B. 1. Volta and A. , On the Electricity Excited by the Mere Contact of Conducting Substances of Different Kinds. In a Letter from Mr. Alexander Volta, F. R. S. Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. K. B. P. R. S., Philosophical Transactions of the Royal Society of London, vol.90, issue.0, pp.403-431, 1800.
DOI : 10.1098/rstl.1800.0018

G. Planté, Recherches sur l'électricité. Gauthier Villars (1883). doi:10, 1017.

P. Venet, Le stockage de l'énergie électrique par supercondensateurs : du composant au système, 2014.

. Chinadaily, China's first home-made supercapacitor tran unveiled, 2016.

. Pressecitron, Autonomie Tesla P85D, 2015.

A. Marotta, J. Pavlovic, B. Ciuffo, S. Serra, and G. Fontaras, Gaseous Emissions from Light-Duty Vehicles: Moving from NEDC to the New WLTP Test Procedure, Environmental Science & Technology, vol.49, issue.14, pp.8315-8322, 2015.
DOI : 10.1021/acs.est.5b01364

C. Pillot, Battery Market Development for Consumer Electronics , Automotive , and Industrial : Materials Requirements and Trends. 5th Isr, pp.1-39, 2015.

. Marketsandmarkets, PowerBank market worth 17 billion USD by, 2020.

R. J. Jasinski and S. Kirkland, Analysis and distillation of propylene carbonate, Analytical Chemistry, vol.39, issue.13, pp.1663-1665, 1967.
DOI : 10.1021/ac50156a051

K. M. Abraham, D. M. Pasquariello, and D. A. Schwartz, Practical rechargeable lithium batteries, Journal of Power Sources, vol.26, issue.1-2, pp.247-255, 1989.
DOI : 10.1016/0378-7753(89)80033-3

K. Brandt and F. Laman, Reproducibility and reliability of rechargeable lithium/molybdenum disulfide batteries, Journal of Power Sources, vol.25, issue.4, pp.265-276, 1989.
DOI : 10.1016/0378-7753(89)85014-1

I. Weissman, A. Zaban, and D. Aurbach, Safety and Performance of Tadiran TLR-7103 Rechargeable Batteries, J. Electrochem. Soc, vol.143, pp.2110-2116, 1996.

V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy & Environmental Science, vol.196, issue.82, p.3242, 2011.
DOI : 10.1016/j.jpowsour.2010.06.093

M. Armand, Polymer solid electrolytes -an overview. Solid State Ionics 9?10, pp.745-754, 1983.

Z. Xue, D. He, and X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, Journal of Materials Chemistry A, vol.2, issue.115, pp.19218-19253, 2015.
DOI : 10.1039/C4TA04089A

. Bolloré, Blueutility: caractéristiques batterie, 2014.

M. Lazzari, A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes, Journal of The Electrochemical Society, vol.127, issue.3, p.773, 1980.
DOI : 10.1149/1.2129753

R. Noorden and . Van, The rechargeable revolution: A better battery, Nature, vol.507, issue.7490, pp.26-28, 2014.
DOI : 10.1038/507026a

J. Goodenough, Electrochemical cell with new fast ion conductors, pp.1-4, 1981.

K. Mizushima, P. C. Jones, P. J. Wiseman, and J. Goodenough, LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density, Materials Research Bulletin, vol.15, issue.6, pp.783-789, 1980.
DOI : 10.1016/0025-5408(80)90012-4

M. Armand and P. Touzain, Graphite intercalation compounds as cathode materials, Materials Science and Engineering, vol.31, pp.319-329, 1977.
DOI : 10.1016/0025-5416(77)90052-0

D. Guerard and A. Herold, Intercalation of lithium into graphite and other carbons, Carbon, vol.13, issue.4, pp.337-345, 1975.
DOI : 10.1016/0008-6223(75)90040-8

R. Yazami and P. Touzain, A reversible graphite-lithium negative electrode for electrochemical generators, Journal of Power Sources, vol.9, issue.3, pp.365-371, 1983.
DOI : 10.1016/0378-7753(83)87040-2

J. Christensen, A Critical Review of Li???Air Batteries, Journal of The Electrochemical Society, vol.78, issue.2, p.1, 2012.
DOI : 10.1021/ja207229n

P. G. Bruce, S. Freunberger, L. J. Hardwick, and . Tarascon, Li???O2 and Li???S batteries with high energy storage, Nature Materials, vol.11, issue.02, pp.172-172, 2011.
DOI : 10.1038/nmat3237

A. Manthiram, Y. Fu, S. Chung, C. Zu, and Y. Su, Rechargeable Lithium???Sulfur Batteries, Chemical Reviews, vol.114, issue.23, pp.11751-87, 2014.
DOI : 10.1021/cr500062v

M. M. Thackeray, C. Wolverton, and E. D. Isaacs, Electrical energy storage for transportation???approaching the limits of, and going beyond, lithium-ion batteries, Energy & Environmental Science, vol.21, issue.7, p.7854, 2012.
DOI : 10.1039/c1jm11584g

M. R. Palacín, Recent advances in rechargeable battery materials: a chemist???s perspective, Chemical Society Reviews, vol.176, issue.1, pp.2565-2575, 2009.
DOI : 10.5796/electrochemistry.75.23

Y. Zhang, High-energy cathode materials for Li-ion batteries: A review of recent developments, Science China Technological Sciences, vol.256, issue.82
DOI : 10.1016/j.jpowsour.2014.01.059

M. M. Doeff, in Encyclopedia of Sustainability Science and Technology, pp.1-49, 2012.

J. Lu, Effectively supressind dissolution of manganese from spinel lithium manganate via a nanosclae surface-doping approach, Nat. Commun, vol.5, pp.1-8, 2014.

R. J. Gummow, A. De-kock, and M. M. Thackeray, Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells, Solid State Ionics, vol.69, issue.1, pp.59-67, 1994.
DOI : 10.1016/0167-2738(94)90450-2

J. Tu, Enhanced cycling stability of LiMn2O4 by surface modification with melting impregnation method, Electrochimica Acta, vol.51, issue.28, pp.6456-6462, 2006.
DOI : 10.1016/j.electacta.2006.04.031

N. Ravet, Electroactivity of natural and synthetic triphylite, Journal of Power Sources, vol.97, issue.98, pp.503-507, 2001.
DOI : 10.1016/S0378-7753(01)00727-3

C. Jin, Effect of ion doping on the electrochemical performances of LiFePO4-Li3V2(PO4)3

K. Zaghib, A. Mauger, H. Groult, J. B. Goodenough, and C. M. Julien, Advanced Electrodes for High Power Li-ion Batteries, Materials, vol.108, issue.3, pp.1028-1049, 2013.
DOI : 10.1021/nl202681b

URL : https://hal.archives-ouvertes.fr/hal-00800824

S. Patoux, High voltage spinel oxides for Li-ion batteries: From the material research to the application, Journal of Power Sources, vol.189, issue.1, pp.344-352, 2009.
DOI : 10.1016/j.jpowsour.2008.08.043

URL : https://hal.archives-ouvertes.fr/cea-00413089

C. J. Liu, Preparation and Electrochemical properties of Fe-Sn (C) Nanocomposites as Anode for Lithium-ion Batteries, Electrochimica Acta, vol.129, pp.93-99, 2014.
DOI : 10.1016/j.electacta.2014.02.031

T. J. Vaughey, J. O-'hara, and M. M. Thackeray, Intermetallic Insertion Electrodes with a Zinc Blende-Type Structure for Li Batteries: A Study of Li[sub x]InSb???(0???x???3), Electrochemical and Solid-State Letters, vol.3, issue.1, pp.13-16, 2000.
DOI : 10.1149/1.1390944

H. Kim, M. Seo, M. H. Park, and J. Cho, A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chemie -Int, pp.2146-2149, 2010.

N. Liu, A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes, Nano Letters, vol.12, issue.6, pp.3315-3321, 2012.
DOI : 10.1021/nl3014814

J. Song, Micro-sized silicon???carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries, J. Mater. Chem. A, vol.142, issue.5, pp.1257-1262, 2014.
DOI : 10.1149/1.2050057

A. Gohier, High-Rate Capability Silicon Decorated Vertically Aligned Carbon Nanotubes for Li-Ion Batteries, Advanced Materials, vol.14, issue.2, pp.2592-2597, 2012.
DOI : 10.1007/s10008-010-1045-5

URL : https://hal.archives-ouvertes.fr/hal-00753318

W. Liu, M. Yang, H. Wu, S. M. Chiao, and N. Wu, Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder, Electrochemical and Solid-State Letters, vol.150, issue.2, p.100, 2005.
DOI : 10.1149/1.1847685

S. Komaba, Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries, The Journal of Physical Chemistry C, vol.115, issue.27
DOI : 10.1021/jp201691g

D. Carmier, C. Vix-guterl, and J. Lahaye, Porosity of the cathode during the discharge of SOCl2/Li batteries, Journal of Power Sources, vol.103, issue.2, pp.237-244, 2002.
DOI : 10.1016/S0378-7753(01)00870-9

S. Chou, Y. Pan, J. Wang, H. Liu, and S. Dou, Small things make a big difference: binder effects on the performance of Li and Na batteries, Phys. Chem. Chem. Phys., vol.13, issue.38, pp.20347-20359, 2014.
DOI : 10.1021/nl403053v

J. H. Lee, S. Lee, U. Paik, and Y. M. Choi, Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance, Journal of Power Sources, vol.147, issue.1-2, pp.249-255, 2005.
DOI : 10.1016/j.jpowsour.2005.01.022

A. Magasinski, Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid, ACS Applied Materials & Interfaces, vol.2, issue.11, pp.3004-3010, 2010.
DOI : 10.1021/am100871y

R. Dominko, The role of carbon black distribution in cathodes for Li ion batteries, Journal of Power Sources, vol.119, issue.121, pp.770-773, 2003.
DOI : 10.1016/S0378-7753(03)00250-7

D. Mazouzi, B. Lestriez, . Roue?, L. Roue?, and D. Guyomard, Silicon Composite Electrode with High Capacity and Long Cycle Life, Electrochemical and Solid-State Letters, vol.12, issue.11, p.215, 2009.
DOI : 10.1016/S0927-0248(03)00107-7

URL : https://hal.archives-ouvertes.fr/hal-00432831

Y. M. Lee, J. Y. Lee, H. Shim, J. K. Lee, and J. Park, SEI Layer Formation on Amorphous Si Thin Electrode during Precycling, Journal of The Electrochemical Society, vol.154, issue.6, p.515, 2007.
DOI : 10.1149/1.1505636

N. S. Hochgatterer, Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability, Electrochemical and Solid-State Letters, vol.7, issue.5, p.76, 2008.
DOI : 10.1149/1.2719644

C. Marino, Optimisation de nouvelles électrodes négatives énergétiques pour batteries lithium-ion: caractérisation de l'interface électrode/électrolyte, 2012.

V. Sivasankaran, Improvement of intermetallics electrochemical behavior by playing with the composite electrode formulation, Journal of Materials Chemistry, vol.189, issue.1, p.5076, 2011.
DOI : 10.1016/j.jpowsour.2008.08.089

URL : https://hal.archives-ouvertes.fr/hal-00578523

J. M. Tarascon and D. Guyomard, New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells, Solid State Ionics, vol.69, issue.3-4, pp.293-305, 1994.
DOI : 10.1016/0167-2738(94)90418-9

M. S. Ding, K. Xu, and T. Jow, Liquid-Solid Phase Diagrams of Binary Carbonates for Lithium Batteries, Journal of The Electrochemical Society, vol.147, issue.5, p.1688, 2000.
DOI : 10.1149/1.1393419

R. Fong, V. Sacken, U. Dahn, and J. , Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells, Journal of The Electrochemical Society, vol.137, issue.7, pp.2009-2013, 1990.
DOI : 10.1149/1.2086855

M. E. Spahr, Exfoliation of Graphite during Electrochemical Lithium Insertion in Ethylene Carbonate-Containing Electrolytes, Journal of The Electrochemical Society, vol.81, issue.82, pp.1383-1395, 2004.
DOI : 10.1149/1.1775224

K. Xu, Electrolytes and Interphases in Li-Ion Batteries and Beyond, Chemical Reviews, vol.114, issue.23, pp.11503-11618, 2014.
DOI : 10.1021/cr500003w

D. Aurbach, On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochimica Acta, vol.47, issue.9, pp.1423-1439, 2002.
DOI : 10.1016/S0013-4686(01)00858-1

E. Ouatani and L. , The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries, Journal of The Electrochemical Society, vol.8, issue.121, p.103, 2009.
DOI : 10.1016/S0079-6700(00)00006-X

URL : https://hal.archives-ouvertes.fr/hal-01560427

M. Swiatowska and J. , Graphite Pouch Cell Lifetime : Correlation between XPS Surface Studies and Electrochemical Test Results doi:dx.doi.org/10 Electrolyte and Solid-Electrolyte Interphase Layer in Lithium-Ion Batteries. Lithium Ion Batter. -New Dev, J. Phys. Chem. C, vol.5772, pp.146-17210, 1021.

K. Xu, M. About, and T. Article, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews, vol.104, issue.10, pp.4303-4418, 2004.
DOI : 10.1021/cr030203g

E. Beat and C. Leumann, Modern synthetic methods, 1995.

E. Kramer, Mechanism of Anodic Dissolution of the Aluminum Current Collector in 1 M LiTFSI EC:DEC 3:7 in Rechargeable Lithium Batteries, Journal of the Electrochemical Society, vol.160, issue.2, pp.356-360, 2012.
DOI : 10.1149/2.081302jes

D. Aurbach, M. D. Levi, E. Levi, and A. Schechter, Failure and Stabilization Mechanisms of Graphite Electrodes, The Journal of Physical Chemistry B, vol.101, issue.12, pp.2195-2206, 1997.
DOI : 10.1021/jp962815t

D. Aurbach, I. Weissman, A. Zaban, and O. Chusid, Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts, Electrochimica Acta, vol.39, issue.1, pp.51-71, 1994.
DOI : 10.1016/0013-4686(94)85010-0

W. Zhang, Surface film formation on TiSnSb electrodes: Impact of electrolyte additives, Journal of Power Sources, vol.268, pp.645-657, 2014.
DOI : 10.1016/j.jpowsour.2014.06.041

URL : https://hal.archives-ouvertes.fr/hal-01058738

M. Winter, P. Novák, and A. Monnier, Graphites for Lithium-Ion Cells: The Correlation of the First-Cycle Charge Loss with the Brunauer-Emmett-Teller Surface Area, Journal of The Electrochemical Society, vol.145, issue.2, pp.428-436, 1998.
DOI : 10.1149/1.1838281

W. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, Journal of Power Sources, vol.196, issue.1, pp.13-24, 2011.
DOI : 10.1016/j.jpowsour.2010.07.020

C. C. Nguyen and S. W. Song, Interfacial structural stabilization on amorphous silicon anode for improved cycling performance in lithium-ion batteries, Electrochimica Acta, vol.55, issue.8, pp.3026-3033, 2010.
DOI : 10.1016/j.electacta.2009.12.067

S. S. Zhang, K. Xu, and T. R. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries, Electrochimica Acta, vol.49, issue.7, pp.1057-1061, 2004.
DOI : 10.1016/j.electacta.2003.10.016

T. Waldmann, M. Wilka, M. Kasper, M. Fleischhammer, and M. Wohlfahrt-mehrens, Temperature dependent ageing mechanisms in Lithium-ion batteries ??? A Post-Mortem study, Journal of Power Sources, vol.262, pp.129-135, 2014.
DOI : 10.1016/j.jpowsour.2014.03.112

J. Li, E. Murphy, J. Winnick, and P. A. Kohl, The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries, Journal of Power Sources, vol.102, issue.1-2, pp.302-309, 2001.
DOI : 10.1016/S0378-7753(01)00820-5

P. Verma, P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, vol.55, issue.22, pp.6332-6341, 2010.
DOI : 10.1016/j.electacta.2010.05.072

T. Yoon, C. C. Nguyen, D. M. Seo, and B. L. Lucht, Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries, Journal of The Electrochemical Society, vol.162, issue.12, pp.2325-2330, 2015.
DOI : 10.1149/2.0731512jes

J. Qian, High rate and stable cycling of lithium metal anode, Nature Communications, vol.4, issue.1, p.6362, 2015.
DOI : 10.1149/2.0101414jes

L. Monconduit, doi:10.1002/9781119007364.ch1 109 Tetrachloroethylene as new film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries with graphitic anode, Solid State Ionics, vol.176, pp.1-28, 2005.

G. Chung, Origin of Graphite Exfoliation An Investigation of the Important Role of Solvent Cointercalation, Journal of The Electrochemical Society, vol.147, issue.12, p.4391, 2000.
DOI : 10.1149/1.1394076

M. R. Wagner, Electrolyte Decomposition Reactions on Tin- and Graphite-Based Anodes are Different, Electrochemical and Solid-State Letters, vol.145, issue.98, pp.201-205, 2004.
DOI : 10.1002/bbpc.19840880103

M. Wachtler, J. O. Besenhard, and M. Winter, Tin and tin-based intermetallics as new anode materials for lithium-ion cells, Journal of Power Sources, vol.94, issue.2, pp.189-193, 2001.
DOI : 10.1016/S0378-7753(00)00585-1

W. Zhang, Surface film formation on TiSnSb electrodes: Impact of electrolyte additives, Journal of Power Sources, vol.268, pp.645-657, 2014.
DOI : 10.1016/j.jpowsour.2014.06.041

URL : https://hal.archives-ouvertes.fr/hal-01058738

V. Etacheri, Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes, Langmuir, vol.28, issue.1, pp.965-976, 2012.
DOI : 10.1021/la203712s

C. Marino, Role of Structure and Interfaces in the Performance of TiSnSb as an Electrode for Li-Ion Batteries, Chemistry of Materials, vol.24, issue.24, 2012.
DOI : 10.1021/cm303086j

P. Charlier, Aciers à dispersoïdes, 1987.

M. Adams and J. , Electrical safety a guide to the causes and prevention of electrical hazards, 1994.
DOI : 10.1049/PBPO019E

J. Yang, Y. Takeda, N. Imanishi, J. Y. Xie, and O. Yamamoto, Intermetallic SnSb x compounds for lithium insertion hosts, pp.189-194, 2000.

F. J. Fernandez-madrigal, Sn M??ssbauer Spectroscopy Study of SnSb-Based Electrode Materials, Chemistry of Materials, vol.14, issue.7, pp.2962-2968, 2002.
DOI : 10.1021/cm0112800

M. M. Thackeray, Structural considerations of intermetallic electrodes for lithium batteries, Journal of Power Sources, vol.113, issue.1, pp.124-130, 2003.
DOI : 10.1016/S0378-7753(02)00538-4

. Oni, D. Hook, J. P. Maria, and J. M. Lebeau, Phase coexistence in Ti6Sn5 intermetallics, Intermetallics, vol.51, pp.48-52, 2014.
DOI : 10.1016/j.intermet.2014.03.002

K. , B. Jeitschko, W. Kotzyba, G. &. , and B. D. , Crystal Structure and Properties of the Titanium Stannide Ti2Sn3, pp.6-11, 2015.

H. Kleinke, M. Waldeck, and P. Gu, Ti 2 Sn 3 : A Novel Binary Intermetallic Phase , Prepared by Chemical Transport at Intermediate Temperature, pp.2219-2224, 2000.

H. Okamoto, Sb-Sn (Antimony-Tin). J. Phase Equilibria Diffus, pp.347-347, 2012.
DOI : 10.1007/s11669-012-0054-8

URL : https://link.springer.com/content/pdf/10.1007%2Fs11669-012-0054-8.pdf

R. R. Mishra and A. K. Sharma, Microwave???material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing, Composites Part A: Applied Science and Manufacturing, vol.81, pp.78-97, 2016.
DOI : 10.1016/j.compositesa.2015.10.035

J. Hassoun, G. Derrien, S. Panero, and B. Scrosati, A SnSb???C nanocomposite as high performance electrode for lithium ion batteries, Electrochimica Acta, vol.54, issue.19, pp.4441-4444, 2009.
DOI : 10.1016/j.electacta.2009.03.027

M. He, Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb, Nanoscale, vol.5, issue.18, 2014.
DOI : 10.1021/am4023994

J. Li, Spherical nano-SnSb/MCMB/carbon core???shell composite for high stability lithium ion battery anodes, Electrochimica Acta, vol.113, pp.505-513, 2013.
DOI : 10.1016/j.electacta.2013.09.130

S. Needham, G. X. Wang, and H. K. Liu, Electrochemical performance of SnSb and Sn/SnSb nanosize powders as anode materials in Li-ion cells, Journal of Alloys and Compounds, vol.400, issue.1-2, pp.234-238, 2005.
DOI : 10.1016/j.jallcom.2005.03.056

M. Park, Nanostructured SnSb/Carbon Nanotube Composites Synthesized by Reductive Precipitation for Lithium-Ion Batteries, Chemistry of Materials, vol.19, issue.10, pp.2406-2410, 2007.
DOI : 10.1021/cm0701761

C. M. Park and H. J. Sohn, A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries, Electrochimica Acta, vol.54, issue.26, pp.6367-6373, 2009.
DOI : 10.1016/j.electacta.2009.06.004

A. Darwiche, M. T. Sougrati, B. Fraisse, L. Stievano, and L. Monconduit, Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries, Electrochemistry Communications, vol.32, pp.18-21, 2013.
DOI : 10.1016/j.elecom.2013.03.029

URL : https://hal.archives-ouvertes.fr/hal-00808221

Z. Wang, W. Tian, and X. Li, Synthesis and electrochemistry properties of Sn???Sb ultrafine particles as anode of lithium-ion batteries, Journal of Alloys and Compounds, vol.439, issue.1-2, pp.350-354, 2007.
DOI : 10.1016/j.jallcom.2006.08.247

L. Simonin, Synthesis and characterisation of tin and antimony nano-compounds for lithium battery applications, 2009.

H. Zhao, Z. Zhu, C. Yin, H. Guo, and D. H. Ng, Electrochemical characterization of micro-sized Sb/SnSb composite anode, Materials Chemistry and Physics, vol.110, issue.2-3, pp.201-205, 2008.
DOI : 10.1016/j.matchemphys.2008.02.002

P. Antitomaso, Procédé de fabrication de phase intermetallique SnSb et matériau obtenu par ce procédé, p.61015, 2015.

C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science, vol.46, issue.1-2, pp.1-184, 2001.
DOI : 10.1016/S0079-6425(99)00010-9

URL : http://www.ndsl.kr/soc_img/society/kpmi/BMOGBP/2006/v13n5s58/BMOGBP_2006_v13n5s58_371.pdf

M. S. El-eskandarany, Mechanical Alloying for Fabrication of Advanced, pp.1-254, 2001.

P. Balá?, Hallmarks of mechanochemistry: from nanoparticles to technology, Chemical Society Reviews, vol.8, issue.103, pp.7571-637, 2013.
DOI : 10.1016/0892-6875(95)00097-A

C. Marino, Optimisation de nouvelles électrodes négatives énergétiques pour batteries lithium-ion: caractérisation de l'interface électrode/électrolyte, 2012.

S. D. Beattie, D. Larcher, M. Morcrette, and B. Simon, Si Electrodes for Li-Ion Batteries???A New Way to Look at an Old Problem, Journal of The Electrochemical Society, vol.2005, issue.2, pp.158-163, 2008.
DOI : 10.1149/1.2194611

URL : https://hal.archives-ouvertes.fr/hal-00258048

J. Li, R. B. Lewis, and J. Dahn, Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries, Electrochem. Solid State Lett, pp.20-23, 2007.

H. Buqa, M. Holzapfel, F. Krumeich, C. Veit, and . Nov, Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries, Journal of Power Sources, vol.161, issue.1, pp.617-622, 2006.
DOI : 10.1016/j.jpowsour.2006.03.073

C. Y. Lee, A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries, Sensors, vol.15, issue.5, pp.11485-11498, 2015.
DOI : 10.1109/TSTE.2015.2420375

D. Aurbach, Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochimica Acta, vol.50, issue.2-3, pp.247-254, 2004.
DOI : 10.1016/j.electacta.2004.01.090

M. Ulldemolins, Investigation on the part played by the solid electrolyte interphase on the electrochemical performances of the silicon electrode for lithium-ion batteries, Journal of Power Sources, vol.206, pp.245-252, 2012.
DOI : 10.1016/j.jpowsour.2012.01.095

URL : https://hal.archives-ouvertes.fr/cea-00677078

L. Ouatani, R. Dedryvère, C. Siret, P. B. , and D. G. , Effect of Vinylene Carbonate Additive in Li-Ion Batteries: Comparison of LiCoO[sub 2]???C, LiFePO[sub 4]???C, and LiCoO[sub 2]???Li[sub 4]Ti[sub 5]O[sub 12] Systems, Journal of The Electrochemical Society, vol.10, issue.121, pp.468-447, 2009.
DOI : 10.1038/nmat2230

K. Schroder, The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes, Chemistry of Materials, vol.27, issue.16, pp.5531-5542, 2015.
DOI : 10.1021/acs.chemmater.5b01627

W. Zhang, Surface film formation on TiSnSb electrodes: Impact of electrolyte additives, Journal of Power Sources, vol.268, pp.645-657, 2014.
DOI : 10.1016/j.jpowsour.2014.06.041

URL : https://hal.archives-ouvertes.fr/hal-01058738

H. Wilhelm, C. Marino, . Darwiche, L. Monconduit, and B. Lestriez, Significant electrochemical performance improvement of TiSnSb as anode material for Li-ion batteries with composite electrode formulation and the use of VC and FEC electrolyte additives, Electrochemistry Communications, vol.24, pp.89-92, 2012.
DOI : 10.1016/j.elecom.2012.08.023

URL : https://hal.archives-ouvertes.fr/hal-00743338

J. B. Leriche, An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron Radiation, Journal of The Electrochemical Society, vol.157, issue.5, pp.606-610, 2010.
DOI : 10.1016/j.jpowsour.2008.08.055

URL : https://hal.archives-ouvertes.fr/hal-00477327

R. Morschhäuser, Microwave-assisted continuous flow synthesis on industrial scale, Green Processing and Synthesis, vol.1, issue.3, pp.281-290, 2012.
DOI : 10.1515/gps-2012-0032

K. Cherian, Microwave enhanced solid state synthesis of battery materials, Adv. Mater. Process, vol.169, pp.23-27, 2011.

. Synotherm, Synotherm microwave devices

B. 1. Kolobyanina, T. Kabalkina, S. Vereshchagin, L. Kachan, M. Losev et al., A high pressure unit for X-ray diffractometer DRON-1, pp.207-211, 1972.

A. G. Hybinette and G. Hagg, X-ray studies on the systems tin-antimony and tin-arsenic, Philos. Mag. J

C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science, vol.46, issue.1-2, pp.1-184, 2001.
DOI : 10.1016/S0079-6425(99)00010-9

URL : http://www.ndsl.kr/soc_img/society/kpmi/BMOGBP/2006/v13n5s58/BMOGBP_2006_v13n5s58_371.pdf

T. Ohtani, M. Motoki, K. Koh, and K. Ohshima, Synthesis of binary copper chalcogenides by mechanical alloying, Materials Research Bulletin, vol.30, issue.12, pp.1495-1504, 1995.
DOI : 10.1016/0025-5408(95)00155-7

E. Hellstern and H. Fecht, Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu, Journal of Applied Physics, vol.36, issue.1, pp.305-310, 1989.
DOI : 10.1016/0001-6160(87)90038-1

H. Bakker, G. F. Zhou, and H. Yang, Mechanically driven disorder and phase transformations in alloys, Progress in Materials Science, vol.39, issue.3, pp.159-241, 1995.
DOI : 10.1016/0079-6425(95)00001-1

A. Ian, &. Courtney, and J. Dahn, Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Uthium with Tin Oxide Composites, J. Electrochem. Soc, vol.144, pp.2045-2052, 1997.

C. Kim, M. Noh, M. Choi, J. Cho, and B. Park, Critical Size of a Nano SnO Electrode for Li-Secondary Battery Critical Size of a Nano SnO 2 Electrode for Li-Secondary Battery, Society, vol.17, pp.3297-3301, 2005.

A. Jahel, C. M. Ghimbeu, L. Monconduit, and C. Vix-guterl, Confined ultrasmall SnO2 particles in micro/mesoporous carbon as an extremely long cycle-life anode material for Li-ion batteries, Adv. Energy Mater, vol.4, pp.1-7, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01058742

J. Qu, Scalable synthesis of ultrasmall SnO 2 nanocrystals in carbon conductive matrices: High loading and excellent electrochemical performance, Journal of Alloys and Compounds, vol.686, pp.122-129, 2016.
DOI : 10.1016/j.jallcom.2016.06.007

C. Zhu, Confined SnO2 quantum-dot clusters in graphene sheets as high-performance anodes for lithium-ion batteries, Scientific Reports, vol.80, issue.1, p.25829, 2016.
DOI : 10.1021/ja01539a017

R. Hu, -based electrodes: the effect of nanostructure on high initial reversible capacity, Energy & Environmental Science, vol.136, issue.2, pp.595-603, 2015.
DOI : 10.1021/ja410137s

F. J. Fernandez-madrigal, Sn M??ssbauer Spectroscopy Study of SnSb-Based Electrode Materials, Chemistry of Materials, vol.14, issue.7, pp.2962-2968, 2002.
DOI : 10.1021/cm0112800

L. Baggetto, The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb M??ssbauer spectroscopies, Journal of Power Sources, vol.267, pp.329-336, 2014.
DOI : 10.1016/j.jpowsour.2014.05.083

J. Chouvin, SnO reduction in lithium cells: study by X-ray absorption, 119Sn M??ssbauer spectroscopy and X-ray diffraction, Journal of Electroanalytical Chemistry, vol.494, issue.2, pp.136-146, 2000.
DOI : 10.1016/S0022-0728(00)00357-0

I. Sandu, T. Brousse, D. M. Schleich, and M. Danot, SnO2 negative electrode for lithium ion cell: in situ M??ssbauer investigation of chemical changes upon discharge, Journal of Solid State Chemistry, vol.177, issue.11, pp.4332-4340, 2004.
DOI : 10.1016/j.jssc.2004.06.032

S. Chen, Phase Equilibria of the Sn-Sb Binary System, Journal of Electronic Materials, vol.20, issue.7, pp.992-1002, 2008.
DOI : 10.1080/14786443508561534

H. Okamoto, Sb-Sn (Antimony-Tin). J. Phase Equilibria Diffus, pp.347-347, 2012.
DOI : 10.1007/s11669-012-0054-8

URL : https://link.springer.com/content/pdf/10.1007%2Fs11669-012-0054-8.pdf

J. Connolly, Introduction quantitative X-ray diffraction methods, pp.400-402, 2012.

M. Winter and J. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochimica Acta, vol.45, issue.1-2, pp.31-50, 1999.
DOI : 10.1016/S0013-4686(99)00191-7

S. Grugeon, Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium, Journal of The Electrochemical Society, vol.55, issue.4, p.285, 2001.
DOI : 10.1016/0022-4596(84)90278-0

N. Pereira, Particle size and multiphase effects on cycling stability using tin-based materials, Solid State Ionics, vol.167, issue.1-2, pp.29-40, 2004.
DOI : 10.1016/j.ssi.2004.01.001

P. Antitomaso, Ultra-fast dry microwave preparation of SnSb used as negative electrode material for Li-ion batteries, Journal of Power Sources, vol.325, pp.346-350, 2016.
DOI : 10.1016/j.jpowsour.2016.06.010

J. Yang, Y. Takeda, N. Imanishi, J. Y. Xie, and O. Yamamoto, Intermetallic SnSb x compounds for lithium insertion hosts, pp.189-194, 2000.

M. M. Thackeray, Structural considerations of intermetallic electrodes for lithium batteries, Journal of Power Sources, vol.113, issue.1, pp.124-130, 2003.
DOI : 10.1016/S0378-7753(02)00538-4

L. Pics-de-l-'étain, quant à eux, sont de plus en plus intenses jusqu'à atteindre un maximum à 3.2 lithium, puis complétement disparaitre à 3.8 lithium. Simultanément, une nouvelle série de pics (19, 3°, 24.5°, 28.5° et 31.4°) apparait correspondant au premier alliage lithié d'étain Li2Sn5 cristallisant dans le système quadratique 5, pp.1-74

B. 1. Yang, J. Takeda, Y. Imanishi, N. Xie, J. Y. Yamamoto et al., Intermetallic SnSb x compounds for lithium insertion hosts, pp.189-194, 2000.
DOI : 10.1016/s0167-2738(00)00749-9

F. J. Fernandez-madrigal, Sn M??ssbauer Spectroscopy Study of SnSb-Based Electrode Materials, Chemistry of Materials, vol.14, issue.7, pp.2962-2968, 2002.
DOI : 10.1021/cm0112800

M. M. Thackeray, Structural considerations of intermetallic electrodes for lithium batteries, Journal of Power Sources, vol.113, issue.1, pp.124-130, 2003.
DOI : 10.1016/S0378-7753(02)00538-4

J. Sangster and . Pelton, The Li-Sb (Lithium-Antimony) System, Journal of Phase Equilibria, vol.14, issue.4, pp.514-517, 1993.
DOI : 10.1515/znb-1977-0326

W. Gasior and W. Zakulski, Thermodynamic studies and the phase diagram of the Li-Sn system, Journal of Non-Crystalline Solids, vol.205, issue.207, pp.379-382, 1996.
DOI : 10.1016/S0022-3093(96)00446-2

K. C. Hewitt, L. Y. Beaulieu, and J. Dahn, Electrochemistry of InSb as a Li Insertion Host: Problems and Prospects, Journal of The Electrochemical Society, vol.133, issue.5, p.402, 2001.
DOI : 10.1149/1.2108601

R. Dunlap, D. Small, D. D. Macneil, M. N. Obrovac, and J. Dahn, A M??ssbauer effect investigation of the Li???Sn system, Journal of Alloys and Compounds, vol.289, issue.1-2, pp.135-142, 1999.
DOI : 10.1016/S0925-8388(99)00165-6

F. Robert, M??ssbauer spectra as a ???fingerprint??? in tin???lithium compounds: Applications to Li-ion batteries, Journal of Solid State Chemistry, vol.180, issue.1, pp.339-348, 2007.
DOI : 10.1016/j.jssc.2006.10.026

L. Baggetto, Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory, Journal of Materials Chemistry A, vol.11, issue.27, p.7985, 2013.
DOI : 10.1038/nmat3393

M. E. Leonova, High-pressure phase transition of hexagonal alkali pnictides, Inorganic Materials, vol.39, issue.3, pp.266-270, 2003.
DOI : 10.1023/A:1022629709143

G. Brauer and F. Zintl, The constitution of phosphide, arsenide, antimonide and bismutide of lithium, natrium and kalium, Zeitschrift fur Phys. Chemie, Chemie der Elem. Aufbau der Mater, pp.323-352, 1937.

M. Saubanère, B. Yahia, M. Lemoigno, F. Doublet, and M. L. , Influence of polymorphism on the electrochemical behavior of MxSb negative electrodes in Li/Na batteries, Journal of Power Sources, vol.280, pp.695-702, 2015.
DOI : 10.1016/j.jpowsour.2015.01.093

P. K. Allan, Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy, Journal of the American Chemical Society, vol.138, issue.7, pp.2352-2365, 2016.
DOI : 10.1021/jacs.5b13273

J. Yang, Y. Takeda, N. Imanishi, and O. Yamamoto, Ultrafine Sn and SnSb[sub 0.14] Powders for Lithium Storage Matrices in Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.146, issue.11, p.4009, 1999.
DOI : 10.1149/1.1392584

J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacín, Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions, Advanced Materials, vol.127, issue.8, pp.170-192, 2010.
DOI : 10.1002/adma.201000717

URL : https://hal.archives-ouvertes.fr/hal-00528312

N. Yamakawa, M. Jiang, B. Key, and C. P. Grey, Identifying the Local Structures Formed during Lithiation of the Conversion Material, Iron Fluoride, in a Li Ion Battery: A Solid-State NMR, X-ray Diffraction, and Pair Distribution Function Analysis Study, Journal of the American Chemical Society, vol.131, issue.30, pp.10525-10536, 2009.
DOI : 10.1021/ja902639w

C. Marino, Role of Structure and Interfaces in the Performance of TiSnSb as an Electrode for Li-Ion Batteries, Chemistry of Materials, vol.24, issue.24, 2012.
DOI : 10.1021/cm303086j

M. Winter and J. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochimica Acta, vol.45, issue.1-2, pp.31-50, 1999.
DOI : 10.1016/S0013-4686(99)00191-7

A. Ian, &. Courtney, and J. Dahn, Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Uthium with Tin Oxide Composites, J. Electrochem. Soc, vol.144, pp.2045-2052, 1997.

D. Applestone, S. Yoon, and A. Manthiram, Cu2Sb???Al2O3???C nanocomposite alloy anodes with exceptional cycle life for lithium ion batteries, Journal of Materials Chemistry, vol.21, issue.7, p.3242, 2012.
DOI : 10.1021/cm9000043

A. Jahel, C. M. Ghimbeu, L. Monconduit, and C. Vix-guterl, Confined ultrasmall SnO2 particles in micro/mesoporous carbon as an extremely long cycle-life anode material for Li-ion batteries, Adv. Energy Mater, vol.4, pp.1-7, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01058742

B. 1. Bandhauer, T. M. Garimella, S. Fuller, and T. , A Critical Review of Thermal Issues in Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.68, issue.3, p.1, 2011.
DOI : 10.1149/1.2129270

T. Waldmann, M. Wilka, M. Kasper, M. Fleischhammer, and M. Wohlfahrt-mehrens, Temperature dependent ageing mechanisms in Lithium-ion batteries ??? A Post-Mortem study, Journal of Power Sources, vol.262, pp.129-135, 2014.
DOI : 10.1016/j.jpowsour.2014.03.112

L. Castro, Aging Mechanisms of LiFePO4 ?????? Graphite Cells Studied by XPS: Redox Reaction and Electrode???Electrolyte Interfaces, Journal of The Electrochemical Society, vol.159, issue.4, pp.357-363, 2012.
DOI : 10.1016/j.fluid.2011.03.007

K. Amine, J. Liu, and I. Belharouak, High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells, Electrochemistry Communications, vol.7, issue.7, pp.669-673, 2005.
DOI : 10.1016/j.elecom.2005.04.018

P. Ramadass, B. Haran, R. White, and B. N. Popov, Capacity fade of Sony 18650 cells cycled at elevated temperatures Part I . Cycling performance, pp.606-613, 2002.

M. Ryou, Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells, Electrochimica Acta, vol.55, issue.6, pp.2073-2077, 2010.
DOI : 10.1016/j.electacta.2009.11.036

D. Guo, Facile synthesis of LiAl0.1Mn1.9O4 as cathode material for lithium ion batteries: towards rate and cycling capabilities at an elevated temperature, Electrochimica Acta, vol.134, pp.338-346, 2014.
DOI : 10.1016/j.electacta.2014.04.117

A. Touidjine, Optimisation de l'électrode négative à base de silicium pour les batteries lithium_ion, 2016.

W. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, Journal of Power Sources, vol.196, issue.1, pp.13-24, 2011.
DOI : 10.1016/j.jpowsour.2010.07.020

A. Magasinski, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nature Materials, vol.299, issue.8, pp.353-358, 2010.
DOI : 10.1016/S0021-8502(03)00029-6

S. Yoon, A. Manthiram, . Sb-mo-x-c-(-m-=-al, . Ti, and . Mo, Nanocomposite Anodes for Lithium-Ion Batteries, pp.3898-390410, 2009.

D. Mazouzi, B. Lestriez, . Roue?, L. Roue?, and D. Guyomard, Silicon Composite Electrode with High Capacity and Long Cycle Life, Electrochemical and Solid-State Letters, vol.12, issue.11, p.215, 2009.
DOI : 10.1016/S0927-0248(03)00107-7

URL : https://hal.archives-ouvertes.fr/hal-00432831

N. S. Hochgatterer, Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability, Electrochemical and Solid-State Letters, vol.7, issue.5, p.76, 2008.
DOI : 10.1149/1.2719644

L. Fan, Comparison between SnSb???C and Sn???C composites as anode materials for lithium-ion batteries, RSC Adv., vol.13, issue.82, pp.62301-62307, 2014.
DOI : 10.1021/nl303823k

J. Hassoun, G. Derrien, S. Panero, and B. Scrosati, A SnSb???C nanocomposite as high performance electrode for lithium ion batteries, Electrochimica Acta, vol.54, issue.19, pp.4441-4444, 2009.
DOI : 10.1016/j.electacta.2009.03.027

M. He, Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb, Nanoscale, vol.5, issue.18, pp.10-1039, 2014.
DOI : 10.1021/am4023994

J. Li, Spherical nano-SnSb/MCMB/carbon core???shell composite for high stability lithium ion battery anodes, Electrochimica Acta, vol.113, pp.505-513, 2013.
DOI : 10.1016/j.electacta.2013.09.130

C. M. Park and H. J. Sohn, A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries, Electrochimica Acta, vol.54, issue.26, pp.6367-6373, 2009.
DOI : 10.1016/j.electacta.2009.06.004

J. Zhang, Electrochemical fabrication of porous Sn/SnSb negative electrodes from mixed SnO2???Sb2O3, Electrochemistry Communications, vol.38, pp.36-39, 2014.
DOI : 10.1016/j.elecom.2013.10.030

F. Leng, C. M. Tan, and M. Pecht, Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature, Scientific Reports, vol.5, issue.1, p.12967, 2015.
DOI : 10.1007/978-94-017-0843-2_3

L. Luo, J. Wu, J. Luo, J. Huang, and V. P. Dravid, Dynamics of Electrochemical Lithiation/Delithiation of Graphene-Encapsulated Silicon Nanoparticles Studied by In-situ TEM, Scientific Reports, vol.100, issue.1, p.3863, 2014.
DOI : 10.1063/1.3689781

J. Wang, Y. K. Chen-wiegart, and J. Wang, In situ chemical mapping of a lithium-ion battery using full-field hard X-ray spectroscopic imaging, Chemical Communications, vol.156, issue.58, pp.6480-6482, 2013.
DOI : 10.1149/1.3111037

L. O. Valøen and J. N. Reimers, Transport Properties of LiPF[sub 6]-Based Li-Ion Battery Electrolytes, Journal of The Electrochemical Society, vol.119, issue.121, p.882, 2005.
DOI : 10.1149/1.1392512

W. Zhang, Surface film formation on TiSnSb electrodes: Impact of electrolyte additives, Journal of Power Sources, vol.268, pp.645-657, 2014.
DOI : 10.1016/j.jpowsour.2014.06.041

URL : https://hal.archives-ouvertes.fr/hal-01058738

K. Schroder, The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes, Chemistry of Materials, vol.27, issue.16, pp.5531-5542, 2015.
DOI : 10.1021/acs.chemmater.5b01627

L. Baggetto, Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory, Journal of Materials Chemistry A, vol.11, issue.27, p.7985, 2013.
DOI : 10.1038/nmat3393

P. Verma, P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, vol.55, issue.22, pp.6332-6341, 2010.
DOI : 10.1016/j.electacta.2010.05.072

X. Cheng, A Review of Solid Electrolyte Interphases on Lithium Metal Anode, Advanced Science, vol.51, issue.98, 2015.
DOI : 10.1016/j.elecom.2014.12.008

Z. Wang, J. Xu, W. Yao, Y. Yao, and Y. Yang, Fluoroethylene Carbonate as an Electrolyte Additive for Improving the Performance of Mesocarbon Microbead Electrode, Electrochem. Soc. Trans. 41, pp.29-40, 2012.
DOI : 10.1149/1.4717960

M. T. Sougrati, TiSnSb a new efficient negative electrode for Li-ion batteries: mechanism investigations by operando-XRD and M??ssbauer techniques, Journal of Materials Chemistry, vol.90, issue.1, p.10069, 2011.
DOI : 10.1016/S0378-7753(00)00449-3

D. Aurbach, B. Markovsky, A. Shechter, Y. Ein?eli, and H. Cohen, A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate-Dimethyl Carbonate Mixtures, Journal of The Electrochemical Society, vol.143, issue.12, pp.3809-3820, 1996.
DOI : 10.1149/1.1837300

L. Bodenes, Lithium secondary batteries working at very high temperature: Capacity fade and understanding of aging mechanisms, Journal of Power Sources, vol.236, pp.265-275, 2013.
DOI : 10.1016/j.jpowsour.2013.02.067

URL : https://hal.archives-ouvertes.fr/hal-00806316

K. Tasaki, Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents, Journal of The Electrochemical Society, vol.27, issue.12, pp.1019-1027, 2009.
DOI : 10.1016/j.electacta.2006.10.045