A. La-boucle-tant-que-interne-achar, S. Laxman, and P. Sastry, lignes 5-18) tente d'étendre le k-motif fréquent associé A unified view of the apriori-based algorithms for frequent episode discovery, Knowl. Inf. Syst, vol.31, issue.2, pp.223-250, 2012.

E. Achtert, H. Kriegel, and A. Zimek, ELKI: A Software System for Evaluation of Subspace Clustering Algorithms, Scientific and Statistical Database Management, 20th International Conference, SSDBM 2008 Proceedings, pp.580-585, 2008.
DOI : 10.1007/978-3-540-69497-7_41

R. C. Agarwal, C. C. Aggarwal, P. , and V. V. , Depth first generation of long patterns, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '00, pp.108-118, 2000.
DOI : 10.1145/347090.347114

C. C. Aggarwal, Outlier Analysis, 2013.

C. C. Aggarwal, Data Mining -The Textbook, 2015.

C. C. Aggarwal, M. Bhuiyan, and M. A. Hasan, Frequent Pattern Mining Algorithms: A Survey, Frequent Pattern Mining, pp.19-64, 2014.
DOI : 10.1007/978-3-319-07821-2_2

R. Agrawal, J. Gehrke, D. Gunopulos, and P. And-raghavan, Automatic subspace clustering of high dimensional data for data mining applications, SIG- MOD 1998 Proceedings ACM SIGMOD International Conference on Management of Data, pp.94-105, 1998.

R. Agrawal, T. Imielinski, and A. Swami, Mining association rules between sets of items in large databases, Proc of The 1993 ACM SIGMOD International Conference on Management of Data, pp.207-216, 1993.

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, Fast discovery of association rules, Advances in Knowledge Discovery and Data Mining, pp.307-328, 1996.

R. Agrawal and J. C. Shafer, Parallel mining of association rules, IEEE Transactions on Knowledge and Data Engineering, vol.8, issue.6, pp.962-969, 1996.
DOI : 10.1109/69.553164

R. Agrawal and R. Srikant, Fast algorithms for mining association rules in large databases, VLDB'94, Proceedings of 20th International Conference on Very Large Data Bases, pp.487-499, 1994.

R. Agrawal and R. Srikant, Mining sequential patterns, Proceedings of the Eleventh International Conference on Data Engineering, pp.3-14, 1995.
DOI : 10.1109/ICDE.1995.380415

A. H. Altalhi, J. M. Luna, M. Vallejo, and S. Ventura, Evaluation and comparison of open source software suites for data mining and knowledge discovery, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.15, issue.3, pp.44-46, 2017.
DOI : 10.1007/3-540-46027-6

F. Angiulli, G. Ianni, and L. Palopoli, On the complexity of mining association rules, Nono Convegno Nazionale Sistemi Evoluti per Basi di Dati, pp.27-29, 2001.

G. Atluri, R. Gupta, G. Fang, G. Pandey, M. Steinbach et al., Association Analysis Techniques for Bioinformatics Problems, Bioinformatics and Computational Biology, First International Conference Proceedings, pp.1-13, 2009.
DOI : 10.1093/bioinformatics/btl127

URL : http://www-users.cs.umn.edu/~kumar/dmbio/kumar_bicob.pdf

D. Barbara, Applications of Data Mining in Computer Security, 2002.
DOI : 10.1007/978-1-4615-0953-0

M. Barbut and B. Monjardet, Ordre et classification : algèbre et combinatoire, Classiques Hachette. Hachette. (Cité en, pp.65-78, 1970.

R. Bayardo, Efficiently mining long patterns from databases, SIGMOD 1998 Proceedings ACM SIGMOD International Conference on Management of Data, pp.85-93, 1998.
DOI : 10.1145/276304.276313

URL : http://www.cs.tau.ac.il/~fiat/dmsem03/Efficiently mining long patterns from databases - 1998.pdf

R. Bayardo, B. Goethals, and M. J. Zaki, FIMI '04, Frequent Itemset Mining Implementations, Proceedings of the ICDM 2004 Workshop on Frequent Itemset Mining Implementations, pp.44-52, 2004.

I. Ben-gal, Outlier detection, Data Mining and Knowledge Discovery Handbook, pp.117-130, 2010.

H. Bergson, L'Évolution créatrice. Collection Bibliothèque de philosophie contemporaine, Presses universitaires de France, 1907.
DOI : 10.1522/cla.beh.evo

URL : http://classiques.uqac.ca/classiques/bergson_henri/evolution_creatrice/evolution_creatrice.pdf

D. Berrar, W. Dubitzky, G. M. Eils, and R. , Analysis of gene expression and drug activity data by knowledge-based association mining, Proceedings of Critical Assessment of Microarray Data Analysis Techniques (CAMDA' 01). (Cité en, p.41, 2001.

J. Berstel and C. Reutenauer, Rational series and their languages. EATCS monographs on theoretical computer science, 1988.
DOI : 10.1007/978-3-642-73235-5

URL : https://hal.archives-ouvertes.fr/hal-00619791

M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter et al., KNIME - the Konstanz information miner, ACM SIGKDD Explorations Newsletter, vol.11, issue.1, pp.26-31, 2009.
DOI : 10.1145/1656274.1656280

URL : https://kops.uni-konstanz.de/bitstream/123456789/5434/1/BCDG_07_knime_gfkl.pdf

F. Bodon, A fast APRIORI implementation, FIMI '03, Frequent Itemset Mining Implementations, Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementations, p.19, 2003.

F. Bodon, A survey on frequent itemset mining, Budapest University of Technology and Economics, 2006.

J. A. Bondy, Graph Theory With Applications, 1976.
DOI : 10.1007/978-1-349-03521-2

C. Borgelt, Efficient implementations of apriori and eclat, Proc. 1st IEEE ICDM Workshop on Frequent Item Set Mining Implementations (FIMI 2003 CEUR Workshop Proceedings 90, pp.90-63, 2003.

C. Borgelt, Frequent item set mining, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.IV, issue.6, pp.437-456, 2012.
DOI : 10.1007/978-0-387-69935-6_15

S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, Dynamic itemset counting and implication rules for market basket data, Proceedings ACM SIGMOD International Conference on Management of Data, pp.255-264, 1997.
DOI : 10.1145/253260.253325

URL : http://www.cs.ucla.edu/~czdemo/tsur/Papers/dic-final.ps

M. P. Brown, G. W. , D. , and H. , Knowledgebased analysis of microarray gene expression data by using support vector machines, Proceedings of National Academy of Sciences, p.1, 2000.

D. Burdick, M. Calimlim, and J. Gehrke, MAFIA: a maximal frequent itemset algorithm for transactional databases, Proceedings 17th International Conference on Data Engineering, pp.443-452, 2001.
DOI : 10.1109/ICDE.2001.914857

URL : http://www.cs.tau.ac.il/~fiat/dmsem03/MAFAI A Maximal Frequent Itemset Algorithm for Transaction Databases - 2001.pdf

T. Calders, C. Rigotti, and J. Boulicaut, A Survey on Condensed Representations for Frequent Sets, Constraint-Based Mining and Inductive Databases, European Workshop on Inductive Databases and Constraint Based Mining, pp.64-80, 2004.
DOI : 10.1007/11615576_4

URL : https://hal.archives-ouvertes.fr/hal-01613469

N. Caspard, B. Leclerc, and B. Monjardet, Ensembles ordonnés finis : concepts, résultats, usages. Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00197128, 2007.

A. Ceglar and J. F. Roddick, Association mining, ACM Computing Surveys, vol.38, issue.2, pp.5-52, 2006.
DOI : 10.1145/1132956.1132958

V. Chaoji, M. A. Hasan, S. Salem, and M. J. Zaki, An integrated, generic approach to pattern mining: data mining template library, Data Mining and Knowledge Discovery, vol.17, issue.3, pp.457-495, 2008.
DOI : 10.1007/s10618-008-0098-x

C. Chen, J. Yeh, and H. Ke, Plagiarism detection using ROUGE and wordnet . CoRR, abs/1003, pp.4065-4107, 2010.

X. Chen, Y. Ye, G. J. Williams, and X. Xu, A Survey of Open Source Data Mining Systems, Emerging Technologies in Knowledge Discovery and Data Mining, PAKDD 2007, International Workshops, pp.3-14, 2007.
DOI : 10.1007/978-3-540-77018-3_2

H. Cheng, X. Yan, J. Han, and C. Hsu, Discriminative Frequent Pattern Analysis for Effective Classification, 2007 IEEE 23rd International Conference on Data Engineering, pp.716-725, 2007.
DOI : 10.1109/ICDE.2007.367917

URL : http://www.cs.uiuc.edu/~hanj/pdf/icde07_hcheng.pdf

D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong, Maintenance of discovered association rules in large databases: an incremental updating technique, Proceedings of the Twelfth International Conference on Data Engineering, pp.106-114, 1996.
DOI : 10.1109/ICDE.1996.492094

D. W. Cheung, S. D. Lee, and B. Kao, A General Incremental Technique for Maintaining Discovered Association Rules, Database Systems for Advanced Applications '97, pp.185-194, 1997.
DOI : 10.1142/9789812819536_0020

URL : http://www.cs.hku.hk/~dcheung/publication/dasfaa97.ps

W. Cheung and O. R. Zaïane, Incremental mining of frequent patterns without candidate generation or support constraint, Seventh International Database Engineering and Applications Symposium, 2003. Proceedings., pp.16-18, 2003.
DOI : 10.1109/IDEAS.2003.1214917

A. Cliche, La Grande Unification en Science : Une approche conceptuelle, Canada, 2012.

E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, Reachability and Distance Queries via 2-Hop Labels, Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '02, pp.937-946, 2002.
DOI : 10.1137/S0097539702403098

URL : http://www.cs.tau.ac.il/%7Ezwick/papers/2hop-SODA.ps.gz

R. Cooley, B. Mobasher, and J. Srivastava, Web mining: information and pattern discovery on the World Wide Web, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence, pp.558-567, 1997.
DOI : 10.1109/TAI.1997.632303

G. P. Copeland and S. Khoshafian, A decomposition storage model, Proceedings of the 1985 ACM SIGMOD International Conference on Management of Data, pp.268-279, 1985.
DOI : 10.1145/971699.318923

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Third Edition, 2009.

B. A. Davey and H. A. Priestley, Introduction to lattices and order, pp.8-78, 1990.
DOI : 10.1017/CBO9780511809088

J. Dean and S. Ghemawat, MapReduce, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.
DOI : 10.14293/S2199-1006.1.SOR-UNCAT.AUNHT8.v1.RBZFIB

J. Dem?ar, T. Curk, A. Erjavec, . Gorup, T. Ho?evar et al., Orange : Data mining toolbox in python, Journal of Machine Learning Research, vol.14, pp.2349-2353, 2013.

Z. Deng and S. Lv, PrePost+: An efficient N-lists-based algorithm for mining frequent itemsets via Children???Parent Equivalence pruning, Expert Systems with Applications, vol.42, issue.13, pp.5424-5432, 2015.
DOI : 10.1016/j.eswa.2015.03.004

Z. Deng and Z. Wang, A New Fast Vertical Method for Mining Frequent Patterns, International Journal of Computational Intelligence Systems, vol.3, issue.3, pp.733-744, 2010.
DOI : 10.1109/TKDE.2005.81

URL : http://download.atlantis-press.com/php/download_paper.php?id=2104

Z. Deng, Z. Wang, and J. Jiang, A new algorithm for fast mining frequent itemsets using N-lists, Science China Information Sciences, vol.41, issue.9, pp.2008-2030, 2012.
DOI : 10.1109/TSMCB.2010.2086060

N. Dexters, P. Purdom, V. Gucht, and D. , A probability analysis for candidate-based frequent itemset algorithms, Proceedings of the 2006 ACM symposium on Applied computing , SAC '06, 2006.
DOI : 10.1145/1141277.1141404

C. Dhaenens and L. Jourdan, Metaheuristics for Big Data, 2016.
DOI : 10.1002/9781119347569

URL : https://hal.archives-ouvertes.fr/hal-01418464

Y. Djenouri, H. Drias, Z. Habbas, and H. Mosteghanemi, Bees Swarm Optimization for Web Association Rule Mining, 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, pp.142-146, 2012.
DOI : 10.1109/WI-IAT.2012.148

M. Droste, T. Stüber, and H. Vogler, Weighted finite automata over strong bimonoids, Information Sciences, vol.180, issue.1, pp.156-166, 2010.
DOI : 10.1016/j.ins.2009.09.003

URL : http://lips.informatik.uni-leipzig.de/files/Droste2009Weightedfiniteautomataoverstrongbimonoids.pdf

M. B. Eisen and S. B. , Cluster analysis and display of genome-wide expression patterns, Proceedings of National Academy of Sciences, pp.14863-14871, 1998.
DOI : 10.1016/0092-8674(81)90326-3

J. Eisner, Simpler and more general minimization for weighted finite-state automata, Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology , NAACL '03, 2003.
DOI : 10.3115/1073445.1073454

URL : http://dl.acm.org/ft_gateway.cfm?id=1073454&type=pdf

M. El-hajj and O. R. Zaïane, YAFIMA : Yet Another Frequent Itemset Mining Algorithm, JDIM, vol.3, issue.4, pp.244-249, 2005.

A. El-matarawy, M. El-ramly, and R. Bahgat, Plagiarism detection using sequential pattern mining, International Journal of Applied Information Systems, vol.5, issue.2, pp.24-29, 2013.
DOI : 10.5120/ijca2015906324

O. Etzioni, The World-Wide Web: quagmire or gold mine?, Communications of the ACM, vol.39, issue.11, pp.65-68, 1996.
DOI : 10.1145/240455.240473

URL : http://wwwhome.cs.utwente.nl/~mpoel/colleges/dwdm/ACM_artikelen/etzioni.pdf

U. M. Fayyad, G. Piatetsky-shapiro, and P. Smyth, From data mining to knowledge discovery in databases, pp.37-54, 1996.

B. Fernando, É. Fromont, and T. Tuytelaars, Effective Use of Frequent Itemset Mining for Image Classification, Lecture Notes in Computer Science, vol.1, issue.7572, pp.214-227, 2012.
DOI : 10.1007/978-3-642-33718-5_16

. Fimdr, Fimi repository for frequent itemset mining, implementations and datasets, 2003.

F. Flouvat, F. D. Marchi, and J. Petit, iZi: A New Toolkit for Pattern Mining Problems, Foundations of Intelligent Systems, 17th International Symposium, ISMIS 2008 Proceedings, pp.131-136, 2008.
DOI : 10.1007/978-3-540-68123-6_14

URL : https://hal.archives-ouvertes.fr/hal-01590932

P. Fournier-viger, J. C. Lin, A. Gomariz, T. Gueniche, A. Soltani et al., The SPMF Open-Source Data Mining Library Version 2, Proc. 19th European Conference on Principles of Data Mining and Knowledge Discovery, pp.36-40, 2016.
DOI : 10.1007/978-3-319-41561-1_6

P. Fournier-viger, J. C. Lin, B. Vo, T. C. Truong, J. Zhang et al., A survey of itemset mining, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.15, issue.4, pp.7-35, 2017.
DOI : 10.7155/jgaa.00247

R. Franck, La pluralité des disciplines, l'unité du savoir et les connaissances ordinaires. Sociologie et sociétés, pp.129-142, 1999.
DOI : 10.7202/001263ar

URL : http://www.erudit.org/fr/revues/socsoc/1999-v31-n1-socsoc76/001263ar.pdf

W. J. Frawley, G. Piatetsky-shapiro, and C. J. Matheus, Knowledge discovery in databases : An overview, In Knowledge Discovery in Databases, pp.1-30, 1991.

L. Frécon, Eléments de mathématiques discrètes. Collection des sciences appliquées de l'INSA de Lyon, Presses polytechniques et universitaires romandes. (Cité en, p.12, 2002.

A. A. Freitas, Data mining and knowledge discovery with evolutionary algorithms, 2013.
DOI : 10.1007/978-3-662-04923-5

B. C. Fung, K. Wang, and M. Ester, Hierarchical Document Clustering Using Frequent Itemsets, Proceedings of the Third SIAM International Conference on Data Mining, pp.59-70, 2003.
DOI : 10.1137/1.9781611972733.6

URL : http://www.cs.sfu.ca/~bfung/personal/pub/FWE03_FreqDocCluster.ps

A. Ghosh and B. Nath, Multi-objective rule mining using genetic algorithms, Information Sciences, vol.163, issue.1-3, pp.123-133, 2004.
DOI : 10.1016/j.ins.2003.03.021

A. Giacometti, D. H. Li, P. Marcel, and A. Soulet, 20 years of pattern mining, ACM SIGKDD Explorations Newsletter, vol.15, issue.1, pp.41-50, 2013.
DOI : 10.1145/2594473.2594480

URL : https://hal.archives-ouvertes.fr/hal-01171955

R. Godin, R. Missaoui, A. , and H. , INCREMENTAL CONCEPT FORMATION ALGORITHMS BASED ON GALOIS (CONCEPT) LATTICES, Computational Intelligence, vol.11, issue.2, pp.246-267, 1995.
DOI : 10.1016/0898-1221(92)90120-7

URL : http://www.info.uqam.ca/~godin/compint95.pdf

B. Goethals, Survey on frequent pattern mining, Univ. of Helsinki, vol.19, pp.840-852, 2003.

B. Goethals, Memory issues in frequent itemset mining, Proceedings of the 2004 ACM symposium on Applied computing , SAC '04, pp.530-534, 2004.
DOI : 10.1145/967900.968012

B. Goethals and M. J. Zaki, FIMI '03, Frequent Itemset Mining Implementations, Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementations CEUR Workshop Proceedings. CEUR-WS.org. (Cité en pages 7, pp.44-52, 2003.
DOI : 10.1145/1007730.1007744

K. Gouda and M. J. Zaki, GenMax: An Efficient Algorithm for Mining Maximal Frequent Itemsets, Data Mining and Knowledge Discovery, vol.129, issue.2, pp.223-242, 2005.
DOI : 10.1007/s10618-005-0002-x

G. Grahne and J. Zhu, High performance mining of maximal frequent itemsets, 6th International Workshop on High Performance Data Mining. (Cité en, pp.74-76, 2003.

D. Guichard, An Introduction to Combinatorics and Graph Theory, pp.33-63, 2017.

D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen et al., Discovering all most specific sentences, ACM Transactions on Database Systems, vol.28, issue.2, pp.140-174, 2003.
DOI : 10.1145/777943.777945

URL : http://www.cs.helsinki.fi/u/htoivone/pubs/tods03.pdf

M. Hahsler, S. Chelluboina, K. Hornik, and C. Buchta, The arules rpackage ecosystem : Analyzing interesting patterns from large transaction data sets, Journal of Machine Learning Research, vol.12, pp.2021-2025, 2011.
DOI : 10.1007/978-3-540-70981-7_51

URL : http://www.ai.wu-wien.ac.at/~hahsler/research/arules_gfkl2006/arules_gfkl2006.pdf

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann et al., The WEKA data mining software, ACM SIGKDD Explorations Newsletter, vol.11, issue.1, pp.10-18, 2009.
DOI : 10.1145/1656274.1656278

J. Han, H. Cheng, D. Xin, Y. , and X. , Frequent pattern mining: current status and future directions, Data Mining and Knowledge Discovery, vol.1, issue.1, pp.55-86, 2007.
DOI : 10.1007/s10618-006-0059-1

URL : https://link.springer.com/content/pdf/10.1007%2Fs10618-006-0059-1.pdf

J. Han, M. Kamber, P. , and J. , Data Mining, 2011.
DOI : 10.1145/233269.233324

URL : https://hal.archives-ouvertes.fr/hal-01534761

J. Han, J. Pei, Y. , and Y. , Mining frequent patterns without candidate generation, Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp.1-12, 2000.
DOI : 10.1145/342009.335372

URL : http://www.cs.uiuc.edu/~hanj/pdf/dami04_fptree.pdf

Z. He, X. Xu, J. Z. Huang, and S. Deng, FP-outlier: Frequent pattern based outlier detection, Computer Science and Information Systems, vol.2, issue.1, pp.103-118, 2005.
DOI : 10.2298/CSIS0501103H

URL : https://doi.org/10.2298/csis0501103h

K. E. Heraguemi, N. Kamel, and H. Drias, Multi-swarm bat algorithm for association rule mining using multiple cooperative strategies, Applied Intelligence, vol.22, issue.3, pp.1021-1033, 2016.
DOI : 10.1016/j.asoc.2014.04.042

J. Hipp, U. Güntzer, and G. Nakhaeizadeh, Algorithms for association rule mining --- a general survey and comparison, SIGKDD Explorations, pp.58-64, 2000.
DOI : 10.1145/360402.360421

URL : http://www.informatik.uni-tuebingen.de/~hippj/publications/sigkdd00.ps

J. Hipp, U. Güntzer, and G. Nakhaeizadeh, Mining Association Rules: Deriving a Superior Algorithm by Analyzing Today???s Approaches, pp.159-168, 2000.
DOI : 10.1007/3-540-45372-5_16

C. A. Hoare, Unification of theories : A challenge for computing science In Recent Trends in Data Type Specification, 11th Workshop on Specification of Abstract Data Types Joint with the 8th COMPASS Workshop, pp.49-57, 1995.

J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to automata theory, languages, and computation -(2 Addison-Wesley series in computer science, pp.18-91, 2001.

A. Inokuchi, T. Washio, and H. Motoda, An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data, Principles of Data Mining and Knowledge Discovery, 4th European Conference Proceedings, pp.13-23, 2000.
DOI : 10.1007/3-540-45372-5_2

A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, 1988.

. Jean-pierre and C. J. Mével, Grand dictionnaire Hachette encyclopédique illustré, Hachette, 1997.

M. Jiang, S. Tseng, and C. Su, Two-phase clustering process for outliers detection, Pattern Recognition Letters, vol.22, issue.6-7, pp.691-700, 2001.
DOI : 10.1016/S0167-8655(00)00131-8

M. Kaya, Multi-objective genetic algorithm based approaches for mining optimized fuzzy association rules, Soft Computing, vol.10, issue.7, pp.578-586, 2006.
DOI : 10.1007/s00500-005-0509-5

M. Khabzaoui, C. Dhaenens, and E. Talbi, Combining evolutionary algorithms and exact approaches for multi-objective knowledge discovery, RAIRO - Operations Research, vol.3, issue.1, pp.69-83, 2008.
DOI : 10.1109/4235.797969

URL : https://hal.archives-ouvertes.fr/inria-00269936

R. Kosala and H. Blockeel, Web mining research, SIGKDD Explorations, pp.1-15, 2000.
DOI : 10.1145/360402.360406

W. A. Kosters and W. Pijls, Apriori, A depth first implementation. In FIMI '03, Frequent Itemset Mining Implementations, Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementations, 2003.

P. Bibliographie-xxi-kotala, A. Perera, K. Zhou, W. Perrizo, and E. Deckard, Gene expression profiling of dna microarray data using peano count trees (p-trees), Proceedings of the First Virtual Conference on Genomics and Bioinformatics. (Cité en, p.41, 2001.

C. M. Kuok, A. W. Fu, and M. H. Wong, Mining fuzzy association rules in databases, ACM SIGMOD Record, vol.27, issue.1, pp.41-46, 1998.
DOI : 10.1145/273244.273257

URL : http://www.cs.wpi.edu/~ifc/disc/disc99/disc/record/issues/9803/kuok.pdf

G. Kurra, W. Niu, and R. Bhatnagar, Mining microarray expression data for classifier gene-cores, Proceedings of the 1st International Conference on Data Mining in Bioinformatics, BIOKDD'01, pp.8-14, 2001.

W. Lee and W. Fan, Mining system audit data, ACM SIGMOD Record, vol.30, issue.4, pp.35-44, 2001.
DOI : 10.1145/604264.604270

J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive Datasets, pp.29-42, 2014.
DOI : 10.1017/CBO9781139924801

H. Li, Y. Wang, D. Zhang, M. Zhang, C. et al., Pfp, Proceedings of the 2008 ACM conference on Recommender systems, RecSys '08, pp.107-114, 2008.
DOI : 10.1145/1454008.1454027

J. Li, H. Li, D. Soh, L. Wong, A. Jorge et al., A Correspondence Between Maximal Complete Bipartite Subgraphs and Closed Patterns, Knowledge Discovery in Databases : PKDD 2005, 9th European Conference on Principles and Practice of Knowledge Discovery in Databases Proceedings , volume 3721 of Lecture Notes in Computer Science, pp.146-156, 2005.
DOI : 10.1007/11564126_18

URL : http://www.comp.nus.edu.sg/~wongls/psZ/b-c-AIsubmission.pdf

Z. Li and Y. Zhou, Pr-miner : automatically extracting implicit programming rules and detecting violations in large software code, Proceedings of the 10th European Software Engineering Conference held jointly with 13th ACM SIG- SOFT International Symposium on Foundations of Software Engineering, pp.306-315, 2005.

M. Lichman, UCI machine learning repository, 2013.

D. Lin and Z. M. Kedem, Pincer-search: A new algorithm for discovering the maximum frequent set, Advances in Database Technology -EDBT'98, 6th International Conference on Extending Database Technology Proceedings, pp.105-119, 1998.
DOI : 10.1007/BFb0100980

F. Lin, W. Le, and J. Bo, Research on maximal frequent pattern outlier factor for online high dimensional time-series outlier detection, Journal of convergence information technology, vol.5, issue.10, pp.66-71, 2010.

B. Liu, W. Hsu, M. , and Y. , Integrating classification and association rule mining, KDD, pp.80-86, 1998.

H. Mannila and H. Toivonen, Levelwise search and borders of theories in knowledge discovery, Data Mining and Knowledge Discovery, vol.1, issue.3, pp.241-258, 1997.
DOI : 10.1023/A:1009796218281

H. Mannila, H. Toivonen, and A. I. Verkamo, Efficient algorithms for discovering association rules, Knowledge Discovery in Databases : Papers from the 1994 AAAI Workshop, pp.181-192, 1994.

H. Mannila, H. Toivonen, and A. I. Verkamo, Discovery of frequent episodes in event sequences, Data Mining and Knowledge Discovery, vol.1, issue.3, pp.259-289, 1997.
DOI : 10.1023/A:1009748302351

M. J. Martín-bautista, D. Sánchez, J. Chamorro-martínez, J. Serrano, and M. A. Vila, Mining web documents to find additional query terms using fuzzy association rules. Fuzzy Sets and Systems, pp.85-104, 2004.

M. Martínez-ballesteros, A. Troncoso, F. Martínez-Álvarez, and J. C. And-riquelme, Obtaining optimal quality measures for quantitative association rules, Neurocomputing, vol.176, pp.36-47, 2016.
DOI : 10.1016/j.neucom.2014.10.100

H. A. Maurer, F. Kappe, and B. Zaka, Plagiarism -A survey, J. UCS, vol.12, issue.8, pp.1050-1084, 2006.

D. P. Mehta and S. Sahni, Handbook Of Data Structures And Applications (Chapman & Hall/Crc Computer and Information Science Series.). Chapman & Hall/CRC, pp.12-53, 2004.

T. Mielikäinen, Transaction Databases, Frequent Itemsets, and Their Condensed Representations, Knowledge Discovery in Inductive Databases, 4th International Workshop, KDID 2005 Revised Selected and Invited Papers, pp.139-164, 2005.
DOI : 10.1145/380995.381033

M. Mohri, Weighted Automata Algorithms, Handbook of Weighted Automata, Monographs in Theoretical Computer Science. An EATCS Series, pp.213-254, 2009.
DOI : 10.1007/978-3-642-01492-5_6

URL : http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/35076.pdf

S. Naulaerts, P. Meysman, W. Bittremieux, T. Vu, W. V. Berghe et al., A primer to frequent itemset mining for bioinformatics, Briefings in Bioinformatics, vol.11, issue.2, pp.216-231, 2015.
DOI : 10.1145/1656274.1656278

URL : https://academic.oup.com/bib/article-pdf/16/2/216/678938/bbt074.pdf

B. Négrevergne, A. Termier, J. Méhaut, and T. Uno, Discovering closed frequent itemsets on multicore: Parallelizing computations and optimizing memory accesses, 2010 International Conference on High Performance Computing & Simulation, pp.521-528, 2010.
DOI : 10.1109/HPCS.2010.5547082

S. S. Ono, K. Satou, G. Shibayama, T. Ono, Y. Yamamura et al., Finding association rules on heterogeneous genome Bibliographie xxiii data, Proceedings of the Second Pacific Symposium on Biocomputing (PSB, pp.397-408, 1997.

I. H. Osman and G. Laporte, Metaheuristics: A bibliography, Annals of Operations Research, vol.2, issue.5, pp.511-623, 1996.
DOI : 10.1007/3-540-52282-4_52

M. E. Otey, A. Ghoting, and S. Parthasarathy, Fast Distributed Outlier Detection in Mixed-Attribute Data Sets, Data Mining and Knowledge Discovery, vol.9, issue.2-3, pp.203-228, 2006.
DOI : 10.1007/s10618-005-0014-6

M. E. Otey, S. Parthasarathy, C. Wang, A. Veloso, J. et al., Parallel and Distributed Methods for Incremental Frequent Itemset Mining, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.34, issue.6, pp.2439-2450, 2004.
DOI : 10.1109/TSMCB.2004.836887

URL : http://www.dcc.ufmg.br/~adrianov/papers/TSMC/Veloso-tsmc.pdf

S. Oulad-naoui and H. Cherroun, Mining frequent itemsets : a reduction to acyclic weighted automata determinisation, Proceedings of the Conference- School on Discrete Mathematics and Computer Science, pp.49-59, 2015.

S. Oulad-naoui, H. Cherroun, and D. Ziadi, Mining frequent itemsets : a formal unification, 2015.

S. Oulad-naoui, H. Cherroun, and D. Ziadi, A Unifying Polynomial Model for Ef???cient Discovery of Frequent Itemsets, Proceedings of 4th International Conference on Data Management Technologies and Applications, pp.20-22, 2015.
DOI : 10.5220/0005516200490059

S. Oulad-naoui, H. Cherroun, and D. Ziadi, A formal series-based unification of the frequent itemset mining approaches, Knowledge and Information Systems, vol.1, issue.3, pp.439-477, 2017.
DOI : 10.1145/1133905.1133911

S. Owen, R. Anil, T. Dunning, E. Friedman, C. Greenwich et al., Mahout in Action, 2011.

C. H. Papadimitriou, Computational complexity, 1994.

J. S. Park, M. Chen, Y. , and P. S. , An effective hash based algorithm for mining association rules, SIGMOD Conference, pp.175-186, 1995.
DOI : 10.1145/223784.223813

URL : http://arbor.ee.ntu.edu.tw/paperps/smod95.ps

J. S. Park, M. Chen, Y. , and P. S. , Efficient parallel data mining for association rules, Proceedings of the fourth international conference on Information and knowledge management , CIKM '95, pp.31-36, 1995.
DOI : 10.1145/221270.221320

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, Pruning closed itemset lattices for associations rules, 14ème Journées Bases de Données AvancéesInformal Proceedings). (Cité en pages 8 et 78, 1998.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, Discovering Frequent Closed Itemsets for Association Rules, Proceedings of the 7th International xxiv Bibliographie Conference on Database Theory, ICDT '99, pp.398-416, 1999.
DOI : 10.1007/3-540-49257-7_25

URL : https://hal.archives-ouvertes.fr/hal-00467747

J. Pei, J. Han, H. Lu, S. Nishio, S. Tang et al., H-mine : Hyperstructure mining of frequent patterns in large databases, Proceedings of the 2001 IEEE International Conference on Data Mining, pp.441-448, 2001.

W. Pijls and W. A. Kosters, Mining frequent itemsets: a perspective from operations research, Statistica Neerlandica, vol.12, issue.4, pp.367-387, 2010.
DOI : 10.1007/978-3-540-48061-7_53

URL : http://people.few.eur.nl/pijls/FIS/FIS-paper.pdf

J. Pin, Tropical semirings, pp.50-69, 1998.
DOI : 10.1017/CBO9780511662508.004

URL : https://hal.archives-ouvertes.fr/hal-00113779

H. Poincaré, Science et méthode, 1908.

R. Team, R : A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2013.

B. Rácz, nonordfp : An fp-growth variation without rebuilding the fp-tree, FIMI '04, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, 2004.

R. Rakotomalala, TANAGRA : un logiciel gratuit pour l'enseignement et la recherche, Extraction et gestion des connaissances (EGC'2005), Actes des cinquièmes journées Extraction et Gestion des Connaissances, pp.697-702, 2005.

E. Ramis, C. Deschamps, and J. Odoux, Cours de mathématiques spéciales, Cours de mathématiques spéciales : classes préparatoires et enseignement supérieur. Masson. (Cité en page 12, 1977.

C. J. Rijsbergen, A. Rungsawang, A. Tangpong, P. Laohawee, and T. Khampachua, Cité en page 41 Novel query expansion technique using apriori algorithm, TREC, volume Special Publication 500-246. National Institute of Standards and Technology (NIST). (Cité en, p.41, 1979.

R. Rymon, Search through systematic set enumeration, Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR'92), 1992.

A. M. Said, D. D. Dominic, and B. B. Samir, Outlier Detection Scoring Measurements Based on Frequent Pattern Technique, Research Journal of Applied Sciences, Engineering and Technology, vol.6, issue.8, pp.1340-1347, 2013.
DOI : 10.19026/rjaset.6.3954

A. Bibliographie-xxv-salomaa, M. Soittola, F. Bauer, and D. Gries, Automata-theoretic aspects of formal power series. Texts and monographs in computer science, pp.9-12, 1978.

A. Savasere, E. Omiecinski, and S. B. Navathe, An efficient algorithm for mining association rules in large databases, VLDB'95, Proceedings of 21th International Conference on Very Large Data Bases, pp.432-444, 1995.

L. Schmidt-thieme, Algorithmic features of eclat, FIMI '04 Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, pp.118-124, 2004.

M. Song, I. Song, X. Hu, A. , and R. B. , Integration of association rules and ontologies for semantic query expansion, Data & Knowledge Engineering, vol.63, issue.1, pp.63-75, 2007.
DOI : 10.1016/j.datak.2006.10.010

M. Steinbach, P. Tan, H. Xiong, and V. Kumar, Objective measures for association pattern analysis, Contemporary Mathematics, vol.443, pp.205-82, 2007.
DOI : 10.1090/conm/443/08564

Y. G. Sucahyo, R. P. Gopalan, R. J. Jr, B. Goethals, and M. J. Zaki, CT-PRO : A bottom-up non recursive frequent itemset mining algorithm using compressed fp-tree data structure, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations CEUR Workshop Proceedings. CEUR- WS.org. (Cité en, pp.71-72, 2004.

L. Szathmary, Symbolic Data Mining Methods with the Coron Platform. (Méthodes symboliques de fouille de données avec la plate-forme Coron), 2006.
URL : https://hal.archives-ouvertes.fr/tel-01754284

E. Talbi, A taxonomy of hybrid metaheuristics, Journal of Heuristics, vol.8, issue.5, pp.541-564, 2002.
DOI : 10.1023/A:1016540724870

P. Tamayo and S. D. , Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation, Proceedings of National Academy of Sciences, 1999.
DOI : 10.1073/pnas.90.13.6071

P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, pp.33-52, 2005.

H. Toivonen, Sampling large databases for association rules, VLDB'96, Proceedings of 22th International Conference on Very Large Data Bases, pp.134-145, 1996.

S. G. Totad, R. B. Geeta, and P. V. Reddy, Batch incremental processing for FP-tree construction using FP-Growth algorithm, Knowledge and Information Systems, vol.5, issue.5, pp.475-490, 2012.
DOI : 10.1007/s10115-011-0452-y

A. Tuzhilin and G. Adomavicius, Handling very large numbers of association rules in the analysis of microarray data, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, pp.396-404, 2002.
DOI : 10.1145/775047.775104

T. Uno, M. Kiyomi, H. Arimura, R. J. Jr, B. Goethals et al., LCM ver. 2 : Efficient mining algorithms for frequent/closed/maximal itemsets, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations CEUR Workshop Proceedings. CEUR-WS.org. (Cité en, p.74, 2004.
DOI : 10.1145/1133905.1133916

P. Valtchev, R. Missaoui, R. Godin, and M. Meridji, Generating frequent itemsets incrementally: two novel approaches based on Galois lattice theory, Journal of Experimental & Theoretical Artificial Intelligence, vol.29, issue.2-3, pp.115-142, 2002.
DOI : 10.1145/347090.347101

URL : http://www.iro.umontreal.ca/%7Evaltchev/Papiers/galicia-final.ps.gz

A. Veloso, W. M. Jr, M. De-carvalho, B. Pôssas, S. Parthasarathy et al., Mining Frequent Itemsets in Evolving Databases, Proceedings of the Second SIAM International Conference on Data Mining, pp.494-510, 2002.
DOI : 10.1137/1.9781611972726.29

URL : http://www.cs.rpi.edu/~zaki/./PS/SIAM02-incr.ps.gz

W. Wang, J. Yang, Y. , and P. S. , Efficient mining of weighted association rules (WAR), Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '00, pp.270-274, 2000.
DOI : 10.1145/347090.347149

G. I. Webb, OPUS : an efficient admissible algorithm for unordered search, J. Artif. Intell. Res, vol.3, pp.431-465, 1995.

G. I. Webb, Efficient search for association rules, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '00, pp.99-107, 2000.
DOI : 10.1145/347090.347112

URL : http://www.cm.deakin.edu.au/webb/Papers/assocrulesearch.ps

R. Wille, Restructuring lattice theory : An approach based on hierarchies of concepts, NATO Advanced Study Institutes Series, vol.83, pp.445-470, 1982.

G. Williams, Data Mining with Rattle and R : The art of excavating data for knowledge discovery, Use R ! Springer Science+Business Media, LLC. (Cité en, p.46, 2011.
DOI : 10.1007/978-1-4419-9890-3

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang et al., Top 10 algorithms in data mining, Knowledge and Information Systems, vol.9, issue.2, pp.1-37, 2008.
DOI : 10.1017/CBO9780511815478

URL : http://www.cse.ust.hk/~qyang/Docs/2007/top10.pdf

R. Xu, I. , and D. C. , Survey of Clustering Algorithms, IEEE Transactions on Neural Networks, vol.16, issue.3, pp.645-678, 2005.
DOI : 10.1109/TNN.2005.845141

Q. Yang and X. Wu, 10 CHALLENGING PROBLEMS IN DATA MINING RESEARCH, International Journal of Information Technology & Decision Making, vol.05, issue.04, pp.597-604, 2006.
DOI : 10.1142/S0219622006002258

Y. Ye, D. Wang, T. Li, D. Ye, and Q. Jiang, An intelligent PE-malware detection system based on association mining, Journal in Computer Virology, vol.51, issue.8, pp.323-334, 2008.
DOI : 10.1007/s11416-008-0082-4

URL : http://users.cis.fiu.edu/%7Etaoli/pub/imds-journal-jv2008.pdf

M. L. Yiu and N. Mamoulis, Frequent-pattern based iterative projected clustering, Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM 2003), pp.689-692, 2003.

D. Yu, G. Sheikholeslami, and A. Zhang, FindOut : Finding Outliers in Very Large Datasets, Knowledge and Information Systems, vol.4, issue.4, pp.387-412, 2002.
DOI : 10.1007/s101150200013

URL : http://www.cse.buffalo.edu/tech-reports/99-03.ps.Z

M. J. Zaki, Scalable algorithms for association mining, IEEE Transactions on Knowledge and Data Engineering, vol.12, issue.3, pp.372-390, 2000.
DOI : 10.1109/69.846291

URL : http://miles.cnuce.cnr.it/~palmeri/datam/articles/zaki_tdke00.ps.gz

M. J. Zaki, Efficiently mining frequent trees in a forest, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, pp.71-80, 2002.
DOI : 10.1145/775047.775058

M. J. Zaki and K. Gouda, Fast vertical mining using diffsets, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.326-335, 2003.
DOI : 10.1145/956750.956788

URL : http://www.cs.rpi.edu/~zaki/./PS/SIGKDD03-diffsets.pdf

M. J. Zaki and C. Hsiao, CHARM: An Efficient Algorithm for Closed Itemset Mining, Proceedings of the Second SIAM International Conference on Data Mining, pp.457-473, 2002.
DOI : 10.1137/1.9781611972726.27

URL : https://epubs.siam.org/doi/pdf/10.1137/1.9781611972726.27

M. J. Zaki and M. Ogihara, Theoretical foundations of association rules, 3rd ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. (Cité en pages 8, pp.65-78, 1998.

M. J. Zaki, W. Meira, and J. , Data Mining and Analysis : Fundamental Concepts and Algorithms, pp.29-31, 2014.

A. Zimek, I. Assent, and J. Vreeken, Frequent Pattern Mining Algorithms for Data Clustering, Frequent Pattern Mining, pp.403-423, 2014.
DOI : 10.1007/978-3-319-07821-2_16

A. Zimek and J. Vreeken, The blind men and the elephant: on meeting the problem of multiple truths in data from clustering and pattern mining perspectives, Machine Learning, pp.121-155, 2015.
DOI : 10.1002/sam.11161