S. Yamazaki, T. Igarashi, E. M. Nagata, and . Yagi, Dimers with 2,2???:6???,2???-Terpyridine Derivative Ligands for Water Oxidation, Inorganic Chemistry, vol.51, issue.3, p.1530, 2012.
DOI : 10.1021/ic201797h

M. Z. Lopez, S. Ertem, J. Maji, A. Benet-buchholz, U. Keidel et al., A Self-Improved Water-Oxidation Catalyst: Is One Site Really Enough?, Angewandte Chemie, vol.49, issue.1, p.209, 2014.
DOI : 10.1002/anie.201002398

S. W. Hintermair, A. R. Sheehan, D. H. Parent, D. T. Ess, P. H. Richens et al., Precursor Transformation during Molecular Oxidation Catalysis with Organometallic Iridium Complexes, Journal of the American Chemical Society, vol.135, issue.29, p.10837, 2013.
DOI : 10.1021/ja4048762

URL : http://opus.bath.ac.uk/36038/1/draft_1.8.1.pdf

U. Graeupner, D. L. Hintermair, J. M. Huang, M. Thomsen, J. Takase et al., Probing the Viability of Oxo-Coupling Pathways in Iridium-Catalyzed Oxygen Evolution, Organometallics, vol.32, issue.19, p.5384, 2013.
DOI : 10.1021/om400658a

R. P. Zong, A New Family of Ru Complexes for Water Oxidation, Journal of the American Chemical Society, vol.127, issue.37, p.12802, 2005.
DOI : 10.1021/ja054791m

J. Wasylenko, C. Ganesamoorthy, B. D. Koivisto, M. A. Henderson, and C. P. Berlinguette, Insight into Water Oxidation by Mononuclear Polypyridyl Ru Catalysts, Inorganic Chemistry, vol.49, issue.5, p.2202, 2010.
DOI : 10.1021/ic902024s

A. Duan, Y. Fischer, E. L. Xu, and . Sun, Bridging Ligand as an Intermediate for Catalytic Water Oxidation, Journal of the American Chemical Society, vol.131, issue.30, p.10397, 2009.
DOI : 10.1021/ja9034686

L. Boyer, D. E. Polyansky, D. J. Szalda, R. Zong, R. P. Thummel et al., Effects of a Proximal Base on Water Oxidation and Proton Reduction Catalyzed by Geometric Isomers of [Ru(tpy)(pynap)(OH2)]2+, Angewandte Chemie, vol.133, issue.52, p.12808, 2011.
DOI : 10.1021/ja2024228

J. Wasylenko, C. Ganesamoorthy, M. A. Henderson, B. D. Koivisto, H. D. Osthoff et al., Scaffold: Effects on Catalytic Water Oxidation, Journal of the American Chemical Society, vol.132, issue.45, p.16094, 2010.
DOI : 10.1021/ja106108y

E. Polyansky, J. T. Muckerman, J. Rochford, R. Zong, R. P. Thummel et al., Water Oxidation by a Mononuclear Ruthenium Catalyst: Characterization of the Intermediates, Journal of the American Chemical Society, vol.133, issue.37, p.14649, 2011.
DOI : 10.1021/ja203249e

G. H. Hetterscheid and J. N. Reek, Mononuclear Water Oxidation Catalysts, Angewandte Chemie International Edition, vol.334, issue.39, p.9740, 2012.
DOI : 10.1126/science.1209816

J. Wasylenko, R. D. Palmer, and C. P. Berlinguette, Homogeneous water oxidation catalysts containing a single metal site, Chem. Commun., vol.51, issue.3, p.218, 2013.
DOI : 10.1002/anie.201201999

L. Wang, Y. Duan, M. S. Wang, E. L. Ahlquist, and . Sun, Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes, Chem. Commun., vol.52, issue.85, p.12947, 2014.
DOI : 10.1021/ic302687d

L. Hill and C. M. Prosser-mccartha, Homogeneous catalysis by transition metal oxygen anion clusters, Coordination Chemistry Reviews, vol.143, p.407, 1995.
DOI : 10.1016/0010-8545(95)01141-B

D. Long, E. Burkholder, and E. L. Cronin, Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices, Chem. Soc. Rev., vol.45, issue.74, p.105, 2007.
DOI : 10.1002/anie.200501994

URL : http://www.chem.gla.ac.uk/cronin/publications/papers/2007/91.b502666k.pdf

B. Proust, R. Matt, G. Villanneau, P. Guillemot, E. G. Gouzrh et al., Functionalization and post-functionalization: a step towards polyoxometalate-based materials, 58 C. L. Hill, pp.7605-98, 1998.
DOI : 10.1039/c0cc02533j

D. Long, R. Tsunashima, and E. L. Cronin, Polyoxometalates: Building Blocks for Functional Nanoscale Systems, Angewandte Chemie International Edition, vol.24, issue.10, p.1736, 2010.
DOI : 10.1002/anie.200903970

M. Kiwi and . Gratzel, Colloidal Redox Catalysts for Evolution of Oxygen and for Light-Induced Evolution of Hydrogen from Water, Angewandte Chemie International Edition in English, vol.63, issue.8, p.624, 1979.
DOI : 10.1021/ja01855a070

E. Kiwi, E. Borgarello, M. Pelizzetti, E. M. Visca, and . Gratzel, Cyclic Water Cleavage by Visible Light: Drastic Improvement of Yield of H2 and O2 with Bifunctional Redox Catalysts, Angewandte Chemie International Edition in English, vol.19, issue.8, p.646, 1980.
DOI : 10.1002/anie.198006461

S. Nagoshi, M. Yamashita, E. M. Yagi, and . Kaneko, Catalytic activity of [(bpy)2(H2O)Ru???O???Ru(H2O)(bpy)2]4+ for four-electron water oxidation, Journal of Molecular Catalysis A: Chemical, vol.144, issue.1, p.71, 1999.
DOI : 10.1016/S1381-1169(98)00334-3

M. Kalyanasundaram, by Visible Light with Coupled Redox Catalysts, Angewandte Chemie International Edition in English, vol.3, issue.9, p.701, 1979.
DOI : 10.1021/ja00417a073

O. Kalyanasundaram, E. Mikik, E. M. Pramauro, and . Gratzel, Towards the Construction of a Complete Cyclic Water Decomposition System, Design and Operation of an Oxygen Producing Half Cell, Helvetica Chimica Acta, vol.168, issue.7, p.2432, 1979.
DOI : 10.1016/0013-4686(78)85030-0

E. Duonghong, E. M. Borgarello, and . Gratzel, Dynamics of light-induced water cleavage in colloidal systems, Journal of the American Chemical Society, vol.103, issue.16, p.4685, 1981.
DOI : 10.1021/ja00406a004

L. M. Beni, J. L. Schiavone, W. C. Shay, B. S. Dautremont-smith, and . Schneider, Electrocatalytic oxygen evolution on reactively sputtered electrochromic iridium oxide films, Nature, vol.72, issue.5736, p.281, 1979.
DOI : 10.1016/0013-4686(77)85049-4

D. L. Carmo, J. Fritz, E. D. Mergel, and . Stolten, A comprehensive review on PEM water electrolysis, International Journal of Hydrogen Energy, vol.38, issue.12, p.4901, 2013.
DOI : 10.1016/j.ijhydene.2013.01.151

. Sakurai, On the refinement of the crystal structures of phenoquinone and monoclinic quinhydrone, Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, vol.24, issue.3, p.403, 1968.
DOI : 10.1107/S0567740868002451

J. E. Guillet, Prospects for solar synthesis, Pure and Applied Chemistry, vol.8, issue.7, p.917, 1991.
DOI : 10.1351/pac199163070917

I. Pawlukoj, G. Natkaniec, E. Bator, E. L. Grech, and . Sobczyk, Inelastic neutron scattering studies on dichloro-1,4-benzoquinones, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.60, issue.12, pp.2875-126, 2004.
DOI : 10.1016/j.saa.2004.01.022

N. Thèse-de and . Maxime-en, Ru(bpy)3] 2+ sur ces composés au cours de la photocatalyse, a été montrée par détection des bandes des bipyridines en spectroscopie infra-rouge. De plus, la spectroscopie infra-rouge a montré qu, 1968.

M. Kaneko and T. Okada, A secondary battery composed of multilayer Prussian Blue and its reaction characteristics, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.255, issue.1-2, pp.45-52, 1988.
DOI : 10.1016/0022-0728(88)80003-2

S. Kaneko, E. A. Hara, and . Yamada, A photoresponsive graphite electrode coated with prussian blue, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.194, issue.1, pp.165-168, 1985.
DOI : 10.1016/0022-0728(85)87016-9

-. Cafun, J. Lejeune, F. Baudelet, P. Dumas, J. Itié et al., Room-Temperature Photoinduced Electron Transfer in a Prussian Blue Analogue under Hydrostatic Pressure, Angewandte Chemie International Edition, vol.31, issue.36, pp.9146-9148, 2012.
DOI : 10.1080/08957959.2010.532794

S. Wang, N. He, J. Wang, J. Zhao, E. W. Fanga et al., Synthesis of CoFe Prussian blue analogue/carbon nanotube composite material and its application in the catalytic epoxidation of styrene, New Journal of Chemistry, vol.458, issue.465, p.3244, 2016.
DOI : 10.1038/nature07877

J. Van-leeuwen, C. Heimann, and H. J. Van-gorkom, Absorbance difference spectra of the S-state transitions in Photosystem II core particles, Photosynthesis Research, vol.38, issue.3, p.323, 1993.
DOI : 10.1007/BF00046757

L. Hammarström, Accumulative Charge Separation for Solar Fuels Production: Coupling Light-Induced Single Electron Transfer to Multielectron Catalysis, Accounts of Chemical Research, vol.48, issue.3, pp.840-850, 2015.
DOI : 10.1021/ar500386x

M. Molnar, G. Nallas, J. S. Bridgewater, and K. J. Brewer, Photoinitiated Electron Collection in a Mixed-Metal Trimetallic Complex of the Form {[(bpy)2Ru(dpb)]2IrCl2}(PF6)5 (bpy = 2,2'-Bipyridine and dpb = 2,3-Bis(2-pyridyl)benzoquinoxaline), Journal of the American Chemical Society, vol.116, issue.12, p.5206, 1994.
DOI : 10.1021/ja00091a026

J. Elvington, S. M. Brown, K. J. Arachchige, and . Brewer, Photocatalytic Hydrogen Production from Water Employing A Ru, Rh, Ru Molecular Device for Photoinitiated Electron Collection, Journal of the American Chemical Society, vol.129, issue.35, p.10644, 2007.
DOI : 10.1021/ja073123t

H. Konduri, F. M. Ye, S. Macdonnell, S. Serroni, E. K. Campagna et al., Ruthenium Photocatalysts Capable of Reversibly Storing up to Four Electrons in a Single Acceptor Ligand: A Step Closer to Artificial Photosynthesis, Angewandte Chemie, vol.28, issue.17, p.3317, 2002.
DOI : 10.1039/a707029b

N. R. Konduri, K. De-taconi, and F. M. Rajeshwar, :?? Aqueous Reactivity and Chemical and Spectroelectrochemical Identification of the Photoproducts, Journal of the American Chemical Society, vol.126, issue.37, p.11621, 2004.
DOI : 10.1021/ja047931l

R. De-taconi, R. O. Lezna, R. Konduri, F. Ongeri, K. Rajeshwar et al., , in Water: Proton-Coupled Sequential and Concerted Multi-Electron Reduction, Chemistry - A European Journal, vol.7, issue.15, p.4327, 2005.
DOI : 10.1103/PhysRev.174.500

J. Elliott, A. Harriman, L. Le-pleux, Y. Pellegrin, E. Blart et al., A porphyrin???polyoxometallate bio-inspired mimic for artificial photosynthesis, Physical Chemistry Chemical Physics, vol.62, issue.39, p.8767, 2009.
DOI : 10.1016/S1369-7021(08)70250-5

S. Borgström, R. Ott, J. Lomoth, L. Bergquist, E. O. Hammarström et al., Photoinduced Energy Transfer Coupled to Charge Separation in a Ru(II)???Ru(II)???Acceptor Triad, Inorganic Chemistry, vol.45, issue.12, p.4820, 2006.
DOI : 10.1021/ic060121l

A. Herrero, M. Quaranta, K. Sircoglou, A. Senechal-david, I. Baron et al., )???oxo, Chemical Science, vol.38, issue.4, p.2323, 2015.
DOI : 10.1039/b007799m

A. Moonshiram, A. Picón, X. Vazquez-mayagoitia, M. Zhang, P. Tu et al., Elucidating light-induced charge accumulation in an artificial analogue of methane monooxygenase enzymes using time-resolved X-ray absorption spectroscopy, Chemical Communications, vol.119, issue.18, p.2725, 2017.
DOI : 10.1021/ja962269h

P. Batail, Introduction:?? Molecular Conductors, Chemical Reviews, vol.104, issue.11, p.4887, 2004.
DOI : 10.1021/cr040697x

URL : https://hal.archives-ouvertes.fr/hal-00084464

R. Lorcy, A. Carlier, A. Robert, P. L. Tallec, E. L. Maguer et al., Electrochemical Synthesis of Extended TTF, The Journal of Organic Chemistry, vol.60, issue.8, p.2443, 1995.
DOI : 10.1021/jo00113a026

B. Kaoua, T. Nedjar-kolli, Y. L. Roisnel, E. D. Gal, and . Lorcy, Electroactive 1,5-benzodiazepines bearing either a tetrathiafulvalene or a ferrocene moiety, Tetrahedron, vol.69, issue.23, p.4636, 2013.
DOI : 10.1016/j.tet.2013.04.005

URL : https://hal.archives-ouvertes.fr/hal-00914420

P. Pokhodnia, J. Cassoux, A. Bonvoisin, L. Mlayah, S. Brossard et al., -indacene Compounds, The Journal of Physical Chemistry B, vol.101, issue.19, p.3665, 1997.
DOI : 10.1021/jp962246p

F. Gao, X. Zhu, Y. Wang, X. Xu, J. Wang et al., Stabilizing Radical Cation and Dication of a Tetrathiafulvalene Derivative by a Weakly Coordinating Anion, Inorganic Chemistry, vol.53, issue.10, p.5321, 2014.
DOI : 10.1021/ic5006117

B. Nielsen, C. Lomholt, and E. J. Becher, Tetrathiafulvalenes as building blocks in supramolecular chemistry II, Chemical Society Reviews, vol.29, issue.3, p.153, 2000.
DOI : 10.1039/a803992e

N. Wu, S. Dupont, A. Liu, A. Neels, E. S. Hauser et al., Imidazole-Annulated Tetrathiafulvalenes Exhibiting pH-Tuneable Intramolecular Charge Transfer and Redox Properties, Chemistry - An Asian Journal, vol.64, issue.3, p.392, 2009.
DOI : 10.1016/B978-008096518-5.00060-5

J. Leroy-lhez, L. Baffreau, E. Perrin, M. Levillain, M. Allain et al., Tetrathiafulvalene in a Perylene-3,4:9,10-bis(dicarboximide)-Based Dyad:?? A New Reversible Fluorescence-Redox Dependent Molecular System, The Journal of Organic Chemistry, vol.70, issue.16, p.6313, 2005.
DOI : 10.1021/jo050766n

D. Wu, L. Zhang, K. Su, C. Ohkubo, S. Zhang et al., Intramolecular Electron Transfer within the Substituted Tetrathiafulvalene???Quinone Dyads:?? Facilitated by Metal Ion and Photomodulation in the Presence of Spiropyran, Journal of the American Chemical Society, vol.129, issue.21, p.6839, 2007.
DOI : 10.1021/ja0702824

A. W. Kurmoo, P. Graham, S. J. Day, M. B. Coles, J. L. Hursthouse et al., Superconducting and Semiconducting Magnetic Charge Transfer Salts: (BEDT-TTF)4AFe(C2O4)3.cntdot.C6H5CN (A = H2O, K, NH4), Journal of the American Chemical Society, vol.117, issue.49, p.12209, 1995.
DOI : 10.1021/ja00154a022

T. Yamada and . Sugimoto, TTF Chemistry's Fundamentals and Applications of Tetrathiafulvalene, 2004.

P. Frere and P. J. Skabara, Salts of extended tetrathiafulvalene analogues: relationships between molecular structure, electrochemical properties and solid state organisation, Chem. Soc. Rev., vol.126, issue.57, p.69, 2005.
DOI : 10.1021/ja0393933

A. Latif, V. P. Singh, U. Bhattacharjee, A. Panda, and S. N. Datta, Very Strongly Ferromagnetically Coupled Diradicals from Mixed Radical Centers. II. Nitronyl Nitroxide Coupled to Tetrathiafulvalene via Spacers, The Journal of Physical Chemistry A, vol.114, issue.24, p.6648, 2010.
DOI : 10.1021/jp101433d

N. Massue, S. Bellec, E. Chopin, T. Levillain, R. Roisnel et al., Electroactive Ligands:?? The First Metal Complexes of Tetrathiafulvenyl???Acetylacetonate, Inorganic Chemistry, vol.44, issue.24, p.8740, 2005.
DOI : 10.1021/ic051017r

URL : https://hal.archives-ouvertes.fr/hal-00015634

J. Bellec, T. Massue, E. D. Roisnel, and . Lorcy, Chelating ability of a conjugated redox active tetrathiafulvalenyl-acetylacetonate ligand, Inorganic Chemistry Communications, vol.10, issue.10, p.1172, 2007.
DOI : 10.1016/j.inoche.2007.07.003

URL : https://hal.archives-ouvertes.fr/hal-00176872

Y. Tanaka, H. Okano, W. Kobayashi, E. A. Susuki, and . Kobayashi, A Three-Dimensional Synthetic Metallic Crystal Composed of Single-Component Molecules, Science, vol.291, issue.5502, p.285, 2001.
DOI : 10.1126/science.291.5502.285

F. Cosquer, Y. Pointillart, S. Le-gal, O. Gohlen, E. L. Cador et al., Ferromagnetic versus Antiferromagnetic Exchange Interactions in Tetrathiafulvalene-Based 3d/4f Heterobimetallic Complexes, Chemistry - A European Journal, vol.32, issue.134, p.12502, 2011.
DOI : 10.1107/S0021889898007717

URL : https://hal.archives-ouvertes.fr/hal-00875422

Y. Pointillart, S. Le-gal, O. Gohlen, E. L. Cador, and . Ouahab, Single-Molecule Magnet Behaviour in a Tetrathiafulvalene-Based Electroactive Antiferromagnetically Coupled Dinuclear Dysprosium(III) Complex, Chemistry - A European Journal, vol.32, issue.37, p.10397, 2011.
DOI : 10.1107/S0021889898007717

URL : https://hal.archives-ouvertes.fr/hal-00875420

A. Pointillart, T. Bourdolle, O. Cauchy, Y. L. Maury, S. Gal et al., In Solution Sensitization of Er(III) Luminescence by the 4-Tetrathiafulvalene-2,6-pyridinedicarboxylic Acid Dimethyl Antenna Ligand, Inorganic Chemistry, vol.51, issue.2, p.978, 2012.
DOI : 10.1021/ic202045a

URL : https://hal.archives-ouvertes.fr/hal-00836834

E. Uzelmeier, S. L. Bartley, M. Fourmigué, R. Rogers, G. Grandinetti et al., TTF), Inorganic Chemistry, vol.37, issue.26, p.6706, 1998.
DOI : 10.1021/ic9808192

URL : https://hal.archives-ouvertes.fr/hal-01157854

T. Pointillart, Y. L. Cauchy, S. Gal, O. Golhen, E. L. Cador et al., Binuclear Cu(ii) coordination complex involving Cis-tetrathiafulvalene-bis-amido-2-pyridine-N-oxide as bi-anionic ligand: a robust molecular precursor toward magnetic conducting materials, Chemical Communications, vol.98, issue.27, p.4947, 2010.
DOI : 10.1039/c0cc00672f

URL : https://hal.archives-ouvertes.fr/hal-01151347

T. Li, L. Jin, J. Sun, D. Qin, J. Wen et al., Dinuclear rhenium(I) carbonyl complexes based on ??-conjugated polypyridyl ligands with tetrathiafulvalenes: Syntheses, crystal structures, properties and DFT calculations, Journal of Organometallic Chemistry, vol.696, issue.19, p.3076, 2011.
DOI : 10.1016/j.jorganchem.2011.06.012

L. Qin, G. Hu, X. Li, Y. Wang, J. Xu et al., Syntheses, Characterization, and Properties of Rhenium(I) Tricarbonyl Complexes with Tetrathiafulvalene-Fused Phenanthroline Ligands, Organometallics, vol.30, issue.8, p.2173, 2011.
DOI : 10.1021/om101141h

F. Vacher, F. Barrière, J. Camerel, T. Bergamini, E. D. Roisnel et al., ) complexes: syntheses, crystal structures, and influence of the ancillary ligands on their electronic properties, Dalton Trans., vol.82, issue.2, p.383, 2013.
DOI : 10.1063/1.448975

S. Iwashori, L. Gohlen, R. Ouahab, J. P. Carlier, and . Sutter, Coordination Complex Involving TTF-py as Ligand, Inorganic Chemistry, vol.40, issue.26, p.6541, 2001.
DOI : 10.1021/ic015550s

Y. Miyazaki, F. Ogyu, L. Justaud, T. Ouahab, J. Cauchy et al., = 0, 1): Electronic Coupling between the Inorganic and Organic Electrophores, Organometallics, vol.29, issue.20, p.4628, 2010.
DOI : 10.1021/om100763x

F. Vacher, T. Barrière, L. Roisnel, E. D. Piekara-sady, and . Lorcy, Electronically Coupled Tetrathiafulvalene Electrophores across a Non-innocent Acetylide???Ruthenium Bridge, Organometallics, vol.30, issue.13, p.3570, 2011.
DOI : 10.1021/om200266q

URL : https://hal.archives-ouvertes.fr/hal-00615284

O. Marcon and S. Brochsztain, Aggregation of 3,4,9,10-Perylenediimide Radical Anions and Dianions Generated by Reduction with Dithionite in Aqueous Solutions, The Journal of Physical Chemistry A, vol.113, issue.9, p.1747, 2009.
DOI : 10.1021/jp808383e

D. Ego, S. Marsitzky, J. Becker, A. C. Zhang, K. Grimsdale et al., Attaching Perylene Dyes to Polyfluorene:?? Three Simple, Efficient Methods for Facile Color Tuning of Light-Emitting Polymers, Journal of the American Chemical Society, vol.125, issue.2, p.437, 2003.
DOI : 10.1021/ja0205784

W. Wang, E. K. Pisula, and . Mullen, Nanofiber growth and alignment in solution processed n-type naphthalene-diimide-based polymeric field-effect transistors, Journal of Materials Chemistry, vol.314, issue.47, p.24827, 2012.
DOI : 10.1126/science.1133004

Y. Earmme, N. M. Hwang, S. Murari, S. A. Subramaniyan, and . Jenekhe, All-Polymer Solar Cells with 3.3% Efficiency Based on Naphthalene Diimide-Selenophene Copolymer Acceptor, Journal of the American Chemical Society, vol.135, issue.40, p.14960, 2013.
DOI : 10.1021/ja4085429

J. Rozanski, E. Castaldelli, F. L. Sam, C. A. Mills, G. J. Demets et al., Solution processed naphthalene diimide derivative as electron transport layers for enhanced brightness and efficient polymer light emitting diodes, Journal of Materials Chemistry C, vol.1, issue.20, p.3347, 2013.
DOI : 10.1039/c3tc00707c

URL : http://epubs.surrey.ac.uk/774151/2/Rozanski%20JoMC%201_2013_3347.pdf

Y. Lin, J. Wang, J. Wang, Y. Hou, D. Li et al., A Star-Shaped Perylene Diimide Electron Acceptor for High-Performance Organic Solar Cells, Advanced Materials, vol.3, issue.30, p.5137, 2014.
DOI : 10.1021/jz300293q

S. Lukas, S. E. Miller, and M. R. Wasielewski, Femtosecond Optical Switching of Electron Transport Direction in Branched Donor???Acceptor Arrays, The Journal of Physical Chemistry B, vol.104, issue.5, p.931, 2000.
DOI : 10.1021/jp993774e

. Ainsi, le rendement de formation du second état de séparation de charges Ru-NDI 2-à partir de l'état fondamentale est de 1,4 % ; et de 4 % à partir de l

R. @bullet-aussi-bien-au-niveau-du-chromophore-ruthénium-qu-'au-niveau-de-la-sous-unité, N. @bullet-,-formant-l-'espèce-ru, and -. , En effet, le coefficient d'extinction molaire du NDI ?-étant estimé à environ 10000 M -1 cm -1 à 460 nm, 285 le NDI ?-peut être excité par cette seconde excitation « pompe » afin de former l'espèce Ru-NDI ?-*. Cette dernière peut en principe réagir avec une molécule d'ascorbate pour former l'espèce Ru-NDI 2-, étant donné que le ?G de cette réaction vaut -0,88 eV. Quoiqu'il en soit, cette espèce Ru-NDI ?-* a une durée de vie de 112 ps, selon Majima, 289 ce qui ne lui permet pas de réagir avec l'ascorbate, étant donné que cette réaction est intermoléculaire, Le second laser « pompe et que la diffusion est beaucoup plus longue que les 112 ps de durée de vie du Ru- NDI ?-*. Cette excitation non-productive du NDI ?-à 460 nm, formant l'espèce NDI ?-*, contribue à diminuer le rendement de formation de l'espèce de double séparation de charges Ru-NDI 2

. Au-final, Ru-NDI 2-/ 2 ascox) permet de stocker une énergie de 1,10 eV et se recombine, comme décrit dans la Figure 126, en l'espèce Ru-NDI ?/ascox en environ 200 µs ; et finalement en l