Skip to Main content Skip to Navigation
Theses

Détection du déplacement d'électrons dans le régime de l'effet Hall Quantique à l'aide d'un singlet-triplet quantum bit détecteur

Abstract : The electron quantum optics field is a research topic with an interest growing over the years since the 80's and the first interference experiment with electrons. This field is dedicated to the implementation of quantum optics experiments with electrons instead of photon. The advantage is twofold, one is the fermion nature of the electrons which ensure the observation of phenomenon which cannot be observed with photon (boson), the anti-bunching of the electrons in correlation experiments contrary to the bunching for photons illustrates this point. The second advantage is the possibility to interact and control electrons with electric fields since they are charged particles. Such control does not exist with photon. In addition to these fundamental experiments, it has been recently demonstrated that this topic presents a possible candidate for quantum information with so called flying qubit. While the based components to mimic the quantum optics experiments are already demonstrated like the beam splitter, phase shifter or coherent single electron source, the single electron detection in a single shot manner in such system is still lacking. The difficulty being the short interaction time between the travelling charge and the charge detector, being of less than 1ns in such system where the electron propagate at the Fermi velocity 10-100km/s. This interaction is approximately two orders of magnitude shorter than what is required with the actual best on chip charge detector.In this thesis is presented the development of an ultra-sensitive detector for the single shot detection of an electron travelling at the Fermi velocity. Our strategy was to detect a single travelling electron propagating in the edge channels (ECs) of the quantum Hall effect by measuring the induced phase shift of a singlet-triplet qubit, referred as to the qubit detector. The single shot detection being only possible if the interaction with the travelling electron induces a complete π phase shift and the spin readout of the qubit detector being performed in a single shot manner.Thanks to the development and use of a RF-QPC the single shot spin readout of the qubit detector has been first demonstrated. Its development with the implementation of coherent exchange oscillations is then described. The charge sensitivity of the qubit detector is validated in an experiment consisting in recording a phase shift of these oscillations due to the interaction with an imposed flow of electrons in the ECs. This flow of electron was induced by a DC voltage bias applied on the ECs to tune their chemical potential.This qubit detector is then optimised for the single travelling charge detection. Its calibration has been implemented using the same imposed flow of electrons by application of a DC bias. This calibration provides the expected signal variation induced by the interaction with a single travelling electron, and indicates the impossibility to implement this detection in a single shot manner in our experimental conditions. Our detector exhibits a charge sensitivity estimated close to 8.10-5 e/Hz-1/2 for a detection bandwidth from DC to 1 THz. The sensitivity is close to two orders of magnitude smaller than required for a single shot detection. Finally this qubit detector has been employed to detect in average measurements an edge magneto plasmon composed by less than 5 electrons. However, the single electron level could not be reached in statistical measurement neither, the sensitivity of our qubit detector being too limited.The different limitations of our experiment are listed and explained with the presentation of different axes of development which could permit to succeed this detection in another experiment.
Complete list of metadatas

Cited literature [102 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01757271
Contributor : Abes Star :  Contact
Submitted on : Tuesday, April 3, 2018 - 3:43:08 PM
Last modification on : Wednesday, October 14, 2020 - 4:18:29 AM

File

THINEY_2017_diffusion.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01757271, version 1

Collections

STAR | CNRS | UGA | NEEL

Citation

Vivien Thiney. Détection du déplacement d'électrons dans le régime de l'effet Hall Quantique à l'aide d'un singlet-triplet quantum bit détecteur. Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]. Université Grenoble Alpes, 2017. English. ⟨NNT : 2017GREAY069⟩. ⟨tel-01757271⟩

Share

Metrics

Record views

299

Files downloads

283