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Abstract

In recent years, biometrics have received substantial attention due to the ever-

growing need for automatic individual authentication. Among various physiolog-

ical biometric traits, face offers unmatched advantages over the others, such as

fingerprints and iris, because it is natural, non-intrusive and easily understand-

able by humans. Nowadays conventional face recognition techniques have attained

quasi-perfect performance in a highly constrained environment wherein poses, illu-

minations, expressions and other sources of variations are strictly controlled. How-

ever these approaches are always confined to restricted application fields because

non-ideal imaging environments are frequently encountered in practical cases. To

adaptively address these challenges, this dissertation focuses on this unconstrained

face recognition problem, where face images exhibit more variability in illumination.

Moreover, another major question is how to leverage limited 3D shape information

to jointly work with 2D based techniques in a heterogeneous face recognition system.

To deal with the problem of varying illuminations, we explicitly build the un-

derlying reflectance model which characterizes interactions between skin surface,

lighting source and camera sensor, and elaborate the formation of face color. With

this physics-based image formation model involved, an illumination-robust repre-

sentation, namely Chromaticity Invariant Image (CII), is proposed which can sub-

sequently help reconstruct shadow-free and photo-realistic color face images. Due

to the fact that this shadow removal process is achieved in color space, this ap-

proach could thus be combined with existing gray-scale level lighting normalization

techniques to further improve face recognition performance. The experimental re-

sults on two benchmark databases, CMU-PIE and FRGC Ver2.0, demonstrate the

generalization ability and robustness of our approach to lighting variations.

We further explore the effective and creative use of 3D data in heterogeneous

face recognition. In such a scenario, 3D face is merely available in the gallery set
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and not in the probe set, which one would encounter in real-world applications.

Two Convolutional Neural Networks (CNN) are constructed for this purpose.

The first CNN is trained to extract discriminative features of 2D/3D face im-

ages for direct heterogeneous comparison, while the second CNN combines an

encoder-decoder structure, namely U-Net, and Conditional Generative Adversarial

Network (CGAN) to reconstruct depth face image from its counterpart in 2D.

Specifically, the recovered depth face images can be fed to the first CNN as well for

3D face recognition, leading to a fusion scheme which achieves gains in recognition

performance. We have evaluated our approach extensively on the challenging

FRGC 2D/3D benchmark database. The proposed method compares favorably to

the state-of-the-art and show significant improvement with the fusion scheme.

Keywords: face recognition, shadow removal, lighting normalization, deep

learning, convolutional neural networks, depth recovery
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Résumé

Ces dernières années, la biométrie a fait l’objet d’une grande attention en rai-

son du besoin sans cesse croissant d’authentification d’identité, notamment pour

sécuriser de plus en plus d’applications enlignes. Parmi divers traits biométriques,

le visage offre des avantages compétitifs sur les autres, e.g., les empreintes digitales

ou l’iris, car il est naturel, non-intrusif et facilement acceptable par les humains.

Aujourd’hui, les techniques conventionnelles de reconnaissance faciale ont atteint

une performance quasi-parfaite dans un environnement fortement contraint où la

pose, l’éclairage, l’expression faciale et d’autres sources de variation sont sévère-

ment contrôlées. Cependant, ces approches sont souvent confinées aux domaines

d’application limités parce que les environnements d’imagerie non-idéaux sont très

fréquents dans les cas pratiques. Pour relever ces défis d’une manière adaptative,

cette thèse porte sur le problème de reconnaissance faciale non contrôlée, dans lequel

les images faciales présentent plus de variabilités sur les éclairages. Par ailleurs, une

autre question essentielle vise à profiter des informations limitées de 3D pour colla-

borer avec les techniques basées sur 2D dans un système de reconnaissance faciale

hétérogène.

Pour traiter les diverses conditions d’éclairage, nous construisons explicitement

un modèle de réflectance en caractérisant l’interaction entre la surface de la peau,

les sources d’éclairage et le capteur de la caméra pour élaborer une explication de la

couleur du visage. A partir de ce modèle basé sur la physique, une représentation

robuste aux variations d’éclairage, à savoir Chromaticity Invariant Image (CII),

est proposée pour la reconstruction des images faciales couleurs réalistes et sans

ombre. De plus, ce processus de la suppression de l’ombre en niveaux de couleur

peut être combiné avec les techniques existantes sur la normalisation d’éclairage en

niveaux de gris pour améliorer davantage la performance de reconnaissance faciale.

Les résultats expérimentaux sur les bases de données de test standard, CMU-PIE
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et FRGC Ver2.0, démontrent la capacité de généralisation et la robustesse de notre

approche contre les variations d’éclairage.

En outre, nous étudions l’usage efficace et créatif des données 3D pour la

reconnaissance faciale hétérogène. Dans un tel scénario asymétrique, un enrôle-

ment combiné est réalisé en 2D et 3D alors que les images de requête pour la

reconnaissance sont toujours les images faciales en 2D. A cette fin, deux Réseaux

de Neurones Convolutifs (Convolutional Neural Networks, CNN) sont construits.

Le premier CNN est formé pour extraire les descripteurs discriminants d’images

2D/3D pour un appariement hétérogène. Le deuxième CNN combine une structure

codeur-décodeur, à savoir U-Net, et Conditional Generative Adversarial Network

(CGAN), pour reconstruire l’image faciale en profondeur à partir de son homologue

dans l’espace 2D. Plus particulièrement, les images reconstruites en profondeur

peuvent être également transmise au premier CNN pour la reconnaissance faciale

en 3D, apportant un schéma de fusion qui est bénéfique pour la performance en

reconnaissance. Notre approche a été évaluée sur la base de données 2D/3D de

FRGC. Les expérimentations ont démontré que notre approche permet d’obtenir

des résultats comparables à ceux de l’état de l’art et qu’une amélioration significa-

tive a pu être obtenue à l’aide du schéma de fusion.

Mots-clés: reconnaissance faciale, suppression des ombres, normalisation

d’éclairage, apprentissage profond, réseaux de neurones convolutionnels, recon-

struction de profondeur
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“...On the other hand, when processing complex natural images such

as faces, the situation is complicated still further. There is such a wide

variety in the input images that measurement of features must be adaptive

to each individual image and relative to other feature measurements. We

shall be dealing with photographs of one full face with no glasses or beard.

We assume that the face in a photo may have tilt, forward inclination, or

be backward bent to a certain degree, but is never turned to one side.”

– Takeo Kanade, Doctoral Dissertation, 1973



1. Introduction

Back in 1973, when T. Kanade described the challenges and constraints for face

recognition in his doctoral dissertation [Kanade 1973], which is also publicly known

as the first paper talking about face recognition, he might not have foreseen the per-

vasive growth and striking development of this technique after more than 40 years.

Questions then naturally arise: Why is face recognition playing an increasingly im-

portant role in person identification? How does it work conceptually? What are

the main challenges? In this chapter we answer these questions and give a detailed

demonstration of how my thesis work is motivated and organized. Unless otherwise

specified, all images in this chapter are taken from public domain websites.

1.1 Background

1.1.1 Biometrics: Changes in the Authentication Landscape

The problem of authentication - verifying that someone is who he/she claims to be -

has existed since the beginning of human history. Unless it is answered satisfactorily,

identification is incomplete and no authorization can or should take place.

Our ancestors living in a primitive society were far less concerned with this issue

because their ordinary life was limited to a small community where everybody knew

each other. Basically, this means that the most original factors used to authenti-

cate an individual are something the user is, i.e. some inherent physical traits or

characteristics: face, voice, etc.

Along with social changes and technological developments, human activities

have been largely enhanced and an explosive growth of authentication cases and

patterns have emerged. At this stage, the factors for authenticating someone have

gradually shifted to something the person knows. This could be a reusable pass-

word, a personal identification number (PID) or a fact likely to be known only to

this person, such as his favorite movie; or something the person has, which could be

a key, a magnetic-stripe card, a smart card or a specialized authentication device

(called a security token) that generates a one-time password or a specific response to

a challenge presented by the server. Due to their ease of use and low cost, a variety

of productions based on both factors are widely used nowadays as authentication
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1. Introduction

measures. However, these mechanisms have apparent drawbacks: password authen-

tication is vulnerable to a password “cracker”, another nightmare, who uses brute

force attack while managing multiple passwords for different systems: keys, smart

cards or other security tokens provide a relatively easier and safer authentication

mode, but there is the risk of their being lost or faked.

To further cope with these drawbacks, a stronger and securer authentication pro-

cess is needed. Thanks to the widespread use of data acquisition devices (e.g. dig-

ital cameras, scanners, smartphones) and the never-ending progress in algorithms,

biometrics have made a public return with a totally new look.

Biometric authentication involves the use of biological statistics to compute

the probability of two people having identical biological characteristics. Compared

with other authentication factors as mentioned above, biometrics are advantageous

across a series of attributes, including but not limited to:

1. User-Friendly: Users will no longer need to memorize a long list of passwords

or carry a set of keys. All they need to do is to present their biometrics and

let the system handle the rest.

2. Understandability: Identifying people by intrinsic biometrics such as face and

voice is essentially a human instinctive habit, which makes biometric authen-

tication easy to understand and interpret.

3. Security: Unlike passwords and keys, biometric authentication has been

widely regarded as the hardest to forge or spoof.

4. Accuracy: Higher level identification accuracy can be maximally ensured by

integrating multi-modal biometrics.

As a constant necessity, biometrics are used to identify authorized people based

on specific physiological or behavioral features. Examples of behavioral characteris-

tics are gait, signature and voice. Physical characteristics include: DNA, ear, face,

fingerprint, hand geometry, iris and retina. Some popular biometrics are illustrated

in Fig. 1.1. These biometrics are selected based on seven main criteria as proposed

in [Jain et al. 2006]:

3
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Figure 1.1: Examples of commonly used biometric traits

1. Uniqueness: Most importantly, each biometric should be sufficiently unique

for distinguishing one person from another.

2. Universality: Each person, irrespective of any external factors, should possess

his/her own biometric trait during an authentication process.

3. Permanence: To preserve the robustness of selected biometrics, the trait

should be invariant with one individual over a long period.

4. Collectability: A proper method or device can be easily applied to measure or

capture the biometric trait quantitatively.

5. Acceptability: The aforesaid collection pattern or the measurement mode of

the trait can be widely accepted by the public.

6. Circumvention: The vulnerability level of the underlying biometric system

with the given trait is acceptable under fraudulent attacks.

7. Performance: Both the accuracy and processing speed of the system involving

the trait are sufficiently satisfactory for the authentication requests.
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Table 1.1: A brief comparison of biometric traits
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Uniqueness M H H H L H H M L H L

Universality H H M H M H M M M H L

Permanence M H H H L H H H L M L

Collectability H M M M M L M M H L H

Acceptability H M M L H L M H H L H

Circumvention H M M L H L M M M L H

Performance H M H H L H H M L H L

1.1.2 Face: Leading Candidate in Biometrics

Among all biometric traits used for person identification, face based analysis has

recently received a great deal of attention due to the enormous developments in

the field of image processing and machine learning. Over and beyond its scientific

interest, when compared with other biometrics such as fingerprint and iris, face

offers a number of unmatched advantages for a wide variety of potential applications

in commerce and law enforcement. To intuitively demonstrate the advantages and

disadvantages of face and other biometric traits, in Table 1.1 we list a comparison

based on seven parameters in [Jain et al. 2006]. In this table, high, medium and

low are denoted by H, M and L, respectively.

From this table we can infer that face is superior to other biometrics due to the

following reasons:

- Non-intrusive process. Instead of requiring users to place their hand or fingers

on a reader (a process not acceptable in some cultures as well as being a source

of disease transfer) or to precisely position their eye in front of a scanner, face

recognition systems unobtrusively take photos of people’s faces at a distance.

No intrusion or delay is needed, and in most cases the users are entirely
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Figure 1.2: Human face samples captured under different modalities.

unaware of the capture process. They do not feel their privacy has been

invaded or ”under surveillance”. Moreover, identifying a person based on

his/her face is one of the oldest and most basic types of human behavior,

which also makes it naturally accepted by the public.

- Ease of implementation. Unlike most biometric traits which necessitate pro-

fessional equipment during their implementation (e.g. digital reader and scan-

ner for fingerprints, palm prints, iris and retina), face data can be easily cap-

tured via digital cameras, cameras on PCs or even the widespread use of

smartphones.

- Various modalities. In contrast with other biometric traits which are nor-

mally unimodal (mostly color/grayscale images), face data can be captured

and stored under a variety of modalities. Different modalities are exploited

in different face recognition scenarios according to their own characteristics.

Color images are sufficient for normal recognition tasks, depth images and

3D scans are more robust against lighting variations, face sketches are widely

used in the investigation of serious crimes by police, just to name a few.

Specifically, the collaboration between 2D images and 3D models markedly

improves face recognition performance. Several commonly used modalities

are illustrated in Fig. 1.2.

- Performance boost. Up to the first decade of this century, identification per-

formance based on face was relatively poor when compared with performance

based on other strong traits such as iris and retina [Jain et al. 2004]. The

main reason lies in the restricted ability of distinguishing a person in an
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unconstrained environment as face representations can be more sensitive to

variations in lighting, pose, expression, etc. However, over the last few years,

the performance of unconstrained face recognition has progressed consider-

ably with the emergence of deep learning. For instance, the state-of-the-art

image-unrestricted verification results on the challenging Labeled Faces in the

Wild (LFW) benchmark [Huang et al. 2007b] have been largely improved from

84.45% [Cao et al. 2010] to 99.53% [Schroff et al. 2015] over a period of four

years.

Besides the above-mentioned merits and other advantages, for example there is

no association with crime as with fingerprints (few people would object to looking at

a camera) and many existing systems already store face images (such as police mug

shots), face recognition also shows no weak points in any aspects as demonstrated

in Table 1.1, making it stably and reasonably accepted as a leading candidate in all

biometric traits. Nowadays, face recognition technology is becoming an ever closer

part of people’s daily lives in the form of relevant applications, including but not

limited to access control, suspect tracking, video surveillance and human computer

interaction.

1.2 2D & 3D Face Recognition: Successes and Chal-

lenges

The face recognition pipeline involves not only comparing two face images, but also

includes a complicated system dealing with a series of questions: Which databases

are required? Do we need any pre-processing methods? What kind of metric

should be used for performance evaluation? In this section, we start by describing

the principal mechanism and main drawbacks of 2D face recognition, followed by

an extended discussion of 3D face recognition technology. This section ends with

an introduction of 2D/3D heterogeneous face recognition.
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Figure 1.3: General workflow of a face recognition system

1.2.1 2D Face Recognition: Overview

The term ”face recognition” encompasses five main procedures, namely data prepa-

ration, pre-processing, feature extraction, pattern classification and performance

evaluation in a logical sequential order. Other steps might be optionally involved

depending on system requirements and algorithm properties, such as the use of

training samples for model learning. Fig. 1.3 depicts the general pipeline of a stan-

dard face recognition process. In this section, we accordingly provide below a brief

review for each procedure to enable comprehensive understanding.

Data preparation. Beyond all questions, accurate and appropriate data col-

lection is apparently a cornerstone of all face recognition research. The history

of 2D face database construction passes through two stages: first, conventional

face databases merely contain images under constrained conditions, which are nor-

mally guaranteed by data acquisition in a specified environment during the same

period; then people attempt to gather as many face images as possible to address

the unconstrained face recognition problem. The emergence and progress of deep

learning-based methods greatly foster the transition between these two stages. To

provide an intuitive overview, in Table 1.2 and 1.3 we list the most popular con-

strained and unconstrained 2D benchmark face databases, respectively.

Pre-processing. Quality of image plays a crucial role in increasing face recog-

nition performance. A good quality image yields a better recognition rate than

noisy or badly aligned images. To overcome problems occurring due to bad qual-
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Table 1.2: List of commonly used constrained 2D face databases. E: expression. I:
illumination. O: occlusion. P: pose. T: time sequences.

Face Database Year # of subjects # of images Variations

ORL 1992-1994 40 400 E,I,O

Feret 1993-1997 1,199 14,126 E,I,P,T

Yale 1997 15 165 E,I,O

JAFFE 1998 10 213 E

AR 1998 126 >4,000 E,I,O

Yale-B 2001 10 5,850 I,P

CMU-PIE 2000 68 >40,000 E,I,P

CAS-PEAL 2005 1,040 99,594 E,I,O,P

Multi-PIE 2008 337 >750,000 E,I,P

Table 1.3: List of large-scale unconstrained 2D face databases
Face Database Year # of subjects # of images

LFW 2007 5,749 13,233

PubFig 2009 200 58,797

Youtube Faces 2011 1,595 3,425 videos

FaceScrub 2014 530 106,863

CACD2000 2014 2,000 >160,000

CASIA-Webface 2014 10,575 494,414

IJB-A 2015 500 5,712 images + 2,085 videos

CelebA 2015 10,177 202,599

MS-Celeb-1M 2016 99,952 10,490,534

MegaFace 2016 672,057 4,753,520
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ity, a variety of pre-processings are optional before extracting features from the

image. Generally, these techniques can be categorized into two classes: 1) spatial

transformations. An intuitive way to preprocess images for easier comparison is to

make them alike. To achieve this goal, several traditional and straightforward pre-

processing methods are provided: face detection and cropping, face resizing, face

alignment, etc. 2) image normalization. These methods are usually employed to re-

duce the effect of noise or different global lighting conditions, including illumination

normalization, image de-noising and smoothing, etc.

Feature extraction. This is the most important part in the whole processing

chain because the discriminative representations of faces are embedded at this stage.

A literature review related to the representative 2D face features will be provided

in the next chapter.

Pattern classification. Once features of all face images have been extracted,

face recognition systems, especially those aiming at face identification, compare

each probe feature with all gallery features to determine the identity of this probe,

which is essentially a classification problem. Known as the simplest and default clas-

sification strategy, k-Nearest Neighbors (KNN) [Altman 1992] is a non-parametric

classifier that computes distances between probe features and gallery features di-

rectly without training. Apart from KNN, there are other powerful and widely

used classifiers for more accurate classification, such as Support Vector Machine

(SVM) [Cortes & Vapnik 1995], Adaboost [Freund & Schapire 1995], Decision Tree

(DT) [Quinlan 1986] and Random Forest (RF) [Breiman 2001].

Performance evaluation. Last but not least, to quantitatively evaluate and

compare the effectiveness of different face recognition techniques, the appropriate

evaluation standards are required. First, general face recognition systems fall into

two categories: 1) Face verification. This scenario, also known as face authentica-

tion, performs a one-to-one matching to either accept or reject the identity claimed

based on the face image. 2) Face identification. On the contrary, this scenario

performs a one-to-many matching to determine the identity of the test image which

is labeled as that of the registered subject with the minimal distance from the test

image. With these caveats, we can recapitulate the fundamental evaluation tools

10
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Table 1.4: The confusion matrix created by the prediction result of the face recog-
nition system (S) and ground truth condition. I: provided authentication proof.
C: claimed identity. T: true. F: false. P: positive. N: negative. R: rate.

S gives access or not?

Yes No TPR/FPR FNR/TNR

I belongs to

C or not?

Yes TP FN TPR=
∑

TP∑
TP+FN FNR=

∑
FN∑

TP+FN

No FP TN FPR=
∑

FP∑
FP+TN TNR=

∑
TN∑

FP+TN

for each scenario. With regard to the face verification task, four possible outcomes

produced by the dual results of both ground truth and system prediction are de-

fined in Table 1.4, the two evaluation tools thus include: 1) Receiver Operating

Characteristics (ROC). The ROC curve is created by plotting the true positive

rate (TPR) against the false positive rate (FPR) at various threshold settings. The

ROC analysis provides tools to select possibly optimal models and to discard sub-

optimal ones independently from (and prior to specifying) the cost context or the

class distribution. 2) Detection Error Tradeoff (DET) graph. As an alternative to

the ROC curve, the DET graph plots the false negative rate (FNR) against the

false positive rate (FPR) on non-linearly transformed x- and y-axes. Accordingly,

for the face identification task, two other metrics for performance evaluation are: 1)

Cumulative Match Characteristic (CMC). The CMC curve plots the identification

rate at rank-k. A probe (or test sample) is given rank-k when the actual subject is

ranked in position k by an identification system, while the identification rate is an

estimate of the probability that a subject is identified correctly at least at rank-k.

2) Rank-1 Recognition Rate (RORR). This term simply calculates the percentage

of correctly identified samples against all samples: rank-1 implies that only the

nearest neighbor registered image is considered to identify a probe.

1.2.2 Challenges for 2D Face Recognition

Nowadays, conventional 2D face recognition methods have attained quasi-perfect

performance in a highly constrained environment wherein the sources of variations,

11
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Figure 1.4: A person with the same pose and expression under different illumination
conditions. Images are extracted from the CMU-PIE database [Sim et al. 2003].

such as pose and lighting, are strictly controlled. However, these approaches suffer

from a very restricted range of application fields due to the non-ideal imaging en-

vironments frequently encountered in practical cases: users may present their faces

without a neutral expression, or human faces come with unexpected occlusions such

as sunglasses, or in some cases images are even captured from video surveillance

which can combine all the difficulties such as low resolution images, pose changes,

lighting condition variations, etc. In order to provide a detailed overview of these

challenges, we summarize and illustrate the most related issues as follows.

Illumination conditions. The effect of lighting on face images can be easily

understood because a 2D face image essentially reflects the interaction between

different lighting and facial skins. Any lighting variations can generate large changes

in holistic pixel values and make it far more difficult to remain robust for many

appearance-based face recognition techniques. It has been argued convincingly that

the variations between the images of the same face due to illumination and viewing

directions are almost always greater than image variations due to change in face

identity [Adini et al. 1997]. As is evident from Fig. 1.4, the same person with a

frontal pose and neutral expression can appear strikingly different when light source

direction and lighting intensity vary.

Head pose. One of the major challenges encountered by face recognition tech-

niques lies in the difficulties of handling varying poses, i.e. recognition of faces in

arbitrary in-depth rotations. This problem of pose variations has specially arisen in
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Figure 1.5: Photographs of David Beckham with varying head poses

connection with increasing demands on unconstrained face recognition in real appli-

cations, e.g. video surveillance. In these cases, humans may present their faces in

all poses while registered faces are mostly frontal images, thus greatly augmenting

the differences between them. See Fig. 1.5 for an intuitive illustration of how pose

variations impinge upon face images of the same identity.

Facial expression. Instead of varying physical conditions during imaging for-

mation, facial expressions affect recognition accuracy from a biological perspective.

Generally, face is considered as an amalgamation of bones, facial muscles and skin

tissues. When these muscles contract accordingly in connection with different emo-

tions, deformed facial geometries and features are produced, which creates vague-

ness for face recognition. According to the statement in [Chin & Kim 2009], facial

expression acts as a rapid signal that varies with contraction of facial features such

as eyebrows, lips, eyes, cheeks, etc. In Fig. 1.6 we group some photos of a famous

Chinese comedian with a variety of expressions.

Age. With increasing age, human appearance also changes mainly with respect

to skin color, face shape and wrinkles. Specifically, unlike the other challenging

issues which can be manually controlled, the problem of age difference between a

registered face image and a query face image is considered to be practically un-

solvable during data acquisition. Therefore, age-invariant face recognition study

13
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Figure 1.6: Photographs of Yunpeng Yue with varying facial expressions

Figure 1.7: Photographs of Queen Elizabeth II at different ages

remains a ubiquitous requirement in real applications. Fig. 1.7 shows Queen Eliz-

abeth II at different ages.

Occlusions. Even in many ideal imaging environments where pose and illumi-

nation are well controlled, the captured face information would still be quite lossy

due to all kinds of occlusions, such as glasses, hair, masks and gestures (see Fig.

1.8). Compared with varying poses, occlusions not only hide the useful facial part,

but also introduce irregular noises which are always difficult to detect and discard,

resulting in extra burdens for face recognition systems.

Makeup. More recently, this interesting issue has been analyzed and empha-

sized in face recognition. Color cosmetics and fashion makeup might make people

look good, but lipstick and eyeshadow can also play havoc on facial recognition

technology, which poses novel challenges for related research. Moreover, the spread
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Figure 1.8: Photographs of Lady Gaga with different kinds of occlusions

Figure 1.9: Comparisons between before and after makeups. Top: before makeups.
Bottom: after makeups. The last column shows the makeup generated by virtual
makeup application.

and popularization of virtual makeup applications, which can help edit face images

to achieve the desired visual effect, have substantially increased the difficulty of face

authentication. Some before-after comparisons are depicted in Fig. 1.9 to reveal

the differences caused by makeups.

Not surprisingly, despite the tremendous progress achieved in 2D face recogni-

tion over the last 40 years, the above challenging issues still need to be addressed

more accurately and efficiently. Nevertheless, the shift in research focus from con-

strained to unconstrained conditions in turn demonstrates that people are moving

beyond the theoretical stage and opening up new areas in practical implementation

of face recognition techniques, as is proved by the relevant industries and applica-

tions which have sprung up recently.
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1.2.3 3D: Opportunity or Challenge?

Among all the challenging issues, illumination variations and makeup can easily

change the pixel values of the same face, while different head poses generate totally

different 2D projections of face texture. 2D face recognition technology becomes far

less robust while dealing with these nuisance factors since its performance is solely

dependent on pixel values. Faced with such a predicament, the idea naturally

arises that the ’hidden’ dimension might help grant us more opportunities. As a

matter of fact, exploitation of 3D data in face recognition has never ceased since

the 1990s [Lee & Milios 1990]. Related research has proven that opportunities and

challenges actually coexist by using 3D: they are detailed and discussed respectively

as follows.

Opportunities. People are showing increasing interest in 3D face recognition

as it is commonly considered to be pose-invariant and illumination-invariant. For

example, Hesher et al. stated in [Hesher et al. 2003]: ”Range images have the

advantage of capturing shape variation irrespective of illumination variabilities”.

A similar statement was also made by Medioni and Waupotitsch in [Medioni &

Waupotitsch 2003]: ”Because we are working in 3D, we overcome limitations due to

viewpoint and lighting variations”. Indeed, compared with 2D texture and intensity

information which are sensitive to lighting and viewpoint changes, face shape can

generate features which lack the ”intrinsic” weaknesses of 2D approaches.

Furthermore, in recent years the development of data capture devices has en-

abled a faster and cheaper 3D capturing process. Table 1.5 lists the most popular

3D face databases, together with their main characteristics. Specifically, not only

the number of subjects and scans, but also the variety of 3D data types has greatly

increased. To date, researchers can choose the most appropriate 3D data, such as

depth image, point cloud or triangle mesh, with respect to their system requirements

and algorithm properties.

Challenges. It is undeniable that 3D face models offer more information and

advantages than 2D face images in unconstrained face recognition scenarios. Nev-

ertheless, when we review recent achievements in real face recognition applications,
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Table 1.5: List of commonly used 3D face databases
Face Database Year # of subjects # of scans Variations

FRGC v1.0 2003 275 943 -
FRGC v2.0 2004 466 4,007 E
GavabDB 2004 61 549 E,P

CASIA-3D 2004 123 4,624 E,I,O,P
BU-3DFE 2006 100 2,500 E
FRAV3D 2006 106 1,696 E,P
BU-4DFE 2008 101 60,600 E,T
Bosphorus 2008 105 4,666 E,O,P

PHOTOFACE 2008 453 3,187 E,T
BFM 2009 200 600 E,I

CurtinFaces 2011 52 4,784 E,I,O,P
FaceWareHouse 2012 150 3,000 E

Lock3DFace 2016 509 5,711 E,I,O,P,T

3D-based technology still occupies a relatively small portion compared to 2D-based

systems. We now analyze and present the challenges encountered while using 3D

information as follows.

Data acquisition. A simple comparison between Table 1.2, Table 1.3 and Ta-

ble 1.5 creates the impression that the overall scale of 3D face databases always

falls far behind 2D-based ones, while 2D databases possess a much faster expansion

speed. This observation suggests that acquisition of 3D faces continues to be an

issue. More specifically, most 3D scanners require the subject to be at a certain

distance from the sensor, and laser scanners further require a few seconds of com-

plete immobility, while a traditional camera can capture images from a distance

without any cooperation from the subjects. So far, large-scale 3D face collection in

the wild remains a bottleneck, which hinders popularization of 3D face recognition

technology in real applications.

Data processing. Besides the data collection difficulties, processing of 3D data

may not be as convenient as expected because 3D sensor technology is currently

not as mature as 2D sensors. For example, as noted earlier, one advantage of

3D often asserted is that it is ”illumination invariant”, whereas 2D images can be
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Figure 1.10: Examples of data corruption in captured 3D samples. Corruption
conditions include missing parts, spikes and noise observed in [Lei et al. 2016]
and [Bowyer et al. 2006].

easily affected by lighting conditions. However, skin edges and oily parts of the face

with high reflectance may introduce artifacts depending on 3D sensor technology.

Fig. 1.10 illustrates some 3D scans presenting data corruptions. Furthermore, the

inconsistency between 3D models generated by different devices creates far more

problems than 2D images during data processing.

Computational load. Apparently, exploitation of depth information significantly

increases computation cost, making 3D-based technology less efficient than 2D-

based technology. On the other hand, while current 2D face recognition tech-

niques barely require high-resolution images, the performance of 3D techniques

varies largely across different resolutions. Therefore, the contradiction between

computational efficiency and recognition accuracy in terms of 3D model resolution

becomes another unsolved problem.

In brief, depth information per se is obviously advantageous for strengthening

the robustness of face recognition systems against pose and lighting variations.

However, the above analyzed drawbacks severely restrict the extensive use of 3D

data.
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1.2.4 2D/3D Heterogeneous Face Recognition

Due to the exploding growth of face data through a variety of imaging modalities,

such as near-infrared, forensic sketch and range image, heterogeneous face recogni-

tion (HFR) [Li 2009] has rightfully received considerable attention. The underlying

assumption of HFR is that different visual observations of one specific subject are

implicitly correlated. We can thereby construct or learn a common representation

to enable cross-modal identification. While facing increasingly complex scenarios

where gallery set and probe set may contain partially or even totally different modal-

ities, HFR enables us to cross conventional boundaries and make the recognition

system more flexible and powerful.

Commonly known as a major branch of heterogeneous face recognition, 2D/3D

face recognition deals with a scenario where 3D face models, including both texture

and shape, are present in the gallery set while only 2D face images are involved

in the probe set, or inversely. Motivated by the fact that use of 3D data may cut

both ways as previously concluded, this worthwhile tradeoff aims to strike a balance

between fully 2D and fully 3D-based architecture. To this end, 2D/3D HFR was

proposed with the core idea of limiting deployment of 3D data to where it really

helps. This means we can effectively leverage the pose and illumination-invariant

3D face in the gallery set as complementary information. Then, at the on-line

evaluation stage, the face recognition algorithm simply takes a 2D image of the

person who needs to be identified.

1.3 Approaches and Contributions

Based on the above discussion, in this dissertation we are concerned with two main

face recognition issues: illumination variations and 2D/3D heterogeneous matching.

Our approaches and contributions are summarized in the following subsections.

19



1. Introduction

1.3.1 Improving Shadow Suppression for Illumination Invariant
Face Recognition

We propose a novel approach for improving lighting normalization to facilitate

illumination-invariant face recognition. To this end, we first build the underlying

reflectance model which characterizes interactions between skin surface, lighting

source and camera sensor, and elaborates the formation of face color appearance.

Specifically, the proposed illumination processing pipeline enables generation of a

Chromaticity Intrinsic Image (CII) in a log chromaticity space which is robust to

illumination variations. Moreover, as an advantage over most prevailing methods,

a photo-realistic color face image is subsequently reconstructed, eliminating a wide

variety of shadows whilst retaining color information and identity details. Experi-

mental results under different scenarios and using various face databases show the

effectiveness of the proposed approach in dealing with lighting variations, including

both soft and hard shadows, in face recognition.

1.3.2 Heterogeneous Face Recognition with Convolutional Neural
Networks

With the goal of enhancing 2D/3D heterogeneous face recognition, a cross-modal

deep learning method, acting as an effective and efficient workaround, is developed

and discussed. We begin with learning two convolutional neural networks (CNNs) to

extract 2D and 2.5D face features individually. Once trained, they can serve as pre-

trained models for another two-way CNN which explores the correlated part between

color and depth for heterogeneous matching. Compared with most conventional

cross-modal approaches, our method additionally conducts accurate depth image

reconstruction from single color images with Conditional Generative Adversarial

Nets (cGAN), and further enhances recognition performance by fusing multi-modal

matching results. Through both qualitative and quantitative experiments on a

benchmark FRGC 2D/3D face database, we demonstrate that the proposed pipeline

outperforms state-of-the-art performance on heterogeneous face recognition and

ensures a drastically efficient on-line stage.
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1.4 Outline

The remainder of this dissertation is organized as follows:

In Chapter 2 we review the representative literature with regard to our re-

search topic. Specifically, the literature covers the fundamentals and approaches

of face recognition with respect to pose variations, lighting variations and 2D/3D

heterogeneous matching.

In Chapter 3 we present our processing pipeline for improving shadow sup-

pression on face images across varying lighting conditions.

In Chapter 4 we present our deep learning-based method for training CNN

models for both realistic depth face reconstruction and effective heterogeneous face

recognition.

In Chapter 5 we conclude this dissertation and propose the perspectives for

future works.

Finally, in Chapter 6 we list our publications.
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Both tasks of this dissertation, i.e. face recognition under lighting variations and

heterogeneous scenarios, involve addressing additional challenges specific to their

particular conditions as well as tackling conventional face recognition problems.

Due to the enormous potential of unconstrained face recognition in real-world ap-

plications, these specific issues have been extensively studied and discussed in many

previous researches, offering plenty of inspiration and guidance for our work.

In this chapter, we provide a comprehensive review of the literature on the

related work. We start by introducing the basic and representative 2D based face
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recognition techniques. Next, we systematically review the illumination-insensitive

approaches and 2D/3D heterogeneous face recognition methods in Section 2.2 and

in Section 2.3, respectively. Finally, some discussions and conclusions are given in

2.4.

2.1 2D Face Recognition Techniques

As previously stated, a large number of 2D feature extraction techniques have been

successfully developed to fulfill the changing requirements in face recognition. Here

we briefly review the most representative methods in four categories: holistic feature

based methods, local feature based methods, hybrid methods and deep learning

based methods.

2.1.1 Holistic feature based methods

In these methods, which are also called appearance-based methods, face images

are globally treated, i.e. no extra effort is needed to define feature points or fa-

cial regions (mouth, eyes, etc. ). The whole face is fed into the FR system as

a pixel matrix and outputs holistic features which lexicographically convert each

image into a high-level representation and learn a feature subspace to preserve the

statistical information of raw image. The two most representative holistic feature

based methods are Eigenfaces related Principal Component Analysis (PCA) [Turk &

Pentland 1991] and Fisherfaces related Linear Discriminative Analysis (LDA) [Bel-

humeur et al. 1997]. It is argued in Eigenfaces that each face image can be ap-

proximated as a linear combination of basic orthogonal eigenvectors computed by

PCA on a training image set (see Fig. 2.1 for details). Motivated from the fact that

Eigenfaces do not leverage the identity information due to the unsupervised learning

with PCA, Fiserfaces was proposed to improve recognition accuracy by maximizing

extra-class variations between images belonging to different people while minimizing

the intra-class variations between those of the same person.

Other holistic feature based methods include the extended version of Eigenfaces

and Fisherfaces, such as 2D-PCA [Yang et al. 2004], Independent Component Anal-
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Figure 2.1: Eigenfaces scheme.

ysis (ICA) [Hérault & Ans 1984] and some of their nonlinear variants, such as Kernel

PCA (KPCA) [Hoffmann 2007] and Kernel ICA (KICA) [Bach & Jordan 2002].

Though these features are easy to implement and can work reasonably well with

good quality images captured under strictly controlled environments, they are quite

sensitive to noise and variations in lighting and expression because even slight local

variations will cause global intensity distributions.

2.1.2 Local feature based methods

Instead of treating face image as a unity, the local feature based methods separate

the whole face into sub-regions and analyze the patterns individually in order to

avoid the local interference. The most commonly used local characteristics are Local

Binary Pattern (LBP) and its variants [Huang et al. 2011].

Initially proposed as a powerful descriptor for texture classification problem,

LBP [Ojala et al. 2002] has rapidly been developed as one of the most popular fea-

tures in face recognition systems. In original face-specific LBP [Ahonen et al. 2006],
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(a)

(b)

Figure 2.2: Schema of LBP operator. (a) An example of LBP encoding schema
with P = 8. (b) Examples of LBP patterns with different numbers of sampling
points and radius. [Huang et al. 2011]

every pixel of an input image is assigned with a decimal number (called LBP la-

bel) which is computed by binary thresholding its gray level with its P neighbors

sparsely located on a circle of radius R centered at the pixel itself. Using a circular

neighborhood and bilinearly interpolating values at non-integer pixel coordinates

allow any radius and number of pixels in the neighborhood. This encoding scheme is

called LBP operator and denoted as LBP(P,R). Fig. 2.2 show several examples of

LBP encoding patterns. The histogram of these 2P different labels over all pixels in

the face image can then be used as a facial descriptor. More specifically, it has been

shown in [Ojala et al. 2002] that certain patterns contain more information than

others, hence normally only a subset of 2P binary patterns, namely uniform pat-

terns, are used to describe the image. Based on the above LBP methodology, plenty

of its variations have been developed for improved performance in face recognition,

such as Extended LBP [Huang et al. 2007a], Multi-Block LBP [Liao et al. 2007]

and LBP+SIFT [Huang et al. 2010b].

There are also some other approaches that are built upon different local fea-

tures extracted from local components, such as Gabor coefficients [Brunelli & Pog-
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gio 1993], Haar wavelets [Viola & Jones 2004], Scale-Invariant Feature Transform

(SIFT) [Lowe 2004], Local Phase Quantization (LPQ) [Ojansivu & Heikkilä 2008]

and Oriented Gradient Maps (OGM) [Huang et al. 2012]. Due to their additional

information on local regions, local feature based approaches have greatly improved

the performance of holistic feature based face recognition while retaining the ease of

implementation and are widely adopted in most current face recognition systems.

2.1.3 Hybrid methods

This category reasonably leverages the advantages of both holistic and local fea-

tures by using them simultaneously. For example, Cho et al. [Cho et al. 2014]

proposed a coarst-to-fine framework which first applys PCA to identify a test im-

age and then transmits the top candidate images with high degree of similarity

to the next recognition step where Gabor filters are used. This hybrid processing

has certain advantages. First, it can refine the recognition accuracy of PCA-based

global method by introducing a more discriminative local feature. In addition, it

can efficiently filter the images of top candidates with PCA to avoid the heavy

computational load caused by processing all images with Gabor filters.

The other representative methods include SIFT-2D-PCA [Singha et al. 2014],

Multilayer perceptron-PCA-LBP [Sompura & Gupta 2015] and Local Directional

Pattern (LDP) [Kim et al. 2013]. These hybrid methods can effectively improve

the recognition ability by combining both the global and local information of faces.

However, it becomes much more difficult in terms of their implementation when

compared with the two previous approaches.

2.1.4 Deep learning based methods

In recent years, deep learning based methods such as Convolutional Neural Networks

(CNN) have achieved significant progress due to their remarkable ability to learn

concepts with minimal feature engineering and in a purely data driven fashion.

Typically, a CNN is composed of a stack of layers that perform feature extraction

in different ways, e.g. the convolutional layers convolve the input image with filters,
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the rectified linear units layers apply non-linear transformations on filter responses

and the pooling layers spatially pool the resulting values. Each layer goes through a

function to transform itself from one volume of activation to another, this function

is required to be differentiable in order that the weights and bias could be updated

according to the gradient during the back-propagation. CNNs and ordinary neural

networks (NN) are quite alike since they both consist of neurons that have learnable

weights and biases, but they differ from NNs in two ways: (1) CNNs use convolution

instead of general matrix multiplication in at least one of their layers, (2) the number

of parameters in CNNs is significantly reduced in comparison with fully connected

NNs due to weights sharing.

The application of CNN in face recognition can date back to the 90s, Lawrence

et al. [Lawrence et al. 1997] first implemented a basic CNN architecture, as illus-

trated in Fig. 2.3, to address the face recognition problem. However, very few

attempts have been made to improve the use of CNN for a long period, this slow

development is in relation with three problems: 1) Lack of enough training sam-

ples. A CNN architecture usually contains a large amount of parameters, hence

adequate training samples are required for an accurate model fitting, which were

hardly available before the collection of large-scale databases in recent years. For

example, in [Lawrence et al. 1997] the network is trained on the ORL dataset which

only contains 200 training images. 2) Limited computational power. The numerous

parameters in CNN not only cause high demand for data, but also pose challenges

for hardwares. The investigation of deep CNNs would not be feasible with low-

performance computational resources. 3) Immature technology. The complexity of

CNN makes it highly sensitive to architecture details and training techniques, e.g.

the choice of activation function and the problem of overfitting.

Not surprisingly, as the large-scale datasets and high-performance graphic cards

become increasingly popular, the capacities of CNNs to learn spatially local correla-

tion from raw images and to compose lower-level features into higher-level ones are

immediately recalled. Moreover, the improvements in CNN training techniques, e.g.

using rectified linear unit (ReLU) instead of traditional Sigmoid function for non

linearity [Nair & Hinton 2010] and implementing dropout layers to avoid overfit-
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Figure 2.3: The first convolutional neural network for face recognition [Lawrence
et al. 1997].

Figure 2.4: Outline of the Deepface architecture proposed in [Taigman et al. 2014].

ting [Srivastava et al. 2014], have made the CNN-based approaches more powerful.

The extraordinary success was first achieved in 2012 on the ImageNet object clas-

sification challenge [Russakovsky et al. 2015] by famous CNN architectures [Gu

et al. 2015], such as AlexNet, VGGNet, GoogleNet, ResNet, etc. As for the ap-

plication of CNNs in face recognition, 2014 was a breakthrough year which has

witnessed the emergence of three famous CNN architectures, i.e. Deepface [Taig-

man et al. 2014], DeepID [Sun et al. 2014b] and DeepID2 [Sun et al. 2014a]. On

the Labeled Faces in the Wild (LFW) benchmark which contains 13,233 images

from 5,749 identities, these three CNN based methods achieved 97.35%, 97.45%

and 99.15% for face verification task, respectively. Fig. 2.4 illustrates an example

of the Deepface architecture. Comparing the two architectures in Fig. 2.3 and Fig.

2.4, we can infer that modern CNNs can reasonable extract more discriminative

high-level representations from numerous face images with larger size by learning

a deep network with a large number of parameters (more than 120 millions in

Deepface).
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Currently, the state-of-the-art results on LFW was achieved by FaceNet [Schroff

et al. 2015] (99.63%) and some commercial systems such as Baidu [Liu et al. 2015]

(99.77%). These researches generally combined various techniques to improve the

classification ability of their networks, e.g. training dataset with larger scale, multi-

CNNs based on different facial regions and more effective metric learning such as

triplet loss [Schroff et al. 2015]. Meanwhile, there are also several methods focusing

on improving the CNNs from other perspectives, such as using sparse networks

with fewer parameters instead of the dense ones [Sun et al. 2016] and efficiently

enhancing the discriminative power of CNNs with center loss [Wen et al. 2016].

2.2 Illumination Insensitive Approaches

Over the years, a surge of qualitative and quantitative studies on illumination in-

variant research have been put forward by reason of their suitability and efficacy

in face analysis. These techniques could be roughly divided into three categories

according to their diverse theoretical backgrounds: image enhancement based meth-

ods, invariant feature extraction methods and 3D model based methods.

2.2.1 Image Enhancement based Approaches

The image enhancement based pre-processing methods used to be common in early

algorithms. They attempt to globally or locally redistribute some specific charac-

teristics of the original face image, e.g. the dynamic range of the intensity values

and the shape of the histogram, in a predefined representation. These tasks are gen-

erally achieved by applying simple gray-scale intensity adjustments to compensate

the illumination variations.

Histogram Equalization (HE) and Histogram Matching (HM) [Pizer et al. 1987]

initiated these methods by adopting different image processing methods at the

histogram level: HE increases the global contrast by flattening the histogram while

HM matches the histogram of target image to a specified histogram. Adini Shan et

al. [Shan et al. 2003] developed Gamma Intensity Correction (GIC) for normalizing

the overall image intensity at the given illumination level by introducing an intensity
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mapping: G(x, y) = cI(x, y)1/γ where c is a gray stretch parameter and γ is the

Gamma coefficient. Instead of normalizing the illumination globally, Xie and Lam

[Xie & Lam 2006] proposed a novel local normalization (LN) method to effectively

and efficiently eliminate the effect of uneven illumination. In this method, a human

face is treated as a combination of a sequence of small and flat facets, LN then

processes the image in order that the intensity value is of zero mean and with unit

variance within each facet.

Notwithstanding their ease of implementation and the apparent beneficial effects

on lighting normalization, these methods fail to further satisfy the more and more

rigorous demands on accuracy because they do not take into account the in-depth

image formation principles, which means that they simply average the distribution

of intensities or histograms and thus remain prone to complicated lighting condi-

tions, e.g. soft shadows, hard shadows or highlights.

2.2.2 Illumination Insensitive Feature based Approaches

In view of the deficiency of photometric normalization based approaches, the illu-

mination invariant feature extraction methods have been extensively investigated.

To be more specific, as stated in [Chen et al. 2000] that there are no strictly

illumination-invariant features for objects with a Lambertian surface, these methods

can more appropriately be termed as illumination insensitive as opposed to illumina-

tion invariant. Known as a mainstream solution against lighting variations which is

widely employed in most current face recognition systems, the related approaches

can be further categorized into three classes: image gradient based approaches,

Retinex theory based approaches and frequency domain based approaches.

Image gradient based approaches. The principle of image gradient or edge

based approaches is to extract the gray-level gradients or edges from the face image

and study their lighting-insensitive characteristics. This is theoretically plausible

because the gradients or edges effectively emphasize high-frequency information

instead of low-frequency one which is easily sensitive to global lighting variations

[Chen et al. 2000]. Furthermore, the gradient domain explicitly reflects the local

relationships between neighboring pixels, which makes it capable of highlighting the
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underlying intrinsic structure of images [Makwana 2010].

In [Kanade 1977], Kanade first started the analysis of how different edge-

detection operators, including the Laplacian operator, the Robertz operator and the

maximum of differences for 3×3 window, impact on face recognition performance.

Some early methods [Duc et al. 1999,Lyons et al. 1999,Liu & Wechsler 2001] con-

volved facial images with Gabor-like filters in order to enhance edges. Line Edge

Map (LEM) [Gao & Leung 2002] was proposed to group edge pixels into line seg-

ments, and a revised Hausdorff Distance is introduced to perform the similarity

measurement between two edge maps. While achieving significant improvement

compared with traditional methods such as Eigenface, the line edge map based

methods inevitably lack the information encoded in the intensity shade and suffer

from generating similar results for different faces. Therefore, gradient-based meth-

ods were studied in order to retain more identity-specific information. Wei and

Lai [Wei & Lai 2004] proposed the relative image gradient feature RIG(x, y) for

robust face recognition, which is defined as:

RIG(x, y) =
|∇I(x, y)|

max
(u,v)∈W (x,y)

|∇I(u, v)|+ c
(2.1)

where I(x, y) is the image intensity function, the notation ∇ denotes the gradient

operator that takes the partial differentiation along x and y directions, W (x, y) is

a local window centered at the location (x, y), and c is a positive constant used to

avoid dividing by zero. More recently, Zhang et al. [Zhang et al. 2009b] proposed a

novel illumination-insensitive feature GF , namely Gradientfaces, by computing the

ratio between gradients of a smoothed image I in the x, y directions:

GF (x, y) = arctan
(
Iy−gradient(x, y)

Ix−gradient(x, y)

)
, G(x, y) ∈ [0, 2π) (2.2)

Similar processing could be seen in Weberface proposed in [Wang et al. 2011], which

instead computes the ratio of the local intensity variation to the background of a

given image to obtain illumination invariant representations. Given a face image
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I(x, y), the corresponding Weberface, denoted by WF , can be formulated as follows:

WF (x, y) = arctan

α∑
i∈A

∑
j∈A

I(x, y)− I(x− i∆x, y − j∆y)

I(x, y)

 (2.3)

in which A = −1, 0, 1 and α is a parameter for adjusting (magnifying or shrinking)

the intensity difference between neighboring pixels.

Despite the improvement of performance by using these methods, Adini et

al. [Adini et al. 1997] have demonstrated that Gabor-like filters, edge maps and

image derivatives are insufficient to overcome the illumination problem because

such processes mainly take place in the primary visual cortex and remain sensitive

to lighting directions and noise.

Retinex theory based approaches. The term retinex was the theory of hu-

man color vision proposed by Land and McCann [Land & McCann 1971] which tries

to explain the basic principles governing the process of image formation. According

to the retinex theory, an image I(x, y) can be decomposed into two components,

which are the luminance L(x, y) and the reflectance R(x, y), as shown in Eq. 2.4:

I(x, y) = R(x, y)L(x, y) (2.4)

Here, the luminance L(x, y) varies according to the different illuminations , while

the reflectance R(x, y) relates to the characteristics of the face and is dependent

on the reflectivity (or albedo) of the face skin. It is therefore obvious that the

R(x, y) acts as an illumination invariant feature of the face image. Furthermore, as

evidenced in [Land & McCann 1971], the luminance is assumed to change slowly

across a face image, which implies that it can be estimated as a smoothed version of

the image. To this end, a number of smooth filters and methods have been proposed

in the literature.

Jobson et al. [Jobson et al. 1997a] developed the single scale retinex (SSR)

algorithm which applied a single Gaussian function F (x, y) to smooth the image
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and estimated the reflectance RSSR(x, y) in the log space:

RSSR(x, y) = log(I(x, y))− log(I(x, y) ∗ F (x, y)), F (x, y) = C exp(−x
2 + y2

2σ2
)

(2.5)

where C is a normalization factor and σ denotes the filter standard deviation.

However, the choice of the right scale σ for F (x, y) is crucial and difficult in SSR

algorithm. To avoid this problem, the authors [Jobson et al. 1997b] extended their

smooth filter in SSR to a multi scale form, i.e. multi-scale retinex (MSR), where

the output reflectance RMSR(x, y) is a weighted sum of several SSR outputs with

different Gaussian filters:

RMSR(x, y) =
N∑

n=1

ωnRn =
N∑

n=1

ωn[log(I(x, y))− log(I(x, y) ∗ Fn(x, y))] (2.6)

where N is the number of scales, ωn is the weight of each scale, Fn(x, y) relates to

a specific F (x, y) in Eq. 2.5 with Cn and σn.

Based on the assumption of treating face as an ideal class of object, i.e. different

faces share the same shape but differ in the skin albedo, Shashua and Riklin-Raviv

[Shashua & Riklin-Raviv 2001] proposed a novel approach called quotient image

(QI). The quotient image is defined as the ratio between one face image and a linear

combination of three prototype images based on the Lambertian model and is proved

to be illumination free. However, the computation of QI requires a bootstrap set and

assumes a similar shape for faces, which remain strong constraints for its broader

use in robust face recognition. Then, Wang et al. [Wang et al. 2004] developed a

self quotient image (SQI) based method to improve the QI method by replacing the

prototype images with a smoothed version of test image itself. Additionally, instead

of using isotropic smoothing as in MSR [Jobson et al. 1997b], anisotropic smoothing

filter is applied in SQI to avoid the halo effect around edge region. This method

is simple and requires no image registration, however, the weighed Gaussian filter

they used has trouble keeping sharp edges in low frequency illumination fields. To

enhance the edge preserving capacity, Chen et al. [Chen et al. 2005] proposed the

total variation based quotient image (TVQI) by introducing the idea of TV + L1
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model: minimizing the total variation of the output cartoon while subject to an L1-

norm fidelity term. In this approach, the estimation of luminance u was achieved

by minimizing the following function:

u = arg min
u

∫
Ω
|∇u(x)|+ λ|f(x)− u(x)|dx (2.7)

where f is the original face image and Ω covers all pixels in f . Once u is optimized,

the TVQI can be represented by TV QI = f/u.

Frequency domain based approaches. According to the previously adopted

assumption, the lighting condition changes slowly except for hard shadows and

specularities on the face. Consequently, illumination variations mainly lie in the

low-frequency band, leading to these methods which involve compensating lighting

variations in specific domains related to frequency transformations.

Du and Ward [Du & Ward 2005] used wavelet decomposition to transform an

image into its low/high frequency domains and then manipulated different band

coefficients separately, a normalized image was finally obtained from the modified

coefficients by inverse wavelet transform. Compared with aforementioned histogram

equalization, this approach has the advantage of taking into account both contrast

and edge enhancement simultaneously. Similarly, Zhang et al. [Zhang et al. 2009a]

proposed the multiscale facial structure representation (MFSR) to reduce the effect

of illumination by wavelet-based denoising techniques and soft thresholding. Chen

et al. [Chen et al. 2006b] performed a discrete cosine transform (DCT) in the log-

arithm domain, the illumination variations under different lighting conditions are

significantly reduced after truncating an appropriate number of low-frequency DCT

coefficients.

Besides the above methods based on various processing principles, the reason-

able combination of different pre-processing methods likewise remains a solution.

The most representative fusion strategy is the integrative pre-processing chain per-

formed by Tan and Triggs (TT) [Tan & Triggs 2010] which successively merged

Gamma correction, Difference of Gaussian filtering, optional masking and contrast

equalization. According to the results of comparative study in [Han et al. 2013],
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Figure 2.5: Visual comparison for face images normalized with different illumination
preprocessing methods on databases with controlled and less-controlled lighting
[Han et al. 2013].

this simple and efficient image pre-processing chain effectively outperformed most

lighting processing methods, demonstrating the robustness of this fusion scheme.

Fig. 2.5 qualitatively compare the illumination normalization quality of different

preprocessing methods on two benchmark face databases, i.e. Yale B extended and

FRGC Ver2.0 face databases.

All these illumination insensitive feature based approaches achieved impres-

sive performance on normalizing global illuminations and removing soft shadows,

yet encountered problems with hard-edged cast shadows especially caused by self-

occlusion as in the area of nasal alar. Meanwhile, these techniques can not be

extended to color space, resulting in limited applications in real world.

2.2.3 Illumination Modeling based Approaches

Other than extracting the illumination insensitive features from facial images, an-

other train of thought is to model face images under varying lighting conditions.

Given the training images with different illuminations, the conventional statistical

methods such as PCA and LDA treat lighting as an intra-class variance and learn

a subspace to cover possible lighting variations. Moreover, various physical models
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have been proposed to achieve more illumination-specific modeling. We categorize

and present these methods as follows.

Subspace-based approaches aim to construct a linear subspace which covers

the variations of possible illumination. This concept was first investigated by Halli-

nan [Hallinan et al. 1994] who has shown empirically that there exists a reasonably

good 5-dimensional approximation of the face images under varying lighting con-

ditions. To obtain these basis images, this method densely sampled images under

different point light sources Ĩ(θ, ϕ) where θ and ϕ denote the longitude and the

latitude respectively, the basis images Sk are then computed by PCA in order that

c̃Ĩ(θi, ϕj) ≈
∑

k αijkSk with a scale factor c̃.

Shashua [Shashua 1997] proposed the photometric alignment method to con-

struct a 3D linear subspace. Assume that a face is Lambertian, given three pictures

of one identity I1, I2, I3 from linearly independent light source directions s1, s2, s3,

this method is then based on a result that any other image I of the face taken from

a novel setting of light sources can be simply represented by a linear combination

of the three pictures, i.e. I = α1I1+α2I2+α3I3. The photometric problem of face

recognition is therefore reduced to the problem of determining the linear coefficients

α1, α2, α3 for each enrolled identity. Once the coefficients are solved, if I is of the

same identity, then I and the synthesized image I ′ = α1I1 + α2I2 + α3I3 should

perfectly match. Shashua claimed that attached shadows in the novel image, or

shadows in general in the model images, do not have significant adverse effects on

the photometric alignment scheme. However, the cast shadows cannot be modeled

in this framework.

Through analyzing the reflectance function of the convex Lambertian surface

in spatial-frequency domain, Basri and Jacob [Basri & Jacobs 2003] proved that

a convex Lambertian object obtained under a large variety of lighting conditions

can be approximated by a 9D linear subspace based on a spherical harmonic rep-

resentation. To be more precise, the lighting function l can be written as sum of

37



2. Literature Review

spherical harmonics as in Eq. 2.8.

l =
2∑

n=0

n∑
m=−n

lnmYnm (2.8)

where lnm is amplitude of light at order n and Ynm is an nth order harmonic. This

conclusion was contemporarily made by Ramamoorthi and Hanrahan [Ramamoor-

thi & Hanrahan 2001].

Illumination cone was proposed by Belhumeur and Kriegman [Belhumeur &

Kriegman 1996] which takes both pose variations and illumination variations into

account. The basic thought behind this approach is that all images of a convex

object from a fixed viewpoint but illuminated by an arbitrary number of distant

point sources form a convex illumination cone in Rn where n denotes the number

of pixels in the image. Hence each human face could be regarded as the collection

of illumination cones under different poses. Theoretically, a single illumination

cone can be constructed from as few as three images of an object under varying

illuminations. Georghiades [Georghiades et al. 2001] exploited the illumination cone

technique to implicitly recover the shape and albedo from seven images per person

captured under controlled lighting. The effectiveness in face recognition task of this

photometric stereo algorithm has been validated on the Yale face dataset B.

Inspired by the analytic results achieved in this theory, some extensive researches

have been carried out to further enhance the performance. For example, Lee et

al. [Lee et al. 2001] combined the spherical harmonics and the illumination cone

to find nine optimal point lights for the construction of basis images. However,

despite its outstanding performance in face recognition task, the application of

illumination cone based methods is greatly limited by their specific requirements

for training images.

2.2.4 3D Model based Approaches

With the ever-advancing development of 3D data acquisition and application tech-

nologies, many researchers turned their attention to 3D aided lighting processing

methods due to their potential capabilities to overcome the inherent limitations and
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drawbacks of 2D based approaches.

Proposed as an analysis-by-synthesis framework, 3D statistical model provides

a sophisticated solution to the issue of face shape estimation by leveraging the prior

information collected on registered faces. The best known work in this field is the

3D morphable model (3DMM) of Blanz and Vetter [Blanz & Vetter 1999,Blanz &

Vetter 2003]. The 3DMM fitting algorithm argued that both shape and texture of

any realistic human face could be constructed by a linear combination of a set of

examples. The challenge of fitting statistical model to unseen images essentially

amounts to solving a highly complex nonlinear minimization problem which re-

quires estimation of various parameters shape coefficients, texture coefficients and

22 rendering parameters with respect to imaging environment. The performance of

3DMM was tested on the publicly available CMU-PIE database and the recognition

rate varies from 89.0% to 95% for front, side and profile view.

Other 3D model based methods are subsequently investigated to account for

the lighting variations in face recognition. For example, a publicly available 3D

morphable face model containing 200 textured 3D scans - the Basel Face Model

(BFM) [Paysan et al. 2009] - was constructed to facilitate the widespread use of

3DMM. Zhang and Samaras [Zhang & Samaras 2006] have shown that the combina-

tion of a morphable model and spherical harmonic illumination representation [Basri

& Jacobs 2003] facilitates recognition for images with variations of both pose and

illumination. This idea was further strengthened and extended in the Spherical

Harmonic Basis Morphable Model (SHBMM) [Wang et al. 2009] for face relight-

ing from a single Image under arbitrary unknown lighting conditions. Based on

physical lighting models, Zhao et al. [Zhao et al. 2014] decomposed lighting effects

using ambient, diffuse, and specular lighting maps and estimated the albedo for

face images with drastic lighting conditions.

3D based lighting independent methods are powerful and accurate compared

with 2D based ones. However they are easily confined to data acquisition and

the unavoidable high computational cost. Even we can compromise by considering

only 2D images and normalizing their lightings using 3D models, data registration

between 2D and 3D remains likewise an inconvenience.
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2.3 2D/3D Heterogeneous Face Recognition

The main challenge of matching two modalities with underlying correlation yet

large appearance differences lies in the search of common matching domain. Over

the past decade, a few attempts have been made to propose impressive 2D/3D

heterogeneous face recognition algorithms. These methods, categorized by how the

common space is constructed, are recapitulated below.

2.3.1 Common subspace learning

Learning a common subspace is a conventional and classical approach to address the

cross domain recognition problem. The core idea is to find a discriminative common

feature space where the mapped representations of both 2D and 3D modalities could

be directly compared. To ensure the correlation between these modalities, several

projection techniques have been proposed, among which the canonical correlation

analysis is one of the best known.

Canonical Correlation Analysis (CCA) [Hotelling 1936] is a suitable and domi-

nant multivariate analysis method especially useful for exploring the relationships

among these variables. Generally, this technique relates two sets of variables by

maximizing the correlation between them in the CCA subspace. Given N pairs

of samples (xi, yi) of (X,Y ), i = 1, ..., N , where X ∈ Rm, Y ∈ Rn with the mean

value of zero, the goal of CCA is to find two sets of projection directions, ωx and

ωy to maximize the correlation between the two projections ωT
xX and ωT

y Y where

T denotes the transpose. In the context of CCA, these two projections are also

referred as canonical variants. Formally, the two directions can be estimated by

maximizing:

ρ =
E[ωT

xXY
Tωy]√

E[ωT
xXX

Tωx]E[ωT
y Y Y

Tωy]
(2.9)

where E[·] denotes the empirical expectation. Note that the covariance matrix of

(X,Y ) can be written as:

C(X,Y ) = E

[(
X

Y

)(
X

Y

)T
]
= E

[(
Cxx

Cxy

)(
Cyx

Cyy

)T
]

(2.10)
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Figure 2.6: Patch based CCA for 2D-3D matching proposed in [Yang et al. 2008].

where Cxx and Cyy are within-sets covariance matrices, Cxy and Cyx are between-

sets covariance matrices with Cxy = Cyx
T . Therefore, the objective function ρ could

be rewritten as:

ρ =
ωT
xCxyωy√

ωT
xCxxωxωT

y Cyyωy

(2.11)

the maximum canonical correlation is the maximum of ρ with respect to ωx and

ωy. Once ωx and ωy are learnt, to test new pairs of variables X ′ and Y ′, we first

map them into CCA subspace with x′ = ωT
xX

′ and y′ = ωT
y Y

′, the similarity score

can then be computed as:

Score(x′, y′) =
x′ · y′

∥x′∥ · ∥y′∥
(2.12)

CCA has been widely used in heterogeneous matching due to its high efficiency

and robustness. These methods differ from each other mainly in terms of their

extracted features before the mapping into common subspace. Yang et al. [Yang

et al. 2008] initiated the use of CCA regression in 2D-3D face recognition between

eigenfaces of 2D texture images and 2.5D range images. Additionally, they further

investigated a patch based extension of this framework, which is illustrated in Fig.

2.6.

Inspired by the above work, Huang et al. [Huang et al. 2009,Huang et al. 2010a]

first extracted LBP histograms for texture images and range images respectively, a
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linear CCA was then introduced to learn the mapping between the LBP faces from

two modalities. This work was subsequently extended in [Huang et al. 2012] by

proposing an illumination-robust representation, namely Oriented Gradient Map

(OGM), which is computed by Eq. (2.13)

ρR(x, y) = [ρR1 (x, y), ..., ρ
R
O(x, y)]

t, (2.13)

where ρRo (x, y) is the gradient norm within the radius of the given neighborhood

area R of the input image in a direction o at every pixel location (x, y). The

OGM features are advantageous over eigenfaces and LBP descriptors in that they

simulates the response of complex neurons to gradient information within a given

neighborhood, and are able to describe both local texture changes and local ge-

ometry variations from 2D/2.5D image pairs. The experiments were performed on

the FRGC v2.0 database with a gallery of 466 scans and a probe of 3541 images.

The proposed 2D-3D face matching achieved a recognition accuracy of 94.04% in

contrast to 93.90% with 2D-2D matching method, highlighting the effectiveness of

this heterogeneous pipeline. Moreover, after fusing these two scenarios in the score

level, the result has been increased considerably to 95.37%.

The success of applying CCA in cross-modality matching naturally motivates

the exploitation of its variants with more powerful ability to learn good projections.

Wang et al. [Wang et al. 2014] adopted a single-layer network based on Gaussian

Restricted Boltzmann Machines (GRBM) to extract latent features over two dif-

ferent modalities (see Fig. 2.7). More importantly, several different correlation

schemes for learning the common subspace are further evaluated, including CCA,

the regularized CCA and the regularized kernel CCA [Hardoon et al. 2004]. Specif-

ically, the regularized CCA (rCCA) adds the regularization coefficients λx, λy to

each data set to stabilize the solution, the Eq. 2.11 then becomes:

ρ =
ωT
xCxyωy√

ωT
x (Cxx + λxI)ωxωT

y (Cyy + λyI)ωy

(2.14)

Furthermore, considering that CCA may not be extract useful descriptors of the
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(a) (b)

Figure 2.7: The 2D-3D face recognition framework proposed in [Wang et al. 2014].
(a): Illustration of training and testing scheme. (b): Illustration of principal com-
ponents of the scheme.

data because of its linearity, the regularized kernel CCA (rKCCA) offers an alterna-

tive solution by first projecting the data into a higher dimensional feature space by

introducing kernel functions. The experimental results on the FRGC v2.0 database

proved the superiority of using rKCCA instead of CCA and rCCA.

Besides the numerous studies based on CCA and its variants, some other com-

mon subspace learning methods are investigated as well. By adding the Laplacian

penalty constraint for the multiview feature learning, Jin et al. [Jin et al. 2014]

first proposed the Multiview Smooth Discriminant Analysis (MSDA) to find a com-

mon discriminative feature space which can fully utilize the underlying relationship

of features from different views. Then a recent popular algorithm named Extreme

Learning Machine (ELM) is adopted in training the single hidden layer feed-forward

neural networks (SLFNs) to speed up the learning phase of the classifier. The com-

prehensive framework is shown in Fig. 2.8.

The common subspace learning based methods can successfully construct dis-

criminative common feature space by using a variety of projection techniques. How-

ever, most of these transformations are linear and shallow, which therefore makes

them partially restricted for nonlinear and complicated representations in real case.
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Figure 2.8: Intuitive explanation of the Multiview Smooth Discriminant Analysis
based Extreme Learning Machines (ELM) approach [Jin et al. 2014].

2.3.2 Synthesis Methods

Unlike constructing a discriminative common subspace, the synthesis methods offer

a more intuitive solution by synthesizing one modality based on the other. The syn-

thesized results can then be directly used in conventional single modality matching.

These approaches are relatively straightforward and easily comparable, yet critically

dependent on the fidelity and robustness of the synthesis method.

As illustrated in Fig. 2.9, Toderici et al. [Toderici et al. 2010] leveraged the

3D mesh and 2D texture in the gallery set to synthesize 2D images which can be

matched directly with the 2D images in the probe. Specifically, the synthesized

gallery texture and the probe texture are required to be consistent in the lighting

conditions for better performance. A novel method for bidirectional relighting in

3D-2D face recognition under large illumination changes is therefore presented in

this paper. To achieve this, in the enrollment phase they fit an Annotated Face

Model (AFM) [Kakadiaris et al. 2007] to the raw 2D+3D data using a subdivision-

based deformable framework and represent the fitted AFM as a geometry image. In

the recognition phase, the enrolled AFM is first registered to the 2D probe image

for pose alignment and visibility map computation. Then the enrolled 2D gallery
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Figure 2.9: Overview of the reference 3D-2D face recognition system with illumi-
nation normalization between probe and gallery textures [Toderici et al. 2010].

texture is bidirectionally relighted to match the 2D probe texture. The matching

score is eventually computed using the relit gallery texture and the probe texture.

This approach was further extended and refined in [Zhao et al. 2014, Kakadiaris

et al. 2016].

Zhang et al. [Zhang et al. 2014] rendered images in various poses by transforming

the 3D mesh and lifting the 2D texture in the gallery set. These generated images

serve as input with labels to supervise the learning of a random forest (RF) for

head pose estimation. For an unseen probe image, the estimated pose value from

the trained RF is considered as a reasonable initialization for 3DMM which will

normalize the head pose to frontal view. The matching can thus be conducted

between frontal gallery images and normalized probe images.

Note that the above methods can be roughly categorized into two classes: one

renders the 2D+3D data in gallery to synthesize images which are close to probe

images while another normalizes the imaging conditions, e.g. pose and illumination,

to make both views look similar. An interesting study [Wu et al. 2016] was recently

released to present an extensive evaluation of these two frameworks. Specifically, the

pose normalization and pose rendering based methods are compared in an empirical

manner. The authors concluded that the rendering-based methods perform better

than the normalization-based methods when a face has a large deviation from frontal

pose while the latter can achieve better alignment of facial texture.
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Compared with the various methods on synthesizing 2D images from 3D face

models, very few attempts have been made in a reverse way, i.e. by matching 3D

galley face with reconstructed 3D face from the 2D probe texture. This is mainly

due to the assumption that the gallery contains both 2D and 3D data. Under this

assumption, synthesizing 2D images is straightforward and simple, while the shape

reconstruction from a single 2D image remains an ill-posed problem. However, in

many practical cases the gallery may only contain 3D face shape without texture

information, therefore highlighting the importance of shape reconstruction, or depth

estimation.

A number of prevailing approaches have been devoted to address this problem

based on shape-subspace projections, where a set of 3D prototypes are fitted by

adjusting corresponding parameters to a given 2D image. Most of them, e.g. [Pi-

otraschke & Blanz 2016] and [Roth et al. 2016], are derived from 3DMM [Blanz

& Vetter 2003] and Active Appearance Models [Matthews et al. 2007]. Alternative

models were afterwards proposed as well which follow the similar processing pipeline

by fitting 3D models to 2D images through various face collections or prior knowl-

edge. For example, Gu and Kanade [Gu & Kanade 2006] fit surface 3D points and

related textures together with the pose and deformation estimation. Kemelmacher-

Shlizerman et al. [Kemelmacher-Shlizerman & Basri 2011] considered the input

image as a guide with a single reference model to achieve 3D reconstruction. In

recent work of Liu et al. [Liu et al. 2016], two sets of cascaded regressors are im-

plemented and correlated via a 3D-2D mapping iteratively to solve face alignment

and 3D face reconstruction simultaneously. Likewise, using generic model remains

a decent solution as well for 3D face reconstruction from stereo videos, as presented

in [Chowdhury et al. 2002,Fidaleo & Medioni 2007,Park & Jain 2007]. Given ade-

quate and appropriate 3D prototypes, the strikingly accurate reconstruction results

have been reported in the above researches.

It is worth noticing that among all these 2D-3D heterogeneous face recogni-

tion researches, some take complete 3D face model [Toderici et al. 2010, Zhang

et al. 2014, Kakadiaris et al. 2016], such as dense point cloud and vertex-

face mesh, while the others only process pseudo-3D [Huang et al. 2012, Jin
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et al. 2014, Wang et al. 2014], also known as 2.5D image, for heterogeneous com-

parison with ordinary photographic image. In recent years, some RGB-D databases

[Min et al. 2014, Goswami et al. 2014] and corresponding approaches [Goswami

et al. 2016,Boutellaa et al. 2015,Song et al. 2015,Cardia Neto & Marana 2015] have

been proposed as well, but the performance are greatly limited by the low resolu-

tion images captured in RGB-D devices like Kinect. Using full 3D model could be

advantageous to handle pose variations other than frontal pose due to its capacity

of transforming face model in 3D space to fit the real pose. Nevertheless, 2.5D

based methods hold advantage with its ease of implementation and outstanding

performance when dealing with frontal pose scenarios as considered in many large

3D face datasets, such as FRGC, BU3D and Bosphorus. In addition to its effi-

ciency and effectiveness, the fact that 2.5D still retains the characteristic of acting

as an image endows 2.5D based methods with more flexibility and attractiveness

for combination with other powerful 2D based techniques.

2.4 Conclusion

Through this chapter, an up-to-date literature review of both illumination process-

ing approaches and 2D-3D heterogeneous face recognition approaches is extensively

conducted. For each research topic, the most representative approaches and their

corresponding performance have been presented and discussed.

Other than analyzing the advantages and drawbacks of these methods, we also

provide the main concepts behind our own work in this thesis, which are:

• Building a comprehensive imaging formation model with respect to the source

lighting, skin surface and camera sensor. Suppressing shadows based on this

physical model to improve the face recognition performance against illumina-

tion variations.

• Combining common subspace learning method and synthesis method to build

a multi-modality matching framework for 2D-3D heterogeneous face recogni-

tion.
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• Applying the powerful convolutional neural networks to extract discriminative

facial descriptors and to reconstruct depth images from texture images.
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3.1 Introduction

Face analysis has received a great deal of attention due to the enormous devel-

opments in the field of biometric recognition and machine learning. Beyond its

scientific interest, face analysis offers unmatched advantages for a wide variety of

potential applications in commerce and law enforcement as compared to other bio-

metrics, such as easy access or avoidance of explicit cooperation from users [Zhao

et al. 2003]. Nowadays conventional cases have attained quasi-perfect performance

in a highly constrained environment wherein poses, illuminations, expressions and

other non-identity factors are strictly controlled. However these approaches suffer

from a very restricted range of application fields due to non-ideal imaging environ-

ments frequently encountered in practical cases: the users may present their faces

not with a neutral expression, or human faces come with unexpected occlusions such

as sunglasses, or even the images are captured from video surveillance which can

gather all the difficulties such as low resolution images, pose changes, lighting con-

dition variations, etc. In order to be adaptive to these challenges in practice, both

academic and industrial research understandably shift their focus to unconstrained

real-scene face images.

Compared with other nuisance factors such as pose and expression, illumination

variation impinges more upon many conventional face analysis algorithms which as-

sume a normalized lighting condition. As depicted in Fig. 3.1, the lighting condition

can be fairly complicated due to numerous issues: the intensity and direction of the

lighting, the overexposure and underexposure of the camera sensor, just to name

a few. Not only that, but it has already been proven that in face recognition, dif-

ferences caused by lighting changes could be even more significant than differences

between individuals [Adini et al. 1997]. Therefore, lighting process, either light-

ing reconstruction (re-lighting) or lighting normalization (de-lighting), turns out to
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(a) (b) (c) (d)

Figure 3.1: An example of varying lighting conditions for the same face. (a) Front
lighting; (b) Specular highlight due to glaring light coming from right side; (c) Soft
shadows and (d) hard-edged cast shadow.

be crucially important for exploring illuminant-invariant approaches. Considering

that the reconstruction of differing lighting normally requires 3D face models as

prototypes [Toderici et al. 2010,Wen et al. 2003,Zhang et al. 2005a], which leads to

extra burdens and challenges, most prevailing methods concentrate on the removal

of lighting effects [Chen et al. 2006a,Tan & Triggs 2010], resulting in the appearance

of research on intrinsic images.

In order to describe the underlying intrinsic characteristics of objects, the con-

cept of intrinsic image was first propounded and studied by Barrow and Tenen-

baum [Barrow & Tenenbaum 1978]. Thereafter, a large amount of effort has been

made to extend and perfect this concept in the contexts of object recoloring and

shadow removal [Beigpour & van de Weijer 2011, Finlayson et al. 2006, Maxwell

et al. 2008]. An intrinsic image substantially reflects the innate physical properties

which are independent of extrinsic changes. FR using intrinsic images is preferable

to many conventional computer vision methods due to its robustness in dealing

with unforeseen image features such as shadows and color changes. Theoretically, a

series of intrinsic images could be generated from one single image, each displaying

a specific characteristic such as distance, orientation, illumination or reflectance.

Here, we lay emphasis on the estimation of the reflectance-related intrinsic image

in chromaticity space which is insensitive to illumination variations, and we hope

that the proposed method will inspire other advanced techniques for shadow-free

color face recovery.

In this chapter, we propose to prioritize all possible difficulties and first de-
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Figure 3.2: Overview of the chromaticity space based lighting normalization process
and shadow-free color face recovery process.

tect specular-reflected highlight regions; then the approximations of Lambertian

surfaces and Planckian lighting could be made to investigate the image formation

rules; a pixel-level transformation in log space which aims at pursuing a chromatic-

ity invariant representation is afterwards constructed; the final step is to extend

this property of chromaticity invariance to color space through taking into account

the shadow edge detection. An overview of the proposed processing method is il-

lustrated in Fig. 3.2. Ultimately the experiments are carried out based on lighting

normalized images and favorable experimental results have been achieved on the

CMU-PIE and the FRGC face database. Our specific contributions are listed as

follows.

1. We introduce and develop a chromaticity-based physical interpretation for

modeling the face imaging process, which takes highlight detection as prepro-

cessing and is able to separate the effect of illumination from intrinsic face

reflectance.

2. We present a novel application of chromaticity invariant image for shadow-free

color face reconstruction rather than gray-scale level de-lighting, demonstrat-

ing the potential to recover photo-realistic face image while eliminating the

lighting effect.

3. We evaluate the proposed method on two benchmarking datasets across illu-
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mination variations and demonstrate that it can help improve performance of

state-of-the-art methods especially on hard shadows, both qualitatively and

quantitatively.

The remainder of this chapter is structured as follows: Section 3.2 describes the

color formation principles of human faces in RGB space while Section 3.3 details an

illumination-normalized intrinsic image formation algorithm in chromaticity space;

in Section 3.4 this invariance is further studied to enable full color shadow-free face

image recovery; promising experimental results and conclusions are given respec-

tively in Section 3.5 and Section 3.6.

3.2 Skin Color Analysis

In this section, we formulate a physics-based reflectance model for approximating

pixel based face skin colors. To begin with, we recapitulate the definition and

properties of the two most commonly used reflectance models, then a non-negative

matrix factorization (NMF) based method is implemented to locate the highlighted

facial region which is less informative for precise model formulation. A product-

form representation which could account for diffuse color is finally proposed as the

cornerstone for our approach.

3.2.1 Reflectance Model: Lambert vs. Phong

Despite the appearance of several more comprehensive and more accurate BRDF

models such as Oren-Nayar [Oren & Nayar 1994] and Hanrahan-Krueger [Hanrahan

& Krueger 1993] in recent years, they are practically constrained by computational

burden and become heavily ill-posed with respect to inverse estimation of material

reflectance which greatly restricts their application in general lighting normalization

tasks. Instead, classical models like Lambert and Phong [Phong 1975] still occupy

a prime position in this field due to their ease of implementation.

As a common assumption, Lambert and Phong both adopt the concept of ideal

matte surface obeying Lambert’s cosine law where the incident lighting arriving
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at any point of object surface is uniformly diffused in all observation directions.

Furthermore, Phong’s model extends Lambertian reflectance mainly by adding a

specular highlight modelisation term which is merely dependent on the object’s geo-

metric information and lighting direction at each surface point. The representation

of the Lambertian model and Phong’s model could be formulated by Eq. (3.1) and

Eq. (3.2), respectively,

Ldiffuse = SdEd(n · l) (3.1)

Ldiffuse + Lspecular = SdEd(n · l) + SsEs(v · r)γ (3.2)

where Sd and Ss denote the diffuse and specular reflection coefficients; Ed and Es

represent the diffuse and specular lighting intensities; n, v, l and r = 2(n · l)n− l

refer to the direction of normal vector, the viewer direction, the direction of incident

light and the direction of the perfectly reflected ray of light for each surface point;

γ is a shininess constant.

Despite the fact that the human face is neither pure Lambertian (as it

does not account for specularities) nor entirely convex, the simplifying Lamber-

tian assumption is still widely adopted in face recognition studies [Belhumeur

& Kriegman 1998, Basri & Jacobs 2003, Ramamoorthi & Hanrahan 2001, Wen

et al. 2003,Zhang et al. 2005a] as the face skin is mostly a Lambertian surface [Kee

et al. 2000]. Nevertheless, premising the work on this assumption would be sub-

optimal because the specular highlight is widely occurring in practice and could

not be ignored in face images due to the inevitable existence of the oil coating and

semi-transparent particles in the skin surface. To address this problem, we decide

to first detect the highlight region on each face image using Phong-type model; the

classical Lambertian reflectance will then be applied afterwards to the skin color

analysis for the non-highlighted region.

3.2.2 Specular Highlight Detection

Following the principal idea of Phong’s model in Eq. (3.2), Dichromatic Reflection

Model (DRM) [Shafer 1985] separates the reflection effect into body (or diffuse,

represented by symbol b) reflection and surface (or specular, represented by s)
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reflection, as formulated in Eq. (3.3). Moreover, both body reflection and surface

reflection are divided into a chromatic term (symbolized by c) and an achromatic

term m which stands for the magnitude of reflection as a function of geometric

parameters. Here, x denotes the spatial coordinates across which m varies.

L(x, λ) = mb(x)cb(λ) +ms(x)cs(λ) (3.3)

As was proven in [Madooei & Drew 2015], the variations in density and distri-

bution of skin pigments, such as melanin and hemoglobin, simply scales the skin

reflectance function, i.e. Sd(x, λ) = β(x)Sd(λ). Furthermore, as stated in [Stan &

Anil 2005], spectrum of surface-reflected light for specular spots in face skin can be

considered to be equal to the spectrum of source lighting, i.e. Ss = 1, otherwise

Ss = 0 for non-highlighted regions. With these caveats in mind, Phong’s model

could thus be equally represented in DRM’s form as follows:

L(x, λ) = (n · l)β(x)Ed(λ) + (v · h)γSs(x)Es(λ) (3.4)

More specifically, the RGB responses could be rewritten as spatial coordinates

determined by geometrical dependency in space spanned by the color of light and

the color of surface: 
R(x)

G(x)

B(x)

 =


Rd Rs

Gd Gs

Bd Bs

×

kd(x)
ks(x)

 (3.5)

where the first term of the right-hand side is a 3×2 matrix representing RGB channel

magnitudes for diffuse and specular reflection while the second achromatic term is

a 2×N matrix (N denotes the number of pixels) containing diffuse and specular

coefficients.

Remarkably, all these matrices are non-negative and ks(x) is sparse due to the

fact that only a small portion of face contains specularity. It then becomes natural

to consider the use of Non-negative Matrix Factorization (NMF) [Hoyer 2004] for

solving such a V = W ·H problem. The implementation is easy: we set the inner
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Figure 3.3: Specular highlight detection results on images under various lighting
conditions. First row and third row: original images; second row and fourth row:
detected highlight masks.

dimension of factorization to 2 and apply a sparse constraint for ks(x) by restricting

its L1 norm while fixing its L2 norm to unity as a matter of convenience.

As demonstrated in Fig. 3.3, the performance of highlight detection using

the proposed method for face images under different illumination environments

is proved to be robust irrespective of lighting intensity and lighting direction.

3.2.3 Skin Color Formation

After successfully separating the surface-reflected region from body-reflected re-

gion, our focus will be to investigate the skin color formation on the dominant

non-highlighted area using Lambertian reflectance model. Conceptually, there exist

three primary factors which may be involved in a comprehensive image formation

scene: source lighting, object surface and imaging sensor. Physical modeling for

each factor is made from which the definitive color representation will be straight-
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forwardly derived.

First, we assume that the source illuminations are Planckian which could

cover most lighting conditions such as daylight and LED lamps, i.e. the spec-

tral radiance of lighting could be formulated by B(λ, T ) = 2hc2

λ5
1

ehc/λkBT−1
where

h = 6.626× 10−34J · s and kB = 1.381× 10−23J · k−1 are the Planck constant and

the Boltzmann constant, respectively; λ characterizes the lighting spectrum; tem-

perature T represents the lighting color and c = 3×108m·s−1 gives the speed of light

in the medium. Additionally, since the visible spectrum for the human eye always

falls on high frequencies where hc/λ≫ kBT , the spectral power distribution E(λ, T )

of illumination with an overall intensity I tends to Wien’s approximation [Wyszecki

& Stiles 2000]:

E(λ, T ) ≃ I
k1
λ5
e−

k2
λT (3.6)

where k1 = 2hc2 and k2 = hc
kB

refer to first and second radiation constants. More-

over, as proven in [Finlayson et al. 2009], the Planckian characteristic can be ap-

proximately considered linear which allows us to generalize this assumption to a

bi-illuminant or multi-illuminant scene.

The assumption for skin surface is already made, i.e. the skin is a Lambertian

surface and it follows the reflection rule specified in Eq. (3.1). With the sensor

response curve Fi(λ) corresponding to three color channels, the spectral reflectance

function of skin surface S(λ) and aforementioned spectral power distribution E(λ),

the final output of camera sensors in RGB channels C = {R,G,B} could be repre-

sented as an integral of their product over the spectrum:

Ci =

∫
Fi(λ)E(λ)S(λ)(nk · l)dλ, i = 1, 2, 3 (3.7)

where (nk · l) describes the inner product between surface normal and illumination

direction. Given a specific scene and geometry, this product value for each surface

point is fixed to a constant α.

A widely used assumption in computer graphics, which is subsequently adopted

here, is that camera sensors are sharp enough and that their spectral sensibility

could be characterized by Dirac delta function Fi(λ) = fiδ(λ− λi), which satisfies
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∫
Fi(λ)dλ = fi and turns the integral representation in Eq. (3.7) to a multiplicative

form in Eq. (3.8):

Ci = αfiE(λi)S(λi), i = 1, 2, 3 (3.8)

Eventually, a comprehensive representation of color formation emerges after

combination of (3.6) and (3.8):

Ci = αIk1fiλ
−5
i e

− k2
λiT S(λi), i = 1, 2, 3 (3.9)

An apparent truth about this formula is that the color value for one skin surface

point can be practically compartmentalized into three segments: a constant part

(αIk1), a channel (λi) related part (fiλ−5
i S(λi)) and a lighting (T ) related part

(e−
k2
λiT ). This thought-provoking observation instantly reminds us of first carrying

out some normalization processing to remove the constant part and then attempt-

ing to separate the channel related part and the lighting related part for further

lighting normalization. Not surprisingly, the property of intensity normalization in

chromaticity space, together with the attendant investigation of the chromaticity

invariant image, have come into our sight.

3.3 Chromaticity Invariant Image

The target of inferring an illumination-invariant face image based upon previously

derived skin model in chromaticity space is discussed and realized in this section.

We first recall the definition of chromaticity, whereafter an intrinsic characteristic

of the chromaticity image in log space is studied, which leads to the following gray-

scale chromaticity invariant face image formation.

3.3.1 Skin Model in Chromaticity Space

Chromaticity [Finlayson et al. 2009, Funt et al. 1992, MacLeod & Boynton 1979],

generally considered as an objective specification of the quality of color regard-

less of its luminance, is always defined by intensity normalized affine coordinates

with respect to another tristimulus color space, such as CIEXYZ or RGB uti-
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lized in our case. The normalization mapping mainly contains two modalities:

L1-normalization: c = {r, g, b} = {R,G,B}/(R + G + B) or geometric mean nor-

malization: c = {r, g, b} = {R,G,B}/ 3
√
R ∗G ∗B, in both normalization methods,

all colors are regularized to equiluminous ones in this space which helps to attenuate

the effect of the intensity component.

For computational efficiency and further extension, the geometric-mean-

normalized chromaticity is implemented as a processing pipeline for skin color in

Eq. (3.9). The c = {r, g, b} values in chromaticity space are given as follows:

ci =
fiλ

−5
i S(λi)

(
3∏

j=1
fjλ

−5
j S(λj))

1
3

e
− k2

λiT

e

1
3

3∑
j=1

− k2
λjT

, i = 1, 2, 3 (3.10)

Within this chromaticity representation, all constant terms are normalized. The

remaining two terms consist of a channel-related one and a lighting-related one. If

we switch our focus back to the process of highlight detection in the previous section

which aims at separating specular reflection from diffuse reflection, the explanation

could be sufficiently given: only under the assumption of the Lambertian model can

we be capable of normalizing the constant terms benefiting from the multiplicative

representation of skin color.

So far, we solidify and parametrize an exhaustive color formation model in a

concise form. More specifically, this representation could be naturally considered as

an aggregation of a lighting-invariant part and another lighting-related part, which

grants us the opportunity to further explore the illumination invariant components.

3.3.2 Chromaticity Invariant Image Generation

When investigating the characteristics of the skin model in chromaticity space, both

its multiplicative form and the exponential terms easily guide us to the logarithm

processing, which is capable of transforming Eq. (3.10) to:

ψi = log(ci) = log Wi

W
+ (−k2

λi
− 1

3

3∑
j=1

−k2
λj

)/T, (3.11)
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with the lighting-invariant components Wi = fiλ
−5
i S(λi) and W =

(
3∏

j=1
fiλ

−5
j S(λj))

1
3 .

It is noticeable that all three chromaticity color channels in log space are charac-

terized by the identical lighting color T which implies the potential linear correlation

among these values. Let’s consider another fact: c1 ∗ c2 ∗ c3 = 1 since they are geo-

metric mean normalized values, hence it could be equally inferred that in log space

we have ψ1+ψ2+ψ3 = 0, illustrating that all chromaticity points ψ = (ψ1, ψ2, ψ3)

in 3D log space actually fall onto a specific plane perpendicular to its unit normal

vector u = 1/
√
3(1, 1, 1).

Up to now, the dimensionality of target space has been reduced to 2. It becomes

reasonable to bring in a 3D-2D projection in order to make the geometric significance

more intuitive. Derived from the projector P⊥
u = I−uTu = UTU onto this plane,

U = [u1;u2] is a 2 × 3 orthogonal matrix formed by two nonzero eigenvectors of

the projector which is able to transform the original 3D vector ψ to 2D coordinates

ϕ within this plane. This transformation process is portrayed in Eq. (3.12).

ϕ = UψT = [u1 · ψT ;u2 · ψT ], (3.12)

with u1 = [ 1√
2
,− 1√

2
, 0],u2 = [ 1√

6
, 1√

6
,− 2√

6
].

Along with the substitution of Eq. (3.11) in Eq. (3.12), we are able to derive

the 2D coordinates of chromaticity image pixels analytically as follows:

ϕ =

ϕ1
ϕ2

 =

 √
2
2 (d1 + (− k2

λ1
+ k2

λ2
)/T )

√
6
6 (d2 + (− k2

λ1
− k2

λ2
+ 2k2

λ3
)/T )

 (3.13)

with d1 = log(W1
W2

), d2 = log(W1W2

W 2
3

).

The property of linearity in the projected plane could be straightforwardly de-

duced through a further analysis of (3.13):

ϕ2 =

√
3

3

λ1(λ2 − λ3) + λ2(λ1 − λ3)

(λ1 − λ2)λ3
ϕ1 + d (3.14)

where d is an offset term determined by {W1,W2,W3}. Considering thatWi depends
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(a) (b)

(c) (d)

Figure 3.4: Linearity of chromaticity image pixels in log space. (a) Original image.
(b) chromaticity pixel values in 3D log space. (c) Pixels of forehead area in projected
plane. (d) Pixels of nose bridge area in projected plane.

merely on object surface reflectance and remains constant for a given geometry even

under varying lighting conditions, the points projected onto this plane should take

the form of straight lines with the same slope. Moreover, points belonging to

the same material should be located on the same line and the length of each line

shows the variation range of lighting with respect to this material. Accordingly, the

distance between each pair of parallel lines reflects the difference between different

object surface properties behind them.

The above inference is evidenced and supported by illustrations in Fig. 3.4.

Firstly, Fig. 3.4b shows that all chromaticity image points fall onto the same plane

of which the normal vector, depicted with a fine blue line, is u = 1/
√
3(1, 1, 1);

then, we choose two sub-regions in the original image for the linearity study since

the whole image contains excessive points for demonstration. Fig. 3.4c and Fig.

3.4d respectively represent the projected 2D chromaticity pixels in forehead and

nose bridge rectangles where two approximately parallel line-shaped clusters can be
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obviously observed. In particular, the chosen nose bridge area bears more lighting

changes while there is only unchanged directional lighting in the forehead area for

comparative analysis. Correspondingly, the straight line in Fig. 3.4c holds a smaller

range than that in Fig. 3.4d.

3.3.3 Entropy based Lighting Normalization

Note that all 2D chromaticity image pixels are scattered into line-shaped clusters

differentiated by their corresponding surface attributes. To estimate the intrinsic

property of different materials in chromaticity images, we would like to further

reduce the dimensionality of chromaticity space.

According to [Barron & Malik 2015], global parsimony priors on reflectance

could hold as a soft constraint. Under this assumption, only a small number of

reflectances are expected in an object-specific image, and we reasonably extend this

assumption to our own work which implies that lighting normalization substantially

decreases the probability distribution of disorder in a human face image. Within this

pipeline, we seek for a projection direction, parametrized by angle θ, which should

be exactly perpendicular to the direction of straight lines formed on the projected

plane. Inasmuch as points of the same material across various illuminations fall

on the same straight line, the 2D-1D projection of them onto a line with angle θ

will result in an identical value which could be literally treated as an intrinsic value

of this material. During this 2D-1D projection formulated in (3.15), chromaticity

image is finally transformed to a 1D gray-scale image.

χ = ϕ1 cos θ + ϕ2 sin θ (3.15)

With this in mind, the most appropriate projection direction could be found

by minimizing the entropy of projected data. To begin with, we adopt Freedman-

Diaconis rule [Freedman & Diaconis 1981] for the purpose of deciding the bin width

as h = 2Q(χ)

n1/3 , here n refers to the number of projected points. Compared with the

commonly used Scott’s rule, Freedman-Diaconis rule replaces the standard deviation

of data by its interquartile range, denoted by Q(χ), which is therefore more robust
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Figure 3.5: Overview of chromaticity invariant image generation. Left column:
original face image and its chromaticity points in 2D log space; middle column:
entropy diagram as a function of projection angle, the arrows in red indicate pro-
jection directions at that point; right column: generated chromaticity images with
different angle values.

to outliers in data. Then for each candidate projection direction, the corresponding

Shannon entropy can be calculated based on the probability distribution of the

projected points.

Fig. 3.5 shows the workflow of chromaticity invariant image extraction in log

space. Note that we choose three different angle samples, including the zero point

and two points leading to the minimum and maximum of entropy, to visualize their

generated chromaticity images. Apparently, only when the angle is adjusted to

the value at which the entropy comes to its minimum is shadow effect significantly

suppressed in its corresponding chromaticity image, i.e. the chromaticity invariant

image.

Other than traversing all possible θ ranging from 0 to π inefficiently, we take an

additional analysis on the slope value of projected straight lines in Eq. (3.14), indi-

cated by k =
√
3
3

λ1(λ2−λ3)+λ2(λ1−λ3)
(λ1−λ2)λ3

. The theoretical value of slope is determined by

trichromatic wavelengths {λ1, λ2, λ3}, alternatively, the wavelengths of {R,G,B}

lights wherein {λ1 ∈ [620, 750], λ2 ∈ [495, 570], λ3 ∈ [450, 495], unit : nm}. With

some simple calculations, it is interesting to find that no matter how these wave-

lengths change, k is always a positive value and the range of possible θ can therefore
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be restricted to [π/2, π] which helps to greatly reduce the computational load.

3.3.4 Global Intensity Regularization

Notwithstanding the illumination normalization, projected shadow-free images may

suffer from global intensity differences across images caused by original lighting

conditions and by outliers. A final global regularization module is consequently

integrated in order to overcome this drawback. In this step, the most dominant

intensity of the resulting image is first approximated by a simple strategy:

µ = (mean(χ(x, y)m))m (3.16)

where m is a regularization coefficient which considerably decreases the impact of

large values. We take m = 0.1 by default following the setup in the work of Tan et

al. [Tan & Triggs 2010]. Next, this reference value is chosen to represent the color

intensity of most face skin area and is scaled to 0.5 in a double-precision gray-scale

image with data in the range [0,1]. The same scale ratio is then applied to all pixels

to gain the final image.

3.4 Shadow-free Color Face Recovery

Though the representation of the 1D chromaticity invariant image contains suc-

cessfully normalized lighting variations across the whole face image, it is flawed due

to the loss of textural details during the process of dimensionality reduction which

leads to low contrast images as depicted in Fig. 3.5. A full color image reconstruc-

tion module is therefore required to both improve the realism of generated images

and improve the performance of our method in face analysis.

3.4.1 In-depth Analysis of 1D Chromaticity Image

Given a chromaticity invariant image and all projection matrices, a general idea

to reconstruct its color version is to project reversely its 1D lighting-normalized

points to 2D/3D space in steps. However, this solution is virtually impracticable
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due to two facts: 1) the recovery of overall intensity in each color band is an ill-

posed problem since the shadow removal method is designed only for chromaticity

values, 2) considerable textural features, such as the mustache and the eyebrow,

are undesirably eliminated or wrongly recognized as being skin during the forward

2D/1D projection. Thus an extra analysis on representation of RGB channels in

log space is conducted.

Derived from equation Eq. (3.9), the logarithmic representation of RGB values,

denoted by Li, could be written as a two-component addition:

Li = log(αIk1fiλ−5
i S(λi))−

k2
λiT

, i = 1, 2, 3 (3.17)

It is worth noting that the first additive component in the above equation

consists of spatially varying factors while the second additive term is lighting-

dependent. Given an illumination-invariant region, the gradients at pixel (x,y)

are then computed during inference:

∇xLi(x, y, T ) =
Li(x+∆x, y, T )− Li(x, y, T )

∆x

∇yLi(x, y, T ) =
Li(x, y +∆y, T )− Li(x, y, T )

∆y

(3.18)

Based on evidence in [Finlayson et al. 2006] and [Land & McCann 1971], lighting

conditions change slowly across a face image except for shadow edges. Consequently,

for the partial derivative of the log-image with respect to x at any pixel (x, y) which

appears out of shadow edges we have:

∇xLi(x, y, T1) = ∇xLi(x, y, T2), ∀(T1, T2) (3.19)

where T1 and T2 refer to different lighting conditions such as illuminated part and

shadow part and this property holds equally for the partial derivative with respect

to y.

To summarize, lighting conditions across a log-image are mainly changed on the

boundary of shadow area, i.e. for any pixel inside or outside this boundary, the

spatial gradient is practically lighting-invariant. Motivated by this, we will derive
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a shadow-specific edge detection method analytically.

3.4.2 Shadow-Specific Edge Detection

The ability to separate out shadow-specific edges from edges between different fa-

cial parts is crucial. To achieve this aim, we trace back the generation of the 1D

chromaticity invariant image, where the shadow edges are removed by an orthog-

onal projection. Note that this projection was determined by an angle θmin which

minimizes the entropy of Eq. (3.15). Conversely, a ’wrong’ projection angle would

retain or even highlight the shadow edge.

More specifically, we seek a novel direction θmax along which the projection

of chromaticity pixels to 1D tends to clearly preserve the chaos caused by vary-

ing lighting conditions. The θmax could be estimated by maximizing the entropy.

Theoretically, the freshly projected 1D image contains edges caused by both fa-

cial features and lighting variations, thus would be considered to be different from

the chromaticity invariant image in order to obtain the shadow-specific edge mask

M(x, y).

Furthermore, considering that lighting effects could be specially enhanced in one

of the two dimensions described in Eq. (3.13), we define M(x, y) as follows while

combining comparisons in both re-projected ϕmin
1 , ϕmin

2 and ϕmax
1 , ϕmax

2 :

M(x, y) =

 1 if ∥ϕ′
min∥ < τ1 & ∥ϕ′

max∥ > τ2

0 otherwise
(3.20)

where ∥ϕ′
min∥ = max(∥∇ϕmin

1 ∥, ∥∇ϕmin
2 ∥), ∥ϕ′

max∥ = max(∥∇ϕmax
1 ∥, ∥∇ϕmax

2 ∥)

and τ1, τ2 are two pre-defined thresholds.

It is worth mentioning that all 2D chromaticity images derived from both θmax

and θmin are preprocessed by guided filter [He et al. 2010] to facilitate the gradient

calculation on a smoother version. As regards the choice of guided filter, we use

matrix of ones for the chromaticity invariant image to average the intensity. Con-

versely, the chromaticity image with shadows will take itself for guided filtering to

enforce the gradient map.
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3.4.3 Full Color Face Image Reconstruction

Inasmuch as shadow edge mask is provided by the above detector, our focus can now

be turned to the full color face image recovery. The algorithm simply continues the

assumption that illumination variations mainly take place in the shadow edge area

and could be ignored in other regions, i.e. the key to reconstructing an illumination-

normalized color image is the reconstruction of a novel gradient map excluding the

shadow-specific gradients.

To address this problem, we define a shadow-free gradient map ζ(x, y) for each

log-RGB channel i as follows:

ζk,i(x, y) =

 ∇kLi(x, y) if M(x, y) = 0

0 otherwise
(3.21)

with k ∈ {x, y}. Apparently this novel shadow-free gradient map will lead us to a

shadow-free Laplacian for each band:

νi(x, y) = ∇xζx,i(x, y) +∇yζy,i(x, y) (3.22)

This straightforwardly computed Laplacian, when combined with the shadow-

free log-image L̂ to be reconstructed, allows us to easily define Poisson’s equation:

∇2L̂i(x, y) = νi(x, y) (3.23)

Solving Poisson’s equation is challenging. Two nontrivial priors are therefore

imposed to make it soluble: first, the Neumann boundary condition is adopted

which specifies the derivative values on the boundary. Here we uniformly set them to

zero for convenience; secondly, instead of enforcing the integrability of νi, we simply

discretize relevant terms and perform the calculation in matrix space. Importantly,

given an image of size M ×N , the Laplacian operator ∇2, which acts essentially as

a 2D convolution filter [0, 1, 0; 1,−4, 1; 0, 1, 0], is represented by a sparse matrix Λ

of size MN ×MN .
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Let

D =



−4 1 0 0 0 · · · 0

1 −4 1 0 0 · · · 0

0 1 −4 1 0 · · · 0
...

...
...

...
... . . . ...

0 · · · 0 1 −4 1 0

0 · · · 0 0 1 −4 1

0 · · · 0 0 0 1 −4


(3.24)

and I denotes an M ×M unit matrix. We have

Λ =



D I 0 0 0 · · · 0

I D I 0 0 · · · 0

0 I D I 0 · · · 0
...

...
...

...
... . . . ...

0 · · · 0 I D I 0

0 · · · 0 0 I D I

0 · · · 0 0 0 I D


(3.25)

Each row of Λ corresponds to a sparse full-size filter for one pixel, and L̂i could

be accordingly solved by a left division:

L̂i = Λ \ νi (3.26)

After exponentiating L̂i, a multiplicative scale factor per channel, which is com-

puted by retaining the intensity of brightest pixels in raw image, will be finally

applied to ensure that not only color but also intensity information is properly re-

covered. See Fig. 3.6 for a demonstration of shadow-specific edge detection and

color face recovery results.
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Figure 3.6: Overview of edge mask detection and full color face recovery. (a) and
(f) are raw and recovered face image; (b), (c) and (d) depict respectively 1D/2D
chromaticity images and edge maps, note that in each figure the upper row refers
to shadow-free version and the lower row is shadow-retained version; (e) is the final
detected edge mask.

3.5 Experimental Results

To quantitatively evaluate the universality and robustness of the proposed method,

experiments for face recognition were carried out on several publicly available face

databases, which incorporate a great deal of variety in terms of illumination envi-

ronments. For each database, we adopt the standard evaluation protocols reported

in the face analysis literature and present how the proposed approach improves FR

performance.

3.5.1 Databases and Experimental Settings

Databases. In light of the fact that our method aims to normalize and recover

illumination in RGB color space, two criteria need to be fulfilled in selecting a

database: that it includes face images taken with various lighting conditions; and

that all images are provided with full color information. The two selected databases

are as follows:
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• The CMU-PIE database [Sim et al. 2003] has been very influential and

prevalent in robust face recognition across pose, illumination and expression

variations. It contains 41368 images from 68 identities, including 13 different

poses, 43 different illumination conditions and 4 expressions. Here we restrict

our attention merely to geometrically aligned frontal face views with neutral

expression across illumination variations, wherein the experimental protocol

in [Han et al. 2013] is adopted.

• The Face Recognition Grand Challenge (FRGC) ver2.0 database [Phillips

et al. 2005] is a well-known face database designed for multitask 2D/3D FR

evaluations. There are 12,776 still images and 943 3D scans from 222 identities

in the training set. Accordingly, 4,007 3D scans and more than 22,000 images

from 466 identities are stored in the validation set. Specifically, this database

contains various scale and image resolutions as well as expression, lighting and

pose variations. The standard protocol of Exp.4 defined in [Phillips et al. 2005]

targeting at lighting relevant tasks is used in our FR experiments.

For the first subject of each database, Fig. 3.7 gives an illustration of some im-

age samples across varying illumination environments. Note that all facial images

are cropped and the resolution is 180×180. As can be visualized from these figures,

CMU-PIE database contains well-controlled illuminations and strictly unchanged

pose for one subject while FRGC database contributes more to the variations on

illumination and pose, which makes our evaluation process comprehensive and reli-

able.

Table 3.1 gives detailed structure as well as experimental protocol for each

database. According to commonly used protocols, two different tasks are pro-

posed for these two databases: 1-v-n face identification for CMU-PIE and 1-v-1

face verification for FRGC, which will be further detailed in upcoming subsections.

Features. To evaluate performance robustness under different feature extraction

algorithms, we have experimented with four popular descriptors in face recognition,

including Local Binary Pattern (LBP), Local Phase Quantization (LPQ), Local

Gabor Binary Pattern (LGBP) and deep CNN based face descriptor (VGG-Face),
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(a)

(b)

Figure 3.7: Cropped face examples of the first subject in the (a): CMU-PIE
database; (b): FRGC database.

Table 3.1: Overview of database division in our experiments

Database Person
Target Set Query Set

Lighting Images Lighting Images

CMU-PIE 68 3 204 18 1,224
FRGC 466 controlled 16,028 uncontrolled 8,014
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the parameter settings for each of them are detailed as follows:

• LBP [Ahonen et al. 2006]: For each face image a 59-dimensional uniform LBP

histogram feature is extracted. For the LBP computation we set the number of

sample points as 8 and radius as 2. Chi-square distance is computed between

two LBP histogram features to represent their dissimilarity.

• LPQ [Ahonen et al. 2008]: We set size of the local uniform window as 5

and the correlation coefficient ρ as 0.9. Accordingly, the α for the short-time

Fourier transform equals the reciprocal of window size, i.e. α = 0.2. With

the process of decorrelation, the output feature for each image is a 256D

normalized histogram of LPQ codewords and Chi-square distance is applied

as well in our experiments as a matching criterion.

• LGBP [Zhang et al. 2005b]: For each face image, 4 wavelet scales and 6 filter

orientations are considered to generate 24 Gabor kernels. Similarly to LBP,

holistic LGBP features are extracted for test images, resulting in 1,416D fea-

ture vectors. A simple histogram-intersection-matching described in [Zhang

et al. 2005b] is used as similarity measurement.

• VGG-Face [Parkhi et al. 2015a]: The VGG-Face descriptors are computed

based on the VGG-Very-Deep-16 CNN architecture in [Parkhi et al. 2015a]

which achieves state-of-the-art performance on all popular FR benchmarks.

Here we simply take the well learned model provided by the authors and

replace the last Softmax layer by identity module in order to extract 4,096D

features for test images.

Methods. The main contributions of our method are to remove shadows and

recover illumination-normalized color face images instead of de-lighting in gray-scale

like all other existing methods do. To better present the effectiveness and necessity

of the proposed method, we implement it as a preprocessing followed by other

gray-scale level lighting normalization techniques to test the fusion performance

compared with the results obtained without using our method. As an exception to

the above, for VGG-Face model which requires RGB images as input, we conduct
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the comparison only between original images and shadow-free recovered images with

no gray-scale level lighting normalization.

For this comparative study, a bunch of gray-scale space based approaches are in-

cluded, including basic methods such as Gaussian filter based normalization (DOG),

Gradient faces based normalization (GRF) [Zhang et al. 2009b], wavelet based

normalization (WA) [Du & Ward 2005], wavelet-based denoising (WD) [Zhang

et al. 2009a], single-scale and multi-scale retinex algorithms (SSR and MSR) [Job-

son et al. 1997a,Jobson et al. 1997b], and state-of-art methods such as logarithmic

discrete cosine transform (DCT) [Chen et al. 2006b], single-scale and multi-scale

self-quotient image (SQI and MSQ) [Wang et al. 2004], single-scale and multi-scale

Weberfaces normalization (WEB and MSW) [Wang et al. 2011], additionally, a well-

known fusing preprocessing chain (TT) [Tan & Triggs 2010] is also experimented.

Thankfully, an off-the-shelf implementation provided by Štruc and Pavešić [Štruc

& Pavešic 2011, Štruc & Pavešić 2009], namely INface Toolbox, grants us the op-

portunity to achieve our target efficiently and accurately.

3.5.2 Visual Comparison and Discussion

Shadows. First , a comparison of shadow removal results on soft and hard shadows

is conducted and depicted in Fig. 3.8. We can make two observations from these

results:

1. From a holistic viewpoint, our proposed method handles well the removal of

both hard and soft edge shadows. In both cases, the lighting intensity across

the whole image is normalized and the effects of shadows are eliminated.

2. Specified in dashed-red and dashed-blue rectangles respectively, the two mid-

dle image patches show us the differences while processing different shadows.

Despite visually similar results, for face images on the left with a hard-edged

shadow, shadow removal performance is actually more robust than for the im-

age on the right with soft shadows because more facial details are smoothed

for soft shadows where shadow edges are difficult to define. This drawback

may also affect the performance of face recognition which will be detailed in
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Figure 3.8: Holistic and local shadow removal results on hard-edged shadows (left)
and soft shadows (right).

next subsection.

Fusions. To illustrate performance in an intuitive and straightforward way pre-

ceding the quantitative evaluation, consider the image samples selected from both

databases and corresponding results after different lighting normalization methods

in Fig. 3.9. Three gradually varying illumination scenarios are considered in our

illustration, including uniformly distributed frontal lighting, a side lighting causing

soft shadows and another side lighting causing some hard-edged shadows. This set-

ting aims to evaluate the robustness of the proposed method against a wide variety

of illumination environments. From the visual comparison, we can see that:

1. In the first scenarios of both Figs. 3.9a and 3.9b, we hardly observe any

difference between original images and recovered images. This is due to the

homogeneous distribution of lighting which tends to assign zero value to most

elements of the shadow-specific edge mask M(x, y). In this case our recovery

algorithm makes a judgment that very few changes are required to hold this

homogeneous distribution.

2. The two middle rows in Fig. 3.9a depict a face with soft shadows mainly

located on the left half of it. Before applying additional lighting normaliza-

tion methods, the two leftmost images show that the recovered color image

successfully normalizes the holistic lighting intensity while retaining texture
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(a)

(b)

Figure 3.9: Illustration of illumination normalization performance of two samples in
(a) CMU-PIE and (b) FRGC database. For each sample, three lighting conditions
are considered, from top to bottom are the image with frontal lighting, image with
soft shadows and image with hard-edged shadows.The columns represent different
lighting normalization techniques to be fused with original color image or CII recov-
ered color image. Green framed box: a comparison sample pair with soft shadows.
Red framed box: a comparison sample pair with hard-edged shadows.
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details on the left half of the face. This property can also be evidenced by

contrast after fusion with a diverse range of lighting normalization methods.

Note that most of these techniques could handle perfectly the removal of soft

shadows such as DCT, SQI, SSR and TT. For these techniques visually in-

distinguishable results are obtained on both original images and recovered

images. On the other hand, for techniques which are less robust to soft shad-

ows such as WA (visualized in green boxes), taking the recovered image as

input enables a globally normalized lighting intensity where dark regions, es-

pecially the area around eyes, are brightened. Compared with the original

image, this process gives a better visualization result. Different from the first

subject in CMU-PIE, we choose a female face from FRGC with a more compli-

cated illumination condition where shadows are more scattered, even though

certain shadows still remain around mouth with the proposed method. we can

nevertheless perceive the improvement of shadow suppression on the upper

half of the face.

3. The two bottom rows in Fig. 3.9a and 3.9b focus on hard-edged shadows

caused by occlusion by the nose and glasses against the lighting direction,

respectively. Under this scenario, resulting images generated by adopting

the proposed recovery method as preprocessing show distinct advantages over

those generated from the original image. This kind of shadow edge is difficult

to remove for existing lighting normalization methods, including the state-of-

art algorithm TT (visualized in red boxes), because these methods can hardly

distinguish shadow edges from the intrinsic facial texture.

To summarize, according to the results of visual comparison, our shadow-free

color face image recovery algorithm could (1) provide intuitively identical results

to original images when illumination is homogeneously distributed everywhere; (2)

normalize holistic lighting in color space when soft shadows occur and could be

further fused with other methods in gray scale space; (3) be performed as a supple-

mentary measure specifically to remove hard-edged shadows before applying other

lighting normalization approaches.
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Figure 3.10: Faces in the wild before (top) and after (bottom) shadow removal.
From left to right we choose images with a gradual decrease (left: strong, middle
two: moderate, right: weak) in shadow intensity.

Faces in the wild. To further analyze the effectiveness and limitation of

our approach, we conduct additional experiments on natural face images in the

wild with a far wider range of lighting conditions. The first row of Fig. 3.10

illustrates four face images with a gradual decrease in shadow intensity. As can be

seen on the bottom row images after shadow removal, our method can effectively

handle faces under moderate lighting conditions (middle two images) quite well.

However, it will fail when holistic lighting is poor with intense shadows (first image),

or when holistic lighting is too bright with soft shadows (last image). In both

cases, lighting conditions are saturated (pixel values are limited by either 0 or 255)

and, accordingly, our assumption of linearity in chromaticity space becomes much

weaker.

3.5.3 Identification Results on CMU-PIE

A rank-1 face identification task is generally described as a 1-to-n matching system,

where n refers to the number of recordings in the target set, which aims to find a

single identity in the target set best fitting the query face image through similarity

measurement. In this scenario, closed-set identification is performed on various
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recognition algorithms to evaluate the robustness of our method.

Table 3.2 tabulates the identification rate for different features. For each feature

and each gray-scale lighting normalization method, we compare the results before

and after taking the CII recovery algorithm as preprocessing. The higher accuracy

is highlighted for each comparison pair. Several observations could be made from

these results:

1. Generally, fusing our proposed method in the preprocessing chain helps im-

prove performance on this identification task with different gray-scale lighting

normalization approaches and different features. This is because our method

emphasizes the removal of shadow edges while all other methods suffer from

retaining such unwanted extrinsic features.

2. Without other gray-scale methods (N/A in the Table) or even with gray-scale

methods such as WA which are relatively less robust to lighting variations,

the results based on the CII recovered color image significantly boost the

performance compared with using other methods. This observation implies

that besides the effect of shadow edge removal, our method also provides us

with holistic lighting normalization as well.

3. For some gray-scale methods like SQI and MSQ, our method causes slight yet

unpleasant side effects with LBP and LPQ features. This is probably due to

the phenomenon previously observed in visual comparison that the proposed

method will smooth the region detected as shadow edges, SQI and MSQ may

become more sensitive to this unrealistic smoothness because images would be

further divided by their smoothed version. Nevertheless, with LGBP features

the proposed method still achieves better results with SQI and MSQ because

the introduction of 24 Gabor filters helps alleviate the effect of the smoothed

region.

4. The fusion of our method and TT failed to gain performance improvement. As

a preprocessing sequence itself, TT has been carefully adjusted to the utmost

extent so it is difficult to combine it with other preprocessing.
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5. The VGG-Face model largely outperforms the other conventional features,

showing its impressive capacity in discriminative feature extraction and its

robustness against holistic lighting variations. Even in this case, the imple-

mentation of the proposed method is able to further perfect the performance

by dealing with the cast shadows.

3.5.4 Verification Results on FRGC

Notwithstanding its one-to-one characteristic, face verification in the FRGC

database is always considered as a much more challenging task when compared

with face identification on CMU-PIE. This is due to the fact that a large number

of face images in FRGC are captured in uncontrolled thus complicated illumination

environments with sensor or photon noise as well. For each preprocessing combina-

tion and each feature, we conduct a 16,028 × 8,014 pair matching and then compute

the verification rate based on this similarity/distance matrix. The experimental re-

sults are evaluated by Receiving Operator Characteristics (ROC), which represents

the Verification Rate (VR) varying with False Acceptance Rate (FAR).

Similarly to the previous experimental setting, we list the performance of dif-

ferent methods on the ROC value for FAR at 0.1% in Table 3.3. Moreover, corre-

sponding ROC curves for each gray-scale method are illustrated in Fig. 3.11. We

make our observations from these results:

1. Using the recovered color image is generally an effective way to improve the

performance on this verification task with different gray-scale methods and

features. Compared with the identification task on CMU-PIE, this effective-

ness is enhanced here since our method helps improve the verification rate at

FAR = 0.1% for almost all gray-scale methods with different features, vali-

dating the superiority of the proposed method.

2. A similar fact as in CMU-PIE is encountered again: the VGG-Face model can

greatly increase performance when compared with the other features, while

adding the proposed shadow removal preprocessing leads to a relatively slight

(1.1%) yet important improvement on this deep CNN model.
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(a) (b) (c)

(d) (e) (f)

Figure 3.11: Several ROC curves for different gray-scale methods. (a) No gray-scale
method, (b) GRF, (c) DOG, (d) WEB, (e) SQI, (f) TT. Note that only (a) contains
ROC curves for VGG-Face model because it requires RGB images as model input.
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3. The performance variance for different gray-scale methods is not totally con-

sistent with our previous observation on the CMU-PIE database. Unlike be-

fore, GRF, DOG and WEB achieve better results than DCT and SSR, which

implies that these methods are more robust while dealing with uncontrolled

and arbitrary lighting conditions.

3.6 Conclusion

In this chapter, we have presented a novel pipeline in chromaticity space for improv-

ing the performance on illumination-normalized face analysis. Our main contribu-

tions consist of: (1) introducing the concept of chromaticity space in face recognition

as a remedy to illumination variations, (2) achieving an intrinsic face image extrac-

tion processing and (3) realizing a photo-realistic full color face reconstruction after

shadow removal. Overall, the proposed approach explores physical interpretations

for skin color formation and is proven to be effective by improving performance for

FR across illumination variations on different databases. Meanwhile, it shows a

promising potential in practical applications for its photo-realism and extensibility.

Further efforts in developing this work will include synthesizing face images under

different illumination conditions and combining pose invariant techniques in order

to address face analysis problems in the wild.
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4. Improving 2D-2.5D Heterogeneous Face Recognition with
Conditional Adversarial Networks

4.1 Introduction

For decades, face recognition (FR) from color images has achieved substantial

progress and forms part of an ever-growing number of real world applications, such

as video surveillance, people tagging and virtual/augmented reality systems [Zhao

et al. 2003,Stan & Anil 2005,Tan et al. 2006,Abate et al. 2007,Azeem et al. 2014].

With the increasing demand for recognition accuracy under unconstrained condi-

tions, the weak points of 2D based FR methods become apparent: as an imaging-

based representation, color image is quite sensitive to numerous external factors,

such as lighting variations and makeup patterns. Therefore, 3D based FR tech-

niques [Scheenstra et al. 2005, Bowyer et al. 2006, Abate et al. 2007, Ding &

Tao 2016,Corneanu et al. 2016] have recently emerged as a remedy because they take

into consideration the intrinsic shape information of faces which is more robust while

dealing with these nuisance factors. Moreover, the complementary strengths of color

and depth data allow them to jointly work and gain further improvement [Husken

et al. 2005,Chang et al. 2005,Bowyer et al. 2006,Mian et al. 2007,Zhou et al. 2014].

Note that some 3D based techniques take the complete 3D face models as the shape

information while the other methods merely adopt range images (i.e. 2.5D images)

to provide depth values. The 3D models are advantageous in dealing with pose

variations, yet encounter problems with landmark localization and computational

cost. As a comparison, the 2.5D based methods can achieve state-of-the-art per-

formance with low cost on nearly frontal faces, furthermore, they can be combined

with other image-based techniques to enhance the flexibility.

However, 3D data is not always accessible in real-life conditions due to its special

requirements for optical instruments and acquisition environment. Likewise, other

challenges remain as well, including the real-time registration and preprocessing for

3D faces. An important question then naturally arises: can we design a recognition

pipeline where 3D faces are only registered in gallery while still providing signifi-
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cant information for the identification of unseen color images? To cope with this

problem, 2D-3D heterogeneous face recognition (HFR) [Toderici et al. 2010,Huang

et al. 2012,Zhao et al. 2013,Jin et al. 2014,Kakadiaris et al. 2016] has been proposed

as a reasonable workaround. As a worthwhile trade-off between purely 2D and 3D

based method, HFR adopts both color and depth data for training and gallery set

while the online probe set will simply contains color images. Under this mechanism,

a HFR framework can take full advantage of both color and depth information at

the training stage to reveal the correlation between them. Once learned, this cross-

modal correlation makes it possible to conduct heterogeneous matching between

preloaded depth images in gallery and color images digitally captured in real time.

Among the numerous attempts which have been made to propose impressive asym-

metric 2D/3D FR algorithms, either common subspace learning based methods or

synthesis methods are exploited to conduct the heterogeneous matching. However,

most current work relies on linear and shallow mapping strategies (e.g. CCA) to

construct common subspaces, which can hardly meet the demand of more compli-

cated situations.

Motivated by the considerations described above, in our work we resort to one

of the most representative and frontier technology, the deep CNN for driving ad-

vances. Note that all difficulties, which hinder us from availing ourselves of depth

information in probe set, come from the acquisition and registration of 3D data.

Intuitively, these problems can be immediately solved if we can reconstruct depth

images from color images accurately and efficiently. Therefore, as a preliminary

step, we first learn a baseline encoder-decoder network, namely Cross-encoder, for

depth estimation. This network takes a 2D image as input and the corresponding

2.5D as the reconstruction objective. The reconstructed 2.5D enables a straight-

forward 2.5D/2.5D comparison in the evaluation stage, meanwhile a discriminative

objective function is integrated which aims to generate an intermediate feature out-

put for 2D/2D FR. The dual FR phases would be ultimately combined to compute

a fusion score between gallery and probe.

Beyond the above synthesis-based mechanism, we take a further look at the

possibility of combining synthesis method and common subspace learning method.
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Thanks to the extremely rapid development of generative models, especially the

Generative Adversarial Network (GAN) [Goodfellow et al. 2014] and its conditional

variation (cGAN) [Mirza & Osindero 2014] which are introduced quite recently,

we implement a novel end-to-end depth face recovery framework with cGAN to

enforce the realistic image generation. In addition, another two-stream CNN model

is learnt to construct a discriminative common subspace which can jointly work

with the cGAN model to improve the HFR performance.

We list our contributions in this chapter as follows:

• A multi-task CNN baseline based on Auto-encoder which can reconstruct

depth face images from color face images and extract 2D discriminative fea-

tures simultaneously.

• A novel depth face recovery method based on cGAN and Auto-encoder with

skip connections which greatly improves the quality of reconstructed depth

images.

• We first train two discriminative CNNs individually for a two-fold purpose: to

extract features of color image and depth image, and to provide pre-trained

models for the cross-modal 2D/2.5D CNN model.

• A novel heterogeneous face recognition pipeline which fuses multi-modal

matching scores to achieve state-of-the-art performance.

4.2 Baseline Cross-encoder Model

In this section, we elaborate an integrated 2D/3D asymmetric FR system (see Fig.

4.1). The main contribution of this work lies in the construction of discriminative

Cross-encoder which is derived from the widely used Auto-encoder. To begin with,

we first recapitulate the framework of AutoEncoder (AE) upon which our network

is based. Then we demonstrate the details of how implementing an end-to-end

CNN could solve a heterogeneous FR problem. Inspired by some up-to-the-minute

work, a bunch of weighted loss functions are specifically defined for the dual tasks,

followed by some discussions.
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Figure 4.1: The proposed baseline model takes one single RGB face image as input
and serves two purposes: (i) extract discriminative feature through well-trained
encoder and (ii) reconstruct a 2.5D range image after decoder. The dual output
will be used in the final fusion phase of face recognition.

4.2.1 Background on Autoencoder

Generally considered as an efficient coding algorithm for dimensionality reduction, a

conventional auto-encoder framework is composed of two main parts: encoder f and

decoder g. Given an input x ∈ Rd, a single-layer encoder f defines a deterministic

mapping Rd → Rd′ :

y = f(x) = s(Wx+ b) (4.1)

where y ∈ Rd′ denotes the d′-dimension coding representation in hidden layer, s is

the nonlinear activation function, W ∈ Rd′×d and b ∈ Rd′ stand for weight matrix

and bias term, respectively. A multi-layer encoder simply stacks the mapping of

(4.1) according to the number of layers. Not surprisingly, the newly generated y

normally falls in low dimensional vector space which helps avoid the curse of dimen-

sionality compared with using directly the original data, moreover, this compression

could help eliminate noise factors as well. To ensure that y retains the latent char-

acteristics of x, the decoder g, inversely, re-map the hidden representation into
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Rd:

z = g(y) = s(W ′y + b′) (4.2)

where z ∈ Rd denotes the output of network, and similarly, W ′ ∈ Rd×d′ and b′ ∈ Rd

are weight matrix and bias term respectively for decoder. Auto-encoder then sets

the target of network output exactly the same as input, which implies that the

obtained feature y is highly correlated with input x. The training process is thus

entirely unsupervised by minimizing the reconstruction error throughout the whole

training set {x1, x2, ..., xn}:

{Ŵ , b̂, Ŵ ′, b̂′} = arg min
W,b,W ′,b′

n∑
i=1

∥xi − zi∥2 (4.3)

More recently, a surge of variants of AE have emerged to help improve con-

ventional AE for learning more informative representations. Masci et al. [Masci

et al. 2011] develop convolutional auto-encoder which targets specifically 2D im-

age structure in order to benefit from local correlation in an image. Sparse auto-

encoder [Le 2013] imposes sparsity on hidden layers by adding a penalty term in loss

function, similarly, contractive auto-encoder [Rifai et al. 2011] introduces another

regularizer which enables the learned model to be robust against slight variations

of input data.

Despite of its effectiveness in dimensionality reduction, the self-reconstruction

characteristic of auto-encoder is always neglected, the decoding phase serves more

as a regularization term in order that data are compressed without losing the prin-

ciple components. The explanations are twofold: i) conventional auto-encoder aims

to reconstruct an output which is exactly the same as input, making it meaningless

to make use of reconstruction result due to duplication, ii) like all other dimension-

ality reduction approaches, auto-encoder is inevitably lossy, thus suffers from low

resolution and noise.

Fortunately, some researches take a further step. Vincent et al. [Vincent

et al. 2008] first proposed the concept of denoising auto-encoder (DAE) for re-

constructing an image from its corrupted version. The emergence of multi-layer
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deconvolution network [Zeiler & Fergus 2014,Zeiler et al. 2011] provided a powerful

tool for projecting feature activation in a certain layer back to the input pixel space,

which is actually helpful for improving convolutional auto-encoder capacity other

than self-reconstruction. In the next subsections, we will introduce our heteroge-

neous ’auto-encoder’, namely cross-encoder, which reconstructs a 2.5D face image

from its related 2D color image.

4.2.2 Discriminative Cross-Encoder

Intuitively, 2D and 3D representations could be regarded as two views of human

face. To be more specific, a color face image is essentially a rendering upon its shape

with other components, such as skin reflectance and lighting. As a result, one can

easily establish a connection in mind between a photographic image and its cor-

responding 3D model simply through visual observation. Inspired by this internal

correspondence and the reconstruction ability of auto-encoder, we are encouraged

to build an end-to-end learning pipeline which could achieve a unidirectional and

straightforward transfer from 2D to 2.5D.

Following the main idea of conventional auto-encoder, the cross-encoder stacks

a bank of filters at its encoder stage, and symmetrically project the low dimensional

feature representation back to an image of the original size step-by-step at its de-

coder stage. As detailed in Fig. 4.2, our framework differs from existing AE and

its variants in three respects:

1. Initially proposed as a data compression algorithm, auto-encoder is inevitably

lossy. This shortcoming is partly neglected for compression task since the

reconstruction quality would not be further considered, whereas it becomes

significantly crucial and needs to be carefully remedied in our 2.5D recon-

struction task. To avoid huge information loss, we construct alternative con-

volution layers which function as pooling layers in other networks, the feasi-

bility of taking this step was evidenced by Springenberg et al. [Springenberg

et al. 2014] which supported that pooling operations do not always improve

performance on CNNs and could be simply replaced by fully convolutions. In
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Figure 4.2: Architecture and training process of the proposed cross-encoder frame-
work. A 3×98×98 2D image is fed into the system with its corresponding 2.5D
image as the target. The kernel sizes of C1 is 6×6, and its stride is 3. C3 and C5
own the same kernel size 3×3 and the same stride 1. All convolutional layers in red,
i.e. C2, C4 and C6, keep the kernel size as 2×2 and stride as 2, in this way they
play the role of pooling layers in other networks. The output vector representation
of each fully connected layer is 4096-dimension. The structure of decoder is omitted
here because it simply reverses the structure of encoder. All convolultional layers
are followed by a PReLU layer and a batch normalization layer.

Figure 4.3: The difference of processing method between a conventional max-
pooling layer and a pooling-like convolutional layer with kernel size 2×2 and stride
2.
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Figure 4.4: The comparison of outputs with and without the checkerboard arti-
facts. The left two images which benefit from well-adapted convolutional kernel
size and gradient loss presents a smoother surface with invisible checkerboard effect
compared with the right-hand side images which results from a conventional CNN.

our work, we use convolutional layer which helps to effectively learn a better

downsampling/upsampling pattern than pooling layer, especially in the up-

sampling stage. A conceptual illustration of how a pooling-like convolutional

layer differs from conventional max-pooling layer is shown in Fig. 4.3.

2. A common observation occurs lately in connection with the ever-advancing

development of feature visualization and other CNN based image genera-

tion techniques: the checkerboard artifacts [Odena et al. 2016]. This strange

pattern seems unfortunately to be a default drawback for all deconvolution

work, however, the effect could be alleviated to a certain extent by some

workarounds. First, to avoid the uneven overlap which is prone to the checker-

board artifact, we carefully design our network to be sure that the kernel

size in each convolutional layer could be divided by the stride and then the

neighboring pixels after upsampling are supposed to be equally rendered. We

subsequently take into account of not only the recovered range image itself

but also its gradient when evaluating the reconstruction performance. With

this step we are capable to impose a smooth prior within this framework

by minimizing the difference between gradient maps of reconstructed 2.5D

and ground truth 2.5D. This additional prior, conjointly with aforementioned

pooling-like convolutional layer, helps to attenuate the checkerboard artifacts

and make the output image naturally smoother, this effect could be intuitively

perceived in right side of Fig. 4.4.

3. Until quite recently, the trend of using deep CNN focus mainly on maximizing

inter-class differences since it was originally designed and optimized for classi-
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fication purpose of object, scene or action which are label-specific, whereas the

face task imposes a higher requirement for discriminative capacity. To this

end, Wen et al. [Wen et al. 2016] proposed an efficient and easy-to-implement

loss which encourages the discriminability of features, namely center loss. This

mini-batch based loss function updates the center of each class, which is the

person identity in FR, during each iteration and minimizes the intra-person

distances in order that two images of the same person would lead to two sim-

ilar representations after FC layer. We fuse this loss with both classification

and regression errors in order to avoid learning zero features for all samples.

Note that we intend to take advantage of hidden layer output as a 2D based

discriminative feature other than using only reconstructed result, a conventional

loss function based on pairwise distance between reconstructed 2.5D and target is

not enough. In the next subsection we define and detail two additional criteria in

connection with the proposed framework.

4.2.3 Multi-Criterion Mechanism

Prerequisite. Given n pairs of 2D/2.5D face images collected

from m identities in the training batch during the tth iteration

{(X2d
1 , X2.5d

1 ), (X2d
2 , X2.5d

2 ), ..., (X2d
n , X2.5d

n )} with their labels {Y1, Y2, ..., Yn}

where Yi ∈ {1, 2, ...,m}. The corresponding 4096-d hidden layer out-

put are {Z1, Z2, ..., Zn}, and their reconstructed results are denoted as

{X̂2.5d
1 , X̂2.5d

2 , ..., X̂2.5d
n }. Note that for a certain iteration, it is possible that

only a part of m identities occur in the batch, here m refers to the total number of

persons in the whole training dataset.

Reconstruction loss. In our case, this crucial loss could be interpreted as an

averaged error between ground truth and reconstruction. Note that the gradient

map of each 2.5D is concatenated as well, hence we first add an additional layer

with two fixed filters fx = [−1, 0, 1] and fy = [−1; 0; 1] along two image dimensions
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respectively. The gradient of X̂2.5d
i simply follows the operation:

∇X̂2.5d
i =

 gx

gy

 =

 fx ∗ X̂2.5d
i

fy ∗ X̂2.5d
i

 (4.4)

where ∗ represents the convolution operator. In a similar way the gradient of

ground truth depth image ∇X2.5d
i is calculated as well. We then accumulate the

reconstruction loss for the whole training set:

Lr =
1

n

n∑
i=1

(∥X2.5d
i − X̂2.5d

i ∥2 + ∥∇X2.5d
i −∇X̂2.5d

i ∥2) (4.5)

Softmax loss. To be more accurate, this is a cross entropy loss which aims at

increasing distances between different identities for classification purpose. This loss

is defined between flattened feature Zi and its identity label Yi:

Ls = −
n∑

i=1

log e
WT

Yi
ZYi

+bYi∑m
j=1 e

WT
j Zj+bj

(4.6)

where W and b are parameters in a linear layer which maps flattened features into

scores for each identity.

Center loss. To further reduce the intra-class variations in hidden layer, the

objective function Lc to be minimized is defined as the sum of distances between

Zi and its identity-related center CYi . Unlike other losses, this term is more like a

learnable layer because the center of each class is updated during back-propagation

at every iteration in order to gradually approximate the best cluster center. The

loss function and update strategy of centers at iteration t are as follows:

Lc =
1

2n

n∑
i=1

∥Zi − Ct
Yi
∥2 (4.7)

Ct+1
j = Ct

j − ρ ·
∑n

i=1 1{i|Yi=j}(C
t
j −Xt

i )

max(1,
∑n

i=1 1{i|Yi=j})
(4.8)

where 1A(x) is an indicator function which will return 1 if x ∈ A and returns 0
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otherwise, ρ denotes the learning rate for updating centers which counteracts the

negative effect of mislabeled samples and outlier data.

The final representation of our loss function combines the above three criteria:

L = Lr + λsLs + λcLc (4.9)

where λs and λc are multipliers for Softmax loss and center loss. The algorithm of

mini-batch gradient descent is further applied to minimize this joint loss.

4.2.4 Heterogeneous Face Recognition

As illustrated in Fig. 4.1, once the proposed discriminative cross-encoder is well

trained, we can extract 2D-based features in the latent feature space while obtaining

reconstructed depth face images with the decoder. To highlight the effectiveness of

this method, we adopt the cosine similarity of 4096-d hidden layer features as 2D-

2D matching scores, the LBP histogram features are extracted from depth images

and Chi-square distance between them is computed as 2.5D-2.5D matching scores.

As for the score fusion stage, all scores are normalized to [0,1] and fused by a simple

sum rule.

4.3 CGAN based HFR Framework

The Cross-encoder is an analysis-by-synthesis approach which can realize the 2D

feature extraction and 2.5D reconstruction simultaneously. Nevertheless, the recon-

struction quality and embedding performance will inevitably impact on each other

while optimizing the joint loss. Moreover, this model requires that both texture and

depth information are provided in the gallery, which is not always fulfilled in real

applications. Hence in this section two novel CNN architectures are proposed to deal

with the reconstruction issue and the HFR issue, respectively. More specifically,

we first formulate our reconstruction problem by adapting it to the background of

cGAN, followed by the detailed cGAN architecture design. Then a two-way CNN

is constructed to map both color image and depth image into a common subspace
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Figure 4.5: Overview of the proposed CNN models for heterogeneous face recogni-
tion. Note that (1) depth recovery is conducted only for testing; (2) the final joint
recognition may or may not include color based matching, depending on the specific
experiment protocol.

for heterogeneous matching. An overview of the proposed approach is given in Fig.

4.5.

4.3.1 Background on CGAN

First proposed in [Goodfellow et al. 2014], Generative Adversarial Network (GAN)

has achieved impressive results in a wide variety of generative tasks. The core idea of

GAN is to train two neural networks, which respectively represent the generator G

and the discriminator D, to proceed a game-theoretic tussle between one another.

Given the samples x from the real data distribution pdata(x) and random noise

z sampled from a noise distribution pz(z), the discriminator aims to distinguish

between real samples x and fake samples which are mapped from z by the generator,

while the generator is tasked with maximally confusing the discriminator. The

objective can thus be written as:

LGAN (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (4.10)

where E denotes the empirical estimate of expected value of the probability. To

optimize this loss function, we aim to minimize its value for G and maximize it for
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D in an adversarial way, i.e. minG maxD LGAN (G,D).

The advantage of GAN is that realistic images can be generated from noise

vectors with random distribution, which is crucially important for unsupervised

learning. However, note that in our face recovery scenario, training data contains

image pairs {x, y} where x and y refer to the depth and color faces respectively with

a one-to-one correspondence between them. The fact that y can be involved in the

model as a prior for generative task leads us to the conditional variant of GAN,

namely cGAN [Mirza & Osindero 2014]. Specifically, we condition the observations

y on both the discriminator and the generator, the objective of cGAN extends Eq.

(4.10) to:

LcGAN (G,D) = Ex,y∼pdata(x,y)[logD(x, y)]+Ez∼pz(z),y∼pdata(y)[log(1−D(G(z|y), y))]

(4.11)

A conceptual working model is illustrated in Fig. 4.6 to help us intuitively un-

derstand how forward-propagation and back-propagation are realized in our cGAN

framework.

Moreover, to ensure the pixel-wise similarity between image generation outputs

G(z|y) and the supervisory signals (ground truth) x, we subsequently impose a

reconstruction constraint on the generator in the form of L1 distance between them:

LL1(G) = Ex,y∼pdata(x,y),z∼pz(z)[∥x−G(z|y)∥1] (4.12)

Here, we adopt the L1 norm instead of the L2 norm for evaluating the reconstruction

error. Despite its popularity as the most commonly used data fidelity constraint in

machine learning, L2 norm arises from the Gaussian assumption of the distribution

and remains easy to solve because it is smooth and convex. However, the L2 norm

fails when dealing with large outliers because it bloats the distance between the

estimate and the outliers. In contrast, as an absolute distance based measure, the

L1 norm is more robust to outliers and has been in use in many recent studies [Wang

et al. 2006,Mehta et al. 2016].

The comprehensive objective is formulated with a minmax value function on the
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Figure 4.6: The mechanism of cGAN.

above two losses where the scalar η is used for balancing them:

min
G

max
D

[LcGAN (G,D) + ηLL1(G)] (4.13)

Note that the cGAN itself can hardly generate specified images and using only

LL1(G) causes blurring, this joint loss successfully leverages the complementary

strengths of them.

4.3.2 CGAN Architecture

We adapt our cGAN architecture by combining two approaches [Ronneberger

et al. 2015,Isola et al. 2016] which achieved particularly impressive results in image-

to-image translation task. A detailed description of this model is illustrated in Fig.

4.7 and some key features are discussed below.

Generator: As a standard generative model, the architectures of auto-encoder

(AE) [Hinton & Salakhutdinov 2006] and its variants [Vincent et al. 2010, Rifai
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(a)

(b)

Figure 4.7: The architectures of Generator and Discriminator in our cGAN model.
In Fig. 4.7a, the noise variable z presents itself under the the form of dropout
layers, while the black arrows portray the skip connections between encoder layer
and decoder layer that are on the ’same’ level. All convolution and deconvolution
layers are with filter size 4×4 and 1-padding, n and s represent the number of
output channels and stride value, respectively. (Best view in color)
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et al. 2011, Kingma & Welling 2013] are widely adopted as G for past cGANs.

However, the drawback of conventional AEs is obvious: due to their dimension-

ality reduction capacity, a large portion of low-level information, such as precise

localization, is compressed when an image passes through layers in the encoder. To

cope with this lossy compression problem, we follow the idea of U-Net [Ronneberger

et al. 2015] by adding skip connections which forwards directly the features from

encoder layers to decoder layers that are on the same ’level’, as shown in Fig. 4.7a.

The transfer of feature maps at different levels maximally retains the compressed

information during downsampling processes and is therefore capable to produce

precise localizations.

Discriminator: Consistent with Isola et al. [Isola et al. 2016], we adopt

PatchGAN for the discriminator. Within this pattern, no fully connected layers

are implemented and D outputs a 2D image where each pixel represents the predic-

tion result with respect to the corresponding patch on original image. All pixels are

then averaged to decide whether the input image is ’real’ or ’fake’. Compared with

pixel-level prediction, PatchGAN efficiently concentrates on local patterns while

the global low-frequency correctness is enforced by L1 loss in Eq. (4.12).

Optimization: The optimization for cGAN is performed by following the stan-

dard method [Goodfellow et al. 2014]: the mini-batch SGD and the Adam solver

are applied to optimize G and D alternately (as depicted by arrows with different

colors in Fig. 4.6).

4.3.3 Heterogeneous Face Recognition

The reconstruction of depth faces from color images enables us to maximally lever-

age shape information in both gallery and probe, which means we can individually

learn a CNN model to extract discriminative features for depth images and trans-

form the initial cross-modal problem into a multi-modal one. However, the hetero-

geneous matching remains another challenge in our work, below we demonstrate

how this problem is formulated and tackled.

Unimodal learning. The last few years witnessed a surge of interest and

success in FR with deep learning [Taigman et al. 2014, Sun et al. 2015, Parkhi
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et al. 2015b]. Following the basic idea of stacking convolution-convolution-pooling

(C-C-P) layers, we train from scratch two CNNs for color and grayscale images on

CASIA-WebFace [Yi et al. 2014] and further fine-tune the grayscale based model

with our own depth images. These two models serve two purposes: to extract

2D and 2.5D features individually, and to offer pre-trained models for the ensuing

cross-modal learning.

Cross-modal learning. Once a pair of unimodal models for both views are

trained, the modal-specific representations, {X,Y }, can be obtained after the last

fully connected layers. Note that each input for the two-stream cross-modal CNN

is a 2D+2.5D image pair with identity correspondence, it is thus reasonable to have

an intuition that X and Y share common patterns which help to classify them

as the same class. This connection essentially reflects the nature of cross-modal

recognition, and was investigated in [Wang et al. 2016, Huang et al. 2012, Wang

et al. 2014].

In order to explore this shared and discriminative feature, a joint supervision

is required to enforce both correlation and distinctiveness simultaneously. For this

purpose, we apply two linear mappings following X and Y , denoted by MX and

MY . First, to ensure the correlation between new features, they are enforced to be

as close as possible, which is constrained by minimizing their distance in feature

space:

Lcorr =

n∑
i=1

∥MXXi −MY Yi∥2F (4.14)

where n denotes the size of mini-batch and ∥ · ∥F represents the Frobenius norm.

If we only use the above loss supervision signal, the model will simply learn zero

mappings for MX and MY because the correlation loss will stably be 0 in this case.

To avoid this tricky situation, we average the two outputs to obtain a new feature

on which the classification loss is computed. The ultimate objective function is
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Figure 4.8: Training procedure of the cross-modal CNN model. Models in the
dashed box are pre-trained using 2D and 2.5D face images individually.

formulated as follows:

Lhfr = Lsoftmax + λLCorr

= −
n∑

i=1

log eW
T
ci
(MXXi+MY Yi)/2+bci∑m

j=1 e
WT

j (MXXi+MY Yi)/2+bj
+ λ

n∑
i=1

∥MXXi −MY Yi∥2F

where ci represents the ground truth class label of ith image pair, the scalar λ

denotes the weight for correlation loss. Fig. 4.8 depicts the above-described training

procedure, including the network details and the joint loss, of the proposed cross-

modality CNN framework. Note that in our work, we will address the 1-N face

identification problem on the FRGC database instead of the 1-1 face verification

problem in other databases such as LFW and Youtube Faces. Hence we decide to

follow the conventional face identification pipeline by adopting a softmax classifier.

There are three main reasons for this decision: 1) softmax is straightforward in

this 1-N identification scenario; 2) it avoids the tricky sampling of image pairs

or triplets as required in some matric learning methods, e.g., triplet loss; 3) to

overcome the over-specialization problem caused by softmax, we do fine-tune the

pre-trained model on the FRGC training set.

Fusion. Being consistent with the previously described HFR pipeline, we adopt

the cosine similarity of 4096-d feature representations as matching scores for 2D-

based, 2.5D-based and 2D/2.5D-based face recognition according to their corre-

sponding networks. All scores are normalized to [0,1] and fused by a simple sum
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rule.

4.4 Experimental Results

To intuitively demonstrate the effectiveness of the proposed method, we conduct

extensive experiments for 2D/2.5D HFR on the benchmark 2D/2.5D face database.

The evaluations and discussions are not only carried out on the proposed base-

line cross-encoder (hereinafter referred to as baseline-CE) and the cGAN based

framework (hereinafter referred to as cGAN-CE), but also in connection with sev-

eral state-of-the-art methods. The experimental results demonstrated that, while

successfully performing the task of 2.5D depth image recovery, our method also

achieves state-of-the-art performance for 2D/3D HFR.

4.4.1 Dataset Collection

Collecting 2D/2.5D image pairs presents itself as a primary challenge when con-

sidering deep CNN as a learning pipeline. Unlike the tremendous boost in dataset

scale of 2D face images, massive 3D face data acquisition still remains a bottleneck

for the development and practical application of 3D based FR techniques, from

which our work is partly motivated.

Databases: As listed in Table 4.1, three large scale and publicly available 3D

face databases are gathered as training set and the performance is evaluated on

another dataset, which implies that there was no overlap between training and

test set and the generalization capacity of the proposed method is evaluated as

well. Note that the attribute values only concern the data used in our experiments,

for example, scans with large pose variations in CASIA-3D are not included here.

Considering the significance of face alignment and adequate training data, we detail

the preprocessing step and data augmentation method along with the database

overview.

BU3D: BU3D [Yin et al. 2006] was originally constructed for analyzing facial

expressions in 3D space. It contains 2500 two-views’ texture images and 2500

geometric shape models, correspondingly, from 100 female and male subjects with
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Databases # of Persons # of Images Conditions

Training

Set

BU3D

[Yin et al. 2006]
100 2500 E

Bosphorus

[Savran et al. 2008]
105 2896 E

CASIA-3D

[CAS 2004]
123 1845 EI

Test

Set

FRGC Ver2.0

[Phillips et al. 2005]
466 4003 EI

Table 4.1: Database overview. E and I are short for expressions and illuminations,
respectively.

a variety of ethnic backgrounds, facial expressions and age ranges. All scans are

included in our training stage, where 2250 sessions are involved in training set and

the rest 250 are supposed to be validation set.

Bosphorus: Intended for multi-task 2D and 3D face analysis, Bosphorus

[Savran et al. 2008] contains 4666 single-view scans from 105 subjects which involve

pose variations and occlusions as well as expressions. We retain 2896 face models

of which the variation is determined by expressions, 2500 of them are integrated in

training set while the others go to the validation set.

CASIA-3D: The CASIA-3D FaceV1 database [CAS 2004] contains 4624 scans

from 123 persons across Pose, Illumination, Expression (PIE) variations. Likewise,

scans with large pose variations are discarded and the rest 1845 shape/texture pairs

are used for training to enhance the robustness against varying PIEs.

FRGC: Over the last decade, the FRGC Ver2.0 face database [Phillips

et al. 2005] has held the field as one of the most commonly used benchmark dataset.

FRGC consists of 50,000 recordings divided into training/validation sets, here we

concentrate mainly on the validation set which contains 4003 sessions collected from

466 subjects from 2003 to 2004. We carry out our evaluation framework on this

database and three different protocols are adopted for comparative research.
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Figure 4.9: Some face examples of 2D texture and 3D depth image in the FRGC
Ver2.0 face database. Top: 2D texture samples. Center: 3D depth images before
preprocessing. Bottom: 3D depth images after filling holes and face region crop-
ping. Note that the texture images shown above are correspondingly preprocessed
following the same rule with depth images.

Preprocessing: To generate 2.5D range image from original 3D shape, we ei-

ther proceed a direct projection if the point cloud is pre-arranged in grids (Bospho-

rus/FRGC) or adopt a simple Z-buffer algorithm (BU3D/CASIA3D). Furthermore,

to ensure that all faces are of the similar scale, we resize and crop the original im-

age pairs to 98× 98 for baseline-CE and 128× 128 for cGAN-CE while fixing their

inter-ocular distance to a certain value. Especially, to deal with the missing holes

and unwanted body parts (shoulder for example) in raw data of FRGC, we first

locate the face based on 68 automatically detected landmarks [Asthana et al. 2014],

and then apply a linear interpolation to approximate the default value of each hole

pixel by averaging its non-zero neighboring points. Some face samples in FRGC

Ver2.0 before and after preprocessing are illustrated in Fig. 4.9.
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Data augmentation: Though three mainstream 3D face datasets are gathered

in preparation stage, they are still too few to fit a deep CNN as proposed in our

work. Therefore the data augmentation approach is applied to approximate samples

and thus increase the variability of the original dataset. In this work, we take a few

simple transformations to achieve this goal: 1) horizontal flipping. Each 2D/2.5D

pair is equally flipped in the left-right direction. 2) small amount of shifting. We

iteratively carry out 3×3 1-pixel shiftings around the center area of the image.

4.4.2 Implementation details

All images are normalized before being fed to the network by subtracting from each

channel its mean value over all training data. The baseline-CE and the cGAN-CE

are trained with the architectures as per Section 4.2 and Section 4.3. With regards

to the choice of hyperparameters, unless otherwise specified, we adopt the following

settings:

• In baseline-CE, the learning rate µ begins with 1 and is divided by 5 every

10 epochs, although we found that µ = 1 may cause the loss to explode while

dealing with raw FRGC training set, the preprocessing pipeline solves the

problem perfectly; the momentum m is initially set as 0.5 until it is increased

to 0.9 at the 10th epoch; the weights for Softmax loss λs and center loss λc
are respectively set to 0.02 and 0.0001 with the learning rate for updating

class centers ρ = 0.3.

• In cGAN-CE, the learning rate µcGAN is set to 0.0001 and the weight for

L1 norm η is 500; in cross-modal CNN model, the learning rate for training

from scratch µpt begins with 1 and is divided by 5 every 10 epochs while the

learning rate during fine-tuning µft is 0.001; the weight for correlation loss λ

is set to 0.6.

• For all models, the momentum m is initially set as 0.5 until it is increased

to 0.9 at the 10th epoch. Moreover, we adopt Leaky ReLU as the activation

function and implement batch normalization after each convolution layer and

fully connected layer.
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Figure 4.10: Qualitative reconstruction results of FRGC samples with varying illu-
minations and expressions.

4.4.3 Reconstruction Results

The reconstruction results obtained for color images in FRGC are illustrated in Fig.

4.10. Samples from different subjects across expression and illumination variations

are shown from left to right. They thereby give hints on the generalization ability

of the proposed method. For each sample we first portray the original color image

with its ground truth depth image, followed by the reconstructed results with two

proposed methods whereby we demonstrate the effectiveness and necessity of each

constraint in the joint objective.
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From this figure we can infer that:

1. While being consistently similar with the ground truth, the reconstruction

quality in baseline-CE is far from perfect because a large portion of high-

frequency information is compressed, such as edges and textural details.

2. Compared with the baseline-CE, the cGAN-CE can achieve highly photo-

realistic and accurate reconstruction results, intuitively demonstrating that

the edge-preserving ability of cGAN and the L1-norm data fidelity are effec-

tively integrated in cGAN-CE.

3. The recovered depth faces hold their accuracy and realistic property irrespec-

tive of lighting and expression variations in the original RGB images.

4. A closer examination of results in 3rd and 4th rows provides a further evidence

that the implementation of loss with regard to gradient of 2.5D is beneficial

for obtaining a natural output with few checkerboard artifacts. Meanwhile,

the boundaries between different textures, such as lips, become more consist

with the ground truth.

5. Furthermore, when we take an observation of the two reconstruction results

in 5th and 6th rows, the comparison implies that: 1) using only L1 loss will

lead to blurry results because the model tends to average all plausible values,

especially for regions containing high-level information like edges; 2) using

only cGAN loss can achieve slightly sharper results, but suffers from noise.

These results provide an evidence that the implementation of joint loss is beneficial

and important for obtaining a ’true’ and accurate output.

In addition, some samples with low reconstruction quality in cGAN-CE are

depicted in Fig. 4.11 as well. Obviously, the proposed method encounters some

problems while dealing with extreme cases, such as thick beard, wide opened mouth

and extremely dark shadows as displayed in Fig. 4.11. The errors are principally

due to few training samples with these cases.
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Figure 4.11: Several wrongly reconstructed samples.

4.4.4 2D-3D Asymmetric FR

We conduct the quantitative experiments on FRGC which has held the field as one

of the most commonly used benchmark dataset over the last decade. In contrast

with unimodal FR experiments, very few attempts have been made on 2D/3D

asymmetric FR. For convenience of comparison, three recent and representative

protocols reported respectively in [Jin et al. 2014], [Huang et al. 2012] and [Wang

et al. 2014] are followed. These protocols mainly differ in gallery and probe settings,

including splitting and modality setup, which are detailed as follows:

• In [Jin et al. 2014], 285 subjects with more than 6 samples are picked out

among which 5 samples of each person are selected for training and the rest

for testing. In the testing phase, the 2D photos are utilized as the gallery set

and their corresponding 3D range images are used as the probe set.

• In [Huang et al. 2012], the first 3D face model with a neutral expression from

each subject formed a gallery set of 466 samples. The remaining texture faces

(4007-466=3541) were treated as probes.

• In [Wang et al. 2014], 300 subjects from FRGCv2.0 are randomly chosen.
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For each subject, two visible texture images and two corresponding 3D range

images are selected. The whole database is divided into two parts, training

set and testing set. The training set contains the 2D-3D pairs of 225 subjects,

and the testing set includes other 75 subjects.

The comparison results are shown in Table 4.2, through which we could gain

the following observations:

1. The baseline-CE fails to achieve the state-of-the-art performance, especially

when 2D texture images are not given in the gallery set as in the protocols

of [Jin et al. 2014] and [Wang et al. 2014]. This is mainly due to the twofold

objective of this method which attempts to impose constraints on embedding

learning and image generation simultaneously. However, the fusion result in

the protocol of [Huang et al. 2012] shows the effectiveness of cross-encoder

architecture in this specific scenario.

2. The proposed cGAN-CE outperforms state-of-the-art performance while fus-

ing 2.5D matching into HFR with reconstructed depth image further helps

improve the performance effectively. Moreover, the proposed method is ad-

vantageous in its 3D-free reconstruction capacity. To the best of our knowl-

edge, this is the first time to investigate a 2.5D face recovery approach which

is free of any 3D prototype models.

3. Generally, in our proposed cGAN-CE, 2D/2.5D cross-modality matching per-

forms better than 2.5D-based matching, yet achieves slightly lower recogni-

tion accuracy than 2D-based matching. Nevertheless, this does not imply

that cross-modality matching is meaningless compared with 2D-based match-

ing. First, as proven in this table, the heterogeneous matching can be rea-

sonably fused with single modality based matching to further improve the

performance. Then the cross-modality matching can specifically handle the

scenarios where totally different modalities are presented in the gallery and

the probe, which remains an insoluble problem for single modality based ap-

proaches.
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λ 0 0.2 0.4 0.6 0.8 1 1.2

Accuracy 0.9245 0.9481 0.9600 0.9688 0.9577 0.8851 0.7333

Table 4.3: 2D/2.5D HFR accuracy of cGAN-CE with varying λ under protocol
of [Huang et al. 2012].

In addition, despite nearly 20 hours for the whole training and fine-tuning proce-

dure, it takes only 1.6 ms to complete an online forward pass per image on a single

NVIDIA GeForce GTX TITAN X GPU and is therefore capable of satisfying the

real-time processing requirement.

Effect of hyperparameter λ. An extended analysis is made to explore the role

of softmax loss and correlation loss in cGAN-CE. We take the protocol in [Huang

et al. 2012] as a standard and vary the weight for correlation loss λ each time. As

shown in Table 4.3, the performance will remain largely stable across a range of λc
between 0.4 and 0.8. When we set λ = 0 instead of 0.6, which means correlation

loss is not involved while training, the network can still learn valuable features

with a recognition rate decrease of 4.43%. However, along with the increase of λ,

the performance drops drastically, which implies that a too strong constraint on

correlation loss could lead to side effect by causing a negative impact on softmax

loss.

4.5 Conclusion

In this chapter, we have presented two novel framework for 2D/2.5D heteroge-

neous face recognition together with depth face reconstruction. The first ap-

proach (baseline-CE) extends the Auto-encoder architecture to different input-

output modalities while enforcing the discriminative embedding learning. The sec-

ond approach (cGAN-CE) further combines the generative capacity of conditional

GAN and the discriminative feature extraction of deep CNN for cross-modality

learning. The extensive experiments have convincingly evidenced that the proposed

methods successfully reconstruct realistic 2.5D from single 2D while being adaptive

and sufficient for HFR. Moreover, the cGAN-CE architecture could hopefully be
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generalized to other heterogeneous FR tasks, such as visible light vs. near-infrared

and 2D vs. forensic sketch, which provides an interesting and promising prospect.
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while conventional face recognition techniques have achieved quasi-perfect per-

formance in most constrained scenarios, they rely heavily on the strictly controlled

imaging conditions, such as frontal pose, neutral expression, normalized lightings

and homogeneous matching modalities. Unconstrained face recognition is therefore

attracting more and more attention to generalize its exploitation in real-life applica-

tions. In this dissertation we have focused on two main problems in unconstrained

face recognition: illumination variations and heterogeneous matching. With respect

to the illumination processing, we propose to leverage the image formation model

in order to derive a shadow-free representation in chromaticity space, this repre-

sentation can further be used to recover color face images with shadow removal.

To deal with the 2D/3D heterogeneous face recognition problem, we proposed two

approaches based on convolutional neural networks: (i) We present an end-to-end
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network architecture which can learn discriminative feature extraction in the latent

space and reconstruct depth image simultaneously. (ii) We refine the first base-

line framework by separating the reconstruction part and embedding part into two

individual tasks, where the reconstruction task is addressed by introducing the pow-

erful conditional Generative Adversarial Network (cGAN) and the cross-modality

embedding is achieved by another CNN with joint loss. In the last chapter, we

conclude this thesis and list the perspectives of our future works.

5.1 Contributions

5.1.1 Improving Shadow Suppression for Illumination Robust Face
Recognition

In Chapter 3, we proposed a novel shadow removal pipeline in chromaticity space

for improving the performance on illumination-normalized face analysis. This ap-

proach is built upon the Lambertian assumption and explicitly deduce a shadow-free

image presentation. The main contributions consist of: (1) introducing the concept

of chromaticity space in face recognition as a remedy to illumination variations, (2)

achieving an intrinsic face image extraction processing in chromaticity space and (3)

realizing a photo-realistic full color face reconstruction with shadow removal. Over-

all, the proposed approach explores physical interpretations for skin color formation

and extracts illumination-insensitive components which are robust to hard-edged

shadows. Furthermore, the shadow-free image reconstruction in color space enables

us to combine this method with other gray-scale level based lighting processing

techniques. Through both qualitative and quantitative experiments, the proposed

approach is proven to be effective by improving performance for face recognition

across illumination variations on different databases. Meanwhile, it shows a promis-

ing potential in practical applications for its photo-realism and extensibility.
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5.1.2 Improving Heterogeneous Face Recognition with Conditional
Adversarial Networks

In Chapter 4, we have presented two novel frameworks for 2D/2.5D heterogeneous

face recognition together with depth face reconstruction. The first method, which

was afterwards considered as a CNN baseline, generalizes the self-reconstruction

ability of Auto-encoder to cross-modality inference. Meanwhile it enforces the la-

tent feature space after the encoder phase to be identity-discriminative. Then, the

second approach combines the generative capacity of conditional GAN and the dis-

criminative feature extraction of deep CNN for cross-modality learning. In contrast

to the baseline cross-encoder method, we first add skip connections between encoder

and decoder layers to preserve low-level image details, then a discriminator serves

as an supervision to ensure the photo-realism of generated depth faces, finally an

individual two-stream cross-modality CNN is learnt to construct a discriminative

common subspace for texture and depth images. The extensive experiments have

convincingly evidenced that the proposed method successfully reconstructs realis-

tic 2.5D from single 2D while being adaptive and sufficient for heterogeneous face

recognition. The main advantages of our proposed methods include: (1) they can

adapt to different scenarios with varying modalities in gallery and probe, (2) the

depth reconstruction ability can transform the cross-modality problem into a multi-

modality one which results in a more flexible recognition stage, (3) the strengths

of CNN are fully leveraged to learn a discriminative embedding for 2D/2.5D pair

input.

5.2 Perspective for Future Directions

In this section, some potential extensive works and future research directions are

presented as follows.

5.2.1 Pose Invariant Heterogeneous Face Recognition

As stated in the introduction of this dissertation, pose variation is another main

challenge as well as lighting variation for current unconstrained face recognition.
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Some previous researches have achieved significant progress in pose-invariant 2D

face recognition [Ding et al. 2015,AbdAlmageed et al. 2016] and pose-invariant face

alignment [Zhu et al. 2016,Jourabloo & Liu 2017] while heterogeneous face recogni-

tion across pose variations remains an unsolved issue. Considering that faces with

all possible poses can be synthesized using generic face models, a possible solu-

tion inspired by our proposed CNN model is to construct an end-to-end framework

which aims to learn the mapping from a color face under arbitrary pose to its frontal

counterpart in depth space.

5.2.2 Transfer to Other Heterogeneous Face Recognition Scenarios

In our opinion, the proposed 2D/3D asymmetric face recognition architecture is def-

initely not over-specialized for heterogeneous matching between texture images and

depth images. The abilities of cross-modality reconstruction and common subspace

construction could hopefully be generalized to other heterogeneous face recogni-

tion tasks as well, e.g. visible light images vs. near-infrared images and digital

photographs vs. forensic sketches. Furthermore, a comparative study can be con-

ducted to explore the differences and correlations between varying matching pat-

terns, which provides an interesting and promising prospect.

5.2.3 Integration of Unconstrained Face Recognition Techniques

Up until now, our researches on lighting-insensitive face recognition and 2D/3D

heterogeneous face recognition are independent of each other. Meanwhile, it is

worth mentioning that both our lighting processing method and the proposed HFR

framework can be implemented with computational efficiency at the online stage.

Therefore, further efforts in developing this work may include the design of a com-

prehensive framework or a processing chain which can deal with various uncon-

strained conditions in order to address more complicated face analysis problems in

the wild.
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