M. Mirmehdi, X. Xie, and J. Suri, Handbook of texture analysis, 2009.
DOI : 10.1142/p547

T. Ojala, M. Pietikäinen, and D. Harwood, A comparative study of texture measures with classification based on featured distributions, Pattern Recognition, vol.29, issue.1, pp.51-59, 1996.
DOI : 10.1016/0031-3203(95)00067-4

N. Asada and T. Matsuyama, Color image analysis by varying camera aperture, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition, pp.466-469, 1992.
DOI : 10.1109/ICPR.1992.201601

T. Ojala, M. Pietikäinen, and T. Mäenpää, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.7, pp.971-987, 2002.
DOI : 10.1109/TPAMI.2002.1017623

URL : http://www.ee.oulu.fi/research/imag/texture/publications/show_pdf.php?ID=94

F. Bianconi, R. Harvey, P. Southam, and A. Fernández, Theoretical and experimental comparison of different approaches for color texture classification, Journal of Electronic Imaging, vol.20, issue.4, pp.43006-043006, 2011.
DOI : 10.1117/1.3651210

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, The Journal of Machine Learning Research, vol.3, pp.1157-1182, 2003.

D. Huang, C. Shan, M. Ardabilian, Y. Wang, and L. Chen, Local Binary Patterns and Its Application to Facial Image Analysis: A Survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol.41, issue.6, pp.41765-781, 2011.
DOI : 10.1109/TSMCC.2011.2118750

URL : https://hal.archives-ouvertes.fr/hal-01354386

A. Porebski, N. Vandenbroucke, and D. Hamad, LBP histogram selection for supervised color texture classification, 2013 IEEE International Conference on Image Processing, pp.3239-3243, 2013.
DOI : 10.1109/ICIP.2013.6738667

M. Kalakech, A. Porebski, N. Vandenbroucke, and D. Hamad, A new LBP histogram selection score for color texture classification, 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA), pp.242-247, 2015.
DOI : 10.1109/IPTA.2015.7367138

Y. Guo, G. Zhao, M. Pietikäinen, and Z. Xu, Descriptor Learning Based on Fisher Separation Criterion for Texture Classification, Proceedings of the 10th Asian Conference on Computer Vision, pp.185-198, 2010.
DOI : 10.1162/jocn.1991.3.1.71

A. Drimbarean and P. F. Whelan, Experiments in colour texture analysis, Pattern Recognition Letters, vol.22, issue.10, pp.1161-1167, 2001.
DOI : 10.1016/S0167-8655(01)00058-7

C. Palm and T. M. Lehmann, Classification of color textures by Gabor filtering, Machine Graphics & Vision International Journal, vol.11, issue.23, pp.195-219, 2002.

T. Mäenpää and M. Pietikäinen, Classification with color and texture: jointly or separately? Pattern Recognition, pp.1629-1640, 2004.

S. Banerji, A. Verma, and C. Liu, LBP and Color Descriptors for Image Classification, Cross Disciplinary Biometric Systems, pp.205-225, 2012.
DOI : 10.1007/978-3-642-28457-1_10

R. Khan, J. Van-de-weijer, F. S. Khan, D. Muselet, C. Ducottet et al., Discriminative Color Descriptors, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.2866-2873, 2013.
DOI : 10.1109/CVPR.2013.369

URL : https://hal.archives-ouvertes.fr/ujm-00854763

F. S. Khan, J. Van-de-weijer, S. Ali, and M. Felsberg, Evaluating the Impact of Color on Texture Recognition, International Conference on Computer Analysis of Images and Patterns, pp.154-162, 2013.
DOI : 10.1007/978-3-642-40261-6_18

N. Vandenbroucke, L. Busin, and L. Macaire, Unsupervised color-image segmentation by multicolor space iterative pixel classification, Journal of Electronic Imaging, vol.24, issue.2, pp.23032-023032, 2015.
DOI : 10.1117/1.JEI.24.2.023032

URL : https://hal.archives-ouvertes.fr/hal-01145224

D. T. Berry, Colour recognition using spectral signatures, Pattern Recognition Letters, vol.6, issue.1, pp.69-75, 1987.
DOI : 10.1016/0167-8655(87)90051-1

C. Garbay, G. Brugal, and C. Choquet, Application of colored image analysis to bone marrow cell recognition, Analytical and quantitative cytology, vol.3, issue.4, pp.272-280, 1981.

M. J. Swain and D. H. Ballard, Color indexing, International Journal of Computer Vision, vol.31, issue.1, pp.11-32, 1991.
DOI : 10.1007/978-1-4899-5379-7

Y. Ohta, T. Kanade, and T. Sakai, Color information for region segmentation, Computer Graphics and Image Processing, vol.13, issue.3, pp.222-241, 1980.
DOI : 10.1016/0146-664X(80)90047-7

P. Lambert and T. Carron, Symbolic fusion of luminance-hue-chroma features for region segmentation, Pattern Recognition, vol.32, issue.11, pp.1857-1872, 1999.
DOI : 10.1016/S0031-3203(99)00010-2

T. Y. Shih, The reversibility of six geometric color spaces Photogrammmetric Engineering & Remote Sensing, pp.611223-1232, 1995.

A. Hanbury and J. Serra, A 3d-polar coordinate colour representation suitable for image analysis, Proceedings of the 13th Scandinavian conference on Image analysis, pp.804-811, 2002.

M. Tuceryan and A. K. Jain, Texture analysis. Handbook of pattern recognition and computer vision, pp.207-248, 1993.

S. W. Zucker, Toward a model of texture, Computer Graphics and Image Processing, vol.5, issue.2, pp.190-202, 1976.
DOI : 10.1016/0146-664X(76)90027-7

J. Sklansky, Image Segmentation and Feature Extraction, IEEE Transactions on Systems, Man, and Cybernetics, vol.8, issue.4, pp.237-247, 1978.
DOI : 10.1109/TSMC.1978.4309944

S. Livens, P. Scheunders, G. Wouwer, and D. Van-dyck, Wavelets for texture analysis, an overview, 6th International Conference on Image Processing and its Applications, pp.581-585, 1997.
DOI : 10.1049/cp:19970958

R. M. Haralick and L. G. Shapiro, Computer and robot vision, 1992.

B. Julesz, Textons, the elements of texture perception and their interactions, Nature, vol.32, issue.5802, pp.91-97, 1981.
DOI : 10.1098/rstb.1980.0091

F. Bianconi and A. Fernández, An appendix to ???Texture databases ??? A comprehensive survey???, Pattern Recognition Letters, vol.45, pp.33-38, 2014.
DOI : 10.1016/j.patrec.2014.02.017

C. Cusano, P. Napoletano, and R. Schettini, Combining local binary patterns and local color contrast for texture classification under varying illumination, Journal of the Optical Society of America A, vol.31, issue.7, p.311453, 2014.
DOI : 10.1364/JOSAA.31.001453

H. Permuter, J. Francos, and I. Jermyn, A study of Gaussian mixture models of color and texture features for image classification and segmentation, Pattern Recognition, vol.39, issue.4, pp.695-706, 2006.
DOI : 10.1016/j.patcog.2005.10.028

C. Palm, Color texture classification by integrative Co-occurrence matrices, Pattern Recognition, vol.37, issue.5, pp.965-976, 2004.
DOI : 10.1016/j.patcog.2003.09.010

O. J. Hernandez, J. Cook, M. Griffin, C. De-rama, and M. Mcgovern, Classification of color textures with random field models and neural networks, Journal of Computer Science & Technology, vol.5, 2005.

C. Vertan, M. Ciuc, V. Buzuloiu, and C. Fernandez-maloigne, Compact color-texture run-length description for ornamental stones recognition and indexing, Machine Vision Applications in Industrial Inspection X, 2002.

T. Mäenpää, J. Viertola, and M. Pietikäinen, Optimising Colour and Texture Features for Real-time Visual Inspection, Pattern Analysis & Applications, vol.6, issue.3, pp.169-175, 2003.
DOI : 10.1007/s10044-002-0179-1

F. López, J. M. Valiente, J. M. Prats, and A. Ferrer, Performance evaluation of soft color texture descriptors for surface grading using experimental design and logistic regression, Pattern Recognition, vol.41, issue.5, pp.1744-1755, 2008.
DOI : 10.1016/j.patcog.2007.09.011

V. Arvis, C. Debain, M. Berducat, and A. Benassi, GENERALIZATION OF THE COOCCURRENCE MATRIX FOR COLOUR IMAGES: APPLICATION TO COLOUR TEXTURE CLASSIFICATION, Image Analysis & Stereology, vol.23, issue.1, pp.63-72, 2004.
DOI : 10.5566/ias.v23.p63-72

W. Polzleitner and G. Schwingshakl, <title>Real-time color-based texture analysis for sophisticated defect detection on wooden surfaces</title>, Intelligent Robots and Computer Vision XXII: Algorithms, Techniques, and Active Vision, pp.54-69, 2004.
DOI : 10.1117/12.580135

J. Martinez-alajarin, J. D. Luis-delgado, and L. M. Tomas-balibrea, Automatic System for Quality-Based Classification of Marble Textures, IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), vol.35, issue.4, pp.488-497, 2005.
DOI : 10.1109/TSMCC.2004.843236

X. Xie and M. Mirmehdi, TEXEMS: Texture Exemplars for Defect Detection on Random Textured Surfaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.8, pp.1454-1464, 2007.
DOI : 10.1109/TPAMI.2007.1038

M. A. Akhloufi, X. Maldague, and W. B. Larbi, A New Color-Texture Approach for Industrial Products Inspection, Journal of Multimedia, vol.3, issue.3, 2008.
DOI : 10.4304/jmm.3.3.44-50

A. Porebski, N. Vandenbroucke, and L. Macaire, Haralick feature extraction from LBP images for color texture classification, 2008 First Workshops on Image Processing Theory, Tools and Applications, pp.1-8, 2008.
DOI : 10.1109/IPTA.2008.4743780

A. Ledoux, O. Losson, and L. Macaire, Color local binary patterns: compact descriptors for texture classification, Journal of Electronic Imaging, vol.25, issue.6, p.61404, 2016.
DOI : 10.1117/1.JEI.25.6.061404

URL : https://hal.archives-ouvertes.fr/hal-01312561

K. Sande, T. Gevers, and C. Snoek, Evaluating Color Descriptors for Object and Scene Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.9, pp.1582-1596, 2010.
DOI : 10.1109/TPAMI.2009.154

N. Vandenbroucke, O. Alata, C. Lecomte, A. Porebski, and I. Qazi, Color texture attributes, Digital Color Imaging, pp.193-240, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00767465

C. Zheng, -. W. Da, L. Sun, and . Zheng, A new region-primitive method for classification of colour meat image texture based on size, orientation, and contrast, Meat Science, vol.76, issue.4, pp.620-627, 2007.
DOI : 10.1016/j.meatsci.2007.02.003

A. Koschan, A comparative study on color edge detection, Proceedings of the 2nd Asian Conference on Computer Vision, pp.574-578, 1995.

A. Sinha, S. Banerji, and C. Liu, Novel color Gabor-LBP-PHOG (GLP) descriptors for object and scene image classification, Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP '12, p.58, 2012.
DOI : 10.1145/2425333.2425391

G. Van-de-wouwer, P. Scheunders, S. Livens, and D. Van-dyck, Wavelet correlation signatures for color texture characterization, Pattern Recognition, vol.32, issue.3, pp.443-451, 1999.
DOI : 10.1016/S0031-3203(98)00035-1

Q. Xu, J. Yang, and S. Ding, Color texture analysis using the wavelet-based hidden Markov model, Pattern Recognition Letters, vol.26, issue.11, pp.1710-1719, 2005.
DOI : 10.1016/j.patrec.2005.01.013

P. S. Hiremath, S. Shivashankar, and J. Pujari, Wavelet based features for color texture classification with application to CBIR, International Journal of Computer Science and Network Security, vol.6, issue.9A, pp.124-133, 2006.

M. Pietikäinen, T. Mäenpää, and J. Viertola, Color texture classification with color histograms and local binary patterns, Workshop on Texture Analysis in Machine Vision, pp.109-112, 2002.

R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural Features for Image Classification, IEEE Transactions on Systems, Man, and Cybernetics, vol.3, issue.6, pp.610-621, 1973.
DOI : 10.1109/TSMC.1973.4309314

A. Rosenfeld, Multispectral texture, IEEE Transactions on Systems, Man, and Cybernetics, vol.12, issue.1, pp.79-84, 1982.
DOI : 10.21236/ADA096409

R. Pydipati, T. F. Burks, and W. S. Lee, Identification of citrus disease using color texture features and discriminant analysis, Computers and Electronics in Agriculture, vol.52, issue.1-2, pp.49-59, 2006.
DOI : 10.1016/j.compag.2006.01.004

C. Münzenmayer, H. Volk, C. Küblbeck, K. Spinnler, and T. Wittenberg, Multispectral Texture Analysis Using Interplane Sum- and Difference-Histograms, Proceedings of the 24th DAGM Symposium on Pattern Recognition, pp.42-49, 2002.
DOI : 10.1007/3-540-45783-6_6

T. Mäenpää, M. Pietikainen, and J. Viertola, Separating color and pattern information for color texture discrimination, Object recognition supported by user interaction for service robots, pp.668-671, 2002.
DOI : 10.1109/ICPR.2002.1044840

S. H. Lee, J. Y. Choi, Y. M. Ro, and K. N. Plataniotis, Local Color Vector Binary Patterns From Multichannel Face Images for Face Recognition, IEEE Transactions on Image Processing, vol.21, issue.4, pp.2347-2353, 2012.
DOI : 10.1109/TIP.2011.2181526

P. Vácha, M. Haindl, and T. Suk, Colour and rotation invariant textural features based on Markov random fields, Pattern Recognition Letters, vol.32, issue.6, pp.771-779, 2011.
DOI : 10.1016/j.patrec.2011.01.002

A. Bosch, A. Zisserman, and X. Muñoz, Scene Classification Via pLSA, European conference on computer vision, pp.517-530, 2006.
DOI : 10.1007/978-3-540-27814-6_27

A. Sinha, S. Banerji, and C. Liu, New color GPHOG descriptors for object and scene image classification. Machine Vision and Applications, pp.361-375, 2014.

F. Sandid and A. Douik, Robust color texture descriptor for material recognition, Pattern Recognition Letters, vol.80, pp.15-23, 2016.
DOI : 10.1016/j.patrec.2016.05.010

L. Liu, P. Fieguth, Y. Guo, X. Wang, and M. Pietikäinen, Local binary features for texture classification: Taxonomy and experimental study, Pattern Recognition, vol.62, pp.135-160, 2017.
DOI : 10.1016/j.patcog.2016.08.032

X. Tan and B. Triggs, Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions, International Workshop on Analysis and Modeling of Faces and Gestures, pp.168-182, 2007.
DOI : 10.1007/978-3-540-75690-3_13

URL : https://hal.archives-ouvertes.fr/inria-00548674

M. Heikkilä, M. Pietikäinen, and C. Schmid, Description of interest regions with local binary patterns, Pattern Recognition, vol.42, issue.3, pp.425-436, 2009.
DOI : 10.1016/j.patcog.2008.08.014

K. Wang, C. Bichot, Z. Chao, and L. Bailin, Pixel to Patch Sampling Structure and Local Neighboring Intensity Relationship Patterns for Texture Classification, IEEE Signal Processing Letters, vol.20, issue.9, pp.853-856, 2013.
DOI : 10.1109/LSP.2013.2270405

URL : https://hal.archives-ouvertes.fr/hal-01339227

M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha et al., BRIEF: Computing a Local Binary Descriptor Very Fast, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.7, pp.1281-1298, 2012.
DOI : 10.1109/TPAMI.2011.222

L. Li, L. Yunli, P. W. Fieguth, L. Songyang, and Z. Guoying, BRINT: Binary Rotation Invariant and Noise Tolerant Texture Classification, IEEE Transactions on Image Processing, vol.23, issue.7, pp.3071-3084, 2014.
DOI : 10.1109/TIP.2014.2325777

L. Liu, L. Zhao, Y. Long, G. Kuang, and P. Fieguth, Extended local binary patterns for texture classification, Image and Vision Computing, vol.30, issue.2, pp.86-99, 2012.
DOI : 10.1016/j.imavis.2012.01.001

Z. Baochang, G. Yongsheng, Z. Sanqiang, and L. Jianzhuang, Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-Order Local Pattern Descriptor, IEEE Transactions on Image Processing, vol.19, issue.2, pp.533-544, 2010.
DOI : 10.1109/TIP.2009.2035882

L. Liu, S. Lao, P. W. Fieguth, Y. Guo, X. Wang et al., Median Robust Extended Local Binary Pattern for Texture Classification, IEEE Transactions on Image Processing, vol.25, issue.3, pp.1368-1381, 2016.
DOI : 10.1109/TIP.2016.2522378

N. Vu, H. M. Dee, and A. Caplier, Face recognition using the POEM descriptor, Pattern Recognition, vol.45, issue.7, pp.2478-2488, 2012.
DOI : 10.1016/j.patcog.2011.12.021

URL : https://hal.archives-ouvertes.fr/hal-00741455

G. Zhao, T. Ahonen, and J. Matas, Rotation-Invariant Image and Video Description With Local Binary Pattern Features, IEEE Transactions on Image Processing, vol.21, issue.4, pp.1465-1477, 2012.
DOI : 10.1109/TIP.2011.2175739

J. Kannala and E. Rahtu, Bsif: Binarized statistical image features, Proceedings of the 21th IEEE International Conference on Pattern Recognition, pp.1363-1366, 2012.

M. Pietikäinen, T. Ojala, and Z. Xu, Rotation-invariant texture classification using feature distributions, Pattern Recognition, vol.33, issue.1, pp.43-52, 2000.
DOI : 10.1016/S0031-3203(99)00032-1

S. Liao and A. C. Chung, Face Recognition by Using Elongated Local Binary Patterns with Average Maximum Distance Gradient Magnitude, Proceedings of the Asian Conference on Computer Vision, pp.672-679, 2007.
DOI : 10.1007/978-3-540-76390-1_66

URL : http://www.cs.ust.hk/~achung/accv07_liao_chung.pdf

L. Nanni, A. Lumini, and S. Brahnam, Local binary patterns variants as texture descriptors for medical image analysis, Artificial Intelligence in Medicine, vol.49, issue.2, pp.117-125, 2010.
DOI : 10.1016/j.artmed.2010.02.006

T. Mäenpää and M. Pietikäinen, Multi-scale binary patterns for texture analysis, Proceedings of the 13th Scandinavian Conference on Image Analysis, pp.885-892, 2003.

L. Zhang, R. Chu, S. Xiang, S. Liao, and S. Z. Li, Face Detection Based on Multi-Block LBP Representation, Proceedings of the 2007 International Conference on Advances in Biometrics, pp.11-18, 2007.
DOI : 10.1007/978-3-540-74549-5_2

L. Wolf, T. Hassner, and Y. Taigman, Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.10, pp.1978-1990, 2011.
DOI : 10.1109/TPAMI.2010.230

URL : http://www.wisdom.weizmann.ac.il/%7Ehassner/projects/Patchlbp/WolfHassnerTaigman_TPAMI11.pdf

H. Jin, Q. Liu, H. Lu, and X. Tong, Face detection using improved LBP under Bayesian framework, Proceedings of the Third International Conference on Image and Graphics, pp.306-309, 2004.

A. Hafiane, G. Seetharaman, and B. Zavidovique, Median Binary Pattern for Textures Classification, Proceedings of the 4th International Conference on Image Analysis and Recognition, pp.387-398, 2007.
DOI : 10.1007/978-3-540-74260-9_35

M. Heikkila and M. Pietikainen, A texture-based method for modeling the background and detecting moving objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.4, pp.657-662, 2006.
DOI : 10.1109/TPAMI.2006.68

S. Liao, M. W. Law, and A. C. Chung, Dominant Local Binary Patterns for Texture Classification, IEEE Transactions on Image Processing, vol.18, issue.5, pp.1107-1118, 2009.
DOI : 10.1109/TIP.2009.2015682

URL : http://www.cse.ust.hk/~achung/tip09_liao_law_chung.pdf

W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang, Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition, Proceedings of the 10th IEEE International Conference on Computer Vision, pp.786-791, 2005.

X. Wang, T. X. Han, and S. Yan, An HOG-LBP human detector with partial occlusion handling, 2009 IEEE 12th International Conference on Computer Vision, pp.32-39, 2009.
DOI : 10.1109/ICCV.2009.5459207

S. U. Hussain and W. Triggs, Feature Sets and Dimensionality Reduction for Visual Object Detection, Procedings of the British Machine Vision Conference 2010, pp.112-113, 2010.
DOI : 10.5244/C.24.112

URL : https://hal.archives-ouvertes.fr/hal-00565024

B. F. Klare and A. K. Jain, Heterogeneous Face Recognition Using Kernel Prototype Similarities, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.6, pp.1410-1422, 2013.
DOI : 10.1109/TPAMI.2012.229

URL : http://biometrics.cse.msu.edu/Publications/Face/KlareJain_HeterogeneousFR_KernelPrototypeSimilarities_PAMI13.pdf

A. Roy and S. Marcel, Haar Local Binary Pattern Feature for Fast Illumination Invariant Face Detection, Procedings of the British Machine Vision Conference 2009, pp.19-20, 2009.
DOI : 10.5244/C.23.19

T. Ahonen, J. Matas, C. He, and M. Pietikäinen, Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features, Proceedings of the 16th Scandinavian Conference on Image Analysis, pp.61-70, 2009.
DOI : 10.1109/TPAMI.2006.244

URL : http://www.ee.oulu.fi/mvg/files/pdf/SCIA2009_lbp_histogram_fourier.pdf

V. T. Hoang, A. Porebski, N. Vandenbroucke, and D. Hamad, LBP parameter tuning for texture analysis of lace images, 2016 International Image Processing, Applications and Systems (IPAS), pp.1-6, 2016.
DOI : 10.1109/IPAS.2016.7880063

S. Brahnam, L. C. Jain, L. Nanni, and A. Lumini, Local Binary Patterns: New variants and applications, volume 506 of Studies in Computational Intelligence, 2014.

U. Kandaswamy, S. A. Schuckers, and D. Adjeroh, Comparison of Texture Analysis Schemes Under Nonideal Conditions, IEEE Transactions on Image Processing, vol.20, issue.8, pp.2260-2275, 2011.
DOI : 10.1109/TIP.2010.2101612

E. González-rufino, P. Carrión, E. Cernadas, M. Fernández-delgado, and R. Domínguez-petit, Exhaustive comparison of colour texture features and classification methods to discriminate cells categories in histological images of fish ovary, Pattern Recognition, vol.46, issue.9, pp.2391-2407, 2013.
DOI : 10.1016/j.patcog.2013.02.009

J. Ning, L. Zhang, D. Zhang, and C. Wu, ROBUST OBJECT TRACKING USING JOINT COLOR-TEXTURE HISTOGRAM, International Journal of Pattern Recognition and Artificial Intelligence, vol.24, issue.07, pp.1245-1263, 2009.
DOI : 10.1109/TPAMI.2007.1110

G. Han and C. Zhao, A Scene Images Classification Method Based on Local Binary Patterns and Nearest-Neighbor Classifier, 2008 Eighth International Conference on Intelligent Systems Design and Applications, pp.100-104, 2008.
DOI : 10.1109/ISDA.2008.19

J. Y. Choi, K. N. Plataniotis, and Y. M. Ro, Using colour local binary pattern features for face recognition, 2010 IEEE International Conference on Image Processing, pp.4541-4544, 2010.
DOI : 10.1109/ICIP.2010.5653653

C. Zhu, C. Bichot, and L. Chen, Image region description using orthogonal combination of local binary patterns enhanced with color information, Pattern Recognition, vol.46, issue.7, pp.1949-1963, 2013.
DOI : 10.1016/j.patcog.2013.01.003

URL : https://hal.archives-ouvertes.fr/hal-01339149

C. Chan, J. Kittler, and K. Messer, Multispectral Local Binary Pattern Histogram for Component-based Color Face Verification, 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems, pp.1-7, 2007.
DOI : 10.1109/BTAS.2007.4401951

F. Z. Chelali and A. Djeradi, CSLBP and OCLBP local descriptors for speaker identification from video sequences, 2015 Third World Conference on Complex Systems (WCCS), pp.1-7, 2015.
DOI : 10.1109/ICoCS.2015.7483290

A. Porebski, N. Vandenbroucke, and D. Hamad, A fast embedded selection approach for color texture classification using degraded LBP, 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA), pp.254-259, 2015.
DOI : 10.1109/IPTA.2015.7367140

N. L. Bihan and S. J. Sangwine, Quaternion principal component analysis of color images, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429), p.809, 2003.
DOI : 10.1109/ICIP.2003.1247085

R. Lan, Y. Zhou, Y. Y. Tang, and C. P. Chen, Person reidentification using quaternionic local binary pattern, 2014 IEEE International Conference on Multimedia and Expo (ICME), pp.1-6, 2014.
DOI : 10.1109/ICME.2014.6890260

C. Chahla, H. Snoussi, F. Abdallah, and F. Dornaika, Discriminant quaternion local binary pattern embedding for person re-identification through prototype formation and color categorization, Engineering Applications of Artificial Intelligence, vol.58, pp.27-33, 2017.
DOI : 10.1016/j.engappai.2016.11.004

R. Lan and Y. Zhou, Quaternion-Michelson Descriptor for Color Image Classification, IEEE Transactions on Image Processing, vol.25, issue.11, pp.5281-5292, 2016.
DOI : 10.1109/TIP.2016.2605922

A. K. Jain, R. P. Duin, and J. Mao, Statistical pattern recognition: a review, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.1, pp.4-37, 2000.
DOI : 10.1109/34.824819

URL : http://www.cs.colorado.edu/~mozer/courses/6622/papers/Statistical Patten Recognition Review.pdf

-. S. Tjen, W. Lim, Y. Loh, and . Shih, A comparison of prediction accuracy, complexity , and training time of thirty-three old and new classification algorithms, Machine learning, vol.40, issue.3, pp.203-228, 2000.

K. Fukunaga, Introduction to statistical pattern recognition Computer science and scientific computing, 1990.

R. A. Johnson and D. W. Wichern, Applied multivariate statistical analysis, 1988.

D. Casanova, J. B. Florindo, M. Falvo, and O. M. Bruno, Texture analysis using fractal descriptors estimated by the mutual interference of color channels, Information Sciences, vol.346, issue.347, pp.346-34758, 2016.
DOI : 10.1016/j.ins.2016.01.077

J. B. Florindo and O. M. Bruno, Texture analysis by fractal descriptors over the wavelet domain using a best basis decomposition. Physica A: Statistical Mechanics and its Applications, pp.415-427, 2016.

N. R. Da-silva, P. Van-der-weeën, B. De-baets, and O. M. Bruno, Improved texture image classification through the use of a corrosion-inspired cellular automaton, Neurocomputing, vol.149, pp.1560-1572, 2015.
DOI : 10.1016/j.neucom.2014.08.036

A. R. Backes, D. Casanova, and O. M. Bruno, Color texture analysis based on fractal descriptors, Pattern Recognition, vol.45, issue.5, pp.1984-1992, 2012.
DOI : 10.1016/j.patcog.2011.11.009

URL : http://www.producao.usp.br/bitstream/BDPI/32552/2/wos2012-368.pdf

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, vol.1, issue.3, pp.273-297, 1995.
DOI : 10.1007/BF00994018

B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the fifth annual workshop on Computational learning theory , COLT '92, pp.144-152, 1992.
DOI : 10.1145/130385.130401

Z. Wang and Z. Xue, Multi-Class Support Vector Machine, Support Vector Machines Applications, pp.23-48, 2014.
DOI : 10.1007/978-3-319-02300-7_2

-. W. Chih, C. Hsu, and . Lin, A comparison of methods for multiclass support vector machines, IEEE Transactions on Neural Networks, vol.13, issue.2, pp.415-425, 2002.
DOI : 10.1109/72.991427

D. Iakovidis, D. Maroulis, and S. Karkanis, A comparative study of color-texture image features, Proceedings of IEEE International Workshop on Systems, Signal and Image Processing, pp.205-209, 2005.

T. Cover and P. Hart, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, vol.13, issue.1, pp.21-27, 1967.
DOI : 10.1109/TIT.1967.1053964

URL : http://ssg.mit.edu/cal/abs/2000_spring/np_dens/classification/cover67.pdf

D. W. Aha, D. Kibler, and M. K. Albert, Instance-based learning algorithms, Machine Learning, vol.57, issue.1, pp.37-66, 1991.
DOI : 10.1145/1968.1972

URL : https://link.springer.com/content/pdf/10.1007%2FBF00153759.pdf

D. He and N. Cercone, Local Triplet Pattern for Content-Based Image Retrieval, International Conference Image Analysis and Recognition, pp.229-238, 2009.
DOI : 10.1007/BF00130487

-. H. Imtnan-ul, O. Qazi, J. C. Alata, A. Burie, C. Moussa et al., Choice of a pertinent color space for color texture characterization using parametric spectral analysis, Pattern Recognition, vol.44, issue.1, pp.16-31, 2011.

S. Alvarez and M. Vanrell, Texton theory revisited: A bag-of-words approach to combine textons, Pattern Recognition, vol.45, issue.12, pp.4312-4325, 2012.
DOI : 10.1016/j.patcog.2012.04.032

K. Hammouche, O. Losson, and L. Macaire, Fuzzy aura matrices for texture classification, Pattern Recognition, vol.53, pp.212-228, 2015.
DOI : 10.1016/j.patcog.2015.12.001

URL : https://hal.archives-ouvertes.fr/hal-01242418

A. Ahmadvand and M. Daliri, Invariant texture classification using a spatial filter bank in multi-resolution analysis, Image and Vision Computing, vol.45, pp.1-10, 2016.
DOI : 10.1016/j.imavis.2015.10.002

A. Ledoux and N. Richard, Color and multiscale texture features from vectorial mathematical morphology. Signal, Image and Video Processing, pp.431-438, 2016.
DOI : 10.1007/s11760-015-0759-3

URL : https://hal.archives-ouvertes.fr/hal-01229396

R. Bello-cerezo, F. Bianconi, A. Fernández, E. González, and F. D. Maria, Experimental comparison of color spaces for material classification, Journal of Electronic Imaging, vol.25, issue.6, p.61406, 2016.
DOI : 10.1117/1.JEI.25.6.061406

E. Cernadas, M. Fernández-delgado, E. González-rufino, and P. Carrión, Influence of normalization and color space to color texture classification, Pattern Recognition, vol.61, pp.120-138, 2017.
DOI : 10.1016/j.patcog.2016.07.002

C. M. Bishop, Neural networks for pattern recognition, 1995.

A. D. Maliani, M. Hassouni, Y. Berthoumieu, and D. Aboutajdine, Color texture classification method based on a statistical multi-model and geodesic distance, Journal of Visual Communication and Image Representation, vol.25, issue.7, pp.1717-1725, 2014.
DOI : 10.1016/j.jvcir.2014.06.004

URL : https://hal.archives-ouvertes.fr/hal-01312729

R. A. Martínez, N. Richard, and C. Fernandez, Alternative to colour feature classification using colour contrast ocurrence matrix, The International Conference on Quality Control by Artificial Vision International Society for Optics and Photonics, pp.953405-953405, 2015.

A. Porebski, N. Vandenbroucke, and L. Macaire, Iterative Feature Selection for Color Texture Classification, 2007 IEEE International Conference on Image Processing, pp.509-512, 2007.
DOI : 10.1109/ICIP.2007.4379358

A. Porebski, N. Vandenbroucke, and L. Macaire, A multi color space approach for texture classification: experiments with Outex, Vistex and Barktex image databases, Proceedings of the International Conference on Colour in Graphics, Imaging, and Vision, pp.314-319, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00732796

A. Porebski, N. Vandenbroucke, L. Macaire, and D. Hamad, A new benchmark image test suite for evaluating colour texture classification schemes, Multimedia Tools and Applications, pp.543-556, 2014.
DOI : 10.1016/j.patrec.2005.01.013

A. Porebski, N. Vandenbroucke, and L. Macaire, Supervised texture classification: color space or texture feature selection? Pattern Analysis and Applications, pp.1-18, 2013.
DOI : 10.1007/s10044-012-0291-9

M. Kalakech, P. Biela, L. Macaire, and D. Hamad, Constraint scores for semi-supervised feature selection: A comparative study, Pattern Recognition Letters, vol.32, issue.5, pp.656-665, 2011.
DOI : 10.1016/j.patrec.2010.12.014

Y. Guo, G. Zhao, and M. Pietikäinen, Discriminative features for texture description, Pattern Recognition, vol.45, issue.10, pp.3834-3843, 2012.
DOI : 10.1016/j.patcog.2012.04.003

-. M. Jing, H. Guo, H. Prasetyo, C. Lee, and . Yao, Image retrieval using indexed histogram of Void-and-Cluster Block Truncation Coding, Signal Processing, vol.123, pp.143-156, 2016.

M. Paci, L. Nanni, and S. Severi, An ensemble of classifiers based on different texture descriptors for texture classification, Journal of King Saud University - Science, vol.25, issue.3, pp.235-244, 2013.
DOI : 10.1016/j.jksus.2012.12.001

A. Fernández, M. X. Álvarez, and F. Bianconi, Texture Description Through Histograms of Equivalent Patterns, Journal of Mathematical Imaging and Vision, vol.178, issue.22, pp.76-102, 2013.
DOI : 10.1016/j.ins.2008.07.015

J. J. Junior and A. R. Backes, ELM based signature for texture classification, Pattern Recognition, vol.51, pp.395-401, 2016.
DOI : 10.1016/j.patcog.2015.09.014

F. Bianconi, R. Bello-cerezo, P. Napoletano, and F. D. Maria, Improved Opponent Colour Local Binary Patterns for Colour Texture Classification, Proceedings of the 6th International Workshop on Computational Color Imaging, pp.272-281, 2017.
DOI : 10.1142/9781848161160_0013

X. Chen, Z. Zhou, J. Zhang, Z. Liu, and Q. Huang, Local convex-and-concave pattern: An effective texture descriptor, Information Sciences, vol.363, pp.120-139, 2016.
DOI : 10.1016/j.ins.2016.05.017

Y. G. Naresh and H. S. Nagendraswamy, Classification of medicinal plants: An approach using modified LBP with symbolic representation, Neurocomputing, vol.173, pp.1789-1797, 2016.
DOI : 10.1016/j.neucom.2015.08.090

S. Hossain and S. Serikawa, Texture databases ??? A comprehensive survey, Pattern Recognition Letters, vol.34, issue.15, pp.2007-2022, 2013.
DOI : 10.1016/j.patrec.2013.02.009

T. Ojala, T. Maenpaa, M. Pietikainen, J. Viertola, J. Kyllonen et al., Outex - new framework for empirical evaluation of texture analysis algorithms, Object recognition supported by user interaction for service robots, pp.701-706, 2002.
DOI : 10.1109/ICPR.2002.1044854

R. Lakmann, Barktex benchmark database of color textured images, 1998.

C. Cusano, P. Napoletano, and R. Schettini, Illuminant Invariant Descriptors for Color Texture Classification, Computational Color Imaging, pp.239-249, 2013.
DOI : 10.1007/978-3-642-36700-7_19

F. Bianconi, R. Bello-cerezo, and P. Napoletano, Improved opponent color local binary patterns: an effective local image descriptor for color texture classification, Journal of Electronic Imaging, vol.27, issue.01, 2017.
DOI : 10.1117/1.JEI.27.1.011002

J. Wang, Y. Fan, and N. Li, Combining fine texture and coarse color features for color texture classification, Journal of Electronic Imaging, vol.26, issue.061, 2017.

M. W. Oliveira, N. R. Da-silva, A. Manzanera, and O. M. Bruno, Feature extraction on local jet space for texture classification. Physica A: Statistical Mechanics and its Applications, pp.160-170, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01245094

W. N. Gonçalves, N. R. Da-silva, L. Da-fontoura, O. M. Costa, and . Bruno, Texture recognition based on diffusion in networks, Information Sciences, vol.364, issue.365, pp.364-36551, 2016.
DOI : 10.1016/j.ins.2016.04.052

X. He and P. Niyogi, Locality preserving projections, Advances in neural information processing systems, pp.153-160, 2004.

S. K. Shevade and S. S. Keerthi, A simple and efficient algorithm for gene selection using sparse logistic regression, Bioinformatics, vol.19, issue.17, pp.2246-2253, 2003.
DOI : 10.1093/bioinformatics/btg308

T. Li, C. Zhang, and M. Ogihara, A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression, Bioinformatics, vol.20, issue.15, pp.2429-2437, 2004.
DOI : 10.1093/bioinformatics/bth267

M. Yang, F. Wang, and P. Yang, A novel feature selection algorithm based on hypothesismargin, Journal of Computers, vol.3, issue.12, pp.27-34, 2008.

W. Megchelenbrik, Relief-Based feature selection in bioinformatics: detecting functional specificity residues from multiple sequence alignments, 2010.

M. Dash and H. Liu, Feature selection for classification. Intelligent data analysis, pp.131-156, 1997.

Y. Sun, S. Todorovic, and S. Goodison, Local-learning-based feature selection for highdimensional data analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.9, pp.1610-1626, 2010.

D. Dernoncourt, B. Hanczar, and J. D. Zucker, Analysis of feature selection stability on high dimension and small sample data, Computational Statistics & Data Analysis, vol.71, pp.681-693, 2014.
DOI : 10.1016/j.csda.2013.07.012

G. Roffo, C. Segalin, A. Vinciarelli, V. Murino, and M. Cristani, Reading between the turns: Statistical modeling for identity recognition and verification in chats, 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, pp.99-104, 2013.
DOI : 10.1109/AVSS.2013.6636623

G. Roffo, C. Giorgetta, R. Ferrario, W. Riviera, and M. Cristani, Statistical Analysis of Personality and Identity in Chats Using a Keylogging Platform, Proceedings of the 16th International Conference on Multimodal Interaction, ICMI '14, pp.224-231, 2014.
DOI : 10.1002/asi.21001

G. Roffo and S. Melzi, Online Feature Selection for Visual Tracking, Procedings of the British Machine Vision Conference 2016, 2016.
DOI : 10.5244/C.30.120

URL : http://www.bmva.org/bmvc/2016/papers/paper120/abstract120.pdf

G. Roffo, M. Cristani, L. Bazzani, H. Q. Minh, and V. Murino, Trusting Skype: Learning the Way People Chat for Fast User Recognition and Verification, 2013 IEEE International Conference on Computer Vision Workshops, pp.748-754, 2013.
DOI : 10.1109/ICCVW.2013.102

J. Yuan and F. B. Bastani, Robust object tracking via online informative feature selection, 2014 IEEE International Conference on Image Processing (ICIP), pp.471-475, 2014.
DOI : 10.1109/ICIP.2014.7025094

K. Zhang, L. Zhang, and M. H. Yang, Real-Time Object Tracking Via Online Discriminative Feature Selection, IEEE Transactions on Image Processing, vol.22, issue.12, pp.4664-4677, 2013.
DOI : 10.1109/TIP.2013.2277800

G. H. John, R. Kohavi, and K. Pfleger, Irrelevant Features and the Subset Selection Problem, Proceedings of 11th International Conference on Machine Learning, pp.121-129, 1994.
DOI : 10.1016/B978-1-55860-335-6.50023-4

H. Liu and L. Yu, Toward integrating feature selection algorithms for classification and clustering, IEEE Transactions on knowledge and data engineering, vol.17, issue.4, pp.491-502, 2005.

R. Kohavi and G. H. John, Wrappers for feature subset selection, Artificial Intelligence, vol.97, issue.1-2, pp.273-324, 1997.
DOI : 10.1016/S0004-3702(97)00043-X

K. Benabdeslem and M. Hindawi, Constrained Laplacian Score for Semi-supervised Feature Selection, Machine Learning and Knowledge Discovery in Databases, pp.204-218, 2011.
DOI : 10.1073/pnas.96.12.6745

URL : https://hal.archives-ouvertes.fr/hal-01354578

J. Tang, S. Alelyani, and H. Liu, Feature selection for classification: A review. Data Classification: Algorithms and Applications, CRC Data Mining and Knowledge Discovery Series, 2014.

J. C. Ang, A. Mirzal, H. Haron, and H. Hamed, Supervised, unsupervised and semisupervised feature selection: A review on gene selection, IEEE/ACM Transactions on Computational Biology and Bioinformatics, pp.1-1, 2015.

Z. Zhao and H. Liu, Spectral feature selection for supervised and unsupervised learning, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.1151-1157, 2007.
DOI : 10.1145/1273496.1273641

URL : http://www.public.asu.edu/~huanliu/papers/icml07.pdf

R. Liu, N. Yang, X. Ding, and L. Ma, An Unsupervised Feature Selection Algorithm: Laplacian Score Combined with Distance-Based Entropy Measure, 2009 Third International Symposium on Intelligent Information Technology Application, pp.65-68, 2009.
DOI : 10.1109/IITA.2009.390

X. He, D. Cai, and P. Niyogi, Laplacian score for feature selection, Advances in Neural Information Processing Systems 18, 2005.

D. Zhang, S. Chen, and Z. Zhou, Constraint Score: A new filter method for feature selection with pairwise constraints, Pattern Recognition, vol.41, issue.5, pp.1440-1451, 2008.
DOI : 10.1016/j.patcog.2007.10.009

M. Kalakech, A. Porebski, P. Biela, D. Hamad, and L. Macaire, Constraint score for semi-supervised selection of color texture features, Proceedings of the Third IEEE international conference on machine vision, pp.275-279, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00732799

S. Yan and H. Wang, Semi-supervised Learning by Sparse Representation, Proceedings of the SIAM International Conference on Data Mining, pp.792-801, 2009.
DOI : 10.1137/1.9781611972795.68

URL : https://epubs.siam.org/doi/pdf/10.1137/1.9781611972795.68

R. Sheikhpour, M. A. Sarram, S. Gharaghani, M. Ali, and Z. Chahooki, A Survey on semi-supervised feature selection methods, Pattern Recognition, vol.64, 2016.
DOI : 10.1016/j.patcog.2016.11.003

L. Yu and H. Liu, Feature selection for high-dimensional data: A fast correlation-based filter solution, Proceedings of the 20th International Conference on International Conference on Machine Learning, pp.856-863, 2003.

Q. Gu, Z. Li, and J. Han, Generalized fisher score for feature selection, Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, pp.266-273, 2011.

H. Peng, F. Long, and C. Ding, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.8, pp.1226-1238, 2005.
DOI : 10.1109/TPAMI.2005.159

M. Dash and H. Liu, Feature selection for clustering, Proceedings of the Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.110-121, 2000.

L. Talavera, An Evaluation of Filter and Wrapper Methods for Feature Selection in Categorical Clustering, Advances in Intelligent Data Analysis VI, pp.440-451, 2005.
DOI : 10.1007/11552253_40

H. Yoon, K. Yang, and C. Shahabi, Feature subset selection and feature ranking for multivariate time series, IEEE Transactions on Knowledge and Data Engineering, vol.17, issue.9, pp.1186-1198, 2005.
DOI : 10.1109/TKDE.2005.144

D. Rodrigues, L. A. Pereira, R. Y. Nakamura, K. A. Costa, -. S. Xin et al., A wrapper approach for feature selection based on Bat Algorithm and Optimum-Path Forest, Expert Systems with Applications, vol.41, issue.5, pp.412250-2258, 2014.
DOI : 10.1016/j.eswa.2013.09.023

M. Kabir, M. Islam, and K. Murase, A new wrapper feature selection approach using neural network, Neurocomputing, vol.73, pp.16-183273, 2010.

S. Solorio-fernández, J. A. Carrasco-ochoa, and J. F. Martínez-trinidad, A new hybrid filter???wrapper feature selection method for clustering based on ranking, Neurocomputing, vol.214, pp.866-880, 2016.
DOI : 10.1016/j.neucom.2016.07.026

S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang et al., Graph Embedding and Extensions: A General Framework for Dimensionality Reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.1, pp.40-51, 2007.
DOI : 10.1109/TPAMI.2007.250598

Z. Lu and Y. Peng, Exhaustive and Efficient Constraint Propagation: A Graph-Based Learning Approach and Its Applications, International Journal of Computer Vision, vol.16, issue.2, pp.306-325, 2013.
DOI : 10.1109/TPAMI.2004.1262179

F. R. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, vol.92, issue.92, 1996.
DOI : 10.1090/cbms/092

D. Cai, X. He, and J. Han, Document clustering using locality preserving indexing, IEEE Transactions on Knowledge and Data Engineering, vol.17, issue.12, pp.1624-1637, 2005.
DOI : 10.1109/TKDE.2005.198

URL : http://people.cs.uchicago.edu/%7Exiaofei/journal-5.pdf

M. Liu and D. Zhang, SPARSITY SCORE: A NOVEL GRAPH-PRESERVING FEATURE SELECTION METHOD, International Journal of Pattern Recognition and Artificial Intelligence, vol.253, issue.04, p.1450009, 2014.
DOI : 10.1016/j.patcog.2008.11.025

V. U. Luxburg, A tutorial on spectral clustering, Statistics and Computing, vol.21, issue.1, pp.395-416, 2007.
DOI : 10.1017/CBO9780511810633

M. Belkin and P. Niyogi, Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Neural Computation, vol.15, issue.6, pp.1373-1396, 2003.
DOI : 10.1126/science.290.5500.2319

URL : http://jupiter.math.nctu.edu.tw/%7Eweng/courses/2010_topic_discrete/Spectrum/Laplacian.pdf

C. Cortes and M. Mohri, On transductive regression, Advances in Neural Information Processing Systems, vol.19, p.305, 2007.

J. Xu, G. Yang, H. Man, and H. He, L1 graph based on sparse coding for feature selection, Advances in Neural Networks, pp.594-601, 2013.

B. Cheng, J. Yang, S. Yan, Y. Fu, and T. S. Huang, Learning With $\ell ^{1}$-Graph for Image Analysis, IEEE Transactions on Image Processing, vol.19, issue.4, pp.858-866, 2010.
DOI : 10.1109/TIP.2009.2038764

M. Elad and M. Aharon, Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries, IEEE Transactions on Image Processing, vol.15, issue.12, pp.3736-3745, 2006.
DOI : 10.1109/TIP.2006.881969

URL : http://www.cs.technion.ac.il/~elad/publications/journals/2005/KSVD_Denoising_IEEE_TIP.pdf

J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, Robust Face Recognition via Sparse Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.2, pp.210-227, 2009.
DOI : 10.1109/TPAMI.2008.79

URL : http://www.csee.wvu.edu/~xinl/courses/ee565/PAMIface.pdf

S. Sun, J. Wang, M. F. She, and L. Kong, Sparse representation with multi-manifold analysis for texture classification from few training images, Image and Vision Computing, vol.32, issue.11, pp.835-846, 2014.
DOI : 10.1016/j.imavis.2014.07.001

J. Yang, J. Wright, T. Huang, and Y. Ma, Image super-resolution as sparse representation of raw image patches, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2008.

K. Huang and S. Aviyente, Sparse representation for signal classification, Advances in neural information processing systems, pp.609-616, 2006.

M. A. Davenport, M. F. Duarte, M. B. Wakin, J. N. Laska, D. Takhar et al., The smashed filter for compressive classification and target recognition, Computational Imaging V, pp.64980-64980, 2007.
DOI : 10.1117/12.714460

T. T. Cai and A. Zhang, Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices, IEEE Transactions on Information Theory, vol.60, issue.1, pp.122-132, 2014.
DOI : 10.1109/TIT.2013.2288639

L. Qiao, S. Chen, and X. Tan, Sparsity preserving projections with applications to face recognition, Pattern Recognition, vol.43, issue.1, pp.331-341, 2010.
DOI : 10.1016/j.patcog.2009.05.005

Y. Xie, W. Zhang, Y. Qu, and Y. Zhang, Discriminative subspace learning with sparse representation view-based model for robust visual tracking, Pattern Recognition, vol.47, issue.3, pp.1383-1394, 2014.
DOI : 10.1016/j.patcog.2013.07.010

M. Liu, D. Sun, and D. Zhang, Sparsity Score: A new filter feature selection method based on graph, Proceedings of the 21st IEEE International Conference on Pattern Recognition, pp.959-962, 2012.

J. Xu, G. Yang, Y. Yin, H. Man, and H. He, Sparse-Representation-Based Classification with Structure-Preserving Dimension Reduction, Cognitive Computation, vol.15, issue.4, pp.608-621, 2014.
DOI : 10.1371/journal.pcbi.1002250

S. C. Shaobing and D. Donoho, Basis pursuit, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers, 1994.
DOI : 10.1109/ACSSC.1994.471413

F. Dornaika and A. Bosaghzadeh, Adaptive graph construction using data self-representativeness for pattern classification, Information Sciences, vol.325, pp.118-139, 2015.
DOI : 10.1016/j.ins.2015.07.005

G. Doquire and M. Verleysen, A graph Laplacian based approach to semi-supervised feature selection for regression problems, Neurocomputing, vol.121, pp.5-13, 2013.
DOI : 10.1016/j.neucom.2012.10.028

M. Liu and D. Zhang, Pairwise Constraint-Guided Sparse Learning for Feature Selection, IEEE Transactions on Cybernetics, vol.46, issue.1, pp.1-1, 2015.
DOI : 10.1109/TCYB.2015.2401733

K. Crammer, R. Gilad-bachrach, A. Navot, and N. Tishby, Margin analysis of the LVQ algorithm, Advances in neural information processing systems, pp.462-469, 2002.

M. Yang and J. Song, A novel hypothesis-margin based approach for feature selection with side pairwise constraints, Neurocomputing, vol.73, issue.16-18, pp.16-182859, 2010.
DOI : 10.1016/j.neucom.2010.08.006

K. Kira and L. A. , A Practical Approach to Feature Selection, Proceedings of the 9th International Workshop on Machine Learning, pp.249-256, 1992.
DOI : 10.1016/B978-1-55860-247-2.50037-1

R. Gilad-bachrach, A. Navot, and N. Tishby, Margin based feature selection - theory and algorithms, Twenty-first international conference on Machine learning , ICML '04, p.43, 2004.
DOI : 10.1145/1015330.1015352

URL : http://www.aicml.cs.ualberta.ca/banff04/icml/pages/papers/100.pdf

R. S. Smith and T. Windeatt, Facial expression detection using filtered local binary pattern features with ECOC classifiers and platt scaling, Proceedings of the First Workshop on Applications of Pattern Analysis, pp.111-118, 2010.

O. Lahdenoja, M. Laiho, and A. Paasio, Reducing the feature vector length in local binary pattern based face recognition, IEEE International Conference on Image Processing 2005, p.914, 2005.
DOI : 10.1109/ICIP.2005.1530205

D. Maturana, D. Mery, and A. Soto, Learning discriminative local binary patterns for face recognition, Face and Gesture 2011, pp.470-475, 2011.
DOI : 10.1109/FG.2011.5771444

D. Zhao, Z. Lin, and Z. Tang, Laplacian PCA and Its Applications, 2007 IEEE 11th International Conference on Computer Vision, pp.1-8, 2007.
DOI : 10.1109/ICCV.2007.4409096

URL : http://research.microsoft.com/en-us/people/zhoulin/Publications/2007-ICCV-LPCA.pdf

L. Nanni and A. Lumini, RegionBoost learning for 2D+3D based face recognition, Pattern Recognition Letters, vol.28, issue.15, pp.2063-2070, 2007.
DOI : 10.1016/j.patrec.2007.06.003

A. Moujahid, A. Abanda, and F. Dornaika, Feature Extraction Using Block-based Local Binary Pattern for Face Recognition, Proceedings of Intelligent Robots and Computer Vision XXXIII: Algorithms and Techniques, pp.20161-20167, 2016.
DOI : 10.2352/ISSN.2470-1173.2016.10.ROBVIS-394

M. Pietikäinen, A. Hadid, G. Zhao, and T. Ahonen, Computer vision using Local Binary Patterns, 2011.

F. Cointault, D. Guerin, J. P. Guillemin, and B. Chopinet, ear counting using colour???texture image analysis, New Zealand Journal of Crop and Horticultural Science, vol.42, issue.6, pp.117-130, 2008.
DOI : 10.1117/1.1760756

URL : http://www.tandfonline.com/doi/pdf/10.1080/01140670809510227?needAccess=true

S. Chindaro, K. Sirlantzis, and F. Deravi, Texture classification system using colour space fusion, Electronics Letters, vol.41, issue.10, pp.589-590, 2005.
DOI : 10.1049/el:20050594

L. Nanni and A. Lumini, Fusion of color spaces for ear authentication, Pattern Recognition, vol.42, issue.9, pp.1906-1913, 2009.
DOI : 10.1016/j.patcog.2008.10.016

E. Aptoula and S. Lefèvre, On morphological color texture characterization, Proceedings of the International Symposium on Mathematical Morphology, pp.153-164, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00516071

M. Adel, D. Wolf, R. Vogrig, and R. Husson, Evaluation of colour spaces in computer vision application of wood defects detection, Proceedings of IEEE Systems Man and Cybernetics Conference, SMC, pp.499-504, 1993.
DOI : 10.1109/ICSMC.1993.384922

F. Bianconi, A. Fernández, E. González, and S. A. Saetta, Performance analysis of colour descriptors for parquet sorting, Expert Systems with Applications, vol.40, issue.5, pp.1636-1644, 2013.
DOI : 10.1016/j.eswa.2012.09.007

C. C. Brunner, A. G. Maristany, D. A. Butler, D. Vanleeuwen, and J. W. Funck, An evaluation of color spaces fordetecting defects in Douglas-fir veneer, Industrial Metrology, vol.2, issue.3-4, pp.3-4169, 1992.
DOI : 10.1016/0921-5956(92)80002-B

F. Bianconi, E. González, A. Fernández, and S. A. Saetta, Automatic classification of granite tiles through colour and texture features, Expert Systems with Applications, vol.39, issue.12, pp.11212-11218, 2012.
DOI : 10.1016/j.eswa.2012.03.052

F. Bianconi, R. Bello, A. Fernández, and E. González, On Comparing Colour Spaces From a Performance Perspective: Application to Automated Classification of Polished Natural Stones, Proceedings of International Workshops New Trends in Image Analysis and Processing, pp.71-78, 2015.
DOI : 10.1007/978-3-319-23222-5_9

S. Chindaro, K. Sirlantzis, and M. C. Fairhurst, ICA-based multi-colour space texture classification system, Electronics Letters, vol.42, issue.21, pp.1208-1209, 2006.
DOI : 10.1049/el:20062197

C. Charrier, G. Lebrun, and O. Lezoray, Evidential Segmentation of Microscopic Color Images with Pixel Classification Posterior Probabilities, Journal of Multimedia, vol.2, issue.3, 2007.
DOI : 10.4304/jmm.2.3.57-65

M. Mignotte, A de-texturing and spatially constrained K-means approach for image segmentation, Pattern Recognition Letters, vol.32, issue.2, pp.359-367, 2011.
DOI : 10.1016/j.patrec.2010.09.016

L. Busin, N. Vandenbroucke, and L. Macaire, Color Spaces and Image Segmentation, Advances in Imaging and Electron Physics, pp.65-168, 2009.
DOI : 10.1016/S1076-5670(07)00402-8

URL : https://hal.archives-ouvertes.fr/hal-00732488

H. Stern and B. Efros, Adaptive color space switching for tracking under varying illumination, Image and Vision Computing, vol.23, issue.3, pp.353-364, 2005.
DOI : 10.1016/j.imavis.2004.09.005

F. Laguzet, M. Gouiffès, L. Lacassagne, and D. Etiemble, Automatic color space switching for robust tracking, 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp.295-300, 2011.
DOI : 10.1109/ICSIPA.2011.6144157

F. Laguzet, A. Romero, M. Gouiffès, L. Lacassagne, and D. Etiemble, Color tracking with contextual switching: real-time implementation on CPU, Journal of Real-Time Image Processing, vol.10, issue.2, pp.403-422, 2015.
DOI : 10.1109/TIP.2011.2182521

N. Vandenbroucke, L. Macaire, and J. G. Postaire, Color image segmentation by pixel classification in an adapted hybrid color space. Application to soccer image analysis, Computer Vision and Image Understanding, vol.90, issue.2, pp.190-216, 2003.
DOI : 10.1016/S1077-3142(03)00025-0

M. Mignotte, A Label Field Fusion Bayesian Model and Its Penalized Maximum Rand Estimator for Image Segmentation, IEEE Transactions on Image Processing, vol.19, issue.6, pp.1610-1624, 2010.
DOI : 10.1109/TIP.2010.2044965

S. Banerji, A. Verma, and C. Liu, Novel color LBP descriptors for scene and image texture classification, Proceedings of the 15th International Conference on Image Processing, Computer Vision, and Pattern Recognition, pp.537-543, 2011.

S. Banerji, A. Sinha, and C. Liu, New image descriptors based on color, texture, shape, and wavelets for object and scene image classification, Neurocomputing, vol.117, pp.173-185, 2013.
DOI : 10.1016/j.neucom.2013.02.014

S. Banerji, A. Sinha, and C. Liu, HaarHOG: Improving the HOG Descriptor for Image Classification, 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp.4276-4281, 2013.
DOI : 10.1109/SMC.2013.729

R. Khan, A. Hanbury, J. Stöttinger, F. A. Khan, A. U. Khattak et al., Multiple color space channel fusion for skin detection, Multimedia Tools and Applications, pp.1709-1730, 2014.
DOI : 10.1016/S0923-5965(02)00088-7

L. Busin, N. Vandenbroucke, L. Macaire, and J. G. Postaire, Color space selection for unsupervised color image segmentation by histogram multi-thresholding, Proceedings of the IEEE International Conference on Image Processing, pp.203-206, 2004.

A. Gupta and A. Chaudhary, Robust skin segmentation using color space switching, Pattern Recognition and Image Analysis, vol.27, issue.1, pp.61-68, 2016.
DOI : 10.1109/TPAMI.2005.17

C. Benedek and T. Szirányi, Study on color space selection for detecting cast shadows in video surveillance, International Journal of Imaging Systems and Technology, vol.28, issue.3, pp.190-201, 2007.
DOI : 10.1109/TPAMI.2006.18

Y. Shan, F. Yang, and R. Wang, Color Space Selection for Moving Shadow Elimination, Fourth International Conference on Image and Graphics (ICIG 2007), pp.496-501, 2007.
DOI : 10.1109/ICIG.2007.54

N. Razmjooy, B. S. Mousavi, M. Khalilpour, and H. Hosseini, Automatic selection and fusion of color spaces for image thresholding. Signal, Image and Video Processing, pp.603-614, 2014.

N. Vandenbroucke, L. Macaire, and J. Postaire, Color pixels classification in an hybrid color space, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), pp.176-180, 1998.
DOI : 10.1109/ICIP.1998.723452

A. Jain and D. Zongker, Feature selection: evaluation, application, and small sample performance, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19, issue.2, pp.153-158, 1997.
DOI : 10.1109/34.574797

URL : http://www.doc.ic.ac.uk/~xh1/Referece/Current-Reading/Feature-selection-evaluation-application-and-small-sample-performance.pdf

V. T. Hoang, A. Porebski, N. Vandenbroucke, and D. Hamad, LBP Histogram Selection based on Sparse Representation for Color Texture Classification, Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp.476-483, 2017.
DOI : 10.5220/0006128204760483

Z. Guo, D. Zhang, and D. Zhang, A completed modeling of local binary pattern operator for texture classification, IEEE Transactions on Image Processing, vol.19, issue.6, pp.1657-1663, 2010.

R. Mehta and K. Egiazarian, Dominant Rotated Local Binary Patterns (DRLBP) for texture classification, Pattern Recognition Letters, vol.71, pp.16-22, 2016.
DOI : 10.1016/j.patrec.2015.11.019

P. Liu, J. Guo, K. Chamnongthai, and H. Prasetyo, Fusion of color histogram and LBP-based features for texture image retrieval and classification, Information Sciences, vol.390, 2017.
DOI : 10.1016/j.ins.2017.01.025

E. Achtert, S. Goldhofer, H. P. Kriegel, E. Schubert, and A. Zimek, Evaluation of Clusterings -- Metrics and Visual Support, 2012 IEEE 28th International Conference on Data Engineering, pp.1285-1288, 2012.
DOI : 10.1109/ICDE.2012.128

-. H. Imtnan-ul, O. Qazi, Z. Alata, and . Kato, Parametric stochastic modeling for color image segmentation and texture characterization, Advanced Color Image Processing and Analysis, pp.279-326, 2013.

J. B. Florindo, G. Landini, and O. M. Bruno, Three-dimensional connectivity index for texture recognition, Pattern Recognition Letters, vol.84, pp.239-244, 2016.
DOI : 10.1016/j.patrec.2016.09.013

W. B. Soltana, A. Porebski, N. Vandenbroucke, A. Ahmad, and D. Hamad, Texture analysis of lace images using histogram and local binary patterns under rotation variation, International Image Processing, Applications and Systems Conference, pp.1-5, 2014.
DOI : 10.1109/IPAS.2014.7043325

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, issue.1, pp.62-66, 1979.
DOI : 10.1109/TSMC.1979.4310076

V. T. Hoang, A. Porebski, N. Vandenbroucke, and D. Hamad, LBP parameter tuning for texture analysis of lace images, 2016 International Image Processing, Applications and Systems (IPAS), p.7880063, 2016.
DOI : 10.1109/IPAS.2016.7880063

V. T. Hoang, A. Porebski, N. Vandenbroucke, and D. Hamad, LBP Histogram Selection based on Sparse Representation for Color Texture Classification, Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp.100006128-204760483, 2017.
DOI : 10.5220/0006128204760483

A. Porebski, V. T. Hoang, N. Vandenbroucke, and . Hamad, D Multi color space LBPbased feature selection for texture classification, Journal of Electronic Imaging, vol.27, issue.1, p.11010, 2018.

.. An-illustration-of-hybrid-method, 57 2.10 Illustration of the nearhit and nearmiss concepts, p.66