7, pp.945-53, 2008.
DOI : 10.1101/gad.1645008

M. Fujita, J. Gonzalez-pastor, and R. Losick, High- and Low-Threshold Genes in the Spo0A Regulon of Bacillus subtilis, Journal of Bacteriology, vol.187, issue.4, pp.1357-68, 2005.
DOI : 10.1128/JB.187.4.1357-1368.2005

I. Liaqat, S. Ahmed, and N. Jahan, Biofilm formation and sporulation in Bacillus subtilis, Int J Microbiol Res Rev, vol.1, pp.61-68, 2013.

S. Marchand, D. Block, J. , D. Jonghe, V. Coorevits et al., Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety, Comprehensive Reviews in Food Science and Food Safety, vol.12, issue.6, pp.133-180, 2012.
DOI : 10.3168/jds.S0022-0302(98)75834-5

M. Sharma and S. Anand, Biofilms evaluation as an essential component of HACCP for food/dairy processing industry ??? a case, Food Control, vol.13, issue.6-7, pp.469-77, 2002.
DOI : 10.1016/S0956-7135(01)00068-8

J. Wijman, P. De-leeuw, R. Moezelaar, M. Zwietering, and T. Abee, Air-Liquid Interface Biofilms of Bacillus cereus: Formation, Sporulation, and Dispersion, Applied and Environmental Microbiology, vol.73, issue.5, pp.1481-1489, 2007.
DOI : 10.1128/AEM.01781-06

C. Faille, T. Bénézech, G. Midelet-bourdin, Y. Lequette, C. M. Ronse et al., Sporulation of Bacillus spp. within biofilms: A potential source of contamination in food processing environments, Food Microbiology, vol.40, pp.64-74, 2014.
DOI : 10.1016/j.fm.2013.12.004

P. Beauregard, Y. Chai, H. Vlamakis, R. Losick, and R. Kolter, Bacillus subtilis biofilm induction by plant polysaccharides, Proceedings of the National Academy of Sciences, vol.14, issue.6, pp.1621-1651, 2013.
DOI : 10.1128/JB.183.8.2696-2699.2001

R. Basamma and S. Kulkarni, Prevalence of Bacillus subtilis in rhizosphere and severity of different diseases of tomato in Northern Karnataka, J Farm Sci, vol.28, pp.351-356, 2015.

M. Mendez, L. Orsaria, V. Philippe, M. Pedrido, and R. Grau, Novel Roles of the Master Transcription Factors Spo0A and ??B for Survival and Sporulation of Bacillus subtilis at Low Growth Temperature, Journal of Bacteriology, vol.186, issue.4, pp.989-1000, 2004.
DOI : 10.1128/JB.186.4.989-1000.2004

A. Reder, D. Albrecht, U. Gerth, and M. Hecker, represents an AND-gate, Environmental Microbiology, vol.187, issue.10, pp.2741-56, 2012.
DOI : 10.1128/JB.187.22.7554-7560.2005

D. Kirk, Z. Zhang, H. Korkeala, and M. Lindstrom, ABSTRACT, Applied and Environmental Microbiology, vol.80, issue.16, pp.5141-50, 2014.
DOI : 10.1128/AEM.01015-14

M. Guinebretiere, H. Girardin, C. Dargaignaratz, F. Carlin, and C. Nguyen-the, Contamination flows of Bacillus cereus and spore-forming aerobic bacteria in a cooked, pasteurized and chilled zucchini pur??e processing line, International Journal of Food Microbiology, vol.82, issue.3, pp.223-255, 2003.
DOI : 10.1016/S0168-1605(02)00307-0

M. Ranieri, J. Huck, M. Sonnen, D. Barbano, and K. Boor, High temperature, short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk, Journal of Dairy Science, vol.92, issue.10, pp.4823-4855, 2009.
DOI : 10.3168/jds.2009-2144

S. Diomandé, C. Nguyen-the, M. Guinebretière, V. Broussolle, and J. Brillard, Role of fatty acids in Bacillus environmental adaptation, Frontiers in Microbiology, vol.48, issue.69, p.813, 2015.
DOI : 10.1021/es404359v

M. Strauch, D. De-mendoza, and J. Hoch, cis-Unsaturated fatty acids specifically inhibit a signal-transducing protein kinase required for initiation of sporulation in Bacillus subtilis, Molecular Microbiology, vol.137, issue.20, pp.2909-2926, 1992.
DOI : 10.1016/0923-2508(91)90060-N

H. Nguyen-thi-minh, A. Durand, P. Loison, J. Perrier-cornet, and P. Gervais, Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure, Applied Microbiology and Biotechnology, vol.37, issue.4, pp.1409-1426, 2011.
DOI : 10.1016/j.micron.2005.11.006

C. Pheil and Z. Ordal, Sporulation of the " thermophilic anaerobes, Appl ?icrobiol, vol.15, pp.893-901, 1967.

J. Wilks, R. Kitko, S. Cleeton, G. Lee, C. Ugwu et al., Acid and Base Stress and Transcriptomic Responses in Bacillus subtilis, Applied and Environmental Microbiology, vol.75, issue.4, pp.981-90, 2009.
DOI : 10.1128/AEM.01652-08

W. Cosby and P. Zuber, Regulation of Bacillus subtilis sigmaH (spo0H) and AbrB in response to changes in external pH., Journal of Bacteriology, vol.179, issue.21, pp.6778-87, 1997.
DOI : 10.1128/jb.179.21.6778-6787.1997

E. Baril, L. Coroller, O. Couvert, E. Jabri, M. Leguerinel et al., Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and aw, Food Microbiology, vol.32, issue.1, pp.79-86, 2012.
DOI : 10.1016/j.fm.2012.04.011

URL : https://hal.archives-ouvertes.fr/hal-01330230

S. Ruzal, C. López, E. Rivas, and C. Sánchez-rivas, Osmotic Strength Blocks Sporulation at Stage II by Impeding Activation of Early Sigma Factors in Bacillus subtilis, Current Microbiology, vol.36, issue.2, pp.75-84, 1998.
DOI : 10.1007/s002849900282

R. Grau, P. De-oña, M. Kunert, C. Leñini, R. Gallegos-monterrosa et al., A duo of potassium-responsive histidine kinases govern the multicellular destiny of Bacillus subtilis, mBio, vol.6, pp.581-596, 2015.

S. Craven, Increased Sporulation of Clostridium perfringens in a Medium Prepared with the Prereduced Anaerobically Sterilized Technique or with Carbon Dioxide or Carbonate, Journal of Food Protection, vol.51, issue.9, pp.700-706, 1988.
DOI : 10.4315/0362-028X-51.9.700

B. Taylor and I. Zhulin, PAS domains: internal sensors of oxygen, redox potential and light, Microbiol Mol Biol Rev, vol.63, pp.479-506, 1999.

I. Kolodkin-gal, A. Elsholz, C. Muth, P. Girguis, R. Kolter et al., Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase, Genes & Development, vol.27, issue.8, pp.887-99, 2013.
DOI : 10.1101/gad.215244.113

M. Ahmed, Sporulation and germination of spores of Clostridium perfringens. Retrospective Theses and Dissertations, 1970.

N. Tam, N. Uyen, H. Hong, L. Duc, T. Hoa et al., The Intestinal Life Cycle of Bacillus subtilis and Close Relatives, Journal of Bacteriology, vol.188, issue.7, pp.2692-700, 2006.
DOI : 10.1128/JB.188.7.2692-2700.2006

D. Kihm, M. Hutton, J. Hanlin, and E. Johnson, Zinc stimulates sporulation inClostridium botulinum 113B, Current Microbiology, vol.70, issue.4, pp.193-201, 1988.
DOI : 10.1007/BF01589451

J. Mah, D. Kang, and J. Tang, Effects of minerals on sporulation and heat resistance of Clostridium sporogenes, International Journal of Food Microbiology, vol.128, issue.2, pp.385-394, 2008.
DOI : 10.1016/j.ijfoodmicro.2008.10.002

A. Abbas, S. Planchon, M. Jobin, and P. Schmitt, A new chemically defined medium for the growth and sporulation of Bacillus cereus strains in anaerobiosis, Journal of Microbiological Methods, vol.105, pp.54-62, 2014.
DOI : 10.1016/j.mimet.2014.07.006

E. Rossland, T. Langsrud, and T. Sorhaug, Influence of controlled lactic fermentation on growth and sporulation of in milk, International Journal of Food Microbiology, vol.103, issue.1, pp.69-77, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.11.027

C. Propst-ricciuti and L. Lubin, Light-induced inhibition of sporulation in Bacillus licheniformis, J Bacteriol, vol.128, pp.506-515, 1976.

S. Rowland, W. Burkholder, K. Cunningham, M. Maciejewski, A. Grossman et al., Structure and Mechanism of Action of Sda, an Inhibitor of the Histidine Kinases that Regulate Initiation of Sporulation in Bacillus subtilis, Molecular Cell, vol.13, issue.5, pp.689-701, 2004.
DOI : 10.1016/S1097-2765(04)00084-X

S. Sahoo, K. Rao, and G. Suraishkumar, Reactive oxygen species induced by shear stress mediate cell death inBacillus subtilis, Biotechnology and Bioengineering, vol.41, issue.1, pp.118-145, 2006.
DOI : 10.1099/00221287-146-2-249

M. Vissers, F. Driehuis, T. Giffel, M. , D. Jong et al., Concentrations of Butyric Acid Bacteria Spores in Silage and Relationships with Aerobic Deterioration, Journal of Dairy Science, vol.90, issue.2, pp.928-964, 2007.
DOI : 10.3168/jds.S0022-0302(07)71576-X

M. Magnusson, A. Christiansson, and B. Svensson, Bacillus cereus Spores During Housing of Dairy Cows: Factors Affecting Contamination of Raw Milk, Journal of Dairy Science, vol.90, issue.6, pp.2745-54, 2007.
DOI : 10.3168/jds.2006-754

P. Murphy, D. Lynch, and P. Kelly, Growth of thermophilic spore forming bacilli in milk during the manufacture of low heat powders, International Journal of Dairy Technology, vol.41, issue.2, pp.45-50, 1999.
DOI : 10.1111/j.1365-2672.1990.tb01547.x

L. Ghellai and B. Moussaboudjemaa, Aerobic spore-forming bacteria in the ultra high temperature milk produced in the north west of algeria, J Agric Sci Technol, vol.2013, pp.697-702

R. Van-houdt and C. Michiels, Biofilm formation and the food industry, a focus on the bacterial outer surface, Journal of Applied Microbiology, vol.23, issue.21, pp.1117-1148, 2010.
DOI : 10.1111/j.1365-2672.1993.tb03403.x

A. Lane, Thermophiles in milk powder, 1982.

C. Rigaux, S. Albert, I. Carlin, and F. , Quantitative assessment of the risk of microbial spoilage in foods. Prediction of non-stability at 55??C caused by Geobacillus stearothermophilus in canned green beans, International Journal of Food Microbiology, vol.171, pp.119-147, 2014.
DOI : 10.1016/j.ijfoodmicro.2013.11.014

URL : https://hal.archives-ouvertes.fr/hal-01263603

L. Durand, S. Planchon, M. Guinebretiere, S. Carlin, F. Remize et al., Contamination pathways of spore-forming bacteria in a vegetable cannery, International Journal of Food Microbiology, vol.202, pp.10-19, 2015.
DOI : 10.1016/j.ijfoodmicro.2015.02.019

URL : https://hal.archives-ouvertes.fr/hal-01447935

K. Stephenson and J. Hoch, Evolution of signalling in the sporulation phosphorelay, Molecular Microbiology, vol.8, issue.2, pp.297-304, 2002.
DOI : 10.2210/pdb1lq1/pdb

F. Pérez-rodríguez and A. Valero, Predictive microbiology in foods Predictive microbiology: theory and application, 2013.

L. Delhalle, G. Daube, Y. Adolphe, S. Crevecoeur, and A. Clinquart, Les modèles de croissance en microbiologie prévisionnelle pour la maitrise de la sécurité des aliments (synthèse bibliographique) Agron Soc Environ 2012. [4] Sanaa ?. ?icrobiologie prévisionnelle ? Principaux modèles de croissance utilisés en appréciation quantitative des risques, Epidémiol Santé Anim, vol.41, pp.169-77, 2002.

J. Broughall, P. Anslow, and D. Kilsby, Hazard analysis applied to microbial growth in foods: Development of mathematical models describing the effect of water activity, Journal of Applied Bacteriology, vol.88, issue.1, pp.101-111, 1983.
DOI : 10.1016/0022-5193(81)90246-0

T. Kono, Kinetics of microbial cell growth, Biotechnology and Bioengineering, vol.7, issue.2, pp.105-136, 1968.
DOI : 10.1099/00221287-21-1-40

L. Rosso, J. Lobry, S. Bajard, and J. Flandrois, Convenient model to describe the combined effects of temperature and pH on microbial growth, Appl Environ Microbiol, vol.61, pp.610-616, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00698190

M. Zwietering, T. Wijtzes, F. Rombouts, and K. Riet, A decision support system for prediction of microbial spoilage in foods, Journal of Industrial Microbiology, vol.57, issue.3-5, pp.324-333, 1993.
DOI : 10.1007/BF01584209

A. Pinon, M. Zwietering, L. Perrier, J. Membre, B. Leporq et al., Development and Validation of Experimental Protocols for Use of Cardinal Models for Prediction of Microorganism Growth in Food Products, Applied and Environmental Microbiology, vol.70, issue.2, pp.1081-1088, 2004.
DOI : 10.1128/AEM.70.2.1081-1087.2004

K. Mcdonald and D. Sun, Predictive food microbiology for the meat industry: a review, International Journal of Food Microbiology, vol.52, issue.1-2, pp.1-27, 1999.
DOI : 10.1016/S0168-1605(99)00126-9

J. Ferrer, C. Prats, D. López, and J. Vives-rego, Mathematical modelling methodologies in predictive food microbiology: A SWOT analysis, International Journal of Food Microbiology, vol.134, issue.1-2, pp.2-8, 2009.
DOI : 10.1016/j.ijfoodmicro.2009.01.016

L. Guillier, P. Pardon, and J. Augustin, Influence of Stress on Individual Lag Time Distributions of Listeria monocytogenes, Applied and Environmental Microbiology, vol.71, issue.6, pp.2940-2948, 2005.
DOI : 10.1128/AEM.71.6.2940-2948.2005

A. Gibson, N. Bratchell, and T. Roberts, Predicting microbial growth: growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature, International Journal of Food Microbiology, vol.6, issue.2, pp.155-78, 1988.
DOI : 10.1016/0168-1605(88)90051-7

F. Baty and M. Delignette-muller, Estimating the bacterial lag time: which model, which precision?, International Journal of Food Microbiology, vol.91, issue.3, pp.261-77, 2004.
DOI : 10.1016/j.ijfoodmicro.2003.07.002

F. Bruggeman and H. Westerhoff, The nature of systems biology, Trends in Microbiology, vol.15, issue.1, pp.45-50, 2007.
DOI : 10.1016/j.tim.2006.11.003

H. Dejong, J. Geiselmann, G. Batt, C. Hernandez, and M. Page, Qualitative simulation of the initiation of sporulation in, Bulletin of Mathematical Biology, vol.66, issue.2, pp.261-99, 2004.
DOI : 10.1016/j.bulm.2003.08.009

URL : https://hal.archives-ouvertes.fr/inria-00072061

S. Jabbari, J. Heap, and J. King, Mathematical Modelling of the Sporulation-Initiation Network in Bacillus Subtilis Revealing the Dual Role of??the??Putative Quorum-Sensing Signal Molecule PhrA, Bulletin of Mathematical Biology, vol.19, issue.1, pp.181-211, 2011.
DOI : 10.1046/j.1365-2958.1996.358882.x

S. Das and R. Sen, Kinetic modeling of sporulation and product formation in stationary phase by Bacillus coagulans RK???02 vis-??-vis other Bacilli, Bioresource Technology, vol.102, issue.20, pp.9659-67, 2011.
DOI : 10.1016/j.biortech.2011.07.067

E. Baril, L. Coroller, O. Couvert, E. Jabri, M. Leguerinel et al., Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and aw, Food Microbiology, vol.32, issue.1, pp.79-86, 2012.
DOI : 10.1016/j.fm.2012.04.011

URL : https://hal.archives-ouvertes.fr/hal-01330230

D. Rivera, A. Margaritis, and H. De-lasa, A sporulation kinetic model for batch growth of B. thuringiensis, The Canadian Journal of Chemical Engineering, vol.258, issue.5, pp.903-913, 1999.
DOI : 10.1042/bj0810225

P. Atehortúa, H. Alvarez, and S. Orduz, Modeling of growth and sporulation of Bacillus thuringiensis in an intermittent fed batch culture with total cell retention, Bioprocess and Biosystems Engineering, vol.32, issue.29, pp.447-56, 2007.
DOI : 10.1007/s00449-007-0141-0

H. Huang, D. Ridgway, T. Gu, and M. Moo-young, A segregated model for heterologous amylase production by Bacillus subtilis, Enzyme and Microbial Technology, vol.32, issue.3-4, pp.407-420, 2003.
DOI : 10.1016/S0141-0229(02)00312-5

M. Morimoto, A. Arkin, and K. Poolla, Modeling sporulation decisions in Bacillus subtilis as optimal evolutionary decision-making, Proceedings of the 2011 American Control Conference, pp.3508-3521, 2011.
DOI : 10.1109/ACC.2011.5991554

J. Narula, A. Kuchina, D. Lee, M. Fujita, G. Süel et al., Chromosomal Arrangement of Phosphorelay Genes Couples Sporulation and DNA Replication, Cell, vol.162, issue.2, pp.328-365, 2015.
DOI : 10.1016/j.cell.2015.06.012

H. Vlamakis, Y. Chai, P. Beauregard, R. Losick, and R. Kolter, Sticking together: building a biofilm the Bacillus subtilis way, Nature Reviews Microbiology, vol.31, issue.3, pp.157-68, 2013.
DOI : 10.1046/j.1365-2958.1999.01180.x

F. Carlin, Origin of bacterial spores contaminating foods, Food Microbiology, vol.28, issue.2, pp.177-82, 2011.
DOI : 10.1016/j.fm.2010.07.008

URL : https://hal.archives-ouvertes.fr/hal-01330261

F. Postollec, A. Mathot, B. ?. Divanac-'h-?-l, S. Pavan, and D. Sohier, Tracking spore-forming bacteria in food: From natural biodiversity to selection by processes, International Journal of Food Microbiology, vol.158, issue.1, pp.1-8
DOI : 10.1016/j.ijfoodmicro.2012.03.004

F. Kunst, N. Ogasawara, I. Moszer, A. Albertini, G. Alloni et al., The complete genome sequence of the gram-positive bacterium Bacillus subtilis, Nature, vol.141, issue.6657, pp.249-56, 1997.
DOI : 10.1099/13500872-141-2-261

A. C. Atkinson and A. N. Donev, Optimum experimental designs, Oxford statistical science series, 1992.

A. C. Atkinson and W. G. Hunter, The Design of Experiments for Parameter Estimation, Technometrics, vol.17, issue.2, pp.271-281, 1968.
DOI : 10.1214/aoms/1177730883

J. C. Augustin and V. Carlier, Mathematical modelling of the growth rate and lag time for Listeria monocytogenes, International Journal of Food Microbiology, vol.56, issue.1, pp.29-51, 2000.
DOI : 10.1016/S0168-1605(00)00223-3

J. C. Augustin, L. Rosso, and V. Carlier, A model describing the effect of temperature history on lag time for Listeria monocytogenes, International Journal of Food Microbiology, vol.57, issue.3, pp.169-181, 2000.
DOI : 10.1016/S0168-1605(00)00260-9

URL : https://hal.archives-ouvertes.fr/hal-00294329

K. Bernaerts, R. D. Servaes, S. Kooyman, K. J. Versyck, and J. F. Van-impe, Optimal temperature input design for estimation of the Square Root model parameters: parameter accuracy and model validity restrictions, International Journal of Food Microbiology, vol.73, issue.2-3, pp.145-157, 2002.
DOI : 10.1016/S0168-1605(01)00645-6

G. E. Box and D. R. Cox, An analysis of transformations, J. R. Stat. Soc. Ser. B Methodol, pp.211-252, 1964.

J. M. Buescher, W. Liebermeister, M. Jules, M. Uhr, J. Muntel et al., Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism, Science, vol.180, issue.20, pp.1099-1103
DOI : 10.1214/ss/1177013622

URL : https://hal.archives-ouvertes.fr/hal-01000240

V. V. Fedorov, Theory Of Optimal Experiments, 1972.

A. R. Gallant, Nonlinear statistical models, Wiley Series in Probability and Statistics, pp.10-1002, 1987.

G. Holtmann and E. Bremer, Thermoprotection of Bacillus subtilis by Exogenously Provided Glycine Betaine and Structurally Related Compatible Solutes: Involvement of Opu Transporters, Journal of Bacteriology, vol.186, issue.6, 2004.
DOI : 10.1128/JB.186.6.1683-1693.2004

L. Marc, Y. Huchet, V. Bourgeois, C. M. Guyonnet, J. P. Mafart et al., Modelling the growth kinetics of Listeria as a function of temperature, pH and organic acid concentration, International Journal of Food Microbiology, vol.73, issue.2-3, pp.219-237, 2002.
DOI : 10.1016/S0168-1605(01)00640-7

O. Mejlholm, A. Gunvig, C. Borggaard, J. Blom-hanssen, L. Mellefont et al., Predicting growth rates and growth boundary of Listeria monocytogenes ??? An international validation study with focus on processed and ready-to-eat meat and seafood, International Journal of Food Microbiology, vol.141, issue.3, pp.137-150, 2010.
DOI : 10.1016/j.ijfoodmicro.2010.04.026

N. Mtimet, C. Trunet, A. Mathot, L. Venaille, I. Leguérinel et al., Modeling the behavior of Geobacillus stearothermophilus ATCC 12980 throughout its life cycle as vegetative cells or spores using growth boundaries, Food Microbiology, vol.48, pp.153-162, 2015.
DOI : 10.1016/j.fm.2014.10.013

D. Nichols, P. Nichols, and T. Mcmeekin, Ecology and physiology of psychrophilic bacteria from Antarctic saline lakes and sea ice, Sci. Prog, vol.78, pp.331-347, 1995.

P. Nicolas, U. Mäder, E. Dervyn, T. Rochat, A. Leduc et al., Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in Bacillus subtilis, Science, vol.38, issue.17, pp.1103-1106
DOI : 10.1093/nar/gkq281

URL : https://hal.archives-ouvertes.fr/hal-01000245

R. Pandey, T. Beek, A. Vischer, N. O. Smelt, J. P. Brul et al., Live Cell Imaging of Germination and Outgrowth of Individual Bacillus subtilis Spores; the Effect of Heat Stress Quantitatively Analyzed with SporeTracker, PLoS ONE, vol.394, issue.3, 2013.
DOI : 10.1371/journal.pone.0058972.s006

G. Pant, A. Prakash, J. V. Pavani, S. Bera, G. V. Deviram et al., Production, optimization and partial purification of protease from Bacillus subtilis, Journal of Taibah University for Science, vol.292, issue.1, pp.50-55, 2015.
DOI : 10.1006/abio.2001.5050

A. Pinon, M. Zwietering, L. Perrier, J. Membre, B. Leporq et al., Development and Validation of Experimental Protocols for Use of Cardinal Models for Prediction of Microorganism Growth in Food Products, Applied and Environmental Microbiology, vol.70, issue.2, pp.1081-1087, 2004.
DOI : 10.1128/AEM.70.2.1081-1087.2004

L. Pronzato and A. Pázman, Design of experiments in nonlinear models: asymptotic normality, optimality criteria and small-sample properties, Lecture notes in statistics, 2013.
DOI : 10.1007/978-1-4614-6363-4

L. Pronzato, E. Walter, A. Venot, and J. Lebruchec, A general-purpose global optimizer: Implimentation and applications, Mathematics and Computers in Simulation, vol.26, issue.5, pp.412-422, 1984.
DOI : 10.1016/0378-4754(84)90105-8

L. Rosso, J. R. Lobry, S. Bajard, and J. P. Flandrois, convenient model to describe the combined effects of temperature and pH on microbial growth, Appl. Environ. Microbiol, vol.61, pp.610-616, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00698190

L. Rosso and T. P. Robinson, A cardinal model to describe the effect of water activity on the growth of moulds, International Journal of Food Microbiology, vol.63, issue.3, pp.265-273, 2001.
DOI : 10.1016/S0168-1605(00)00469-4

URL : https://hal.archives-ouvertes.fr/hal-00294350

M. S. Tapia, S. M. Alzamora, J. Chirife, G. V. Barbosa-cnovas, A. J. Fontana et al., Effects of Water Activity (aw) on Microbial Stability: As a Hurdle in Food Preservation, Water Activity in Foods, pp.239-271, 2007.
DOI : 10.1002/9780470376454.ch10

J. T. Teleken, W. Robazza, S. Da, G. Gomes, and A. De, Mathematical modeling of microbial growth in milk, Food Science and Technology (Campinas), vol.31, issue.4, pp.891-896, 2011.
DOI : 10.1590/S0101-20612011000400010

C. Trunet, N. Mtimet, A. Mathot, F. Postollec, I. Leguerinel et al., ABSTRACT, Applied and Environmental Microbiology, vol.87, issue.2, pp.562-568, 2015.
DOI : 10.1111/j.1365-2672.2008.03847.x

E. Van-derlinden, K. Bernaerts, and J. F. Van-impe, Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments, International Journal of Food Microbiology, vol.128, issue.1, 2008.
DOI : 10.1016/j.ijfoodmicro.2008.07.007

E. Walter and L. Pronzato, Identification of parametric models from experimental data, Communications and control engineering, 1997.

M. H. Zwietering, H. G. Cuppers, J. C. De-wit, and K. Van-'t-riet, Evaluation of data transformations and validation of a model for the effect of temperature on bacterial growth, Appl. Environ. Microbiol, vol.1, issue.60, pp.195-203

J. C. Augustin, . Rosso, and V. Carlier, A model describing the effect of temperature history on lag time for Listeria monocytogenes, International Journal of Food Microbiology, vol.57, issue.3, pp.16-181, 2000.
DOI : 10.1016/S0168-1605(00)00260-9

URL : https://hal.archives-ouvertes.fr/hal-00294329

E. Baril, Quantification de l'influence de l'environnement sur la formation et la thermorésistance des spores bactériennes, Thèse de doctorat en microbiologie alimentaire sous la direction de Pierre ?afart, 2011.

E. Baril, . Coroller, O. Couvert, ?. Jabri, I. Postollec et al., Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and a(w). Food ?icrobiol, pp.7-86, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01330230

E. Baril, . Coroller, O. Couvert, I. Postollec, F. Boulais et al., ?odeling heat resistance of Bacillus weihenstephanensis and Bacillus licheniformis spores as function of sporulation temperature and pH. Food ?icrobiol, pp.2-36, 2012.

E. Baril, . Coroller, F. Postollec, I. Boulais, C. Carlin et al., The wet-heat resistance of Bacillus weihenstephanensis KBAB4 spores produced in a two-step sporulation process depends on sporulation temperature but not on previous cell history, International Journal of Food Microbiology, vol.146, issue.1, pp.57-62, 2011.
DOI : 10.1016/j.ijfoodmicro.2011.01.042

URL : https://hal.archives-ouvertes.fr/hal-01330308

J. ?. Buescher, W. ?iebermeister, . Jules, J. Uhr, E. Botella et al., Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism, Science, vol.180, issue.20, pp.10-11031206871
DOI : 10.1214/ss/1177013622

URL : https://hal.archives-ouvertes.fr/hal-01000240

A. ?. Carvalho, . De, F. H. Oliveira, . De, R. ?ariano et al., Growth, sporulation and production of bioactive compounds by Bacillus subtilis R14, Brazilian Archives of Biology and Technology, vol.1, issue.3, pp.643-652
DOI : 10.1094/PHYTO.2004.94.11.1267

S. Das and R. Sen, Kinetic modeling of sporulation and product formation in stationary phase by Bacillus coagulans RK???02 vis-??-vis other Bacilli, Bioresource Technology, vol.102, issue.20, pp.65-667, 2011.
DOI : 10.1016/j.biortech.2011.07.067

I. W. Dawes and J. ?andelstam, Sporulation of Bacillus subtilis in continuous culture, J. Bacteriol, vol.1, issue.103, pp.52-535

?. P. Doyle and R. ?. Buchanan, Food microbiology? Fundamentals and frontiers, Science, 2012.

S. Gaillard, I. ?afart, and P. , 1??8. ?odelling combined effects of temperature and pH on the heat resistance of spores of Bacillus cereus. Food ?icrobiol, pp.625-630
URL : https://hal.archives-ouvertes.fr/in2p3-00002471

E. Gauvry, A. ?athot, I. Couvert, O. Postollec, F. Broussolle et al., Knowledge of the physiology of spore-forming bacteria can explain the origin of spores in the food environment, Research in Microbiology, vol.168, issue.4, pp.36-378, 2017.
DOI : 10.1016/j.resmic.2016.10.006

URL : https://hal.archives-ouvertes.fr/hal-01606869

A. D. Grossman and R. ?osick, Extracellular control of spore formation in Bacillus subtilis., Proceedings of the National Academy of Sciences, vol.85, issue.12, pp.436-4373
DOI : 10.1073/pnas.85.12.4369

J. H. Hageman, G. W. Shankweiler, P. R. Wall, K. Franich, G. W. ?ccowan et al., Single, chemically defined sporulation medium for Bacillus subtilis? growth, sporulation, and extracellular protease production, J. Bacteriol, vol.1, issue.160, pp.438-441

?. Heyndrickx, The Importance of Endospore-Forming Bacteria Originating from Soil for Contamination of Industrial Food Processing, Applied and Environmental Soil Science, vol.89, issue.3, pp.1-11, 2011.
DOI : 10.3168/jds.S0022-0302(06)72148-8

G. Holtmann and E. Bremer, Thermoprotection of Bacillus subtilis by Exogenously Provided Glycine Betaine and Structurally Related Compatible Solutes: Involvement of Opu Transporters, Journal of Bacteriology, vol.186, issue.6, pp.1683-1699, 2004.
DOI : 10.1128/JB.186.6.1683-1693.2004

K. P. ?emon, I. Kurtser, J. Wu, and A. D. Grossman, Control of initiation of sporulation by replication initiation genes in Bacillus subtilis, J. Bacteriol, vol.18210, pp.2-8, 2000.

?. P. ?undgren, I. Couvert, and O. Coroller, Effect of variation of sporulation time and temperature on thermostability of Bacillus cereus epores Quantification of spore resistance for assessment and optimization of heating processes? a never-ending story. Food ?icrobiol, Physiol. Plant, vol.1, issue.27, pp.3-5, 2010.

O. ?ejlholm, A. Gunvig, C. Borggaard, J. Blom-hanssen, T. Ross et al., Predicting growth rates and growth boundary of Listeria monocytogenes ??? An international validation study with focus on processed and ready-to-eat meat and seafood, International Journal of Food Microbiology, vol.141, issue.3, pp.137-150, 2010.
DOI : 10.1016/j.ijfoodmicro.2010.04.026

J. ?embre, B. ?eporq, . Vialette, E. ?ettler, ?. Perrier et al., Temperature effect on bacterial growth rate? quantitative microbiology approach including cardinal values and variability estimates to perform growth simulations on/in food, Int. J. Food ?icrobiol, vol.10010, pp.17-186015, 2004.

?. B. ?endez, . ?. Orsaria, V. Philippe, ?. E. Pedrido, and R. R. Grau, Novel roles of the master transcription factors Spo0A and B for furvival and fporulation of Bacillus subtilis at low growth temperature, J. Bacteriol, pp.8-1000, 2004.

R. A. ?iller, D. J. Kent, ?. J. Watterson, K. J. Boor, N. H. ?artin et al., Spore populations among bulk tank raw milk and dairy powders are significantly different A procedure for high-yield spore production by Bacillus subtilis Enhanced spore production of Bacillus subtilis grown in a chemically defined medium, 2015. ?odeling the behavior of Geobacillus stearothermophilus ATCC 12?80 throughout its life cycle as vegetative cells or spores using growth boundaries. Food ?icrobiol, pp.84-86, 2005.

?. ?unoz-cuevas, P. S. Fernandez, S. George, and C. Pin, ?odeling the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity values, Appl. Environ. ?icrobiol, vol.76, pp.2-08, 2010.

J. Narula, . Fujita, and O. A. Igoshin, Functional requirements of cellular differentiation? lessons from Bacillus subtilis, Curr. Opin. ?icrobiol, vol.34, 2016.

J. Narula, A. Kuchina, F. Zhang, . Fujita, G. ?. Süel et al., Slowdown of growth controls cellular??differentiation, Molecular Systems Biology, vol.12, issue.5, 2016.
DOI : 10.15252/msb.20156691

N. Thi-?inh, H. Durand, A. ?oison, P. Perrier-cornet, J. Gervais et al., Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure, Appl. ?icrobiol. Biotechnol, vol.0, pp.140-1417, 2011.

P. Nicolas, U. ?äder, E. Dervyn, T. Rochat, A. ?educ et al., Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in Bacillus subtilis, Science, vol.38, issue.17, pp.1103-11061206848
DOI : 10.1093/nar/gkq281

URL : https://hal.archives-ouvertes.fr/hal-01000245

R. Pandey, T. Beek, A. Vischer, N. O. Smelt, J. P. Brul et al., ?ive cell imaging of germination and outgrowth of individual Bacillus subtilis spores; the effect of heat stress quantitatively analyzed with SporeTracker

G. Pant, A. Prakash, J. V. Pavani, S. Bera, G. V. Deviram et al., Production, optimization and partial purification of protease from Bacillus subtilis, Journal of Taibah University for Science, vol.292, issue.1, pp.50-55, 2015.
DOI : 10.1006/abio.2001.5050

W. E. Peña, P. R. ?assaguer, . De, and ?. Q. Teixeira, Microbial modeling of thermal resistance of Alicyclobacillus acidoterrestris CRA7152 spores in concentrated orange juice with nisin addition, Brazilian Journal of Microbiology, vol.40, issue.3, pp.601-611
DOI : 10.1590/S1517-83822009000300024

A. Pinon, . Zwietering, ?. Perrier, J. ?embre, B. ?eporq et al., Development and Validation of Experimental Protocols for Use of Cardinal Models for Prediction of Microorganism Growth in Food Products, Applied and Environmental Microbiology, vol.70, issue.2, pp.1081-10871081, 2004.
DOI : 10.1128/AEM.70.2.1081-1087.2004

F. Postollec, A. ?athot, . Bernard, . Divanac-'h,-?.-?, S. Pavan et al., Tracking spore-forming bacteria in food? from natural biodiversity to selection by processes, Int. J. Food ?icrobiol, 2012.

A. Reder, D. Albrecht, U. Gerth, and . Hecker, Cross-talk between the general stress response and sporulation initiation in Bacillus subtilis -the ?(B) promoter of spo0E represents an AND-gate, 2012.

T. Robinson, The effect of the growth environment on the lag phase of Listeria monocytogenes, International Journal of Food Microbiology, vol.44, issue.1-2, pp.83-85
DOI : 10.1016/S0168-1605(98)00120-2

T. Ross, Indices for performance evaluation of predictive models in food microbiology, J. Appl. Bacteriol, vol.81

?. Rosso, J. R. ?obry, S. Bajard, and J. P. Flandrois, Convenient model to describe the combined effects of temperature and pH on microbial growth, Appl. Environ. ?icrobiol, vol.1, issue.61, pp.610-616
URL : https://hal.archives-ouvertes.fr/hal-00698190

A. Sant-'ana and S. De, Quantitative microbiology in food processing? modeling the microbial ecology, 2017.

C. Stephens, Bacterial sporulation: A question of commitment?, Current Biology, vol.8, issue.2, pp.45-48
DOI : 10.1016/S0960-9822(98)70031-4

?. S. Tapia, S. ?. Alzamora, J. Chirife, G. V. Barbosa-cnovas, A. J. Fontana et al., Effects of Water Activity (aw) on ?icrobial Stability? As a Hurdle in Food Preservation Water activity in foods, pp.23-271, 2007.

J. T. Teleken, W. Robazza, S. Da, G. Gomes, and A. De, ?athematical modeling of microbial growth in milk, Food Sci. Technol. Camp, vol.31, pp.8-9, 2011.

J. Veening, H. ?urray, and J. Errington, A mechanism for cell cycle regulation of sporulation initiation in Bacillus subtilis, Genes & Development, vol.23, issue.16
DOI : 10.1101/gad.528209

S. Yazdany and K. B. ?ashkari, Effect of pH on sporulation of Bacillus stearothermophilus, Appl. ?icrobiol, vol.1, issue.30, pp.1-3

E. Baril, Quantification de l'influence de l'environnement sur la formation, 2011.

E. Baril, L. Coroller, O. Couvert, M. Jabri, I. Leguerinel et al., Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and aw, Food Microbiology, vol.32, issue.1, pp.79-86, 2012.
DOI : 10.1016/j.fm.2012.04.011

URL : https://hal.archives-ouvertes.fr/hal-01330230

R. B. Baweja, M. S. Zaman, A. R. Mattoo, K. Sharma, V. Tripathi et al., Properties of Bacillus anthracis spores prepared under various environmental conditions, Archives of Microbiology, vol.72, issue.1, pp.71-79, 2008.
DOI : 10.1042/bj0540210

N. Beales, Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review, Comprehensive Reviews in Food Science and Food Safety, vol.1, issue.2, 2004.
DOI : 10.1016/0168-1605(91)90063-U

I. Budde, L. Steil, C. Scharf, U. Völker, and E. Bremer, Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal, Microbiology, vol.152, issue.3, pp.831-853, 2006.
DOI : 10.1099/mic.0.28530-0

W. M. Cosby and P. Zuber, Regulation of Bacillus subtilis sigmaH (spo0H) and AbrB in response to changes in external pH., Journal of Bacteriology, vol.179, issue.21, 1997.
DOI : 10.1128/jb.179.21.6778-6787.1997

A. H. Geeraerd, V. P. Valdramidis, and J. F. Van-impe, GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves, International Journal of Food Microbiology, vol.102, issue.1, pp.95-105, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.11.038

I. González, S. ?artí-nez, A. Bernardo, and J. González, Thermal inactivation of Bacillus cereus spores formed at different temperatures, International Journal of Food Microbiology, vol.51, issue.1, pp.81-84
DOI : 10.1016/S0168-1605(99)00109-9

L. Guillier, P. Pardon, and J. Augustin, Influence of Stress on Individual Lag Time Distributions of Listeria monocytogenes, Applied and Environmental Microbiology, vol.71, issue.6, 2005.
DOI : 10.1128/AEM.71.6.2940-2948.2005

J. H. Hageman, G. W. Shankweiler, P. R. Wall, K. Franich, G. W. Mccowan et al., Single, chemically defined sporulation medium for Bacillus subtilis: growth, sporulation, and extracellular protease production, J. Bacteriol, vol.160, pp.438-441, 1984.

F. Kunst, N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni et al., The complete genome sequence of the gram-positive bacterium Bacillus subtilis, Nature, vol.141, issue.6657, pp.249-2561036786, 1038.
DOI : 10.1099/13500872-141-2-261

L. Lundgren, Effect of Variation of Sporulation Time and Temperature on Thermostability of Bacillus cereus Spores, Physiologia Plantarum, vol.6, issue.2, pp.392-399, 1967.
DOI : 10.1093/infdis/44.6.421

M. Mazas, M. López, I. González, A. Bernardo, and R. Martín, Effects of sporulation pH on the heat resistance and the sporulation of Bacillus cereus, Letters in Applied Microbiology, vol.25, issue.5, pp.331-334, 1997.
DOI : 10.1046/j.1472-765X.1997.00240.x

S. M. Monteiro, J. J. Clemente, A. O. Henriques, R. J. Gomes, M. J. Carrondo et al., A Procedure for High-Yield Spore Production by Bacillus s ubtilis, Biotechnology Progress, vol.71, issue.4, pp.1026-103110, 1021.
DOI : 10.1128/9781555818319.ch8

S. Movahedi and W. Waites, Cold Shock Response in Sporulating Bacillus subtilis and Its Effect on Spore Heat Resistance, Journal of Bacteriology, vol.184, issue.19, pp.5275-5281, 2002.
DOI : 10.1128/JB.184.19.5275-5281.2002

T. E. Oscar, Typhimurium: Acceptable Prediction Zone Method, Journal of Food Science, vol.64, issue.2, pp.129-137, 2005.
DOI : 10.1016/S0168-1605(98)00189-5

L. F. Posada-uribe, M. Romero-tabarez, and V. Villegas-escobar, Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production, Bioprocess and Biosystems Engineering, vol.32, issue.79, pp.1879-1888, 2015.
DOI : 10.1016/S0141-0229(02)00287-9

M. Rey, P. Ramaiya, and B. Nelson, Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species, 2004.

L. Rosso, J. R. Lobry, S. Bajard, and J. P. Flandrois, Convenient model to describe the combined Effects of temperature and pH on microbial growth, Appl. Environ. Microbiol, vol.61, pp.610-616, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00698190

J. C. Wilks, R. D. Kitko, S. H. Cleeton, G. E. Lee, C. S. Ugwu et al., Acid and Base Stress and Transcriptomic Responses in Bacillus subtilis, Applied and Environmental Microbiology, vol.75, issue.4, pp.981-9901001652, 1128.
DOI : 10.1128/AEM.01652-08

S. Des, R. Et-perspectives-références, E. Baril, L. Coroller, O. Couvert et al., Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and a(w), Food Microbiol, vol.32, pp.79-86, 2012.

A. Bridier, L. Coq, D. Dubois-brissonnet, F. Thomas, V. Aymerich et al., The Spatial Architecture of Bacillus subtilis Biofilms Deciphered Using a Surface-Associated Model and In Situ Imaging, PLoS ONE, vol.100, issue.1, 2011.
DOI : 10.1371/journal.pone.0016177.t001

URL : https://hal.archives-ouvertes.fr/hal-01190488

S. A. Burgess, J. D. Brooks, J. Rakonjac, K. M. Walker, and S. H. Flint, The formation of spores in biofilms of Anoxybacillus flavithermus, J. Appl. Microbiol, 2009.

L. S. Cairns, L. Hobley, and N. R. Stanley-wall, : new insights into regulatory strategies and assembly mechanisms, Molecular Microbiology, vol.311, issue.Pt 4, pp.587-598, 2014.
DOI : 10.1006/jmbi.2001.4858

URL : http://onlinelibrary.wiley.com/doi/10.1111/mmi.12697/pdf

I. W. Dawes and J. H. Thornley, Sporulation in Bacillus subtilis. Theoretical and Experimental Studies in Continuous Culture Systems, Journal of General Microbiology, vol.62, issue.1, pp.49-66, 1970.
DOI : 10.1099/00221287-62-1-49

S. Das and R. Sen, Kinetic modeling of sporulation and product formation in stationary phase by Bacillus coagulans RK???02 vis-??-vis other Bacilli, Bioresource Technology, vol.102, issue.20, pp.9659-67, 2011.
DOI : 10.1016/j.biortech.2011.07.067

J. Errington, Regulation of endospore formation in Bacillus subtilis, Nature Reviews Microbiology, vol.35, issue.2, pp.117-126, 2003.
DOI : 10.1046/j.1365-2958.2000.01731.x

M. J. Franklin, B. Bothner, T. Akiyama, and C. Chang, New Technologies for Studying Biofilms, Microbiology Spectrum, vol.3, issue.4, 2015.
DOI : 10.1128/microbiolspec.MB-0016-2014

A. H. Geeraerd, V. P. Valdramidis, and J. F. Van-impe, GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves, International Journal of Food Microbiology, vol.102, issue.1, pp.95-105, 2005.
DOI : 10.1016/j.ijfoodmicro.2004.11.038

T. Kono, Kinetics of microbial cell growth, Biotechnology and Bioengineering, vol.7, issue.2, pp.105-131, 1968.
DOI : 10.1099/00221287-21-1-40

S. Marchand, J. De-block, V. De-jonghe, A. Coorevits, M. Heyndrickx et al., Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety, Comprehensive Reviews in Food Science and Food Safety, vol.12, issue.6, 0200.
DOI : 10.3168/jds.S0022-0302(98)75834-5

M. B. Mendez, L. M. Orsaria, V. Philippe, M. E. Pedrido, and R. R. Grau, Novel roles of the master transcription factors Spo0A and B for durvival and sporulation of Bacillus subtilis at low growth temperature, J. Bacteriol, 2004.

N. Mtimet, C. Trunet, A. Mathot, L. Venaille, I. Leguérinel et al., Modeling the behavior of Geobacillus stearothermophilus ATCC 12980 throughout its life cycle as vegetative cells or spores using growth boundaries, Food Microbiology, vol.48, pp.153-162, 2015.
DOI : 10.1016/j.fm.2014.10.013

J. Narula, A. Kuchina, F. Zhang, M. Fujita, G. M. Süel et al., Slowdown of growth controls cellular??differentiation, Molecular Systems Biology, vol.12, issue.5, 2016.
DOI : 10.15252/msb.20156691

P. Nicolas, U. Mäder, E. Dervyn, T. Rochat, A. Leduc et al., Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in Bacillus subtilis, Science, vol.38, issue.17, pp.1103-1106
DOI : 10.1093/nar/gkq281

URL : https://hal.archives-ouvertes.fr/hal-01000245

A. Reder, D. Albrecht, U. Gerth, and M. Hecker, Cross-talk between the general stress response and sporulation initiation in Bacillus subtilis -the ?(B) promoter of spo0E represents an AND-gate, Environ. Microbiol, pp.2741-2756, 2012.

L. Rosso, J. R. Lobry, S. Bajard, and J. P. Flandrois, Convenient model to describe the combined effects of temperature and pH on microbial growth, Appl. Environ. Microbiol, vol.61, pp.610-616, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00698190

M. Sharma and S. Anand, Biofilms evaluation as an essential component of HACCP for food/dairy processing industry ??? a case, Food Control, vol.13, issue.6-7, pp.469-477, 2002.
DOI : 10.1016/S0956-7135(01)00068-8

H. Vlamakis, C. Aguilar, R. Losick, and R. Kolter, Control of cell fate by the formation of an architecturally complex bacterial community, Genes & Development, vol.22, issue.7, pp.945-953, 2008.
DOI : 10.1101/gad.1645008