Optomechanical transduction applied to M/NEMS devices - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2017

Optomechanical transduction applied to M/NEMS devices

Transduction optomécanique appliquée aux dispositifs M/NEMS

Résumé

During several last years, technological advances in the field of silicon micromachininghave initiated the industrial growth of Micro/Nano Electro Mechanical Systems(M/NEMS) for fabricating sensors or actuators.In the field of NEMS with sub-micron sizes, the properties allow for targeting applicationsin biomedical or biochemical analyses. It has been demonstrated that thesenano mass (or force) sensors achieve resolutions of the order of zeptogram (10−21 g)or picoNewton, hence allowing early diagnosis of certain cancers.Transduction schemes of these systems are currently based on electrical principles:many teams have nevertheless shown that photonics operates and detects tiny displacementin the order of femtometer. This hybrid technology, photonic circuitassociated with M/NEMS, potentially offers a significant improvement compared toelectrical transduction.The purpose of the thesis consists of developing the optomechanical transductionfor NEMS resonators displacement. A simple analytical model is presented togetherwith a numerical simulation. The performance of optical detection is compared toelectrical detection features. The comparison is based on objective criteria (sensitivity,noise, crowding) for designing original optomechanical structures. A dedicatedbench has been developed for the optical and mechanical characterizations of thesamples placed in a controlled environment. Measurements on fabricated devicesallow a better understanding of the design constrains and, more in general, of theoptomechanical detection applied to NEMS.i
Au cours de ces dernières années, les progrès technologiques dans le domaine dumicro-usinage sur silicium ont permis le développement de Micro/Nano SystèmesÉlectro Mécaniques (M/NEMS) pour réaliser des capteurs ou des actionneurs.Dans le domaine des NEMS, dont les dimensions sont par définition submicroniques,les propriétés obtenues permettent de viser des applications en analyse biochimiqueou biomédicale. Il a été démontré que ces nano capteurs de masse (ou de force)atteignent des résolutions de l’ordre du zeptogramme (10−21 g) ou du picoNewtonce qui permet d’envisager des diagnostics précoces de certains cancers.Tous ces systèmes utilisent `a l’heure actuelle des moyens d’actionnement et dedétection électriques: de nombreuses équipes ont néanmoins démontré que la photoniqueactionne et détecte des mouvements de très faibles amplitudes, de l’ordredu femtomètre. Cette technologie hybride, circuit photonique associé au M/NEMS,offre potentiellement un gain de performance important par rapport aux moyens detransduction électromécanique.L’objectif de la thèse est le développement de la transduction optomécanique afinde détecter le déplacement de résonateurs NEMS. Un simple modèle analytique estproposé avec le support d’un simulation numérique. Les performances de transductionoptique sont comparées aux caractéristiques de la transduction électrique. Lacomparaison se base sur des critères objectifs (sensibilité, bruit, encombrement) puisde proposer des structures optomécaniques originales. Un banc de caractérisationoptique et mécanique est développé pour la caractérisation des échantillons dans unenvironnement contrôlé. Des mesures sur des composants fabriqués permettent demieux appréhender les contraintes de dimensionnement et, de façon plus général, latransduction optomécanique appliqué aux dispositifs NEMS.
Fichier principal
Vignette du fichier
LEONCINO_2017_diffusion.pdf (12.63 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01757058 , version 1 (03-04-2018)

Identifiants

  • HAL Id : tel-01757058 , version 1

Citer

Luca Leoncino. Optomechanical transduction applied to M/NEMS devices. Optics [physics.optics]. Université Grenoble Alpes, 2017. English. ⟨NNT : 2017GREAY067⟩. ⟨tel-01757058⟩
299 Consultations
244 Téléchargements

Partager

Gmail Facebook X LinkedIn More